

Note 1. Ensure that at least two topics from every applicable KJA category are sampled within each tier of the RO and SRO-only outlines (i.e., except for one category in Tier 3 of the SRO-only outline, the "Tier Totals" in each K/A category shall not be less than two).
2. The point total for each group and tier in the proposed outline must match that specified in the table. The final point total for each group and tier may deviate by ± 1 from that specified in the table based on NRC revisions. The final RO exam must total 75 points and the SRO-only exam must total 25 points.
3. Systems/evolutions within each group are identified on the associated outline; systems or evolutions that do not apply at the facility should be deleted and justified; operationally important, site-specific systems that are not included on the outline should be added. Refer to section D.1.b of ES-401, for guidance regarding elimination of inappropriate K/A statements.
4. Select topics from as many systems and evolutions as possible; sample every system or evolution in the group before selecting a second topic for any system or evolution.
5. Absent a plant specific priority, only those KAs having an importance rating (IR) of 2.5 or higher shall be selected. Use the RO and SRO ratings for the RO and SRO-only portions, respectively.
6. Select SRO topics for Tiers 1 and 2 from the shaded systems and K/A categories.
7.* The generic (G) K/As in Tiers 1 and 2 shall be selected from Section 2 of the K/A Catalog, but the topics must be relevant to the applicable evolution or systern. Refer to Section D.1.b of ES-401 for the applicable K/A's
8. On the following pages, enter the K/A numbers, a brief description of each topic, the topics' importance ratings (IR) for the applicable license level, and the point totals (\#) for each system and category. Enter the group and tier totals for each category in the table above. If fuel handling equipment is sampled in other than Category A2 or G^{*} on the SRO-only exam, enter it on the left side of Column A2 for Tier 2, Group 2 (Note \#1 does not apply). Use duplicate pages for RO and SRO-only exams.
9. For Tier 3, select topics from Section 2 of the KJA Catalog, and enter the K/A numbers, descriptions, IRs, and point totals (\#) on Form ES-401-3. Limit SRO selections to K/As that are

Oyster Creek ILT 10-1 NRC Exam Outline Written Examination Outline
 Emergency and Abnormal Plant Evolutions - Tier 1 Group 1

EAPE \# / Name Safety Function	K1	K2	K3	A1	A2	G	KJA Topic(s)	Imp.	Q\#

295006 SCRAM / 1				X		AA2.05 - Ability to determine and/or interpret the following as they apply to SCRAM : Whether a reactor SCRAM has occurred	4.6	1
295004 Partial or Total Loss of DC Pwr / 6				X		AA2.01 - Ability to determine and/or interpret the following as they apply to PARTIAL OR COMPLETE LOSS OF D.C. POWER : Cause of partial or complete loss of D.C. power	3.6	2
295003 Partial or Complete Loss of AC / 6				X		AA2.05 - Ability to determine and/or interpret the following as they apply to PARTIAL OR COMPLETE LOSS OF A.C. POWER : Whether a partial or complete loss of A.C. power has occurred	4.2	3
$\begin{aligned} & 295026 \text { Suppression Pool High } \\ & \text { Water Temp. / } 5 \end{aligned}$					X	2.2.38 - Knowledge of conditions and limitations in the facility license.	4.5	4
295037 SCRAM Conditions Present and Reactor Power Above APRM Downscale or Unknown/ 1					X	2.4.8 - Emergency Procedures / Plan: Knowledge of how abnormal operating procedures are used in conjunction with EOP's.	4.5	5
295021 Loss of Shutdown Cooling / 4					X	2.4.45 - Ability to prioritize and interpret the significance of each annunciator or alarm.	4.3	6
295030 Low Suppression Pool Water Level / 5				X		EA2.03 - Ability to determine and/or interpret the following as they apply to LOW SUPPRESSION POOL WATER LEVEL : Reactor pressure	3.9	7
700000 Generator Voltage and Electric Grid Disturbances	X					AK1.01 - Knowledge of the operational implications of the following concepts as they apply to GENERATOR VOLTAGE AND ELECTRIC GRID DISTURBANCES and the following: Over-excitation	3.3	39
295004 Partial or Total Loss of DC Pwr / 6	X					AK1.05 - Knowledge of the operational implications of the following concepts as they apply to PARTIAL OR COMPLETE LOSS OF D.C. POWER : Loss of breaker protection	3.3	40
295005 Main Turbine Generator Trip / 3	X					AK1.01-Knowledge of the operational implications of the following concepts as they apply to MAIN TURBINE GENERATOR TRIP : Pressure effects on reactor power	4.0	41
295023 Refueling Acc Cooling Mode / 8		X				AK2.02 - Knowledge of the interrelations between REFUELING ACCIDENTS and the following: Fuel pool cooling and cleanup system	2.9	42
295038 High Off-site Release Rate / 9		X				EK2.03 - Knowledge of the interrelations between HIGH OFF-SITE RELEASE RATE and the following: Plant ventilation systems	3.6	43
295028 High Drywell Temperature / 5		X				EK2.01-Knowledge of the interrelations between HIGH DRYWELL TEMPERATURE and the following: Drywell spray: Mark-l\&II	3.7	44
295031 Reactor Low Water Level / 2			X			EK3.04 - Knowledge of the reasons for the following responses as they apply to REACTOR LOW WATER LEVEL Steam cooling	4.0	45

