Enclosure 1 TVA Letter Dated August 4, 2011 Responses to Licensee Open Items to be Resolved for SER Approval

Attachment 1

TVA Calculation WBNAPS3127, "EQ Dose in the Control Building," Revision 0

LEGIBILITY EVALUATED AND ACCEPTED FOR ISSUE. ALL PAGES 6/8/11 SIGNATURE REV O DATE Page REV O EDMS/RIMS NO. EDMS TYPE: EDMS ACCESSION NO (N/A for REV. 0). N/A calculations(nuclear) T93110610011 Calc Title: EO Dose in the Control Building NUMBER CALC ID TYPE 080 PLANT BRANCH CUR REV NEW REY BEVISION CURRENT CN NUC APPLICABILITY Entire calc 🔯 WBN NTB NEW CN NUC WBNAPS3-127 Ö Selected pages No CCRIS Changes (For calc revision, CCRIS SUPERSEDE CCRIS UPDATE ONLY ACTION NEW DELETE DUPLICATE been reviewed and no REVISION RENAME (Verifier Approval Signatures Not CCRIS changes required) Required) UNIOS UNITS SYSTEMS 001/002 NA NA APPLICABLE DESIGN DOCUMENTIS DCN.EDC.N/A **CLASSIFICATION** N/A SAFETY ATED? (If yes, QUALITY UNVERIFIED SPECIAL REQUIREMENTS DESIGN OUTPUT SAR/TS and/or ISFS RELATED ATTACHMENT? ASSUMPTION AND/OR LIMITING CONDITIONS? SAR/COC AFFECTED Yes X No QR = yes) Yes 🛛 No 🗌 Yes 🔲 No 🛛 Yes 🗌 No 😣 No X Yes 🔲 Yes 🔲 No 🔯 PREPARER PHONE NO PREPARER ID PREPARING ORG (BRANCH) VERIFICATION METHOD NEW METHOD OF ANALYSIS WorleyParsons Polestar Ves X No MCBERG 603-928-3810 **Design Review** CHECKER SIGNATURE PREPARER SIGNATURE DATE DATE Mare C. 1 Marc C. Berg James E. Bouchard 5-11-291 VERIFIER SIGNATURE DATE APPROVAL SIGNATURE DATE James E. Bouchard KWYIN 11 0 Jan 2011 LUND JOHN E. STATEMENT OF PROBLEMABSTRACT This calculation determined the EQ dose in the Control Building. WBNTSR-112 determined the 100-day LOCA EQ doses using the radioisotope concentrations at the control room intake (either West/Normal or East/Emergency). The pressurization air for the rooms of interest is taken from the West/Normal intake. This calculation modified the WBNTSR-112 doses to correct for the West/Normal intake. The normal dose was based on an assumed 1 mrem/hr since there are normally no sources in the rooms. The results of the calculation were [rads]; EL755 Mechanical EL755 All Other All Other Control Building Equipment Room* Rooms Elevations (EL685.5, 729, and 708) 40 Year Gamma Normal 350.4 350.4 350.4 100-Day Gainma Accident 710.5 4.632 66.7 Gamma Total (Normal + Accident) 1060.9 355.03 417.1 100-Day Beta Accident 95.4 7.73 95.4 Gamma + Beta Total (Normal + Accident) 1156.3 362.76 512.5 * This is the HEPA large face, which is the largest dose in the room. For locations other than the HEPA large face, the dose will be less depending on location (see WBNTSR-005). MICROFICHE/EFICHE Yes I No X FICHE NUMBER(S) LOAD INTO EDMS AND DESTROY LOAD INTO EDMS AND RETURN CALCULATION TO GALCULATION LIBRARY. ADDRESS: LOAD INTO EDMS AND RETURN CALCULATION TO:

