

ł

Duane Arnold Energy Center Alternate Shutdown Capability Analysis

June 1980

8007140442

Table of Contents

,

ŗ

.

Ι.	Introduction	Page I-1
II.	Conclusions	II-1
III.	Individual System Analyses	
	Reactivity Control	III-A-1
	Reactor Coolant Makeup	
	RCIC	III-B-1
	HPCI	III-C-1
	Reactor Pressure Control	III-D-1
	Reactor Decay Heat Removal & Suppression Pool Cooling	
	RHR	III-E-1
	RHR Service Water	III-F-1
	Process Monitoring	III-G-1
	Support	III-H-1
	Appendix A	
	Sample Component Analysis	App-A-1
	Appendix B	
	List of Drawings	App-B-1

I. Introduction

The purpose of this analysis is to determine vulnerability of shutdown systems to fire. The previously submitted Fire Hazard Analysis addresses this issue and concludes that safe shutdown is assured, although in the case of fire in safety system control panels located in the Control Room, early detection and suppression was postulated as essential to ensure safe shutdown capability.

For the purposes of this analysis, we have assumed the possibility of some fire damage to electrical wiring in Control Room panels and thereby considered the possibility of interference with safe shutdown systems. We have also assumed that the effects of the postulated fire will not spread beyond one control panel. Extensive detection devices and increased fire fighting capability make it very unlikely that a fire would go undetected and unsuppressed before spreading into another control panel. In the control panel affected by the fire, the nature of the damage is assumed to be the combination of fused contacts (short circuits) and severed wires (open circuits) having the most severe impact on safety systems that have control circuitry in that panel. The detection and suppression capabilities are adequate to preclude an immediate and unavoidable complete exit from the Control Room. We assume that operator personnel will remain in the Control Room and operate those systems that were not impaired by the fire, while fire suppression activities are carried out. Personnel as necessary will be dispatched to locations outside the Control Room to locally control systems whose control circuits were damaged in the Control Room panel fire. In all cases, hand operated or hydraulically activated components are assumed to be in or moved to the correct position.

The current Shutdown Outside Control Room (SOCR) procedure was reviewed and the list of systems identified was categorized according to your position <u>Safe Shutdown Capability</u> for systems generally used for Hot and Cold Shutdown of BWR's. The shutdown process envisioned entails reactor SCRAM, reactor coolant makeup with the HPCI and RCIC systems, pressure control through both automatic and manual relief valve operation, and decay heat removal and suppression pool cooling by the RHR and RHR Service Water systems. Process monitoring and power capability are required throughout the process. We have assumed that in conjunction with the fire that off-site power is not available. If off-site power were available hot shutdown and cold shutdown are simplified.

I-1

II. Conclusions

This alternate shutdown capability analysis, with its recommended changes, and the Fire Hazard Analysis demonstrate that the Duane Arnold Energy Center may be operated and controlled in a safe manner.

This analysis indicates the need for some changes or additions to procedures and some circuit modifications. These are as follows:

1. Procedures will be revised to include checklists for RCIC, HPCI, RHR, and RHR service water motor operated valve lineups and pump operation (as applicable) and instructions on how to isolate a motor control center from spurious control room inputs that are precluding a correct lineup.

2. The control circuitry for the two safety relief valves used to manually control depressurization will be rerouted outside the Control Room to insure their operability after a Control Room fire.

3. The circuitry for RHR system flow indicators and suppression pool temperature indication will be rerouted outside the Control Room to insure the reliability of their indications.

III. Individual System Analyses

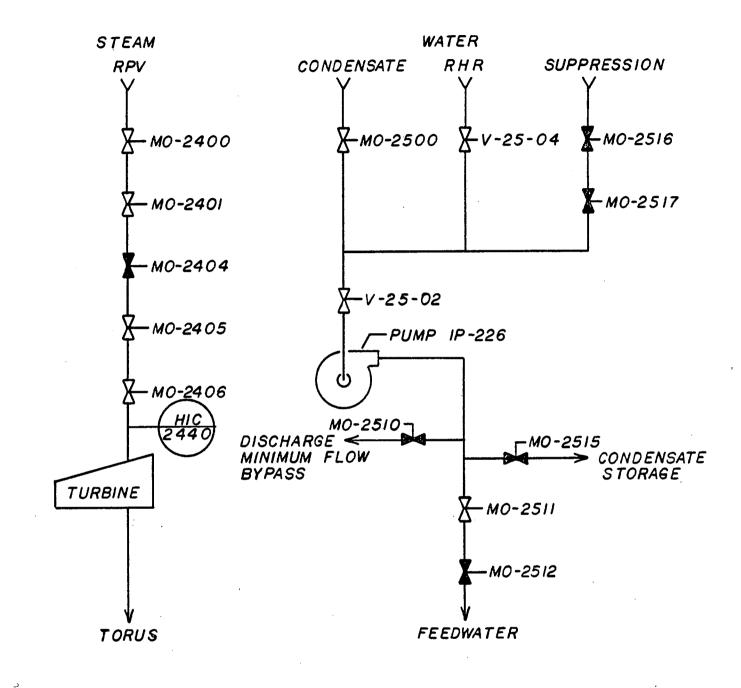
Reactivity Control

Reactor Trip Capability (SCRAM)

The reactor SCRAM system is highly diverse and the most likely result of a spurious signal caused by a fire in a control room panel would be reactor SCRAM. In the event SCRAM does not occur automatically or manually from the control room, it may be initiated from the Essential Switchgear Room and verified in the Control Rod Drive area.

Reactor Coolant Makeup

Reactor Core Isolation Cooling System (RCIC)


A diagram of the RCIC system showing those valves that affect the steam and water flow paths is included on the following page. The diagram shows the normal position of those valves during normal plant operation. Initiation of the RCIC system, either manually or automatically, requires the following valve positions to be achieved or maintained:

	Open	Remain Open	Close	Remain Closed	Notes
Steam Flow Path					
MO 2404	Х	Х			
Water Flow Path				,	
MO 2510 MO 2512	X X	x	χ*		*Should close as water flow pressure exceeds RPV pressure

Continued operation of the system requires that the steam and water flow paths remain open and that system efficiency not be degraded by flow through lateral pipe branches. The source of the water flow path must also be capable of being switched from the condensate storage tank to the suppression pool. The position of the following valves (not included in system initiation) must be maintained or achieved:

	Open	Remain Open	Close	Remain Closed	Notes
Steam Flow Path	·	·			
MO 2400 MO 2401 MO 2405 HV 2406		X X X X			
Water Flow Path					
MO 2500 MO 2516 MO 2517 MO 2510 MO 2515 MO 2511	X* X*	X X* X*	Χ*	X* X X X X	*If RCIC pump suction must switch from condensate storage tank to suppression pool.

RCIC

REFERENCE M-124 M-125

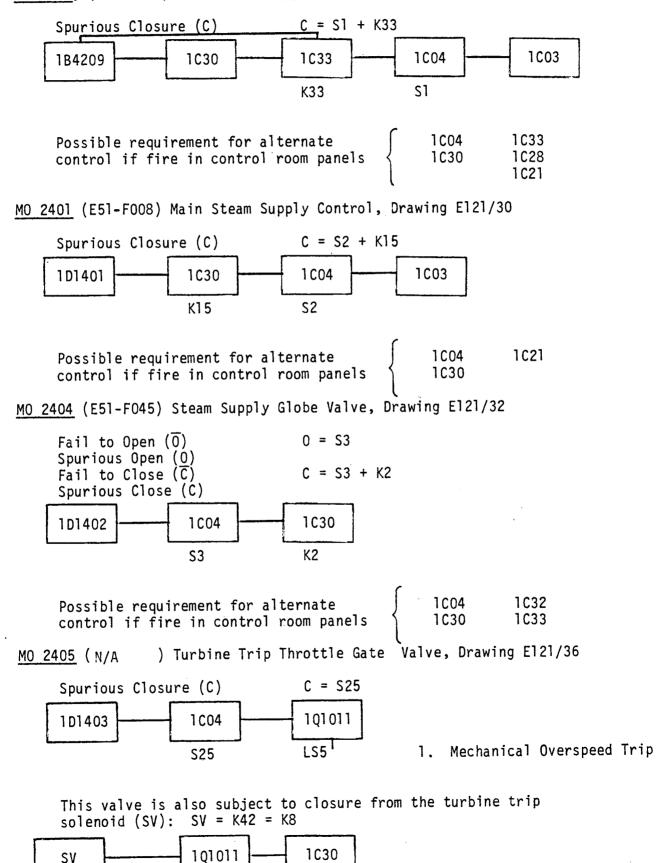
۲

£

Terminating operation of the system is accomplished by essentially reversing the changes required for system initiation. These changes are as follows:

	Open	Remain Open	Close	Remain Closed	Notes
Steam Flow Path					
MO 2404			Х	x	
Water Flow Path					
MO 2512			X	X	

All of the above mentioned valves have control circuitry in the control room that would be vulnerable to a fire in a single control panel. Also, however, each of the above mentioned valves may be controlled from a location outside of the control room, that location in the case of motor operated valves is the appropriate motor control center. The purpose of the following analysis is to determine the extent to which control capability outside the control room is necessary.


