OPERATING DATA REPORT

<u>050-0331</u> 2-14-79 DOCKET NO. DATE COMPLETED BY 1 TELEPHONE 319-851-5611

Van Sickel

OPERATING STATUS

..

1 Unit Name: Duane Arnold Energy Center	Notes
2. Reporting Period: January, 1979	
3. Licensed Thermal Power (MWt):	
4. Nameplate Rating (Gross MWe): <u>565 (Turbine Rating)</u>	
5. Design Electrical Rating (Net MWe): <u>538</u>	
6. Maximum Dependable Capacity (Gross MWe):545	
7. Maximum Dependable Capacity (Net MWe):515	

8. If Changes Occur in Capacity Ratings (Items Number 3 Through 7) Since Last Report, Give Reasons:

9. Power Level To Which Restricted, If Any (Net MWe):

10. Reasons For Restrictions, If Any: _

	•		· · .
	This Month	Yrto-Date	Cumulative
11. Hours In Reporting Period	744	744	35,064
12. Number Of Hours Reactor Was Critical	7.5	7,5	23,620.3
13. Reactor Reserve Shutdown Hours	0	0	<u> </u>
14. Hours Generator On-Line	0	00	22,987
15. Unit Reserve Shutdown Hours	0		0
16. Gross Thermal Energy Generated (MWH)	<u> </u>	0	28,061,640
17. Gross Electrical Energy Generated (MWH)	<u> </u>	0	9,337,429
18. Net Electrical Energy Generated (MWH)	0	0	8,716,300
19. Unit Service Factor	0%	0%	65.6%
20. Unit Availability Factor	0%	0%	65.6%
21. Unit Capacity Factor (Using MDC Net)	0%	0%	48.3%
22. Unit Capacity Factor (Using DER Net)		0%	46.2%
23. Unit Forced Outage Rate	100%	100%	22.6%
		·	

24. Shutdowns Scheduled Over Next 6 Months (Type, Date, and Duration of Each):

25. If Shut Down At End Of Report Period, Estimated Date of Startup: ____

March 1, 1979

* Turbine Rating: 565.7 MWe

Generator Rating: 663.5 (MVA) x .90 (Power Factor) = 597 MWe

7902220/0/

(9/77)

AVERAGE DAILY UNIT POWER LEVEL

DOCKET NO.	<u>050-0331</u>
UNIT	Duane Arnold Energ
DATÉ	_2-14-79
COMPLETED BY	J. Van Sickel
TELEPHONE	319-851-5611

MONTH	January, 1979		
DAY	AVERAGE DAILY POWER LEVEL (MWe-Net)	DAY	AVE
1	0	17	
2	0	18	
3	0	19	
4	0	20	·
5	0	21	
6	0	22	
7	0	23	
8	0	74	
9	0	25	
10	0	. 76	
11	0	20	·.
12	0	27	
12	0	28	
1.5	0	29	
14	0	30	-
15		31	
16	U f	· 2	

RAGE DAILY POWER LEVEL (MWe-Net) .

INSTRUCTIONS

On this format, list the average daily unit power level in MWe-Net for each day in the reporting month. Compute to the nearest whole megawatt.

		• •				UNIT	SHUTDOWNS AND REPORT MONTH	POWER	reductions	DOCKET NO. 050-0331 UNIT NAME Duane Arnold En DATE 2-14-79 COMPLETED BY J. Van Sickel TELEPHONE 319-851-5611
	No.	Date	Type ¹	((Hours)	cason ²	Method of Shutting Down Reactor ³	Licensee Event Report #	System Code ⁴	Component Code ⁵	Cause & Corrective Action to Prevent Recurrence
	1	780617	F	744	A	3	78-030	СВ	PIPEXX	Continuation of previous shutdown in which the recirculation system inlet nozzle safe ends were replaced. Startup presently being delayed while a flow restriction is being removed from the N2B riser
•	I F: For S: Sch	ced eduled	Reaso A-Eq B-Ma C-Ref D-Re E-Op F-Ad C-Op	on: uipment Fai intenance or fueling gulatory Res erator Train ministrative erational Fr	lure (Ex Test striction ing & Li	plain) cense Exa	3 mination	Method I-Manu 2-Manu 3-Auto 4-Other	l: al al Scram. matic Scram. r (Explain)	4 Exhibit G - Instructions for Preparation of Data Entry Sheets for Licensee Event Report (LER) File (NUREG- 0161) 5

