Attachment 3: August 30, 2011 Presentation Slides (Redacted Version)

generation MPOWER

B&W mPower™ Software Process/Procedure
Update and Human Factors Engineering
Program Plan Overview

August 2011

© 2011 BABCOCK & WILCOX NUCLEAR ENERGY, INC. ALL RIGHTS RESERVED.

This document is the property of Babcock & Wilcox Nuclear Energy Group, Inc. (B&W NE) and Northrop Grumman Corporation (NGC).

August 30th Meeting Topics/Schedule

- Introduction
- Overview of Software Procedure Update
- Conclusion
- Lunch
- Introduction
- HFE Program Plan Overview
- Conclusion

B&W mPower Software Process/ Procedure Update

generation mPower

Regulatory Requirements/Software Procedures Review

 Based on feedback from the staff, Northrop Grumman is conducting a review of baseline set of software procedures

] [CCI per Affidavit 4(a)-(d)]

"Heading Check" for adequacy of baseline process

MPower Northrop Grumman Heritage of Process Improvement

Essential Elements of NGC SW Development Process

Northrop Grumman SW Integration Procedure

[CCI per Affidavit 4(a)-(d)]

Next Steps

- Complete traceability matrix of regulatory requirements to baseline procedures.
- Assess any gaps with respect to Regulations
- Provide traceability matrix and associated baseline set of procedures to the staff.
- Schedule meeting with staff to discuss and review our existing processes and procedures.

Example Northrop Grumman [

Affidavit 4(a)-(d)] Procedure, [

]. [CCI per Affidavit 4(a)-(d)]

[CCI per

Attachment to Slide Package

Conclusion

Human Factors Engineering Program Plan Overview

Meeting Objectives

- Expand NRC understanding of our HFE design team composition, responsibilities, authority, and placement within the organization
- Explain how the project is developing and implementing an effective HFE process
- Discuss planned submittals
- Outline design process and how it is compliant with NUREG 0711 review criteria
- Describe initial concepts, design, and assessment process which incorporate innovative technologies and concepts (ref. ACRS letter)
- Share early concepts related to proposed staffing

m**Power**mPower Engineering Organization

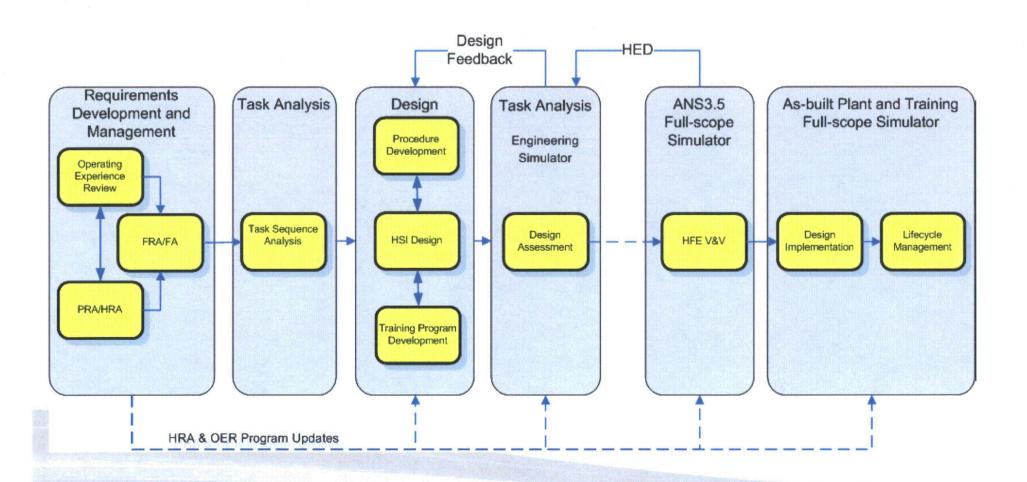
[CCI per Affidavit 4(a)-(d)]

HFE Program Scope of Responsibility

- Develop and Implement an iterative HFE process
- Submit HFE program implementation plans to the NRC, resolve and incorporate RAIs for submitted Topical Reports
- Develop "Concept of Operations" and "Human System Interface Concept" (DCS requirements)
- Integrate HFE with other design activities
- Ensure that subcontractor engineering processes include HFE program requirements
- Identify and Inform the design for areas that have the potential to improve human performance

generation mPower

HFE Design Team Plant Design Accomplishments


CCI per Affidavit 4(a)-(d)

Proposed Submittals Discussion

mPower HFE Program Overview

Design Philosophy

- Optimize the number of components and systems required to operate (not fail) to perform a given plant function.
- Capture and integrate user needs in design.
- Use a top-down requirements-based design process.
- Leverage design team experience to improve HRA critical shaping factors beginning in concept phase.
- Maintain an iterative design process.
- Consider entire design lifecycle including: development, validation, implementation, testing, operation, maintenance, and obsolescence.

