WBN2Public Resource

From:	Boyd, Desiree L [dlboyd@tva.gov]
Sent:	Wednesday, July 13, 2011 1:28 PM
То:	Epperson, Dan; Poole, Justin; Raghavan, Rags; Milano, Patrick; Campbell, Stephen
Cc:	Crouch, William D; Hamill, Carol L; Boyd, Desiree L
Subject:	TVA letter to NRC_07-13-11_2-PTI-261-01 transmittal to NRC
Attachments:	07-13-11_2-PTI-261-01 transmittal to NRC_Final.pdf

Please see attached TVA letter that was sent to the NRC today.

Thank You,

~*~*~*~*~*~*~*~*~*~

Désireé L. Boyd

WBN 2 Licensing Support Sun Technical Services <u>dlboyd@tva.gov</u> 423-365-8764

Hearing Identifier: Email Number:	Watts_Bar_2_Operating_LA_Public 453
Mail Envelope Prope	ties (7AB41F650F76BD44B5BCAB7C0CCABFAF20CEB7E3)
Subject: Sent Date: Received Date: From:	TVA letter to NRC_07-13-11_2-PTI-261-01 transmittal to NRC 7/13/2011 1:27:37 PM 7/13/2011 1:28:39 PM Boyd, Desiree L
Created By:	dlboyd@tva.gov
Recipients: "Crouch, William D" <v Tracking Status: None "Hamill, Carol L" <cha Tracking Status: None "Boyd, Desiree L" <dhb Tracking Status: None "Epperson, Dan" <dan Tracking Status: None "Poole, Justin" <justin Tracking Status: None "Raghavan, Rags" <ra Tracking Status: None</ra </justin </dan </dhb </cha </v 	vdcrouch@tva.gov> mill@tva.gov> oyd@tva.gov> .Epperson@nrc.gov> .Poole@nrc.gov> ags.Raghavan@nrc.gov>

"Milano, Patrick" <Patrick.Milano@nrc.gov> Tracking Status: None "Campbell, Stephen" <Stephen.Campbell@nrc.gov> Tracking Status: None

Post Office: TVANUCXVS2.main.tva.gov

Files	Size	Date & Time
MESSAGE	307	7/13/2011 1:28:39 PM
07-13-11_2-PTI-261-01	transmittal to NRC_Final.pdf	435758

Options	
Priority:	Standard
Return Notification:	No
Reply Requested:	No
Sensitivity:	Normal
Expiration Date:	
Recipients Received:	

Tennessee Valley Authority, Post Office Box 2000, Spring City, Tennessee 37381-2000

July 13, 2011

U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, D.C. 20555-0001

> Watts Bar Nuclear Plant, Unit 2 NRC Docket No. 50-391

Subject: Watts Bar Nuclear Plant (WBN) Unit 2 - Submittal of Pre-op Test Instruction

The following approved WBN Unit 2 Pre-op Test Instruction (PTI) is enclosed:

PTI NUMBER	Rev.	TITLE	
2-PTI-261-01	0	Integrated Computer System Functional Test	

If you have any questions, please contact Pete Olson at (423) 365-3294.

Respectfully,

David Stinson Watts Bar Unit 2 Vice President

Enclosure cc (Enclosure):

> U. S. Nuclear Regulatory Commission Region II Marquis One Tower 245 Peachtree Center Ave., NE Suite 1200 Atlanta, Georgia 30303-1257

NRC Resident Inspector Unit 2 Watts Bar Nuclear Plant 1260 Nuclear Plant Road Spring City, Tennessee 37381 U.S. Nuclear Regulatory Commission Page 2 July 13, 2011

bcc (Enclosure):

Stephen Campbell U.S. Nuclear Regulatory Commission MS 08H4A One White Flint North 11555 Rockville Pike Rockville, Maryland 20852-2738

Charles Casto, Deputy Regional Administrator for Construction U. S. Nuclear Regulatory Commission Region II Marquis One Tower 245 Peachtree Center Ave., NE Suite 1200 Atlanta, Georgia 30303-1257

	WATTS BAR NUCLEAR PLANT	
	UNIT 2 STARTUP	
	· · · · · · · · · · · · · · · · · · ·	
ו ודוד		TIONAL TEST
	E. IN FEGRATED COMPUTER STSTEM FUNC	TIONAL TEST
	Instruction No: 2 PTI 261 01	
	Paulaian Not 0000	
	Revision No. 0000	>
		- DATE 8/23/1
FREFARED DT. 1		DATE
REVIEWED BY: A	BLOWE A. Blan me	DATE 8/23/11
	PRINT NAME/ SIGNATURE	O/(12//0
· · ·		·
INSTRUCTION AF	PROVAL	
	- 2 - 11-012	
ITC CHAIDMAN	<u>2-11-072</u>	
	DATE 1/2	
APPROVED BI.	PREOPERATIONAL STARTUP MANAGER	
TEST RESULTS A	APPROVAL	
JIG MEETING NO		
JIG CHAIRMAN:	DATE	
APPROVED BY:	DATE	
	PREOPERATIONAL STARTUP MANAGER	

WBN	INTEGRATED COMPUTER SYSTEM	2-PTI-261-01
Offic 2	FUNCTONAL TEST	Rev. 0000
		Page 2 of 51

Revision Log

Revision or Change Number	Effective Date	Affected Page Numbers	Description of Revision/Change
0000	6/30/11	ALL	Initial Issue