Control room circuitry for motor operated valves typically consists of OPEN and CLOSE circuits. Although both circuits may use the same hand switch in the control room, they each typically have networks of relays that spread out into different control room panels. So even though both the OPEN and CLOSE circuits may be vulnerable to a fire in the control room panel containing the hand switch, they may have networks of relays whose vulnerability to control room panel fires may be completely different. Those valves that must maintain an open or closed position are vulnerable to contrary spurious signals caused by a control room panel fire. Those valves that must change positions are vulnerable to failure to receive the necessary signal. The following list includes each above mentioned valve and the type of vulnerability for which its control circuitry must be analyzed:

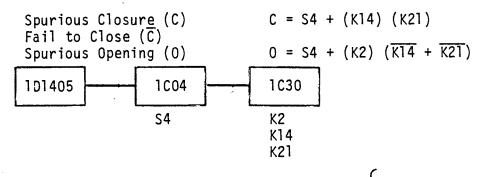
		Failur <u>e</u> to Open (O)	Spurious Closure (C)	Failure_to Close (C)	Spurious Opening (O)	Notes
Steam	n Flow S	ide				
MO MO MO	2400 2401 2404 2405 2406	X	X X X X X	X	X	
Water	r Flow S	ide				
МО	2500		Х	Х	Х	
MO	2516	Х	Х		X	
	2517	Х	Х		X	
	2510	Х		Х	X	
-	2515				Х	
	2511		X		V	
MO	2512	X	X	Х	Х	

RCIC, Control Circuit Block Diagrams

and Logic Equations

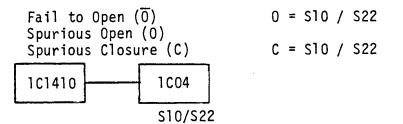
MO 2400, (E51-F007) Main Steam Supply Control, Drawing E121/29

K42 K8


Possible requirement for alternate control if fire in control room panels

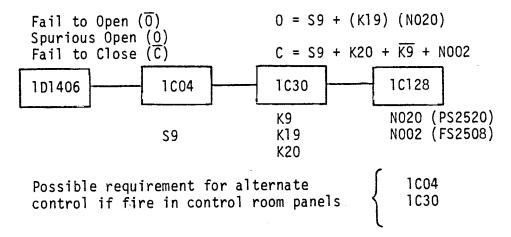
-	
1C04 1C30 1C33	1C28 1C21

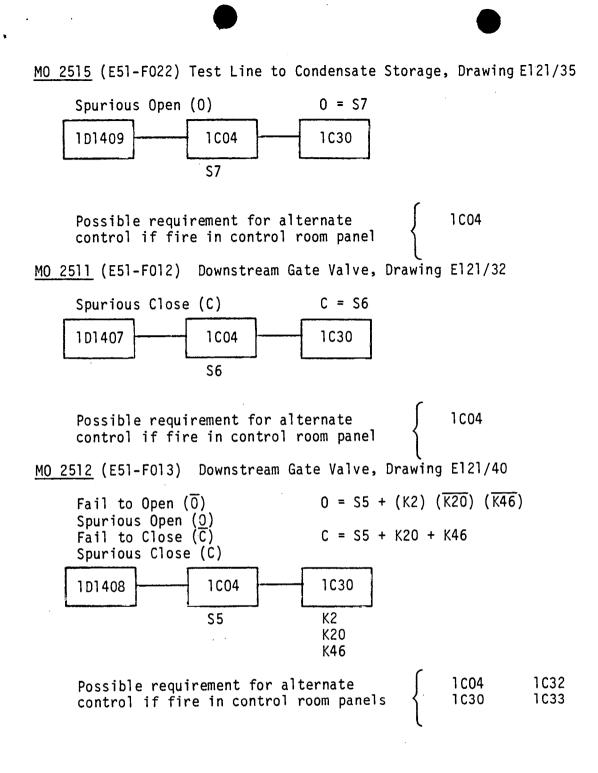
HV 2406 (N/A) Turbine Flow Control Governing Valve, Drawing APED E51-9(6)


This valve is controlled by locally produced hydraulic signals that are not vulnerable to spurious control room signals.

MO 2500 (E51-F010) Suction From Condensate Storage, Drawing E121/31

Possible requirement for alternate1C041C32control if fire in control room panels1C301C33


MO 2516/2517 (E51-F031/E51-F029) Suction from Suppression Pool, Drawing E121/33



Possible requirement for alternate control if fire in control room panel

1004

MO 2510 (E51-F019) RCIC Pump Discharge Minimum Flow Bypass, Drawing E121/34

III-B-6

RCIC, Relay Development

The following relays are those relays included in RCIC component control circuits. The input logic and input signals are shown as a Boolean logic equation. The location of each relay or contact is shown. The relays are grouped into levels. Those relays in the first level appear in the previously described control circuits. Relays in the second level appear in the supporting logic for relays in the first level, etc. The listed relays are all on drawings APED-E51-9(2) and E51-9(3).

lst Level

Relay/ <u>Contacts</u>	Loca- tion	Input Logic/Signal
E51-K2	1C30	= (E11A-K79A + E11A-K80A) (E11A-K79B + E11A-K80B)
E51-K8 E51-S17 LS2 B21-N017A	local	= S17 + K6 + K7 + (K48) (LS2) (B21-N017A) + K33 normally open, Turbine Trip closes when valve MO 2404 fully open closes on high reactor water level
E51-K9 LS15	1C30 1oca1	= Limit Switch 15 closes when valve MO 2404 not fully closed
E51-K14 LS2	1C30 1oca1	= Limit Switch 2 closes when valve MO 2517 fully open
E51-K15	1C30	= (S23) (K2) + (B21B-S5A) (B21B-K3A) via 1C21 + K12 + (N019A) (N019C) via 1C121 + K29 + (S16) (K15)
E51-S23 B21B-S5A E51-N019A E51-N019C E51-S16	local	normally open, manual isolation (HS2481) normally open, manual isolation close on low RPV steam pressure close on low RPV steam pressure normally closed, manual reset
E51-K19 E51-N002	1C30 local	= NOO2 closes on low RCIC pump discharge flow
E51-K20 E51-C002	1C30 1 <u>oca</u> 1	<pre>= C002 via lQl0ll closes when turbine trip & throttle valve fully closed</pre>
E51-K21 LS2	1C30 local	= Limit Switch 2 closes when valve MO 2516 fully open
E51-K46 LS6	1C30 local	= Limit Switch 6 closes when valve MO 2404 fully closed

2nd Level

.

.

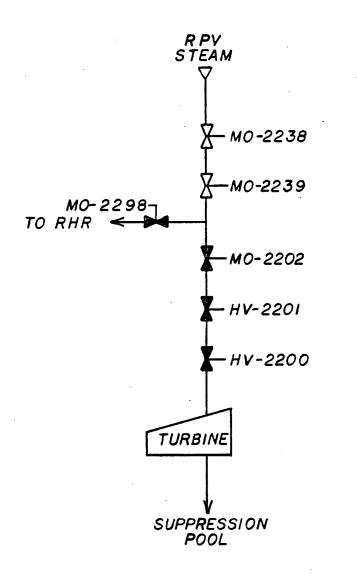
•

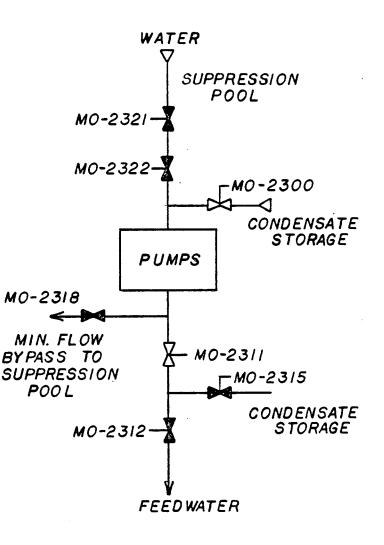
•

Relay/ <u>Contacts</u>		Input Logic/Signal
E11A-K79A B21-N031A		= B21-NO31A closes on RPV low level
E11A-K80A B21-N031C		= B21-NO31C closes on RPV low level
E11A-K79B B21-N031B		= B21-N031B closes on RPV low level
E11A-K80B B21-N031D		= B21-N031D closes on RPV low level
E51-K6 E51-N009A E51-N009B	local	= NOO9A + NOO9B via 1C128 close on high RCIC turbine exhaust pressure close on high RCIC turbine exhaust pressure
E51-K7 E51-N006		= NOO6 close on low pump suction pressure
E51-K48 B21-N017C		= B21-N017C via 1C55A closes on high RPV level
E51-K33	1033	= K39 + (B21B-S5B) (B21B-K3B) via 1C21 + K32 + (N019B) (N019C) via 1C57 + (S26) (K33)
B21B-S5B E51-N019B E51-N019C		normally open, manual isolation close on low RPV steam pressure close on low RPV steam pressure
B21B-K3A	1021	= closes on high ambient or differential temperature
E51-K12 E51-N017	1C30 1oca1	= NO17 via 1C121 closes on high steam line differential pressure
E51-K29 E51-N012A E51-N012C	local	= (NO12A) (NO12C) via 1C128 close on high turbine exhaust diaphragm pressure close on high turbine exhaust diaphragm pressure
		3rd Level
E51-K39 E51-N012B E51-N012D	-	= (NO12B) (NO12D) via 1C28 close on high turbine exhaust diaphragm pressure (PS2420B) close on high turbine exhaust diaphragm pressure (PS2420D)
B21BK3B	1021	closes on high ambient or differential pressure
E51-K32 E51-N018 E51-S26	1C33 1oca1 1C04	= NO18 via 1C57 closes on high steam line differential pressure normally closed, reset

Reactor Coolant Makeup

High Pressure Coolant Injection System (HPCI)


A diagram of the HPCI system showing those valves that affect the steam and water flow paths is included on the following page. The diagram shows the normal position of those valves during normal plant operation. Initiation of the HPCI system, either manually or automatically, requires the following valve positions to be achieved or maintained:


			Open	Remain Open	Close	Remain Closed	Notes
Steam	Flow	Path					
ΗV	2202 2201 2200		X X X	X X X			
Water	Flow	Path					
MO	2318		Х	Х	Х	X	Should close as water flow pressure exceeds RPV pressure
MO	2312		Х	Х			···· · · · · · · · · · ·

Continued operation of the system requires that the steam and water flow paths remain open and that system efficiency not be degraded by flow through lateral pipe branches. The source of the water flow path must also be capable of being switched from the condensate storage tank to the suppression pool. The position of the following valves (not included in system initiation) must be maintained or achieved:

				Remain	_	Remain	
			Open	Open	Close	Closed	Notes
Steam	Flow	Path					
MO	2238			Х			
MO	2239			Х			
MO	2298					Х	
Water	Flow	Path					
MO	2300			Х	χ*	Χ*	*If HPCI pump suction
	2321		Χ*	Χ*		Х	must switch from
	2322		χ*	Χ*		Х	condensate storage
MO	2311			Х			tank to suppression
МО	2315					Χ,	pool.

