
NUREGIIA-0254

International
Agreement Report

Suitability of Fault Modes and Effects Analysis for
Regulatory Assurance of Complex Logic in Digital
Instrumentation and Control Systems
Prepared by:
Luis Betancourt,2 Sushil Birla,2 Jean Gassino,' Pascal Regnier'

Institut de Radioprotection et de S0ret6 Nuclaire, France

BP 17-92262 FONTENAY aux roses cedex-France

2 U.S. Nuclear Regulatory Commission, USA

Washington, DC 20555-0001

L. Betancourt, NRC Project Manager

Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001

Manuscript completed: April 2011
Date Published: June 2011

Prepared as part of the agreement on technical exchange and cooperation between the U.S. Nuclear Regulatory Commission and the
Institut de Radioprotection et de SOret6 Nucl6aire of France in the field of nuclear safety research

Published by
U.S. Nuclear Regulatory Commission

AVAILABILITY OF REFERENCE MATERIALS
IN NRC PUBLICATIONS

NRC Reference Material

As of November 1999, you may electronically access
NUREG-series publications and other NRC records at
NRC's Public Electronic Reading Room at
http://www.nrc.qovlreading-rm.html. Publicly released
records include, to name a few, NUREG-series
publications; Federal Register notices; applicant,
licensee, and vendor documents and correspondence;
NRC correspondence and internal memoranda;
bulletins and information notices; inspection and
investigative reports; licensee event reports; and
Commission papers and their attachments.

NRC publications in the NUREG series, NRC
regulations, and Title 10, Energy, in the Code of
Federal Regulations may also be purchased from one
of these two sources.
1. The Superintendent of Documents

U.S. Government Printing Office
Mail Stop SSOP
Washington, DC 20402-0001
Intemet: bookstore.gpo.gov
Telephone: 202-512-1800
Fax: 202-512-2250

2. The National Technical Information Service
Springfield, VA 22161-0002
www.ntis.gov
1-800-553-6847 or, locally, 703-605-6000

A single copy of each NRC draft report for comment is
available free, to the extent of supply, upon written
request as follows:
Address: U.S. Nuclear Regulatory Commission

Office of Administration
Publications Branch
Washington, DC 20555-0001

E-mail: DISTRIBUTION.RESOURCE@NRC.GOV
Facsimile: 301-415-2289

Some publications in the NUREG series that are
posted at NRC's Web site address
http:/lwww.nic.qov/readinq-rm/doc-collections/nureqs
are updated periodically and may differ from the last
printed version. Although references to material found
on a Web site bear the date the material was
accessed, the material available on the date cited may
subsequently be removed from the site.

Non-NRC Reference Material

Documents available from public and special technical
libraries include all open literature items, such as
books, journal articles, and transactions, Federal
Register notices, Federal and State legislation, and
congressional reports. Such documents as theses,
dissertations, foreign reports and translations, and
non-NRC conference proceedings may be purchased
from their sponsoring organization.

Copies of industry codes and standards used in a
substantive manner in the NRC regulatory process are
maintained at-

The NRC Technical Library
Two White Flint North
11545 Rockville Pike
Rockville, MD 20852-2738

These standards are available in the library for
reference use by the public. Codes and standards are
usually copyrighted and may be purchased from the
originating organization or, if they are American
National Standards, from-

American National Standards Institute
11 West 42w Street
New York, NY 10036-8002
www.ansi.org
212-642-4900

Legally binding regulatory requirements are stated only
in laws; NRC regulations; licenses, including technical
specifications; or orders, not in
NUREG-series publications. The views expressed in
contractor-prepared publications in this series are not
necessarily those of the NRC.

The NUREG series comprises (1) technical and
administrative reports and books prepared by the staff
(NUREG-XXXX) or agency contractors
(NUREG/CR-XXXX), (2) proceedings of conferences
(NUREG/CP-XXXX), (3) reports resulting from
international agreements (NUREG/IA-XXXX), (4)
brochures (NUREGIBR-XXXX), and (5) compilations of
legal decisions and orders of the Commission and
Atomic and Safety Licensing Boards and of Directors'
decisions under Section 2.206 of NRC's regulations
(NUREG-0750).
DISCLAIMER: This report was prepared under an
international cooperative agreement for the exchange
of technical information. Neither the U.S. Government
nor any agency thereof, nor any employee, makes any
warranty, expressed or implied, or assumes any legal
liability or responsibility for any third party's use, or the
results of such use, of any information, apparatus,
product or process disclosed in this publication, or
represents that its use by such third party would not
infrinae orivatelv owned riahts.

NUREG/IA-0254

International
Agreement Report

Suitability of Fault Modes and Effects Analysis for
Regulatory Assurance of Complex Logic in Digital
Instrumentation and Control Systems
Prepared by:
Luis Betancourt,2 Sushil Birla, 2 Jean Gassino,' Pascal Regnier'

Institut de Radioprotection et de S0ret6 Nuclaire, France

BP 17-92262 FONTENAY aux roses cedex-France

2 U.S. Nuclear Regulatory Commission, USA

Washington, DC 20555-0001

L. Betancourt, NRC Project Manager

Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001

Manuscript completed: April 2011
Date Published: June 2011

Prepared as part of the agreement on technical exchange and cooperation between the U.S. Nuclear Regulatory Commission and the
Institut de Radioprotection et de SOret6 Nucl6aire of France in the field of nuclear safety research