Table of Contents

1.0	INTROD	DUCTION	5
1.1	Test Ob	jectives	5
1.2	Scope		5
2.0	REFER	ENCES	7
2.1	Perform	ance References	7
2.2	Develop	mental References	7
3.0	PRECA	UTIONS AND LIMITIATIONS	9
4.0	PRERE	QUISTE ACTIONS	10
4.1	Prelimin	ary Actions	10
4.2	Special	Tools, Measuring and Test Equipment, Parts, and Supplies	13
4.3	Field Pre	eparations	14
4.4	Approva	Is and Notifications	16
5.0	ACCEP	TANCE CRITERIA	17
6.0	PERFO	RMANCE	18
6.0 6.1	PERFO	RMANCE	18 18
6.0 6.1	PERFO ICS Fun 6.1.1	RMANCE ctional Test Redundant Components	 18 18 18
6.0 6.1	PERFO ICS Fun 6.1.1 6.1.2	RMANCE ctional Test Redundant Components Plant Engineering Data System (PEDS) Interface	18
6.0 6.1	PERFO ICS Fun 6.1.1 6.1.2 6.1.3	RMANCE ctional Test Redundant Components Plant Engineering Data System (PEDS) Interface HMI Devices and Printers	
6.0 6.1	PERFO ICS Fun 6.1.1 6.1.2 6.1.3 6.1.4	RMANCE ctional Test Redundant Components Plant Engineering Data System (PEDS) Interface HMI Devices and Printers ICS Security	
6.0 6.1 6.2	PERFO ICS Fun 6.1.1 6.1.2 6.1.3 6.1.4 ICS Inpu	RMANCE ctional Test Redundant Components Plant Engineering Data System (PEDS) Interface HMI Devices and Printers ICS Security ICS Security It / Output Point Test (ICSIOPT)	18 18 18 18 23 25 25 27 28
6.0 6.1 6.2	PERFOR ICS Fun 6.1.1 6.1.2 6.1.3 6.1.4 ICS Inpu 6.2.1	RMANCE ctional Test Redundant Components Plant Engineering Data System (PEDS) Interface HMI Devices and Printers ICS Security ICS Security It / Output Point Test (ICSIOPT) Analog and Digital Inputs	18 18 18 23 25 25 27 28 28
6.0 6.1	PERFOR ICS Fun 6.1.1 6.1.2 6.1.3 6.1.4 ICS Inpu 6.2.1 6.2.2	RMANCE ctional Test Redundant Components Plant Engineering Data System (PEDS) Interface HMI Devices and Printers ICS Security ICS Security ut / Output Point Test (ICSIOPT) Analog and Digital Inputs Pulse Points	18 18 18 18 23 25 25 27 28 28 31
6.0 6.1	PERFOR ICS Fun 6.1.1 6.1.2 6.1.3 6.1.4 ICS Inpu 6.2.1 6.2.2 6.2.3	RMANCE ctional Test Redundant Components Plant Engineering Data System (PEDS) Interface HMI Devices and Printers ICS Security ut / Output Point Test (ICSIOPT) Analog and Digital Inputs Pulse Points Analog and Digital Outputs	18 18 18 18 23 25 27 27 28 28 31 32
6.06.16.26.3	PERFOR ICS Fun 6.1.1 6.1.2 6.1.3 6.1.4 ICS Inpu 6.2.1 6.2.2 6.2.3 Digital C	RMANCE ctional Test Redundant Components Plant Engineering Data System (PEDS) Interface HMI Devices and Printers ICS Security ICS Security ut / Output Point Test (ICSIOPT) Analog and Digital Inputs Pulse Points Analog and Digital Outputs Dutputs To Ronan Test	18 18 18 23 25 27 28 31 32 33
 6.0 6.1 6.2 6.3 7.0 	PERFOR ICS Fun 6.1.1 6.1.2 6.1.3 6.1.4 ICS Inpu 6.2.1 6.2.2 6.2.3 Digital C POST P	RMANCE ctional Test Redundant Components Plant Engineering Data System (PEDS) Interface HMI Devices and Printers ICS Security ut / Output Point Test (ICSIOPT) Analog and Digital Inputs Pulse Points Analog and Digital Outputs Outputs To Ronan Test	18 18 18 23 25 27 28 31 32 33 33 33 35

Table of Contents (continued)

Appendix A:	TEST PROCEDURES/INSTRUCTIONS REFERENCE REVIEW	
Appendix B:	TEMPORARY CONDITION LOG	
Data Sheet 1:	Analog Input Verification	
Data Sheet 2:	Digital Input Verification	41
Data Sheet 3:	Sequence of Events Input Verification	43
Data Sheet 4:	Pulse Point Verification	45
Data Sheet 5:	Digital Output Verification	47
Data Sheet 6:	Analog Output Verification	50

1.0 INTRODUCTION

1.1 Test Objectives

- A. This Preoperational Test Instruction (PTI) will demonstrate the proper functionality and performance of the Integrated Computer System (ICS).
 - 1. Demonstrate the ICS has been internally wired properly and that the internal CPU, Inputs and Outputs (I/O) and analog converters function as designed.
 - 2. Demonstrate the functionality of the ICS conversion, printout or visual display, of process parameters.
 - 3. Demonstrate the ICS software functions are processed accurately by the hardware.

1.2 Scope

NOTES

- 1) Field inputs to ICS will be simulated from the ICS terminal blocks.
- 2) Field calibration and functional tests of the field components that inputs to the ICS will be tested through the input system's component tests, PTI's and/or ATI's.
- 3) Accurate processing and display of analog and digital inputs using the ICS will be tested through the input system's component tests, PTI's and/or ATI's.
- 4) Field points that are received through data links will be tested through the input system's component tests, PTI's and/or ATI's.
- 5) If necessary, work order (WO) 111281636 will test any ICS field point(s) or ICS interface(s) that was not previously tested, by other system's component test(s), PTI's and/or ATI's.
- 6) All tests will be performed by WBN Unit 2 Preoperational Startup Engineering (PSE) and Computer Engineering Group (CEG) personnel.
 - A. The overall scope of this PTI is to demonstrate the following:
 - 1. Software functions are processed accurately by the hardware.
 - 2. Control processing and peripheral hardware functions as designed.
 - 3. The ICS will appropriately process input signals.

1.2 Scope (continued)

- B. This PTI includes:
 - 1. Redundant Component Test: Redundant Component Test demonstrates the reliability of the ICS.
 - 2. Plant Engineering Data System (PEDS) Interface Test: PEDS Interface Test demonstrates the proper functionality of the external data link to the ICS.
 - 3. Human Machine Interface (HMI) Devices and Printers Test: HMI and Printers Test demonstrate that all applicable ICS HMI devices and printers are installed and functioning as designed.
 - 4. ICS Security Test: ICS Security Test demonstrates the ICS security features. This test demonstrates only authorized users, at authorized locations, can make system changes.
 - 5. ICS Input / Output Test (ICSIOPT): ICSIOPT demonstrate the proper functionality of the data acquisition hardware; including the prefabricated adapter cables and that the ICS properly identifies, processes and displays them.
 - 6. Digital Outputs to Ronan Test: Digital Outputs to Ronan Test demonstrate the functionality of the Ronan Annunciator windows driven by the ICS digital outputs.

2.0 **REFERENCES**

2.1 Performance References

A. SMP-9.0, CONDUCT OF TEST, Rev 0

2.2 Developmental References

- A. SMP-4.0, SYSTEM TURNOVER, Rev 2
- B. SMP-8.0, ADMINISTRATION OF PREOPERATIONAL TEST INSTRUCTIONS, Rev 4
- C. Final Safety Analysis Report (FSAR)
 - 1. FSAR-Amendment 99
 - a. Chapter 14, Table 14.2-1, Sheet 54 of 89
- D. 2-TSD-261-1, Rev 1
- E. EDCR 52322, Rev A
- F. Drawings
 - 1. Electrical
 - a. 2-45W2697, Series (Series is currently Rev 0), ICS Connection, Layout, Wiring and Power Diagrams
 - b. 2-47A615-0, Rev 1, Integrated Computer System Series Analog Termination & I/O List
 - c. 2-45W600-55-2, Rev 0, Wiring Diagram Annunciator System Key Diagram Panel 1A
 - d. 2-45W600-55-6, Rev 0, Wiring Diagram Annunciator System Key Diagram Panel 3A
 - e. 2-45W600-55-10, Rev 0, Wiring Diagram Annunciator System Key Diagram Panel 4B
 - f. 2-45W600-55-13, Rev 0, Wiring Diagram Annunciator System Key Diagram Panel 5A

2.2 Developmental References (continued)

- g. 2-45W600-55-14, Rev 0, Wiring Diagram Annunciator System Key Diagram Panel 5B
- h. 2-45W600-55-20, Rev 1, Wiring Diagram Annunciator System Key Diagram Panel 6D
- i. 2-45B655-1A, Rev 0, Main Control Room Annunciator Inputs Window Box XA-55-1A
- j. 2-45B655-3A, Rev 0, Main Control Room Annunciator Inputs Window Box XA-55-3A
- k. 2-45B655-4B, Rev 0, Main Control Room Annunciator Inputs Window Box XA-55-4B
- I. 2-45B655-5A, Rev 0, Main Control Room Annunciator Inputs Window Box XA-55-5A
- m. 2-45B655-5B, Rev 0, Main Control Room Annunciator Inputs Window Box XA-55-5B
- n. 2-45B655-6D, Rev 1, Main Control Room Annunciator Inputs Window Box XA-55-6D
- o. 2-45B655-E1A, Rev 0, Electrical Annunciator Window Box XA-55-1A Engraving
- p. 2-45B655-E3A, Rev 0, Electrical Annunciator Window Box XA-55-3A Engraving
- q. 2-45B655-E4B, Rev 0, Electrical Annunciator Window Box XA-55-4B Engraving
- r. 2-45B655-E5A, Rev 0, Electrical Annunciator Window Box XA-55-5A Engraving
- s. 2-45B655-E5B, Rev 0, Electrical Annunciator Window Box XA-55-5B Engraving
- t. 2-45B655-E6D, Rev 1, Electrical Annunciator Window Box XA-55-6D Engraving