HPCI

REFERENCE M-122 M-123

Terminating operation of the system is accomplished by essentially reversing the changes required for system initiation. These changes are as follows:

			Open	Remain Open	Close	Remain Closed	Notes
Steam	Flow	Path					
MO	2202				Х	Х	
Water	Flow	Path					
МО	2312			•	X	Х	

All of the above mentioned valves have control circuitry in the control room that would be vulnerable to a fire in a single control panel. Also, however, each of the above mentioned valves may be controlled from a location outside of the control room, that location in the case of motor operated valves is the appropriate motor control center. The purpose of the following analysis is to determine the extent to which control capability outside the control room is necessary.

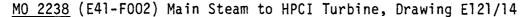
Control room circuitry for motor operated valves typically consists of OPEN and CLOSE circuits. Although both circuits may use the same hand switch in the control room, they each typically have networks of relays that spread out into different control room panels. So even though both the OPEN and CLOSE circuits may be vulnerable to a fire in the control room panel containing the hand switch, they may have networks of relays whose vulnerability to control room panel fires may be completely different. Those valves that must maintain an open or closed position are vulnerable to contrary spurious signals caused by a control room panel fire. Those valves that must change positions are vulnerable to failure to receive the necessary signal. The following list includes each above mentioned valve and the type of vulnerability for which its control circuitry must be analyzed:

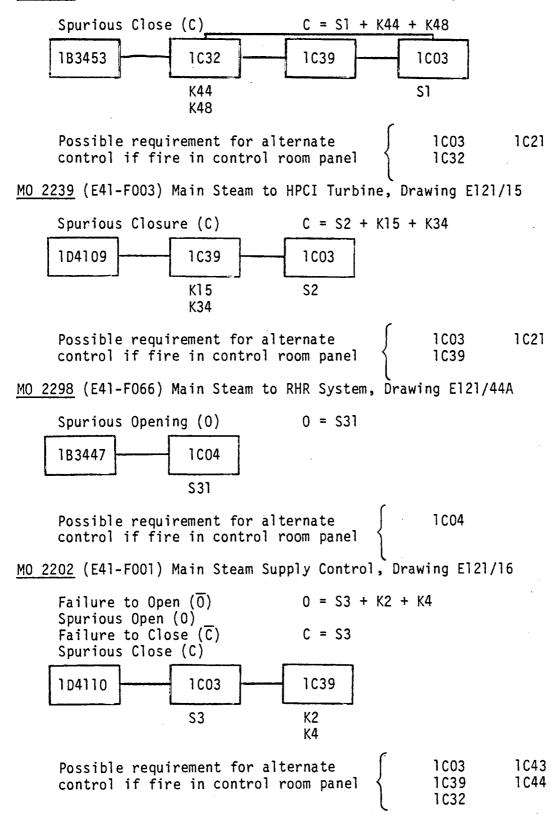
		Failur <u>e</u> to Open (O)	Spurious Closure (C)	Failure_to Close (C)	Spurious Opening (O)	Notes
Steam	Flow	Path				
MO MO MO HV	2238 2239 2298 2202 2201 2201	X X X	X X X X X	X	X X	
Water	Flow	Path				
MO MO	2321 2322 2300 2318	X X X	X X X X	X X	X X X X	

III-C-3

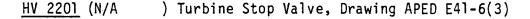
		Failure to Open (0)	Spurious Closure (C)	Failure_to Close (C)	Spurious Opening (O)	Notes
Water	Flow	Path				
	2311		X		Y	
	2315 2312	X	X	X	x	

•

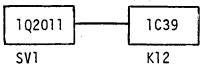

•


.

• •

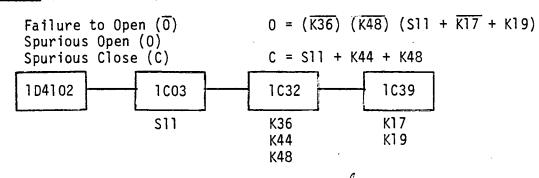

HPCI, Control Circuit Block Diagrams

and Logic Equations



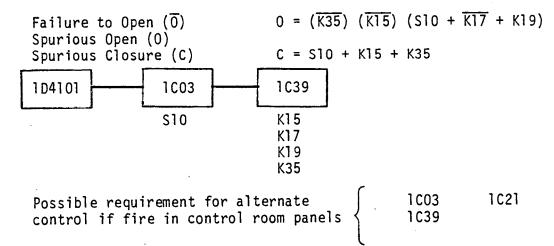
III-C-5

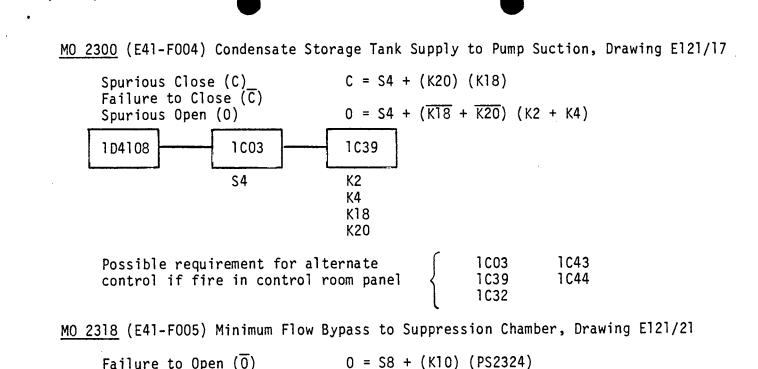
This valve is normally controlled by locally produced hydraulic signals that are not vulnerable to spurious control room signals, however, it is subject to closure from the turbine trip solenoid (SV): SVI = K12



Possible requirement for alternate1C391C32control if fire in control room panels1C031C21

HV 2200 (N/A) Turbine Control Valve


This value is controlled by locally produced hydraulic signals that are not vulnerable to spurious control room signals.


MO 2321 (E41-F042) Suppression Pool Outlet, Drawing E121/23

Possible requirement for alternate	1C03	1C39
control if fire in control room panels	1C32	1021

MO 2322 (E41-F041) Suppression Pool Pump Suction, Drawing El22/22

1C39

K10

K13

K51

MO 2311 (E41-FOO7) HPCI Condensate Flow, Drawing E121/16

 Spurious Closure (C)
 C = S6

 1D4107
 1C03
 1C39

 S6
 S6
 S6

1003

S8

Possible requirement for alternate

control if fire in control room panel

Spurious Opening $(\underline{0})$ Failure to Close (\overline{C})

Spurious Closing (C)

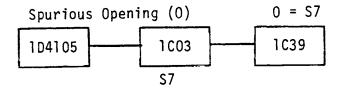
1D4103

Possible requirement for alternate control if fire in control room panel.

1003

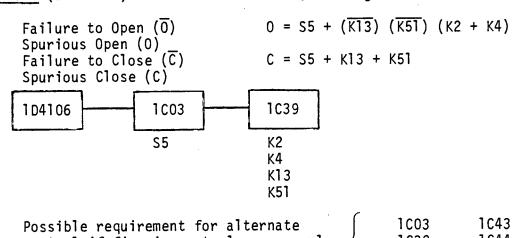
C = S8 + K51 + K13 + FS2310

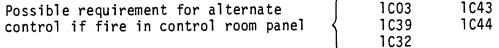
10120


PS2324

FS2310

1003


1039


MO 2315 (E41-F008) HPCI Condensate Recirculation to Storage Tank, Drawing E121/19

Possible requirement for alternate control if fire in control room panel

1003

MO 2312 (E41-F006) HPCI Condensate Flow, Drawing E121/18

.

HPCI, Relay Development

The following relays are those relays included in RCIC component control circuits. The input logic and input signals are shown as a Boolean logic equation. The location of each relay or control is shown. The relays are grouped into levels. Those relays in the first level appear in the previously described control circuits. Relays in the second level appear in the supporting logic for relays in the first level. The listed relays are on drawings APED E41-6(3) and E41-6(4).

lst Level

Relay/ <u>Contacts</u>	Loca- tion	Input Logic/Signal
		= (K41 + B21-N031B) (K42 + B21-N031D), B21's via 1C55 =) close on RPV low water level close on RPV low water level
E41-K4 E41-K53	1C39 1C39	= (E21A-K5A + E21A-K5B) (E21A-K6A + E21-K6B) =
E41-K12 E41-S19	1C39 1C03	= S19 + K8 + K9 + K11 + K15 + K44 + K35 normally open, manual turbine trip
	1C39 local	= LS4 closes when turbine stop valve HV2201 fully closed
E41-K15 E41-N001B E41-N001D	local	= (NOO1B) (NOO1D) via 1C122 closes on low HPCI steam supply pressure closes on low HPCI steam supply pressure
E41-K17 LS5218 LS5219	local	= (LS5218) (LS5219) via 1C215 open on condensate storage tank low water level open on condensate storage tank low water level
E41-K18 LS2	1C39 1oca1	= LS2 closed when valve MO 2322 fully open
E41-K19 E41-N015A E41-N015B	local	= NO15A + NO15B close on suppression chamber high water (LS2319) close on suppression chamber high water (LS2320)
E41-K20 LS2	1C39 local	= LS2 closes when valve MO 2321 fully open
E41-K34 E41-S32	1C39 1C03	= K35 + (K53 + K3) (S32) normally open, HPCI manual isolation (HS 2242)
	1C39 1C21 1C03	= (B21B-S6B) (B21B-K4B) + K28 + K33 + (S18) (K35) normally open, manual isolation normally closed, HPCI reset (HS2240)
E41-K36 E41-K44 B21-S6A E41-S30	1C32 1C32 1C21 1C03	=}(B21B-S6A) (B21B-K4A) + K43 + K46 + (S30) (K36) =} normally open, manual isolation normally closed, HPCI reset (HS2241)