Published by
U.S. Nuclear Regulatory Commission

ABSTRACT

The Institut de Radioprotection et de SOret6 Nucl~aire (IRSN) and the U.S. Nuclear Regulatory
Commission (NRC) jointly investigated and evaluated the suitability of applying fault modes and
effects analysis (FMEA), as a technique for identifying faults attributable to Complex Logqic in
digital instrumentation and controls for safety functions in nuclear power plants. Complex Logic
refers to logic in the form of software, or in the form of programmed hardware, for which it is not
practicable to ensure the correctness of all behaviors through verification alone. Whereas the
term, "failure modes and effects analysis" is used in the context of the overall DI&C system, the
corresponding concept for software (and other forms of complex logic) in a DI&C system is "fault
modes and effects analysis." When FMEA techniques, which have been used effectively for
traditional hardware, are applied to Complex Logic, such extension does not yield a similar
benefit to regulatory assurance, because of the fundamental differences in the nature of faults in
traditional hardware versus Complex Logic. Whereas hardwired devices (such as
electromechanical relays) have only a few predetermined fault modes, the potential fault space
in Complex Logic is huge; yet the actual number of faults is an extremely small fraction of the
potential fault space. Finding these faults through FMEA is akin to searching for a needle in a
haystack. Through analysis and examples of several real-life catastrophes, this report shows
that FMEA could not have helped in the discovery of the underlying faults. The report concludes
that the contribution of FMEA to regulatory assurance of Complex Logic, especially software, in
a nuclear power plant safety system is marginal. Further investigations, not in the scope of the
current NRC-IRSN collaborative study, are needed to understand the appropriate roles and
combination of FMEA and fault tree analysis and appropriate application constraints for reliable
results from such analysis techniques.

iii

FOREWORD

In March 2010, the Institut de Radioprotection et de S0ret6 Nuclaire (IRSN) and the U.S.
Nuclear Regulatory Commission (NRC) started technical exchange activities and cooperation in
the field of digital instrumentation and control (DI&C) research. In discussions, both parties
identified an interest in sharing their understanding of DI&C system fault modes attributable to
Complex Logic (such as logic in the form of software or in the form of programmed hardware,
for which it is not practicable to assure correctness of all behaviors through verification alone) in
DI&C systems for safety functions in nuclear power plants (NPPs).

This study contributes to a part of the NRC research activity, "Analytical Assessment of DI&C
Systems" described in Section 3.1.5 of the fiscal year (FY) 2010 - FY 2014 NRC Digital
Systems Research Plan [1]. The NRC research activity was formulated in response to the
DI&C-relevant part of the Commission's staff requirements memorandum (SRM)-M080605B [2]
dated June 26, 2008, as follows:

The staff should report the progress made with respect to identifying and analyzing
digital I&C failure modes, and discuss the feasibility of applying failure mode analysis to
quantification of risk associated with digital I&C.

SRM-M080605B was triggered by Advisory Committee on Reactor Safeguards (ACRS) concern
[3] that DI&C system failures were not well understood and recommendation to emphasize the
importance of the identification of failure modes. Later, in its letter report on the 5 7 6 th meeting
[4], the ACRS recommended that:

Software Failure Modes and Effects Analysis (FMEA) methods should be
investigated and evaluated to examine their suitability for identifying critical
software failures that could impair reliable and predictable DI&C performance.

NRC is continuing its research to address SRM-M080605B and the recommendation from the
ACRS' 5 7 6 th meeting; however, Section 3.2 of this study has identified significant difficulties.

These findings are consistent with the NRC's regulatory review guidance that is given in DI&C
Interim Staff Guidance No. 06 [5], Section D.9.4.2.1,1 "FMEA"; for software, it refers to Sections
D.4.4.1.9 "Software Safety Plan," D.4.4.2.1 "Safety Analysis," D.6 "Defense-in-Depth &
Diversity"- this guidance does not propose failure modes and effects analysis be applied to
software.

IRSN-NRC researchers jointly investigated and evaluated the suitability of fault modes and
effects analysis (FMEA) as a technique for identifying faults attributable to software and other
realizations of Complex Logic for safety functions in NPPs. Whereas the term, "failure modes
and effects analysis" is used in the context of the overall DI&C system, the corresponding
concept for software (and other forms of complex logic) in a DI&C system is "fault modes and
effects analysis." Logic does not fail in the traditional sense of degradation of a hardware
component, but the system could fail, due to a pre-existing logic fault, triggered by some
combination of inputs and system-internal conditions.

The IRSN and NRC conducted this study as part of their bilateral agreement on technical
exchange and cooperation in the area of DI&C safety systems. In general, the scope of the
IRSN-NRC cooperation is limited to exchanging information helpful in developing the technical
basis, but excludes development or discussion of regulatory guidance. In this study, the scope
of the investigation is limited to the role of FMEA in regulatory assurance of Complex Logic in
DI&C safety systems and excludes the role of FMEA in the development process.

v

The study first characterizes the differences between traditional hardwired systems and current
complex logic-intensive systems and the technological trends that drive these differences. Then,
it discusses the issues and limitations of extending FMEA, as used in traditional hardwired
devices, to current complex logic-intensive systems.

The contribution of IRSN researchers is based on a quarter century of experience with digital
safety systems, spanning three generational changes in technologies. The NRC staff
contributed relevant information gleaned from publicly available research publications and
interviews with several of the authors. The IRSN and NRC staff collaborated in refining the
analysis of their findings.

This study has also revealed areas for further investigation, but the scope of further
collaborative investigation has not yet been determined. In the meantime, the NRC intends to
contact experts reporting benefits from using FMEA to gain a deeper understanding of their
experience relevant to regulatory assurance.

Separate from the joint investigation with IRSN, in response to the concerns mentioned above,
the NRC had been investigating different ways of characterizing and classifying faults or defects
in software and their potential utility in regulatory assurance of nuclear power plant safety
systems. When that investigation is completed, the NRC will report its results separately. The
IRSN-NRC joint study serves as an interim response to address these concerns. This report
marks the successful launch of research collaboration between the NRC and IRSN. Both sides
expect to continue cooperative research into the assurance of digital safety systems. to address
research questions identified, but not answered in this study:
* Should the assessor accept "inadequately specified verification cases" to be "normal" and

overcome these weaknesses through redundant techniques? Or,
" Should the focus be on finding and fixing underlying systemic weaknesses in the upstream

review criteria?

