U.S. NUCLEAR REGULATORY OMMISSION DOCKET NUMBER NRCLORM 195 50-331 (2.76) ; FILE NUMBER NRC DISTRIBUTION FOR PART 50 DOCKET MATERIAL TO: Mr Rusche Iowa Elec Light & Pwr DATE OF DOCUMENT FROM: 5-17-76 Cedar Rapids, Ia L Liu DATE RECEIVED • • • • 5-24-76 NOTORIZED PROP INPUT FORM LETTER NUMBER OF COPIES RECEIVED DORIGINAL UNCLASSIFIED 3 signed []COPY DESCRIPTION ENCLOSURE Ltr notarized 5-17-76....trans the following: Amdt to OL/Change to Tech Specs: Consisting of Revisions to Appendix A with regard to limiting conditions for operation...... (40 cys encl rec'd) ~ ACKNOWLEDGED DO NOT REMOVE PLANT NAME: Duane Arnold SAFETY FOR ACTION/INFORMATION ENVIRO 5-25-76 ehf ASSIGNED AD : ASSIGNED AD : BRANCH CHIEF : Lear (5) BRANCH CHIEF : Paulson PROJECT MANAGER. PROJECT MANAGER . LIC. ASST. : Parrish LIC. ASST. : INTERNAL DISTRIBUTION REG ELLE SYSTEMS SAFETY PLANT SYSTEMS ENVIRO TECH NRC PDR HEINEMAN TEDESCO ERNST I&E (2) SCHROEDER BENAROYA-BALLARD OELD SPANGLER LAINAS GOSSICK & STAFF ENGINEERING IPPOLITO SITE TECH MIPC MACCARY KNIGHT GAMMILL CASE OPERATING REACTORS SIHVEIL STEPP HANAUER STELLO HULMAN PAWLICKI HARLESS OPERATING TECH PROJECT MANAGEMENT REACTOR SAFETY SITE ANALYSIS EISENHUT BOYD VOLLMER ROSS SHAO P. COLLINS NOVAK BUNCH BAER HOUSTON ROSZTOCZY J. COLLINS SCHWENCER PETERSON CHECK KREGER GRIMES MELTZ HELTEMES AT & I SITE SAFETY & ENVIRO SKOVHOLT SALTZMAN ANALYSIS RUTBERG DENTON & MULLER EXTERNAL DISTRIBUTION CONTROL NUMBER LPDR: Cedar Rapids, Ia BROOKHAVEN NATL LAB NATL LAB ULRIKSON (ORNL) REG. V-TE TIC 519 LA PDR NSIC CONSULTANTS (ASLB ACRS 16 HOLDING/SENE TO LA PONTISH

IOWA ELECTRIC LIGHT AND POWER COMPANY

General Office Cedar Rapids.Iowa

LEE LIU-VICE PRESIDENT - ENGINEERING

50-331

Mr. B. C. Rusche, Director Office of Nuclear Reactor Regulation Nuclear Regulatory Commission Washington, D.C. 20545

Dear Mr. Rusche:

Transmitted herewith, in accordance with the requirements of 10CFR50.59 and 50.90, is an application for amendment of DPR-49 to incorporate proposed changes in Technical Specifications (Appendix A to License) for the Duane Arnold Energy Center (DAEC), described in the enclosure hereto.

This proposed change has been reviewed and approved by the DAEC Operations Committee and the DAEC Safety Committee and does not involve a significant hazards consideration.

Three signed and notarized originals and 37 additional copies of this application are transmitted herewith. This application, consisting of the foregoing letter and enclosures hereto, is true and accurate to the best of my knowledge and belief.

PROPOSED CHANGE RTS-49B TO DAEC TECHNICAL SPECIFICATIONS

I. Affected Technical Specifications

Appendix A of the Technical Specifications for the DAEC (DPR-49).

II. Proposed Change in Technical Specifications

The licensees of DPR-49 propose the following changes in the Technical Specifications set forth in I above:

Add the attached specifications 3.6.H and 4.6.H consisting of Limiting Condition for Operation, Surveillance Requirements and Bases for hydraulic snubbers.

