

LOCA Initiating Event Frequencies and Uncertainties Status Report

Risk Informed GSI-191 Resolution Monday, August 22, 2011 8:00 am - 5:00 p.m EDT Public Meeting with STP Nuclear Operating Company

> Karl N. Fleming KNF Consulting Services LLC Bengt O. Y. Lydell

Discussion Topics

- Current Status
- Refinements of Approach for Conditional Rupture Probabilities
- Preliminary Results
- Independent Review by Ali Mosleh
- Issues to Complete

LOCA Frequencies Objectives

- Incorporate insights from previous work on LOCA frequencies
- Characterize LOCA initiating events and their frequencies with respect to:
 - Specific components, materials, dimensions
 - Specific locations
 - Range of break sizes
 - Damage / Degradation mechanisms and mitigation effectiveness
 - Other break characteristics, e.g. speed
- Quantify both aleatory and epistemic uncertainties; augment with sensitivity studies
- Support interfaces with other parts of the GSI-191 evaluation
 - LOCA initiating event frequencies for PRA modeling
 - Break characterization for evaluation of debris formation
- Participate in NRC workshops

Current Status

- Defined homogenous pipe failure rate categories
- Refined method for deriving conditional rupture probabilities vs. break size
- Obtained preliminary results for each pipe category
- Obtained preliminary results for total LOCA frequencies from pipe failures
- Independent reviews by MIT and Ali Mosleh in progress

Homogeneous Pipe Failure Rate Cases

Calc. Case No.	Description	Weld Type	Applicable Damage / Degradation Mechanism	Nominal Pipe Size [inch]	Comment
1	RCS Hot Leg excl. S/G Inlet	B-J B-J	TF, D&C D&C	29	Location of design basis LOCA; B-F weld has
		B-F	PWSCC, D&C		ingliel landle late but inside it cavity
2	RCS Cold Leg; different FR basis but same CRP basis as for Hot Leg	B-J B-F	D&C PWSCC, D&C	27.5", 31"	S/G outlet welds excluded from this case
3	RCS Hot Leg S/G Inlet'S/G Inlet	B-F	D&C	27.5	Includes S/G inlet nozzle-to-safe-end weld to resolve much higher incidence rate at Japanese plants following S/G replament. Applicability to U.S. plants being investigated
	Prz-Surge Line	B-J	TF, D&C		Includes branch connection (BC) nozzle welds,
4		B-J (BC)	TF, D&C	16	nozzle to pipe, pipe to pipe, and pipe to
		B-F	PWSCC, D&C		Pressurizer inlet safe end
5	Pressurizer Medium Bore Piping	B-J B-J (BC) B-F B-F	D&C TF, D&C PWSCC, TF, D&C PWSCC, D&C Wold Overlay	4", 6"	Pressurizer spray (4"), PORV and SRV welds (6")
6	Class 1 Small Bore Piping	B-J	D&C, TGSCC, VF	ø≤2"	Challenging to establish weld population data - significant plamt-to-plant variability. Important to distinguish between socket weld and non- socket weld populations.
7	Class 1 Medium Bore Safety Injection and RHR Piping	B-J B-J B-J B-J	D&C TF, D&C IGSCC, D&C IGSCC, TF, D&C	4"≤ø≤10"	Welds in Class 1 piping and branch connections for HPI/LPI/RHR systems; large weld population
8	Class 1 Medium Bore CVC Piping	B-J B-J B-J B-J (BC)	TF, D&C D&C VF, D&C TF, D&C	2"≤ø≤4"	CVC System including RCP seal injection line (injection/return)

Step by Step Procedure

- 1. Determination of weld types (i)
- 2. Perform data query for failure counts (n)
- 3. Estimate component exposure (T) and uncertainty
- 4. Develop component failure rate prior distributions for each DM
- 5. Perform Bayes' update for each exposure case (combination of weld count and DM susceptibility)
- 6. Apply posterior weighting to combine results for different hypothesis yield conditional failure rate distributions; compute unconditional failure rates for locations with uncertain DM status
- 7. Develop conditional probability of rupture size given failure probabilities for each weld type and associated epistemic uncertainties
- 8. Combine the results of Step 6 and Step 7 by Monte Carlo in Eq. (1) for component LOCA frequencies and total LOCA frequencies for each component
- 9. Apply Markov Model to specialize rupture frequencies for differences in integrity management
- 10. For intermediate LOCA categories and break sizes, interpolate the results of Step 10 via log-log linear interpolation
- 11. Calculate total LOCA frequencies from all components and reconcile differences with earlier LOCA frequency estimates

Step 7 Conditional Probability of Pipe Rupture

- Step 7.1 Benchmark of Lydell's Base Case LOCA frequencies for PWR hot leg, surge line, and HPI line
- Step 7.2 Compare results of individual expert elicitation LOCA Frequencies from NUREG-1829 to base case
- Step 7.3 Set Target LOCA frequencies that encompass elicitation results (method revised since July meeting)
- Step 7.4 Derive conditional rupture probability distributions that when combined with Lydell failure rate estimates match the target LOCA frequencies
- Step 7.5 Perform Bayes' updates that incorporate evidence on pipe failures without LOCAs

Selection of Target LOCA Frequencies

- Used expert distributions from NUREG-1829
 - Input from 9 experts for component level LOCA frequencies at different plant ages; using data for 40 years
 - Bengt Lydell base case results in Appendix D
- Evaluated alternative approaches to aggregating into composite distributions for different components
 - Mixture distribution of NUREG-1829 data rejected
 - Geometric mean distribution of NUREG-1829 data
 - Geometric means of 50th percentiles and range factors accepted
 - Geometric means of input 5% tiles and 95% tiles rejected
 - Hybrid of geometric means and Lydell base
 - Use of worst case 5% tiles and 95% tiles (Method described in July meeting)
 - Mixture distribution of geometric mean and Lydell (Method recommended by Dr. Mosleh)
- Performing sensitivity studies on alternative models