Apart from the collaborative activities with IRSN, NRC will be addressing other related research
questions:
* What is the appropriate role for techniques such as FMEA in addressing the areas of

concern identified above?
* How effective are these techniques in comparison with other alternatives?

vi

CONTENTS

A B S T R A C T ... III

F O R E W O R D .. v

EXECUTIVE SUMMARY ... ix

A B B R E V IA T IO N S .. x

1. IN T R O D U C T IO N .. 1-1

2. TECHNOLOGICAL TRENDS .. 2-1

2.1 Characteristics of past hardwired electrical technologies ... 2-1

2.2 Characteristics of current digital electronics systems ... 2-2

2.2.1 Programmability and increasing configurability ... 2-2

2.2.2 Increasing complexity of hardware .. 2-2

2.2.3 Notion of faults in Complex Logic .. 2-2

2.2.4 Identification of potential faults in Complex Logic .. 2-3

2.2.5 Characteristics of faults in Complex Logic .. 2-4

3. IMPLICATIONS OF EXTENDING FMEA TO COMPLEX LOGIC 3-1

3.1 Analyzing fault modes from the causality perspective : 3-1

3.2 Difficulty in identifying the effects of faults .. 3-3

3.2.1 Unpredictable fault propagation in software even with known dependencies 3-4

3.2.2 Unpredictable fault propagation in software with hidden dependencies 3-5

3.3 Experience feedback ... 3-5

3.3.1 Canadian Bruce-4 nuclear reactor .. 3-5

3.3.2 AT&T's #4ESS toll switching systems ... 3-6

3.3.3 Ariane 5 launcher (Ariane 501) .. 3-6

3.3.4 Palo Verde Nuclear Generating Station Unit 2 .. 3-6

4. MISCELLANEOUS OBSERVATIONS .. 4-1

4.1 Reported beneficial uses of FMEA for software ... 4-1

4.2 Assumptions about physical faults in digital electronics ... 4-2

5 . C O N C L U S IO N S ... 5-1

6. ADDITIONAL INVESTIGATIONS .. 6-1

7 . R E F E R E N C E S ... 7 -1

APPENDIX A: GLOSSARY .. A-1

APPENDIX B: OTHER CAUSES OF FAULTS ... B-1

APPENDIX C: STATE OF THE ART IN FMEA FOR SOFTWARE C-1

vii

FIGURES

Page
Figure 1: General process model for an engineered product 3-2

Figure 2: Unpredictable fault propagation in software .. 3-4

viii

EXECUTIVE SUMMARY

This study was launched to investigate the efficacy of fault modes and effects analysis (FMEA)
as a method for identifying faults attributable to Complex Logic (for which it is not practicable to
ensure the correctness of all behaviors through verification alone) and leading to system
failures that would impair a safety function in a nuclear power plant.

The primary method of investigation is analytical. First, the study characterizes the differences
between traditional hardwired systems and current Complex Logic-intensive systems and the
technological trends that drive these differences. Given the fundamental differences thus
identified, the study discusses the issues and limitations of extending FMEA, as used for
traditional hardwired devices, to current complex logic-intensive systems. Then, it illustrates the
analytical conclusions through examples of real-life cases. The report includes an analysis of
information gleaned from relevant research publications.

The investigation concludes that FMEA techniques, which have been used effectively for
traditional hardware, do not yield similar benefit to regulatory assurance when applied to
Complex Logic, because of fundamental differences in the nature of faults in traditional
hardware and Complex Logic. Whereas hardwired devices have only a few predetermined fault
modes, the potential fault space in Complex Logic is huge; yet the actual number of faults is an
extremely small fraction of the potential fault space. Finding these faults through FMEA is akin
to searching for a needle in a haystack.

In examples drawn from four real-life cases (Canadian Bruce-4 nuclear reactor, Palo Verde
Nuclear Generating Station Unit 2, Ariane 5 launcher, and AT&T's #4ESS toll switching
systems), analysis shows that FMEA could not have helped discover the underlying faults.

Many faults and fault propagation paths cannot even be identified through an examination of the
design documentation because of two well-known causes of concern-(1) incomplete,
inconsistent, or ambiguous requirements and (2) inadequate, unenforceable, or unverifiable
architectural constraints.

This situation leads to this research question: Under what verifiable conditions could
development documents be deemed dependable for the purpose of obtaining FMEA results
about hypothetical software faults, when such faults are always due to development mistakes
(and are in most cases undocumented behaviors)?

An initial study of research publications indicates that the techniques were useful in the system
development process, rather than in the assurance process. There is no report of a successful
use of FMEA for the purpose of software assurance. However, the Korean Atomic Energy
Research Institute (KAERI) has reported beneficial use of fault tree analysis (FTA) in the
assurance of software. Specially crafted for software, the technique is different from the FTA
used for traditional hardware. Researchers applied the technique only to a small, critical
module, acknowledging that the technique was redundant to two types of verification, formal
verification and testing, which had been applied to the selected module earlier, but had failed to
identify the defect that the FTA revealed. The KAERI case leads to several research questions,
in which are beyond the scope of this NRC-IRSN collaborative study:

* Should the assessor accept "inadequately specified verification cases" to be "normal" and
overcome these weaknesses through redundant techniques? Or,

* Should the focus be on finding and fixing underlying systemic weaknesses in the upstream
review criteria?

ix

Other related research questions are: What is the appropriate role for techniques such as FMEA
in addressing the areas of concern identified above? How effective are these techniques in
comparison with other alternatives?