NARRATIVE SUMMARY OF OPERATING EXPERIENCE

Unit Duane Arnold Energy Date 2-14-79 Center Completed by J. Van Sicke Telephone 319-851-5611

. *	
1-1	At the beginning of the report period the reactor was in the cold shutdown condition with the core loaded. The outage which began June 17, 1978 involving the replacement of all eight recirculation system inlet nozzle safe ends continued.
1-1	The reactor cavity was drained.
1-2	The service platform was installed on the reactor vessel.
1-5	The annual inspection of IG-21 standby diesel generator was completed with the unit being tested satisfactorily.
1-6	The annual inspection of 1G-31 standby diesel generator was begun.
1-9	The HPCI turbine was rolled with auxiliary boiler steam for testing.
1-11	The annual inspection of IG-31 standby diesel generator was completed with the unit being tested satisfactorily.
	Testing of the HPCI turbine was completed.
	The service platform was removed from the reactor vessel.
1-12	The moisture separator was installed in the reactor vessel.
1-13	The steam dryer was installed in the reactor vessel and the reactor vessel head was set in place.
1-14	The reactor vessel head studs were tensioned.
1-15	The reactor vessel head insulation and drywell head were installed.
1–17	Control rod friction testing was begun.
1-19	Control rod friction testing was completed.
1-26	The reactor cavity shield plugs were installed.
1-27	The A and B recirculation pumps were started and secured.
	A cold hydrostatic test of the reactor vessel and recirculation system piping was conducted with satisfactory results. Preparations were begun for a hot hydrostatic test.
1-28	The mode switch was placed in startup. The reactor was critical at 0520 hours for shutdown margin testing and was immediately driven subcritical again.
	The reactor was critical again at 0612 hours for a second shutdown margin test and was again immediately driven subscritical.
	The reactor was critical at 1540 hours to perform a hot hydrostatic test. Control rods were inserted to take the reactor subcritical at 2310 hours. The number 3 jet pump was found to be inoperable due to no flow indication.

Docket No.	050-0331
Unit Duane	Arnold Energy Cent
Date Februa	ry 14, 1979
Completed b	y J. Van Sickel
Telephone _	319-851-5611
-	

- 1-29 Testing confirmed blockage of an unknown nature existed in the #3 and #4 jet pumps. Preparations were begun to open the reactor vessel to investigate the jet pump blockage problem. The reactor cavity shield plugs were pulled.
- 1-30 The drywell head, insulation head, reactor vessel head, steam dryer and moisture separator were removed.
- 1-31 The service platform was installed on the reactor vessel.

3)

t No. 050-0331
Duane Arnold Energy
February 14, 1979 ·
eted by J. Van Sickel
hone 319-851-5611