Relay/ <u>Contacts</u>		Input Logic/Signal
E41-K48 E41-N001A E41-N001C	local	= (NOO1A) (NOO1C) via 1C126B close on low HPCI steam supply pressure close on low HPCI steam supply pressure
E41-K51 LS6		= LS6 closes when valve MO 2202 fully closed
		2nd Level
E41-K8 E41-N017A E41-N017B	local	= NO17A + NO17B via 1C12O closes on high HPCI turbine exhaust closes on high HPCI turbine exhaust
E41-K9 E41-N010	1C39 1ocal	= NO10 closes on low suction pump pressure
E41-K10 E41-N006	1C39 1oca1	= NOO6 via 1C12O closes on low HPCI pump discharge flow
E41-K11 B21-N017D		= (K45) (B21-NO17D) via 1C55A closes on reactor high water level (LIS 4592D)
E41-K28 E41-N012B E41-N012D	local	= (NO12B) (NO12D) via 1C120 closes on high HPCI turbine exhaust pressure (PS 2215B) closes on high HPCI turbine exhaust pressure (PS 2215D)
E41-K33 E41-N005	1C39 local	= NOO5 via 1C126B closes on high differential pressure
E41-K41 B21-N031A	1C32 local	= B21-NO31A via 1C56 closes on RPV low level
E41-K42 B21-N031C	1C32 1oca1	= B21-NO31C via 1C56 closes on RPV low level
E41-K43 E41-N004	1C32 local	= NOO4 via 1C122 close on steam line high differential pressure
E41-K46 E41-N012A E41-N012C		<pre>= (N012A) (N012C) via 1C120 close on HPCI turbine exhaust diaphragm high pressure (PS2215A) close on HPCI turbine exhaust diaphragm high pressure (PS2215C)</pre>
E41-K45 B21-N017B	1C32 local	= B21-N017B via 1C56A closes on RPV high level
E21A-K5A E11-N011A		= NOIIA close on high drywell pressure

•

III-C-10

Relay/ Loca- Contacts tion	<u>Input Logic/Signal</u>
E21A-K5B 1C44	= NOllB
E11-N011B local	close on high drywell pressure
E21A-K6A 1C43	= NO11C
E11-N011C local	close on high drywell pressure
E21A-K6B 1C44	= NOllD
E11-N011D local	close on high drywell pressure
B21B-K4B 1C21	close on high ambient or differential pressure
B21B-K4A 1C21	close on high ambient or differential pressure

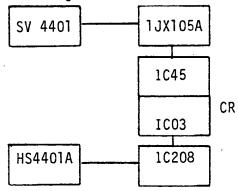
.

.

7

III-C-11

1


Reactor Pressure Control

Manual Relief Valve Operation

Manual relief valve operation is permitted from local panel IC208. Two relief valves may be operated from that local panel.

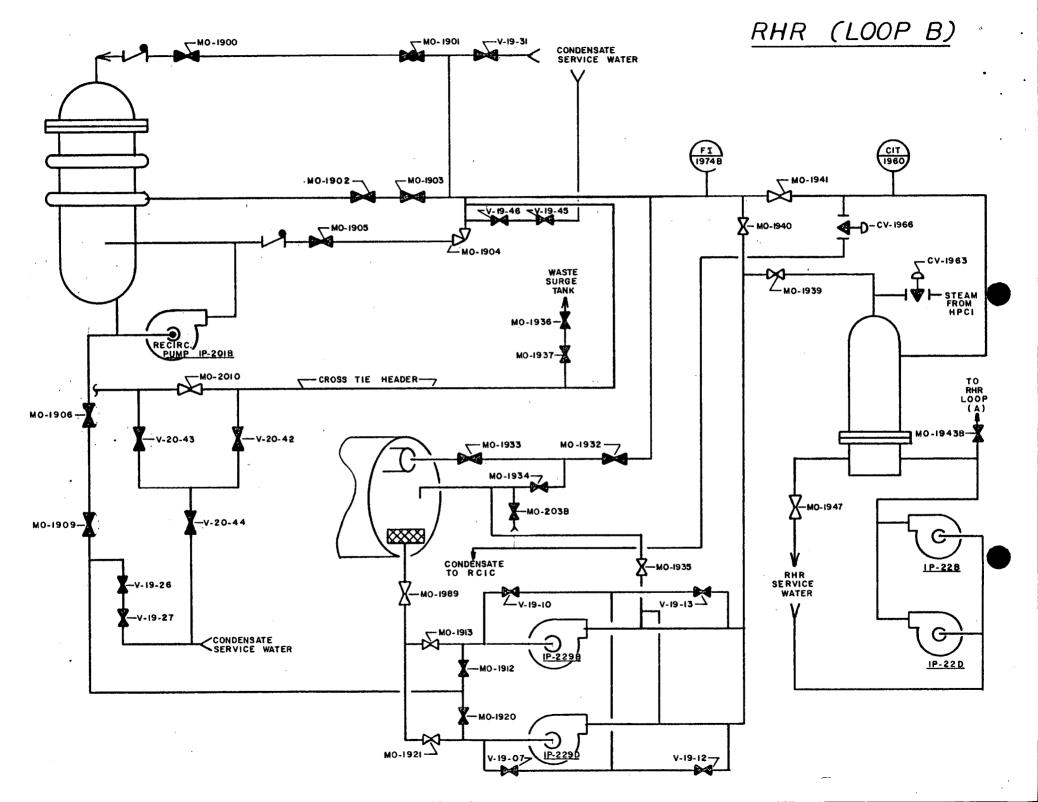
Valve (GE_#)	Local Panel 1C208 Hand Switch	<u>Valve Setpoint</u>	
SV 4401 (B21-F013B)	HS 4401A	1090 PSIG	
SV 4407 (B21-F013F)	HS 4407A	1100 PSIG	

The following block diagram, derived from drawing E-121/2, and GE Drawing B21-18, shows the electrical cable routing:

The routing of the cable through panels ICO3 & IC45 in the control room makes control of SV 4401 from HS 4401A at local panel 1C208, vulnerable to fire in either of the panels in the control room.

The same routing was used for SV 4407 and HS 4407A.

Reactor Decay Heat Removal and Suppression Pool Cooling


Residual Heat Removal System (RHR)

A diagram of the RHR system showing those valves that affect the water flow paths is included on the following page. The diagram shows the normal position of those valves during normal plant operation. The RHR system is composed of two similar loops, identified as Loop A and Loop B. Both loops may be used for either suppression pool cooling or in the shutdown cooling mode for decay heat removal. Use of the RHR would typically take place in three stages. The first stage would be use in the suppression pool cooling mode. The second stage would be an intermediate phase involving flushing the system. The third stage would be using the system in the shutdown cooling mode. The mode of operation of a loop is independent of the mode of operation of the other loop. As can be seen from the system diagram, the two loops are symmetrical. Corresponding components are listed in a table following the diagram. Although only Loop B is analyzed here, similar conclusions about Loop A can be drawn using the table of corresponding components. Operation of the RHR service water system for RHR Heat Exchanger operation is discussed separately.

Initiation of the RHR (Loop B) system in the suppression pool cooling mode requires the following valve positions to be achieved or maintained, the pumps to operate, and reliable indication on the instrument identified (In all cases, valves operated locally by hand are not included since they will not be vulnerable to interference from spurious control room signals):

	0pen	Remain Open	Close	Remain Closed	Notes
MO 2010 1P-229B MO 1932 MO 1934 FI 1974B MO 1935 MO 1940	X X	X X	X X X	X X X	Start Indicates Flow Rate

Continued operation of the RHR (Loop B) system in the suppression pool cooling mode requires that the water flow path remains open and that system efficiency is not degraded by flow through lateral pipe branches. The position of the following valves (not included in system initiation) must be maintained:

	Open	Remain Open	Close	Remain Closed	Notes
MO 1989		Х			
MO 1913		Х			
MO 1912				Х	
MO 1939		Х			
MO 1941		Х			
MO 1901				Х	
MO 1903				Х	
MO 1905				Х	
MO 1937				Х	
MO 1933				Х	
MO 2038				Х	

Terminating use of the RHR (Loop B) system in the suppression pool cooling mode and initiating the flushing sequence requires the following changes:

	Open	Remain Open	Close	Remain Closed	Notes
1P-229B MO 1934 MO 1932 MO 1913 MO 1921 MO 1935 CIS 1960	X	x	X X X X	X X X X	Stop Indicates conductivity of water to insure
MO 1940 MO 1912 MO 1920	X X X	X X X			adequate flush process

(The RHR (Loop B) system is flushed by condensate water originating through valves V-19-46 and V-20-42 and passing back through the system pumps and valves V-19-10, V-19-13, V-19-7, and V-19-12 into the suppression pool)

Continued operation of the flush mode requires that the valve lineup remain as in the suppression pool cooling mode except as modified for initiation of the flushing operation.

Initiation of the RHR (Loop B) system in the shutdown cooling mode after completion of the flushing operation requires the following valves, pumps, and indicators to function as indicated:

		Remain		Remain	
	Open	Open	Close	Closed	Notes
MO 1908	Х	X			
MO 1909	Х	Х			
1P-229B	-				Start
MO 1905	Х	Х			
MO 1904			•		Throttle to intermediate position

Remain Remain Open Open Close Closed Notes Indicates Flow Rate

X

Х

FI 1974B MO 1935

Continued operation of the RHR (Loop B) system in the shutdown cooling mode requires that the water flow path remains open and that system efficiency is not degraded by flow through lateral pipe branches. The position of the following valves (not included in system initiation) must be maintained:

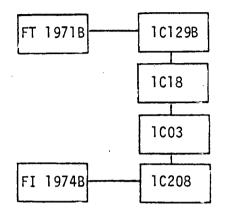
	Open	Remain Open	Close	Remain Closed	Notes
	open			0.0004	
MO 1912 ·		Х			
MO 1939		X			
MO 1941		X			
MO 1901				Х	
MO 1903				Х	
MO 1937				Х	
MO 2010				Х	
MO 1932				Х	

The RHR (Loop B) system can be operated in the shutdown cooling mode essentially indefinitely.

All of the above mentioned valves have control circuitry in the control room that would be vulnerable to a fire in a single control panel. Also, however, each of the above mentioned valves may be controlled from a location outside of the control room, that location in the case of motor operated valves is the appropriate motor control center. The purpose of the following analysis is to determine the extent to which control capability outside the control room is necessary.

