BUILDING ENERGY CODES PROGRAM

Impacts of Standard 90.1-2007 for Commercial Buildings at State Level

September 2009

Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY

operated by

BATTELLE

for the

UNITED STATES DEPARTMENT OF ENERGY

under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information,
P.O. Box 62, Oak Ridge, TN 37831-6062;
phone: (865) 576-8401
fax: (865) 576-5728
email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service,
U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161
phone: (800) 553-6847
fax: (703) 605-6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm

This document was printed on recycled paper.

(9/2003)
The Building Energy Codes Program (BECP) recently conducted a nationwide commercial energy code analysis for the U.S. Department of Energy (DOE). The analysis compares ANSI/ASHRAE/IESNA Standard 90.1-2007 with the commercial code in each state as of June 2009. The results are provided in this report in chapters specific to each state.

Standard 90.1-2007 was chosen for this analysis because it is the baseline energy standard established in the American Recovery and Reinvestment Act of 2009 and the subject of DOE’s forthcoming determination of energy savings for Standard 90.1. An overview of Standard 90.1-2007, as well as a brief comparison to previous versions, is provided as introductory information.

States with unique energy codes were not included in the analysis as the codes in these states would be difficult to appropriately compare to Standard 90.1 and most of these states have energy offices that routinely assess their codes against the national codes. In states with codes prior to and including the 2000 IECC or Standard 90.1-1999, those states with no statewide energy code, and home rule states which did not specifically request that another code be used, Standard 90.1-1999 was used as the baseline for comparison. Standard 90.1-1999 was chosen as the default baseline because BECP believes it fairly represents current construction practice in states with older codes or no codes.

Three DOE Benchmark buildings were used for the simulation used in this analysis: a medium office building (53,600 ft²), a mid-rise apartment building (33,700 ft²), and a non-refrigerated warehouse (49,500 ft²)—representing the Standard 90.1 nonresidential, residential, and semiheated requirements, respectively. The buildings are described in further detail in the report, and in Appendix A.

Locations for the analysis were selected based on obtaining a sample representative of each climate zone in the state, where TMY2 weather file locations existed, making sure to include the state capital. In the absence of a TMY2 weather file for a particular climate zone in a state, a representative location in an adjacent state was used for the purposes of the simulation. These locations, and the full results of each state specific analysis completed by BECP, are provided in the following report.\(^2\)

---

1 American National Standards Institute/American Society of Heating, Refrigerating and Air-Conditioning Engineers/Illuminating Engineering Society of North America

2 DISCLAIMER: The results contained in these reports are complete and accurate to the best of BECP’s knowledge, based on information available at the time it was written.
# Table of Contents

1.0 Introduction ................................................................................................................................. 1
2.0 Overview of Standard 90.1-2007 .................................................................................................. 1
3.0 Comparison to Previous Versions of Standard 90.1 ........................................................................ 2
4.0 Energy Analysis Assumptions ....................................................................................................... 3
   4.1 State Base Codes ......................................................................................................................... 3
   4.2 Benchmark Buildings .................................................................................................................. 4
   4.3 The 2003 IECC and Lighting Power Density .............................................................................. 5
   4.4 Selected Locations ...................................................................................................................... 6
Alabama ............................................................................................................................................ 9
Alaska .......................................................................................................................................... 13
Arizona ........................................................................................................................................ 17
Arkansas ..................................................................................................................................... 21
Colorado ................................................................................................................................. 25
Connecticut ............................................................................................................................ 29
Delaware .................................................................................................................................... 31
District of Columbia ............................................................................................................... 33
Georgia ..................................................................................................................................... 35
Hawaii .......................................................................................................................................... 39
Idaho ........................................................................................................................................... 41
Illinois ........................................................................................................................................ 45
Indiana ....................................................................................................................................... 49
Iowa ............................................................................................................................................ 53
Kansas .................................................................................................................................... 57
Kentucky ................................................................................................................................... 61
Louisiana ................................................................................................................................... 63
Maine ......................................................................................................................................... 67
Maryland ................................................................................................................................ 71
Massachusetts ........................................................................................................................... 75
Michigan .................................................................................................................................. 77
Minnesota ................................................................................................................................ 81
Mississippi ............................................................................................................................ 85
Missouri .................................................................................................................................. 89
Montana ................................................................................................................................. 93
Nebraska .................................................................................................................................. 95
Nevada ....................................................................................................................................... 97
New Hampshire ..................................................................................................................... 101
New Jersey ........................................................................................................................... 105
New Mexico ........................................................................................................................... 109
1.0 Introduction

This report describes the results of a nationwide commercial energy code analysis undertaken by the Building Energy Codes Program (BECP) for the U.S. Department of Energy (DOE). The task involved comparing each state’s current commercial energy code\(^3\) to ANSI/ASHRAE/IESNA\(^4\) Standard 90.1-2007 (Standard 90.1-2007). State-specific results are provided in separate chapters.

The commercial comparison is made to Standard 90.1-2007 because that is the baseline commercial energy standard established in the American Recovery and Reinvestment Act of 2009. Standard 90.1-2007 will also soon be the subject of DOE’s latest determination of energy savings for Standard 90.1.

2.0 Overview of Standard 90.1-2007

Standard 90.1-2007 sets requirements for the cost-effective use of energy in commercial buildings. Certain buildings that have very low energy use, such as buildings with no heating or cooling, are exempt. Standard 90.1-2007 applies to new buildings and to alterations and additions to existing buildings.

Table 1 shows the organization of Standard 90.1-2007. Most of the actual requirements are contained in Sections 5-10.

<table>
<thead>
<tr>
<th>Table 1. Standard 90.1-2007 Table of Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – Purpose</td>
</tr>
<tr>
<td>2 – Scope</td>
</tr>
<tr>
<td>3 – Definitions, Abbreviations, and Acronyms</td>
</tr>
<tr>
<td>4 – Administration and Enforcement</td>
</tr>
<tr>
<td>5 – Building Envelope</td>
</tr>
<tr>
<td>6 – Heating, Ventilating, and Air Conditioning</td>
</tr>
<tr>
<td>7 – Service Water Heating</td>
</tr>
<tr>
<td>8 – Power</td>
</tr>
<tr>
<td>9 – Lighting</td>
</tr>
<tr>
<td>10 – Other Equipment</td>
</tr>
<tr>
<td>11 – Energy Cost Budget Method</td>
</tr>
<tr>
<td>12 – Normative References</td>
</tr>
<tr>
<td>Appendices</td>
</tr>
</tbody>
</table>

Sub-section numbers are standardized across the requirements sections. For example, sub-section 4 (x.4) is always the Mandatory Requirements. Table 2 shows the basic organization of the sub-sections used in Sections 5-10, although not all sub-sections are used in every Section.

\(^3\) Defined as the commercial energy code in effect on January 1, 2009, and referred to as the “base code”. Exceptions to this definition are noted in the individual state chapters.

\(^4\) The American National Standards Institute/American Society of Heating, Refrigerating, and Air-Conditioning Engineers/Illuminating Engineering Society of North America
Table 2. Organization of Sub-Sections

<table>
<thead>
<tr>
<th>x.1 – General</th>
</tr>
</thead>
<tbody>
<tr>
<td>x.2 – Compliance Paths</td>
</tr>
<tr>
<td>x.3 – Simple Buildings or Systems</td>
</tr>
<tr>
<td>x.4 – Mandatory Requirements</td>
</tr>
<tr>
<td>x.5 – Prescriptive Requirements</td>
</tr>
<tr>
<td>x.6 – Alternative Compliance Paths</td>
</tr>
<tr>
<td>x.7 – Submittals</td>
</tr>
<tr>
<td>x.8 – Products</td>
</tr>
</tbody>
</table>

3.0 Comparison to Previous Versions of Standard 90.1

The first Standard 90.1 was published in 1975, with revisions released in 1980, 1989, and 1999. Standard 90.1 was placed under continuous maintenance in 1999 which allowed the Standard to be updated with publication of approved addenda. Beginning with Standard 90.1-2001, the Standard moved to a three-year publication cycle.

Substantial revisions to the Standard have occurred since 1989. One major change was a complete revision of the climate zones in 2004. These revised climates zones are shown in Figure 1.

Figure 1. Climate Zones
Some of the significant requirements in Standard 90.1-2007 include:

- Stringent building insulation requirements
- Simplified fenestration requirements excluding orientation and window wall ratio
- Demand control ventilation requirements for spaces with an occupant density greater than 40 people per 1000 ft²
- Separate simple and complex mechanical requirements.

### 4.0 Energy Analysis Assumptions

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. EnergyPlus was developed by the U.S. Department of Energy⁵ (DOE).

#### 4.1 State Base Codes

States with unique energy codes (i.e., those that do not adopt/amend the International Energy Conservation Code® [IECC] or Standard 90.1) were not included in the analysis. This decision was made by DOE for two reasons: 1) these states generally have codes that have little resemblance to Standard 90.1, making a thorough comparison beyond the scope of this effort, and 2) most of these states have highly capable energy offices that routinely assess their codes against the national codes. However, states that were not included in the original analysis may request to be considered for a similar analysis by contacting BECP at techsupport@becp.pnl.gov.

In some cases, decisions about base codes needed to be made. For example, all versions of the IECC include two compliance options for commercial buildings: the commercial requirements in the IECC and Standard 90.1. Since there can only be one base code in the analysis, if a state specifically adopts the IECC as its commercial code, the commercial requirements from the applicable IECC were used in the analysis. There are several states with older commercial codes⁶. For states with codes prior to and including the 2000 IECC or Standard 90.1-1999, Standard 90.1-1999 was used as the base code.

Standard 90.1-1999 was chosen as the baseline construction for states with older codes because it has been around long enough (about 10 years) to allow many of the concepts and requirements embodied in it to become common practice in the construction industry. Standard 90.1-1999 also represents a major change in ASHRAE standards, coming ten years after the previous version of Standard 90.1. Standard 90.1-1999 is old enough that states considering adoption of Standard 90.1-2007 will still see significant savings, but not so old that states will be misled by the savings shown in this report. Keeping with the concept of Standard 90.1-1999 as “common practice” in the construction industry, Standard 90.1-1999 was also used as the base code for states with no state-wide commercial energy code. Some home rule states⁷ requested a specific code be used in the analysis; for all other home rule states Standard 90.1-1999 was used as the base code.

---

⁵ EnergyPlus is available and discussed in more detail at [http://apps1.eere.energy.gov/buildings/energyplus/](http://apps1.eere.energy.gov/buildings/energyplus/)


⁷ In home rule states, codes are adopted and enforced on a local level.
4.2 Benchmark Buildings

Three DOE Benchmark buildings\(^8\) were used for the simulation: a medium office building, a mid-rise apartment building, and a non-refrigerated warehouse (semiheated). These three building types represent the Standard 90.1 nonresidential, residential, and semiheated requirements, respectively. For states that have adopted a newer version of Standard 90.1 (1999 or later), the three types of envelope requirements were compared directly. For states that have adopted a version of the IECC that contains only a single set of commercial envelope requirements (any version prior to the 2009 IECC), the medium office and mid-rise apartment buildings were modeled using the single set of IECC requirements. The warehouse building was modeled using the semiheated envelope requirements from the reference standard version of Standard 90.1 incorporated in the version of the IECC under consideration. DOE assumes that any designer of a warehouse that would truly be considered semiheated within Standard 90.1 would be motivated to use the Standard 90.1 semiheated envelope requirements as allowed by the IECC.

Use of the IECC requirements for semiheated values in a comparison with Standard 90.1-2007 would lead to the awkward conclusion that the IECC is more stringent. This is true in the sense that use of more insulation in semiheated buildings will save some energy. However, because Standard 90.1-2007 is the designated comparison and it has separate semiheated envelope requirements, DOE chose to compare those semiheated requirements in the ASHRAE reference standard to the IECC.

The medium office has a gross area of 53,600 ft\(^2\), three floors, and a window-to-wall ratio (WWR) of 33%. The HVAC systems are assumed to be a gas furnace and a packaged DX unit. The walls are modeled as steel frame walls, and the roof as insulation entirely above deck.

The mid-rise apartment building has a gross area of 33,700 ft\(^2\), four floors, and a WWR of 15%. The assumed heating system is a gas furnace, with one split DX system assumed to provide cooling for each apartment. The walls are modeled as steel frame walls, and the roof as insulation entirely above deck.

The semiheated warehouse has a gross area of 49,500 ft\(^2\), one floor, and no windows in the storage area. Limited heating is provided by unit heaters and no cooling is provided. The walls and roof are modeled as metal building walls and roof.

The DOE Benchmark buildings are also further described in Appendix A.

Equipment efficiencies are assumed to be the current Federal requirements for all codes. While older codes may have older (lower) equipment efficiencies listed in them, equipment that meets the requirements of these old codes may no longer be manufactured or imported into the United States. Thus, this equipment is typically not available. There are some pieces of HVAC equipment that are not covered by the Federal requirements (notably, chillers), but the HVAC equipment modeled in the three benchmark buildings used in the analysis is covered by the Federal requirements.

The HVAC system for the medium office building is simulated with an economizer when required by the code. By default, the economizer requirements are based on Table 6.5.1 in Standard 90.1-2004. A design day simulation was done in all climate zones to determine the cooling capacity and the economizer requirement. The typical cooling capacity in the medium office building exceeds 135,000 Btu/h in all climate zones. Table 3 shows the economizer requirement for representative locations in the various climate zones. The building

\(^8\) The Benchmark buildings are available at and discussed in more detail at http://www1.eere.energy.gov/buildings/commercial_initiative/benchmark_models.html.
simulation assumes that the economizer high limit shutoff will be controlled by differential dry bulb temperature, a control option allowed by the Standard. Under this control scenario, when the outdoor air temperature is below both the return air temperature and the high ambient shutoff temperature, the economizer is enabled.

Table 3. Economizer Requirements in Standard 90.1-2004

<table>
<thead>
<tr>
<th>Climate Zone</th>
<th>Representative City</th>
<th>Economizer Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A Miami</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>2A Houston</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>2B Phoenix</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>3A Atlanta</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>3B Los Angeles</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>3C San Francisco</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>4A Baltimore</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>4B Albuquerque</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>4C Seattle</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>5A Chicago</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>5B Denver</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>6A Minneapolis</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>6B Helena</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>7 Duluth</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>8 Fairbanks</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

4.3 The 2003 IECC and Lighting Power Density

Over the two decades of commercial energy code development, changes in allowable lighting power density have been one of the most important drivers of energy efficiency. As an example, Table 4 shows the allowable interior lighting power densities for the three buildings used in this analysis. Similar differences in requirements for other building types can also be listed.
### Table 4. Comparison of Lighting Power Density Requirements

<table>
<thead>
<tr>
<th>Standard/Code Version</th>
<th>Allowable Interior Lighting Power Density (whole building) – watts per square foot</th>
<th>Office</th>
<th>Mid-Rise Apartment</th>
<th>Warehouse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 90.1.1989, 1998 IECC, 2000 IECC</td>
<td>1.5 to 1.9</td>
<td>1.5</td>
<td>Apartment lighting not covered, Multifamily not listed</td>
<td>0.4 to 0.8</td>
</tr>
<tr>
<td>Standard 90.1-1999, Standard 90.1-2001</td>
<td>1.3</td>
<td>1.3</td>
<td>Apartment lighting not covered, Multifamily 1.0</td>
<td>1.2</td>
</tr>
<tr>
<td>Standard 90.1-2004, Standard 90.1-2007, 2003 IECC, 2006 IECC, 2009 IECC</td>
<td>1.0</td>
<td>1.0</td>
<td>Apartment lighting not covered, Multifamily 0.7</td>
<td>0.8</td>
</tr>
</tbody>
</table>

The issue with the 2003 IECC is that it uses Standard 90.1-2001 as its reference standard. The 2003 IECC contains the low lighting power densities exemplified by the 1.0 watt per square foot value in the actual text of Chapter 8. But the 2003 IECC also allows the use of Standard 90.1-2001 under the provisions of Chapter 7. And Standard 90.1-2001 has the mid-range interior lighting power densities exemplified by the 1.3 watts per square foot value. No other version of the IECC has as significant a discontinuity between the requirements of the IECC and the requirements of the ASHRAE reference standard.

For this analysis, the requirements of the 2003 IECC were used. While lighting designers may very well have discovered this discontinuity, the use of the 2003 requirements provide a conservative estimate of the savings associated with adoption of Standard 90.1-2007. Use of Standard 90.1-2001 lighting densities as the baseline would simply increase the savings.

The simulation models for nonresidential and semiheated buildings use the lighting power density requirements for office and warehouse, depending on the activity type of the thermal zone. In the case of the residential building model, the lighting power density is not regulated in older codes and is assumed to be 0.36 W/sf in apartment units based on the Building America benchmark model. The office area and corridor lighting requirements in the residential building model are based on Standard 90.1-2004 requirements.

#### 4.4 Selected Locations

The approach used to select representative locations for the analysis first focused on the goal of having one location to represent each climate zone within a state, with one of the locations being the state capital. TMY2 weather file locations were used. When a climate zone in a state was not represented by a TMY2 weather file location in that state, a representative location in an adjacent state was selected to represent the climate zone for purposes of the simulation. However, a representative city within the actual state is referenced in the report tables. A listing of the selected locations is shown below.
<table>
<thead>
<tr>
<th>State</th>
<th>Location</th>
<th>Climate Zone</th>
<th>State</th>
<th>Location</th>
<th>Climate Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Mobile</td>
<td>2A</td>
<td>NE</td>
<td>Omaha</td>
<td>5A</td>
</tr>
<tr>
<td>AL</td>
<td>Montgomery</td>
<td>3A</td>
<td>NV</td>
<td>Las Vegas</td>
<td>3B</td>
</tr>
<tr>
<td>AK</td>
<td>Anchorage</td>
<td>7</td>
<td>NV</td>
<td>Reno</td>
<td>5B</td>
</tr>
<tr>
<td>AK</td>
<td>Fairbanks</td>
<td>8</td>
<td>NH</td>
<td>Manchester</td>
<td>5A</td>
</tr>
<tr>
<td>AR</td>
<td>Little Rock</td>
<td>3A</td>
<td>NH</td>
<td>Concord</td>
<td>6A</td>
</tr>
<tr>
<td>AR</td>
<td>Fayetteville</td>
<td>4A</td>
<td>NJ</td>
<td>Newark</td>
<td>4A</td>
</tr>
<tr>
<td>AZ</td>
<td>Phoenix</td>
<td>2B</td>
<td>NJ</td>
<td>Paterson</td>
<td>5A</td>
</tr>
<tr>
<td>AZ</td>
<td>Sierra Vista</td>
<td>3B</td>
<td>NM</td>
<td>Las Cruces</td>
<td>3B</td>
</tr>
<tr>
<td>AZ</td>
<td>Prescott</td>
<td>4B</td>
<td>NM</td>
<td>Albuquerque</td>
<td>4B</td>
</tr>
<tr>
<td>AZ</td>
<td>Flagstaff</td>
<td>5B</td>
<td>NY</td>
<td>New York City</td>
<td>4A</td>
</tr>
<tr>
<td>CO</td>
<td>La Junta</td>
<td>4B</td>
<td>NY</td>
<td>Albany</td>
<td>5A</td>
</tr>
<tr>
<td>CO</td>
<td>Boulder</td>
<td>5B</td>
<td>NY</td>
<td>Binghamton</td>
<td>6A</td>
</tr>
<tr>
<td>CO</td>
<td>Eagle</td>
<td>6B</td>
<td>NC</td>
<td>Charlotte</td>
<td>3A</td>
</tr>
<tr>
<td>CO</td>
<td>Alamosa</td>
<td>7B</td>
<td>NC</td>
<td>Raleigh</td>
<td>4A</td>
</tr>
<tr>
<td>CT</td>
<td>Hartford</td>
<td>5A</td>
<td>NC</td>
<td>Boone</td>
<td>5A</td>
</tr>
<tr>
<td>DE</td>
<td>Wilmington</td>
<td>4A</td>
<td>ND</td>
<td>Bismarck</td>
<td>6A</td>
</tr>
<tr>
<td>DC</td>
<td>Washington DC</td>
<td>4A</td>
<td>ND</td>
<td>Minot</td>
<td>7</td>
</tr>
<tr>
<td>GA</td>
<td>Savannah</td>
<td>2A</td>
<td>OH</td>
<td>Cincinnati</td>
<td>4A</td>
</tr>
<tr>
<td>GA</td>
<td>Atlanta</td>
<td>3A</td>
<td>OH</td>
<td>Columbus</td>
<td>5A</td>
</tr>
<tr>
<td>GA</td>
<td>Rome</td>
<td>4A</td>
<td>PA</td>
<td>Philadelphia</td>
<td>4A</td>
</tr>
<tr>
<td>HI</td>
<td>Honolulu</td>
<td>1A</td>
<td>PA</td>
<td>Harrisburg</td>
<td>5A</td>
</tr>
<tr>
<td>HI</td>
<td>Honolulu</td>
<td>1A</td>
<td>PA</td>
<td>Bradford</td>
<td>6A</td>
</tr>
<tr>
<td>ID</td>
<td>Boise</td>
<td>5B</td>
<td>RI</td>
<td>Providence</td>
<td>5A</td>
</tr>
<tr>
<td>ID</td>
<td>Pocatello</td>
<td>6B</td>
<td>SC</td>
<td>Columbia</td>
<td>3A</td>
</tr>
<tr>
<td>IA</td>
<td>Des Moines</td>
<td>5A</td>
<td>SD</td>
<td>Yankton</td>
<td>5A</td>
</tr>
<tr>
<td>IA</td>
<td>Mason City</td>
<td>6A</td>
<td>SD</td>
<td>Pierre</td>
<td>6A</td>
</tr>
<tr>
<td>KS</td>
<td>Topeka</td>
<td>4A</td>
<td>TN</td>
<td>Memphis</td>
<td>3A</td>
</tr>
<tr>
<td>KS</td>
<td>Goodland</td>
<td>5A</td>
<td>TN</td>
<td>Nashville</td>
<td>4A</td>
</tr>
<tr>
<td>KY</td>
<td>Lexington</td>
<td>4A</td>
<td>TX</td>
<td>Austin</td>
<td>2A</td>
</tr>
<tr>
<td>LA</td>
<td>Baton Rouge</td>
<td>2A</td>
<td>TX</td>
<td>Houston</td>
<td>2B</td>
</tr>
<tr>
<td>LA</td>
<td>Shreveport</td>
<td>3A</td>
<td>TX</td>
<td>El Paso</td>
<td>3A</td>
</tr>
<tr>
<td>ME</td>
<td>Portland</td>
<td>6A</td>
<td>TX</td>
<td>Fort Worth</td>
<td>3B</td>
</tr>
<tr>
<td>ME</td>
<td>Caribou</td>
<td>7</td>
<td>TX</td>
<td>Amarillo</td>
<td>4B</td>
</tr>
<tr>
<td>MD</td>
<td>Baltimore</td>
<td>4A</td>
<td>UT</td>
<td>Saint George</td>
<td>3B</td>
</tr>
<tr>
<td>MD</td>
<td>Mtn. Lake Park</td>
<td>5A</td>
<td>UT</td>
<td>Salt Lake City</td>
<td>5B</td>
</tr>
<tr>
<td>MA</td>
<td>Boston</td>
<td>5</td>
<td>VT</td>
<td>Burlington</td>
<td>6A</td>
</tr>
<tr>
<td>MI</td>
<td>Lansing</td>
<td>5A</td>
<td>VA</td>
<td>Richmond</td>
<td>4A</td>
</tr>
<tr>
<td>MI</td>
<td>Alpena</td>
<td>6A</td>
<td>WV</td>
<td>Charleston</td>
<td>4A</td>
</tr>
<tr>
<td>MI</td>
<td>Sault Ste. Marie</td>
<td>7</td>
<td>WV</td>
<td>Elkins</td>
<td>5A</td>
</tr>
<tr>
<td>MN</td>
<td>St. Paul</td>
<td>6A</td>
<td>WI</td>
<td>Madison</td>
<td>6A</td>
</tr>
<tr>
<td>MN</td>
<td>Duluth</td>
<td>7</td>
<td>WI</td>
<td>Superior</td>
<td>7</td>
</tr>
<tr>
<td>MS</td>
<td>Biloxi</td>
<td>2A</td>
<td>WY</td>
<td>Torrington</td>
<td>5B</td>
</tr>
<tr>
<td>MS</td>
<td>Jackson</td>
<td>3A</td>
<td>WY</td>
<td>Cheyenne</td>
<td>6B</td>
</tr>
<tr>
<td>MO</td>
<td>Saint Louis</td>
<td>4A</td>
<td>WY</td>
<td>Rock Springs</td>
<td>7B</td>
</tr>
<tr>
<td>MO</td>
<td>St. Joseph</td>
<td>5A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT</td>
<td>Helena</td>
<td>6B</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Alabama

Summary

Alabama has no statewide commercial code, therefore for this state comparison, DOE has selected Standard 90.1-1999 as the baseline standard for the analysis. Standard 90.1-2007 would improve energy efficiency in commercial buildings in Alabama. The analysis of the impact of Standard 90.1-2007 resulted in energy and cost savings.