Oyster Creek ILT 10-1 NRC Exam Outline Written Examination Outline Emergency and Abnormal Plant Evolutions -- Tier 1 Group 1

EAPE \# / Name Safety Function	K1	K2	K3	A1	A2	G	K/A Topic(s)	Imp.	Q\#

295021 Loss of Shutdown Cooling / 4			X				AK3.02 - Knowledge of the reasons for the following responses as they apply to LOSS OF SHUTDOWN COOLING : Feeding and bleeding reactor vessel	3.3	46
295024 High Drywell Pressure / 5			X				EK3.04-Knowledge of the reasons for the following responses as they apply to HIGH DRYWELL PRESSURE : Emergency depressurization	3.7	47
295016 Control Room Abandonment / 7				X			AA1.09-Ability to operate and/or monitor the following as they apply to CONTROL ROOM ABANDONMENT : Isolation/emergency condenser(s): Plant-Specific	4.0	48
295003 Partial or Complete Loss of AC / 6				X			AA1.03 - Ability to operate and/or monitor the following as they apply to PARTIAL OR COMPLETE LOSS OF A.C. POWER : Systems necessary to assure safe plant shutdown	4.4	49
295025 High Reactor Pressure / 3				X			EA1.06 - Ability to operate and/or monitor the following as they apply to HIGH REACTOR PRESSURE: Isolation condenser: Plant-Specific	4.5	50
295026 Suppression Pool High Water Temp. / 5					X		EA2.03 - Ability to determine and/or interpret the following as they apply to SUPPRESSION POOL HIGH WATER TEMPERATURE: Reactor pressure	3.9	51
600000 Plant Fire On-site / 8					X		AA2.02 - Ability to determine and interpret the following as they apply to PLANT FIRE ON SITE: Damper position	2.8	52
295018 Partial or Total Loss of CCW / 8					X		AA2.01 - Ability to determine and/or interpret the following as they apply to PARTIAL OR COMPLETE LOSS OF COMPONENT COOLING WATER : Component temperatures	3.3	53
295019 Partial or Total Loss of Inst. Air / 8						X	2.1.31 - Ability to locate control room switches, controls, and indications, and to determine that they correctly reflect the desired plant lineup.	4.6	54
295006 SCRAM / 1						X	2.4.4 - Ability to recognize abnormal indications for system operating parameters that are entry-level conditions for emergency and abnormal operating procedures.	4.5	55
295025 High Reactor Pressure / 3						X	2.4.20 - Emergency Procedures / Plan: Knowledge of operational implications of EOP warnings, cautions, and notes.	3.8	56
295001 Partial or Complete Loss of Forced Core Flow Circulation / 1 \& 4					X		AA2.03 - Ability to determine and/or interpret the following as they apply to PARTIAL OR COMPLETE LOSS OF FORCED CORE FLOW CIRCULATION : Actual core flow	3.3	57
295037 SCRAM Conditions Present and Reactor Power Above APRM Downscale or Unknown / 1		X					EK2.14-Knowledge of the interrelations between SCRAM CONDITION PRESENT AND REACTOR POWER ABOVE APRM DOWNSCALE OR UNKNOWN and the following: RPIS: Plant-Specific	3.6	58
K/A Category Totals:	3	4	3	3	4/4	$3 / 3$	Group Point Total:		20/7

Oyster Creek ILT 10-1 NRC Exam Outline Written Examination Outline Emergency and Abnormal Plant Evolutions - Tier 1 Group 2