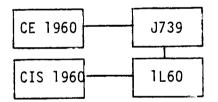
Control room circuitry for motor operated valves typically consists of OPEN and CLOSE circuits. Although both circuits may use the same hand switch in the control room, they each typically have networks of relays that spread out into different control room panels. So even though both the OPEN and CLOSE circuits may be vulnerable to a fire in the control room panel containing the hand switch, they may have networks of relays whose vulnerability to control room panel fires may be completely different. Those valves that must maintain an open or closed position are vulnerable to contrary spurious signals caused by a control room panel fire. Those valves that must change positions are vulnerable to failure to receive the necessary signal. The following list includes each above mentioned valve and the type of vulnerability for which its control circuitry must be analyzed:

		Failur <u>e</u> to Open (O)	Spurious Closure (C)	Failure_to Close (C)	Spurious Opening (O)	Notes
MO	1901				Х	
MO	1903				. X X	
MO	1904	Х	X	X	X	Throttle to inter- mediate position
MO	1905	Х	Х		Х	·
MO	1908	Х	Х			
MO	1909	Х	X X X X			
MO	1912	Х	Х		Х	
MO	1913		Х	Х	Х	
MO	1920	X	Х			
	1921			Х	Х	
	1932	Х	Х	Х	Х	
	1933				X X X	
	1934	X X	X X	X X	Х	
	1935	Х	Х	Х		
	1937				Х	
	1939		Х			
	1940	Х	Х	Х	Х	
MO	1941		Х			
MO	1989		Х			
	2010			Х	Х	
	2038				X X	


•

¢

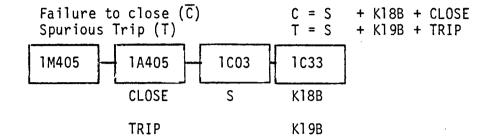
.


•

1. <u>RHR (Loop B) System Flow Indication</u> is provided at local panel 1C208 by instrument FI 1974B, the source of the signal is FT 1971B. The block diagram derived from drawing E121/57 shows the electrical cable routing.

The routing of the cable through panels 1C18 and 1C03 in the control room makes the local panel (1C208) instrument reading vulnerable to a fire in either of those control panels.

2. <u>RHR (Loop B) System Heat Exchanger B Conductivity</u> used during the flush mode is provided by conductivity indicator CIS 1960 located locally at 1L60. The source of the signal is CE 1960. The signal is transmitted directly to the indicator. The block diagram derived from drawing E121/57 shows the cable routing. The conductivity reading will not be affected by a control room fire.

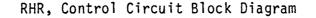


RHR, Pump B Control Circuit

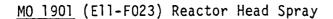
1P-229B RHR Pump B

Drawing E121/41

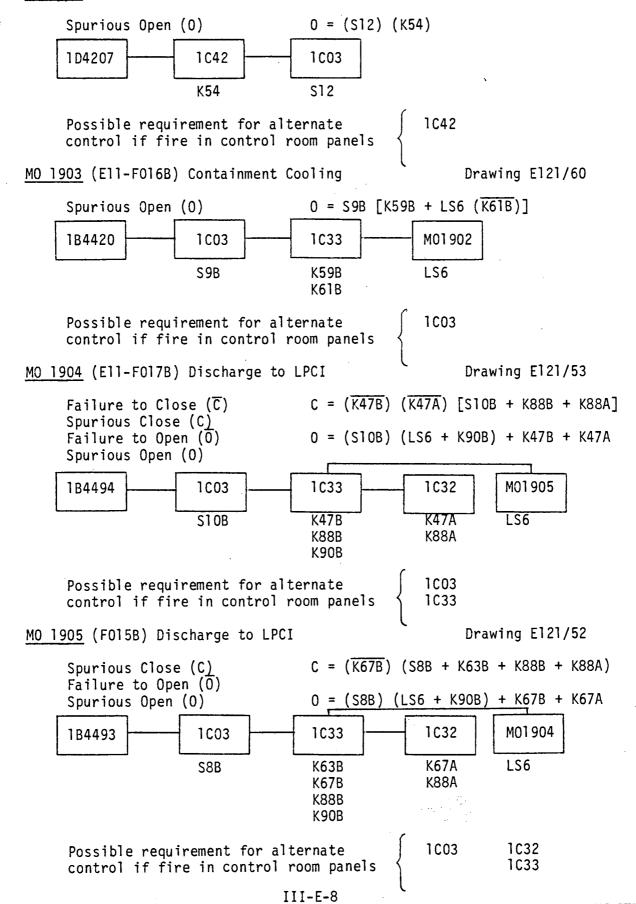
The control circuitry for a pump is different from that of a valve in that there are CLOSE (C) and TRIP (T) circuits for pump operation and cease of operation. Interferring signals from a control room panel fire can still be bypassed by operating the pump from its motor control center or the essential switchgear room.

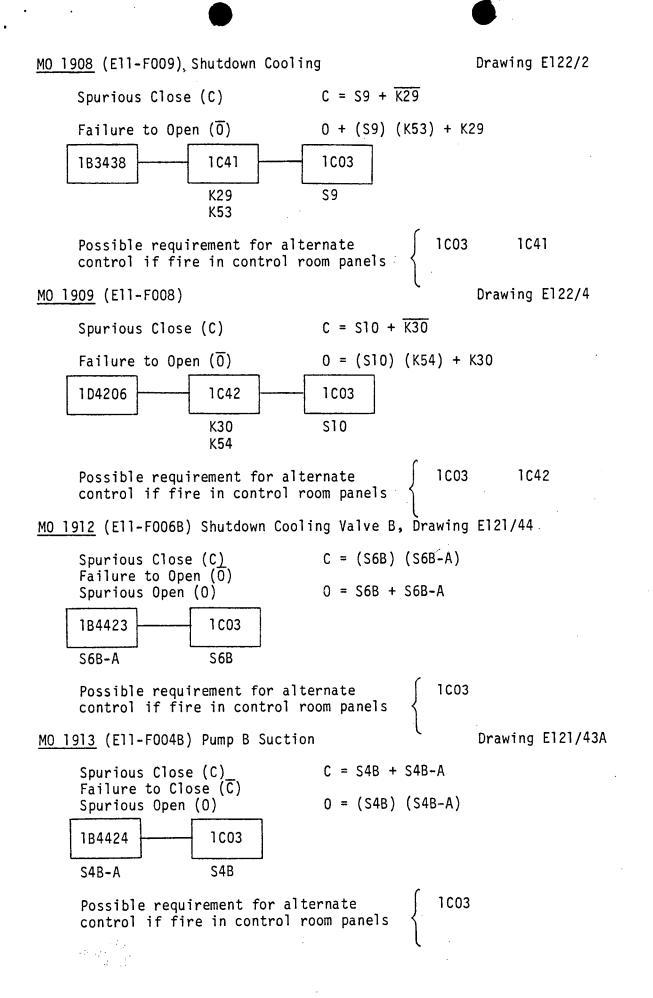

Possible requirement for alternate 1C03 control if fire in control room panel 1C33