These questions will be considered in the on-going research program.

x

ABBREVIATIONS

ACRS Advisory Committee on Reactor Safeguards
AT&T American Telephone & Telegraph

COTS commercial off-the-shelf
CPC core protection calculator
CPU central processing unit

DI&C digital instrumentation and control

FMEA fault modes effects and analysis
FTA fault tree analysis
FY fiscal year

HAZOP hazard and operability

I&C instrumentation and control
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronic Engineers
IRSN Institut de Radioprotection et de SOret& NucI-aire

KAERI Korean Atomic Energy Research Institute

NASA National Aeronautics and Space Administration (U.S.)
NPP nuclear power plant
NRC U.S. Nuclear Regulatory Commission

xi

1. INTRODUCTION
With the introduction of digital instrumentation and control (DI&C) in safety-related systems,
some researchers and practitioners envisaged extending the traditional hardware failure
analysis techniques to software. However, this extension encounters the major difficulty that
software and traditional hardware fault modes are by nature quite different. Institut de
Radioprotection et de SOret6 Nucl~aire (IRSN) and the U.S. Nuclear Regulatory Commission
(NRC) jointly investigated and evaluated the suitability of applying fault modes and effects
analysis (FMEA), as a technique for identifying faults attributable to Complex Logic (such as
logic in the form of software or in the form of programmed hardware, for which it is not
practicable to ensure the correctness of all behaviors1 through verification alone) in DI&C for
safety functions in nuclear power plants (NPPs). The scope of the investigation is limited to the
role of FMEA in regulatory assurance of Complex Logic in DI&C safety systems. The study
provides a technical basis for IRSN and NRC staff to evaluate the use of FMEA for identifying
faults attributable to software and other forms of Complex Logic.

The research method is primarily analytical. First, the study characterizes the differences
between traditional hardwired systems and current complex logic-intensive systems and the
technological trends that drive these differences. Given the fundamental differences thus
identified, the study discusses the issues and limitations of extending FMEA, as used for
traditional hardwired devices, to current complex logic-intensive systems. Then, it illustrates the
analytical conclusions through examples of real-life cases. The investigation also includes an
analysis of information gleaned from relevant research publications.

Section 2 characterizes the differences and the technological drivers behind the differences.
Section 3 explains the implications of extending FMEA and fault tree analysis (FTA) from
traditional hardwired devices to Complex Logic. Section 4 captures miscellaneous related
observations, by first summarizing research supporting the use of FMEA for software and then
summarizing other sources of uncertainty from both today's complex electronic hardware and
complex software. Section 5 summarizes the findings of the study. Section 6 identifies some
issues requiring further research. Appendix A, "Glossary," defines key fundamental terms as
used in this document. The definition is hyperlinked at the first occurrence of a term that is not
well known or may not be well accepted. Key concepts and definitions are supported with
references that provide further information about these concepts. Appendix B, "Other Causes of
Faults," summarizes the sources of uncertainties in complex software. Appendix C, "State of the
Art in FMEA for Software," summarizes the specific viewpoints outside the U.S. NPP industry
that are relevant to the suitability of FMEA-FTA for use in the safety assurance of Complex
Logic. The conclusions reported in Section 5 are consistent with these findings. However, as
reported in Sections 4 and 6, further investigations, not in the scope of the current NRC-IRSN
collaborative study, are needed to understand the appropriate roles and combination of FMEA
and FTA and appropriate application constraints for reliable results from such analysis
techniques.

1 This refers to behavior under all foreseeable operating conditions with no anomalous behavior.

1-1

2. TECHNOLOGICAL TRENDS
Traditionally, NPPs have relied on hardwired devices for their instrumentation and control (l&C)
safety functions. In recent years, a shift in technology has led to the use of digital electronic
systems in nuclear safety applications, because of the increased obsolescence and difficulty in
maintaining analog electronic assemblies and to take advantage of functions enabled by digital
logic. However, this introduction of digital electronics into nuclear safety applications, with
increase in functionality, interdependencies 2, and complexity3 , increases the potential for
failures due to systemic causes. This section characterizes and contrasts the technological
differences.

2.1 Characteristics of past hardwired electrical technologies
When I&C systems comprised only traditional electrical hardware (where logic was hardwired),
the components were functionally simple (diodes, resistors, relays, etc.), and they had to be
physically placed on printed circuits of limited size. In practice, this severely constrained the
number of components and therefore allowed only simple designs. This simplicity yielded two
advantages: (1) practitioners could evolve designs that were not very fault prone, compared to
current logic-intensive digital systems, and (2) the circuits could be verified with a higher degree
of certitude. Thus, relative to system failures caused by component degradation, there was an
insignificant contribution of system failures due to design faults, or, more generally, engineering
mistakes and other systemic causes, compared to current logic-intensive digital systems.

Hardware component technologies used in early NPP safety systems were stable, and change
in technology was slow enough that sufficient operating experience could be accumulated for
understanding fault modes and their failure likelihood. In successive system design cycles,
component types could be selected based on operating experience, thus avoiding component
types that failed in unpredictable ways. To understand whether the system could perform its
intended function when needed, the system was analyzed for its reliability (e.g., through failure
analysis techniques such as FMEA and FTA). Most fault propagation paths could be understood
by examining the system design (interconnections and their implied interactions); even "sneak
paths" could be discovered from the available documentation. Given the reliability of each
hardware component and the fault propagation paths thus determined, the system reliability
could be estimated and effects on system functions could be understood. The system could be
configured to monitor and detect the failure or impending failure of a critical component and
bring the system to a safe state gracefully.

Hardware fault modes of traditional hardwired logic may be characterized as follows:

* Typically, faults result from physical degradation.

* The number of fault modes for basic components (e.g., relay stuck open or stuck closed) is
limited, and these fault modes are well understood. (Manufacturers often give fault modes
and frequencies for their basic components based on operational experience with the same
and similar components.)