EAPE \# / Name Safety Function	K1	K2	K3	A1	A2	G	K/A Topic(s)	Imp.	Q\#

295033 High Secondary Containment Area Radiation Levels / 9					X		EA2.01 - Ability to determine and/or interpret the following as they apply to HIGH SECONDARY CONTAINMENT AREA RADIATION LEVELS : Area radiation levels	3.9	8
295029 High Suppression Pool Water Level / 5						X	2.1.32 - Conduct of Operations: Ability to explain and apply all system limits and precautions.	4.0	9
295020 Inadvertent Cont. Isolation / 5 \& 7						X	2.2.44 - Equipment Control: Ability to interpret control room indications to verify the status and operation of a system, and understand how operator actions and directives effect plant and system conditions.	4.4	10
295032 High Secondary Containment Area Temperature / 5	X						EK1.03-Knowledge of the operational implications of the following concepts as they apply to HIGH SECONDARY CONTAINMENT AREA TEMPERATURE: Secondary containment leakage detection: PlantSpecific	$\begin{aligned} & 3 . \\ & 5 \end{aligned}$	59
295013 High Suppression Pool Temperature / 5		X					AK2.01-Knowledge of the interrelations between HIGH SUPPRESSION POOL TEMPERATURE and the following: Suppression pool cooling	3.6	60
295010 High Drywell Pressure /5			X				AK3.05-Knowledge of the reasons for the following responses as they apply to HIGH DRYWELL PRESSURE: Temperature monitoring	$\begin{aligned} & 3 . \\ & 5 \end{aligned}$	61
295002 Loss of Main Condenser Vac / 3				X			AA1.06 - Ability to operate and/or monitor the following as they apply to LOSS OF MAIN CONDENSER VACUUM : Reactor/turbine pressure regulating system	$\begin{aligned} & 3 . \\ & 0 \end{aligned}$	62
295022 Loss of CRD Pumps / 1					X		AA2. 01 - Ability to determine and/or interpret the following as they apply to LOSS OF CRD PUMPS : Accumulator pressure	3. 5	63
295036 Secondary Containment High Sump/Area Water Level / 5						X	2.4.35 - Emergency Procedures / Plan: Knowledge of local auxiliary operator tasks during emergency and the resultant operational effects.	$\begin{aligned} & 3 . \\ & 8 . \end{aligned}$	64
295009 Low Reactor Water Level / 2						X	2.4.8 - Emergency Procedures / Plan: Knowledge of how abnormal operating procedures are used in conjunction with EOP's.	$\begin{aligned} & 3 . \\ & 8 . \end{aligned}$	65
K/A Category Totals:	1	1	1	1	1/1	2/2	Group Point Total:		73

Oyster Creek ILT 10-1 NRC Exam Outline
 Written Examination Outline
 Plant Systems - Tier 2 Group 1

System \# / Name	K 1	K 2	K 3	K 4	K 5	K 6	$\begin{gathered} A \\ 1 \end{gathered}$	A2	A 3	A 4	G	Imp	Q\#

Oyster Creek ILT 10-1 NRC Exam Outline Written Examination Outline
 Plant Systems - Tier 2 Group 1

	K	K	K	K	K	K	A		A	A	A			Imp
System \#/ Name	1	2	3	4	5	6	1	A	3	4	G		Q\#	

263000 DC Electrical Distribution	X								K2.01 - Knowledge of electrical power supplies to the following: Major D.C. loads	3.1	4
209001 LPCS		X							K3.03 - Knowledge of the effect that a loss or malfunction of the LOW PRESSURE CORE SPRAY SYSTEM will have on following: Emergency generators	2.9	5
207000 Isolation (Emergency) Condenser		X							K3.02 - Knowledge of the effect that a loss or malfunction of the ISOLATION (EMERGENCY) CONDENSER will have on following: Reactor water level (EPG's address the isolation condenser as a water source): BWR-2,3	3.8	6
$223002 \mathrm{PCIS} /$ Nuclear Steam Supply Shutoff			X						K4.06-Knowledge of PRIMARY CONTAINMENT ISOLATION SYSTEM/NUCLEAR STEAM SUPPLY SHUT-OFF design feature(s) and/or interlocks which provide for the following: Once initiated, system reset requires deliberate operator action	3.4	7
212000 RPS			X						K4.03 - Knowledge of REACTOR PROTECTION SYSTEM design feature(s) and/or interlocks which provide for the following: The prevention of supplying power to a given RPS bus from multiple sources simultaneously	3.0	8
264000 EDGs				X					K5.06-Knowledge of the operational implications of the following concepts as they apply to EMERGENCY GENERATORS (DIESELJET) : Load sequencing	3.4	9
262001 AC Electrical Distribution				X					K5.01-Knowledge of the operational implications of the following concepts as they apply to A.C. ELECTRICAL DISTRIBUTION: Principle involved with paralleling two A.C. sources	3.1	10
262002 UPS (AC/DC)					X				K6.01 - Knowledge of the effect that a loss or malfunction of the following will have on the UNINTERRUPTABLE POWER SUPPLY (A.C./D.C.) : A.C. electrical power	2.7	11
215004 Source Range Monitor					X				K6.04-Knowledge of the effect that a loss or malfunction of the following will have on the SOURCE RANGE MONITOR (SRH) SYSTEM : Detectors	2.9	12

Oyster Creek ILT 10-1 NRC Exam Outline Written Examination Outline
Plant Systems - Tier 2 Group 1