Main Differences Between the Current State Code and Standard 90.1-2007

Standard 90.1-1999 precedes Standard 90.1-2004 and is therefore older (and less stringent) than DOE’s currently mandated commercial building energy standard – Standard 90.1-2004. This selection was made with the belief that Standard 90.1-1999 is an appropriate representation of commercial current practice, as it was developed more than ten years ago. DOE’s analysis of Standard 90.1-1999 is included in DOE’s determination of energy savings for Standard 90.1-2004, which compared Standard 90.1-2004 to Standard 90.1-2001 and Standard 90.1-1999. The complete results of this analysis may be found at http://www.energycodes.gov/implement/determinations_90.1-2004.stm. In comparing Standard 90.1-1999 to Standard 90.1-2007, Standard 90.1-2007:

- Has fewer climate “zones” or “bins” (26 bins versus 8 climate zones).
- Has more stringent building envelope requirements (due in large part to having fewer climate zones).
- Has more strict requirements for vestibules in cold climates.
- Differentiates windows by fixed versus operable rather than by frame material and usage.
- Includes a requirement for demand controlled ventilation in high occupancy spaces.
- Removes a deadband exception for data processing centers that eliminates the possibility of simultaneous heating and cooling.
- Increases stringency in fan power limitations.
- Increases boiler efficiency requirements.
- Applies part-load fan power requirements to more smaller systems.
- Revises the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise.
- Has more detailed outdoor lighting power requirements.
- Has more stringent indoor lighting power allowances.

A comparison of the thermal envelope requirements is provided in Table 5.
Table 5. Comparison of Envelope Requirements (U-factors in Btu/hr.ft².°F)

<table>
<thead>
<tr>
<th></th>
<th>Climate Zone 2A</th>
<th>Climate Zone 3A</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nonresidential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.124</td>
<td>0.124</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>1.22 (0.25)</td>
<td>0.72 (0.25)</td>
</tr>
<tr>
<td><strong>Residential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.124</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>1.22 (0.25)</td>
<td>0.72 (0.25)</td>
</tr>
<tr>
<td><strong>Semiheated</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.184</td>
<td>0.184</td>
</tr>
<tr>
<td>Roof</td>
<td>0.167</td>
<td>0.167</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

Energy Analysis

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.
<table>
<thead>
<tr>
<th>Building Prototype</th>
<th>Location</th>
<th>Energy Use Intensity</th>
<th></th>
<th></th>
<th>Savings 90.1-2007 vs. 90.1-1999</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>90.1-1999</td>
<td>90.1-2007</td>
<td></td>
<td></td>
<td>Energy</td>
<td>Cost</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electricity (kWh/sf/yr)</td>
<td>Natural Gas (kBtu/sf/yr)</td>
<td>Electricity (kWh/sf/yr)</td>
<td>Natural Gas (kBtu/sf/yr)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Mobile</td>
<td>13.60</td>
<td>2.89</td>
<td>12.44</td>
<td>2.82</td>
<td>8.2%</td>
<td>8.4%</td>
</tr>
<tr>
<td>Residential</td>
<td>Mobile</td>
<td>9.31</td>
<td>4.50</td>
<td>9.06</td>
<td>3.32</td>
<td>5.7%</td>
<td>4.2%</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Mobile</td>
<td>4.22</td>
<td>4.98</td>
<td>4.22</td>
<td>4.82</td>
<td>0.8%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Montgomery</td>
<td>13.88</td>
<td>3.35</td>
<td>11.86</td>
<td>3.34</td>
<td>13.6%</td>
<td>14.1%</td>
</tr>
<tr>
<td>Residential</td>
<td>Montgomery</td>
<td>9.54</td>
<td>4.18</td>
<td>9.22</td>
<td>2.97</td>
<td>6.2%</td>
<td>4.7%</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Montgomery</td>
<td>4.31</td>
<td>4.83</td>
<td>4.31</td>
<td>4.69</td>
<td>0.7%</td>
<td>0.4%</td>
</tr>
</tbody>
</table>
Alaska

Summary

Alaska has no statewide commercial code, therefore for this state comparison, DOE has selected Standard 90.1-1999 as the baseline standard for the analysis. Standard 90.1-2007 would improve energy efficiency in commercial buildings in Alaska. The analysis of the impact of Standard 90.1-2007 resulted in energy and cost savings.

Main Differences Between the Current State Code and Standard 90.1-2007

Standard 90.1-1999 precedes Standard 90.1-2004 and is therefore older (and less stringent) than DOE’s currently mandated commercial building energy standard, Standard 90.1-2004. This selection was made with the belief that Standard 90.1-1999 is an appropriate representation of commercial current practice, as it was developed more than ten years ago. DOE’s analysis of Standard 90.1-1999 is included in DOE’s determination of energy savings for Standard 90.1-2004, which compared Standard 90.1-2004 to Standard 90.1-2001 and Standard 90.1-1999. The complete results of this analysis may be found at http://www.energycodes.gov/implement/determinations_90.1-2004.stm. In comparing Standard 90.1-1999 to Standard 90.1-2007, Standard 90.1-2007:

- Has fewer climate “zones” or “bins” (26 bins versus 8 climate zones).
- Has more stringent building envelope requirements (due in large part to having fewer climate zones).
- Has more strict requirements for vestibules in cold climates.
- Differentiates windows by fixed versus operable rather than by frame material and usage.
- Includes a requirement for demand controlled ventilation in high occupancy spaces.
- Removes a deadband exception for data processing centers that eliminates the possibility of simultaneous heating and cooling.
- Increases stringency in fan power limitations.
- Increases boiler efficiency requirements.
- Applies part-load fan power requirements to more smaller systems.
- Revises the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise.
- Has more detailed outdoor lighting power requirements.
- Has more stringent indoor lighting power allowances.

A comparison of the thermal envelope requirements is provided in Table 6.
Table 6. Comparison of Envelope Requirements (U-factors in Btu/hr.ft².°F)

<table>
<thead>
<tr>
<th></th>
<th>Climate Zone 7</th>
<th>Climate Zone 8</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nonresidential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.064</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>R-15/2ft.</td>
</tr>
<tr>
<td>Window*</td>
<td>0.46 (0.45)</td>
<td>0.42 (0.45)</td>
</tr>
<tr>
<td><strong>Residential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.064</td>
<td>0.042</td>
</tr>
<tr>
<td>Roof</td>
<td>0.048</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>R-10/2ft</td>
<td>R-10/2ft.</td>
</tr>
<tr>
<td>Window*</td>
<td>0.62 (0.49)</td>
<td>0.42 (0.45)</td>
</tr>
<tr>
<td><strong>Semiheated</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.113</td>
<td>0.113</td>
</tr>
<tr>
<td>Roof</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

Energy Analysis

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.
<table>
<thead>
<tr>
<th>Building Prototype</th>
<th>Location</th>
<th>Energy Use Intensity</th>
<th>Savings 90.1-2007 vs. 90.1-1999</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>90.1-1999</td>
<td>90.1-2007</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Anchorage</td>
<td>13.27</td>
<td>11.91</td>
</tr>
<tr>
<td>Residential</td>
<td>Anchorage</td>
<td>8.91</td>
<td>8.73</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Anchorage</td>
<td>4.32</td>
<td>4.32</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Fairbanks</td>
<td>14.84</td>
<td>13.65</td>
</tr>
<tr>
<td>Residential</td>
<td>Fairbanks</td>
<td>9.49</td>
<td>9.30</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Fairbanks</td>
<td>4.34</td>
<td>4.33</td>
</tr>
</tbody>
</table>
Arizona

Summary

Arizona is a “home rule” state with no mandatory state-wide commercial energy code. However, many counties and cities have adopted an energy efficiency code, most often the 2006 International Energy Conservation Code (IECC), therefore the 2006 IECC was used as the base code in the analysis. Standard 90.1-2007 would improve energy efficiency in commercial buildings in Arizona. The analysis of the impact of Standard 90.1-2007 resulted in energy and cost savings.

Main Differences Between the Current State Code and Standard 90.1-2007

The 2006 IECC is the most commonly adopted commercial building energy code at the time this report was written. The reference standard for the 2006 IECC is Standard 90.1-2004 and the 2006 IECC shares many features with Standard 90.1-2004. However, the 2006 IECC was created slightly later than Standard 90.1-2004 and thus was able to benefit from changes to Standard 90.1 being contemplated for Standard 90.1-2007. The 2006 IECC is widely considered to be slightly more stringent due to the later creation date in addition to the differences in the development process at ASHRAE and ICC.

- Revision of the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise in Standard 90.1-2007.
- Lack of residential and semiheated space requirements in the 2006 IECC. (However, these are available by way of the ASHRAE reference standard, Standard 90.1-2004.)
- Lack of a detailed space-by-space lighting design method in the 2006 IECC. (However, this is available by way of the ASHRAE reference standard, Standard 90.1-2004).

A comparison of the thermal envelope requirements is provided in Table 7 and Table 8.
Table 7. Comparison of Envelope Requirements (U-factors in Btu/hr.ft².°F)

<table>
<thead>
<tr>
<th></th>
<th>Climate Zone 2B</th>
<th></th>
<th>Climate Zone 3B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nonresidential</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.125</td>
<td>0.124</td>
<td>0.125</td>
<td>0.084</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
<td>0.063</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.72 (0.25)</td>
<td>0.72 (0.25)</td>
<td>0.62 (0.25)</td>
<td>0.62 (0.25)</td>
</tr>
<tr>
<td><strong>Residential</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.125</td>
<td>0.064</td>
<td>0.125</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
<td>0.063</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>1.22 (0.25)</td>
<td>0.72 (0.25)</td>
<td>0.62 (0.39)</td>
<td>0.62 (0.25)</td>
</tr>
<tr>
<td><strong>Semiheated</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.184</td>
<td>0.184</td>
<td>0.184</td>
<td>0.184</td>
</tr>
<tr>
<td>Roof</td>
<td>0.167</td>
<td>0.097</td>
<td>R-10/2ft.</td>
<td>R-10/2ft.</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

Table 8 Comparison of Envelope Requirements (U-factors in Btu/hr.ft².°F)

<table>
<thead>
<tr>
<th></th>
<th>Climate Zone 4B</th>
<th></th>
<th>Climate Zone 5B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nonresidential</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.125</td>
<td>0.064</td>
<td>0.085</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
<td>0.048</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.52 (0.40)</td>
<td>0.57 (0.39)</td>
<td>0.48 (0.40)</td>
</tr>
<tr>
<td><strong>Residential</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.125</td>
<td>0.064</td>
<td>0.085</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
<td>0.048</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>R-10/2ft.</td>
<td>NR</td>
<td>R-10/2ft.</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.52 (0.40)</td>
<td>0.57 (0.39)</td>
<td>0.48 (0.40)</td>
</tr>
<tr>
<td><strong>Semiheated</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.134</td>
<td>0.134</td>
<td>0.123</td>
<td>0.123</td>
</tr>
<tr>
<td>Roof</td>
<td>0.097</td>
<td>0.097</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor
Energy Analysis

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.

<table>
<thead>
<tr>
<th>Arizona Energy End Use and Percentage Savings</th>
<th>Energy Use Intensity</th>
<th>Savings (90.1-2007 vs. IECC 2006)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Building Prototype</strong></td>
<td><strong>IECC 2006</strong></td>
<td><strong>90.1-2007</strong></td>
</tr>
<tr>
<td><strong>Location</strong></td>
<td><strong>Electricity</strong> (kWh/sf/yr)**</td>
<td><strong>Natural Gas</strong> (kBtu/sf/yr)</td>
</tr>
<tr>
<td>Nonresidential Phoenix</td>
<td>13.12</td>
<td>2.45</td>
</tr>
<tr>
<td>Residential Phoenix</td>
<td>10.19</td>
<td>2.28</td>
</tr>
<tr>
<td>Semiheated Phoenix</td>
<td>4.22</td>
<td>4.12</td>
</tr>
<tr>
<td>Nonresidential Sierra Vista</td>
<td>11.75</td>
<td>3.13</td>
</tr>
<tr>
<td>Residential Sierra Vista</td>
<td>9.88</td>
<td>2.18</td>
</tr>
<tr>
<td>Semiheated Sierra Vista</td>
<td>4.33</td>
<td>4.32</td>
</tr>
<tr>
<td>Nonresidential Prescott</td>
<td>11.36</td>
<td>4.25</td>
</tr>
<tr>
<td>Residential Prescott</td>
<td>9.27</td>
<td>8.37</td>
</tr>
<tr>
<td>Semiheated Prescott</td>
<td>4.33</td>
<td>10.27</td>
</tr>
<tr>
<td>Nonresidential Flagstaff</td>
<td>10.85</td>
<td>5.36</td>
</tr>
<tr>
<td>Residential Flagstaff</td>
<td>8.73</td>
<td>12.67</td>
</tr>
<tr>
<td>Semiheated Flagstaff</td>
<td>4.35</td>
<td>15.39</td>
</tr>
</tbody>
</table>
Summary


Main Differences Between the Current State Code and Standard 90.1-2007

The 2003 was a widely adopted version of the IECC, which was the first non-supplement version of the IECC to reference the newer ASHRAE standards. The reference standard for the 2003 IECC is Standard 90.1-2001.

- Lack of residential and semiheated space requirements in the 2003 IECC. (However, these are available by way of the ASHRAE reference standard, Standard 90.1-2001.)
- No differentiation of window types, as opposed to the differentiation by frame material and usage in Standard 90.1-2007.
- Revision of the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise in Standard 90.1-2007.
- Potential loophole for indoor lighting power density in that Standard 90.1-2001 has the “old” lighting power densities, while Chapter 8 of the 2003 IECC has the “new” lighting power densities. (Example, “old” value for offices = 1.3 watts per square foot, “new” value for offices = 1.0 watt per square foot).

A comparison of the thermal envelope requirements is provided in Table 9.
Table 9. Comparison of Envelope Requirements (U-factors in Btu/hr.ft².°F)

<table>
<thead>
<tr>
<th></th>
<th>Nonresidential</th>
<th>Residential</th>
<th>Semiheated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Climate Zone 3A</td>
<td>Climate Zone 4A</td>
<td>Climate Zone 3A</td>
</tr>
<tr>
<td><strong>Exterior Wall</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.138</td>
<td>0.084</td>
<td>0.138</td>
</tr>
<tr>
<td><strong>Roof</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.062</td>
<td>0.048</td>
<td>0.062</td>
</tr>
<tr>
<td><strong>Slab</strong></td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>*<em>Window</em></td>
<td>0.62 (0.40)</td>
<td>0.62 (0.25)</td>
<td>0.62 (0.40)</td>
</tr>
<tr>
<td><strong>Residential</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Exterior Wall</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.138</td>
<td>0.064</td>
<td>0.138</td>
</tr>
<tr>
<td><strong>Roof</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.062</td>
<td>0.048</td>
<td>0.062</td>
</tr>
<tr>
<td><strong>Slab</strong></td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>*<em>Window</em></td>
<td>1.22 (0.50)</td>
<td>0.62 (0.25)</td>
<td>1.22 (0.50)</td>
</tr>
<tr>
<td><strong>Semiheated</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Exterior Wall</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.184</td>
<td>0.184</td>
<td>0.134</td>
</tr>
<tr>
<td><strong>Roof</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.097</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td><strong>Slab</strong></td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

**Energy Analysis**

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.
## Arkansas Energy End Use and Percentage Savings

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Electricity (kWh/sf/yr)</td>
<td>Natural Gas (kBtu/sf/yr)</td>
<td>Electricity (kWh/sf/yr)</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Little Rock</td>
<td>12.52</td>
<td>3.89</td>
<td>12.05</td>
</tr>
<tr>
<td>Residential</td>
<td>Little Rock</td>
<td>9.66</td>
<td>10.00</td>
<td>9.14</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Little Rock</td>
<td>4.35</td>
<td>7.35</td>
<td>4.35</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Fayetteville</td>
<td>12.37</td>
<td>4.49</td>
<td>12.00</td>
</tr>
<tr>
<td>Residential</td>
<td>Fayetteville</td>
<td>9.70</td>
<td>7.86</td>
<td>9.52</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Fayetteville</td>
<td>4.35</td>
<td>8.99</td>
<td>4.35</td>
</tr>
</tbody>
</table>
Colorado

Summary


Main Differences Between the Current State Code and Standard 90.1-2007

The 2003 was a widely adopted version of the IECC, which was the first non-supplement version of the IECC to reference the newer ASHRAE standards. The reference standard for the 2003 IECC is Standard 90.1-2001.

- Lack of residential and semiheated space requirements in the 2003 IECC. (However, these are available by way of the ASHRAE reference standard, Standard 90.1-2001.)
- No differentiation of window types, as opposed to the differentiation by frame material and usage in Standard 90.1-2007.
- Revision of the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise in Standard 90.1-2007.
- Potential loophole for indoor lighting power density in that Standard 90.1-2001 has the “old” lighting power densities, while Chapter 8 of the 2003 IECC has the “new” lighting power densities. (Example, “old” value for offices = 1.3 watts per square foot, “new” value for offices = 1.0 watt per square foot).

A comparison of the thermal envelope requirements is provided in Table 10 and Table 11.
Table 10. Comparison of Envelope Requirements (U-factors in Btu/hr.ft².°F)

<table>
<thead>
<tr>
<th></th>
<th>Climate Zone 4B</th>
<th>Climate Zone 5B</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nonresidential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.103</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.054</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.62 (0.40)</td>
<td>0.52 (0.40)</td>
</tr>
<tr>
<td><strong>Residential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.103</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.054</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>R-10/2ft.</td>
</tr>
<tr>
<td>Window*</td>
<td>0.62 (0.50)</td>
<td>0.52 (0.40)</td>
</tr>
<tr>
<td><strong>Semiheated</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.134</td>
<td>0.134</td>
</tr>
<tr>
<td>Roof</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

Table 11. Comparison of Envelope Requirements (U-factors in Btu/hr.ft².°F)

<table>
<thead>
<tr>
<th></th>
<th>Climate Zone 6B</th>
<th>Climate Zone 7</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nonresidential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.071</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.05</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>R-10/2ft.</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.50)</td>
<td>0.48 (0.40)</td>
</tr>
<tr>
<td><strong>Residential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.067</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.047</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>R-15/2ft.</td>
</tr>
<tr>
<td>Window*</td>
<td>0.52 (0.50)</td>
<td>0.48 (0.40)</td>
</tr>
<tr>
<td><strong>Semiheated</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.113</td>
<td>0.113</td>
</tr>
<tr>
<td>Roof</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor
Energy Analysis

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.

### Colorado Energy End Use and Percentage Savings

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Electricity (kWh/sf/yr)</td>
<td>Natural Gas (kBtu/sf/yr)</td>
<td>Electricity (kWh/sf/yr)</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>La Junta</td>
<td>12.04</td>
<td>4.90</td>
<td>11.67</td>
</tr>
<tr>
<td>Residential</td>
<td>La Junta</td>
<td>9.27</td>
<td>11.01</td>
<td>9.14</td>
</tr>
<tr>
<td>Semiheated</td>
<td>La Junta</td>
<td>4.36</td>
<td>12.73</td>
<td>4.35</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Boulder</td>
<td>11.48</td>
<td>5.40</td>
<td>11.03</td>
</tr>
<tr>
<td>Residential</td>
<td>Boulder</td>
<td>9.18</td>
<td>12.42</td>
<td>9.06</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Boulder</td>
<td>4.37</td>
<td>14.69</td>
<td>4.36</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Eagle</td>
<td>11.45</td>
<td>6.35</td>
<td>10.95</td>
</tr>
<tr>
<td>Residential</td>
<td>Eagle</td>
<td>8.98</td>
<td>13.99</td>
<td>8.98</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Eagle</td>
<td>4.37</td>
<td>18.68</td>
<td>4.36</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Alamosa</td>
<td>11.30</td>
<td>6.43</td>
<td>10.88</td>
</tr>
<tr>
<td>Residential</td>
<td>Alamosa</td>
<td>8.93</td>
<td>15.62</td>
<td>8.91</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Alamosa</td>
<td>4.39</td>
<td>21.34</td>
<td>4.39</td>
</tr>
</tbody>
</table>
Connecticut

Summary


Main Differences Between the Current State Code and Standard 90.1-2007

The 2006 IECC is the most commonly adopted commercial building energy code at the time this report was written. The reference standard for the 2006 IECC is Standard 90.1-2004 and the 2006 IECC shares many features with Standard 90.1-2004. However, the 2006 IECC was created slightly later than Standard 90.1-2004 and thus was able to benefit from changes to Standard 90.1 being contemplated for Standard 90.1-2007. The 2006 IECC is widely considered to be slightly more stringent due to the later creation date plus the differences in the development process at ASHRAE and ICC.