NPG CALCULATION COVERSHEET/CCRIS UPDATE

								raye z
CALC ID	TYPE	ORG	PLANT	BRANCH	NUMBER		REV	
	ĊN	NUC	WBN	NTB	WBNAPS3127		000	
			A	LTERNATE C	ALCULATION IDENT	IFICATION	. ,	
<u>BLDG</u> <u>NA</u>	RO N	<u>OM</u>	ELEV NA	COORD/AZIM	<u>FIRM</u> Polestar	Print Report	Yes 🛛	
CATEGORIE	ES . NA			• • • • •				

KEY NOUNS (A-add, D-delete)

ACTION	KEY NOUN	<u>A/D</u>	KEY NOUN
(A/D)		-	
A	EQ		
	· · · · · · · · · · · · · · · · · · ·		

<u>CROSS-REFERENCES</u> (A-add, C-change, D-delete)

ACTION (A/C/D)	XREF CODE	XREF TYPE	XREF PLANT	XREF BRANCH	XREF <u>NUMBER</u>	XREF REV	
А	Р	CN	WBN	NTB	WBNNAL3018		
A	Р	CN	WBN.	NTB	WBNNAL3025		
A	Р	CN	WBN	NTB	WBNTSR005		
A	Р	DW	WBN	NTB	1-47W866-4		
A	Р	CN	WBN	NTB	WBNAPS3104		
А	Р	CN	WBN	NTB	TIRPS198		
A	Р	DW	WBN	NTB	47W200-5		
A			GEN	NTB	GENARS3-018 GIL G	15.11	
A	Р	со	GEN	NTB	FENCDOSE		
A	S	CN	WBN	NTB	WBNOSG4004		
A	S	CN	WBN	NTB	WBNAPS4004		
A	Р	CN	WBN	NTB	WBNTSR112		
A	Р	DW	WBN	NTB	47W200-3		
A	Р	DW	WBN	NTB	47W200-4		
A	Р	DW	WBN	NTB	47W200-6		
CCRIS ONLY	UPDATES:	on making trav				aludadi	
Following are r	equired only wr	ien making key	word/cross rere				
,	PREPARER SI	GNATURE		DATE	CHECKER SIGNATURE	DATE	
PREPARER P	HONE NO.		Ē	EDMS ACCESSION NO.			
TVA 40532 [10-2008]				Page 2 of 2 NEDP-2-1 [10-20-2008]			

			Page 3	
	NPG CALC	ULATION RECORD OF R	EVISION	
CALCULA	TION IDENTIFIER WBNAPS3-	127	· .	•
Title	EQ Dose in the Control Buildir	ng		
Revision No.	DES	SCRIPTION OF REVISION		
0	Initial Issue. WBNAPS4-004	and WBNOSG4-004 will	become successors to thi	s calculation
	and should be revised to reli	ect the results.		• •
· · ·	R0: 13 total pages	. ·	· · · · · · · · · · · · · · · · · · ·	
•				,
	· · · · · · · · · · · · · · · · · · ·			
			•	
·				
		,		
			• •	
		· .		
		-		
		·		
			·	

	· · · · · · · · · · · · · · · · · · ·			Fage	4
	NPG CALCULATION TA	BLE OF CONT	ENTS		
Calculation Id	dentifier: WBNAPS3-127	Revision: 0			
	TABLE OF C	ONTENTS			
SECTION	TIT	LE			PAGE
	Coversheet				1
	Revision Log	•			2
	Calculation Design Verification Form			•	3
	Table of Contents				4
	Calculation Verification Form				. 5
	Computer Input File Storage Information Sheet				6
10 A.	Computer Output Microfiche Information Sheet				7
					-
	Purpose				8
	Introduction				8
	Assumptions				8
	Spacial Bequirements/I imiting Conditions			1	8
	Coloulations				. 9
					12
					13
	References				
	,				
	-				
	· ·				
					•
				,	

TVA 40710 [10-2008]

Page 1 of 1

NEDP-2-3 [10-20-2008]