3.0 PRECAUTIONS AND LIMITIATIONS

- A. Standard precautions shall be followed for working around energized electrical equipment in accordance with TVA Safety Manual Procedure 1021.
- B. Steps may be repeated if all components cannot be tested in a step. However, if the test has been exited, prerequisite steps must be re-verified and a Chronological Test Log (CTL) entry made.
- C. Discrepancies between component ID tags and the description in a procedure/instruction if the UNIDs match, exclusive of place keeping zeros and train designators (e.g.; 2-HS-31-468 vs. 2-HS-031-0468) and the noun description is sufficient to identify the component. This condition does not require a TDN in accordance SMP-14.0. If the component label needs to be changed, a Tag Request Form (TR Card) should be processed in accordance with TI-12.14. Make an entry in the CTL and continue testing.
- D. All wires removed/lifted from a terminal shall be identified and taped or covered with an insulator to prevent personnel or equipment hazard and possible spurious initiations. The wires should be grouped together and labeled with the work implementing document number that required them to be lifted if left unattended.
- E. All open problems are to be tracked by a corrective action document and entered on the appropriate system punchlist.
- F. Problems identified during the test shall be annotated on the Chronological Test Log (CTL) from SMP-9.0 including a description of the problem, the procedure step when/where the problem was identified, corrective action steps taken to resolve the problem, and the number of the corrective action document, if one was required.
- G. All Radiation Protection (RP) requirements shall be observed when working in or near contaminated areas.
- H. Equipment hookup and removal steps may be performed out of sequence at the discretion of the Test Director (TD).
- I. Ensure there are no adverse effects to the operation of Unit 1 structures, systems, or components.

Date _____

4.0 PREREQUISTE ACTIONS

NOTE

Prerequisite steps may be performed in any order unless otherwise stated and should be completed as close in time as practicable to the start of the instruction subsection to which they apply.

4.1 **Preliminary Actions**

- [1] **VERIFY** the test/performance copy of this Preoperational Test Instruction (PTI) is the current revision including any change notices and as needed, each test person assisting in this test has the current revision including any change notices.
- [2] **OBTAIN** copies of the applicable forms from the latest revision of SMP-9.0, **AND**

ATTACH to this PTI for use during the performance of this PTI.

- [3] **ENSURE** changes to the references listed on Appendix A, have been reviewed, and determined NOT to adversely affect the test performance.
- [4] **VERIFY** current revisions and change paper for referenced drawings has been reviewed and determined NOT to adversely affect the test performance, **AND**

ATTACH documentation of current drawing revision numbers change paper, that were reviewed, to data package.

[5] **EVALUATE** open items in Watts Bar Integrated Task Equipment List (WITEL), **AND**

ENSURE that they will NOT adversely affect the test performance.

[6] **ENSURE** the Factory Acceptance Test, required Component Testing, including the Site Acceptance Test, has been completed prior to start of test.

Date _____

4.1 **Preliminary Actions (continued)**

 [7] ENSURE outstanding Design Change Notices (DCN's), Engineering Document Construction Release (EDCR's) or Temporary Alterations (TA's) do NOT adversely impact testing, AND

ATTACH documentation of DCN's, EDCR's and TA's that were reviewed to the data package.

[8] **ENSURE** a review of outstanding Clearances has been coordinated with Operations for impact to the test performance, **THEN**

RECORD in Appendix B, Temporary Condition Log, if required.

[9] **VERIFY** Measuring and Test Equipment (M&TE) calibration due dates will support the completion of this test performance.

NOTE

Any Annunciator points associated with 2-MUX-55-12 and 2-MUX-55-13 only have master switches at the bottom of each terminal strip.

- [10] **ENSURE** System 55, Annunciator and Sequential Events Recording System applicable TBK switches are ON, the applicable Master Switches are ON, and window software input(s) are ENABLED for the following Annunciator windows.
 - A. 2-XA-55-4B/83-D (Subsection 6.4)
 - B. 2-XA-55-5B/100-A (Subsection 6.4)
 - C. 2-XA-55-6D/136-F (Subsection 6.4)
 - D. 2-XA-55-5A/91-C (Subsection 6.4)
 - E. 2-XA-55-1A/1-C (Subsection 6.4)
 - F. 2-XA-55-3A/46-C (Subsection 6.4)
 - G. 2-XA-55-1A/4-A (Subsection 6.4)

	Data	Package: Page of	Date
4.1	Preli	minary Actions (continued)	
	[11]	ENSURE components contained within the boundaries of this test are under the jurisdictional control of Preoperational Startup Engineering (PSE) and/or Plant Operations.	
	[12]	PERFORM a pretest walkdown on equipment to be tested to ensure no conditions exist that will impact test performance.	
	[13]	CONDUCT a pretest briefing with Test and Operations personnel in accordance with SMP-9.0.	
	[14]	ENSURE that communications are available for areas where testing is to be conducted.	
	[15]	DOCUMENT the applicable software version that supports the	2

[15] **DOCUMENT** the applicable software version that supports the performance of this Preoperational Test Instruction, in the table below.

VERSION	INITIALS

Date _____

4.2 Special Tools, Measuring and Test Equipment, Parts, and Supplies

[1] **ENSURE** the following M&TE or equivalent is available and within their calibration due dates, **THEN**

RECORD the M&TE data on SMP-9.0, Measuring and Test equipment (M&TE) Log.

- Voltmeter
- DC Voltage Source
- Biddle Temperature Injection °F.
- RTD 100 10–999 $\Omega \pm 0.062\%$ of set.
- Digital Thermometer, 0-600°F.
- Voltage Tester, 0–48Vdc.
- Function Generator
- [2] **ENSURE** the following equipment is available.
 - Jumpers

Date _____

4.3 Field Preparations

- [1] Field requirements for Subsection 6.1.1:
 - A. **VERIFY** the physical installation of all ICS equipment and interconnecting cables, applicable to the components tested in this subsection.
- [2] Field requirements for Subsection 6.1.2:
 - A. **VERIFY** the physical installation of all external interface communication cables and networking equipment, applicable to the components tested in this subsection. At least one ICS HMI device MUST be installed.
- [3] Field requirements for Subsection 6.1.3:
 - A. **VERIFY** the physical installation of all associated networking equipment, interconnecting cables and HMI equipment, applicable to the components tested in this subsection.
- [4] Field requirements for Subsection 6.1.4:
 - A. **VERIFY** the physical installation of all ICS equipment and interconnecting cables, applicable to the components tested in this subsection.
- [5] Field requirements for Subsection 6.2:
 - A. **VERIFY** the physical installation of data acquisition equipment, networking equipment, and interconnecting cables, applicable to the components tested in this subsection. At least one ICS HMI device must be installed.