- Revision of the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise in Standard 90.1-2007.
- Lack of residential and semiheated space requirements in the 2006 IECC. (However, these are available by way of the ASHRAE reference standard, Standard 90.1-2004.)
- Lack of a detailed space-by-space lighting design method in the 2006 IECC. (However, this is available by way of the ASHRAE reference standard, Standard 90.1-2004.)

A comparison of the thermal envelope requirements is provided in Table 12.

---

*Connecticut’s new code, the 2006 IECC, became effective August 2009.*
Table 12. Comparison of Envelope Requirements (U-factors in Btu/hr.ft².°F)

<table>
<thead>
<tr>
<th></th>
<th>Climate Zone 5A</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IECC 2006</td>
<td>90.1-2007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Nonresidential</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.085</td>
<td>0.064</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof</td>
<td>0.048</td>
<td>0.048</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Window*</td>
<td>0.55 (0.40)</td>
<td>0.48 (0.40)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Residential</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.085</td>
<td>0.064</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof</td>
<td>0.048</td>
<td>0.048</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>R-10/2ft.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Window*</td>
<td>0.55 (0.39)</td>
<td>0.48 (0.40)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Semiheated</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.123</td>
<td>0.123</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof</td>
<td>0.097</td>
<td>0.097</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

Energy Analysis

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.

Connecticut Energy End Use and Percentage Savings

<table>
<thead>
<tr>
<th>Building Prototype</th>
<th>Location</th>
<th>IECC 2006</th>
<th>90.1-2007</th>
<th>Energy</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonresidential</td>
<td>Hartford</td>
<td>12.04</td>
<td>11.68</td>
<td>4.6%</td>
<td>3.8%</td>
</tr>
<tr>
<td>Residential</td>
<td>Hartford</td>
<td>9.00</td>
<td>8.96</td>
<td>5.1%</td>
<td>3.1%</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Hartford</td>
<td>4.35</td>
<td>4.34</td>
<td>0.4%</td>
<td>0.3%</td>
</tr>
</tbody>
</table>
Delaware

Summary


Main Differences Between the Current State Code and Standard 90.1-2007

The 2001 IECC was a widely adopted version of the IECC, and was the first version of the IECC to reference the newer ASHRAE standards. The reference standard for the 2001 Supplement to the 2000 IECC is Standard 90.1-1999.

- Lack of residential and semiheated space requirements in the 2001 IECC. (However, these are available by way of the ASHRAE reference standard - Standard 90.1-2001.)
- More climate “zones” or “bins” defined in 2001 IECC than in Standard 90.1-2007 (33 bins versus 8 climate zones)
- More stringent building envelope requirements (due in large part to having fewer climate zones) in Standard 90.1-2007
- No differentiation of window types, as opposed to the differentiation by frame material and usage in Standard 90.1-2007.
- Revision of the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise in Standard 90.1-2007.
- More stringent interior lighting power requirements in Standard 90.1-2007. (Example, “old” value for offices = 1.3 watts per square foot for whole building, “new” value for offices = 1.0 watt per square foot).

A comparison of the thermal envelope requirements is provided in Table 13.
Table 13. Comparison of Envelope Requirements (U-factors in Btu/hr.ft².°F)

<table>
<thead>
<tr>
<th>Climate Zone 4A</th>
<th>IECC 2001</th>
<th>90.1-2007</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nonresidential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.098</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.062</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.62 (0.40)</td>
<td>0.52 (0.40)</td>
</tr>
<tr>
<td><strong>Residential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.098</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.062</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>R-10/2ft.</td>
</tr>
<tr>
<td>Window*</td>
<td>0.62 (0.39)</td>
<td>0.52 (0.40)</td>
</tr>
<tr>
<td><strong>Semiheated</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.134</td>
<td>0.134</td>
</tr>
<tr>
<td>Roof</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

Energy Analysis

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.

<table>
<thead>
<tr>
<th>Delaware Energy End Use and Percentage Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Energy Use Intensity</strong></td>
</tr>
<tr>
<td><strong>Savings</strong> 90.1-2007 vs. IECC 2001</td>
</tr>
<tr>
<td><strong>Building Prototype</strong></td>
</tr>
<tr>
<td>Nonresidential</td>
</tr>
<tr>
<td>Residential</td>
</tr>
<tr>
<td>Semiheated</td>
</tr>
</tbody>
</table>
District of Columbia

Summary


Main Differences Between the Current Code and Standard 90.1-2007

The 2006 IECC is the most commonly adopted commercial building energy code at the time this report was written. The reference standard for the 2006 IECC is Standard 90.1-2004 and the 2006 IECC shares many features with Standard 90.1-2004. However, the 2006 IECC was created slightly later than Standard 90.1-2004 and thus was able to benefit from changes to Standard 90.1 being contemplated for Standard 90.1-2007. The 2006 IECC is widely considered to be slightly more stringent due to the later creation date in addition to the differences in the development process at ASHRAE and ICC.

- Revision of the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise in Standard 90.1-2007.
- Lack of residential and semiheated space requirements in the 2006 IECC. (However, these are available by way of the ASHRAE reference standard, Standard 90.1-2004.)
- Lack of a detailed space-by-space lighting design method in the 2006 IECC. (However, this is available by way of the ASHRAE reference standard, Standard 90.1-2004.)

A comparison of the thermal envelope requirements is provided in Table 14.
Table 14. Comparison of Envelope Requirements (U-factors in Btu/hr.ft².°F)

<table>
<thead>
<tr>
<th>Climate Zone 4A</th>
<th>IECC 2006</th>
<th>90.1-2007</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nonresidential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.125</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.52 (0.40)</td>
</tr>
<tr>
<td><strong>Residential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.125</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.52 (0.40)</td>
</tr>
<tr>
<td><strong>Semiheated</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.134</td>
<td>0.134</td>
</tr>
<tr>
<td>Roof</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

Energy Analysis

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.

<table>
<thead>
<tr>
<th>Building Prototype</th>
<th>Energy End Use and Percentage Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>Energy Use Intensity</strong></td>
</tr>
<tr>
<td></td>
<td>IECC 2006</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>DC</td>
</tr>
<tr>
<td>Residential</td>
<td>DC</td>
</tr>
<tr>
<td>Semiheated</td>
<td>DC</td>
</tr>
</tbody>
</table>
Georgia

Summary

Standard 90.1-2007 contains improvements in energy efficiency over the current state commercial energy code, Standard 90.1-2004 with amendments. The Georgia state-specific version of COMcheck 3.6.1 was used to identify the envelope and lighting requirements to be used in the baseline for the analysis. Standard 90.1-2007 would improve energy efficiency in commercial buildings in Georgia. The analysis of the impact of Standard 90.1-2007 resulted in energy and cost savings.

Main Differences Between the Current State Code and Standard 90.1-2007


- Has more strict requirements for vestibules in cold climates.
- Differentiates windows by fixed versus operable rather than by frame material and usage.
- Includes a requirement for demand controlled ventilation in high occupancy spaces.
- Removes a deadband exception for data processing centers that eliminates the possibility of simultaneous heating and cooling.
- Increases stringency in fan power limitations.
- Increases boiler efficiency requirements.
- Applies part-load fan power requirements to more smaller systems.
- Revises the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise.
- The 2006 Georgia amendments provide assembly U-factors for metal building roofs taking into account the purlin spacing and a lab-tested U-factor of R-19 for screw down roofs without thermal blocks.

Overall, Standard 90.1-2007 is expected to be more stringent than Standard 90.1.2004, as demonstrated by the simulation results shown below.

A comparison of the thermal envelope requirements is provided in Table 15.
Table 15. Comparison of Envelope Requirements (U-factors in Btu/hr.ft².°F)

<table>
<thead>
<tr>
<th></th>
<th>Climate Zone 2A</th>
<th>Climate Zone 3A</th>
<th>Climate Zone 4A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonresidential</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.124</td>
<td>0.124</td>
<td>0.124</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
<td>0.063</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>1.22 (0.39)</td>
<td>0.72 (0.25)</td>
<td>0.57 (0.39)</td>
</tr>
<tr>
<td>Residential</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.124</td>
<td>0.064</td>
<td>0.124</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
<td>0.063</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>1.22 (0.39)</td>
<td>0.72 (0.25)</td>
<td>0.57 (0.39)</td>
</tr>
<tr>
<td>Semiheated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.184</td>
<td>0.184</td>
<td>0.184</td>
</tr>
<tr>
<td>Roof</td>
<td>0.167</td>
<td>0.167</td>
<td>0.097</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

Energy Analysis

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.
<table>
<thead>
<tr>
<th>Building Prototype</th>
<th>Location</th>
<th><strong>Energy Use Intensity</strong></th>
<th><strong>Savings 90.1-2007 vs. 90.1-2004</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Electricity (kWh/sf/yr)</td>
<td>Natural Gas (kBtu/sf/yr)</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Savannah</td>
<td>12.73</td>
<td>3.05</td>
</tr>
<tr>
<td>Residential</td>
<td>Savannah</td>
<td>9.27</td>
<td>4.68</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Savannah</td>
<td>4.22</td>
<td>5.72</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Atlanta</td>
<td>12.09</td>
<td>3.85</td>
</tr>
<tr>
<td>Residential</td>
<td>Atlanta</td>
<td>9.15</td>
<td>6.69</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Atlanta</td>
<td>4.33</td>
<td>7.34</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Rome</td>
<td>12.15</td>
<td>4.57</td>
</tr>
<tr>
<td>Residential</td>
<td>Rome</td>
<td>9.41</td>
<td>6.96</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Rome</td>
<td>4.31</td>
<td>8.25</td>
</tr>
</tbody>
</table>
Hawaii

Summary

Hawaii has no statewide commercial code, therefore for this state comparison, DOE has selected Standard 90.1-1999 as the baseline standard for the analysis. Standard 90.1-2007 would improve energy efficiency in commercial buildings in Hawaii. The analysis of the impact of Standard 90.1-2007 resulted in energy and cost savings.

Main Differences Between the Current State Code and Standard 90.1-2007

Standard 90.1-1999 precedes Standard 90.1-2004 and is therefore older (and less stringent) than DOE’s currently mandated commercial building energy standard, Standard 90.1-2004. This selection was made with the belief that Standard 90.1-1999 is an appropriate representation of commercial current practice, as it was developed more than ten years ago. DOE’s analysis of Standard 90.1-1999 is included in DOE’s determination of energy savings for Standard 90.1-2004, which compared Standard 90.1-2004 to Standard 90.1-2001 and Standard 90.1-1999. The complete results of this analysis may be found at http://www.energycodes.gov/implement/determinations_90.1-2004.stm. In comparing Standard 90.1-1999 to Standard 90.1-2007, Standard 90.1-2007:

- Has fewer climate “zones” or “bins” (26 bins versus 8 climate zones).
- Has more stringent building envelope requirements (due in large part to having fewer climate zones).
- Has more strict requirements for vestibules in cold climates.
- Differentiates windows by fixed versus operable rather than by frame material and usage.
- Includes a requirement for demand controlled ventilation in high occupancy spaces.
- Removes a deadband exception for data processing centers that eliminates the possibility of simultaneous heating and cooling.
- Increases stringency in fan power limitations.
- Increases boiler efficiency requirements.
- Applies part-load fan power requirements to more smaller systems.
- Revises the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise.
- Has more detailed outdoor lighting power requirements.

A comparison of the thermal envelope requirements is provided in Table 16.
Table 16. Comparison of Envelope Requirements (U-factors in Btu/hr.ft^2.°F)

<table>
<thead>
<tr>
<th>Climate Zone 1A</th>
<th>Nonresidential</th>
<th>Residential</th>
<th>Semiheated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>90.1-1999</td>
<td>90.1-2007</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exterior Wall</td>
<td>0.124</td>
<td>0.124</td>
</tr>
<tr>
<td></td>
<td>Roof</td>
<td>0.063</td>
<td>0.063</td>
</tr>
<tr>
<td></td>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>Window*</td>
<td>1.22 (0.25)</td>
<td>1.22 (0.25)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

Energy Analysis

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.
Idaho

Summary


Main Differences Between the Current State Code and Standard 90.1-2007

The 2006 IECC is the most commonly adopted commercial building energy code at the time this report was written. The reference standard for the 2006 IECC is Standard 90.1-2004 and the 2006 IECC shares many features with Standard 90.1-2004. However, the 2006 IECC was created slightly later than Standard 90.1-2004 and thus was able to benefit from changes to Standard 90.1 being contemplated for Standard 90.1-2007. The 2006 IECC is widely considered to be slightly more stringent due to the later creation date in addition to the differences in the development process at ASHRAE and ICC.

- Revision of the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise in Standard 90.1-2007.
- Lack of residential and semiheated space requirements in the 2006 IECC. (However, these are available by way of the ASHRAE reference standard, Standard 90.1-2004.)
- Lack of a detailed space-by-space lighting design method in the 2006 IECC. (However, this is available by way of the ASHRAE reference standard, Standard 90.1-2004).

A comparison of the thermal envelope requirements is provided in Table 17.
Table 17. Comparison of Envelope Requirements (U-factors in Btu/hr.ft².°F)

<table>
<thead>
<tr>
<th></th>
<th>Climate Zone 5B</th>
<th>Climate Zone 6B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonresidential</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.085</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.048</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.49)</td>
<td>0.48 (0.40)</td>
</tr>
<tr>
<td>Residential</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.085</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.048</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>R-10/2ft.</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.48 (0.40)</td>
</tr>
<tr>
<td>Semiheated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.123</td>
<td>0.123</td>
</tr>
<tr>
<td>Roof</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

Energy Analysis

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.
## Idaho Energy End Use and Percentage Savings

<table>
<thead>
<tr>
<th>Building Prototype</th>
<th>Location</th>
<th>Energy Use Intensity</th>
<th>Energy 90.1-2007 vs. IECC 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IECC 2006</td>
<td>90.1-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electricity (kWh/sf/yr)</td>
<td>Natural Gas (kBtu/sf/yr)</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Boise</td>
<td>11.72</td>
<td>5.21</td>
</tr>
<tr>
<td>Residential</td>
<td>Boise</td>
<td>9.08</td>
<td>13.33</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Boise</td>
<td>4.34</td>
<td>14.60</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Pocatello</td>
<td>11.79</td>
<td>6.70</td>
</tr>
<tr>
<td>Residential</td>
<td>Pocatello</td>
<td>9.15</td>
<td>18.32</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Pocatello</td>
<td>4.37</td>
<td>20.29</td>
</tr>
</tbody>
</table>
Illinois

Summary


Main Differences Between the Current State Code and Standard 90.1-2007

The 2006 IECC is the most commonly adopted commercial building energy code at the time this report was written. The reference standard for the 2006 IECC is Standard 90.1-2004 and the 2006 IECC shares many features with Standard 90.1-2004. However, the 2006 IECC was created slightly later than Standard 90.1-2004 and thus was able to benefit from changes to Standard 90.1 being contemplated for Standard 90.1-2007. The 2006 IECC is widely considered to be slightly more stringent due to the later creation date in addition to the differences in the development process at ASHRAE and ICC.

- Revision of the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise in Standard 90.1-2007.
- Lack of residential and semiheated space requirements in the 2006 IECC. (However, these are available by way of the ASHRAE reference standard, Standard 90.1-2004.)
- Lack of a detailed space-by-space lighting design method in the 2006 IECC. (However, this is available by way of the ASHRAE reference standard, Standard 90.1-2004.)

A comparison of the thermal envelope requirements is provided in Table 18.
Table 18. Comparison of Envelope Requirements (U-factors in Btu/hr.ft².°F)

<table>
<thead>
<tr>
<th></th>
<th>Climate Zone 4A</th>
<th></th>
<th>Climate Zone 5A</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonresidential</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.125</td>
<td>0.064</td>
<td>0.085</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
<td>0.048</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.52 (0.40)</td>
<td>0.57 (0.39)</td>
<td>0.48 (0.40)</td>
</tr>
<tr>
<td>Residential</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.125</td>
<td>0.064</td>
<td>0.085</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
<td>0.048</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>R-10/2ft.</td>
<td>NR</td>
<td>R-10/2ft.</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.52 (0.40)</td>
<td>0.57 (0.39)</td>
<td>0.48 (0.40)</td>
</tr>
<tr>
<td>Semiheated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.134</td>
<td>0.134</td>
<td>0.123</td>
<td>0.123</td>
</tr>
<tr>
<td>Roof</td>
<td>0.097</td>
<td>0.097</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

Energy Analysis

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.
## Illinois Energy End Use and Percentage Savings

<table>
<thead>
<tr>
<th>Building Prototype</th>
<th>Location</th>
<th>Energy Use Intensity</th>
<th>Savings 90.1-2007 vs. IECC 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Energy Use Intensity</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IECC 2006</td>
<td>90.1-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electricity (kWh/sf/yr)</td>
<td>Natural Gas (kBtu/sf/yr)</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Belleville</td>
<td>12.93</td>
<td>5.74</td>
</tr>
<tr>
<td>Residential</td>
<td>Belleville</td>
<td>9.52</td>
<td>17.38</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Belleville</td>
<td>4.39</td>
<td>16.55</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Springfield</td>
<td>12.52</td>
<td>6.80</td>
</tr>
<tr>
<td>Residential</td>
<td>Springfield</td>
<td>9.32</td>
<td>19.12</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Springfield</td>
<td>4.40</td>
<td>21.34</td>
</tr>
</tbody>
</table>
Indiana

Summary


Main Differences Between the Current State Code and Standard 90.1-2007

Standard 90.1-1999 precedes Standard 90.1-2004 and is therefore older (and less stringent) than DOE’s currently mandated commercial building energy standard, Standard 90.1-2004. This selection was made in the belief that Standard 90.1-1999 is an appropriate representation of commercial current practice, as it was developed more than ten years ago. DOE’s analysis of Standard 90.1-1999 is included in DOE’s determination of energy savings for Standard 90.1-2004, which compared Standard 90.1-2004 to Standard 90.1-2001 and Standard 90.1-1999. The complete results of this analysis may be found at http://www.energycodes.gov/implement/determinations_90.1-2004.stm. In comparing Standard 90.1-1999 to Standard 90.1-2007, Standard 90.1-2007:

- Has fewer climate “zones” or “bins” (26 bins versus 8 climate zones).
- Has more stringent building envelope requirements (due in large part to having fewer climate zones).
- Has more strict requirements for vestibules in cold climates.
- Differentiates windows by fixed versus operable rather than by frame material and usage.
- Includes a requirement for demand controlled ventilation in high occupancy spaces.
- Removes a deadband exception for data processing centers that eliminates the possibility of simultaneous heating and cooling.
- Increases stringency in fan power limitations.
- Increases boiler efficiency requirements.
- Applies part-load fan power requirements to more smaller systems.
- Revises the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise.
- Has more detailed outdoor lighting power requirements.

A comparison of the thermal envelope requirements is provided in Table 19.
Table 19. Comparison of Envelope Requirements (U-factors in Btu/hr.ft²°C)

<table>
<thead>
<tr>
<th></th>
<th>Climate Zone 4A</th>
<th>Climate Zone 5A</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nonresidential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.124</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.52 (0.40)</td>
</tr>
<tr>
<td><strong>Residential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.124</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.52 (0.40)</td>
</tr>
<tr>
<td><strong>Semiheated</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.134</td>
<td>0.134</td>
</tr>
<tr>
<td>Roof</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

Energy Analysis

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.
## Indiana Energy End Use and Percentage Savings

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Electricity (kWh/sf/yr)</td>
<td>Natural Gas (kBtu/sf/yr)</td>
<td>Electricity (kWh/sf/yr)</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Evansville</td>
<td>13.31</td>
<td>5.15</td>
<td>11.99</td>
</tr>
<tr>
<td>Residential</td>
<td>Evansville</td>
<td>9.20</td>
<td>11.86</td>
<td>9.15</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Evansville</td>
<td>4.33</td>
<td>13.16</td>
<td>4.33</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Indianapolis</td>
<td>13.40</td>
<td>6.16</td>
<td>11.80</td>
</tr>
<tr>
<td>Residential</td>
<td>Indianapolis</td>
<td>9.20</td>
<td>16.22</td>
<td>9.14</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Indianapolis</td>
<td>4.36</td>
<td>18.22</td>
<td>4.35</td>
</tr>
</tbody>
</table>
Iowa

Summary


Main Differences Between the Current State Code and Standard 90.1-2007

The 2006 IECC is the most commonly adopted commercial building energy code at the time this report was written. The reference standard for the 2006 IECC is Standard 90.1-2004 and the 2006 IECC shares many features with Standard 90.1-2004. However, the 2006 IECC was created slightly later than Standard 90.1-2004 and thus was able to benefit from changes to Standard 90.1 being contemplated for Standard 90.1-2007. The 2006 IECC is widely considered to be slightly more stringent due to the later creation date plus the differences in the development process at ASHRAE and ICC.

- Revision of the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise in Standard 90.1-2007.
- Lack of residential and semiheated space requirements in the 2006 IECC. (However, these are available by way of the ASHRAE reference standard, Standard 90.1-2004.)
- Lack of a detailed space-by-space lighting design method in the 2006 IECC. (However, this is available by way of the ASHRAE reference standard, Standard 90.1-2004.)