NPG	CALCULATION	VERIFICATION I	FORM	
Calculation Identifier WBNAPS3	-127		Revision 0	······································
lethod of verification used:) <i>*</i>	· · · · · · · · · · · · · · · · · · ·
. Design Review	8		11 0	1. /
2. Alternate Calculation	_] V(erifier	Main Date 7	<u>/////</u>
Oualification Test				· · · · · · · · · · · · · · · · · · ·
have reviewed WBNAPS3-127 and I	have found the cal	culation to have b	een completed in a te	chnically sound
and appropriate manner for the scena	uno specified in the	text. In conductir	ig the verification. I re	viewed the
nethodology, design input, and assur	mptions, which I ha	ive found to be va	lid and conservative.	
				÷
			. ;	
1. A Contract of the second				
	· · · .			
			•	
	· · ·			
				·
		-		
· · · ·		•		
		· .		•

	ŇF		R INPUT F	ILE		
	STO	RAGE INFORM	ATION S	HEET		
ocument	WBNAPS3-127	·	Rev. 0	Plant: WBN		
ubject: Q Dose in t	he Control Building					
Electro	nic storage of the input files	for this calculat	tion is not i	required. Commer	its:	
iere are no	computer runs associated with	this calculation				
] Input fi provide use.)	les for this calculation have ad below for each input file.	been stored ele (Any retrieved f	ctronically ile require	and sufficient iden s re-verification of i	tifying informati ts contents bef	on is ore
			· ·			
		-				
Microfi	che/eFiche		·			
	· · · · · · · · · · · · · · · · · · ·			,	<u>.</u>	<u></u>
				(

Page 1 of 1

.

TVA

Document WBN/ Subject: EQ Dose in the Co Microfiche Number	MICROFICHE APS3-127 ntrol Building Description There are no computer ru	INFORMATION SF Rev. 0	IEET Plant: WBN	I
Document WBN/ Subject: EQ Dose in the Co Microfiche Number	APS3-127 ntrol Building Description There are no computer ru	ns associated with this c	alculation	
EQ Dose in the Co Microfiche Number	ntrol Building Description There are no computer ru	ns associated with this c	alculation	
Aicrofiche Number	Description There are no computer ru	ns associated with this c	alculation	
	There are no computer ru	ns associated with this c	alculation	
			· · ·	
· · · · · · · · · · · · · · · · · · ·				
		·		
	1			
			· ·	
			· · · · · ·	
•				
				•
		. *		

Calculation No. WBNAPS3-127	Rev: 0	Plant: WBN	Page: 8
Subject: EQ Dose in the Control Building	Pi	repared: MCB	Date:
	С	hecked: JEB	Date:

Purpose

The purpose of this calculation is to determine the total EQ dose (100-day accident plus 40-year normal dose) in the Control Building.

Introduction

This calculation is to establish an EQ dose of <1E3 rads for the Control Building. Additionally, the dose in the El.755 Mechanical Equipment Room (where the control room filters are located) is also performed.

Assumptions

1. It is assumed that the normal operation dose rate in the Control Building has a 1 mrem/hr background dose rate.

Technical Justification: References 1 and 2 have documented no normal radiation source in the Control Building. The assumed value of 1 mrem/hr is the customary and reasonable assumed value for such rooms. Also, this is the value at which RADCON considers an area to be a general access area. See also assumption #2.

2. In all Control Building Rooms the dose due to the Control Building Emergency filters may be neglected, except for the room where the filters are located (El.755 Mechanical Equipment Room):

Technical Justification: The Control Building Emergency Filers will be contaminated during a LOCA (ref.3). The largest dose in the El.755 room is on the HEPA large face (705.9 rads). However, once one gets a distance from the filters, the doses drop dramatically. For instance, in the control room proper (through a cinder block wall), the doses drop to <5E-4 rads. It can be concluded that doses due to the filters may be ignored due to intervening floor/ceilings plus the distance involved.

3. The air in the Control Building that is not in the Control Room Habitability Zone may be assumed to be the same as that found at the west end (normal) intake of the control building.