III. Justification for Proposed Change

The attached specifications are being submitted at the request of the NRC (Letter; Mr. G. Lear, Chief, Operating Reactors Branch #3, Division of Reactor Licensing, United Stated Nuclear Regulatory Commission to Mr. D. Arnold, President, Iowa Electric Light and Power Company; dated December 24, 1975.

The categories of shock suppressors described in Tables 4.6-3 and 4.6-4 were tabulated by their accessibility for inspection. Table 4.6-3 describes those considered to be accessible during normal operation and Table 4.6-4 describes those considered to be inaccessible during normal operation because of their location in high radiation areas.

IV. Review Procedures

This proposed change has been reviewed by the DAEC Operations Committee and Safety Committee which have found that this proposed change does not involve a significant hazards consideration.

PAGE NO. SURVEILLANCE LIMITING CONDITION FOR OPERATION REQUIREMENTS 3.5 Core and Containment Cooling Systems (Continued) С. Residual Heat Removal С 3.5 - 4Service Water System HPCI Subsystem D. D 3.5 - 6Ε. Reactor Core Isolation E 3.5 - 7Cooling Subsystem F. Automatic Depressurization \mathbf{F} 3.5 - 9System G. Minimum Low Pressure Cooling G 3.5 - 9and Diesel-Generator Availability H. Maintenance of Filled Dis-Η 3.5 - 11charge Pipe Ι. Engineered Safeguards Compart-Ι 3.5 - 11ments Cooling & Ventilation J. River Water Supply System J 3.5 - 123.6 Primary System Boundary 4.6 3.6 - 1Thermal and Pressurization Α. А 3.6 - 1Limitations в. Coolant Chemistry В 3.6-3 C. Coolant Leakage С 3.6 - 5D. Safety and Relief Valves D 3.6 - 5Ε. Jet Pumps E 3.6-6 **F**. Jet Pump Flow Mismatch \mathbf{F} 3.6 - 7G. Structural Integrity G 3.6-8 Η. Hydraulic Snubbers G 3.6-10a

DAEC-1

Table <u>Number</u>	Title	Page
4.2-D	Minimum Test and Calibration Frequency for Radiation Monitoring Systems	3.2-29
4.2-E	Minimum Test and Calibration Frequency for Drywell Leak Detection	3,2-30
4.2-F	Minimum Test and Calibration Frequency for Surveillance Instrumentation	3.2-31
4.2-G	Minimum Test and Calibration Frequency for Recircula- tion Pump Trip	3.2-34
3.6-1	Number of Specimens by Source	3.6-33
4.6-1	Nuclear Class I Access Provisions and Examination Schedule	3.6-34
4.6-2	Nuclear Class II Access Provisions and Examination Schedule	3.6-39
4.6-3	Hydraulic Snubbers Accessible During Normal Operation	3.6-41
4.6-4	Hydraulic Snubbers Inaccessible During Normal Operation	3.6-43
3.7-1	Containment Penetrations Subject to Type "B" Test Requirements	3.7-20
3.7-2	Containment Isolation Valves Subject to Type "C" Test Requirements	3.7-22
3.7-3	Primary Containment Power Operated Isolation Valves	3.7-25
3.12-1	Significant Input Parameters to the Duane Arnold Loss-of-Coolant Accident Analysis	3.12-9
6.2-1	Minimum Shift Crew Personnel and License Requirements	6.2-3
6.9-1	Protection Factors for Respirators	6.9-8
6.11-1	Reporting Summary - Routine Reports	6.11-12
6.11-2	Reporting Summary - Non-routine Reports	6.11-14