A comparison of the thermal envelope requirements is provided in Table 20.
### Table 20. Comparison of Envelope Requirements (U-factors in Btu/hr.ft²°C)

<table>
<thead>
<tr>
<th></th>
<th>Nonresidential</th>
<th>Residential</th>
<th>Semiheated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Climate Zone 5A</td>
<td>Climate Zone 6A</td>
<td>Climate Zone 5A</td>
</tr>
<tr>
<td><strong>Exterior Wall</strong></td>
<td>0.085</td>
<td>0.064</td>
<td>0.085</td>
</tr>
<tr>
<td><strong>Roof</strong></td>
<td>0.048</td>
<td>0.048</td>
<td>0.048</td>
</tr>
<tr>
<td><strong>Slab</strong></td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td><strong>Window</strong>*</td>
<td>0.57 (0.39)</td>
<td>0.48 (0.40)</td>
<td>0.57 (0.39)</td>
</tr>
<tr>
<td><strong>Residential</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Exterior Wall</strong></td>
<td>0.085</td>
<td>0.064</td>
<td>0.123</td>
</tr>
<tr>
<td><strong>Roof</strong></td>
<td>0.048</td>
<td>0.048</td>
<td>0.097</td>
</tr>
<tr>
<td><strong>Slab</strong></td>
<td>NR</td>
<td>R-10/2ft.</td>
<td>NR</td>
</tr>
<tr>
<td><strong>Window</strong>*</td>
<td>0.57 (0.39)</td>
<td>0.48 (0.40)</td>
<td>0.62 (0.39)</td>
</tr>
<tr>
<td><strong>Semiheated</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Exterior Wall</strong></td>
<td>0.123</td>
<td>0.123</td>
<td>0.113</td>
</tr>
<tr>
<td><strong>Roof</strong></td>
<td>0.097</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td><strong>Slab</strong></td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

### Energy Analysis

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.
## Iowa Energy End Use and Percentage Savings

<table>
<thead>
<tr>
<th>Building Prototype</th>
<th>Location</th>
<th>Energy Use Intensity</th>
<th>Savings 90.1-2007 vs. IECC 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IECC 2006</td>
<td>90.1-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electricity (kWh/sf/yr)</td>
<td>Electricity (kWh/sf/yr)</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Des Moines</td>
<td>12.49</td>
<td>12.09</td>
</tr>
<tr>
<td>Residential</td>
<td>Des Moines</td>
<td>9.25</td>
<td>9.18</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Des Moines</td>
<td>4.42</td>
<td>4.41</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Mason City</td>
<td>13.01</td>
<td>12.49</td>
</tr>
<tr>
<td>Residential</td>
<td>Mason City</td>
<td>9.19</td>
<td>9.12</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Mason City</td>
<td>4.45</td>
<td>4.44</td>
</tr>
</tbody>
</table>
Kansas

Summary


Main Differences Between the Current State Code and Standard 90.1-2007

The 2006 IECC is the most commonly adopted commercial building energy code at the time this report was written. The reference standard for the 2006 IECC is Standard 90.1-2004 and the 2006 IECC shares many features with Standard 90.1-2004. However, the 2006 IECC was created slightly later than Standard 90.1-2004 and thus was able to benefit from changes to Standard 90.1 being contemplated for Standard 90.1-2007. The 2006 IECC is widely considered to be slightly more stringent due to the later creation date in addition to the differences in the development process at ASHRAE and ICC.

- Revision of the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise in Standard 90.1-2007.
- Lack of residential and semiheated space requirements in the 2006 IECC. (However, these are available by way of the ASHRAE reference standard, Standard 90.1-2004.)
- Lack of a detailed space-by-space lighting design method in the 2006 IECC. (However, this is available by way of the ASHRAE reference standard, Standard 90.1-2004.)

A comparison of the thermal envelope requirements is provided in Table 21.
Table 21. Comparison of Envelope Requirements (U-factors in Btu/hr.ft²°F)

<table>
<thead>
<tr>
<th></th>
<th>Climate Zone 4A</th>
<th></th>
<th>Climate Zone 5A</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nonresidential</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.125</td>
<td>0.064</td>
<td>0.085</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
<td>0.048</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.52 (0.40)</td>
<td>0.57 (0.39)</td>
<td>0.48 (0.40)</td>
</tr>
<tr>
<td><strong>Residential</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.125</td>
<td>0.064</td>
<td>0.085</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
<td>0.048</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>R-10/2ft.</td>
<td>NR</td>
<td>R-10/2ft.</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.52 (0.40)</td>
<td>0.57 (0.39)</td>
<td>0.48 (0.40)</td>
</tr>
<tr>
<td><strong>Semiheated</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.134</td>
<td>0.134</td>
<td>0.123</td>
<td>0.123</td>
</tr>
<tr>
<td>Roof</td>
<td>0.097</td>
<td>0.097</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

**Energy Analysis**

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.
<table>
<thead>
<tr>
<th>Building Prototype</th>
<th>Location</th>
<th>Energy Use Intensity</th>
<th>Savings 90.1-2007 vs. IECC 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IECC 2006</td>
<td>90.1-2007</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Topeka</td>
<td>12.86</td>
<td>12.20</td>
</tr>
<tr>
<td>Residential</td>
<td>Topeka</td>
<td>9.48</td>
<td>9.23</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Topeka</td>
<td>4.37</td>
<td>4.37</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Goodland</td>
<td>12.10</td>
<td>11.73</td>
</tr>
<tr>
<td>Residential</td>
<td>Goodland</td>
<td>9.24</td>
<td>9.17</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Goodland</td>
<td>4.45</td>
<td>4.44</td>
</tr>
</tbody>
</table>
Summary


Main Differences Between the Current State Code and Standard 90.1-2007

The 2006 IECC is the most commonly adopted commercial building energy code at the time this report was written. The reference standard for the 2006 IECC is Standard 90.1-2004 and the 2006 IECC shares many features with Standard 90.1-2004. However, the 2006 IECC was created slightly later than Standard 90.1-2004 and thus was able to benefit from changes to Standard 90.1 being contemplated for Standard 90.1-2007. The 2006 IECC is widely considered to be slightly more stringent due to the later creation date in addition to the differences in the development process at ASHRAE and ICC.

- Revision of the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise in Standard 90.1-2007.
- Lack of residential and semiheated space requirements in the 2006 IECC. (However, these are available by way of the ASHRAE reference standard, Standard 90.1-2004.)
- Lack of a detailed space-by-space lighting design method in the 2006 IECC. (However, this is available by way of the ASHRAE reference standard, Standard 90.1-2004.)

A comparison of the thermal envelope requirements is provided in Table 22.
Table 22. Comparison of Envelope Requirements (U-factors in Btu/hr.ft²°F)

<table>
<thead>
<tr>
<th></th>
<th>Climate Zone 4A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IECC 2006</td>
</tr>
<tr>
<td><strong>Nonresidential</strong></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.125</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
</tr>
<tr>
<td><strong>Residential</strong></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.125</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
</tr>
<tr>
<td><strong>Semiheated</strong></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.134</td>
</tr>
<tr>
<td>Roof</td>
<td>0.097</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

Energy Analysis

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.

---

<table>
<thead>
<tr>
<th>Kentucky Energy End Use and Percentage Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Building Prototype</strong></td>
</tr>
<tr>
<td>Nonresidential</td>
</tr>
<tr>
<td>Residential</td>
</tr>
<tr>
<td>Semiheated</td>
</tr>
</tbody>
</table>
Summary


Main Differences Between the Current State Code and Standard 90.1-2007


- Has more strict requirements for vestibules in cold climates.
- Differentiates windows by fixed versus operable rather than by frame material and usage.
- Includes a requirement for demand controlled ventilation in high occupancy spaces.
- Removes a deadband exception for data processing centers that eliminates the possibility of simultaneous heating and cooling.
- Increases stringency in fan power limitations.
- Increases boiler efficiency requirements.
- Applies part-load fan power requirements to more smaller systems.
- Revises the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise.

Overall, Standard 90.1-2007 is expected to be more stringent than Standard 90.1.2004, as demonstrated by the simulation results shown below.

A comparison of the thermal envelope requirements is provided in Table 23.
Table 23. Comparison of Envelope Requirements (U-factors in Btu/hr.ft²°F)

<table>
<thead>
<tr>
<th></th>
<th>Climate Zone 2A</th>
<th>Climate Zone 3A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>90.1-2004</td>
<td>90.1-2007</td>
</tr>
<tr>
<td></td>
<td>90.1-2004</td>
<td>90.1-2007</td>
</tr>
<tr>
<td><strong>Nonresidential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.124</td>
<td>0.124</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.063</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>1.22 (0.25)</td>
<td>0.72 (0.25)</td>
</tr>
<tr>
<td><strong>Residential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.084</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>R-10/2ft.</td>
</tr>
<tr>
<td>Window*</td>
<td>1.22 (0.25)</td>
<td>0.72 (0.25)</td>
</tr>
<tr>
<td><strong>Semiheated</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.184</td>
<td>0.184</td>
</tr>
<tr>
<td>Roof</td>
<td>0.167</td>
<td>0.167</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

**Energy Analysis**

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.
<table>
<thead>
<tr>
<th>Building Prototype</th>
<th>Location</th>
<th>Energy Use Intensity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>90.1-2004</td>
<td>90.1-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electricity (kWh/sf/yr)</td>
<td>Natural Gas (kBtu/sf/yr)</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Baton Rouge</td>
<td>12.58</td>
<td>2.94</td>
</tr>
<tr>
<td>Residential</td>
<td>Baton Rouge</td>
<td>9.23</td>
<td>3.59</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Baton Rouge</td>
<td>4.22</td>
<td>4.66</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Shreveport</td>
<td>13.02</td>
<td>3.45</td>
</tr>
<tr>
<td>Residential</td>
<td>Shreveport</td>
<td>9.65</td>
<td>4.90</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Shreveport</td>
<td>4.32</td>
<td>5.04</td>
</tr>
</tbody>
</table>
Main Differences Between the Current State Code and Standard 90.1-2007


- Has fewer climate “zones” or “bins” than defined in Standard 90.1-2001 (26 bins versus 8 climate zones).
- Has more stringent building envelope requirements (due in large part to having fewer climate zones).
- Has more strict requirements for vestibules in cold climates.
- Differentiates windows by fixed versus operable rather than by frame material and usage.
- Includes a requirement for demand controlled ventilation in high occupancy spaces.
- Removes a deadband exception for data processing centers that eliminates the possibility of simultaneous heating and cooling.
- Increases stringency in fan power limitations.
- Increases boiler efficiency requirements.
- Applies part-load fan power requirements to more smaller systems.
- Revises the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise.
- Has more detailed outdoor lighting power requirements.
- Has more stringent indoor lighting power allowances (for example, offices are allowed 1.3 watts per square foot in Standard 90.1-2001 and 1 watt per square foot in Standard 90.1-2007). This is the single most significant difference between Standard 90.1-2001 and Standard 90.1-2007.

A comparison of the thermal envelope requirements is provided in Table 24.
Table 24. Comparison of Envelope Requirements (U-factors in Btu/hr.ft²°C)

<table>
<thead>
<tr>
<th></th>
<th>Climate Zone 6A</th>
<th></th>
<th>Climate Zone 7</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nonresidential</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.084</td>
<td>0.064</td>
<td>0.064</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
<td>0.063</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>R-10/2ft.</td>
<td>NR</td>
<td>R-15/2ft.</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.48 (0.40)</td>
<td>0.57 (0.49)</td>
<td>0.42 (0.45)</td>
</tr>
<tr>
<td><strong>Residential</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.064</td>
<td>0.064</td>
<td>0.064</td>
<td>0.042</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
<td>0.048</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>R-15/2ft.</td>
<td>R-10/2ft.</td>
<td>R-15/2ft.</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.48 (0.40)</td>
<td>0.62 (0.49)</td>
<td>0.42 (0.45)</td>
</tr>
<tr>
<td><strong>Semiheated</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.113</td>
<td>0.113</td>
<td>0.113</td>
<td>0.113</td>
</tr>
<tr>
<td>Roof</td>
<td>0.097</td>
<td>0.097</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

Energy Analysis

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.
<table>
<thead>
<tr>
<th>Building Prototype</th>
<th>Location</th>
<th>Energy Use Intensity</th>
<th>90.1-2001</th>
<th>90.1-2007</th>
<th>Energy Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Electricity (kWh/sf/yr)</td>
<td>Natural Gas (kBtu/sf/yr)</td>
<td>Electricity (kWh/sf/yr)</td>
<td>Natural Gas (kBtu/sf/yr)</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Portland</td>
<td>12.77</td>
<td>7.28</td>
<td>11.37</td>
<td>6.48</td>
</tr>
<tr>
<td>Residential</td>
<td>Portland</td>
<td>8.87</td>
<td>20.34</td>
<td>8.82</td>
<td>18.23</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Portland</td>
<td>4.34</td>
<td>21.96</td>
<td>4.33</td>
<td>21.85</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Caribou</td>
<td>13.66</td>
<td>9.48</td>
<td>12.00</td>
<td>8.85</td>
</tr>
<tr>
<td>Residential</td>
<td>Caribou</td>
<td>9.11</td>
<td>28.74</td>
<td>8.94</td>
<td>26.11</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Caribou</td>
<td>4.40</td>
<td>34.63</td>
<td>4.40</td>
<td>34.44</td>
</tr>
</tbody>
</table>
Maryland

Summary


Main Differences Between the Current State Code and Standard 90.1-2007

The 2006 IECC is the most commonly adopted commercial building energy code at the time this report was written. The reference standard for the 2006 IECC is Standard 90.1-2004 and the 2006 IECC shares many features with Standard 90.1-2004. However, the 2006 IECC was created slightly later than Standard 90.1-2004 and thus was able to benefit from changes to Standard 90.1 being contemplated for Standard 90.1-2007. The 2006 IECC is widely considered to be slightly more stringent due to the later creation date in addition to the differences in the development process at ASHRAE and ICC.

- Revision of the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise in Standard 90.1-2007.
- Lack of residential and semiheated space requirements in the 2006 IECC. (However, these are available by way of the ASHRAE reference standard, Standard 90.1-2004.)
- Lack of a detailed space-by-space lighting design method in the 2006 IECC. (However, this is available by way of the ASHRAE reference standard, Standard 90.1-2004.)

A comparison of the thermal envelope requirements is provided in Table 25.

---

10 Maryland’s new code, the 2009 IECC, becomes effective October 2009.
Table 25. Comparison of Envelope Requirements (U-factors in Btu/hr.ft²°F)

<table>
<thead>
<tr>
<th></th>
<th>Climate Zone 4A</th>
<th></th>
<th>Climate Zone 5A</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nonresidential</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.125</td>
<td>0.064</td>
<td>0.085</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
<td>0.048</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.52 (0.40)</td>
<td>0.57 (0.39)</td>
<td>0.48 (0.40)</td>
</tr>
<tr>
<td><strong>Residential</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.125</td>
<td>0.064</td>
<td>0.085</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
<td>0.048</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>R-10/2ft.</td>
<td>NR</td>
<td>R-10/2ft.</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.52 (0.40)</td>
<td>0.57 (0.39)</td>
<td>0.48 (0.40)</td>
</tr>
<tr>
<td><strong>Semiheated</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.134</td>
<td>0.134</td>
<td>0.123</td>
<td>0.123</td>
</tr>
<tr>
<td>Roof</td>
<td>0.097</td>
<td>0.097</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

Energy Analysis

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.
## Maryland Energy End Use and Percentage Savings

<table>
<thead>
<tr>
<th>Building Prototype</th>
<th>Location</th>
<th>IECC 2006</th>
<th>90.1-2007</th>
<th>Energy Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Electricity (kWh/sf/yr)</td>
<td>Natural Gas (kBtu/sf/yr)</td>
<td>Electricity (kWh/sf/yr)</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Baltimore</td>
<td>12.46</td>
<td>5.19</td>
<td>11.86</td>
</tr>
<tr>
<td>Residential</td>
<td>Baltimore</td>
<td>9.24</td>
<td>15.40</td>
<td>9.03</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Baltimore</td>
<td>4.34</td>
<td>13.69</td>
<td>4.33</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Mountain Lake Park</td>
<td>11.55</td>
<td>6.42</td>
<td>11.23</td>
</tr>
<tr>
<td>Residential</td>
<td>Mountain Lake Park</td>
<td>8.81</td>
<td>14.97</td>
<td>8.79</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Mountain Lake Park</td>
<td>4.32</td>
<td>15.29</td>
<td>4.32</td>
</tr>
</tbody>
</table>
Massachusetts

Summary


Main Differences Between the Current State Code and Standard 90.1-2007

The 2006 IECC is the most commonly adopted commercial building energy code at the time this report was written. The reference standard for the 2006 IECC is Standard 90.1-2004 and the 2006 IECC shares many features with Standard 90.1-2004. However, the 2006 IECC was created slightly later than Standard 90.1-2004 and thus was able to benefit from changes to Standard 90.1 being contemplated for Standard 90.1-2007. The 2006 IECC is widely considered to be slightly more stringent due to the later creation date in addition to the differences in the development process at ASHRAE and ICC.

- Revision of the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise in Standard 90.1-2007.
- Lack of residential and semiheated space requirements in the 2006 IECC. (However, these are available by way of the ASHRAE reference standard, Standard 90.1-2004.)
- Lack of a detailed space-by-space lighting design method in the 2006 IECC. (However, this is available by way of the ASHRAE reference standard, Standard 90.1-2004.)

A comparison of the thermal envelope requirements is provided in Table 26.
Table 26. Comparison of Envelope Requirements (U-factors in Btu/hr.ft².°F)

<table>
<thead>
<tr>
<th>Climate Zone 5</th>
<th>(\text{IECC 2006})</th>
<th>(\text{90.1-2007})</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nonresidential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.085</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.048</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.48 (0.40)</td>
</tr>
<tr>
<td><strong>Residential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.085</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.048</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.48 (0.40)</td>
</tr>
<tr>
<td><strong>Semiheated</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.123</td>
<td>0.123</td>
</tr>
<tr>
<td>Roof</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

Energy Analysis

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.
Michigan

Summary


Main Differences Between the Current State Code and Standard 90.1-2007

Standard 90.1-1999 precedes Standard 90.1-2004 and is therefore older (and less stringent) than DOE’s currently mandated commercial building energy standard – Standard 90.1-2004. This selection was made with the belief that Standard 90.1-1999 is an appropriate representation of commercial current practice, as it was developed more than ten years ago. DOE’s analysis of Standard 90.1-1999 is included in DOE’s determination of energy savings for Standard 90.1-2004, which compared Standard 90.1-2004 to Standard 90.1-2001 and Standard 90.1-1999. The complete results of this analysis may be found at http://www.energycodes.gov/implement/determinations_90.1-2004.stm. In comparing Standard 90.1-1999 to Standard 90.1-2007, Standard 90.1-2007:

- Has fewer climate “zones” or “bins” (26 bins versus 8 climate zones).
- Has more stringent building envelope requirements (due in large part to having fewer climate zones).
- Has more strict requirements for vestibules in cold climates.
- Differentiates windows by fixed versus operable rather than by frame material and usage.
- Includes a requirement for demand controlled ventilation in high occupancy spaces.
- Removes a deadband exception for data processing centers that eliminates the possibility of simultaneous heating and cooling.
- Increases stringency in fan power limitations.
- Increases boiler efficiency requirements.
- Applies part-load fan power requirements to more smaller systems.
- Revises the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise.
- Has more detailed outdoor lighting power requirements.

A comparison of the thermal envelope requirements is provided in Table 27.
### Table 27. Comparison of Envelope Requirements (U-factors in Btu/hr.ft²°F)

<table>
<thead>
<tr>
<th></th>
<th>Climate Zone 5A</th>
<th>Climate Zone 6A</th>
<th>Climate Zone 7</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nonresidential</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.084</td>
<td>0.064</td>
<td>0.084</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
<td>0.063</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.48 (0.40)</td>
<td>0.57 (0.39)</td>
</tr>
<tr>
<td><strong>Residential</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.084</td>
<td>0.064</td>
<td>0.084</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
<td>0.063</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>R-10/2ft.</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.48 (0.40)</td>
<td>0.57 (0.39)</td>
</tr>
<tr>
<td><strong>Semiheated</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.123</td>
<td>0.123</td>
<td>0.113</td>
</tr>
<tr>
<td>Roof</td>
<td>0.097</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

### Energy Analysis

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.
### Michigan Energy End Use and Percentage Savings

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Electricity (kWh/sf/yr)</td>
<td>Natural Gas (kBtu/sf/yr)</td>
<td>Electricity (kWh/sf/yr)</td>
<td>Natural Gas (kBtu/sf/yr)</td>
<td>Energy</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Lansing</td>
<td>13.64</td>
<td>7.13</td>
<td>11.96</td>
<td>6.34</td>
<td>12.1%</td>
</tr>
<tr>
<td>Residential</td>
<td>Lansing</td>
<td>8.97</td>
<td>21.58</td>
<td>8.92</td>
<td>19.67</td>
<td>4.0%</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Lansing</td>
<td>4.36</td>
<td>23.21</td>
<td>4.35</td>
<td>23.10</td>
<td>0.3%</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Alpena</td>
<td>13.49</td>
<td>8.39</td>
<td>11.70</td>
<td>7.30</td>
<td>13.2%</td>
</tr>
<tr>
<td>Residential</td>
<td>Alpena</td>
<td>8.86</td>
<td>24.26</td>
<td>8.81</td>
<td>21.91</td>
<td>4.6%</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Alpena</td>
<td>4.34</td>
<td>25.26</td>
<td>4.33</td>
<td>25.15</td>
<td>0.3%</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Sault Ste. Marie</td>
<td>13.59</td>
<td>9.85</td>
<td>11.76</td>
<td>8.61</td>
<td>13.3%</td>
</tr>
<tr>
<td>Residential</td>
<td>Sault Ste. Marie</td>
<td>9.01</td>
<td>27.16</td>
<td>8.93</td>
<td>22.90</td>
<td>7.8%</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Sault Ste. Marie</td>
<td>4.35</td>
<td>29.37</td>
<td>4.35</td>
<td>29.18</td>
<td>0.5%</td>
</tr>
</tbody>
</table>
Minnesota

Summary

Minnesota has a state-specific code\textsuperscript{11}. Standard 90.1-2007 would improve energy efficiency in commercial buildings in Minnesota. The analysis of the impact of Standard 90.1-2007 resulted in energy and cost savings.

Main Differences Between the Current State Code and Standard 90.1-2007

In comparing Minnesota’s state-specific code to Standard 90.1-2007, Standard 90.1-2007:

- Has more strict requirements for vestibules in cold climates.
- Differentiates windows by fixed versus operable rather than by frame material and usage.
- Includes a requirement for demand controlled ventilation in high occupancy spaces.
- Removes a deadband exception for data processing centers that eliminates the possibility of simultaneous heating and cooling.
- Increases stringency in fan power limitations.
- Increases boiler efficiency requirements.
- Applies part-load fan power requirements to more smaller systems.
- Revises the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise.
- Has more stringent building envelope requirements.
- Has more detailed outdoor lighting power requirements.
- Has more stringent indoor lighting power allowances and densities.

Minnesota’s code:

- Allows the use of multiple whole building types.
- Requires secondary portions to be listed if the building has secondary functions that are 10 percent or more of the gross lighted area.
- Has control credits for luminaires automatically controlled by occupancy sensors, daylight sensors, programmable timing controls or lumen maintenance controls. Depending on the lighting control type an adjustment factor can be used to reduce the overall fixture wattage.

A comparison of the thermal envelope requirements is provided in Table 28.