Comparison of Geometric Mean and Mixture Distributions from NUREG-1829 Data

Use of Worst-Case Percentiles from NUREG-1829 GM and Lydell Base Case

8/22/11 Pre-Licensing Meeting

Selected Approach for Target LOCA Frequencies

- Probabilistic mixture of two models
 - Model 1 Geometric mean of 9 expert distributions
 - Develop 40 year composite distribution of 9 experts using geometric mean method
 - Combined lognormal distribution for Current day and 40yr multipliers for each expert preserving median and range factors
 - Developed composite distribution based on geometric means of each experts medians and range factors
 - Model 2 Bengt Lydell Base Case analysis
 - Results of Models 1 and 2 combined giving equal weight to each yielding a mixture distribution of the two models
 - This method produces somewhat greater uncertainties than using Model 1 by itself

Comparison of Hybrid Methods

STP Hot Leg Target LOCA Model - Worst Case 5% tile and 95% tile								
LOCA Cat.	Break Size	Mean	5%tile	50%tile	95%tile	RF		
1	0.5	5.79E-07	3.55E-09	8.72E-08	2.14E-06	24.6		
2	1.5	1.95E-07	2.10E-10	1.09E-08	5.68E-07	52.0		
3	3	1.05E-07	8.33E-11	4.89E-09	2.87E-07	58.7		
4	6.76	3.75E-08	3.03E-11	1.77E-09	1.03E-07	58.3		
5	14	2.02E-08	1.16E-11	7.75E-10	5.17E-08	66.8		
6	31.5	2.41E-09	5.44E-12	2.08E-10	7.94E-09	38.2		
STP Hot Leg Target LOCA Model - Probabilistic Mixture								
1	0.5	5.08E-07	5.30E-09	1.05E-07	1.91E-06	19.0		
2	1.5	9.32E-08	3.91E-10	1.46E-08	3.68E-07	30.7		
3	3	4.54E-08	1.60E-10	6.39E-09	1.76E-07	33.1		
4	6.76	1.64E-08	5.73E-11	2.05E-09	6.32E-08	33.2		
5	14	8.37E-09	2.03E-11	7.64E-10	2.92E-08	37.9		
6	31.5	1.80E-09	5.85E-12	1.80E-10	5.83E-09	31.6		

Preliminary Results

- Results shown here use worst case percentile method for combining the NUREG-1829 GM and Lydell base case distributions
- Some modest reductions in means and range factors expected from incorporation of mixture method
- Current results only address LOCAs caused by pipe failures
- Non-pipe contributions to be considered in 2012

Example Results – Hot Leg B-F Weld at RPV Nozzle

BF Weld		Mean	5%tile	50%tile	95%tile	RF
Failure Rate		2.72E-04	1.04E-04	2.32E-04	5.77E-04	2.4
	0.5	4.42E-07	1.89E-08	1.74E-07	1.63E-06	9.3
	1.5	1.46E-07	8.90E-10	2.22E-08	5.45E-07	24.7
	1.99	1.13E-07	5.98E-10	1.57E-08	4.14E-07	26.3
	2.0	1.15E-07	5.96E-10	1.58E-08	4.19E-07	26.5
	3.0	8.21E-08	3.44E-10	9.92E-09	2.89E-07	29.0
Cumulative LOCA	4.0	5.81E-08	2.42E-10	7.00E-09	2.02E-07	28.9
Frequencies	5.99	3.49E-08	1.45E-10	4.22E-09	1.25E-07	29.3
Vs. Break Size (in.)	6.0	3.41E-08	1.43E-10	4.24E-09	1.20E-07	29.0
	6.8	2.89E-08	1.25E-10	3.60E-09	1.05E-07	29.0
	14.0	1.57E-08	4.67E-11	1.57E-09	5.41E-08	34.0
	20.0	8.93E-09	2.65E-11	8.93E-10	3.07E-08	34.0
	31.5	4.15E-09	1.26E-11	4.21E-10	1.42E-08	33.7
	44.5	3.02E-09	8.95E-12	3.12E-10	1.04E-08	34.2

Example Results – Hot Leg B-F Weld at RPV Nozzle

8/22/11 Pre-Licensing Meeting

Preliminary Results for Initiating Event Frequencies from Pipe Breaks

Initiating Event	Break Size	Mean	5%tile	50%tile	95%tile	RF
SLOCA	.5 to 2"	2.68E-04	4.44E-05	1.75E-04	7.85E-04	4.2
MLOCA	2" to 6"	6.69E-05	2.94E-06	2.53E-05	2.44E-04	9.1
LLOCA	> 6"	3.34E-06	3.49E-08	6.37E-07	1.23E-05	18.8

Preliminary Results for Total LOCA Frequency from Pipes

8/22/11 Pre-Licensing Meeting

Preliminary Results – System Contributions to LOCA Frequency

Major Tasks to Complete

- Provide input to CASAGRANDE with appropriate conditional probabilities vs. break size given the initiating event
 - Conditional probability that the break occurs in each location
 - Conditional probability that the break is in different size at each location
- Provide input to RISKMAN on the initiating event frequencies and uncertainties
- Finalize the draft report and submit for NRC review meeting in mid-September