Date _____

4.3 Field Preparations (continued)

- [6] Field requirements for Subsection 6.3:
 - A. **VERIFY** the physical installation of all ICS equipment and interconnecting cables and System 55, Ronan Annunciator equipment, applicable to the components tested in this subsection, are available.

NOTE

2-XA-55-6D is located on 2-M-6 in the U2 Main Control Room (MCR). The alarm events display can be viewed at 2-M-21, CAB I, A (front side), Main Control Room (MCR), EL 755.

RONAN LAMPBOX	RONAN WINDOW	WINDOW ENGRAVING	ALARM EVENTS DISPLAY MONITOR MESSAGE	INITIALS	CV
2-XA-55-6D	136F	PLANT COMPUTER TROUBLE	PLANT COMPUTER TROUBLE		

B. **VERIFY** the following:

Date _____

4.4 Approvals and Notifications

[1] **OBTAIN** permission of the Preoperational Startup Manager to start the test.

	Preoperational Startup Manager Signature	Date
[2]	OBTAIN the Unit 2 Supervisor's (US/SRO) or Shift Manager's (SM) authorization.	
	U2 US/SRO/SM Signature	Date

5.0 ACCEPTANCE CRITERIA

- A. The overall acceptance criteria is DEFINED by the following:
 - 1. The ICS has been internally wired properly and the internal CPU, peripheral devices, Input / Output (I/O) and analog converters function properly.
 - 2. The calibration and function of the elements of the ICS, results in accurate processing and display of analog and digital input signals using the ICS.
 - 3. Installed application programs perform as designed.
- B. The overall acceptance criteria is DEMONSTRATED by the following:
 - 1. Satisfactory completion of the following test:
 - a. Redundant Component test: Acceptable satisfactory completion of the Redundant Component test will be documented in Subsection steps 6.1.1[5], 6.1.1[10], 6.1.1[19], 6.1.1[30].
 - b. PEDS Interface Test: Acceptable satisfactory completion of PEDS Interface Test will be documented in Subsection step 6.1.2[2]H.
 - c. HMI Devices and Printers Test: Acceptable satisfactory completion of HMI Devices and Printers Test will be documented in Subsection step 6.1.3[3].
 - d. ICS Security Test: Acceptable satisfactory completion of ICS Security Test will be documented in Subsection steps 6.1.4[2]A, 6.1.4[2]C.
 - ICS Input / Output Test (ICSIOPT): Acceptable satisfactory completion of the ICSIOPT will be documented in Subsection steps 6.2.1[4], 6.2.2[3], 6.2.3[3].
 - f. Digital Outputs to Ronan Test: Acceptable satisfactory completion of the Digital Outputs to Ronan Test will be documented in Subsection steps 6.3[3], 6.3[5], 6.3[6].

Date _____

6.0 PERFORMANCE

6.1 ICS Functional Test

NOTES

- 1) Each subsection tests specific components and features of the ICS and may be performed in any order as deemed appropriate by the responsible TD.
- 2) Redundant Component Test demonstrates the reliability of the ICS to limited faults, such as redundant hardware items. This test include the following:

Loss of Data Acquisition Switch A and B.

Loss of ICS A and B.

- 3) PEDS Interface Test demonstrates the proper functionality of the PEDS data link to the ICS.
- 4) HMI Devices and Printers Test demonstrate that all applicable ICS HMI devices and printers are installed and functional.
- 5) ICS Security Test demonstrates the ICS security features. This test will demonstrate, only authorized users, at authorized locations, can make system changes.

6.1.1 Redundant Components

NOTE

The purpose of this test is to verify proper functionality of the ICS after the failure of a redundant component.

[1] **VERIFY** step 4.3[1] is COMPLETE.

NOTE

The following steps will simulate the loss of 2-XS-261-R153B, Data Acquisition Switch A, Computer Room [C3/708].

- [2] **ACTIVATE**, on an SDS (Satellite Display System), a Group Display containing field inputs (i.e., Analog Inputs (Al's) or Digital Inputs (DI's)).
- [3] **VERIFY** the qualities of the points are NOT INVL.

WBN Unit 2		INTEGRATED COMPUTER SYSTEM 2-P FUNCTONAL TEST Rev Pag	ГІ-261-01 . 0000 e 19 of 51
	Data I	Package: Page of	Date
6.1.1	Redu	ndant Components (continued)	
	[4]	REMOVE power cord, from the rear of 2-XS-261-R1	53B
			CV
	[5]	VERIFY the qualities of the points are NOT INVL. (A	Acc Crit)
	[6]	INSTALL power cord, at rear of 2-XS-261-R153B.	
			CV

NOTE

The following steps will simulate the loss of 2-XS-261-R154B, Data Acquisition Switch B, Computer Room [C3/708].

- [7] **ACTIVATE** a Group Display containing field inputs (i.e., Al's or DI's), on an SDS.
- [8] **VERIFY** the qualities of the points are NOT INVL.
- [9] **REMOVE** power cord, from the rear of 2-XS-261-R154B.
- [10] **VERIFY** the qualities of the points are NOT INVL. (Acc Crit)
- [11] **INSTALL** power cord, at rear of 2-XS-261-R154B.

CV

CV

NOTES

- 1) The following steps will simulate the loss of ICS A.
- 2) Only the SDS's in the Computer Room (C3/708), when performing the following steps.
- 3) The computer indicator at bottom of a SDS shows which ICS computer is primary.
 - [12] **ENSURE** the ICS is functioning in primary with backup mode and ICS A is the primary processor.

	Data	Package: Page of Da	te			
6.1.1	Redu	indant Components (continued)				
	[13] RECORD the primary processor.					
		Primary Processor:				
	[14]	PRINT the current ICS display, THEN				
		ATTACH it to this PTI.				
	[15]	ENTER FAIL to cause a system failover, on an SDS.				
	[16]	SELECT OK to activate the failover.				
		NOTE				
Allow	approx	imately one minute for SDS to become functional, after a failover.				
	[17]	VERIFY that the failover occurs; THEN				
		VERIFY the SDS window is functional again.				
	[18]	PRINT the same ICS display from step 6.1.1[14], THEN				
		ATTACH the printout to this PTI.				
	[19]	VERIFY , by comparing printouts from steps 6.1.1[14] and 6.1.1[18], the SDS windows are displaying the same information. (Acc Crit)				
	[20]	VERIFY the CPU indicator at the bottom of the SDS screen indicates the opposite CPU as recorded in step 6.1.1[13].				
	[21]	VERIFY that the system status is now primary with no backup.				

NOTE

Allow 2-5 minutes.

[22] **VERIFY** that the system status is now primary with backup.

Date _____

6.1.1 Redundant Components (continued)

NOTES

- 1) The following steps will simulate the loss of ICS B.
- 2) Only the SDS's in the Computer Room (C3/708), when performing the following steps.
- 3) The computer indicator at bottom of a SDS shows which ICS computer is primary.
 - [23] **ENSURE** the ICS system is functioning in primary with backup mode and ICS B is the primary processor.
 - [24] **RECORD** the primary processor.

Primary Processor: _____

[25] **PRINT** the current ICS display, **THEN**

ATTACH it to this PTI.

- [26] **ENTER** FAIL to cause a system failover, on an SDS.
- [27] **SELECT** OK to activate the failover.

NOTE

Allow approximately one minute for SDS to become functional, after a failover.

[28] **VERIFY** the failover occurs; **THEN**

VERIFY the SDS window is functional again.

[29] **PRINT** the same ICS display from step 6.1.1[25], **THEN**

ATTACH the printout to this PTI.