\textsuperscript{11} This analysis is based on the state-specific code that went into effect June 2009.
Table 28. Comparison of Envelope Requirements (U-factors in Btu/hr.ft².°F)

<table>
<thead>
<tr>
<th></th>
<th>Climate Zone 6A</th>
<th>Climate Zone 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonresidential</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.084</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.043</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>R-10/2ft.</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.48 (0.40)</td>
</tr>
<tr>
<td>Residential</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.064</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.043</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>R-15/2ft.</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.40)</td>
<td>0.48 (0.40)</td>
</tr>
<tr>
<td>Semiheated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.113</td>
<td>0.113</td>
</tr>
<tr>
<td>Roof</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

Energy Analysis

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.
### Minnesota Energy End Use and Percentage Savings

<table>
<thead>
<tr>
<th>Building Prototype</th>
<th>Location</th>
<th>Electricity (kWh/sf/yr)</th>
<th>Natural Gas (kBtu/sf/yr)</th>
<th>Electricity (kWh/sf/yr)</th>
<th>Natural Gas (kBtu/sf/yr)</th>
<th>Energy Cost</th>
<th>Savings 90.1-2007 vs. State Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonresidential</td>
<td>St. Paul</td>
<td>13.33</td>
<td>9.76</td>
<td>12.10</td>
<td>8.32</td>
<td>10.1%</td>
<td>9.7%</td>
</tr>
<tr>
<td>Residential</td>
<td>St. Paul</td>
<td>9.04</td>
<td>24.35</td>
<td>9.05</td>
<td>23.08</td>
<td>2.2%</td>
<td>1.3%</td>
</tr>
<tr>
<td>Semiheated</td>
<td>St. Paul</td>
<td>4.40</td>
<td>28.07</td>
<td>4.40</td>
<td>27.94</td>
<td>0.3%</td>
<td>0.2%</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Duluth</td>
<td>13.86</td>
<td>10.14</td>
<td>12.28</td>
<td>9.29</td>
<td>10.9%</td>
<td>11.1%</td>
</tr>
<tr>
<td>Residential</td>
<td>Duluth</td>
<td>9.17</td>
<td>30.65</td>
<td>9.00</td>
<td>28.03</td>
<td>5.2%</td>
<td>3.9%</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Duluth</td>
<td>4.43</td>
<td>37.47</td>
<td>4.42</td>
<td>37.27</td>
<td>0.4%</td>
<td>0.3%</td>
</tr>
</tbody>
</table>
Mississippi

Summary

Mississippi has no statewide commercial code, therefore for this state comparison, DOE has selected Standard 90.1-1999 as the baseline standard for the analysis. Standard 90.1-2007 would substantially improve energy efficiency in commercial buildings in Mississippi. The analysis of the impact of Standard 90.1-2007 resulted in energy and cost savings.

Main Differences Between the Current State Code and Standard 90.1-2007

Standard 90.1-1999 precedes Standard 90.1-2004 and is therefore older (and less stringent) than DOE’s currently mandated commercial building energy standard, Standard 90.1-2004. This selection was made with the belief that Standard 90.1-1999 is an appropriate representation of commercial current practice, as it was developed more than ten years ago. DOE’s analysis of Standard 90.1-1999 is included in DOE’s determination of energy savings for Standard 90.1-2004, which compared Standard 90.1-2004 to Standard 90.1-2001 and Standard 90.1-1999. The complete results of this analysis may be found at http://www.energycodes.gov/implement/determinations_90.1-2004.stm. In comparing Standard 90.1-1999 to Standard 90.1-2007, Standard 90.1-2007:

- Has fewer climate “zones” or “bins” (26 bins versus 8 climate zones).
- Has more stringent building envelope requirements (due in large part to having fewer climate zones).
- Has more strict requirements for vestibules in cold climates.
- Differentiates windows by fixed versus operable rather than by frame material and usage.
- Includes a requirement for demand controlled ventilation in high occupancy spaces.
- Removes a deadband exception for data processing centers that eliminates the possibility of simultaneous heating and cooling.
- Increases stringency in fan power limitations.
- Increases boiler efficiency requirements.
- Applies part-load fan power requirements to more smaller systems.
- Revises the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise.
- Has more detailed outdoor lighting power requirements.

A comparison of the thermal envelope requirements is provided in Table 29.
Table 29. Comparison of Envelope Requirements (U-factors in Btu/hr. ft^2.°F)

<table>
<thead>
<tr>
<th></th>
<th>Climate Zone 2A</th>
<th>Climate Zone 3A</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nonresidential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.124</td>
<td>0.124</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>1.22 (0.25)</td>
<td>0.72 (0.25)</td>
</tr>
<tr>
<td><strong>Residential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.124</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>1.22 (0.25)</td>
<td>0.72 (0.25)</td>
</tr>
<tr>
<td><strong>Semiheated</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.184</td>
<td>0.184</td>
</tr>
<tr>
<td>Roof</td>
<td>0.167</td>
<td>0.167</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

**Energy Analysis**

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.
## Mississippi Energy End Use and Percentage Savings

<table>
<thead>
<tr>
<th>Building Prototype</th>
<th>Location</th>
<th>Energy Use Intensity</th>
<th>Savings 90.1-2007 vs. 90.1-1999</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>90.1-1999</td>
<td>90.1-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electricity (kWh/sf/yr)</td>
<td>Natural Gas (kBtu/sf/yr)</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Biloxi</td>
<td>13.60</td>
<td>2.89</td>
</tr>
<tr>
<td>Residential</td>
<td>Biloxi</td>
<td>9.31</td>
<td>4.50</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Biloxi</td>
<td>4.22</td>
<td>4.98</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Jackson</td>
<td>14.02</td>
<td>3.43</td>
</tr>
<tr>
<td>Residential</td>
<td>Jackson</td>
<td>9.54</td>
<td>5.67</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Jackson</td>
<td>4.32</td>
<td>5.47</td>
</tr>
</tbody>
</table>
Missouri

Summary

Missouri has no statewide commercial code, therefore for this state comparison, DOE has selected Standard 90.1-1999 as the baseline standard for the analysis. Standard 90.1-2007 would substantially improve energy efficiency in commercial buildings in Missouri. The analysis of the impact of Standard 90.1-2007 resulted in energy and cost savings.

Main Differences Between the Current State Code and Standard 90.1-2007

Standard 90.1-1999 precedes Standard 90.1-2004 and is therefore older (and less stringent) than DOE’s currently mandated commercial building energy standard, Standard 90.1-2004. This selection was made in the belief that Standard 90.1-1999 is an appropriate representation of commercial current practice, as it was developed more than ten years ago. DOE’s analysis of Standard 90.1-1999 is included in DOE’s determination of energy savings for Standard 90.1-2004, which compared Standard 90.1-2004 to Standard 90.1-2001 and Standard 90.1-1999. The complete results of this analysis may be found at http://www.energycodes.gov/implement/determinations_90.1-2004.stm. In comparing Standard 90.1-1999 to Standard 90.1-2007, Standard 90.1-2007:

- Has fewer climate “zones” or “bins” (26 bins versus 8 climate zones).
- Has more stringent building envelope requirements (due in large part to having fewer climate zones).
- Has more strict requirements for vestibules in cold climates.
- Differentiates windows by fixed versus operable rather than by frame material and usage.
- Includes a requirement for demand controlled ventilation in high occupancy spaces.
- Removes a deadband exception for data processing centers that eliminates the possibility of simultaneous heating and cooling.
- Increases stringency in fan power limitations.
- Increases boiler efficiency requirements.
- Applies part-load fan power requirements to more smaller systems.
- Revises the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise.
- Has more detailed outdoor lighting power requirements.

A comparison of the thermal envelope requirements is provided in Table 30.
Table 30. Comparison of Envelope Requirements (U-factors in Btu/hr.ft²°F)

<table>
<thead>
<tr>
<th></th>
<th>Climate Zone 4A</th>
<th>Climate Zone 5A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>90.1-1999</td>
<td>90.1-2007</td>
</tr>
<tr>
<td></td>
<td>90.1-1999</td>
<td>90.1-2007</td>
</tr>
<tr>
<td><strong>Nonresidential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.124</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.52 (0.40)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Residential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.064</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>R-10/2ft.</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.52 (0.40)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Semiheated</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.134</td>
<td>0.134</td>
</tr>
<tr>
<td>Roof</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

Energy Analysis

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.
<table>
<thead>
<tr>
<th>Building Prototype</th>
<th>Location</th>
<th>Electricity (kWh/sf/yr)</th>
<th>Natural Gas (kBtu/sf/yr)</th>
<th>Electricity (kWh/sf/yr)</th>
<th>Natural Gas (kBtu/sf/yr)</th>
<th>Energy</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonresidential</td>
<td>St. Louis</td>
<td>13.87</td>
<td>5.49</td>
<td>12.27</td>
<td>5.03</td>
<td>11.2%</td>
<td>11.4%</td>
</tr>
<tr>
<td>Residential</td>
<td>St. Louis</td>
<td>9.33</td>
<td>14.69</td>
<td>9.26</td>
<td>13.30</td>
<td>3.5%</td>
<td>2.2%</td>
</tr>
<tr>
<td>Semiheated</td>
<td>St. Louis</td>
<td>4.39</td>
<td>16.55</td>
<td>4.38</td>
<td>16.41</td>
<td>0.5%</td>
<td>0.3%</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>St. Joseph</td>
<td>13.32</td>
<td>5.76</td>
<td>11.96</td>
<td>5.30</td>
<td>10.0%</td>
<td>10.1%</td>
</tr>
<tr>
<td>Residential</td>
<td>St. Joseph</td>
<td>9.55</td>
<td>14.10</td>
<td>9.49</td>
<td>12.63</td>
<td>3.6%</td>
<td>2.3%</td>
</tr>
<tr>
<td>Semiheated</td>
<td>St. Joseph</td>
<td>4.39</td>
<td>16.46</td>
<td>4.38</td>
<td>16.35</td>
<td>0.4%</td>
<td>0.3%</td>
</tr>
</tbody>
</table>
Summary


Main Differences Between the Current State Code and Standard 90.1-2007

The 2003 was a widely adopted version of the IECC, which was the first non-supplement version of the IECC to reference the newer ASHRAE standards. The reference standard for the 2003 IECC is Standard 90.1-2001.

- Lack of residential and semiheated space requirements in the 2003 IECC. (However, these are available by way of the ASHRAE reference standard, Standard 90.1-2001.)
- No differentiation of window types, as opposed to the differentiation by frame material and usage in Standard 90.1-2007.
- Revision of the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise in Standard 90.1-2007.
- Potential loophole for indoor lighting power density in that Standard 90.1-2001 has the “old” lighting power densities, while Chapter 8 of the 2003 IECC has the “new” lighting power densities. (Example, “old” value for offices = 1.3 watts per square foot, “new” value for offices = 1.0 watt per square foot).

A comparison of the thermal envelope requirements is provided in Table 31.
Table 31. Comparison of Envelope Requirements (U-factors in Btu/hr.ft².°F)

<table>
<thead>
<tr>
<th></th>
<th>Climate Zone 6B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IECC 2003</td>
</tr>
<tr>
<td>Nonresidential</td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.071</td>
</tr>
<tr>
<td>Roof</td>
<td>0.049</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.50)</td>
</tr>
<tr>
<td>Residential</td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.071</td>
</tr>
<tr>
<td>Roof</td>
<td>0.049</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.52 (0.50)</td>
</tr>
<tr>
<td>Semiheated</td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.113</td>
</tr>
<tr>
<td>Roof</td>
<td>0.097</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

Energy Analysis

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.
Nebraska

Summary


Main Differences Between the Current State Code and Standard 90.1-2007

The 2003 was a widely adopted version of the IECC, which was the first non-supplement version of the IECC to reference the newer ASHRAE standards. The reference standard for the 2003 IECC is Standard 90.1-2001.

- Lack of residential and semiheated space requirements in the 2003 IECC. (However, these are available by way of the ASHRAE reference standard, Standard 90.1-2001.)
- No differentiation of window types, as opposed to the differentiation by frame material and usage in Standard 90.1-2007.
- Revision of the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise in Standard 90.1-2007.
- Potential loophole for indoor lighting power density in that Standard 90.1-2001 has the “old” lighting power densities, while Chapter 8 of the 2003 IECC has the “new” lighting power densities. (Example, “old” value for offices = 1.3 watts per square foot, “new” value for offices = 1.0 watt per square foot).

A comparison of the thermal envelope requirements is provided in Table 32.
Table 32. Comparison of Envelope Requirements (U-factors in Btu/hr.ft^2.°F)

<table>
<thead>
<tr>
<th>Climate Zone 5A</th>
<th>IECC 2003</th>
<th>90.1-2007</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nonresidential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.084</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.052</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.40)</td>
<td>0.48 (0.40)</td>
</tr>
<tr>
<td><strong>Residential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.084</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.052</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>R-10/2ft.</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.50)</td>
<td>0.48 (0.40)</td>
</tr>
<tr>
<td><strong>Semiheated</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.123</td>
<td>0.123</td>
</tr>
<tr>
<td>Roof</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

Energy Analysis

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.

<table>
<thead>
<tr>
<th>Building Prototype</th>
<th>Location</th>
<th>Energy Use Intensity</th>
<th>Savings 90.1-2007 vs. IECC 2003</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IECC 2003</td>
<td>90.1-2007</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Omaha</td>
<td>12.84</td>
<td>12.19</td>
</tr>
<tr>
<td>Residential</td>
<td>Omaha</td>
<td>9.42</td>
<td>9.33</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Omaha</td>
<td>4.41</td>
<td>4.40</td>
</tr>
</tbody>
</table>
Nevada

Summary

Standard 90.1-2007 contains improvements in energy efficiency over the current state code, the 2006 International Energy Conservation Code (IECC). Standard 90.1-2007 would improve energy efficiency in commercial buildings in Nevada. The analysis of the impact of Standard 90.1-2007 resulted in energy and cost savings. Southern Nevada amended the 2006 IECC to include different lighting power densities (LPDs) for certain building types. The only amendment that affected the simulation was the 1.1 LPD used for office buildings (nonresidential) in Las Vegas.

Main Differences Between the Current State Code and Standard 90.1-2007

The 2006 IECC is the most commonly adopted commercial building energy code at the time this report was written. The reference standard for the 2006 IECC is Standard 90.1-2004 and the 2006 IECC shares many features with Standard 90.1-2004. However, the 2006 IECC was created slightly later than Standard 90.1-2004 and thus was able to benefit from changes to Standard 90.1 being contemplated for Standard 90.1-2007. The 2006 IECC is widely considered to be slightly more stringent due to the later creation date in addition to the differences in the development process at ASHRAE and ICC.


- Revision of the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise in Standard 90.1-2007.
- Lack of residential and semiheated space requirements in the 2006 IECC. (However, these are available by way of the ASHRAE reference standard, Standard 90.1-2004.)
- Lack of a detailed space-by-space lighting design method in the 2006 IECC. (However, this is available by way of the ASHRAE reference standard, Standard 90.1-2004.)

A comparison of the thermal envelope requirements is provided in Table 33.
Table 33. Comparison of Envelope Requirements (U-factors in Btu/hr.ft².°F)

<table>
<thead>
<tr>
<th></th>
<th>Climate Zone 3B</th>
<th></th>
<th>Climate Zone 5B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nonresidential</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.125</td>
<td>0.084</td>
<td>0.085</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
<td>0.048</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.62 (0.39)</td>
<td>0.62 (0.25)</td>
<td>0.57 (0.39)</td>
<td>0.48 (0.40)</td>
</tr>
<tr>
<td><strong>Residential</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.125</td>
<td>0.084</td>
<td>0.085</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
<td>0.048</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>R-10/2ft.</td>
</tr>
<tr>
<td>Window*</td>
<td>0.62 (0.39)</td>
<td>0.62 (0.25)</td>
<td>0.57 (0.39)</td>
<td>0.48 (0.40)</td>
</tr>
<tr>
<td><strong>Semiheated</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.184</td>
<td>0.184</td>
<td>0.123</td>
<td>0.123</td>
</tr>
<tr>
<td>Roof</td>
<td>0.097</td>
<td>0.097</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

Energy Analysis

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.
### Nevada Energy End Use and Percentage Savings

<table>
<thead>
<tr>
<th>Building Prototype</th>
<th>Location</th>
<th>Electricity (kWh/sf/yr)</th>
<th>Natural Gas (kBtu/sf/yr)</th>
<th>Electricity (kWh/sf/yr)</th>
<th>Natural Gas (kBtu/sf/yr)</th>
<th>Energy</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonresidential</td>
<td>Las Vegas</td>
<td>12.54</td>
<td>3.12</td>
<td>11.75</td>
<td>3.08</td>
<td>5.9%</td>
<td>6.1%</td>
</tr>
<tr>
<td>Residential</td>
<td>Las Vegas</td>
<td>10.05</td>
<td>3.24</td>
<td>9.50</td>
<td>2.41</td>
<td>7.2%</td>
<td>6.3%</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Las Vegas</td>
<td>4.41</td>
<td>5.12</td>
<td>4.41</td>
<td>4.97</td>
<td>0.7%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Reno</td>
<td>11.01</td>
<td>5.08</td>
<td>10.75</td>
<td>4.64</td>
<td>3.1%</td>
<td>2.7%</td>
</tr>
<tr>
<td>Residential</td>
<td>Reno</td>
<td>8.98</td>
<td>9.07</td>
<td>8.96</td>
<td>7.15</td>
<td>5.0%</td>
<td>2.7%</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Reno</td>
<td>4.33</td>
<td>11.62</td>
<td>4.33</td>
<td>11.50</td>
<td>0.5%</td>
<td>0.4%</td>
</tr>
</tbody>
</table>
New Hampshire

Summary


Main Differences Between the Current State Code and Standard 90.1-2007

The 2006 IECC is the most commonly adopted commercial building energy code at the time this report was written. The reference standard for the 2006 IECC is Standard 90.1-2004 and the 2006 IECC shares many features with Standard 90.1-2004. However, the 2006 IECC was created slightly later than Standard 90.1-2004 and thus was able to benefit from changes to Standard 90.1 being contemplated for Standard 90.1-2007. The 2006 IECC is widely considered to be slightly more stringent due to the later creation date in addition to the differences in the development process at ASHRAE and ICC.

- Revision of the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise in Standard 90.1-2007.
- Lack of residential and semiheated space requirements in the 2006 IECC. (However, these are available by way of the ASHRAE reference standard, Standard 90.1-2004.)
- Lack of a detailed space-by-space lighting design method in the 2006 IECC. (However, this is available by way of the ASHRAE reference standard, Standard 90.1-2004.)

A comparison of the thermal envelope requirements is provided in Table 34.

---

\(^{12}\) New Hampshire’s new code, the 2009 IECC, becomes effective October 2009.
Table 34. Comparison of Envelope Requirements (U-factors in Btu/hr.ft².°F)

<table>
<thead>
<tr>
<th></th>
<th>Climate Zone 5A</th>
<th>Climate Zone 6A</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nonresidential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.085</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.048</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.48 (0.40)</td>
</tr>
<tr>
<td><strong>Residential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.085</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.048</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>R-10/2ft.</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.48 (0.40)</td>
</tr>
<tr>
<td><strong>Semiheated</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.123</td>
<td>0.123</td>
</tr>
<tr>
<td>Roof</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

**Energy Analysis**

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.
### New Hampshire Energy End Use and Percentage Savings

<table>
<thead>
<tr>
<th>Building Prototype</th>
<th>Location</th>
<th>Energy Use Intensity</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IECC 2006</td>
<td>90.1-2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electricity (kWh/sf/yr)</td>
<td>Natural Gas (kBtu/sf/yr)</td>
<td>Electricity (kWh/sf/yr)</td>
<td>Natural Gas (kBtu/sf/yr)</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Manchester</td>
<td>11.90</td>
<td>6.29</td>
<td>11.54</td>
<td>5.44</td>
</tr>
<tr>
<td>Residential</td>
<td>Manchester</td>
<td>8.95</td>
<td>19.50</td>
<td>8.89</td>
<td>17.15</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Manchester</td>
<td>4.39</td>
<td>20.75</td>
<td>4.39</td>
<td>20.63</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Concord</td>
<td>11.96</td>
<td>8.06</td>
<td>11.51</td>
<td>6.77</td>
</tr>
<tr>
<td>Residential</td>
<td>Concord</td>
<td>8.99</td>
<td>19.81</td>
<td>8.94</td>
<td>17.71</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Concord</td>
<td>4.33</td>
<td>21.41</td>
<td>4.32</td>
<td>21.31</td>
</tr>
</tbody>
</table>
Summary


Main Differences Between the Current State Code and Standard 90.1-2007


- Has more strict requirements for vestibules in cold climates.
- Differentiates windows by fixed versus operable rather than by frame material and usage.
- Includes a requirement for demand controlled ventilation in high occupancy spaces.
- Removes a deadband exception for data processing centers that eliminates the possibility of simultaneous heating and cooling.
- Increases stringency in fan power limitations.
- Increases boiler efficiency requirements.
- Applies part-load fan power requirements to more smaller systems.
- Revises the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise.

Overall, Standard 90.1-2007 is expected to be more stringent than Standard 90.1.2004, as demonstrated by the simulation results shown below.

A comparison of the thermal envelope requirements is provided in Table 35.
### Table 35. Comparison of Envelope Requirements (U-factors in Btu/hr.ft²°F)

<table>
<thead>
<tr>
<th></th>
<th>Climate Zone 4A</th>
<th></th>
<th>Climate Zone 5A</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nonresidential</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.124</td>
<td>0.064</td>
<td>0.084</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
<td>0.063</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.52 (0.40)</td>
<td>0.57 (0.39)</td>
<td>0.48 (0.40)</td>
</tr>
<tr>
<td><strong>Residential</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.064</td>
<td>0.064</td>
<td>0.064</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
<td>0.063</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>R-10/2ft.</td>
<td>NR</td>
<td>R-10/2ft.</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.52 (0.40)</td>
<td>0.57 (0.39)</td>
<td>0.48 (0.40)</td>
</tr>
<tr>
<td><strong>Semiheated</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.134</td>
<td>0.134</td>
<td>0.123</td>
<td>0.123</td>
</tr>
<tr>
<td>Roof</td>
<td>0.097</td>
<td>0.097</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor.