LIMITI	NG CONDITIONS FOR OPERATION	+	SURVEILLANCE REQUIREMENTS
		7.	<pre>At the end of each 10-year inspection interval, a report shall be submitted to the NRC that defines which of the following examination cate- gories, if any, could not be completed: a. Class 1 components - Categories N, L-2, and M-2.</pre>
			b. Class 2 components - Category C-H.
H. Hyd	raulic Snubbers	н.	Hydraulic Snubbers
1.	During all modes of opera- tion, except Cold Shutdown and Refuel, all hydraulic snubbers listed in Tables 4.6-3 and 4.6-4 shall be operable, except as noted in 3.6.H.2 through 3.6.H.4 below. From and after the time that a hydraulic snubber is deter- mined to be inoperable, con-	-	 The following surveillance requirements apply to all hydraulic snubbers listed in Tables 4.6-3 and 4.6-4: 1. All hydraulic snubbers whos seal material has been demonstrated by operating experience, lab testing or analysis to be compatible with the operating environment shall be visually increased. This inspection
	is permissible only during the succeeding 72 hours un- less the snubber is sooner made operable.		shall include, but not nec- essarily be limited to, ins tion of the hydraulic fluid reservoir, fluid connection and linkage connections to
3.	If the requirements of 3.6.H.1 and 3.6.H.2 cannot be met, an orderly shutdown shall be initiated and the reactor shall be in a cold		the piping and anchor to verify snubber operability in accordance with the fol- lowing schedule:
4.	shutdown condition within 36 hours. If a hydraulic snubber is		Number of Snubbers Found Inoperable During Inspection Next Require or During Inspec- Inspection
	determined to be inoperable while the reactor is in the shutdown or refuel mode, the snubber shall be made oper- able prior to reactor startur).	tion Interval Interval 0 18 months ± 2 1 12 months ± 2 2 6 months ± 2 3, 4 124 days ± 2 5, 6, 7 62 days ± 2

:

ţ

:

3.6-10a

LIMITING CONDITIONS FOR OPERATION

5. Snubbers may be added to safety related systems without prior License Amendment to Tables 4.6-3 or 4.6-4 provided that safety evaluations, documentation and reporting are provided in accordance with 10 CFR 50.59 and that a revision to Tables 4.6-3 or 4.6-4 is included with a subsequent License Amendment request.

SURVEILLANCE REQUIREMENTS

The required inspection interval shall not be lengthened more than one step at a time.

Snubbers are categorized in two groups, "accessible and inaccessible" based on their accessibility for inspection during reactor operation. These two groups will be inspected independently according to the above schedule.

- 2. All hydraulic snubbers whose seal materials are other than ethylene propylene or other material that has been demonstrated to be compatible with the operating environment shall be visually inspected for operability every 31 days.
- 3. The initial inspection shall be performed within six months ± 25% from the date of issuance of these specifications. For the purpose of entering the schedule in Specification 4.6.H.1, it shall be assumed that the facility has been on a 6-month inspection interval.
- 4. Once each refueling cycle a representative sample of 10 snubbers or approximately 10% of the snubbers, whichever is less, shall be functionally tested for operability including verification of proper piston movement, lock-up and bleed. For each unit and subsequent unit found inoperable, an additional 10% or ten (10) snubbers shall be so tested until no more failures are found or all units per category tested have been tested.

The type of inspection planned for each component depends on location, accessibility, and type of expected defect. Direct visual examination is proposed wherever possible since it is fast and reliable. Surface inspections are planned where practical, and where added sensitivity is required. Ultrasonic testing or radiography shall be used where defects can occur in concealed surfaces. Appendix J of the DAEC FSAR provides further detail as to the inspection program planned for the DAEC.

3.6.H & **4.6.**H BASES:

Hydraulic Snubbers

Snubbers are designed to prevent unrestrained pipe motion under dynamic loads as might occur during an earthquake or severe transient, while allowing normal thermal motion during startup and shutdown. The consequence of an inoperable snubber is an increase in the probability of structural damage to piping as a result of a seismic or other event initiating dynamic loads. It is therefore required that all hydraulic snubbers required to protect the primary coolant system or any other safety system or component be operable during reactor operation.

Because the snubber protection is required only during relatively low probability events, a period of 72 hours is allowed for repairs or replacements. In case a shutdown is required, the allowance of 36 hours to reach a cold shutdown condition will permit an orderly shutdown consistent with standard operating procedures. Since plant startup should not commence with knowingly

DAEC-1

defective safety related equipment, Specification 3.6.H.4 prohibits startup with inoperable snubbers.

DAEC-1

All safety related hydraulic snubbers are visually inspected for overall integrity and operability. The inspection will include verification of proper orientation, adequate hydraulic fluid level and proper attachment of snubber to piping and structures.