" Faults propagate along the electrical interconnections between components (e.g., the
printed circuit tracks and wiring across panel-mounted components in electrical enclosures).

2 For example: Interconnections; signal exchanges; resource sharing
3 For example: Number of elementary structures grows from 1Os (hardwired) to millions or billions (gates in

complex logic)

2-1

0 Faults occur randomly 4; good design and maintenance practice may extend the interval
between random occurrences, but in general, it is accepted that the likelihood cannot be
reduced to zero.

2.2 Characteristics of current digital electronics systems

Some safety systems, including protection systems, have been implemented with digital
electronics to compute complex protection functions, such as departure from nucleate boiling
ratio, which allow a better and safer use of the nuclear fuel. Digital electronics systems
represent signals as discrete levels, rather than as a continuous range, and perform
computations using assemblies of logic gates, representing Boolean logic functions. These
assemblies 5 can comprise computers or other forms of programmable or configurable hardware,
as discussed in the next section.

Current digital technologies enable many benefits (e.g., more complex and accurate
computations, auxiliary functions such as calibration and self-monitoring, significant reduction of
cabling and signal transmitters, and ease of modification). For this reason, their use has
expanded to the point that most new systems or retrofits exploit digital electronics.

2.2.1 Programmability and increasing configurability

Current digital technologies are characterized by their programmability, which may take one of
the following forms or a combination of both:.

* Software: The hardware is based on general-purpose, commercial off-the-shelf (COTS)
components such as microprocessors, electronic memory components, and input/output
circuitry. The application-specific function is implemented in a program which is stored in
memory and executed by the microprocessor. Typically, application-independent software
(known as the system software, which is a very simplified form of operating system) is used
to interface with the computing and communication hardware, sensors, and actuators and to
manage the sharing of system resources.

• Programmable hardware: The hardware is based on programmable circuits such as field-
programmable gate arrays, complex programmable logic devices, or application-specific
integrated circuits. These components cannot perform a safety function without first being
"customized" (physically configured to a specific safety logic). This customized logic then
works alone (no operating system or system software is needed).

2.2.2 Increasing complexity of hardware

The logic of DI&C system output functions also depends on complex hardware modules which
are also susceptible to systemic causes of faults. In addition, current digital component
technologies have very high integration densities, reaching billions of transistors in a single
integrated circuit, which increases the potential for component-level faults due to engineering
mistakes.

2.2.3 Notion of faults in Complex Logic

Programs, a product of human thought, are becoming more and more complex, as indicated by
their increasing requirements, functions, inputs/outputs, and interdependencies. Therefore,
programs are more and more fault prone.

4 This does not imply that the causes are random.
5 The size of the constituent elements can range from small (e.g. 10s of elementary structures as in the case of

past hardwired systems) to very large (e.g. millions of logic gates).

2-2

Development of the application-specific contents of programmable hardware also involves the
specification of requirements, design with dedicated languages, test, simulation, and use of
complex software tools and thus has the same potential for logic faults.

For example, the National Aeronautics and Space Administration (NASA) has stated the
following about complex electronics [6]:

" "Logic errors are still common in space-flight projects, with bad circuits making it into flight
hardware."

* "A fundamental issue is how the complexity is managed to permit reliable design."

Similarly, the U.S. Federal Aviation Administration has stated the following [7]:

* "Not only are there the normal hardware integrity issues for safety-critical systems, but now
all the issues of software correctness apply also."

" "Error-free parts can no more be guaranteed than one can promise error-free software."

Potential faults in Complex Logic may originate in any phase of the development cycle, as
detailed in Section 3.1. For example, many defect types may occur just in the design phase: a
missing statement, a mistake in the name of a variable, a defect in loop control (software) or
similarly in register-controlled cyclic paths (programmable electronics), a wrong initial value, the
use of a wrong operator, a misunderstanding of operator precedence, a bad conditional
construct, or others. Defects may also occur when the requirements of the Complex Logic are
missing, ambiguous, or superfluous.

Therefore, programming digital electronic systems of growing complexity, either through
software or through programmable hardware, has the potential to introduce faults at any step of
the development process and such potential faults, if actually introduced in the delivered
Complex Logic, may trigger system failures.

In contrast with the degradation-caused fault modes of traditional hardware characterized in
Section 2.1, logic does not wear and tear from repeated usage. If a system fails because of
logic, it had some fault (defect or deficiency or weakness) from the time of introduction, but this
fault remained latent until the occurrence of a triggering or enabling combination of inputs, state
of the environment, state of the DI&C system, and state of the faulty logic.

2.2.4 Identification of potential faults in Complex Logic

To evaluate the applicability of different techniques for identifying potential faults, an estimate
follows of the order of magnitude of the potential fault space.

The reactor trip output of a protection system typically depends on more than 50 analog inputs,
each one digitized into more than 100 discrete values (typically 1,024). This means that the
input space has more than 100°5 = 10100 cases-more than the number of atoms in the
universe, 6 even without considering the influence of past inputs on the behavior of the logic. 7

Each of these cases is either within the authorized process domain or outside it, so for each
input case, there exists one right value and one wrong value for the reactor trip output. Thus,
there are potentially at least 10100 different faulty logics, each one producing the wrong output

6 According to current estimates, there are approximately 1080 atoms in the universe.
7 The behavior of a program usually depends not only on the values of its current inputs, but also on its internal

state S, which may depend on arbitrarily old inputs (e.g., for ever S {if input condition X holds, then modify state
S, or else keep S as it is; output = f(S, current inputs))).

2-3

for exactly one of the 10°00 input cases. Of course, all logics wrong for more than one input case
are also faulty, leading to an even greater number of potential faulty logics.