### Energy Analysis

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.
<table>
<thead>
<tr>
<th>Building Prototype</th>
<th>Location</th>
<th>Energy Use Intensity</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>90.1-2004</td>
<td>90.1-2007</td>
<td>Energy</td>
<td>Cost</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electricity (kWh/sf/yr)</td>
<td>Natural Gas (kBtu/sf/yr)</td>
<td>Electricity (kWh/sf/yr)</td>
<td>Natural Gas (kBtu/sf/yr)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Newark</td>
<td>12.53</td>
<td>5.37</td>
<td>11.90</td>
<td>4.74</td>
<td>5.8%</td>
</tr>
<tr>
<td>Residential</td>
<td>Newark</td>
<td>9.01</td>
<td>15.02</td>
<td>8.96</td>
<td>13.53</td>
<td>3.7%</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Newark</td>
<td>4.35</td>
<td>15.87</td>
<td>4.35</td>
<td>15.72</td>
<td>0.5%</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Paterson</td>
<td>12.08</td>
<td>6.47</td>
<td>11.62</td>
<td>5.59</td>
<td>5.1%</td>
</tr>
<tr>
<td>Residential</td>
<td>Paterson</td>
<td>9.02</td>
<td>17.29</td>
<td>8.97</td>
<td>15.64</td>
<td>3.8%</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Paterson</td>
<td>4.35</td>
<td>18.88</td>
<td>4.34</td>
<td>18.77</td>
<td>0.4%</td>
</tr>
</tbody>
</table>
New Mexico

Summary


Main Differences Between the Current State Code and Standard 90.1-2007

The 2006 IECC is the most commonly adopted commercial building energy code at the time this report was written. The reference standard for the 2006 IECC is Standard 90.1-2004 and the 2006 IECC shares many features with Standard 90.1-2004. However, the 2006 IECC was created slightly later than Standard 90.1-2004 and thus was able to benefit from changes to Standard 90.1 being contemplated for Standard 90.1-2007. The 2006 IECC is widely considered to be slightly more stringent due to the later creation date in addition to the differences in the development process at ASHRAE and ICC.

- Revision of the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise in Standard 90.1-2007.
- Lack of residential and semiheated space requirements in the 2006 IECC. (However, these are available by way of the ASHRAE reference standard, Standard 90.1-2004.)
- Lack of a detailed space-by-space lighting design method in the 2006 IECC. (However, this is available by way of the ASHRAE reference standard – Standard 90.1-2004.)

A comparison of the thermal envelope requirements is provided in Table 36.
### Table 36. Comparison of Envelope Requirements (U-factors in Btu/hr.ft².°F)

<table>
<thead>
<tr>
<th></th>
<th>Climate Zone 3B</th>
<th>Climate Zone 4B</th>
<th>Climate Zone 5B</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nonresidential</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.125</td>
<td>0.084</td>
<td>0.125</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
<td>0.063</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.62 (0.25)</td>
<td>0.62 (0.25)</td>
<td>0.57 (0.39)</td>
</tr>
<tr>
<td><strong>Residential</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.125</td>
<td>0.064</td>
<td>0.125</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
<td>0.063</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.62 (0.39)</td>
<td>0.62 (0.25)</td>
<td>0.57 (0.39)</td>
</tr>
<tr>
<td><strong>Semiheated</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.184</td>
<td>0.184</td>
<td>0.134</td>
</tr>
<tr>
<td>Roof</td>
<td>0.097</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

### Energy Analysis

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.
## New Mexico Energy End Use and Percentage Savings

<table>
<thead>
<tr>
<th>Building Prototype</th>
<th>Location</th>
<th>Energy Use Intensity</th>
<th>Energy Cost 90.1-2007 vs. IECC 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IECC 2006</td>
<td>90.1-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electricity (kWh/sf/yr)</td>
<td>Natural Gas (kBtu/sf/yr)</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Las Cruces</td>
<td>18.34</td>
<td>5.16</td>
</tr>
<tr>
<td>Residential</td>
<td>Las Cruces</td>
<td>9.60</td>
<td>3.53</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Las Cruces</td>
<td>4.33</td>
<td>5.22</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Albuquerque</td>
<td>18.29</td>
<td>6.65</td>
</tr>
<tr>
<td>Residential</td>
<td>Albuquerque</td>
<td>9.45</td>
<td>8.33</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Albuquerque</td>
<td>4.34</td>
<td>10.21</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Santa Fe</td>
<td>17.27</td>
<td>9.36</td>
</tr>
<tr>
<td>Residential</td>
<td>Santa Fe</td>
<td>8.94</td>
<td>13.02</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Santa Fe</td>
<td>4.35</td>
<td>16.47</td>
</tr>
</tbody>
</table>
New York

Summary


Main Differences Between the Current State Code and Standard 90.1-2007

The 2003 was a widely adopted version of the IECC which was the first non-supplement version of the IECC to reference the newer ASHRAE standards. The reference standard for the 2003 IECC is Standard 90.1-2001.

- Lack of residential and semiheated space requirements in the 2003 IECC. (However, these are available by way of the ASHRAE reference standard - Standard 90.1-2001.)
- No differentiation of window types, as opposed to the differentiation by frame material and usage in Standard 90.1-2007.
- Revision of the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise in Standard 90.1-2007.
- Potential loophole for indoor lighting power density in that Standard 90.1-2001 has the “old” lighting power densities, while Chapter 8 of the 2003 IECC has the “new” lighting power densities. (Example, “old” value for offices = 1.3 watts per square foot, “new” value for offices = 1.0 watt per square foot).

A comparison of the thermal envelope requirements is provided in Table 37.
Table 37. Comparison of Envelope Requirements (U-factors in Btu/hr.ft²°F)

<table>
<thead>
<tr>
<th></th>
<th>Climate Zone 4A</th>
<th></th>
<th>Climate Zone 5A</th>
<th></th>
<th>Climate Zone 6A</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nonresidential</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.101</td>
<td>0.064</td>
<td>0.079</td>
<td>0.064</td>
<td>0.076</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
<td>0.054</td>
<td>0.048</td>
<td>0.053</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>R-10/2ft.</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.52 (0.40)</td>
<td>0.57 (0.39)</td>
<td>0.48 (0.40)</td>
<td>0.57 (0.39)</td>
<td>0.48 (0.40)</td>
</tr>
<tr>
<td><strong>Residential</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.101</td>
<td>0.064</td>
<td>0.079</td>
<td>0.064</td>
<td>0.076</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
<td>0.054</td>
<td>0.048</td>
<td>0.053</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>R-10/2ft.</td>
<td>NR</td>
<td>R-10/2ft.</td>
<td>NR</td>
<td>R-15/2ft.</td>
</tr>
<tr>
<td>Window*</td>
<td>0.62 (0.39)</td>
<td>0.52 (0.40)</td>
<td>0.62 (0.39)</td>
<td>0.48 (0.40)</td>
<td>0.62 (0.39)</td>
<td>0.48 (0.40)</td>
</tr>
<tr>
<td><strong>Semiheated</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.134</td>
<td>0.134</td>
<td>0.123</td>
<td>0.123</td>
<td>0.113</td>
<td>0.113</td>
</tr>
<tr>
<td>Roof</td>
<td>0.097</td>
<td>0.097</td>
<td>0.097</td>
<td>0.097</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

Energy Analysis

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.
<table>
<thead>
<tr>
<th>Building Prototype</th>
<th>Location</th>
<th>Energy Use Intensity</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Electricity (kWh/sf/yr)</td>
<td>Natural Gas (kBtu/sf/yr)</td>
<td>Electricity (kWh/sf/yr)</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>New York City</td>
<td>12.32</td>
<td>5.42</td>
<td>11.85</td>
</tr>
<tr>
<td>Residential</td>
<td>New York City</td>
<td>9.05</td>
<td>17.04</td>
<td>8.90</td>
</tr>
<tr>
<td>Semiheated</td>
<td>New York City</td>
<td>4.37</td>
<td>16.53</td>
<td>4.37</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Albany</td>
<td>12.21</td>
<td>7.57</td>
<td>11.79</td>
</tr>
<tr>
<td>Residential</td>
<td>Albany</td>
<td>8.89</td>
<td>21.46</td>
<td>8.85</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Albany</td>
<td>4.34</td>
<td>21.38</td>
<td>4.33</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Binghamton</td>
<td>12.09</td>
<td>7.90</td>
<td>11.65</td>
</tr>
<tr>
<td>Residential</td>
<td>Binghamton</td>
<td>8.93</td>
<td>22.94</td>
<td>8.88</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Binghamton</td>
<td>4.40</td>
<td>24.64</td>
<td>4.39</td>
</tr>
</tbody>
</table>
North Carolina

Summary


Main Differences Between the Current State Code and Standard 90.1-2007

The North Carolina amendments to the 2006 IECC do not appear to affect the envelope requirements and lighting power densities relevant to the simulations used in the analysis. The 2006 IECC is the most commonly adopted commercial building energy code at the time this report was written. The reference standard for the 2006 IECC is Standard 90.1-2004 and the 2006 IECC shares many features with Standard 90.1-2004. However, the 2006 IECC was created slightly later than Standard 90.1-2004 and thus was able to benefit from changes to Standard 90.1 being contemplated for Standard 90.1-2007. The 2006 IECC is widely considered to be slightly more stringent due to the later creation date in addition to the differences in the development process at ASHRAE and ICC.

- Revision of the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise in Standard 90.1-2007.
- Lack of residential and semiheated space requirements in the 2006 IECC. (However, these are available by way of the ASHRAE reference standard, Standard 90.1-2004.)
- Lack of a detailed space-by-space lighting design method in the 2006 IECC. (However, this is available by way of the ASHRAE reference standard, Standard 90.1-2004.)

A comparison of the thermal envelope requirements is provided in Table 38.
### Table 38. Comparison of Envelope Requirements (U-factors in Btu/hr.ft²°F)

<table>
<thead>
<tr>
<th></th>
<th>Climate Zone 3A</th>
<th></th>
<th>Climate Zone 4A</th>
<th></th>
<th>Climate Zone 5A</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nonresidential</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.125</td>
<td>0.084</td>
<td>0.125</td>
<td>0.064</td>
<td>0.085</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
<td>0.063</td>
<td>0.048</td>
<td>0.048</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.62 (0.39)</td>
<td>0.62 (0.25)</td>
<td>0.57 (0.39)</td>
<td>0.52 (0.40)</td>
<td>0.57 (0.39)</td>
<td>0.48 (0.40)</td>
</tr>
<tr>
<td><strong>Residential</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.125</td>
<td>0.084</td>
<td>0.125</td>
<td>0.064</td>
<td>0.085</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
<td>0.063</td>
<td>0.048</td>
<td>0.048</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>R-10/2ft.</td>
<td>NR</td>
<td>R-10/2ft.</td>
</tr>
<tr>
<td>Window*</td>
<td>0.62 (0.39)</td>
<td>0.62 (0.25)</td>
<td>0.57 (0.39)</td>
<td>0.52 (0.40)</td>
<td>0.57 (0.39)</td>
<td>0.48 (0.40)</td>
</tr>
<tr>
<td><strong>Semiheated</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.184</td>
<td>0.184</td>
<td>0.134</td>
<td>0.134</td>
<td>0.123</td>
<td>0.123</td>
</tr>
<tr>
<td>Roof</td>
<td>0.097</td>
<td>0.097</td>
<td>0.097</td>
<td>0.097</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

### Energy Analysis

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.
### North Carolina Energy End Use and Percentage Savings

<table>
<thead>
<tr>
<th>Building Prototype</th>
<th>Location</th>
<th>Energy Use Intensity</th>
<th>Savings 90.1-2007 vs. IECC 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IECC 2006</td>
<td>90.1-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electricity (kWh/sf/yr)</td>
<td>Natural Gas (kBtu/sf/yr)</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Charlotte</td>
<td>12.02</td>
<td>3.87</td>
</tr>
<tr>
<td>Residential</td>
<td>Charlotte</td>
<td>9.22</td>
<td>7.52</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Charlotte</td>
<td>4.30</td>
<td>6.83</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Raleigh</td>
<td>12.06</td>
<td>4.57</td>
</tr>
<tr>
<td>Residential</td>
<td>Raleigh</td>
<td>9.37</td>
<td>8.63</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Raleigh</td>
<td>4.31</td>
<td>9.08</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Boone</td>
<td>11.55</td>
<td>6.42</td>
</tr>
<tr>
<td>Residential</td>
<td>Boone</td>
<td>8.81</td>
<td>14.97</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Boone</td>
<td>4.32</td>
<td>15.29</td>
</tr>
</tbody>
</table>
North Dakota

Summary

North Dakota has no statewide commercial code, therefore for this state comparison, DOE has selected Standard 90.1-1999 as the baseline standard for the analysis. Standard 90.1-2007 would substantially improve energy efficiency in commercial buildings in North Dakota. The analysis of the impact of Standard 90.1-2007 resulted in energy and cost savings.

Main Differences Between the Current State Code and Standard 90.1-2007

Standard 90.1-1999 precedes Standard 90.1-2004 and is therefore older (and less stringent) than DOE’s currently mandated commercial building energy standard, Standard 90.1-2004. This selection was made with the belief that Standard 90.1-1999 is an appropriate representation of commercial current practice, as it was developed more than ten years ago. DOE’s analysis of Standard 90.1-1999 is included in DOE’s determination of energy savings for Standard 90.1-2004, which compared Standard 90.1-2004 to Standard 90.1-2001 and Standard 90.1-1999. The complete results of this analysis may be found at http://www.energycodes.gov/implement/determinations_90.1-2004.stm. In comparing Standard 90.1-1999 to Standard 90.1-2007, Standard 90.1-2007:

- Has fewer climate “zones” or “bins” (26 bins versus 8 climate zones).
- Has more stringent building envelope requirements (due in large part to having fewer climate zones).
- Has more strict requirements for vestibules in cold climates.
- Differentiates windows by fixed versus operable rather than by frame material and usage.
- Includes a requirement for demand controlled ventilation in high occupancy spaces.
- Removes a deadband exception for data processing centers that eliminates the possibility of simultaneous heating and cooling.
- Increases stringency in fan power limitations.
- Increases boiler efficiency requirements.
- Applies part-load fan power requirements to more smaller systems.
- Revises the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise.
- Has more detailed outdoor lighting power requirements.

A comparison of the thermal envelope requirements is provided in Table 39.
### Table 39. Comparison of Envelope Requirements (U-factors in Btu/hr.ft²°F)

<table>
<thead>
<tr>
<th></th>
<th>Climate Zone 6A</th>
<th>Climate Zone 7</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nonresidential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.084</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>R-10/2ft.</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.48 (0.40)</td>
</tr>
<tr>
<td><strong>Residential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.085</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.048</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>R-15/2ft.</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.48 (0.40)</td>
</tr>
<tr>
<td><strong>Semiheated</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.113</td>
<td>0.113</td>
</tr>
<tr>
<td>Roof</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

#### Energy Analysis

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.
## North Dakota Energy End Use and Percentage Savings

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Electricity (kWh/sf/yr)</td>
<td>Natural Gas (kBtu/sf/yr)</td>
<td>Electricity (kWh/sf/yr)</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Bismarck</td>
<td>13.72</td>
<td>9.15</td>
<td>12.21</td>
</tr>
<tr>
<td>Residential</td>
<td>Bismarck</td>
<td>9.15</td>
<td>27.20</td>
<td>9.08</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Bismarck</td>
<td>4.40</td>
<td>31.00</td>
<td>4.39</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Minot</td>
<td>13.86</td>
<td>9.71</td>
<td>12.46</td>
</tr>
<tr>
<td>Residential</td>
<td>Minot</td>
<td>9.54</td>
<td>30.12</td>
<td>9.26</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Minot</td>
<td>4.45</td>
<td>37.94</td>
<td>4.45</td>
</tr>
</tbody>
</table>
Ohio

Summary


Main Differences Between the Current State Code and Standard 90.1-2007

The 2006 IECC is the most commonly adopted commercial building energy code at the time this report was written. The reference standard for the 2006 IECC is Standard 90.1-2004 and the 2006 IECC shares many features with Standard 90.1-2004. However, the 2006 IECC was created slightly later than Standard 90.1-2004 and thus was able to benefit from changes to Standard 90.1 being contemplated for Standard 90.1-2007. The 2006 IECC is widely considered to be slightly more stringent due to the later creation date in addition to the differences in the development process at ASHRAE and ICC.

- Revision of the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise in Standard 90.1-2007.
- Lack of residential and semiheated space requirements in the 2006 IECC. (However, these are available by way of the ASHRAE reference standard, Standard 90.1-2004.)
- Lack of a detailed space-by-space lighting design method in the 2006 IECC. (However, this is available by way of the ASHRAE reference standard, Standard 90.1-2004.)

A comparison of the thermal envelope requirements is provided in Table 40.
### Table 40. Comparison of Envelope Requirements (U-factors in Btu/hr.ft².°F)

<table>
<thead>
<tr>
<th></th>
<th>Climate Zone 4A</th>
<th></th>
<th>Climate Zone 5A</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nonresidential</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.125</td>
<td>0.064</td>
<td>0.085</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
<td>0.048</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.52 (0.40)</td>
<td>0.57 (0.39)</td>
<td>0.48 (0.40)</td>
</tr>
<tr>
<td><strong>Residential</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.125</td>
<td>0.064</td>
<td>0.085</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
<td>0.048</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>R-10/2ft.</td>
<td>NR</td>
<td>R-10/2ft.</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.52 (0.40)</td>
<td>0.57 (0.39)</td>
<td>0.48 (0.40)</td>
</tr>
<tr>
<td><strong>Semiheated</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.134</td>
<td>0.134</td>
<td>0.123</td>
<td>0.123</td>
</tr>
<tr>
<td>Roof</td>
<td>0.097</td>
<td>0.097</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

### Energy Analysis

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below for each state by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.
<table>
<thead>
<tr>
<th>Building Prototype</th>
<th>Location</th>
<th>Energy Use Intensity</th>
<th>Savings 90.1-2007 vs. IECC 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IECC 2006</td>
<td>90.1-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electricity (kWh/sf/yr)</td>
<td>Natural Gas (kBtu/sf/yr)</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Cincinnati</td>
<td>12.04</td>
<td>5.21</td>
</tr>
<tr>
<td>Residential</td>
<td>Cincinnati</td>
<td>9.13</td>
<td>12.17</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Cincinnati</td>
<td>4.31</td>
<td>10.87</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Columbus</td>
<td>11.93</td>
<td>6.25</td>
</tr>
<tr>
<td>Residential</td>
<td>Columbus</td>
<td>9.09</td>
<td>15.45</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Columbus</td>
<td>4.35</td>
<td>16.35</td>
</tr>
</tbody>
</table>
Summary

Oklahoma has no statewide commercial code, therefore for this state comparison, DOE has selected Standard 90.1-1999 as the baseline standard for the analysis. Standard 90.1-2007 would substantially improve energy efficiency in commercial buildings in Oklahoma. The analysis of the impact of Standard 90.1-2007 resulted in energy and cost savings.

Main Differences Between the Current State Code and Standard 90.1-2007

Standard 90.1-1999 precedes Standard 90.1-2004 and is therefore older (and less stringent) than DOE’s currently mandated commercial building energy standard, Standard 90.1-2004. This selection was made in the belief that Standard 90.1-1999 is an appropriate representation of commercial current practice, as it was developed more than ten years ago. DOE’s analysis of Standard 90.1-1999 is included in DOE’s determination of energy savings for Standard 90.1-2004, which compared Standard 90.1-2004 to Standard 90.1-2001 and Standard 90.1-1999. The complete results of this analysis may be found at http://www.energycodes.gov/implement/determinations_90.1-2004.stm. In comparing Standard 90.1-1999 to Standard 90.1-2007, Standard 90.1-2007:

- Has fewer climate “zones” or “bins” (26 bins versus 8 climate zones).
- Has more stringent building envelope requirements (due in large part to having fewer climate zones).
- Has more strict requirements for vestibules in cold climates.
- Differentiates windows by fixed versus operable rather than by frame material and usage.
- Includes a requirement for demand controlled ventilation in high occupancy spaces.
- Removes a deadband exception for data processing centers that eliminates the possibility of simultaneous heating and cooling.
- Increases stringency in fan power limitations.
- Increases boiler efficiency requirements.
- Applies part-load fan power requirements to more smaller systems.
- Revises the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise.
- Has more detailed outdoor lighting power requirements.

A comparison of the thermal envelope requirements is provided in Table 41.
Table 41. Comparison of Envelope Requirements (U-factors in Btu/hr.ft².°F)

<table>
<thead>
<tr>
<th></th>
<th>Climate Zone 3A</th>
<th>Climate Zone 4A</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nonresidential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.124</td>
<td>0.084</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.25)</td>
<td>0.62 (0.25)</td>
</tr>
<tr>
<td><strong>Residential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.064</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.62 (0.25)</td>
</tr>
<tr>
<td><strong>Semiheated</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.184</td>
<td>0.184</td>
</tr>
<tr>
<td>Roof</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

Energy Analysis

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.
## Oklahoma Energy End Use and Percentage Savings

<table>
<thead>
<tr>
<th>Building Prototype</th>
<th>Location</th>
<th>Electricity (kWh/sf/yr)</th>
<th>Natural Gas (kBtu/sf/yr)</th>
<th>Electricity (kWh/sf/yr)</th>
<th>Natural Gas (kBtu/sf/yr)</th>
<th>Energy Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonresidential</td>
<td>Oklahoma City</td>
<td>13.49</td>
<td>4.11</td>
<td>12.21</td>
<td>3.85</td>
<td>9.2%</td>
</tr>
<tr>
<td>Residential</td>
<td>Oklahoma City</td>
<td>9.30</td>
<td>9.42</td>
<td>9.12</td>
<td>9.41</td>
<td>1.5%</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Oklahoma City</td>
<td>4.42</td>
<td>10.79</td>
<td>4.42</td>
<td>10.66</td>
<td>0.5%</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Guymon</td>
<td>13.39</td>
<td>4.71</td>
<td>11.87</td>
<td>4.43</td>
<td>10.8%</td>
</tr>
<tr>
<td>Residential</td>
<td>Guymon</td>
<td>9.27</td>
<td>11.50</td>
<td>9.19</td>
<td>10.20</td>
<td>3.6%</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Guymon</td>
<td>4.40</td>
<td>14.56</td>
<td>4.40</td>
<td>14.41</td>
<td>0.5%</td>
</tr>
</tbody>
</table>
Pennsylvania

Summary


Main Differences Between the Current State Code and Standard 90.1-2007

The 2006 IECC is the most commonly adopted commercial building energy code at the time this report was written. The reference standard for the 2006 IECC is Standard 90.1-2004 and the 2006 IECC shares many features with Standard 90.1-2004. However, the 2006 IECC was created slightly later than Standard 90.1-2004 and thus was able to benefit from changes to Standard 90.1 being contemplated for Standard 90.1-2007. The 2006 IECC is widely considered to be slightly more stringent due to the later creation date plus the differences in the development process at ASHRAE and ICC.

- Revision of the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise in Standard 90.1-2007.
- Lack of residential and semiheated space requirements in the 2006 IECC. (However, these are available by way of the ASHRAE reference standard, Standard 90.1-2004.)
- Lack of a detailed space-by-space lighting design method in the 2006 IECC. (However, this is available by way of the ASHRAE reference standard, Standard 90.1-2004.)