generation m**Power**

Credited Safety Systems

Systems Included in the Initial Scope of HFE Program

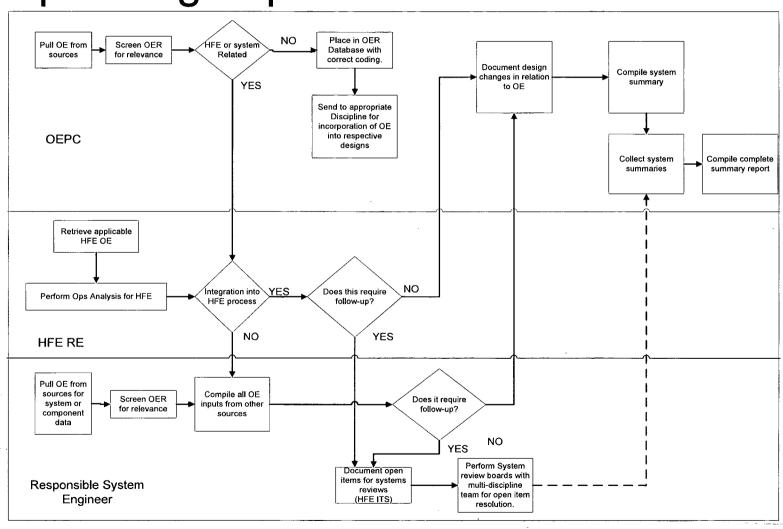
Systems Designed Using HFE Best Practices

] DCS and HSI Architecture

Functional Control Room Layout

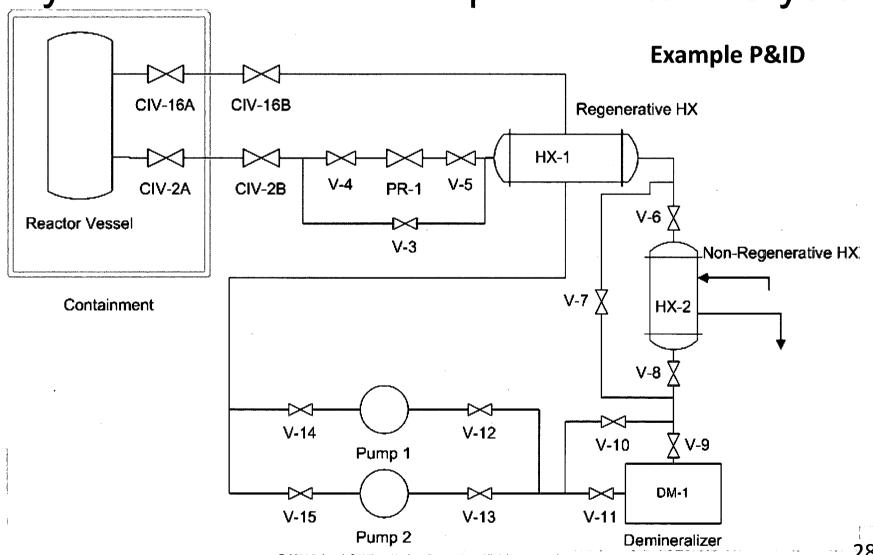
]

[CCI per Affidavit 4(a)-(d)]



B&W mPower Main Control Room Concept

]


Operating Experience Review Process

generation m**Power** Human Reliability Assessment (HRA)

System Functional Requirements Analysis

m**Power**Example SFRA Function Tree

generation mPower Example SFRA

System Function Verses Plant Mode Table

generation mPower Configuration Change Table

Functional Configuration Change Table

generation m**Power**

Component Configuration Change Table

[CCI per Affidavit 4(a)-(d)]

1

Additional Task Analysis Fields

J

Areas of Design Assessment Focus

generation m**Power**

Design Assessment

Concept of Operation

- Functions are defined
- Tasks are developed to support functional requirements
- Functions/Tasks are allocated to man and/or machine to optimize reliability
- Knowledge and abilities, training objectives, and user guidance is provided for tasks allocated to man
- Prerequisites, interlocks, sequence, and success criteria are provided to control systems
- Guidance provided to user is compatible with requirements provided to control systems

Functions Tasks HSI **Monitoring Operation Users Systems Maintenance**

Top-down and Based on Required Functions

Initial HFE Design Considerations

generation m**Power**

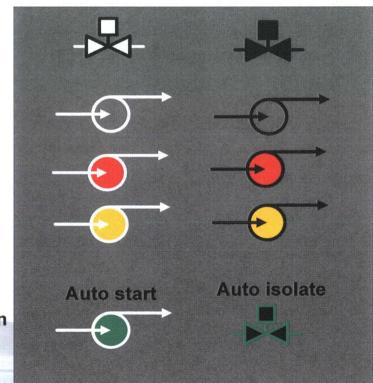
Home/Plant Overview Concept

]

Use of Color

- Monochromatic for normal operation
- Color used to indicate off-normal or changing condition

Open/Energized Closed/De-energized


White/black - State

Grey - Normal

Red - Alarm/trip

Yellow - Alert

Green - Expected action

Procedures Embedded in DCS

Improve Situational Awareness and Human Reliability

Bounding Principles:

- Minimize the opportunity for error
- Maintain user's awareness of plant mode, configuration, and operational goals
- Detect and mitigate errors before adverse consequence
- Maintain awareness of safety function status

generation mPower DCS Illustrative Example

generation m**Power**Post Accident Monitoring

Discussion

- Submittal Timeline
- Future Meetings:
 - Dates
 - Location
 - Topics
- Questions and Parking Lot Items