Technical Justification: From ref. 4, the outside air that is used to pressurize the Control Building excluding the Control Room Habitability Zone during both normal and post Control Room Isolation (CRI) modes is normally aligned to the Control Building air intake located on the West end of the building (the "normal control room intake"). The flow rate is not specified on the flow diagram, but the balancing damper associated with this flow path was set in order to achieve a pressure that is a minimum of 1/8 inch w.g. less than the MCR during a CRI in order to maintain a positive pressure in the MCR. Since there is a positive flow of air into the rooms from the intake, the concentrations in the room may be assumed to be same as that at the intake. Also, any inleakage will come from the control room habitability zone (same intake, and is also filtered), or from adjacent buildings. Air from adjacent buildings, such as the Turbine Building, will have had greater dilution than the intake location due to greater distance and circuitous travel path to get to those locations.

Special Requirements/Limiting Conditions

There are no special requirements or limiting conditions in this calculation

Calculation No. WBNAPS3-127	Rev: 0	Plant: WBN	Page: 9
Subject: EQ Dose in the Control Building	Pre	pared: MCB	Date:
	Ch	ecked: JEB	Date:

Calculations

40-Year Normal Gamma Dose

Since there are no identified normal operation sources in these rooms (ref.1 and 2), it is assumed that the background dose rate is 1 mrem/hr. The 40-year normal operating dose is therefore:

1 mrem/hr * 1 rad/rem * 24 hr/day * 365 days/yr * 40 yr / (1000 mrem/rem) = 350.4 rads

100-day Accident Gamma Dose

For Rooms in the Control Room Habitability Zone the contaminated air is filtered. The 100-day airborne gamma dose was determined in WBNTSR-005 (ref.3) as 4.632 rads. In the Mechanical Equipment Room the filter shine dose was determined to be an additional 705.9 rads (HEPA large face).

For Control Building rooms not in the Control Room Habitability Zone the air is not filtered, therefore the doses will be different. From ref. 4, the outside air that is used to pressurize the Control Building during both normal and post Control Room Isolation (CRI) modes is normally aligned to the Control Building air intake located on the West end of the building. The flow rate is not specified on the flow diagram, but the balancing damper associated with this flow path was set in order to achieve a pressure on the elevations that is a minimum of 1/8 inch w.g. less than the MCR during a CRI.

The doses due the activities at the intake were determined in WBNTSR-112 (ref.5) which in turn were derived from LOCA releases from TI-RPS-198 (ref.7). These dose rates were determined using the worst case X/Q values for the first 8 hours, then the more favorable intake X/Q after 8 hours. Since the more favorable intake is not the normal (West) intake, the dose rates must be modified by the ratio of the X/Q values.

								Air intake
			.0-2 hr	2-8 hr	8-24 hr	1-4 day	4-30 days	No/location
Unit 1	Case No. 1	Full Rx Bldg	4.47E-04	2.81E-04	1.21E-04	9.36E-05	7.77E-05	1/East
Unit 1	Case No. 2	Full Rx Bldg	1.09E-03	9.50E-04	4.56E-04	3.09E-04	2.35E-04	2/West
		1/2 Rx Bldg	1.09E-03	9.59E-04	4.60E-04	3.09E-04	2.37E-04	2/West
		1/4 Rx Bldg	1.09E-03	9.72E-04	4.65E-04	3.10E-04	2.39E-04	2/West
		1/8 Rx Bldg	1.12E-03	9.78E-04	4.73E-04	3.10E-04	2.41E-04	2/West
		No Bldg Area	1.29E-03	1.16E-03	5.55E-04	3.35E-04	2.64E-04	2/West
Unit 2	Case No. 3	Full Rx Bldg	8.28E-04	7.69E-04	3.90E-04	2.98E-04	2.17E-04	1/East
		1/2 Rx Bldg	8.28E-04	7.75E-04	3.94E-04	2.99E-04	2.18E-04	1/East
		1/4 Rx Bidg	8.63E-04	7.69E-04	4.01E-04	2.99E-04	2.19E-04	1/East
		1/8 Rx Bldg	8.85E-04	7.73E-04	4.09E-04	3.00E-04	2.21E-04	1/East
		No Bidg Area	9.78E-04	9.08E-04	4.71E-04	3.21E-04	2.36E-04	1/East
Unit 2	Case No. 4	Full Rx Bldg	4.13E-04	3.54E-04	1.90E-04	1.43E-04	1.03E-04	2/West