- [30] **VERIFY**, by comparing printouts from steps 6.1.1[25] and 6.1.1[29], the SDS windows are displaying the same information as before the failover. (**Acc Crit**)
- [31] **VERIFY** that the CPU indicator at the bottom of the SDS screen indicates the opposite CPU as recorded in step 6.1.1[24].

[32] **VERIFY** that the system status is now primary with no backup.

Date _____

6.1.1 Redundant Components (continued)

	NOTE
Allow 2-5 minutes.	

[33] **VERIFY** that the system status is now primary with backup.

Date _____

6.1.2 Plant Engineering Data System (PEDS) Interface

[1] **VERIFY** step 4.3[2] is COMPLETE.

NOTE

Computer Room [C3/708] SDS's can be used to perform the following steps.

- [2] **PERFORM** the following steps, to test the PEDS data link to the ICS:
 - A. **ENTER**, @COMM:KILLPMS, at a VMS prompt "\$", on the PEDS VT terminal. (This will stop the currently executing PEDS client tasks.)

NOTE

Allow approximately 5 minutes for the system to initialize.

- B. **ENTER** PMS, at a PEDS VT terminal. (This will initialize the PEDS data link with the ICS).
- C. **VERIFY** ICS PEDLINK communication status flag PEDSLINK on ICS indicates UP.
- D. **REVIEW** a sample of ICS point values on the PEDS, **THEN**

CONFIRM the sample points are being transferred.

E. **DISCONNECT** cable E1523, from 2-CPU-261-R152C, PEDS computer, Computer Room [C3/708].

CV

NOTE

Allow approximately 10 seconds, for status flag indication to update.

F. **VERIFY** ICS PEDSLINK communication status flag indicates DOWN, and ICS points on PEDS system indicates unreliable data.

 Data Package: Page ____ of ____
 Date ______

 6.1.2 Plant Engineering Data System (PEDS) Interface (continued)
 G. CONNECT cable E1523 to 2-CPU-261-R152C, PEDS computer, Computer Room [C3/708].

 Gouver and the computer of the computer computer results and the computer results and the computer results and the computer.
 Image: Computer results and the computer results and the computer.

 Image: Note and the computer results and the computer results and the computer.
 Image: Computer results and the computer.

 Image: Note and the computer results and the computer results and the computer.
 Image: Computer results and the computer.

associated point on the ICS. (Acc Crit)

Date _____

6.1.3 HMI Devices and Printers

[1] **VERIFY** step 4.3[3] is COMPLETE.

NOTES

- 1) The purpose of the following test is to verify that HMI devices and printers are installed and functional.
- 2) A HMI and printer can be determined functional by going through several functions available under the ICS menus. Log, reports, print and graphics are some examples.
 - [2] **PERFORM** the following steps to test the HMI devices:
 - A. Use the following table as a guide,

VERIFY all ICS HMI devices are functional by activating several ICS functions on each HMI:

HMI UNID	HMI LOCATION	INITIALS
2-MON-261-3A	2-M-19A (MCR BARGE)	
2-MON-261-3B	2-M-19A (MCR BARGE)	
2-MON-261-4A	2-M-16 (MCR BARGE)	
2-MON-261-4B	2-M-16 (MCR BARGE)	
2-MON-261-8A	2-M-19B (MCR BARGE)	
2-MON-261-8B	2-M-19B (MCR BARGE)	
2-MON-261-9	MCR EL 755	
2-MON-261-10	Computer Room [C3/708]	
2-MON-261-15	2-M-14 (MCR BARGE)	
2-MON-261-153	Computer Room [C3/708]	
2-MON-261-154	Computer Room [C3/708]	

Date _____

6.1.3 HMI Devices and Printers (continued)

B. Use the following table as a guide,

VERIFY all printers can function in their final configuration:

PRINTER UNID	PRINTER LOCATION	INITIALS
2-PLOT-261-10	Computer Room [C3/708]	
2-PLOT-261-16	MCR EL 755	

[3] **VERIFY** all HMI Devices and Printers, listed steps 6.1.3[2]A, 6.1.3[2]B, are functional. (Acc Crit)

Date _____

6.1.4 ICS Security

[1] **VERIFY** step 4.3[4] is COMPLETE.

NOTE

The following test will evaluate the ICS security features. This test will demonstrate, only authorized users, at authorized locations, can make system changes.

[2] **PERFORM** the following steps to test the HMI devices:

NOTE

2-MON-261-3A, 2-MON-261-3B, 2-MON-261-4A, 2-MON-261-4B, 2-MON-261-8A, 2-MON-261-8B and 2-MON-261-15 are located in the Horseshoe area of the U2 MCR C12/755.

A. **VERIFY** that only the SDS terminals in the Horseshoe area of the main control room (MCR-BOP, MCR-NSSS) have access to the following functions: Substitute Value, Temporary Alarm Limits, Alarm Acknowledge, and NSSS Message Acknowledge. (**Acc Crit**)

NOTE

2-MON-261-10, 2-MON-261-153 and 2-MON-261-154 are located in the Computer Room, [C3/708].

- B. **VERIFY** that the Computer Room SDS terminals have access to the ICS administration functions only if the user is logged in as a "super user".
- C. **VERIFY** that all other SDS terminals cannot access the ICS system administration functions. (**Acc Crit**)

Date _____

6.2 ICS Input / Output Point Test (ICSIOPT)

NOTES

- This test will simulate the input or output, at the ICS terminal strips. The purpose of this test is to demonstrate proper functionality of the data acquisition hardware, including the prefabricated adapter cables and that the ICS properly identifies, processes and displays them. A sample of inputs and outputs (analog, digital, sequence of events and pulse) are tested.
- 2) Subsections within this section can be performed in any order at the discretion of the Test Director.

6.2.1 Analog and Digital Inputs

[1] **VERIFY** step 4.3[5] is COMPLETE.

Date _____

6.2.1 Analog and Digital Inputs (continued)

NOTE

The following step avoids generating nuisance alarms in the control room during the performance of this test.

[2]	DELETE the	following	Digital	Output	points,	from	processing:
-----	------------	-----------	---------	--------	---------	------	-------------

COMPUTER POINT	DESCRIPTION	INITIALS	CV
Y9000C	PLANT COMPUTER GENERATED ALARMS		
Y9001C	RCP STATOR/MTR THRUST BRG TEMP HI		
Y9002C	ICS COMPUTER TROUBLE		
Y9004C	RC APPROACCHING SAT TEMP		
Y9005C	STAT COOLING WATER TEMP ANN MCR		
Y9006C	CONDENSER VACUUM LO		
Y9007C	GEN PRIMARY/SECONDAR RLY FAIL		

NOTE

Detail instructions for Analog, Digital and Sequence of Events Points are explained in Data Sheets 1, 2, and 3 respectively.

- [3] **PERFORM** the Analog, Digital and Sequence of Events Input Point Verification Data Sheets.
- [4] **VERIFY** the Analog, Digital and Sequence of Events points tested are within the values specified in the datasheets, **THEN**

ATTACH the applicable data sheets to this PTI. (Acc Crit)

Date _____

6.2.1 Analog and Digital Inputs (continued)

[5] WHEN step 6.2.1[4] is complete, THEN

RETURN the following Digital Output points to processing:

COMPUTER POINT	DESCRIPTION	INITIALS	CV
Y9000C	PLANT COMPUTER GENERATED ALARMS		
Y9001C	RCP STATOR/MTR THRUST BRG TEMP HI		
Y9002C	ICS COMPUTER TROUBLE		
Y9004C	RC APPROACCHING SAT TEMP		
Y9005C	STAT COOLING WATER TEMP ANN MCR		
Y9006C	CONDENSER VACUUM LO		
Y9007C	GEN PRIMARY/SECONDAR RLY FAIL		

Date _____

6.2.2 Pulse Points

[1] **VERIFY** step 4.3[5] is COMPLETE.