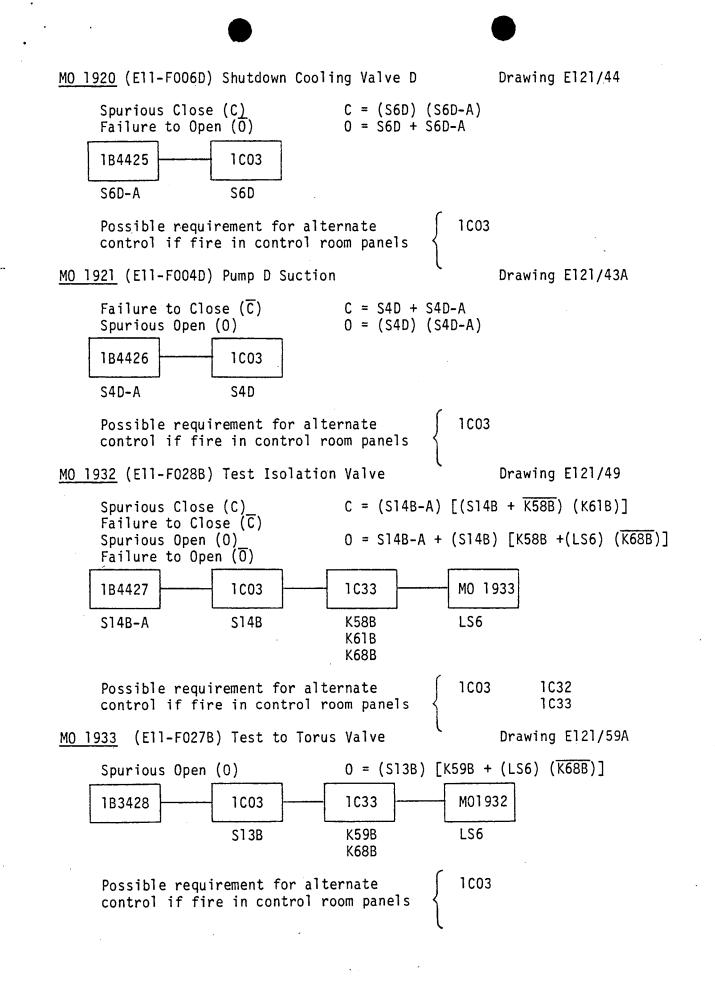
03 1C32 33 1C31

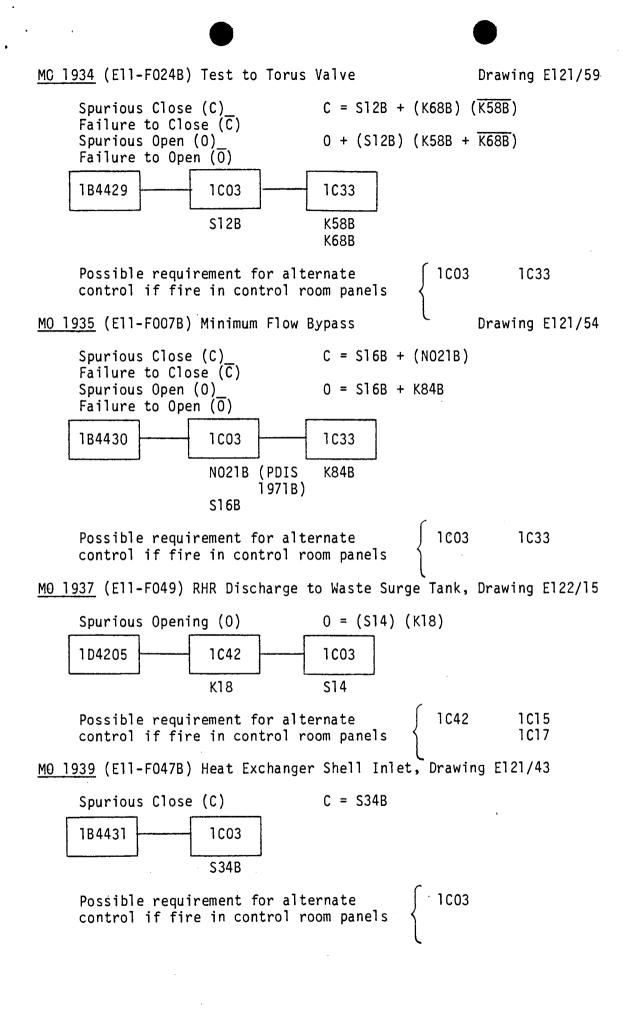

Relay Development

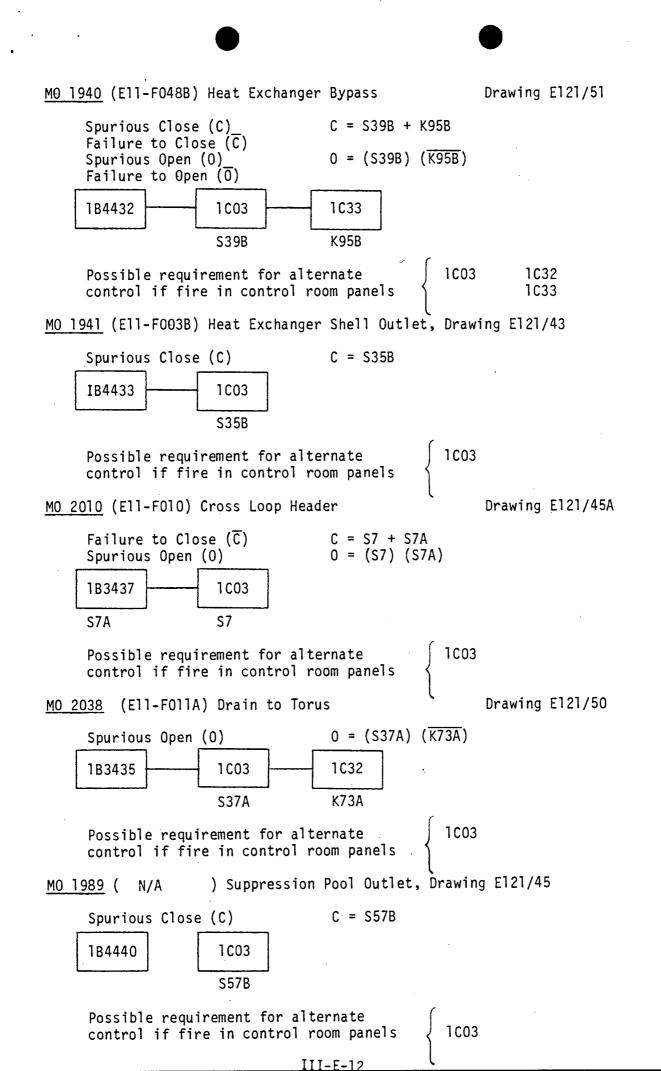
lst Level


Relay Loca- <u>Contact tion</u>	Input Logic/Signal
E11-K18B 1C33	= (K78B) (K72B) (K2B + K70B)
-	= (LS3/M01913) (LS3/M01912 + K15B + K15A) closed except when valve M01913 fully open closed except when valve M01912 fully open
	2nd Level
E11-K78B 1C33	= (K9B) (K3B + K4B)
E11-K72B 1C33	= S3B + (K72B) (K78B) (K2B + K70B)
E11-K2B 1C33	= closed when normal auxilliary power available,signal via 1C31
E11-K7OB 1C33	= K78B
E11-K15B 1C33	= LSI1 closes when valve MO1909 not fully open
E11-K15A 1C32	= LS16 closes when valve MO1908 not fully open
	3rd Level
E11-K9B 1C33	= closes on high drywell pressure and reactor low level, signal via 1C32
E11-K3B 1C33	= closed when standby power available, signal via 1C31
E11-K4B 1C33	




and Logic Equations




Drawing E122/6

RHR, Relay Development

The following relays are those relays included in RHR (Loop B) component control circuits. The input logic and input signals are shown as a Boolean logic equation. The location of each relay or contact is shown. The relays are grouped into levels. Those relays in the first level appear in the previously described control circuits. Relays in the second level appear in the supporting logic for relays in the first level, etc. The listed relays are found primarily in three groups of drawings. Relays in the A71-series are on drawings APED A71-3(5), A71-3(6), A71-3(7), A71-3(9) and A71-3(13). Drawings in the Ell-series with an "A" suffix, ie, Ell-K47A, are on drawings APED Ell-7(4), Ell-7(5), and Ell-7(6). Drawings in the Ell-series with a "B" suffix, ie Ell-K47B, are on drawings APED Ell-7(7), Ell-7(8) and E11-7(9).

lst Level

/		
Relay/ <u>Contact</u>	Loca- tion	Input Logic/Signal
А71-К29 А71-К53	1C41 1C41	=)(K17) (K28) (K29 + K11) =)
А71-КЗО А71-К44	1C42 1C42	=)(K18) (K50) (K30 + K12) =)
E11-K47A	1C32	$=$ ($\overline{K45A}$) (K44A) (K43A)
E11-K67A	1C32	$= (\overline{K63A}) (K44A) (K43A)$
E11-K73A	1C32	= K9A + K10A + (K7A + K7B) (K8A + K8B)
E11-K88A	1C32	$= (K39A) (\overline{K86A})$
E11-K47B	1C33	$=$ (K43B) (K44B) ($\overline{K45B}$)
E11-K59B	1C33 1C33 1C03 1C03	= [S18B + (K61B) (K14B)] [(K107A + K107B) (K106A + K106B)] X = [S17B + S17B(K69B)] normally open, for containment spray valves normally open, E11-F024B, 28B, 16B, 21B, 27B
E11-K61B E11-K68B	1C33 1C33	=} K9B
E11-K63B	1033	= (K65A + K65B) (K16A) (K16B) (A71B-K60)
E11-K67B	1C33	$= (\overline{K63B}) (K43B) (K44B)$
E11-K84B E11-N021B S2a S2a	1C33 loca1 1A405 1A406	= (NO21B) (520/1A405 + 52a/A406) closes on low flow (PDIS 1971B) closes when breaker for pump 1P-229B is closed closes when breaker for pump 1P-229D is closed

Relay/	Loca-	
<u>Contact</u>	<u>tion</u>	Input Logic/Signal
E11-K88B	1C33	= K39B
E11-K90B B21-N021B		= B21-N021B via 1C55
E11-K95B		closes on low reactor pressure (PS 4548) = (K93B) (K94B)
LITERSOD	1035	
		2nd Level
	1C41 1C05	= S32 normally open, isolation valves reset
	1C42 1C05	= S33 normally open, isolation valves reset
E11-S22B	1C41 1C17 1C15	= [(S22B) (K5B) + (S22A) (K5A)] (K17 + K47) normally closed normally closed
E11-S22D	1C42 1C17 1C15	= [(S22D) (K5D) + (S22C) (K5C)] (K18 + K48) normally closed normally closed
E11-K28 B31-N018A	1C41 local	= B31-N018A via 1C122 opens on high reactor pressure
	1C42 local	= B31-N018B2 via 1C58 opens on high reactor pressure
E11-K7A	1C32	= E21-K7A
E11-K8A	1C32	= E21-K8A
E11-K9A	1C32	= K10A + (K7A + K7B) (K8A + K8B)
E11-K10A	1C32	= (K5A + K5B) (K6A + K6B)
	1C32 1oca1	= LS15 = closed when M0 1908 not fully closed
E11-K39A	1C32	= $(K37A)$ $(\overline{K43A})$ + $(K35A$ + $K35B)$ $(K36A$ + $K36B)$ $(K34A)$
E11-K43A	1C32	$=$ (K40A) ($\overline{K37A}$)
E11-K44A	1C32	= (K90A + K90B) (K105A + K105B) (K43A + K39A)
E11-K65A B31-N018A		= B31-N018A via 1C122 closes on low RPV pressure
E11-K106A E11-N019A		= E11-N019A via 1C122 closes on high drywell pressure
E11-K107A E11-N019C		= Ell-NOl9C via lCl26B closes on high drywell pressure
E11-K7B	1C33	= E21-K7B
E11-K8B	1033	= E21-K8B
E11-K14B B21-N037	1C33 1C121	= B21-N037 closed above RPV low level trip
	*. · · · · · · · · · · · · · · · · · · ·	

.

ſ

III-E-14

Relay/ <u>Contact</u>	Loca- tion	Input Logic/Signal
E11-K16B LS15	1C33 1oca1	= LS15 closed when MO 1909 not fully closed
E11-K39B	1C33	= (K43B) [K37B + K11B (K40A) (K36A + K36B) (K35A + K35B) K34B]
E11-K43B	1033	$= (K40B) (\overline{K37B})$
E11-K44B	1033	= (K43B + K39B) (K105A + K105B) (K90A + K90B)
E11-K45B	1C33	= K44B
E11-K63B	1C33	= (K65A + K65B) (K16A) (K16B) (A71B-K60)
E11-K65B B31-N018B	1C33 -1 loca	= B31-N018B-1 via 1C58 1 closes on low RPV pressure
E11-K69B	1C33	= [(K61B) (K14B) + S18B] (K107A + K107B) (K106A + K106B) (S17B)
E11-K86B	1C33	= K39B
E11-K93B	1C33	= K94B
E11-K94B	1C33	= K1OB + (K7A + K7B) (K8A + K8B)
E11-K106B E11-N019B		= Ell-N019B via 1C58 closes on high drywell pressure
E11-K107B E11-N019D		= Ell-NOl9D via lCl2l closes on high drywell pressure
A71B-K60	1C42	closes on reactor low level or high drywell pressure
, ,		3rd Level
A71-K5A	1C15	= (C71A-K6A) (C71A-K4A)
A71-K5C	1015	= (C71A-K6C) (C71A-K4C)
A71-K5B	1C17	= (C71A-K6B) (C71A-K4B)
A71-K5D	1C17	= (C71A-K6D) (C71A-K4D)
A71-K47	1C41	= \$32
A71-K48	1C42	= \$33
E11-K5A E11-N011A	1C32 1oca1	= NO11A via 1C122 closes on high drywell pressure
E11-K6A E11-N011C		NOIIC via 1C126B closes on high drywell pressure
E11-K34A	1032	= K33A + [K27A + (K31A + K31B) (K32A + K32B) (K100A)] K11A
E11-K35A B31-N016A	1C32 local	= B31-N016A via 1C122 closes when riser differential pressure "A" is greater than "B"
E11-K36A B31-N016C		= B31-N016C via 1C22 closes when riser differential pressure "A" is greater than "B"
E11-K40A	1C32	= $(K34A)$ $(\overline{K37B})$
E11-K90A B21-N021A		= B21-N021A via 1C56 closes on low reactor pressure

· ·

4

,

.