The inspection frequency is based upon maintaining a constant level of snubber protection. Thus the required inspection interval varies inversely with the observed snubber failures. The number of inoperable snubbers found during a required inspection determines the time interval for the next required inspection. Inspections performed before that interval has elapsed may be used as a new reference point to determine the next inspection. However, the results of such early inspections performed before the original required time interval has elapsed (nominal time less 25%) may not be used to lengthen the required inspection interval. Any inspection whose results require a shorter inspection interval will override the previous schedule.

Experience at operating facilities has shown that the required surveillance program should assure an acceptable level of snubber performance provided that the seal materials are compatible with the operating environment.

Snubbers containing seal material which has not been demonstrated by operating experience, lab tests or analysis to be compatible with the operating environment should be inspected more frequently (every month) until material compatibility is confirmed or an appropriate changeout is completed.

3.6-32a

Examination of defective snubbers at reactor facilities and material tests performed at several laboratories (Reference 1) has shown that millable gum polyurethane deteriorates rapidly under the temperature and moisture conditions present in many snubber locations. Although molded polyurethane exhibits greater resistance to these conditions, it also may be unsuitable for application in the higher temperature environments. Data are not currently available to precisely define an upper temperature limit for the molded polyurethane. Lab tests and in-plant experience indicate that seal materials are available, primarily ethylene propylene compounds, which should give satisfactory performance under the most severe conditions expected in reactor installations.

DAEC-1

To further increase the assurance of snubber reliability, functional tests will be performed once each refueling cycle. These tests will include stroking of the snubbers to verify proper piston movement, lock-up and bleed. Ten (10) snubbers represent an adequate sample for such tests. Observed failures on these samples should require testing of additional units. Snubbers in high radiation areas or those especially difficult to remove need not be selected for functional tests provided operability was previously verified.

Ref. 1 - Report H. R. Erickson, Bergen Paterson, to K. R. Goller, NRC, October 7, 1974. Subject: Hydraulic Shock Sway Arrestors.

3.6-32b

TABLE 4.6-3

HYDRAULIC SNUBBERS ACCESSIBLE DURING NORMAL OPERATION

Identification N	No. System	Bldg. Location	Vendor Dwg. No.
GBC-1-SS-56	RHR Service Water	Reactor	6156
GBC-1-SS-57	RHR Service Water	Reactor	6157
GBC-2-SS-62	RHR Service Water	Reactor	6162
HCC-8-SS-11	Core Spray Pump Suction	Reactor	1787
HCC-8-SS-12	Core Spray Pump Suction	Reactor	1788/1
DCA-14-55-73	RWCII Return to FW Line	Reactor	8518/1
EBB-16-SS-231	RHR	Reactor	2084
EBB-16-SS-232(2	ea.) RHR	Reactor	2085
EBB-16-SS-233	RHR	Reactor	2086
EBB = 16 - SS = 234(2)	ea.) BHR	Reactor	2087
GBB-3-SS-235	RHR	Reactor	2088
GBB-3-SS-236	BHB	Reactor	2089
GBB-3-SS-237	RHR	Reactor	2090
GBB-3-55-238	BHB	Reactor	2091
GLE-8-SS-239	BHB	Reactor	2092
GLE-8-SS-240	BHB	Reactor	2093
GBB-10-SS-241	RHR	Reactor	2094
GBB-10-SS-242(2	ea) RHR	Reactor	2095
GBB-10-55-243	RHR	Reactor	2096
GBB-4-SS-210	RHR	Reactor	2063
CBB = 4 = SS = 210	RHR	Reactor	2064
GBB = 4 = SS = 212	RHR	Reactor	2065
GBB-4-SS-213	RHR	Reactor	2066
GBB-16-SS-214	RHR	Reactor	2067
GBB-5-SS-215	RHR	Reactor	2068
GBB-4-SS-216 (2	ea)BHB	Reactor	2069
GBB-4-SS-217 (2)	ea.) RHR	Reactor	2070
HBB = 21 = SS = 218(2)	ea.)BHR	Reactor	2071
HBB-23-SS-219	RHR	Reactor	2072
HBB-23-SS-220	RHR	Reactor	2073
HBB-24-SS-221	RHR	Reactor	2074
HBB-24-SS-222	RHR	Reactor	2075
GBB-7-SS-223	RHR	Reactor	2076
GBB-7-SS-224	RHR	Reactor	2077
GBB-6-SS-225	RHR	Reactor	2078
GBB-6-SS-226	RHR	Reactor	2079
HBB-24-SS-227(2	ea.)RHR	Reactor	2080
HBB-24-SS-228(2	ea.)RHR	Reactor	2081
HBB-24-SS-229	RHR	Reactor	2082
HBB-29-SS-199	RHR	Reactor	2052
HBB-30-SS-205	RHR	Reactor	2058
HBB-30-SS-206	RHR	Reactor	2059
HBB-30-SS-245	RHR	Reactor	2098

(2 ea.) - Indicates there are 2 snubbers with that number.