System \#/ Name	K	K	K	K	K	K	A			A	A			
	1	2	3	4	5	6	1	A2	3	4	G			

259002 Reactor Water Level Control											

Oyster Creek ILT 10-1 NRC Exam Outline

Written Examination Outline
Plant Systems - Tier 2 Group 1

211000 SLC					X							K5.04-Knowledge of the operational implications of the following concepts as they apply to STANDBY LIQUID CONTROL SYSTEM: Explosive valve operation	3.1	23
262002 UPS (AC/DC)									x			A3.01 - Ability to monitor automatic operations of the UNINTERRUPTABLE POWER SUPPLY (A.C./D.C.) including: Transfer from preferred to alternate source	2.8	24
264000 EDGs							x					A1.01 - Ability to predict and/or monitor changes in parameters associated with operating the EMERGENCY GENERATORS (DIESEL/JET) controls including: Lube oil temperature	3.0	25
218000 ADS											X	2.4.47 - Emergency Procedures / Plan: Ability to diagnose and recognize trends in an accurate and timely manner utilizing the appropriate control room reference material.	4.2	26
K/A Category Totals:	2	2	2	2	2	2	3	3/3	3	2	3/2	Group Point Total:		

Oyster Creek ILT 10-1 NRC Exam Outline
 Written Examination Outline Plant Systems - Tier 2 Group 2

	K	K	K	K	K	K	A		A	A				
System \# / Name	1	2	3	4	5	6	1	A	3	4	G		Imp.	Q

Oyster Creek ILT 10-1 NRC Exam Outline
Written Examination Outline
Plant Systems - Tier 2 Group 2

Facility:	Oyster Creek ILT 10-1 NRC Exam Outline	Date: $\quad 07 / 11 / 11$				
Category	K/A \#	Topic	RO		SRO-Only	
			IR	Q\#	IR	Q\#
1. Conduct of Operations	2.1.36	Knowledge of procedures and limitations involved in core alterations.			4.1	19
	2.1.37	Knowledge of procedures, guidelines, or limitations associated with reactivity management.			4.6	23
	2.1.20	Ability to interpret and execute procedure steps.	4.6	66		
	2.1.28	Knowledge of the purpose and function of major system components and controls.	4.1	67		
	Subtotal			2		2
2. Equipment Control	2.2.22	Knowledge of limiting conditions for operations and safety limits.			4.7	20
	2.2.11	Knowledge of the process for controlling temporary design changes.			3.3	25
	2.2.1	Ability to perform pre-startup procedures for the facility, including operating those controls associated with plant equipment that could affect reactivity.	4.5	68		
	2.2.36	Ability to analyze the effect of maintenance activities, such as degraded power sources, on the status of limiting conditions for operations.	3.1	69		
	2.2.2	Ability to manipulate the console controls as required to operate the facility between shutdown and designated power levels.	4.6	74		
	Subtotal			3		2
3. Radiation Control	2.3.11	Ability to control radiation releases.			4.3	21
	2.3.4	Knowledge of radiation exposure limits under normal or emergency conditions.			3.7	24
	2.3.15	Knowledge of radiation monitoring systems, such as fixed radiation monitors and alarms, portable survey instruments, personnel monitoring equipment, etc.	2.9	70		

	2.3.12	Knowledge of Radiological Safety Principles pertaining to licensed operator duties, such as containment entry requirements, fuel handling responsibilities, access to locked highradiation areas, aligning filters, etc.	3.2	71		
	Subtotal			2		2
	2.4.6	Knowledge of EOP mitigation strategies.			4.7	22
	2.4.27	Knowledge of "fire in the plant" procedures.	3.4	72		
Emergency Procedures /	2.4.1	Knowledge of EOP entry conditions and immediate action steps.	4.6	73		
	2.4.22	Knowledge of the bases for prioritizing safety functions during abnormal/emergency operations.	3.6	75		
	Subtotal			3		1
Tier 3 Point To				10		7