From WBNTSR-104: LOCA X/O [sec/cum]

TI-RPS-198/WBNTSR-112 X/Q values [sec/cum] used were:

0-2 hr	2-8 hr	8-24 hr	1-4 day	4-30 days
1.12E-03	9.78E-04	1.21E-04	9.36E-05	7.77E-05

Worst case X/Q (unit 1 case 2 vs. unit 2 case 4, 1/8 Rx. Bldg)

		0-2 hr	2-8 hr	8-24 hr	1-4 day	4-30 days
case 2	Ul to West	1.12E-03	9.78E-04	4.73E-04	3.10E-04	2.41E-04
case 4	U2 to West	4.13E-04	3.54E-04	1.90E-04	1.43E-04	1.03E-04
Worst	Case:	1.12E-03	9.78E-04	4.73E-04	3.10E-04	2.41E-04

Calculation No. WBNAPS3-127	Rev: 0	Plant: WBN	Page: 10
Subject: EQ Dose in the Control Building	Pr	epared: MCB Date:	
	Cł	necked: JEB	Date:

Correction Ratio:

The correction ratio is the worst case X/Q divided by the X/Q used by WBNTSR-112:

	0-2 hr	2-8 hr	8-24 hr	1-4 day	4-30 days
WBNTSR-112 X/Q	1.12E-03	9.78E-04	1.21E-04	9.36E-05	7.77E-05
Correction X/Q	1.00E+00	1.00E+00	3.91E+00	3.31E+00	3.10E+00

Taking the WBNTSR-112 results and correcting them using the correct (West) intake X/Q results in the following: (note, the 720-2400 hr X/Q values are assumed to the be same as the 96-720 hr X/Q):

Gamma Dose [rads] in Rooms not in Control Room Habitability Zone

	0-2 hr	2-8 hr	8-24 hr	24-96 hr	96-720 hr	720-2400 hr
correction ratio	1.000E+00	1.000E+00	3.909E+00	3.312E+00	3.102E+00	3.102E+00
WBNTSR-112						
Dose	8.965E+00	9.818E+00	7.646E+00	4.144E+00	1.336E+00	5.799E-02
					Total over 100 days	32.0
Corrected Total	8.965E+00	9.818E+00	2.989E+01	1.372E+01	4.144E+00	1.799E-01
					Total over 100 days	66.7

100-day Accident Beta Dose

For Control Building Rooms not in the Control Room Habitability Zone, the beta dose is determined the same as that in ref.3. From TI-RPS-198 (ref.7) COROD run R198C23A (U1 PCO control loop single failure, conventional core) which produced the highest beta dose:

4-30 day dose rate: 3.785 mrads/hr

30 day continuous occupancy dose: 1.371E3 mrads

30-100 day dose: 3.785 mrad/hr * 24 hr/day * 70 day = 6.3588E3 mrads

total 100-day airborne+shine dose: 1.371E3 + 6.3588E3 = 7.73E3 mrads = 7.73 rads

The activity at the control room intake vent is also used to determine the beta dose rate for the control building rooms. The average intake concentrations are taken from WBNTSR-112. The formulas for determining the average beta dose rate from a semi-infinite cloud for each isotope is (ref.9):

 $D_{beta} = 0.23E(X/Q)(Q/\Delta T) * 3600 \text{ sec/hr}$

where

D= dose rate from a semi-infinite cloud [rem/hr]

E=average gamma or beta energy for the isotope per disintegration [MeV/dis]

X/Q=Dispersion Coefficient [sec/cum]

 $Q/\Delta T$ =integrated concentration of isotope over time interval ΔT [Ci/sec]

 $(X/Q)(Q/\Delta T) = [Ci/cum]$ as determined by COROD, found in WBNTSR-112 (note: these concentrations are based on X/Q values that must be corrected, see gamma correction above)

The total dose rate is the summation of all dose rates from each isotope. The average energy of each isotope is taken from ref.10.