NOTE

Detailed instructions for Pulse Inputs are explained in Datasheet 4.

- [2] **PERFORM** the Pulse Point Verification Data Sheets.
- [3] **VERIFY** the Pulse Points tested are within the values specified in the datasheets, **THEN**

ATTACH the applicable data sheets to this PTI. (Acc Crit)

Date _____

6.2.3 Analog and Digital Outputs

[1] **VERIFY** step 4.3[5] is COMPLETE.

NOTE

Detailed instructions for Digital and Analog outputs are explained in Datasheets 5 and 6 respectively.

- [2] **PERFORM** the Analog and Digital Outputs Verification Data Sheets.
- [3] **VERIFY** Analog and Digital Output points tested are within the values specified in the datasheets, **THEN**

ATTACH the applicable data sheets to this PTI. (Acc Crit)

Date _____

6.3 Digital Outputs To Ronan Test

[1] **VERIFY** step 4.3[6] is COMPLETE.

NOTE

This test verifies the Ronan Annunciator windows driven by ICS digital outputs.

[2] **RECORD** the status of the ICS Outputs that drive RONAN alarm windows:

ICS PID	ALARM FUNCTION	RONAN LIGHTBOX	RONAN WINDOW	STATUS	CHANGES STATE	INITIALS
Y9000C	Plant Computer Generated Alarms	2-XA-55-4B	83D			
Y9001C	RCP STATOR/MTR THRUST BRG TEMP HI	2-XA-55-5B	100A			
Y9002C	ICS COMPUTER TROUBLE	2-XA-55-6D	136F			
Y9004C	RC APPROACHING SAT TEMP	2-XA-55-5A	91C			
Y9005C	STAT COOLING WATER TEMP ANN- MCR	2-XA-55-1A	1C			
Y9006C	CONDENSER VACUUM LOW	2-XA-55-3A	46C			
Y9007C	GEN PRIMARY/ SECONDAR RLY FAIL	2-XA-55-1A	4A			

Date _____

6.3 Digital Outputs To Ronan Test (continued)

NOTES

- 1) Detailed instructions for simulating a Digital Output are explained in Datasheet 5.
- 2) Entering GD 83DALARM, on a SDS station, will show the points making up 83D Ronan alarm contact output.
- 3) Substitute Value is a value that is inserted for a point that causes a BAD quality and that point will not process until it is restored to processing.
 - [3] **CHANGE** an ICS parameter for each RONAN alarm in step 6.3[2], **THEN**

VERIFY a change of state (digital output is functional), **THEN**

RECORD the change of state in step 6.3[2]. (Acc Crit)

- [4] **ENSURE**, multiple alarm point, Y9000C will re-flash when each of the alarms is activated.
- [5] **SIMULATE** a change of state for ICS point Y9002C, **THEN**

VERIFY 2-XA-55-6D, window 136F ALARMS. (Acc Crit)

[6] **RETURN** point Y9002C to its normal state, **THEN**

VERIFY 2-XA-55-6D, window 136F RETURNS TO NORMAL. (Acc Crit)

[7] **IF** the Substitute Value function was used in steps 6.3[3], 6.3[4] or 6.3[5], **THEN**

RESTORE all ICS points to normal processing.

 CV

Date _____

7.0 POST PERFORMANCE ACTIVITY

[1] **VERIFY** that Post-test calibration of the M&TE used to record quantitative acceptance criteria has been satisfactorily performed, **AND**

RECORD the results on Measuring and Test Equipment (M&TE) Log.

[2] **NOTIFY** the Unit 2 US/SRO of the test completion and system alignment.

8.0 RECORDS

A. QA Records

Complete Test Package.

B. Non-QA Records

None

Appendix A (Page 1 of 1)

TEST PROCEDURES/INSTRUCTIONS REFERENCE REVIEW

NOTES

1) Additional copies of this table may be made as necessary.

2) Initial and date indicates review has been completed for impact

PROCEDURE/ INSTRUCTION	REVISION/CHANGES	IMPACT Yes/No	INITIAL AND DATE. (N/A for no change)
SMP-4.0			
SMP-8.0			
FSAR-Amendment 99 Table 14.2-1; Sheet 54 of 89			
2-TSD-261-1			

Appendix B (Page 1 of 1)

TEMPORARY CONDITION LOG

Data Package: Page ____ of ____

Date _____

These steps will be N/A'd if no temporary condition existed. Additional copies of this table may be made as necessary.

ITEM	TEMPORARY CONDITION		PERFORMED	RETU	RNED TO NORMAL
No.	DESCRIPTION	Step No.	Performed By/Date CV By/Date	Step No.	Returned By/Date CV By/Date
				-	
				-	
				-	
				-	
				-	
				-	
				-	
				-	
				-	

Data Sheet 1 (Page 1 of 3)

Analog Input Verification

1.0 Description

The data sheets, in this section, contain a table for each AI point. Each point is identified with point specific information, detailing point scaling ranges and termination information, such as chassis, card and channel.

The information for each point includes a table for a 5 point check, spanning the reasonable limit range of the point. Expected values are listed for the input voltages, with blanks for recording the observed engineering unit values.

For thermocouple cards, the special thermocouple cable will be used with a thermocouple termination module and a secondary voltage source. The secondary voltage source will be configured to inject a voltage to produce a 32 DEGF reference temperature. As each thermocouple card is tested, verify that the reference temperature on the card is reading approximately 32 [31- 33] DEGF.

2.0 Sample Instructions

2.1 Analog Input (AI) Card

- [1] **RUN** utility SUDECPLCZ, on the ICS primary system.
- [2] **CONNECT** a voltage source to the applicable terminals, on the termination module, for the applicable card and channel, for each test point.

NOTE

Group Display (GD) or SHOW30 may also be used, for the step below.

[3] **ACTIVATE** a group display, on a SDS using the following command on the SDS, for each test point:

HW !XXXXXX* where XXXXXX is the card hardware channel address (e.g. HW !2A0000*)

Data Sheet 1 (Page 2 of 3)

Analog Input Verification

2.1 Analog Input (AI) Card (continued)

NOTES

- If needed, the Single Value Display (SVD) turn on code or other similar means (at the Test Director's discretion) may be utilized to observe the point value to more decimal places than the GD or Hardware (HW) turn on codes displays. This can be done on a point by point basis as needed.
- 2) Input voltage values are indicated in the AI datasheet, for the step below.
 - [4] **RECORD** the displayed values, from the SDS, in the appropriate location, on the AI data sheets.

Data Sheet 1 (Page 3 of 3)

Analog Input Verification

2.2 Sample AI Data Sheet

NOTES

1) Each analog input card will be tested.

2) Refer to 2-47A615-0 for sample point information.

3) A minimum of two points per card will be tested.

