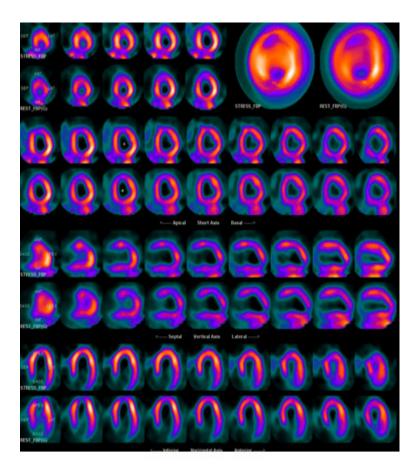
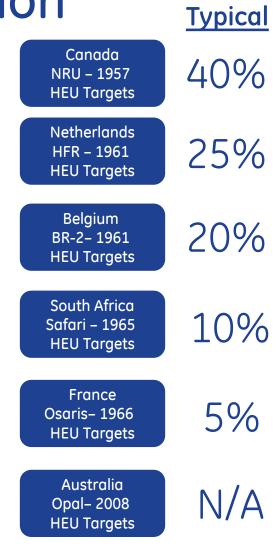
Moly-99 Project Update for the US NRC August 2011



GE Hitachi Nuclear Energy

What is molybdenum-99?

- Used in approximately 85% of all nuclear medicine procedures ...brain, heart, thyroid, lungs, liver, kidneys, skeleton, blood and tumors.
- Rapid uptake by target organ...is bound to another drug that transports it to the organ of interest
- Decay results in relatively low energy gamma...easily detected providing accurate imaging
- Short half-life results ...allows for quick scans and lower patient dose, also lends BWRs to being ideal for activation



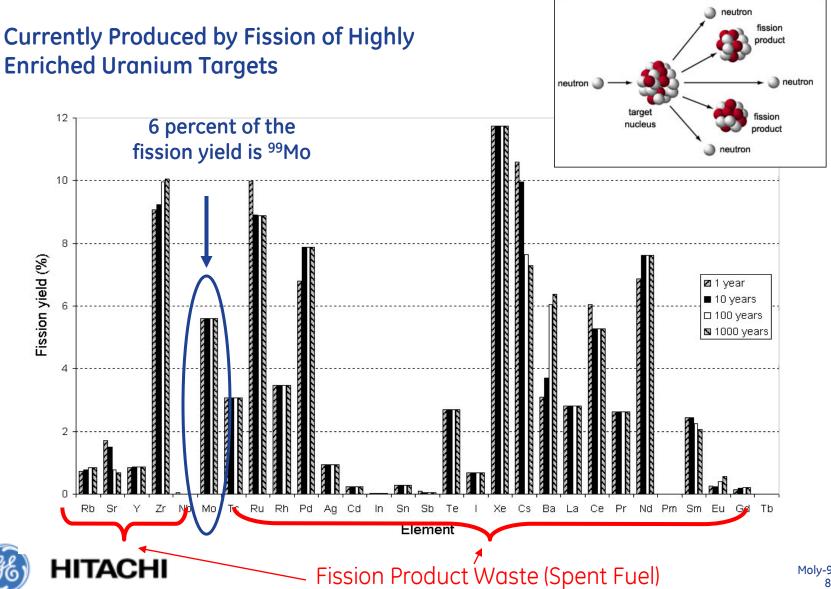
Myocardial perfusion SPECT – stress/rest Myocardial perfusion SPECT- stress/rest scan in a patient with dilated cardiomyopathy.

Current isotope production

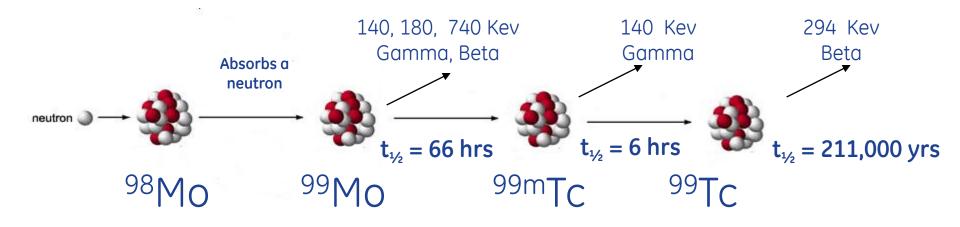
- Aging & obsolete production facilities...54 year old NRU reactor and HFR for ⁹⁹Mo experienced extended shutdowns.
- Isotopes from nuclear fuel...⁹⁹Mo is obtained mostly from HEU targets
- Shortage resulting in high visibility in Washington...DOE awards grants to solve shortage crisis with reliable, domestic supply of ⁹⁹Mo w/o HEU use and NRC working group devoted to project