Calculation No.		o. WBNAPS3-127			Rev: 0	Plant: WBN	Page: 11
Subject:	EQ Dose	in the Control Bui	ilding		P	repared: MCB	Date:
					C	hecked: JEB	Date:
WDNTSE	2-112-						
	C-112 .	Concentration (C) at Control Ro	oom Intake (Ci/	'm3)*		
	0.2 hr	28 hr	8 24 hr	21.06 hr	06.720	hr 720-2400 hr	
	0-2 m 1 774 E-04	2-8 m 4 591E-05	0-24 III 1 577F-06	5 294F-10	2 00/F-	720-2400 III 73 0 000F+00	
u-oom /= 85m	4 669E-04		4 442F-05	4 570F-07	1 418F-	13 0.000E+00	
u-00m (r-85	2.404E-05	2.385E-05	1.926E-05	7.115E-06	1.418E-	06 1 442E-06	
(r-87	6.211E-04	9.650E-05	1.103E-06	2.481E-11	8.012F-	32 0.000E+00	
G 57	1.173E-03	4.583E-04	3.802E-05	8.971E-08	3.430E-	17 0.000E+00	
Gr-89	5.382E-05	7.828E-17	0.000E+00	0.000E+00	0.000E+	00 0.000E+00	
(r-90)	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+	00 0.000E+00	
(e-131m	2.436E-05	2.400E-05	1.903E-05	6.636E-06	8.031E-	07 9.385E-08	
e-133m	1.416E-04	1.345E-04	9.603E-05	2.256E-05	3.706E-	07 9.385E-08	
e-133	4.440E-03	4.333E-03	3.333E-03	1.014E-03	5.139E-	05 6.376E-07	
e-135m	4.622E-04	6.035E-04	3.207E-04	1.788E-05	5.931E-	10 0.000E+00	
le-135	1.508E-03	1.313E-03	6.133E-04	3.499E-05	3.824E-	09 8.453E-31	
le-137	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+	00 0.000E+00	
(e-138)	4.389E-04	4.706E-07	3.319E-15	0.000E+00	0.000E+	00 0.000E+00	
le-139	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+	00 0.000E+00	
le-140	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+	00 0.000E+00	
130	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+	00 0.000E+00	
131	5.175E-05	2.626E-06	1.283E-06	2.890E-07	2.406E-	08 1.029E-09	
132	7.032E-05	9.810E-07	3.571E-08	1.904E-11	1.402E-	22 0.000E+00	
-133	1.059E-04	4.681E-06	1.665E-06	1.273E-07	3.472E-	10 1.161E-19	
134	9.952E-05	2.641E-07	4.422E-10	1.132E-16	0.000E+	00 0.000E+00	
135	9.926E-05	3.171E-06	5.609E-07	7.921E-09	1.098E-	13 0.000E+00	
m-136	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+	00 0.000E+00	
130*	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+	-00 0.000E+00	
131*	2.965E-06	3.266E-07	1.598E-07	3.601E-08	2.998E-	09 1.282E-10	
132*	3.889E-06	1.218E-07	4.448E-09	2.372E-12	1.746E-	23 0.000E+00	
133*	6.043E-06	5.816E-07	2.073E-07	1.585E-08	4.324E-	11 1.446E-20	
-134*	5.235E-06	3.256E-08	5.485E-11	1.403E-17	0.000E+	-00 0.000E+00	
-135*	5.615E-06	3.941E-07	6.991E-08	9.872E-10	1.367E-	14 0.000E+00	
lm-136*	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+	-00 0.000E+00	