.

III-E-15

Relay/ <u>Contact</u>	Loca- tion	Input Logic/Signal
E11-K105A	1032	= B21-N021C via 1C122
E11-K5B E11-N011B	1C33 local	= Ell-NOllB via 1C58 closes on high drywell pressure
E11-K6B E11-N011D	lC33 local	= Ell-NOllD via 1Cl2l closes on high drywell pressure
Ell-KllB Ell-SlB	1C33 1C03	= SIB normally open, reset break detection
E11-K34B	1033	= K33B + K11B [K27B + (K32A + K32B) (K31A + K31B) K100B]
E11-K35B B31-N016B	lC33 local	= B31-N016B via 1C121 closes when riser differential pressure "A" is greater than "B"
E11-K36B B31-N016D	1C33 local	= B31-N016D via 1C121 closes when riser differential pressure "A" is greater than "B"
E11-K37B	1033	= (K40A) (K36A + K36B) (K35A + K35B) (K34B)
E11-K40B	1C33	$=$ ($\overline{K37A}$) ($K34B$)
E11-K61B	1C33	= K9B
E11-K90B B21-N021B	1C33 local	B21-N021B via 1C55 closes on low RPV pressure
E11-K105B B21-N021D		= B21-N021D via 1C121 closes on low RPV pressure
E21-K7A B21-N031A	1C43 local	= B21-NO31A via 1C56 closes on low RPV level
E21-K7B B21-N031B	1C44 local	= B21-N031B via 1C55 closes on low RPV level
E21-K8A B21-N031C	1C43 local	= B21-NO31C via 1C56 closes on low RPV level
		= B21-NO31D via 1C55 closes on low RPV level
		4th Level
E11-K31A B21-N039A		= B21-N039A via 1C56 closes below reactor setpoint
E11-K32A B21-N039C		= B21-N039C via 1C56 closes below reactor setpoint
E11-K34A	1C32	= K33A + (K11A) [K27A + K100A (K31A + K31B) (K32A + K32B)]
E11-K27B	1C33	= (K77B) (K23A + K23B) (K24A + K24B) (K25A + K25B) (K26A + K26B)
E11-K31B B21-N039B		= B21-NO39B via 1C55 closes below reactor setpoint
E11-K32B		= B21-N039B via 1C55
B21-N039D		closes below reactor setpoint
E11-K33B	1C33	= K27B + (K100B) (K31A + K31B) (K32A + K32B)

•

.

III-E-16

• •	Loca- tion	Input Logic/Signal
E11-K100B	1C33	= K28B
С71А-К6А	1015	close on low RPV level
C71A-K6B	1C17	close on low RPV level
С71А-К6С	1015	close on low RPV level
C71A-K6D	1017	close on low RPV level
С71А-К4А	1C15	close on drywell high pressure
С71А-К4В	1017	close on drywell high pressure
C71A-K4C	1015	close on drywell high pressure
C71A-K4D	1017	close on drywell high pressure
		5th Level
E11-K11A E11-S1A	1C32 1C03	= SIA normally closed, reset break detection
E11-K23A B31-N019A		= (K77A) (B31-N019A) via 1C57 closes when pump "A" runs differential pressure over setpoint
E11-K24A B31-N020A	1C32 local	= (K77A) (B31-NO2OA) via 1C57 closes when pump "A" runs differential pressure over setpoint
E11-K25A B31-N021B	1C32 local	= (K77A) (B31-N021B) via 1C58 closes when pump "B" runs differential pressure over setpoint
E11-K26A B31-N022B	lC32 local	= (K77A) (B31-N022B) via 1C58 closes when pump "B" runs differential pressure over setpoint
E11-K27A	1C32	= (K77A) (K23A + K23B) (K24A + K24B) (K25A + K25B) (K26A + K26B)
E11-K33A	1C32	= K27A + [(K100A) (K31A + K31B) (K32A + K32B)]
E11-K100A		= K28A
B31-N021A	local	
E11-K24B B31-N022A	local	= (K77B) (B31-N022A) via 1C57 closes when pump "A" runs differential pressure over setpoint
E11-K25B B31-N019B		= (K77B) (B31-N019B) via 1C58 closes when pump "B" runs differential pressure over setpoint
E11-K26B B31-N020B	local	
E11-K28B	1033	= K77B

•

.

6th Level

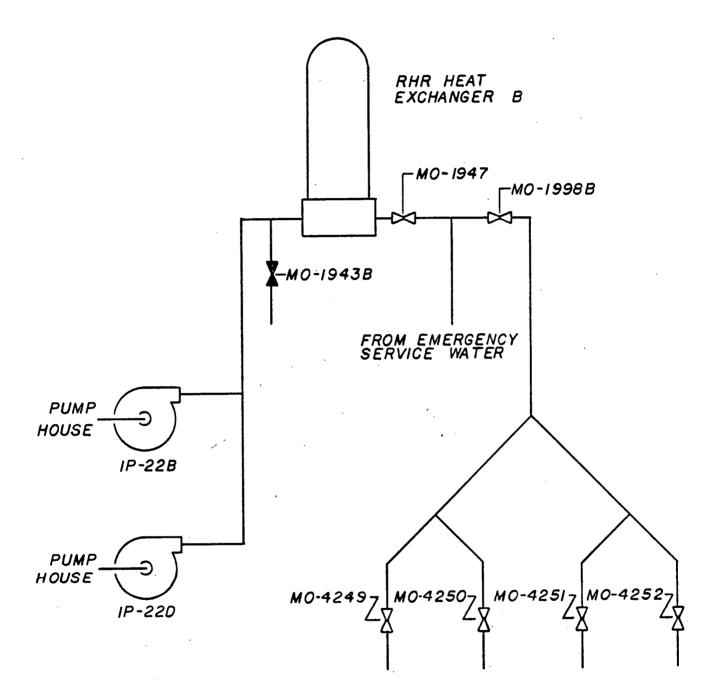
Relay/ <u>Contact</u>	Loca- tion	Input Logic/Signal
E11-K28A	1C32	= K77A
E11-K77A	1C32	= (K10A) + (K79A + K79B) (K80A + K80B)
Е11-К77В	1C33	= (K10B) + (K79A + K79B) (K80A + K80B)
		7th Level
E11-K10A	1C32	= (K5A + K5B) (K6A + K6B)
E11-K79A B21-N031A		= B21-NO31A via 1C56 closes on RPV low level
E11-K80A B21-N031C		= B21-NO31C via 1C56 closes on RPV low level
E11-K79B B21-N031B		= B21-N031B via 1C55 closes on RPV low level
E11-K80B B21-N031D		= B21-NO31D via 1C55 closes on RPV low level

.

, Ł

Reactor Decay Heat Removal and Suppression Pool Cooling

RHR Service Water


A diagram of the RHR Service water system for the RHR (Loop B) heat exchanger showing those valves that affect the water flow path is included on the following page. The diagram shows the normal position of those valves during normal plant operation. Pump (1P-22B, 1P-22D) startup is all that is required to initiate the RHR Service Water system. The valves are normally in the correct lineup and for continued operation must maintain their position as follows:

	Remain	Remain	
	Open	Closed	Notes
MO 194	13B	Х	
MO 194	7 X		
MO 199	98B X		
MO 424	19 X		
MO 425	50 X		
MO 425	51 X		
MO 425	52 X		

Terminating use of the RHR Service Water system for RHR (Loop B) requires only that the pumps be stopped.

All of the above mentioned valves have control circuitry in the control room that would be vulnerable to a fire in a single control panel. Also, however, each of the above mentioned valves may be controlled from a location outside of the control room, that location in the case of motor operated valves is the appropriate motor control center. The purpose of the following analysis is to determine the extent to which control capability outside the control room is necessary.

Control room circuitry for motor operated valves typically consists of OPEN and CLOSE circuits. Although both circuits may use the same hand switch in the control room, they each typically have networks of relays that spread out into different control room panels. So even though both the OPEN and CLOSE circuits may be vulnerable to a fire in the control room panel containing the hand switch, they may have networks of relays whose vulnerability to control room panel fires may be completely different. Those valves that must maintain an open or closed position are vulnerable to contrary spurious signals caused by a control room panel fire. Those valves that must change positions are vulnerable to failure to receive the necessary signal. The following list includes each above mentioned valve and the type of vulnerability for which its control circuitry must be analyzed: RHR (LOOP B) SERVICE WATER

COOLING TOWERS

REFERENCE M-113

	Failur <u>e</u> to Open (O)	Spurious Closure (C)	Failure_to Close (C)	Spurious Opening	Notes
MO 1943				X	
MO 1947		Х			
MO 1998B		Х			
MO 4249		Х			
MO 4250		Х			
MO 4251		Х			
MO 4252		Х			
					•

.