Tier / Group	Randomly Selected KIA	Reason for Rejection
2 / 1 RO	211000 A4.06	211000 A3.06 - Oyster Creek does not have an automatic SLC initiation. A new K/A was randomly selected.
$2 / 1 \mathrm{RO}$	263000 A4.01	300000 A4.01 - K/A rejected due to overlap with RO question \#19. Could not generate a question which would discriminate from question \#19. A new K/A was randomly selected.
$2 / 1 \mathrm{RO}$	211000 K5.04	211000 A2.03 - K/A rejected due to overlap with Audit Exam question \#17 and NRC Simulator Scenario \#2. A new KIA was randomly selected.
$1 / 1$ SRO	295026 2.2.25	295026 2.2.38 - K/A rejected due to no ties to Suppression Pool in the Facility License. A new K/A was randomly selected. [KIA 295026 2.2.38 unrejected due to being able to tie Suppression Pool temperature to the Facility License].
$1 / 1 \mathrm{RO}$	295019 2.1.31	295019 2.2.38 - K/A rejected due to no ties to Instrument Air in the Facility License. A new K/A was randomly selected.
2 / 2 SRO	2010022.240	201002 2.2.4 - K/A rejected due to Oyster Creek not having a multi-unit license. A new K/A was randomly selected.
2 / 2 SRO	2330002.1 .34	233000 2.1.31-K/A rejected due to not having a 10CFR55.43(b) link and K/A 2.1.31 being RO level of knowledge. A new K/A was randomly selected.
3 RO	2.2.1	2.2.3 - KIA rejected due to Oyster Creek not having a multi-unit license. A new KIA was randomly selected.
3 RO	2.2.2	2.2.17 - K/A supports testing at the SRO-Only level, but NOT at the RO level due to job responsibilities. A new K/A was randomly selected.
3 SRO	2.3.11	2.3.15 - K/A rejected due to overlap with RO question \#70 (also K/A 2.3.15). A new KJA was randomly selected.
3 SRO	2.4.6	2.4.1 - K/A rejected due to supporting testing at the RO level, but not SRO-Only level due to job responsibilities. A new K/A was randomly selected.
$2 / 2 \mathrm{RO}$	241000 K6.07	234000 K6.07 - An operationally relevant question could not be written due to a loss of RBHVAC having no specific affect on Fuel Handling Equipment. A new K/A was randomly selected.
$2 / 2 \mathrm{RO}$	219000 A1.07	256000 A1.07 - An operationally relevant question could not be written at an LOD level greater than 1. A new K/A was randomly selected.
$2 / 2 \mathrm{RO}$	202001 A2.06	202001 A2.13-K/A rejected due to being associated

		with Generic Fundamentals. A new K/A was randomly selected.
$2 / 2 \mathrm{RO}$	234000 A3.02	290003 A3.02 - K/A rejected due to the Control Room HVAC not having any automatic initiations/failures during a fire. A new K/A was randomly selected.
2 / 2 RO	259001 A4.02	259001 A4.06 - K/A rejected due to being associated with Generic Fundamentals. A new K/A was randomly selected.
2 / 2 RO	216000 K3. 02	226001 K3.02 - K/A rejected due to concept overlap with NRC Simulator scenario \#3 and Audit simulator scenario \#1. A new K/A was randomly selected.
$1 / 1 \mathrm{RO}$	295006 2.4.4	295006 2.4.34 - There are no RO tasks outside the Control Room for a Scram, only non-Licensed Operator Tasks. A new K/A was randomly selected.
$1 / 1 \mathrm{RO}$	295025 2.4.20	295030 2.4.20 - Low Torus Level EOP does not have any warnings, cautions, or notes. A new K/A was randomly selected.
$1 / 2 \mathrm{RO}$	295032 EK1.03	295032 EK1.04 - Unable to develop three credible or plausible distracters. A new KIA was randomly selected.
$1 / 1$ SRO	295021 2.4.45	295021 2.4.35 - Unable to develop an operationally relevant question. A new K/A was randomly selected.
1 / 1 SRO	295030 EA2.03	295030 EA2.04 - K/A rejected due to overlap with Audit SRO question \#2 (also K/A 295030 EA2.04). A new KIA was randomly selected.
2 / 1 SRO	259002 A2.04	400000 A2.04 - Could not develop an operationally relevant question connecting monitors to a CCW system at Oyster Creek. A new K/A was randomly selected.
2 / 1 SRO	261000 A2.15	261000 A2.14 - Could not develop an operationally relevant question. A new K/A was randomly selected.
2/1 SRO	212000 A2.11	262001 A2.10 - K/A supports testing at the RO level, but no the SRO-Only level due to job responsibilities. A new K/A was randomly selected.
2 / 2 SRO	256000 A2.15	214000 A2.01 - There are no operationally relevant abnormal, emergency, or Tech Spec actions for a failed RPIS reed switch. A new KIA was randomly selected.
2 / 2 SRO	215001 2.1.32	233000 2.1.34-Oyster Creek does not have any chemistry specifications in the Technical Specifications. K/A rejected and a new K/A was randomly selected.
$1 / 1 \mathrm{RO}$	700000 AK1.02	700000 AK1.01 - K/A related to Generic Fundamentals; concept tested on NRC GFE exam. A new K/A was randomly selected.
1/1 RO	600000 AA2.02	600000 AA2.16-K/A rejected due to not being able to

		write a non-discriminatory question at the RO level. A new K/A was randomly selected.
3 RO	2.1 .20	$2.1 .39-$ K/A rejected due to being non-discriminatory at the RO level. A new K/A was randomly selected.
3 RO	2.4 .27	2.4.19 - K/A rejected due to being non-discriminatory at the RO level. A new K/A was randomly selected.