No tool can enumerate this large number of potential faults. Current processing speeds are in
the range of 1010 instructions per second. Even if each case could be processed in one single
computing instruction cycle, the processing time would be much more than 1090 seconds or
3x1013 years. This is so much time that even a large number of computers (hundreds,
thousands, or even millions) operating in parallel with 100-percent efficiency could not reduce
computation time to a practicable level.

Finally, when considering the influence of past inputs,7 the number of possible faulty logics is
unbounded. Whatever the considered finite set of faulty logics, it is always possible to produce
another faulty one (e.g., by delaying the occurrence of a faulty behavior by one additional clock
tick).

Therefore, the number of potential faults in a Complex Logic cannot be bounded in general, and
these potential faults cannot be exhaustively identified.

2.2.5 Characteristics of faults in Complex Logic

Logic faults that may trigger DI&C system failures are characterized as follows:

* The number of potential faults in Complex Logic is very high (see Section 2.2.4), and these
potential faults cannot be exhaustively identified.

* If the development and assurance processes are stringent and include independent
verification, only a limited number of faults is actually present in the Complex Logic of typical
safety systems. This implies that the faults actually present are unknown; otherwise, they
would be corrected.

* Faults that have not been introduced during the development process of the Complex Logic
or that have been removed during verification and validation will never appear in use.

2-4

3. IMPLICATIONS OF EXTENDING FMEA TO COMPLEX LOGIC
Given the technological trends characterized above, IRSN-NRC jointly examined the validity of
extending the traditional hardware failure analysis techniques for the assurance of Complex
Logic, such as software in a DI&C system for safety functions.

Hardwired systems using past technology (diodes, relays, etc.) have a limited number of well-
understood faults. As discussed in Section 2.1, these faults result from physical deterioration
over time, which means that they will necessarily occur during operation unless the component
is replaced or the system is removed from service. The propagation paths for these faults are
known (e.g., they are derived from printed circuit tracks or cabinet wiring). Therefore, the
identification of the associated fault modes and the analysis of their effects, causes, and
likelihood by FMEA and FTA are feasible and useful.

In contrast, the Complex Logic in each new digital system, as characterized in Section 2.2, is
not identical to the logic in any previous system, and the number of possible faults (i.e., the size
of the potential fault space) can be extremely large, as shown in Section 2.2.4. A complete list of
fault modes cannot be assembled [8].

Complex Logic design practice for safety systems follows principles that are intended to prevent
faults in the first place; a combination of verification techniques is used to discover and remove
faults or conditions that could lead to the failure of a safety function. This implies that the faults
actually present in a Complex Logic are unknown; otherwise, they would be corrected during the
development process.

FMEA attempts to analyze the effects for the severity of their consequences and the modes for
their likelihood of occurrence, or to identify measures to avoid their occurrence, or to identify
measures to mitigate the consequences. For the technique to be workable, it should be possible
to identify a feasibly small number of fault modes.8 Sections 3.1 and 3.2 analyze two
approaches to arrive at a compact set of fault modes. Section 3.1 discusses fault modes
abstracted from the causality perspective, and Section 3.2, from the effect perspective. In both
cases, it is difficult to identify the effects. Section 3.2.1 discusses a case where faults can
propagate in software unpredictably, even through functionally dependent paths. (Appendix B
discusses other sources of uncertainty that are especially exacerbated when Complex Logic is
implemented in software.) Section 3.3 illustrates these difficulties through some examples.

3.1 Analyzing fault modes from the causality perspective

Logic faults are rooted in human mistakes made during development, as illustrated in the
process model in Figure 1, which shows the human role as a direct resource in the process, as
well as having indirect roles in the creation of various resources. Mistakes may be made at the
very beginning of the development during the specification of requirements or later, at any step,
including transformation and introduction or omission of any information that will be included in
or affect the delivered logic ultimately. Mistakes committed during the development of software
tools used to build the delivered logic may also introduce faults in that logic. Compilers and
synthesizers are typical examples of such software tools.

8 Recall from the analysis in Section 2.2.4 that the potential fault space for Complex Logic can be extremely large,

even without considering the uncertainties mentioned in Section 4.

3-1

Intent I nputI OutputLCustomer -N Proces Product

Human (Applied

........... T[oo~ls ý

........ Aid 4 esources
•,•i:..::- • Information

i ". " i...... ...

Others:I

Figure 1: General process model for an engineered product

Human mistakes causing logic faults may be abstracted and categorized broadly as follows:

* missing or incorrect requirement at the beginning of the development
* incorrect translation of a requirement at some step of the development
" addition of an unspecified requirement 9

* selection of faulty (or incorrectly or inadequately documented) COTS software or hardware

One may be tempted to use such short lists as fault modes. However, the value of this is
questionable, because it is not possible to predict the fault modes' effects on a given piece of
software.

Indeed, in the case of traditional hardware, a fault mode such as "stuck open" defines a specific
behavior that can be explicitly propagated through the hardware to predict its effects. By
contrast, a fault mode such as "unspecified requirement" does not define a specific behavior:
any possible behavior should be taken into account and explicitly propagated through the
software, which is not feasible. Further analysis of the "unspecified requirement" category, as an
example, reveals that the number of possibilities of "unspecified requirement" cannot be
enumerated exhaustively. Similarly, in the category of "incorrect translation of a requirement,"
the possibilities cannot be enumerated exhaustively. Then, because of the typically huge
number of possibly different execution cases (as shown in Section 2.2.4), it is not possible to
analyze each potentially faulty case one after the other. FMEA and FTA techniques are usable
when the types of faults are a limited set, but these techniques cannot be used effectively and
efficiently when the potential fault space is so large.