•

RHR Service Water

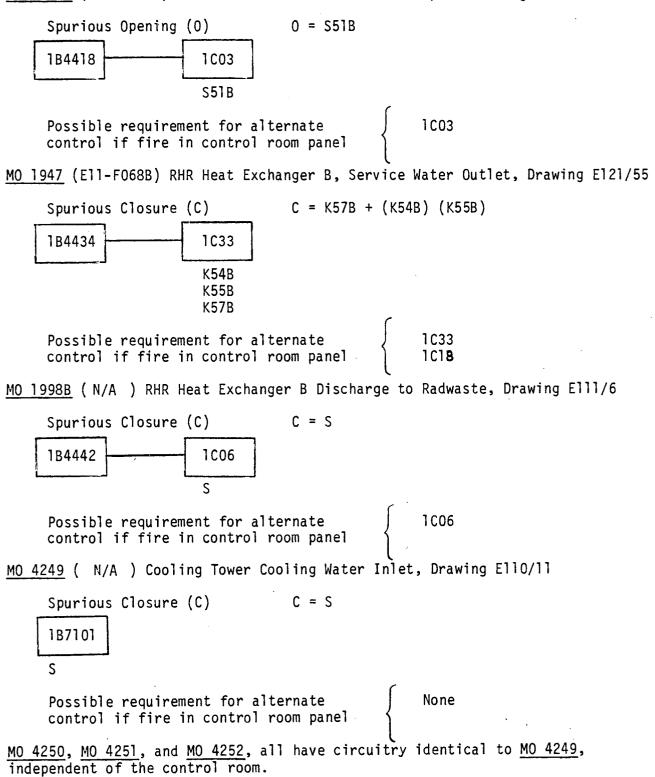
Pumps B & D Control Circuitry

1P-22B & D RHR (Loop B) Service Water Pumps

Drawings E121/42

The control circuitry for a pump is different from that of a valve in that there are CLOSE (C) and TRIP (T) circuits for pump operation and cease of operation. Interferring signals from a control room panel fire can still be bypassed by operating the pump from its motor control center or the essential switchgear room.

Failure to Close (\overline{C}) C = S + CLOSE Spurious Trip (T) T = S + TRIP + K62B + 194-41 + 197-41 1M407 1A407 1C03 1C33 1C31 CLOSE S K62B 197-41 TRIP 194-41


Possible requirement for alternate1C031C33control if fire in control room panel:1C31

Relay Development

Relay/ <u>Contact</u>	Loca- <u>tion</u>	Input Logic/Signal
194-41	1A407	=}load shedding signals from panel 1C31
197-41	1C31	=}
K62B	1C33	= (S19B) (K9B)
S19B	1C03	normally open, RHR Service Water Pump Control
K9B	1C33	close on high drywell pressure and reactor low level, signals via 1C32

RHR Service Water, Control Circuit Block Diagrams and Logic Equations

MO 1943B (E11-F073B) RHR Service Water Cross Tie Loop B, Drawing E121/45

III-F-5

RHR Service Water, Relay Development

lst Level

Relay/ <u>Contact</u>	Loca- tion	Input Logic/Signal
E11-K54B	1033	= 52b/1A407
E11-K55B	1C33	= 52b/1A408
E11-K57B	1C33	= \$600B

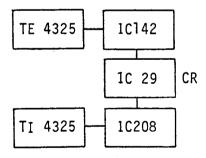
.

2nd Level

52b	1A407	closes if service water pump not running
52b	1A408	closes if service water pump not running
E11-S600B	1018	closes when valve MO 1947 Ell-F068B closed

Process Monitoring

Reactor Vessel Level and Pressure


Suppression Pool Temperature

1. <u>Reactor vessel level</u> indication is provided at local panel IC55 by the following instruments:

Instrument (GE #)	GE drawing #
LIS 4532 (B21-N031B) LIS 4534 (B21-N031D) LIS 4536 (B21-N025A) LIS 4538 (B21-N025B) LIS 4540 (B21-N026B) LIS 4562 (B21-N024B)	B21-145C-30-30 B21-145C-30-30 B21-145C-30-30 B21-145C-30-30 B21-145C-30-30 B21-145C-30-30 B21-145C-30-33

An examination of the GE drawings shows that the instrument reading is independent of any signal emanating from or passing through the control room.

- 2. <u>Reactor pressure</u> indication is provided at local panel IC55 by instrument PI 4554 (GE #B21-R004B), GE drawing # B21-3(2). An examination of the GE drawing shows that the instrument reading is independent of any signal emanating from or passing through the control room.
- 3. <u>Suppression pool temperature</u> indication is provided at local panel IC208 by instrument TI 4325 (N/A), the source of the signal is TE 4325 (N/A), the following block diagram derived from drawing E-122/19 shows the electrical cable routing:

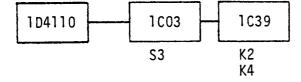
The routing of the cable through panel 1C29 in the control room makes the local panel (1C208) instrument reading vulnerable to a fire in the control room panel.

Support

Onsite Power Source and Distribution System

The onsite power sources and distribution networks for AC and DC power are located outside the control room. The impact of fire on these systems and their ability to supply power to plant safety system has been previously examined in the Fire Hazard Analysis and found to be unimpaired by fire in a single plant area.

Sample Component Analysis


Each system analyzed in the Alternate Shutdown Capability Analysis has been broken into components that are then individually analyzed for vulnerability to control room panel fires. This analysis can be accomplished based on a block diagram showing key component locations, and as required, a Boolean Logic equation showing the relation between key components and a development of the supporting relays. For the purpose of exposition, a typical component, MO 2202, the motor operated main steam supply control valve for the High Pressure Coolant Injection (HPCI) system is analyzed.

The role of the main steam supply control valve, MO 2202, is determined by examining the P & ID M-120. From that P & ID, it is determined that proper operation of the valve requires that it not be subjected to the following conditions:

Failure to Open (O) Spurious Open (O) Failure to Close (C) Spurious Close (C)

If MO 2202 is subjected to any of the above conditions at the wrong time, proper operation of the HPCI system will be precluded.

The vulnerability of the valve to spurious electrical signals is determined by examining the appropriate electrical schematics. The electrical schematic for MO 2202 is drawing El21/16. Three electrical components, Switch S3 and Relays K2 and K4, have contacts in the open/close circuits for the motor operator. These components are located with respect to each other as indicated in the following block diagram:

The relation between these components for circuit control purposes is illustrated by two Boolean equations, one for Open (0) and one for Close (C):

0 = S3 + K2 + K4C = S3

The above Boolean notation implies that energizing switch S3 in the open position or relays K2 or K4 will result in an open signal to the motor operator. Energizing switch S3 in the close position will result in a close signal to the motor operator.

A fire in panel 1CO3 may electrically short the wiring in such a manner that the open or close circuit may be energized, or it might break the wiring and preclude receipt of an open or close signal from the switch S3. A fire in panel 1C39 affecting relay contacts for relays K2 and K4 might similarly cause spurious opening or failure to open when normally called for by automatic signals.

Relays K2 and K4 are the ends of chains of relays that propogate signals from various points through the plant and in the control room. As a result of this linkage, fires in other control room panels may propogate spurious signals by damaging relays. Relay K2 is driven by the following combination of signals (see HPCI, Relay Development 1st Level):

K2 = (K41 + B21 - NO31B) (K42 + B21 - NO31D)

B21-N031B and D are local switches that close on RPV low water level and are connected via panel 1C55, located outside the control room, to relay K2 in control room panel 1C39. Relays K41 and K42 are located in control room panel 1C32 and are driven by the following signals (see HPCI, Relay Development 2nd Level):

K41 = B21-N031A K42 = B21-N031C

ι

B21-N031A and C are local switches like B21-N031B and C except they are connected via panel 1C56 located outside the control room, to relays K41 and K42 in control room panel 1C32. Should a fire develop in control room panel 1C32 that shorted out relays K41 and K42, the logic for K2 would result in the energizing of K2 and a spurious opening signal. Similarly, a fire in panel 1C32 could preclude receipt of a desirable automatic signal.

Relay K4 is driven by the following combination of signals (see HPCI, Relay Development 1st Level):

K4 = (E21A-K5A + E21A-K5B) (E21A-K6A + E21-K6B)

E21A-K5A and K6A are located at control room panel 1C43 and E21A-K5B and K6B are located at control room panel 1C44. These relays are driven by local switches E11-N011A, B, C and D that close on high drywell pressure (see HPCI, Relay Development 2nd Level). Should a fire develop in control room panel 1C43 that shorted out relays -K5A and -K6A or in control room panel 1C44 that shorted out relays -K5B and -K6B, the logic for K4 would result in the energizing of K4 and a spurious opening signal. Similarly, a fire in either panel 1C43 or 1C44 could preclude receipt of a desirable automatic signal.

From this sample analysis, one can see how the limits of vulnerability of a component to spurious control room signals can be determined. In all cases of components involving a motor control center, regardless of the extent of vulnerability to spurious control room signals, the motor operator can be controlled locally at the motor control center and isolated from the spurious signals. The breakers actuated by the close/open circuitry are located in the motor control center (MCC), and isolated from the control room circuitry. Power for the motor operator is supplied via the MCC and controlled by the breakers there. This arrangement allows local control of the motor operator from the MCC when the external control circuitry in the control room is disrupted. To insure the most reliable local operation of the motor control center, instructions should be included in procedures describing the necessary local actions.

The period is a	Ap	pendix	В
-----------------	----	--------	---

.

144

		-
APED A71-3(5)	E-121/16	E-121/51
APED A71-3(6)	E-121/17	E-121/52
APED A71-3(7)	E-121/18	E-121/53
APED A71-3(9)	E-121/19	E-121/54
APED A71-3(13)	E-121/21	E-121/55
APED B21-3(2)	E-121/23	E-121/57
APED B21-18 (2)	E-121/29	E-121/59
APED B21-18 (3)	E-121/30	E-121/59A
APED B21-145C-30-30-1	E-121/31	E-121/60
APED B21-145C-30-33-1	E-121/32	E-122/2
APED E41-6(3)	E-121/33	E-122/4
APED E41-6(4)	E-121/34	E-122/15
APED E51-9(2)	E-121/35	E-122/16
APED E51-9(3)	E-121/36	E-122/19
APED E51-9(6)	E-121/40	E-122/22
APED E11-7(4)	E-121/41	M-113
APED E11-7(5)	E-121/42	M-119
APED E11-7(6)	E-121/43	M-120
APED E11-7(8)	E-121/43A	M-122
APED E11-7(9)	E-121/44	M-123
E110/11	E-121/44A	M-124
E111/6	E-121/45	M-125
E-121/2	E-121/45A	
E-121/14	E-121/49	
E-121/15	E-121/50	

1