Mux 2A00 Card 00 (2A0000*) Card Type: 8707/00-003

Point ID:SPAI0001 Point Description:SPARE Reasonable Limit Range Engineering Unit Range	Point Type-Sub AI CHANNEL e = 0. to e = 32. to	btype:AI-TYPT Channel: 00 Address: 2A000000 10. MV 416. DEGF
<pre>% Range Voltage Input</pre>	EU Value Expected	+/- EU Value Observed
0. 0. MV 25. 2. MV 50. 5. MV 75. 7. MV 100. 10. MV	31.99 DEGF 120.52 DEGF 239.48 DEGF 312.64 DEGF 416.01 DEGF	2.00 2.00 2.00 2.00 2.00 2.00
Point ID:SPAI0002 Point Description:SPARE Reasonable Limit Range Engineering Unit Range % Range Voltage Input	Point Type-Sub AI CHANNEL e = 0. to e = 32. to EU Value Expected	btype:AI-TYPT Channel: 01 Address: 2A000001 10. MV 416. DEGF +/- EU Value Observed
0. 0. MV 25. 2. MV 50. 5. MV 75. 7. MV 100. 10. MV	31.99 DEGF 120.52 DEGF 239.48 DEGF 312.64 DEGF 416.01 DEGF	2.00 2.00 2.00 2.00 2.00 2.00

Data Sheet 2 (Page 1 of 2)

Digital Input Verification

1.0 Description

The data sheets, in this section, contain a table for each DI card. Each point is identified with point specific information, detailing the point's set and reset messages and termination information, such as chassis, card, and channel.

2.0 Sample Instructions

2.1 Digital Input (DI) Card

NOTES

- 1) If a voltage source is not already connected, follow the step below.
- 2) 48V points already have a voltage source wired to supply sense line voltage.
 - [1] **CONNECT** a voltage source, as applicable, to the applicable terminals, on the termination module, for the applicable card and channel, for each test point.
 - [2] **ACTIVATE** a group display, on a SDS, to display all the points on the card, using the following command on the SDS, for each card:

SHOW30 !XXXXXX* where XXXXXX is the card hardware channel address (e.g. SHOW30 !2A2000*)

[3] **OBSERVE** the state of the point with the contacts open, on the SDS, **THEN**

VERIFY that the correct state is displayed, for an open contact, for each test DI point on the card.

[4] **SHORT** the terminals, for the point, **OR**

CONNECT a voltage source to the applicable terminals, for each test point individually, **THEN**

OBSERVE the state of the point, with the contacts shorted, on the SDS, **THEN**

VERIFY that the correct state is displayed, for closed contact, for each test DI point, on the card.

Data Sheet 2 (Page 2 of 2) Digital Input Verification

2.2 Sample DI Data Sheet

NOTES

- 1) Each digital input card will be tested.
- 2) Refer to 2-47A615-0 for sample point information.
- 3) A minimum of two points per card will be tested.

Mux 2A81 Point ID	Chassis 1	Card 04 (2A) Reset Message	8104*) Card Set Message	Type: 871 Channel	0/00-003 Invert) OK		
 SPDT0286		RESET	 SET	22810400	 N		(48	VDC)
SPDI0200			CET.	27810401	N		(18	VDC)
SPDI0207		DECET	CET CET	27810401	N		(40	VDC)
SPDI0200		RESET	SET	22810402	N		(48	VDC)
VD2076		DWD OFF	DWD ON	27810403	N		(40	VDC)
XD2070 XD2077		NOT RIN	RUNNING	22810404	N		(40	VDC)
SPDT0290		RESET	SET.	22810405	N		(40	VDC)
SPD10290			SET SET	27810400	N		(18	VDC)
VD2085		DWD OFF	DWD ON	27810407	N		(40	VDC)
XD2005		STODDED	PUNNTNC	27810400	N		(40	VDC)
AD2000		DECET	CONNING	2A010409	IN NT		(40	VDC)
SPDIUZ9Z		NESEI DECET	SEI CET	2A010410 27010411	IN NT		(40	VDC)
3FD10293		RESEI	DEL ON	2A010411	IN NT		(40	VDC)
XD2078		PWR OFF	PWR ON	2A810412	IN NT		(48	VDC)
XD2UZ/		NUT KUN	RUNNING	2A810413	IN NT		(48	VDC)
XD2079		PWR OFF	PWR ON	2A810414	N		(48	VDC)
XDZU8U		NOT RUN	RUNNING	2A810415	N		(48	VDC)
SPD10294		RESET	SET NOT D I	2A810416	N		(48	VDC)
XD2003		PULLT-L	NOT P-L	2A81041/	N		(48	VDC)
SPDI0295		RESET	SET	2A810418	Ν		(48	VDC)
SPDI0296		RESET	SET	2A810419	Ν		(48	VDC)
HD2036		NOT A A	A AUTO	2A810420	Ν		(48	VDC)
SPDI0297		RESET	SET	2A810421	Ν		(48	VDC)
SPDI0298		RESET	SET	2A810422	Ν		(48	VDC)

Data Sheet 3 (Page 1 of 2)

Sequence of Events Input Verification

1.0 Description

The data sheets, in this section, contain a table for each DS (SOE) card. Each point is identified with point specific information, detailing the point's set and reset messages and termination information, such as chassis, card, and channel.

2.0 Sample Instructions

2.1 Sequence of Events (SOE) Card

NOTES

- 1) If a voltage source is not already connected, follow the step below.
- 2) 48V points already have a voltage source wired to supply sense line voltage.
 - [1] **CONNECT** a voltage source as applicable, to the applicable terminals, on the termination module, for the applicable card and channel, for each test point.
 - [2] **ACTIVATE** a group display, on a SDS, to display all the points on the card, using the following command, on the SDS, for each card:

SHOW30 !XXXXXX* where XXXXXX is the card hardware channel address (e.g. SHOW30 !2A2000*)

[3] **OBSERVE** the state of the point, with the contacts open, on the SDS, **THEN**

VERIFY that the correct state is displayed, for an open contact, for each test SOE point on the card.

[4] **SHORT** the terminals, for the point, **OR**

CONNECT a voltage source to the applicable terminals, for each test point individually, **THEN**

OBSERVE the state of the point, with the contacts shorted, on the SDS, **THEN**

VERIFY that the correct state is displayed, for closed contact, for each test DI point, on the card.

Data Sheet 3 (Page 2 of 2)

Sequence of Events Input

2.2 Sample SOE Data Sheet

NOTES

- 1) Each sequence of events card will be tested.
- 2) Refer to 2-47A615-0 for sample point information.
- 3) A minimum of two points per card will be tested.

Mux 2A22 Point ID	Chassis 2	Card 00 (2A22 Reset Message	200*) Card T Set Message	ype: 8710, Channel	/00-003 Invert	OK		
SPDS0001		RESET	SET	2A220000	N		(48	VDC)
Y0038D		NT SEL	SELECT	2A220001	Ν		(48	VDC)
Y0039D		NT SEL	SELECT	2A220002	Ν		(48	VDC)
SPDS0002		RESET	SET	2A220003	Ν		(48	VDC)
Y0100D		OPEN	CLOSED	2A220004	Ν		(48	VDC)
Y0101D		OPEN	CLOSED	2A220005	Ν		(48	VDC)
SPDS0003		RESET	SET	2A220006	Ν		(48	VDC)
Y0600D		OPEN	CLOSED	2A220007	Ν		(48	VDC)
Y0601D		OPEN	CLOSED	2A220008	Ν		(48	VDC)
Y1000D		NOT TR	TRIP	2A220009	Ν		(48	VDC)
Y1001D		NOT TR	TRIP	2A220010	N		(48	VDC)
Y2435D		OPEN	CLOSED	2A220011	N		(48	VDC)
Y2436D		OPEN	CLOSED	2A220012	Ν		(48	VDC)
SPDS0004		RESET	SET	2A220013	N		(48	VDC)
SPDS0005		RESET	SET	2A220014	N		(48	VDC)
SPDS0006		RESET	SET	2A220015	N		(48	VDC)
Y0004D		NOT TR	TRIP	2A220016	N		(48	VDC)
Y0005D		NOT TR	TRIP	2A220017	N		(48	VDC)
Y0006D		OPEN	CLOSED	2A220018	Ν		(48	VDC)
Y0007D		OPEN	CLOSED	2A220019	N		(48	VDC)
Y0026D		OPEN	CLOSED	2A220020	N		(48	VDC)
Y0027D		OPEN	CLOSED	2A220021	Ν		(48	VDC)
Y0335D		OPEN	CLOSED	2A220022	Ν		(48	VDC)
Y0336D		NOT OP	OPEN	2A220023	Ν		(48	VDC)

Data Sheet 4 (Page 1 of 2)

Pulse Point Verification

1.0 Description

The data sheets, in this section, contain a table for each PU card. Each point is identified with point specific information, detailing termination information, such as chassis, card, and channel.