A comparison of the thermal envelope requirements is provided in Table 42.
**Table 42. Comparison of Envelope Requirements (U-factors in Btu/hr.ft^2.°F)**

<table>
<thead>
<tr>
<th></th>
<th>Climate Zone 4A</th>
<th>Climate Zone 5A</th>
<th>Climate Zone 6A</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nonresidential</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.125</td>
<td>0.064</td>
<td>0.085</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.52 (0.40)</td>
<td>0.57 (0.39)</td>
</tr>
<tr>
<td><strong>Residential</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.125</td>
<td>0.064</td>
<td>0.085</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>R-10/2ft.</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.52 (0.40)</td>
<td>0.57 (0.39)</td>
</tr>
<tr>
<td><strong>Semiheated</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.134</td>
<td>0.134</td>
<td>0.123</td>
</tr>
<tr>
<td>Roof</td>
<td>0.097</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

**Energy Analysis**

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.
## Pennsylvania Energy End Use and Percentage Savings

<table>
<thead>
<tr>
<th>Building Prototype</th>
<th>Location</th>
<th>Energy Use Intensity</th>
<th>Savings 90.1-2007 vs. IECC 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IECC 2006</td>
<td>90.1-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electricity (kWh/sf/yr)</td>
<td>Natural Gas (kBtu/sf/yr)</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Philadelphia</td>
<td>12.56</td>
<td>5.47</td>
</tr>
<tr>
<td>Residential</td>
<td>Philadelphia</td>
<td>9.17</td>
<td>17.68</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Philadelphia</td>
<td>4.31</td>
<td>15.28</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Harrisburg</td>
<td>11.81</td>
<td>6.01</td>
</tr>
<tr>
<td>Residential</td>
<td>Harrisburg</td>
<td>9.15</td>
<td>14.35</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Harrisburg</td>
<td>4.33</td>
<td>15.31</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Bradford</td>
<td>12.08</td>
<td>8.59</td>
</tr>
<tr>
<td>Residential</td>
<td>Bradford</td>
<td>8.80</td>
<td>23.91</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Bradford</td>
<td>4.36</td>
<td>25.34</td>
</tr>
</tbody>
</table>
Summary

Standard 90.1-2007 contains improvements in energy efficiency over the current state code, the 2006
International Energy Conservation Code (IECC) with amendments. Standard 90.1-2007 would improve energy
efficiency in commercial buildings in Rhode Island. The analysis of the impact of Standard 90.1-2007 resulted
in energy and cost savings. The Rhode Island amendments did not affect the simulation inputs.

Main Differences Between the Current State Code and Standard 90.1-2007

The 2006 IECC is the most commonly adopted commercial building energy code at the time this report was
written. The reference standard for the 2006 IECC is Standard 90.1-2004 and the 2006 IECC shares many
features with Standard 90.1-2004. However, the 2006 IECC was created slightly later than Standard 90.1-2004
and thus was able to benefit from changes to Standard 90.1 being contemplated for Standard 90.1-2007. The
2006 IECC is widely considered to be slightly more stringent due to the later creation date in addition to the
differences in the development process at ASHRAE and ICC.
- Revision of the additional lighting power allowance for retail displays to lower the allowance for some
- Lack of residential and semiheated space requirements in the 2006 IECC. (However, these are available
  by way of the ASHRAE reference standard, Standard 90.1-2004.)
- Lack of a detailed space-by-space lighting design method in the 2006 IECC. (However, this is available
  by way of the ASHRAE reference standard, Standard 90.1-2004.)

A comparison of the thermal envelope requirements is provided in Table 43.
Table 43. Comparison of Envelope Requirements (U-factors in Btu/hr.ft²°F)

<table>
<thead>
<tr>
<th>Climate Zone 5A</th>
<th>90.1-2007</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>State</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Exterior Wall</td>
</tr>
<tr>
<td></td>
<td>Roof</td>
</tr>
<tr>
<td></td>
<td>Slab</td>
</tr>
<tr>
<td>Residential</td>
<td>Exterior Wall</td>
</tr>
<tr>
<td></td>
<td>Roof</td>
</tr>
<tr>
<td></td>
<td>Slab</td>
</tr>
<tr>
<td></td>
<td>Window*</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Exterior Wall</td>
</tr>
<tr>
<td></td>
<td>Roof</td>
</tr>
<tr>
<td></td>
<td>Slab</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

**Energy Analysis**

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.
South Carolina

Summary


Main Differences Between the Current State Code and Standard 90.1-2007

The 2006 IECC is the most commonly adopted commercial building energy code at the time this report was written. The reference standard for the 2006 IECC is Standard 90.1-2004 and the 2006 IECC shares many features with Standard 90.1-2004. However, the 2006 IECC was created slightly later than Standard 90.1-2004 and thus was able to benefit from changes to Standard 90.1 being contemplated for Standard 90.1-2007. The 2006 IECC is widely considered to be slightly more stringent due to the later creation date in addition to the differences in the development process at ASHRAE and ICC.

- Revision of the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise in Standard 90.1-2007.
- Lack of residential and semiheated space requirements in the 2006 IECC. (However, these are available by way of the ASHRAE reference standard, Standard 90.1-2004.)
- Lack of a detailed space-by-space lighting design method in the 2006 IECC. (However, this is available by way of the ASHRAE reference standard, Standard 90.1-2004.)

A comparison of the thermal envelope requirements is provided in Table 44.

\(^{13}\) The 2006 IECC is effective in South Carolina July 2009.
Table 44. Comparison of Envelope Requirements (U-factors in Btu/hr.ft²°C)

<table>
<thead>
<tr>
<th>Climate Zone 3A</th>
<th>IECC 2006</th>
<th>90.1-2007</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nonresidential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.125</td>
<td>0.084</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.62 (0.25)</td>
<td>0.62 (0.25)</td>
</tr>
<tr>
<td><strong>Residential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.125</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.62 (0.39)</td>
<td>0.62 (0.25)</td>
</tr>
<tr>
<td><strong>Semiheated</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.184</td>
<td>0.184</td>
</tr>
<tr>
<td>Roof</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

Energy Analysis

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.
South Dakota

Summary

South Dakota has no statewide commercial code, therefore for this state comparison, DOE has selected Standard 90.1-1999 as the baseline standard for the analysis. Standard 90.1-2007 would substantially improve energy efficiency in commercial buildings in South Dakota. The analysis of the impact of Standard 90.1-2007 resulted in energy and cost savings.

Main Differences Between the Current State Code and Standard 90.1-2007

Standard 90.1-1999 precedes Standard 90.1-2004 and is therefore older (and less stringent) than DOE’s currently mandated commercial building energy standard – Standard 90.1-2004. This selection was made with the belief that Standard 90.1-1999 is an appropriate representation of commercial current practice, as it was developed more than ten years ago. DOE’s analysis of Standard 90.1-1999 is included in DOE’s determination of energy savings for Standard 90.1-2004, which compared Standard 90.1-2004 to Standard 90.1-2001 and Standard 90.1-1999. The complete results of this analysis may be found at [http://www.energycodes.gov/implement/determinations_90.1-2004.stm](http://www.energycodes.gov/implement/determinations_90.1-2004.stm). In comparing Standard 90.1-1999 to Standard 90.1-2007, Standard 90.1-2007:

- Has fewer climate “zones” or “bins” (26 bins versus 8 climate zones).
- Has more stringent building envelope requirements (due in large part to having fewer climate zones).
- Has more strict requirements for vestibules in cold climates.
- Differentiates windows by fixed versus operable rather than by frame material and usage.
- Includes a requirement for demand controlled ventilation in high occupancy spaces.
- Removes a deadband exception for data processing centers that eliminates the possibility of simultaneous heating and cooling.
- Increases stringency in fan power limitations.
- Increases boiler efficiency requirements.
- Applies part-load fan power requirements to more smaller systems.
- Revises the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise.
- Has more detailed outdoor lighting power requirements.

A comparison of the thermal envelope requirements is provided in Table 45.
Table 45. Comparison of Envelope Requirements (U-factors in Btu/hr.ft²°F)

<table>
<thead>
<tr>
<th></th>
<th>Climate Zone 5A</th>
<th>Climate Zone 6A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>90.1-1999</td>
<td>90.1-2007</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>90.1-1999</td>
<td>90.1-2007</td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.064</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.48 (0.40)</td>
</tr>
<tr>
<td>Residential</td>
<td>0.064</td>
<td>0.064</td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.063</td>
<td>0.048</td>
</tr>
<tr>
<td>Roof</td>
<td>NR</td>
<td>R-10/2ft.</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.48 (0.40)</td>
</tr>
<tr>
<td>Semiheated</td>
<td>0.123</td>
<td>0.123</td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td>Roof</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

Energy Analysis

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.
## South Dakota Energy End Use and Percentage Savings

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Electricity (kWh/sf/yr)</td>
<td>Natural Gas (kBtu/sf/yr)</td>
<td>Electricity (kWh/sf/yr)</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Yankton</td>
<td>13.86</td>
<td>7.80</td>
<td>12.40</td>
</tr>
<tr>
<td>Residential</td>
<td>Yankton</td>
<td>9.18</td>
<td>24.71</td>
<td>9.11</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Yankton</td>
<td>4.42</td>
<td>27.96</td>
<td>4.41</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Pierre</td>
<td>13.65</td>
<td>7.66</td>
<td>12.17</td>
</tr>
<tr>
<td>Residential</td>
<td>Pierre</td>
<td>9.42</td>
<td>22.35</td>
<td>9.35</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Pierre</td>
<td>4.44</td>
<td>27.27</td>
<td>4.43</td>
</tr>
</tbody>
</table>
Tennessee

Summary

Tennessee has a code based on 90A90B, therefore for this state comparison, DOE has selected Standard 90.1-1999 as the baseline standard for the analysis. Standard 90.1-2007 would improve energy efficiency in commercial buildings in Tennessee. The analysis of the impact of Standard 90.1-2007 resulted in energy and cost savings.

Main Differences Between the Current State Code and Standard 90.1-2007

Standard 90.1-1999 precedes Standard 90.1-2004 and is therefore older (and less stringent) than DOE’s currently mandated commercial building energy standard, Standard 90.1-2004. This selection was made with the belief that Standard 90.1-1999 is an appropriate representation of commercial current practice, as it was developed more than ten years ago. DOE’s analysis of Standard 90.1-1999 is included in DOE’s determination of energy savings for Standard 90.1-2004, which compared Standard 90.1-2004 to Standard 90.1-2001 and Standard 90.1-1999. The complete results of this analysis may be found at http://www.energycodes.gov/implement/determinations_90.1-2004.stm. In comparing Standard 90.1-1999 to Standard 90.1-2007, Standard 90.1-2007:

- Has fewer climate “zones” or “bins” (26 bins versus 8 climate zones).
- Has more stringent building envelope requirements (due in large part to having fewer climate zones).
- Has more strict requirements for vestibules in cold climates.
- Differentiates windows by fixed versus operable rather than by frame material and usage.
- Includes a requirement for demand controlled ventilation in high occupancy spaces.
- Removes a deadband exception for data processing centers that eliminates the possibility of simultaneous heating and cooling.
- Increases stringency in fan power limitations.
- Increases boiler efficiency requirements.
- Applies part-load fan power requirements to more smaller systems.
- Revises the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise.
- Has more detailed outdoor lighting power requirements.

A comparison of the thermal envelope requirements is provided in Table 46.
Table 46. Comparison of Envelope Requirements (U-factors in Btu/hr.ft².°F)

<table>
<thead>
<tr>
<th></th>
<th>Climate Zone 3A</th>
<th>Climate Zone 4A</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nonresidential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.124</td>
<td>0.084</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.25)</td>
<td>0.62 (0.25)</td>
</tr>
<tr>
<td><strong>Residential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.084</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.62 (0.25)</td>
</tr>
<tr>
<td><strong>Semiheated</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.184</td>
<td>0.184</td>
</tr>
<tr>
<td>Roof</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

**Energy Analysis**

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.
<table>
<thead>
<tr>
<th>Building Prototype</th>
<th>Location</th>
<th>Energy Use Intensity</th>
<th>Savings 90.1-2007 vs. 90.1-1999</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>90.1-1999</td>
<td>90.1-2007</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Memphis</td>
<td>13.28</td>
<td>12.01</td>
</tr>
<tr>
<td>Residential</td>
<td>Memphis</td>
<td>9.42</td>
<td>9.18</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Memphis</td>
<td>4.34</td>
<td>4.34</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Nashville</td>
<td>13.57</td>
<td>12.05</td>
</tr>
<tr>
<td>Residential</td>
<td>Nashville</td>
<td>9.38</td>
<td>9.33</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Nashville</td>
<td>4.34</td>
<td>4.34</td>
</tr>
</tbody>
</table>
Texas

Summary


Main Differences Between the Current State Code and Standard 90.1-2007

The 2001 IECC was a widely adopted version of the IECC, and was the first version of the IECC to reference the newer ASHRAE standards. The reference standard for the 2001 Supplement to the 2000 IECC is Standard 90.1-1999.

- Lack of residential and semiheated space requirements in the 2001 IECC. (However, these are available by way of the ASHRAE reference standard - Standard 90.1-2001.)
- More climate “zones” or “bins” defined in 2001 IECC than in Standard 90.1-2007 (33 bins versus 8 climate zones)
- More stringent building envelope requirements (due in large part to having fewer climate zones) in Standard 90.1-2007
- No differentiation of window types, as opposed to the differentiation by frame material and usage in Standard 90.1-2007.
- Revision of the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise in Standard 90.1-2007.
- More stringent interior lighting power requirements in Standard 90.1-2007. (Example, “old” value for offices = 1.3 watts per square foot for whole building, “new” value for offices = 1.0 watt per square foot).

A comparison of the thermal envelope requirements is provided in Table 47 and Table 48.
Table 47. Comparison of Envelope Requirements (U-factors in Btu/hr.ft².°F)

<table>
<thead>
<tr>
<th></th>
<th>Climate Zone 2A</th>
<th>Climate Zone 2B</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nonresidential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.124</td>
<td>0.124</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>1.22 (0.50)</td>
<td>0.72 (0.25)</td>
</tr>
<tr>
<td><strong>Residential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.125</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.06</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>1.22 (0.60)</td>
<td>0.72 (0.25)</td>
</tr>
<tr>
<td><strong>Semiheated</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.184</td>
<td>0.184</td>
</tr>
<tr>
<td>Roof</td>
<td>0.167</td>
<td>0.167</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

Table 48. Comparison of Envelope Requirements (U-factors in Btu/hr.ft².°F)

<table>
<thead>
<tr>
<th></th>
<th>Climate Zone 3A</th>
<th>Climate Zone 3B</th>
<th>Climate Zone 4B</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nonresidential</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.124</td>
<td>0.084</td>
<td>0.124</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
<td>0.063</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.50)</td>
<td>0.62 (0.25)</td>
<td>1.22 (0.50)</td>
</tr>
<tr>
<td><strong>Residential</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.154</td>
<td>0.064</td>
<td>0.157</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
<td>0.061</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>1.22 (0.60)</td>
<td>0.62 (0.25)</td>
<td>1.22 (0.60)</td>
</tr>
<tr>
<td><strong>Semiheated</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.184</td>
<td>0.184</td>
<td>0.184</td>
</tr>
<tr>
<td>Roof</td>
<td>0.097</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor
Energy Analysis

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.

<table>
<thead>
<tr>
<th>Building Prototype</th>
<th>Location</th>
<th>Energy Use Intensity</th>
<th>Savings 90.1-2007 vs. IECC2001</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IECC 2001</td>
<td>90.1-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electricity (kWh/sf/yr)</td>
<td>Natural Gas (kBtu/sf/yr)</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Austin</td>
<td>22.37</td>
<td>4.75</td>
</tr>
<tr>
<td>Residential</td>
<td>Austin</td>
<td>10.38</td>
<td>5.65</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Austin</td>
<td>4.24</td>
<td>5.26</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Houston</td>
<td>22.25</td>
<td>4.71</td>
</tr>
<tr>
<td>Residential</td>
<td>Houston</td>
<td>10.38</td>
<td>5.42</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Houston</td>
<td>4.22</td>
<td>4.73</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>El Paso</td>
<td>20.61</td>
<td>4.97</td>
</tr>
<tr>
<td>Residential</td>
<td>El Paso</td>
<td>10.14</td>
<td>4.50</td>
</tr>
<tr>
<td>Semiheated</td>
<td>El Paso</td>
<td>4.33</td>
<td>5.22</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Fort Worth</td>
<td>22.66</td>
<td>5.31</td>
</tr>
<tr>
<td>Residential</td>
<td>Fort Worth</td>
<td>10.37</td>
<td>6.10</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Fort Worth</td>
<td>4.38</td>
<td>5.61</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Amarillo</td>
<td>20.68</td>
<td>7.36</td>
</tr>
<tr>
<td>Residential</td>
<td>Amarillo</td>
<td>9.40</td>
<td>12.85</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Amarillo</td>
<td>4.41</td>
<td>14.56</td>
</tr>
</tbody>
</table>
Utah

Summary


Main Differences Between the Current State Code and Standard 90.1-2007

The 2006 IECC is the most commonly adopted commercial building energy code at the time this report was written. The reference standard for the 2006 IECC is Standard 90.1-2004 and the 2006 IECC shares many features with Standard 90.1-2004. However, the 2006 IECC was created slightly later than Standard 90.1-2004 and thus was able to benefit from changes to Standard 90.1 being contemplated for Standard 90.1-2007. The 2006 IECC is widely considered to be slightly more stringent due to the later creation date in addition to the differences in the development process at ASHRAE and ICC.

- Revision of the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise in Standard 90.1-2007.
- Lack of residential and semiheated space requirements in the 2006 IECC. (However, these are available by way of the ASHRAE reference standard, Standard 90.1-2004.)
- Lack of a detailed space-by-space lighting design method in the 2006 IECC. (However, this is available by way of the ASHRAE reference standard, Standard 90.1-2004.)

A comparison of the thermal envelope requirements is provided in Table 49.
Table 49. Comparison of Envelope Requirements (U-factors in Btu/hr.ft²°F)

<table>
<thead>
<tr>
<th></th>
<th>Climate Zone 3B</th>
<th></th>
<th>Climate Zone 5B</th>
<th></th>
<th>Climate Zone 6B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonresidential</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.085</td>
<td>0.064</td>
<td>0.085</td>
<td>0.064</td>
<td>0.085</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.048</td>
<td>0.048</td>
<td>0.048</td>
<td>0.048</td>
<td>0.048</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>R-10/2ft.</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.25)</td>
<td>0.48 (0.40)</td>
<td>0.57 (0.39)</td>
<td>0.48 (0.40)</td>
<td>0.57 (0.39)</td>
<td>0.48 (0.40)</td>
</tr>
<tr>
<td>Residential</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.125</td>
<td>0.064</td>
<td>0.085</td>
<td>0.064</td>
<td>0.085</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
<td>0.048</td>
<td>0.048</td>
<td>0.048</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>R-10/2ft.</td>
<td>NR</td>
<td>R-10/2ft.</td>
<td>NR</td>
<td>R-15/2ft.</td>
</tr>
<tr>
<td>Window*</td>
<td>0.62 (0.39)</td>
<td>0.48 (0.40)</td>
<td>0.57 (0.39)</td>
<td>0.48 (0.40)</td>
<td>0.57 (0.39)</td>
<td>0.48 (0.40)</td>
</tr>
<tr>
<td>Semiheated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.123</td>
<td>0.123</td>
<td>0.123</td>
<td>0.123</td>
<td>0.113</td>
<td>0.113</td>
</tr>
<tr>
<td>Roof</td>
<td>0.097</td>
<td>0.097</td>
<td>0.097</td>
<td>0.097</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

Energy Analysis

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.
## Utah Energy End Use and Percentage Savings

<table>
<thead>
<tr>
<th>Building Prototype</th>
<th>Location</th>
<th>Energy Use Intensity</th>
<th>Savings 90.1-2007 vs. IECC 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IECC 2006</td>
<td>90.1-2007</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Saint George</td>
<td>11.82</td>
<td>4.23</td>
</tr>
<tr>
<td>Residential</td>
<td>Saint George</td>
<td>10.55</td>
<td>3.48</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Saint George</td>
<td>4.38</td>
<td>6.87</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Salt Lake City</td>
<td>11.60</td>
<td>5.24</td>
</tr>
<tr>
<td>Residential</td>
<td>Salt Lake City</td>
<td>9.26</td>
<td>11.39</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Salt Lake City</td>
<td>4.36</td>
<td>13.49</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Logan</td>
<td>11.60</td>
<td>5.77</td>
</tr>
<tr>
<td>Residential</td>
<td>Logan</td>
<td>9.46</td>
<td>11.72</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Logan</td>
<td>4.35</td>
<td>14.55</td>
</tr>
</tbody>
</table>
Vermont

Summary

Vermont has a state-specific code. The envelope requirements are based on the 2004 International Energy Conservation Code (IECC) with Vermont-specific amendments, and lighting system requirements are based on Standard 90.1-2004 lighting power densities and 2004 IECC exemptions and allowances. Mechanical requirements are based on the 2004 IECC and Vermont-specific amendments. The Vermont state-specific version of COMcheck 3.6.1 was used to identify the envelope and lighting requirements to be used in the baseline for the analysis. Standard 90.1-2007 would improve energy efficiency in commercial buildings in Vermont. The analysis of the impact of Standard 90.1-2007 resulted in energy and cost savings.

Main Differences Between the Current State Code and Standard 90.1-2007

- Lack of residential and semiheated space requirements in the 2003 IECC. (However, these are available by way of the ASHRAE reference standard, Standard 90.1-2001.)
- No differentiation of window types, as opposed to the differentiation by frame material and usage in Standard 90.1-2007.
- Revision of the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise in Standard 90.1-2007.
- Potential loophole for indoor lighting power density in that Standard 90.1-2001 has the “old” lighting power densities, while Chapter 8 of the 2003 IECC has the “new” lighting power densities. (Example, “old” value for offices = 1.3 watts per square foot, “new” value for offices = 1.0 watt per square foot).

A comparison of the thermal envelope requirements is provided in Table 50.
Table 50. Comparison of Envelope Requirements (U-factors in Btu/hr.ft².°F)

<table>
<thead>
<tr>
<th>Climate Zone 6A</th>
<th>State Code</th>
<th>90.1-2007</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nonresidential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.064</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.04</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>R-10/4ft.</td>
<td>R-10/2ft.</td>
</tr>
<tr>
<td>Window*</td>
<td>0.48 (0.40)</td>
<td>0.48 (0.40)</td>
</tr>
<tr>
<td><strong>Residential Exterior</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wall</td>
<td>0.064</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.04</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>R-10/4ft.</td>
<td>R-10/2ft.</td>
</tr>
<tr>
<td>Window*</td>
<td>0.48 (0.40)</td>
<td>0.48 (0.40)</td>
</tr>
<tr>
<td><strong>Semiheated</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.113</td>
<td>0.113</td>
</tr>
<tr>
<td>Roof</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

Energy Analysis

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.