MAJOR SAFETY RELATED MAINTENANCE

Date	System	Component	Description
1-4-79	Main Steam Isolation and ADS	LIS 4562	Disassembled, cleaned and reassembled swit
1-5-79	Standby Diesel Generators	1G-21 -	Rebuilt starting air solenoids
1-5-79	Standby Diesel Generator	1G-21	Completed annual inspection
1-8-79	Reactor Protection	LIS 4536	Disassembled, cleaned and reassembled swit
1-9-79	MSIV Leakage Control	MOV 8402B	Replaced coil in starter
1-9-79	Main Steam Isolation	CV 4421	Adjusted limit switch to set closing time
1- 9-79	Radwaste Sumps	MOV 3725	Rebuilt valve
1-11-79	Standby Diesel Generator	1G-31	Rebuilt starting air solenoid
1-11-79	Standby Diesel Generator	1G-31	Completed annual inspection
1-12-79	Reactor Protection	CRD Scram pilot solenoid valves	Rebuilt all solenoid valves
1-12-79	Drywell Radiation Monitors	1C-218B	Replaced sample pump
1-13-79	Drywell Radiation Monitors	1C-218A	Replaced sample pump
1-13-79	RHR.	Hanger HBC-16-H-129	Pipe hanger restored to design condition
1-13-79	RHR	Hangers HBB-24-H-4, HBB-23-H-5, GBB-5-H-19 and GBB-3-H-20C	Tighted pipe clamp bolts
1-13-79	RHR	Snubber GBB-3-SS-235	Aligned and tightened pipe clamp

MAJOR SAFETY RELATED MAINTENANCE

Docket No. 050-0331 UnitDuane Arnold Energy Center Date February 14, 1979 Completed by J. Van Sickel Telephone 319-851-5611

DATE	SYSTEM	COMPONENT	DESCRIPTION
1-16-79	RHR Cooling Water	1P-22D	Rebuilt pump
1-17-79	Neutron Monitoring	TIP Shear Valves	Replaced explosive charges
1-19-79	Main Steam Isolation and ADS	PSV 4405	Replaced valve body
1-19-79	Main Steam Isolation and ADS	PSV 4405	Adjusted pilot setpoint
1-19-79	Main Steam Isolation and ADS	PSV 4407	Adjusted pilot setpoint
1-22-79	Reactor Non-Nuclear Instruments	LITS ,4565	Disassembled, cleaned and reassembled
1-24-79	Primary Containment H & V	MOV 5714A	Replaced motor
1-24-79	Primary Containment H & V	MOV 5727B	Set limit switches
1-25-79	Core Spray	CV-2138	Replaced solenoid actuator
1-27-79	River Water Supply	1P-117D	Rebuilt pump
1-27-79	Reactor Protection	1K-15A, B, D, H	Repaired loose auxiliary contacts
1-27-79	Standby Liquid Control	SBLC explosive valves	Replaced explosive valves
1-27-79	480 Volt Motor Control Centers	Drywell electrical penetration splices	Replaced cable splices
1-27-79	River Water Supply	1P-117C	Reset impeller clearance
1-27-79	Core Spray	PS-2116	Replaced switch and alarm card
1-28-79	Neutron Monitoring	IRM "C"	Cleared short from cable
1-29-79	Neutron Monitoring	IRM "E"	IRM Replaced

REFUELING INFORMATION

Docket No. 050-0331 Unit Duane Arnold Energy Cente Date February 14, 1979 Completed by J. Van Sickel

Telephone 319-851-5611

- 1. Name of facility.
 - A. Duane Arnold Energy Center
- 2. Scheduled date for next refueling shutdown.
 - A. Unknown. Under review due to present extended outage.
- 3. Scheduled date for restart following refueling.
 - A. Unknown. Under review due to the present extended outage.
- 4. Will refueling or resumption of operation thereafter require a technical specification change or other license amendment?
 - A. MCPR and MAPLHGR operating limits as derived from transient and accident analyses.
- 5. Scheduled date(s) for submitting proposed licensing action and supporting information.

A. Unknown.

6. Important licensing considerations associated with refueling, e.g., new or different fuel design or supplier, unreviewed design or performance analysis methods, significant changes in fuel design, new operating procedures.

A. The reload will consist of up to 100 8 x 8 2 water rod bundles.

7. The number of fuel assemblies (a) in the core and (b) in the spent fuel storage pool.

A. a) 368 b) 276

- 8. The present licensed spent fuel pool storage capacity and the size of any increase in licensed storage capacity that has been requested or is planned, in number of fuel assemblies.
 - A. 2050
 - The projected date of the last refueling that can be discharged to the spent fuel pool assuming the present licensed capacity.

A. 1998

9.