2.0 Sample Instructions

2.1 Pulse Point (PU) Card

NOTE

GD or SHOW30 commands may also be used at the Test Director's discretion

[1] **ACTIVATE** a group display on a SDS, using the following command, on the SDS, for each test card:

HW !XXXXXX* where XXXXXX is the card hardware channel address (e.g. HW !2A2100*)

[2] **CONNECT** a function generator, configured to supply a 1 Hz signal to the input, **THEN**

VERIFY that the point is updating by approximately 1 each second, for each test point.

Data Sheet 4 (Page 2 of 2)

Pulse Point Verification

2.2 Sample Pulse Point Data Sheet

NOTES

1) Each pulse card will be tested.

- 2) Refer to 2-47A615-0 for sample point information.
- 3) A minimum of two points per card will be tested.

Mux 2A21 Point ID	Chassis 1	Card Descr	00 ip	(2A tion	42100	0*)	Card	Type:	8714/	'00-000 Channel	OK
C0001D		CTRL	A	STEP	IN P	PULSE	(U004	9)		2A210000	
C0002D		CTRL	А	STEP	OUT	PULSE	(U00	(49)		2A210001	
C0003D		CTRL	В	STEP	IN !	PULSE	(U005	50)		2A210002	
C0004D		CTRL	В	STEP	OUT	PULSE	(U00)50)		2A210003	
C0005D		CTRL	С	STEP	IN J	PULSE	(U005	51)		2A210004	
C0006D		CTRL	С	STEP	OUT	PULSE	(U00)51)		2A210005	
C0007D		CTRL	D	STEP	IN J	PULSE	(U005	52)		2A210006	
C0008D		CTRL	D	STEP	OUT	PULSE	(U00)52)		2A210007	

Data Sheet 5 (Page 1 of 3)

Digital Output Verification

1.0 Description

The data sheets, in this section, contain a table for each Digital Output (DO) card. Each point is identified with point specific information, detailing the point's set and reset messages and termination information, such as chassis, card, and channel.

2.0 Sample Instructions

2.1 Digital Output (DO) Card

NOTE

GD or SHOW30 commands may also be used, at the Test Director's discretion, for the steps below.

- [1] **STOP** the DAOUTZ program, on the ICS primary system.
- [2] **ACTIVATE** a group display, on a SDS, for each test point, using the following command on the SDS:

HW !XXXXXX* where XXXXXX is the card hardware channel address (e.g. HW !1D0001*)

[3] **INPUT** the SUSETOUTZ utility, to load a value of 0 to the output point, **THEN**

VERIFY the value changes, on the SDS, for each test point.

NOTES

- 1) The 8715/00 relay output cards also have LED's along the front edge that indicate the channel states. Those can also be used to observe the output, change of state.
- 2) 0 V is present at the output terminals or contacts are open for relay output cards.
 - [4] **OBSERVE** the state of the point, with the output set to 0, using a voltmeter, **THEN**

VERIFY, at the terminals, the output is in the OPEN condition.

Data Sheet 5 (Page 2 of 3)

Digital Output Verification

Data Package: Page _____ of _____

Date _____

2.1 Digital Output (DO) Card (continued)

[5] **USE** the SUSETOUTZ utility to load a value of 1, to the output point, **THEN**

VERIFY the value changes, on the SDS.

[6] **OBSERVE** the state of the point, with the output set to 1, **THEN**

VERIFY, at the terminals, for the test point, that the output is in the CLOSED condition, for each DO point on the card, under test. (i.e. voltage is present on the output terminals or contacts are closed for relay output cards).

[7] **USE** the SUSETOUTZ utility, to reload a value of 0 to the output point, for each test point, **THEN**

VERIFY the value changes, on the SDS.

[8] **USE** a voltmeter, **THEN**

OBSERVE the state of the point, with the output set to 0, for each DO point, on the card being tested, **THEN**

VERIFY, at the terminals, the test point output is in the OPEN condition (i.e. 0 V is present at the output terminals or contacts are open for relay output cards).

Data Sheet 5 (Page 3 of 3) Digital Output Verification

2.2 Sample Digital Output Data Sheet

NOTES

- 1) Each digital output card will be tested.
- 2) Refer to 2-47A615-0 for sample point information.
- 3) A minimum of two points per card will be tested.

Mux 2A21 Point ID	Chassis 1	Card 06 (2A22 Reset Message	106*) Card Ty Set Message	ype: 8715/00-001 Channel OK
Y9000C		NORMAL	ALARM	2A210600
Y9001C		NORMAL	ALARM	2A210601
Y9004C		NORMAL	ALARM	2A210602
Y9005C		NORMAL	ALARM	2A210603
Y9006C		NORMAL	LOW	2A210604

Data Sheet 6 (Page 1 of 2)

Analog Output Verification

1.0 Description

The data sheets, in this section, contain a table for each AO point. Each point is identified with point specific information, detailing termination information, such as chassis, card, and channel.

2.0 Sample Instructions

2.1 Analog Output (AO) Card

NOTE

GD or SHOW30 commands may also be used, at the performer's discretion, for the steps below.

- [1] **STOP** the DASTRIPZ program, on the ICS primary system.
- [2] **ACTIVATE** a group display on a SDS, for each test point, using the following command, on the SDS:

```
HW !XXXXXX* where XXXXXX is the card hardware channel address (e.g. HW !2A2103*)
```

- [3] **USE** the SUSETOUT2Z utility to set the point value to the values listed in the table of injected counts, for each point.
- [4] **RECORD** the output voltage, using a voltmeter, for each injected signal, for each AO test point, on the card.
- [5] **VERIFY** the voltage is within the listed tolerances of the expected output voltage, for the count value.

Data Sheet 6 (Page 2 of 2) Analog Output

2.2 Sample Analog Output Data Sheet

NOTES

1) Each analog output card will be tested.

2) Refer to 2-47A615-0 for sample point information.

3) A minimum of two points per card will be tested.

Mux 2A21 Chassis 1 Card 03 (2A2103*) Card Type: 8704/00-000

Point ID:AN000A Point Type-Subtype:AO-AOUT Channel: 2A210300

Point Description:COMPUTER TREND 1 (RED) Address: 2A210300

Counts Injected	Output Voltage Expected	+/-	Output Voltage Measured
0	0.00 V	.02 V	
16383	2.50 V	.02 V	
32767	5.00 V	.02 V	
49151	7.50 V	.02 V	
65535	10.00 V	.02 V	