Vermont Energy End Use and Percentage Savings

<table>
<thead>
<tr>
<th>Building Prototype</th>
<th>Location</th>
<th>Energy Use Intensity</th>
<th>Savings 90.1-2007 vs. State Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>90.1-2007</td>
<td>90.1-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>State Code</td>
<td>State Code</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Burlington</td>
<td>12.10</td>
<td>11.89</td>
</tr>
<tr>
<td>Residential</td>
<td>Burlington</td>
<td>8.87</td>
<td>8.90</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Burlington</td>
<td>4.36</td>
<td>4.35</td>
</tr>
</tbody>
</table>
Virginia

Summary


Main Differences Between the Current State Code and Standard 90.1-2007

The 2006 IECC is the most commonly adopted commercial building energy code at the time this report was written. The reference standard for the 2006 IECC is Standard 90.1-2004 and the 2006 IECC shares many features with Standard 90.1-2004. However, the 2006 IECC was created slightly later than Standard 90.1-2004 and thus was able to benefit from changes to Standard 90.1 being contemplated for Standard 90.1-2007. The 2006 IECC is widely considered to be slightly more stringent due to the later creation date plus the differences in the development process at ASHRAE and ICC.

- Revision of the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise in Standard 90.1-2007.
- Lack of residential and semiheated space requirements in the 2006 IECC. (However, these are available by way of the ASHRAE reference standard, Standard 90.1-2004.)
- Lack of a detailed space-by-space lighting design method in the 2006 IECC. (However, this is available by way of the ASHRAE reference standard, Standard 90.1-2004.)

A comparison of the thermal envelope requirements is provided in Table 51.
Table 51. Comparison of Envelope Requirements (U-factors in Btu/hr.ft²°C)

<table>
<thead>
<tr>
<th>Climate Zone 4A</th>
<th>IECC 2006</th>
<th>90.1-2007</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nonresidential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.125</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.52 (0.40)</td>
</tr>
<tr>
<td><strong>Residential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.125</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>R-10/2f.</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.52 (0.40)</td>
</tr>
<tr>
<td><strong>Semiheated</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.134</td>
<td>0.134</td>
</tr>
<tr>
<td>Roof</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

Energy Analysis

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.

<table>
<thead>
<tr>
<th>Virginia Energy End Use and Percentage Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Building Prototype</strong></td>
</tr>
<tr>
<td><strong>Location</strong></td>
</tr>
<tr>
<td>Nonresidential</td>
</tr>
<tr>
<td>Residential</td>
</tr>
<tr>
<td>Semiheated</td>
</tr>
</tbody>
</table>
West Virginia

Summary


Main Differences Between the Current State Code and Standard 90.1-2007

The 2003 was a widely adopted version of the IECC which was the first non-supplement version of the IECC to reference the newer ASHRAE standards. The reference standard for the 2003 IECC is Standard 90.1-2001.

- Lack of residential and semiheated space requirements in the 2003 IECC. (However, these are available by way of the ASHRAE reference standard, Standard 90.1-2001.)
- No differentiation of window types, as opposed to the differentiation by frame material and usage in Standard 90.1-2007.
- Revision of the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise in Standard 90.1-2007.
- Potential loophole for indoor lighting power density in that Standard 90.1-2001 has the “old” lighting power densities, while Chapter 8 of the 2003 IECC has the “new” lighting power densities. (Example, “old” value for offices = 1.3 watts per square foot, “new” value for offices = 1.0 watt per square foot).

A comparison of the thermal envelope requirements is provided in Table 52.
Table 52. Comparison of Envelope Requirements (U-factors in Btu/hr.ft².°F)

<table>
<thead>
<tr>
<th></th>
<th>Climate Zone 4A</th>
<th>Climate Zone 5A</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nonresidential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.095</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.06</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.62 (0.40)</td>
<td>0.52 (0.40)</td>
</tr>
<tr>
<td><strong>Residential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.095</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.06</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>R-10/2ft.</td>
</tr>
<tr>
<td>Window*</td>
<td>0.62 (0.50)</td>
<td>0.52 (0.40)</td>
</tr>
<tr>
<td><strong>Semiheated</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.134</td>
<td>0.134</td>
</tr>
<tr>
<td>Roof</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

Energy Analysis

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.
<table>
<thead>
<tr>
<th>Building Prototype</th>
<th>Location</th>
<th>Energy Use Intensity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IECC 2003</td>
<td>90.1-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electricity (kWh/sf/yr)</td>
<td>Natural Gas (kBtu/sf/yr)</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Charleston</td>
<td>11.87</td>
<td>5.23</td>
</tr>
<tr>
<td>Residential</td>
<td>Charleston</td>
<td>9.04</td>
<td>10.92</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Charleston</td>
<td>4.31</td>
<td>10.87</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Elkins</td>
<td>11.85</td>
<td>6.05</td>
</tr>
<tr>
<td>Residential</td>
<td>Elkins</td>
<td>8.85</td>
<td>15.46</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Elkins</td>
<td>4.32</td>
<td>15.29</td>
</tr>
</tbody>
</table>
Wisconsin

Summary


Main Differences Between the Current State Code and Standard 90.1-2007

The 2006 IECC is the most commonly adopted commercial building energy code at the time this report was written. The reference standard for the 2006 IECC is Standard 90.1-2004 and the 2006 IECC shares many features with Standard 90.1-2004. However, the 2006 IECC was created slightly later than Standard 90.1-2004 and thus was able to benefit from changes to Standard 90.1 being contemplated for Standard 90.1-2007. The 2006 IECC is widely considered to be slightly more stringent due to the later creation date plus the differences in the development process at ASHRAE and ICC.

- Revision of the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise in Standard 90.1-2007.
- Lack of residential and semiheated space requirements in the 2006 IECC. (However, these are available by way of the ASHRAE reference standard, Standard 90.1-2004.)
- Lack of a detailed space-by-space lighting design method in the 2006 IECC. (However, this is available by way of the ASHRAE reference standard, Standard 90.1-2004.)

A comparison of the thermal envelope requirements is provided in Table 53.
### Table 53. Comparison of Envelope Requirements (U-factors in Btu/hr.ft²°F)

<table>
<thead>
<tr>
<th></th>
<th>Climate Zone 6A</th>
<th>Climate Zone 7</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nonresidential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.085</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.048</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>R-10/2ft.</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.48 (0.40)</td>
</tr>
<tr>
<td><strong>Residential</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.085</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.048</td>
<td>0.048</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>R-15/2ft.</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.48 (0.40)</td>
</tr>
<tr>
<td><strong>Semiheated</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.113</td>
<td>0.113</td>
</tr>
<tr>
<td>Roof</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

### Energy Analysis

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.
### Wisconsin Energy End Use and Percentage Savings

<table>
<thead>
<tr>
<th>Building Prototype</th>
<th>Location</th>
<th>Energy Use Intensity</th>
<th>90.1-2007 vs. IECC 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IECC 2006</td>
<td>90.1-2007</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Madison</td>
<td>12.35</td>
<td>11.88</td>
</tr>
<tr>
<td>Residential</td>
<td>Madison</td>
<td>9.09</td>
<td>9.04</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Madison</td>
<td>4.38</td>
<td>4.38</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Superior</td>
<td>12.78</td>
<td>12.28</td>
</tr>
<tr>
<td>Residential</td>
<td>Superior</td>
<td>9.02</td>
<td>9.00</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Superior</td>
<td>4.43</td>
<td>4.42</td>
</tr>
</tbody>
</table>
Summary

Wyoming has no statewide commercial code, therefore for this state comparison, DOE has selected Standard 90.1-1999 as the baseline standard for the analysis. Standard 90.1-2007 would substantially improve energy efficiency in commercial buildings in Wyoming. The analysis of the impact of Standard 90.1-2007 resulted in energy and cost savings.

Main Differences Between the Current State Code and Standard 90.1-2007

Standard 90.1-1999 precedes Standard 90.1-2004 and is therefore older (and less stringent) than DOE’s currently mandated commercial building energy standard, Standard 90.1-2004. This selection was made with the belief that Standard 90.1-1999 is an appropriate representation of commercial current practice, as it was developed more than ten years ago. DOE’s analysis of Standard 90.1-1999 is included in DOE’s determination of energy savings for Standard 90.1-2004, which compared Standard 90.1-2004 to Standard 90.1-2001 and Standard 90.1-1999. The complete results of this analysis may be found at http://www.energycodes.gov/implement/determinations_90.1-2004.stm. In comparing Standard 90.1-1999 to Standard 90.1-2007, Standard 90.1-2007:

- Has fewer climate “zones” or “bins” (26 bins versus 8 climate zones).
- Has more stringent building envelope requirements (due in large part to having fewer climate zones).
- Has more strict requirements for vestibules in cold climates.
- Differentiates windows by fixed versus operable rather than by frame material and usage.
- Includes a requirement for demand controlled ventilation in high occupancy spaces.
- Removes a deadband exception for data processing centers that eliminates the possibility of simultaneous heating and cooling.
- Increases stringency in fan power limitations.
- Increases boiler efficiency requirements.
- Applies part-load fan power requirements to more smaller systems.
- Revises the additional lighting power allowance for retail displays to lower the allowance for some categories of merchandise.
- Has more detailed outdoor lighting power requirements.

A comparison of the thermal envelope requirements is provided in Table 54.
Table 54. Comparison of Envelope Requirements (U-factors in Btu/hr*ft$^2$°F)

<table>
<thead>
<tr>
<th></th>
<th>Climate Zone 5B</th>
<th>Climate Zone 6B</th>
<th>Climate Zone 7B</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nonresidential</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.084</td>
<td>0.064</td>
<td>0.084</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
<td>0.063</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.40)</td>
<td>0.48 (0.40)</td>
<td>0.57 (0.39)</td>
</tr>
<tr>
<td><strong>Residential</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.064</td>
<td>0.064</td>
<td>0.064</td>
</tr>
<tr>
<td>Roof</td>
<td>0.063</td>
<td>0.048</td>
<td>0.063</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>R-10/2ft</td>
<td>NR</td>
</tr>
<tr>
<td>Window*</td>
<td>0.57 (0.39)</td>
<td>0.48 (0.40)</td>
<td>0.57 (0.39)</td>
</tr>
<tr>
<td><strong>Semiheated</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>0.123</td>
<td>0.123</td>
<td>0.113</td>
</tr>
<tr>
<td>Roof</td>
<td>0.097</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td>Slab</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Window SHGC shown in parentheses next to the U-factor

**Energy Analysis**

An energy analysis was conducted comparing each state’s base code to Standard 90.1-2007. The EnergyPlus software was used to determine the energy impacts. Summary savings results are shown below by building type. Results are shown for the electricity and natural gas energy use intensity (in kWh/sf-year and kBtu/sf-year, respectively) for both the base code and Standard 90.1-2007. Results are also shown for the percent reduction of overall site energy usage and energy cost from the base case to Standard 90.1-2007. The energy cost savings are estimated using national average energy costs of $0.0939 per kWh for electricity and $1.2201 per therm for natural gas. Presentation of the individual results for electricity and natural gas usage allows interested parties to calculate source energy or energy cost savings based on state (rather than national average) fuel prices. Total annual energy usage for the three building prototypes may be calculated by multiplying the energy use intensity numbers by the square footage of the prototype building.
## Wyoming Energy End Use and Percentage Savings

<table>
<thead>
<tr>
<th>Building Prototype</th>
<th>Location</th>
<th>90.1-1999</th>
<th>90.1-2007</th>
<th>Energy Use Intensity</th>
<th>Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Electricity (kWh/sf/yr)</td>
<td>Natural Gas (kBtu/sf/yr)</td>
<td>Electricity (kWh/sf/yr)</td>
<td>Natural Gas (kBtu/sf/yr)</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Torrington</td>
<td>12.93</td>
<td>5.64</td>
<td>11.57</td>
<td>5.27</td>
</tr>
<tr>
<td>Residential</td>
<td>Torrington</td>
<td>9.15</td>
<td>15.95</td>
<td>9.08</td>
<td>14.18</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Torrington</td>
<td>4.41</td>
<td>19.15</td>
<td>4.40</td>
<td>19.03</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Cheyenne</td>
<td>12.64</td>
<td>6.06</td>
<td>11.25</td>
<td>5.57</td>
</tr>
<tr>
<td>Residential</td>
<td>Cheyenne</td>
<td>9.10</td>
<td>18.87</td>
<td>9.04</td>
<td>16.81</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Cheyenne</td>
<td>4.42</td>
<td>23.86</td>
<td>4.42</td>
<td>23.75</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>Rock Springs</td>
<td>12.80</td>
<td>6.72</td>
<td>11.38</td>
<td>6.03</td>
</tr>
<tr>
<td>Residential</td>
<td>Rock Springs</td>
<td>9.08</td>
<td>20.98</td>
<td>9.03</td>
<td>18.71</td>
</tr>
<tr>
<td>Semiheated</td>
<td>Rock Springs</td>
<td>4.41</td>
<td>26.12</td>
<td>4.40</td>
<td>26.02</td>
</tr>
</tbody>
</table>
# Appendix A – Prototype Building Descriptions

## Table A-1: Nonresidential Prototype Building Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Prototype Building Model Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>GENERAL</strong></td>
<td></td>
</tr>
<tr>
<td>Building Type</td>
<td>Medium Office</td>
</tr>
<tr>
<td>Gross Floor Area</td>
<td>53,600 ft²</td>
</tr>
<tr>
<td>Building Shape</td>
<td>Rectangle</td>
</tr>
<tr>
<td>Aspect Ratio</td>
<td>1.5 (164 ft x 109 ft)</td>
</tr>
<tr>
<td>Number of Floors</td>
<td>3</td>
</tr>
<tr>
<td>Window-to-Wall Ratio</td>
<td>33% (modeled as strip windows of 5 ft. high)</td>
</tr>
<tr>
<td>Floor Height</td>
<td>13 ft</td>
</tr>
<tr>
<td>Floor-to-Ceiling Height</td>
<td>9 ft</td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>Steel-framed wall</td>
</tr>
<tr>
<td>Roof</td>
<td>Insulation entirely above deck, metal deck roof</td>
</tr>
<tr>
<td>Floor</td>
<td>8” Slab-on-grade</td>
</tr>
<tr>
<td><strong>INTERNAL LOADS</strong></td>
<td></td>
</tr>
<tr>
<td>Occupancy</td>
<td></td>
</tr>
<tr>
<td>Number of People</td>
<td>5 persons / 1000 sf</td>
</tr>
<tr>
<td><strong>Lighting</strong></td>
<td></td>
</tr>
<tr>
<td>Power Density</td>
<td>1.0 w/sf</td>
</tr>
<tr>
<td><strong>Plug Load</strong></td>
<td></td>
</tr>
<tr>
<td>Average Power Density</td>
<td>0.75 w/sf</td>
</tr>
<tr>
<td><strong>HVAC</strong></td>
<td></td>
</tr>
<tr>
<td>Heating Type</td>
<td>Gas furnace</td>
</tr>
<tr>
<td>Cooling Type</td>
<td>Packaged DX Unit</td>
</tr>
<tr>
<td>Fan Control</td>
<td>Variable air volume</td>
</tr>
<tr>
<td>Distribution/Terminal Units</td>
<td>VAV terminal box with electric reheating coil</td>
</tr>
<tr>
<td>Cooling T-stat</td>
<td>75°F (80°F setback)</td>
</tr>
<tr>
<td>Heating T-stat</td>
<td>70°F (60°F setback)</td>
</tr>
<tr>
<td><strong>SERVICE WATER HEATER</strong></td>
<td></td>
</tr>
<tr>
<td>Water Heater Type</td>
<td>Electric storage water heater</td>
</tr>
<tr>
<td>Tank Capacity, gallons</td>
<td>260</td>
</tr>
<tr>
<td>Supply Temperature, °F</td>
<td>120</td>
</tr>
</tbody>
</table>
Table A-2: Residential Prototype Building Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Prototype Building Model Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>GENERAL</strong></td>
<td></td>
</tr>
<tr>
<td>Building Type</td>
<td>Multifamily residential building</td>
</tr>
<tr>
<td>Gross Floor Area</td>
<td>33,700 ft²</td>
</tr>
<tr>
<td>Building Shape</td>
<td>Rectangle</td>
</tr>
<tr>
<td>Aspect Ratio</td>
<td>2.75 (152 ft x 56 ft)</td>
</tr>
<tr>
<td>Number of Floors</td>
<td>4</td>
</tr>
<tr>
<td>Activity Area</td>
<td>Each floor has 8 (25’x38’) apartments, except ground floor which has 7 apartments and one lobby/office</td>
</tr>
<tr>
<td>Window-to-Wall Ratio</td>
<td>15% (4ft high view windows)</td>
</tr>
<tr>
<td>Floor Height</td>
<td>10 ft</td>
</tr>
<tr>
<td>Floor-to-Ceiling Height</td>
<td>10 ft (for the office area only)</td>
</tr>
<tr>
<td>Exterior Wall</td>
<td>Steel-framed wall</td>
</tr>
<tr>
<td>Roof</td>
<td>Insulation entirely above deck, metal deck roof</td>
</tr>
<tr>
<td>Floor</td>
<td>8” Slab-on-grade</td>
</tr>
<tr>
<td><strong>INTERNAL LOADS</strong></td>
<td></td>
</tr>
<tr>
<td>Occupancy</td>
<td></td>
</tr>
<tr>
<td>Number of People</td>
<td>78 persons total (average 2.5 persons per apartment unit)</td>
</tr>
<tr>
<td>Lighting</td>
<td></td>
</tr>
<tr>
<td>Average Power Density</td>
<td>• Apartment units: 0.36 w/sf</td>
</tr>
<tr>
<td></td>
<td>• Corridors: 0.5 w/sf</td>
</tr>
<tr>
<td></td>
<td>• Office area: 1.1 w/sf</td>
</tr>
<tr>
<td>Plug Load</td>
<td></td>
</tr>
<tr>
<td>Average Power Density</td>
<td>0.62 w/sf</td>
</tr>
<tr>
<td>HVAC</td>
<td></td>
</tr>
<tr>
<td>Heating Type</td>
<td>Gas furnace</td>
</tr>
<tr>
<td>Cooling Type</td>
<td>Split system DX (one per apartment)</td>
</tr>
<tr>
<td>Fan Control</td>
<td>Constant volume</td>
</tr>
<tr>
<td>Distribution/Terminal Units</td>
<td>Single zone/direct air</td>
</tr>
<tr>
<td>Cooling T-stat</td>
<td>75°F (no setback assumed)</td>
</tr>
<tr>
<td>Heating T-stat</td>
<td>70°F (no setback assumed)</td>
</tr>
<tr>
<td><strong>SERVICE WATER HEATER</strong></td>
<td></td>
</tr>
<tr>
<td>Water Heater Type</td>
<td>Individual residential electric storage water heater</td>
</tr>
<tr>
<td>Tank Capacity, gallons</td>
<td>20 (per apartment unit)</td>
</tr>
<tr>
<td>Supply Temperature, °F</td>
<td>120</td>
</tr>
<tr>
<td>Characteristic</td>
<td>Prototype Building Model Description</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td><strong>GENERAL</strong></td>
<td></td>
</tr>
<tr>
<td>Building Type</td>
<td>Non-refrigerated warehouse</td>
</tr>
<tr>
<td>Gross Floor Area</td>
<td>49,500 ft²</td>
</tr>
<tr>
<td>Building Shape</td>
<td>Wide rectangle</td>
</tr>
<tr>
<td>Aspect Ratio</td>
<td>2.2 (330 ft x 150 ft)</td>
</tr>
<tr>
<td>Number of Floors</td>
<td>1</td>
</tr>
</tbody>
</table>
| Activity Area (percentage of gross floor area) | • Bulk storage area: 34,500 ft² (70%)
|                | • Fine storage area: 12,450 ft² (25%)
|                | • Office area: 2,550 ft² (5%)       |
| Window-to-Wall Ratio | • Storage area: No windows
|                | • Office area: 12% view windows     |
| Floor Height   | 28 ft                               |
| Floor-to-Ceiling Height | 14 ft (for the office area only) |
| Exterior Wall  | Metal building wall                 |
| Roof           | Metal building roof                 |
| Floor          | 6” Slab-on-grade                    |
| Door           | 7 opaque doors (3’x7’), 7 roll-up dock doors (8’x10’) |
| **INTERNAL LOADS** |                                     |
| Occupancy      |                                     |
| Number of People | 5 (in the office area)            |
| Lighting       |                                     |
| Average Power Density | • Bulk storage area: 0.8 w/sf
|                | • Fine storage area: 0.8 w/sf       |
|                | • Office area: 1.0 w/sf             |
| Plug Load      |                                     |
| Average Power Density | Office: 0.75 w/sf
<p>|                | Bulk storage: 0.24 w/sf             |
| HVAC           |                                     |
| Heating Type   | • Bulk storage area: Unit heater    |
|                | • Fine storage area: Gas furnace    |
|                | • Office area: Gas furnace          |
| Cooling Type   | • Bulk storage area: No cooling     |
|                | • Fine storage area: Direct expansion |
|                | • Office area: Direct expansion     |
| Fan Control    | Constant volume                    |
| Distribution/Terminal Units | Single zone/Direct air |</p>
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Prototype Building Model Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling T-stat</td>
<td>• Fine storage area: 80°F</td>
</tr>
<tr>
<td></td>
<td>• Office area: 75°F (85°F setback)</td>
</tr>
<tr>
<td>Heating T-stat</td>
<td>• Bulk storage area: 50°F</td>
</tr>
<tr>
<td></td>
<td>• Fine storage area: 60°F</td>
</tr>
<tr>
<td></td>
<td>• Office area: 70°F (60°F setback)</td>
</tr>
</tbody>
</table>

**SERVICE WATER HEATER**

<table>
<thead>
<tr>
<th></th>
<th>Electric storage water heater</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Heater Type</td>
<td>20</td>
</tr>
<tr>
<td>Supply Temperature, °F</td>
<td>120</td>
</tr>
</tbody>
</table>
The U.S. Department of Energy’s Building Energy Codes Program is an information resource on national model energy codes. We work with other government agencies, state and local jurisdictions, national code organizations, and industry to promote stronger building energy codes and help states adopt, implement, and enforce those codes.

BECP Website:  
www.energycodes.gov

BECP Technical Support:  
technicalsupport@becp.pnl.gov  
www.energycodes.gov/support/helpdesk.php

EERE Information Center  
1-877-EERE-INF (1-877-337-3463)  
www.eere.energy.gov/informationcenter

PNNL-18544 • September 2009

Printed with a renewable-source ink on paper containing at least 50% wastepaper, including 10% post-consumer waste.