DAEC-1 TABLE 4.6-3 (cont.)

Identification No.	System	Bldg. Location	Vendor Dwg. No.
HBB-7-SS-17	RCIC Turbine Exhaust	Reactor	1677
HBB-7-SS-18	RCIC Turbine Exhaust	Reactor	1678
HBB-7-SS-19 (2 ea.)	RCIC Turbine Exhaust	Reactor	1680
GBB-13-SS-16	Core Sprav	Reactor	1792
GBB-14-SS-20	Core Sprav	Reactor	1796
HBB-2-SS-7	Core Sprav	Reactor	1783
HBB-2-SS-8	Core Sprav	Reactor	1784
HBB-1-SS-9	Core Sprav	Reactor	1785
HBB-1-SS-10	Core Sprav	Reactor	1786
EBB-14-SS-13	HPCI Steam Supply	Reactor	1579
EBB-14-SS-14	HPCI Steam Supply	Reactor	1580
EBB-14-SS-15	HPCI Steam Supply	Reactor	1581
EBB-14-SS-16	HPCI Steam Supply	Reactor	1582
EBB-14-SS-16A	HPCI Steam Supply	Reactor	15824
HBB-6-SS-20	HPCI Turbine Exhaust	Reactor	1586
HBB-6-SS-22	HPCI Turbine Exhaust	Reactor	1588
HBD-31-SS-71	Emergency Service Water	Reactor	6171
HBD-31-SS-101	Emergency Service Water	Reactor	6201
HBB-25-SS-178	Fuel Pool to RHR	Reactor	2031
GBD-29-SS-12	Aux. Boiler Stm. to HPCI	Reactor	1578/1
DCB-2-SS-78	RWCU	Reactor	8523

(2 ea.) - Indicates there are 2 snubbers with that number.

DAEC-1

TABLE 4.6-4

HYDRAULIC SNUBBERS INACCESSIBLE DURING NORMAL OPERATION

Identification No.	System	Location	Vendor Dwg. No.
DLA-5-SS-10	RHR	Drvwe]]	6010 A/1
DLA-5-SS-11	RHR	Drvwell	6011
DLA-6-SS-12	RHR	Drvwo]]	6012
DLA-6-SS-13	RHR	Drvwell	6012
DI A-4-SS-14	RHR	Drvwell	6014
DI A-4-SS-15	RHR	Drvwell	6 015
DBA-4-SS-35	RCIC	Drywell	6035
DBA-4-SS-36	RCTC	Drvwell	6036
DLA-3-SS-1	HPCI Steam Supply	Drvwell	6001
DLA-3-SS-2	HPCI Steam Supply	Drvwell	6002
DLA-3-SS-3	HPCI Steam Supply	Drywell	6003
DBA-6-SS-29	CRD	Drywell	6029
DBA-6-SS-30	CRD	Drvwell	6030
DCA-6-SS-48	RWCII	Drvwell	6048
DCA-6-SS-49	RWCU	Drvwell	6049
DCA-6-SS-50	RWCU	Drvwe]]	6050
DBA-4-SS-34	RCIC Steam Supply	Drvwe]]	6034
DBA-5-SS-31	Head Sprav	Drvwell	6031
DBA-5-SS-37	Head Sprav	Drvwell	6037
DBA-5-SS-38	Head Sprav	Drvwell	6038
DBA-5-SS-47	Head Sprav	Drvwell	6047
DLA-2-SS-4	RHR	Drvwell	6004
DLA-2-SS-5	RHR	Drvwell	6005
DLA-2-SS-6	RHR	Drvwell	6006
DLA-2-SS-7	RHR	Drywell	6007
DLA-2-SS-8	RHR	Drywell	6008
DLA-2-SS-9	RHR	Drywell	6009
DBA-7-SS-71	RCIC to FW Line	Reactor	8516
DCA-14-SS-72	RWCU to FW Line	Reactor	8517
GBC-6-SS-16	Main Stm. Relief Valve	Drywell	6016
· · ·	Discharge	Č.	
GBC-6-SS-17	81 15 11	Drywell	6017
GBC-7-SS-18		Drywell	6018
GBC-7-SS-19	U U H	Drywell	6019
GBC-8-SS-20		Drywell	6020
GBC-8-SS-21		Drywell	6021
GBC-8-55-44		Drywell	6044
GBC-8-55-45	H H H	Drywell	6045
GBU-8-55-46		Drywell	6046
GBU-9-55-22	······	Drywell	6022
GBC-9-55-23	о н н н	Drywell	6023
GBC-9-55-41		Drywell	60 4 1
GBC-9-55-42 (2 ea.)	11 11	Drvwell	6042