Calculat	ion No. WBI	0	Plant: W	BN	Page: 12			
Subject:	EQ Dose in the	EQ Dose in the Control Building					B D	ate:
		Che	ecked: JEB	D	ate:			
eta Doses in R	looms not in Control	Room Habitabil	itv Zone					
	Aver. Beta			(rem/hr)				
	Energy (E)	0-2 hr	2-8 hr	8-24 hr	24-9	96 hr 96	5-720 h	r 30-100 da
	MeV DeltaT	2	6	16	7	2	624	1680
Kr-83m	3.708E-02	1.089E-02	8.457E-03	7.747E-04	1.170)E-06 4.)12E-1	9 0.000E+0
<r-85m< td=""><td>2.529E-01</td><td>1.955E-01</td><td>3.188E-01</td><td>1.488E-01</td><td>6.890</td><td>)E-03 1.</td><td>853E-0</td><td>8 0.000E+0</td></r-85m<>	2.529E-01	1.955E-01	3.188E-01	1.488E-01	6.890)E-03 1.	853E-0	8 0.000E+0
Kr-85	2.506E-01	9.976E-03	2.969E-02	6.394E-02	1.063	BE-01 1.	998E-0	1 5.027E-01
۲ -8 7	1.324E+00	1.361E+00	6.346E-01	1.934E-02	1.958	3E-06 5	480E-2	6 0.000E+00
Kr-88	3.750E-01	7.284E-01	8.538E-01	1.889E-01	2.006	6. 6.	546E-1	2 0.000E+00
Kr-89	1.231E+00	1.097E-01	4.787E-13	0.000E+00	0.000	E+00 0.0	00E+0	0 0.000E+0
<r-90< td=""><td>1.197E+00</td><td>0.000E+00</td><td>0.000E+00</td><td>0.000E+00</td><td>0.000</td><td>E+00 0.0</td><td>)00E+0</td><td>0 0.000E+0</td></r-90<>	1.197E+00	0.000E+00	0.000E+00	0.000E+00	0.000	E+00 0.0)00E+0	0 0.000E+0
Ke-131m	1.428E-01	5.761E-03	1.703E-02	3.600E-02	5.649	DE-02 5.	925E-0	2 1.864E-02
Ke-133m	1.898E-01	4.451E-02	1.268E-01	2.415E-01	2.553	3E-01 3.	534E-0	2 2.478E-02
Ke-133	1.354E-01	9.955E-01	2.915E+00	5.979E+00	8.185	E+00 3.:	595E+0	0 1.201E-0
Ke-135m	9.500E-02	7.271E-02	2.848E-01	4.036E-01	1.013	BE-01 2.	911E-0	5 0.000E+0
Ke-135	3.168E-01	7.911E-01	2.066E+00	2.574E+00	6.608	3E-01 6.	259E-0	4 3.725E-2:
(e-137	1.642E+00	0.000E+00	0.000E+00	0.000E+00	0.000	E+00 0.0	00E+0	0 0.000E+0
(e-138	6.058E-01	4.403E-01	1.416E-03	2.664E-11	0.000	E+00 0.0)00E+0	0 0.000E+0
(e-139	1.835E+00	0.000E+00	0.000E+00	0.000E+00	0.000	E+00 0.0)00E+0	0 0.000E+0
(e-140	1.117E+00	0.000E+00	0.000E+00	0.000E+00	0.000	E+00 0.0	00E+0	0 0.000E+0
-130	2.802E-01	0.000E+00	0.000E+00	0.000E+00	0.000	E+00 0.0)00E+0	0 0.000E+0
-131	1.943E-01	1.665E-02	2.535E-03	3.303E-03	3.348	3E-03 2.	415E-0	3 2.781E-04
-132	5.143E-01	5.989E-02	2.506E-03	2.433E-04	5.838	3E-07 3.	725E-1	7 0.000E+0
-133	4.080E-01	7.155E-02	9.488E-03	9.000E-03	3.096	6E-03 7.	319E-0	5 6.589E-14
-134	6.102E-01	1.006E-01	8.006E-04	3.575E-06	4.118	BE-12 0.0	000E+0	0 0.000E+0
-135.	3.680E-01	6.049E-02	5.797E-03	2.735E-03	1.738	3E-04 2.	088E-0	8 0.000E+0
m-136	2.210E+00	0.000E+00	0.000E+00	0.000E+00	0.000	E+00 0.0	000E+0	0 0.000E+0
-130*	2.802E-01	0.000E+00	0.000E+00	0.000E+00	0.000	E+00 0.0	00E+0	0 0.000E+0
-131*	1.943E-01	9.540E-04	3.153E-04	4.113E-04	4.171	IE-04 3.	010E-0	4 3.465E-0
-132*	5.143E-01	3.312E-03	3.112E-04	3.031E-05	7.273	3E-08 4.	540E-1	8 0.000E+0
-133*	4.080E-01	4.083E-03	1.179E-03	1.120E-03	3.855	5E-04 9.	115E-0	6 8.207E-1
-134*	6.102E-01	5.290E-03	9.870E-05	4.434E-07	5.104	iE-13 0.0)00E+0	0 0.000E+0
-135*	3.680E-01	3.422E-03	7.205E-04	3.408E-04	2.166	6E-05 2.	599E-0	9 0.000E+0
m-136*	2.210E+00	0.000E+00	0.000E+00	0.000E+00	0.000)E+00 0.0)00E+0	0 0.000E+0
	total	5.092E+00	7.280E+00	9.673E+00	9.382	E+00 3.	394E+0	0 6.665E-0
X	CO correction ratio	1.000E+00	1.000E+00	3.909E+00	3.312	E+00 3	102E+0	0 3.102E+0
	corrected total	5.092E+00	7.280E+00	3.781E+01	3.107	/E+01 1	208E+0	1 2 067E+0
		210222			5.107		+o+-1	0.5400.0