Facility: Oyster Creek		Date of Examination: 7/11/11
Examination Level: RO区 SRO \square		Operating Test Number: ILT 10-1
Administrative Topic (See Note)	Type Code*	Describe activity to be performed
Conduct of Operations	P, S	Perform Week 4 of 680.4.007, Safety Related Equipment Verification; G2.1.29 (4.1) [NRC Admin JPM1 (RO)]
Conduct of Operations	D, R	Perform Core Thermal Limits Verification; G2.1.7 (4.4) [NRC Admin JPM2 (RO)]
Equipment Control		
Radiation Control	D, R	Application of Radiation Exposure Limits IAW Procedure RP-AA-203; G2.3.4 (3.2) [NRC Admin JPM3 (RO)]
Emergency Procedures/Plan	M, R	Determine Primary Containment Water Level IAW EMGSP28; G2.4.21 (4.0) [NRC Admin JPM4 (RO)]
NOTE: All items (5 total) are required for SROs. RO applicants require only 4 items unless they are retaking only the administrative topics, when 5 are required.		
* Type Codes \& Criteria:	(C) (D) (N) (P)	room, (S)imulator, or Class(R)oom from bank (≤ 3 for ROs; ≤ 4 for SROs \& RO retakes) (M)odified from bank $(\geq 1$) us 2 exams (≤ 1; randomly selected)

Facility: Oyster Creek		Date of Examination: 7/11/11
Examination Level: RO \square SRO \boxtimes		Operating Test Number: ILT 10-1
Administrative Topic (See Note)	Type Code*	Describe activity to be performed
Conduct of Operations	N, R	Review the Technical Specification Log Sheet; G2.1.3 (3.9) [NRC SRO Admin JPM1]
Conduct of Operations	P, R	Review a Completed Pre-Critical Checkoff IAW Procedure 201; G2.1.23 (4.4) [NRC SRO Admin JPM2]
Equipment Control	D, R	Review the acceptance criteria for surveillance procedure 609.3.022, "A" Isolation Condenser Isolation Test and Calibration - A1 Sensors First; G2.2.12 (4.1) [NFIC SRO Admin JPM3]
Radiation Control	D, R	Authorize TIP Room Entry; G2.3.13 (3.8) [NRC SRO Admin JPM4]
Emergency Procedures/Plan	M, R	Determine Primary Containment Water Level IAW EMGSP28 and determine required action; G2.4.21 (4.6) [NRC SRO Admin JPM5]
NOTE: All items (5 total) are required for SROs. RO applicants require only 4 items unless they are retaking only the administrative topics, when 5 are required.		
* Type Codes \& Criteria:	(C) O (D)ire (N)ew (P)re	l room, (S)imulator, or Class(R)oom from bank (≤ 3 for ROs; ≤ 4 for SROs \& RO retakes) (M)odified from bank (≥ 1) us 2 exams (≤ 1; randomly selected)

Facility: Oyster Creek Date of Examination: $\mathbf{7 / 1 1 / 1 1}$ Exam Level: RO \triangle SRO-I \square SRO-U \square Operating Test Number: ILT 10-1		
Control Room Systems ${ }^{\text {® }}$ (8 for RO); (7 for SRO-I); (2 or 3 for SRO-U, including 1 ESF)		
System / JPM Title	Type Code*	Safety Function
a. Perform Core Spray Surveillance with faulted Core Spray Pump IAW 610.4.002, Core Spray Pump Operability Test (Alternate Path): 209001 A4.01 (3.8/3.6) [NRC Sim JPM1]	D, A, S	2
b. Perform Anticipatory Scram Turbine Stop Valve Closure Test, 619.4.002 with $1 / 2$ RPS Actuation; 245000 A4.07 (2.9/2.9) [NRC Sim JPM2]	P, D, L, S	3
c. Cool down the RPV using the Isolation Condenser tube side vents IAW EMG-SP15, Alternate Pressure Control Systems - IC Tube Side Vents (Alternate Path); 295021 AA1. 04 (3.7/3.7) [NRC Sim JPM3]	$\begin{gathered} \mathrm{M}, \mathrm{~A}, \mathrm{~L}, \mathrm{EN}, \\ \mathrm{~S} \end{gathered}$	4
d. Place the $\mathrm{H} 2 / \mathrm{O} 2$ monitoring system in service IAW EMG-SP39, Placing The H2/O2 Monitoring System In Service; 500000 EA1. 01 (3.4/3.3) [NRC Sim JPM4]	N, L, S	5
e. Transfer 4160 VAC Bus 1A to the Startup Transformers (Alternate Path); 262001 K4.02 (2.9/3.3) [NRC Sim JPM5]	D, A, S	6
f. Perform an APRM Gain Adjustment; 215005 A4.03 (3.2/3.3) [NRC Sim JPM 6]	M, S	7
g. Inject Fire Water via the Core Spray System IAW SP-20, Low Pressure Injection During An ATWS; 286000 A4.06 (3.4/3.4) [NRC Sim JPM7]	N, S	8
h. Startup of the Turbine Building Ventilation System IAW 328, The Turbine Building Heating And Ventilation System (Alternate Path); 288000 A4.01 (3.1/2.9) [NRC Sim JPM8]	P, D, A, L, S	9
In-Plant Systems ${ }^{\text {® }}$ (3 for RO); (3 for SRO-I); (3 or 2 for SRO-U)		
i. Vent the scram air header IAW EMG-SP21, Alternate Insertion of Control Rods; 295037 EA1. 05 (3.9/4.0) [NRC Plant JPM1]	D, E, R	1
j. Add makeup from Fire Water to the Isolation Condensers IAW 307, Isolation Condenser System; 207000 K1.06 (3.3/3.7) [NRC Plant JPM3]	D, L, R	4
k. Operate Service Water Pump 1-2 from Local Shutdown Panel 1B3 (LSP1B3) IAW 346, Operation of the Remote and Local Shutdown Panels; 295016 AA1. 07 (4.2/4.3) [NRC Plant JPM2) * This plant JPM will be performed on the Simulator replica of LSP-1B3.	D, EN, S*	7