(2 ea.) - Indicates there are 2 snubbers with that number.

DAEC-1 TABLE 4.6-4 (cont.)

Identification No.	System	Location	Vendor Dwg. No.
GBC-9-SS-43	Main Stm. Relief Valve Discharge	Drywell	6043
GBC-10-SS-24		Drvwell	6024
GBC-10-SS-25	11 H H	Drywell	6025
GBC-10-SS-39	11 18 11	Drvwell	6039
GBC-10-SS-40 (2 ea.)	H H H	Drvwell	6040
GBC-11-SS-26	41 - 11 - 11 -	Drvwell	6026
GBC-11-SS-27	11 HI II	Drvwell	6027
GBC-11-SS-32	11 11 11	Drvwell	6032
GBC-11-SS-33	11 B H	Drvwell	6033
SSB-1-MS	Main Steam	Drvwell	GE-BP 405 Rev 2
SSB-2-MS	Main Steam	Drvwell	GE-BP 406 Rev 3
SSC-1-MS	Main Steam	Drywell	GE-BP 407 Rev 2
SSC-2-MS	Main Steam	Drvwell	GE-BP 408 Rev 2
SSA-1-MS	Main Steam	Drvwell	GE-BP 401 Rev 1
SSA-2-MS	Main Steam	Drvwell	GE-BP 402 Rev 1
SSD-1-MS	Main Steam	Drywell	GE-BP 403 Rev 1
SSD-2-MS	Main Steam	Drvwell	GE-BP 404 Rev 1
SSA-1	Recirc	Drywell	GE-BP 201 Rev 2
SSB-1	Recirc	Drywell	GE-BP 202 Rev 2
SSA-2	Recirc	Drywell	GE-BP 203 Rev 1
SSB-2	Recirc	Drywell	GE-BP 204 Rev 1
SSA-3	Recirc	Drywell	GE-BP 205 Rev
SSB-3	Recirc	Drywell	GE-BP 206 Rev
SSA-4	Recirc	Drywell	GE-BP 207 Rev
SSB-4	Recirc	Drywell	GE-BP 208 Rev
SSA-5	Recirc	Drywell	GE-BP 209 Rev 1
SSB-5	Recirc	Drywell	GE-BP 210 Rev 1
SSA-6	Recirc	Drywell	GE-BP 211 Rev 1
SSB-6	Recirc	Drywell	GE-BP 212 Rev
SSA-7	Recirc	Drywell	GE-BP 213 Rev
SSB-7	Recirc	Drywell	GE-BP 214 Rev 1
SSA-8	Recirc	Drywell	GE-BP 215 Rev 1
SSB-8	Recirc	Drywell	GE-BP 216 Rev 1
SSA-9	Recirc	Drywell	GE-BP 217 Rev 1
SSB-9	Recirc	Drywell	GE-BP 218 Rev 1
SSA-10	Recirc	Drywell	GE-BP 219 Rev 1
SSB-10	Recirc	Drywell	GE-BP 220 Rev 1
SSA-11	Recirc	Drywell	GE-BP 221 Rev
SSB-11	Recirc	Drywell	GE-BP 222 Rev

(2 ea.) - Indicates there are 2 snubbers with that number.