.

Calculation No. WBNAPS3-127	Rev: 0	Plant: WBN	Page: 13	
Subject: EQ Dose in the Control Building	· []	Prepared: MCB Date:		
		Checked: JEB	Date:	

Results

The total doses [rads] were determined to be:

	El.755 Mechanical	El.755 All	All Other Control
	Equipment Room*	Other Rooms	Building Elevations
			(El.685.5, 729, and 708)
40 Year Gamma	350.4	350:4	350.4
Normal			
100-Day Gamma			
Accident	710.5	4.632	66.7
Gamma Total			
(Normal + Accident)	1060.9	355.03	417.1
100-Day Beta			
Accident	95.4	7.73	95.4
Gamma + Beta Total			
(Normal + Accident)	1156.3	362.76	512.5

* This is the HEPA large face, which is the largest dose in the room. For locations other than the HEPA large face, the dose will be less depending on location (see WBNTSR-005).

Discussion and Conclusion

All rooms in the Control Building, except the El.755 Mechanical Equipment Room, have doses <1E3 rads.

References

1. WBNNAL3-018 R2 "Auxiliary Building Piping Source Term Data"

2. WBNNAL3-025 R6 "Normal Operation Dose For Equipment Qualification Outside the Shield Building"

3. WBNTSR-005 R4 "Dose due to the Control Building Emergency Air Cleanup Filters"

4. WBN CCD drawing 1-47W866-4 R39

5. WBNTSR-112 R6 "Shield Design Review and Equipment Qualification Study"

6. WBNAPS3-104 R2 "WBN Control Room X/Q"

7. TI-RPS-198 R23 "Dose to Control Room Personnel Due to a Regulatory Guide 1.4 Loss of Coolant Accident"

- 8. WBN drawing 47W200-3 RN WBN drawing 47W200-4 RJ
 - WBN drawing 47W200-5 RM

WBN drawing 47W200-6 RE

9. Computer Code FENCDOSE R3, code ID 262358, controlled user's manual #8 10. GENAPS3-018 R1 "NEB Isotope Library Verification"