@ All RO and SRO-I control room (and in-plant) systems must be different and serve different safety functions; all 5 SRO-U systems must serve different safety functions; in-plant systems and functions may overlap those tested in the control room.	
* Type Codes	Criteria for RO / SRO-I / SRO-U
(A)Iternate path (C) ontrol room (D)irect from bank (E)mergency or abnormal in-plant (EN)gineered safety feature (L)ow-Power / Shutdown (N)ew or (M)odified from bank including 1(A) (P)revious 2 exams (R)CA (S)imulator	$\begin{aligned} & 4-6 / 4-6 / 2-3 \\ & \\ & \leq 9 / \leq 8 / \leq 4 \\ & \geq 1 / \geq 1 / \geq 1 \\ & -/ \quad-\quad / \geq 1 \text { (control room system } \\ & \geq 1 / \geq 1 / \geq 1 \\ & \geq 2 / \geq 2 / \geq 1 \\ & \leq 3 / \leq 3 / \leq 2 \text { (randomly selected) } \\ & \geq 1 / \geq 1 / \geq 1 \end{aligned}$

Facility: Oyster Creek Exam Level: RO \square SRO-I \boxtimes SRO-U	Date of Examination: 7/11/11	
	Operating Test Number: ILT 10-1	
Control Room Systems ${ }^{\text {® }}$ (8 for RO); (7 for SRO-I); (2 or 3 for SRO-U, including 1 ESF)		
System / JPM Title	Type Code*	Safety Function
a. Perform Core Spray Surveillance with faulted Core Spray Pump IAW 610.4.002, Core Spray Pump Operability Test (Alternate Path); 209001 A4.01 (3.8/3.6) [NRC Sim JPM1]	D, A, S	2
b. Perform Anticipatory Scram Turbine Stop Valve Closure Test, 619.4.002 with $1 / 2$ RPS Actuation; 245000 A4.07 (2.9/2.9) [NRC Sim JPM2]	P, D, L, S	3
c. Cool down the RPV using the Isolation Condenser tube side vents IAW EMG-SP15, Alternate Pressure Control Systems - IC Tube Side Vents (Alternate Path); 295021 AA1. 04 (3.7/3.7) [NRC Sim JPM3]	$\begin{gathered} \mathrm{M}, \mathrm{~A}, \mathrm{~L}, \mathrm{EN}, \\ \mathrm{~S} \end{gathered}$	4
d. Place the $\mathrm{H} 2 / \mathrm{O} 2$ monitoring system in service IAW EMG-SP39, Placing The H2/O2 Monitoring System In Service; 500000 EA1.01 (3.4/3.3) [NRC Sim JPM4]	N, L, S	5
e. Transfer 4160 VAC Bus 1 A to the Startup Transformers (Alternate Path); 262001 K4.02 (2.9/3.3) [NRC Sim JPM5]	D, A, S	6
f. Perform an APRM Gain Adjustment; 215005 A4.03 (3.2/3.3) [NRC Sim JPM 6]	M, S	7
g.		
h. Startup of the Turbine Building Ventilation System IAW 328, The Turbine Building Heating And Ventilation System (Alternate Path); 288000 A4.01 (3.1/2.9) [NRC Sim JPM8]	P, D, A, L, S	9
In-Plant Systems ${ }^{\text {® }}$ (3 for RO); (3 for SRO-I); (3 or 2 for SRO-U)		
i. Vent the scram air header IAW EMG-SP21, Alternate Insertion of Control Rods; 295037 EA1. 05 (3.9/4.0) [NRC Plant JPM1]	D, E, R	1
j. Add makeup from Fire Water to the Isolation Condensers IAW 307, Isolation Condenser System; 207000 K1.06 (3.3/3.7) [NRC Plant JPM3]	D, L, R	4
k. Operate Service Water Pump 1-2 from Local Shutdown Panel 1B3 (LSP1B3) IAW 346, Operation of the Remote and Local Shutdown Panels; 295016 AA1. 07 (4.2/4.3) [NRC Plant JPM2) * This plant JPM will be performed on the Simulator replica of LSP-1B3.	D, EN, S*	7