Molybdenum-99 to technetium generators

Molybdenum-99 (66h) β decay Technetium-99m (6h)


Generator Elution

Patient

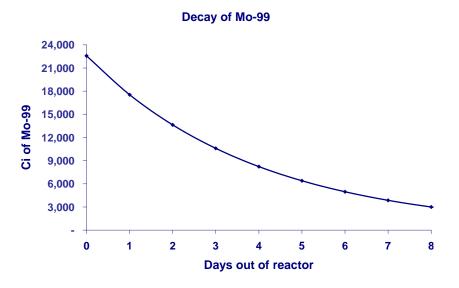


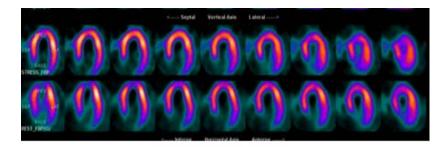
How is ⁹⁹Mo currently produced?

GEH method to produce ⁹⁹Mo

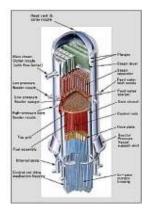
Our process uses neutron capture to produce the parent of ^{99m}Tc from ⁹⁸Mo

42 Protons	42 Protons	43 Protons	43 Protons
56 Neutrons	57 Neutrons	56 Neutrons	56 Neutrons
98 = Atomic Wt	99 = Atomic Wt	99 = Atomic Wt	99 = Atomic Wt


GEH's process advantages


	Traditional Method	GEH Method
Target Composition/National Security	High Enriched Uranium	Natural Molybdenum
Waste/Environment	High Level Radioactive Waste	Low Level Radioactive, not Hazardous (RCRA) waste
Chemistry	Complicated separations of Mo from Uranium	Simpler process, no uranium complications
Supply Reliability	Unreliable supply	BWRs (>90% CF) produces reliable supply
Cost	Requires new build	Leverages current infrastructure

GEH's ⁹⁹Mo production goal


- GEH Goal...Produce up to 3,000 6-day Ci of ⁹⁹Mo/week which equals ~50% of domestic demand
- What is a 6-day Curie?...Amount of curies due to ⁹⁹Mo six days after the Tc generator is on manufacturer's shipping dock
- Short Half Life...Allowing two days for transport and generator fabrication, approximately 23,000 Ci of ⁹⁹Mo is required upon removal from reactor
- BWR Activation...Epithermal neutrons are responsible for majority of activation.

Myocardial perfusion SPECT – stress/rest Myocardial perfusion SPECT- stress/rest scan in a patient with dilated cardiomyopathy.

Reactor (research or BWR) irradiation ⁹⁸Mo to ⁹⁹Mo

Mo Target Preparation

HITACHI

to gel Molybdenum Life Cycle

Patient Application

Mixed by pharmacist for use

Benefits of ⁹⁹Mo project

- Saves lives...Consistent supply of important medical isotope for the U.S.
- National Security...Allows White House to achieve their goal of producing molybdenum-99 without the use of HEU
- Environmentally Favorable...Generates U.S. imaging medical isotope supply without creating HLW
- Asset Utilization...Provides important medical isotope without the need for new reactors, while leveraging proven and licensed equipment

Definitions and Acronyms

- BWR Boiling Water Reactor
- CF Capacity Factor
- DOE Department of Energy
- FP Fission Products
- GEH GE Hitachi Nuclear Energy
- HFR High Flux Reactor
- HEU High Enriched Uranium
- HLW High Level Waste
- LLW Low Level Waste
- LWR Light Water Reactor
- Mo Molybdenum
- NRC Nuclear Regulatory Commission
- NRU National Research Universal
- RCRA Resource Conservation and Recovery Act
- Tc Technetium
- TRU Transuranic Elements

HITACHI