As a hypothetical alternative, consider analyzing only those faults that are actually present;
indeed, these actual faults are very few in safety software developed, verified, and validated to

9 Unspecified requirements arise when a developer adds functionality to a system without updating the system,
software, or hardware requirements document(s). An example of adding an unspecified requirement to a system
is the addition of debug statements to software code and subsequent mistake of not removing the statements
from the software without updating the software requirements document to reflect the additional functionality in
the code. The unspecified requirements arising from these debug statements might adversely affect system
performance and resources (e.g., system timing constraints, memory needs, stack needs, or system interface
requirements).

3-2

very high standards. However, if actual faults in safety systems were known, they would be
corrected; then FMEA would not be needed.

When Complex Logic is implemented in software, additional sources of uncertainty arise, as
discussed in Appendix B, which reduces even more the validity of the FMEA-FTA contribution to
software assurance.

3.2 Difficulty in identifying the effects of faults
An FTA of an NPP as low as the safety I&C system would identify the event of interest
(i.e., failure of a safety function allocated to the I&C system). An event tree analysis, internal to
the I&C system, would trace the paths of functions on which this safety function was dependent.
This analysis can be performed down to the finest-grained functions identified in the logical
architecture and the logic modules to which these functions are allocated.

Then, the manner in which any module in these paths could malfunction (i.e., its fault mode) is
of interest for understanding the effect of that fault mode on the safety function. For example,
fault modes of a module are characterized in terms of the module's functions:

(1) failure to perform the module function in time (i.e., in time domain)
(2) failure to perform the module function with correct value (i.e., in value domain)
(3) performance of an unwanted function by the module
(4) interference or unexpected coupling with another module

The effects of potential Fault Modes 1, 2,. and 3 of a software module on the safety output are
difficult to analyze. Indeed, the exact semantic of the software and of the computing architecture
has to be considered to predict the impact of each possible time or value error of a module
(e.g., delivery of the results of a module too early or too late may have catastrophic impact on
the safety output or no impact at all, depending on the real-time scheduling of the modules).

In the case of Fault Mode 1 (failure to perform the module function in time), performing an
accurate analysis would imply studying every potential time error for any possible scheduling of
the modules. In the case of Fault Mode 3 (performance of an unwanted function by the module),
it is even more difficult to predict the impact of any possible unwanted function of a module on
the safety output, because it would require identifying all possible unwanted functions and
investigating their effects completely. As FMEA-FTA tools do not consider the exact semantic of
the software and of the computing architecture, and do not identify all possible unwanted
functions of each module, it is necessary to assume that the effect of these potential fault
modes is that the DI&C system will fail to perform its intended safety function.

As seen in Section 2.2, a huge number of cases pertain to Fault Modes 1, 2, and 3, and there is
no way to know which ones are actually present. Therefore, FMEA-FTA analyses can conclude
only that there is a huge number of potential faults that potentially lead to failure of the safety
function.

Potential Fault Mode 4 (interference with another module) is more common in software. A fault
within a given module may adversely impact another module, even if those modules do not
interact from the functional point of view (i.e., there is neither value exchanged, even indirectly
through other modules, nor calling relation between the modules). One typical example is that a
faulty module could write "out of bounds" of its allocated memory and corrupt a memory location
used by another module. The failure can manifest itself, for instance, by corrupting a data value
that would not be used until 6 months later in the operation of another module, and then cause a
catastrophic failure.

3-3

Propagation paths of faults include not only all functional dependency links but also paths not
visible from the functional point of view (i.e., not visible in the functional requirements). For
example, two functionally independent modules may in fact need access to a shared resource,
such as a bus to access memory and input/output. In this case, a fault in one module may put
the shared resource in a faulty state and then adversely impact the other module. Since the
dependency is not evident, it is difficult to verify non-interference or to identify an interference
fault mode.

There are many other subtle manifestations of such potential fault modes. Therefore, FMEA-
FTA techniques, as used commercially, cannot be relied on to identify the fault modes within a
module, nor can these techniques accurately model their effects on other modules or on the
safety output.

3.2.1 Unpredictable fault propagation in software even with known dependencies

Figure 2 illustrates an example of unpredictable propagation in software. In a program, the
outputs of a given Unit A typically provide inputs to a Unit B and so on (e.g., C, D) until the
signals reach one of the overall outputs (e.g., 01-03, depending on the inputs (e.g., IA1, IA2, IA3)
and the state transitions (e.g., B-S1, B-S2, B-S3). Hence, a software fault in Unit A may lead to
an erroneous input in Unit B that will possibly lead to erroneous outputs of Unit B and so on.
However, this propagation is not always predictable and may depend on the precise behavior of
Unit B and other units and the entire state history. For instance, if the behavior of Unit B is to not
use the particular output of Unit A when it is detected as faulty, if the specific fault under
analysis is detected by B, and if B may tolerate the omission of a limited number of A output
samples, then the propagation may be stopped. A system-level Fault Mode (1), as identified in
Section 3.2, may occur as a result of propagation through software in the following manner. The
output of A occurs at a time different from the time expected in the design of the policy to
schedule the execution of B. When B is executed, the value used from A is incorrect for that
execution.

Unit A Input to Unit B Unit B

(IAI. IA2, IA3) 01
IAI/B-S2 IA2/B-S3

Input to other Units

1 [02] [01] [031I

* I
II

:I I IA3/B-S 1

II

UnitC I: UnitD

Figure 2: Unpredictable fault propagation in software

In addition, the dependency space is huge, as illustrated in the following example. The amount
of data exchanged between real software units would quickly add to hundreds of elementary
fields. The number of units could be hundreds. The size-complexity of each unit is typically
hundreds of lines of code. Carrying out such a dependency analysis already leads to a huge
number of dependency paths and is quite challenging even with the use of tools.