@ All RO and SRO-I control room (and in-plant) systems must be different and serve different safety functions; all 5 SRO-U systems must serve different safety functions; in-plant systems and functions may overlap those tested in the control room.	
* Type Codes	Criteria for RO / SRO-I / SRO-U
(A)lternate path (C) ontrol room (D)irect from bank (E)mergency or abnormal in-plant (EN)gineered safety feature (L)ow-Power / Shutdown (N)ew or (M)odified from bank including 1(A) (P)revious 2 exams (R)CA (S)imulator	$\begin{aligned} & 4-6 / 4-6 / 2-3 \\ & \\ & \leq 9 / \leq 8 / \leq 4 \\ & \geq 1 / \geq 1 / \geq 1 \\ & -/ / \quad-\quad 1 \text { (control room system } \\ & \geq 1 / \geq 1 / \geq 1 \\ & \geq 2 / \geq 2 / \geq 1 \\ & \leq 3 / \leq 3 / \leq 2 \text { (randomly selected) } \\ & \geq 1 / \geq 1 / \geq 1 \end{aligned}$

Scenario Outline

* (N)ormal, (R)eactivity, (I)nstrument, (C)omponent, (M)ajor Transient, (TS) Tech Specs

Scenario Outline

Facility: Oyster Creek				Scenario No.: ${ }^{\text {3 }}$	Op Test No.: $10-1$ NRC
Examiners:				Operators:	
Initial Conditions: - 75% power - TBCCW Pump 2 is tagged out of service					
Turnover:					
- Lower power to 70\% using recirculation flow IAW 1001.22-3, Core Maneuvering Daily Instruction Sheet - Backwash the Main Condenser Half B South					
Event No.	Malf. No.	Event Type*			ption
1	NA	R	ATC	Lower reactor powe	using recirculation flow
2	NA	N	BOP	Continue backwash	Condenser Half B South
3	$\begin{aligned} & \text { BKR- } \\ & \text { CRDOO2 } \end{aligned}$	$\begin{gathered} \mathrm{C} \\ \mathrm{TS} \end{gathered}$	$\begin{aligned} & \text { ATC } \\ & \text { SRO } \end{aligned}$	Respond to a CRD	
4	$\begin{gathered} \text { MAL- } \\ \text { TCS010 } \end{gathered}$	1	BOP	Respond to the EPR	failing low
5	$\begin{gathered} \text { SWI- } \\ \text { TBSO27C } \\ \text { ANN-L4f } \end{gathered}$	$\begin{aligned} & \mathrm{C} \\ & \text { TS } \end{aligned}$	$\begin{aligned} & \text { BOP } \\ & \text { SRO } \end{aligned}$	Respond to a trip of	Room Vent Fan B
6	MALNSSO12E	$\begin{gathered} \hline 1 \\ \text { TS } \end{gathered}$	$\begin{aligned} & \text { ATC } \\ & \text { SRO } \end{aligned}$	Respond to a varia RPV level indicator	in the A and C GEMAC Id ID13C
7	$\begin{aligned} & \text { BKR- } \\ & \text { CRD001 } \end{aligned}$	M	Crew	Respond to a loss of	Flow
8	$\begin{gathered} \text { MAL- } \\ \text { NSS016A } \end{gathered}$	M	Crew	Respond to a Safety	ing post scram
9	$\begin{gathered} \text { MAL- } \\ \text { CNSO04A- } \\ \text { D } \\ \hline \end{gathered}$	C	Crew	Respond to a trip o Pump	ting Containment Spray

* (N)ormal, (R)eactivity, (I)nstrument, (C)omponent, (M)ajor Transient, (TS) Tech Specs

Scenario Outline

(N)ormal, (R)eactivity, (I)nstrument, (C)omponent, (M)ajor Transient, (TS) Tech Specs