3-4

For example, consider a state transition model of the behavior internal to the DI&C system,
down to the interactions across components, including the behavior in case of a hardware
failure.10 The traditional use of FTA, when applied to software, would be based on the designed
control flow paths. However, some system failures attributable to software lead to a behavior
that may not be analyzed, as they propagate erroneous values along the designed control flow
paths of the software, but break that control flow and create a different set of behaviors. This is
the case for software faults raising exceptions (e.g., a division by zero) or interrupts, or failures
leading to another path in the binary code (e.g., consequent to a stack overflow). Here again,
the possibilities are huge and are even harder to analyze systematically because the designed
control flow does not capture all the propagation paths.

3.2.2 Unpredictable fault propagation in software with hidden dependencies

Dependencies may not be easy to find. For example, in a producer-consumer paradigm,
especially with multiple consumers, the function chain does not reveal the propagation paths
possible through the software in the system.

Hidden dependencies and couplings are a major cause of system failure, limiting the ability to
identify event propagation paths. In software systems, each part could appear to be correct and
fully functional, but when components are combined as a system, problems can manifest
themselves. There is no single component that would be at fault. Rather, it is the combination
that can be at fault or the combination of explicit and implicit assumptions. Many critical
assumptions are never formally written down.

FMEA-FTA, when performed on the documented design, will not help in the discovery of such
unpredictable fault propagation paths.11

3.3 Experience feedback
Following are some examples of system failures in different application domains, which illustrate
the difficulty of identifying the fault modes and effects of Complex Logic.

3.3.1 Canadian Bruce-4 nuclear reactor

Description: In January 1990, an incident occurred at the Canadian Bruce-4 nuclear reactor in
which a small loss-of-coolant accident resulted from a programming fault in the software used to
control the reactor refueling machine. 12 Because of this fault, the control computer, when
suspending execution of the main refueling machine positioning control subroutine in order to
execute a fault-handling subroutine triggered by a minor fault condition detected elsewhere in
the plant, marked the wrong return address in its memory. As a result, execution resumed at the
wrong segment of the main subroutine. The refueling machine, which at the time was locked
onto one of the reactor pressure tube fuel channels, released its brake and dropped its refueling
assembly by about 0.9 m (3 feet), damaging both the refueling assembly and the fuel channel
[9].
Why FMEA-FTA techniques are not practical in such cases: This is a typical case of module
Fault Mode 4 (a fault in a module adversely impacts another module under a previously
unknown specific condition). FMEA-FTA could not have identified this fault mode for the
following reasons:

'o In current practice, such models are not available for safety reviews.

11 To appreciate the scope of assurance activities, see notes under the definition of Complex Logic.
12 Even though the system was not qualified to safety-grade standards, this type of software fault could also occur

in a safety-grade system.

3-5

" FMEA-FTA does not know the involved mechanisms of the computing architecture (stack,
return address, calling mechanisms) and does not analyze the source code.

* FMEA-FTA provides no means to identify this fault rather than any other potential fault.

3.3.2 AT&T's #4ESS toll switching systems

Description: On January 15, 1990, one of American Telephone & Telegraph's (AT&T's) #4ESS
toll switching systems in New York City experienced an intermittent failure that caused a major
service outage on the AT&T U.S. National Telephone Network."3 The outage occurred because
of a software defect that had escaped detection even by AT&T's software test methods. The
software defect was traced to an elementary programming mistake (i.e., a misplaced break
statement in a "C" program switch statement [10]).

Why FMEA-FTA techniques are not practical in such cases: This is a typical case of module
Fault Mode 2 (a module does not return the correct value under a previously unknown specific
condition). FMEA-FTA could not have identified this fault mode for the following reasons:

" FMEA-FTA does not know the involved mechanism of the "C" programming language (fall-
through conditions between cases of a "switch" statement) and does not analyze the source
code.

" FMEA-FTA provides no means to identify this fault rather than any other potential fault.

3.3.3 Ariane 5 launcher (Ariane 501)

Description: On June 4, 1996, the maiden flight of the Ariane 5 launcher 14 (Ariane 501)
resulted in self-destruction of the launcher. An independent inquiry board established by the
European Space Agency reported that the failure of Ariane 501 was caused by the complete
loss of guidance and attitude information 37 seconds after start of the main engine ignition
sequence. This loss of information was the result of specification and design defects in the
software of the inertial reference system. The inquiry board concluded that extensive reviews
and tests carried out during the Ariane 5 development program did not include adequate
analysis and testing of the inertial reference system or of the complete flight control system,
which could have detected the failure [11].

Why FMEA-FTA techniques are not practical in such cases: This is a typical case of module
Fault Mode 2 (a module does not return the correct value under a previously unknown specific
condition). FMEA-FTA could not have identified this fault mode for the following reasons:

" FMEA-FTA does not know the involved mechanism of the programming language (overflow
error when "casting" a given "floating point" value into an integer of a given size) and does
not analyze the source code.

* FMEA-FTA provides no means to identify this fault rather than any other potential fault.

3.3.4 Palo Verde Nuclear Generating Station Unit 2

Description: On May 22, 2005, in the core protection calculator (CPC) of Palo Verde Nuclear
Generating Station Unit 2, a software fault caused by a mistranslated system requirement when
updating the CPC software was discovered. The CPC system requirements state that if

13 Even though the system was not qualified to safety-grade standards, this type of software fault could also occur
in a safety-grade system.
Even though the system was not qualified to safety-grade standards, this type of software fault could also occur
in a safety-grade system.

3-6

redundant analog input cards within the same channel have failed, the CPC should recognize
those failures and automatically trip that channel. However, the software reverted to the "last
stored good value" in case of double sensor failure, which could have masked an actual trip
condition. This could have influenced multiple channels in the event of a common-cause failure
affecting their sensors simultaneously [12]. After analyses and meetings between the vendor
and Palo Verde staff, it was decided that the software defect common to all channels was a
safety concern [13].

Why FMEA-FTA techniques are not practical in such cases: This is a typical case of a
mistake in the requirement specification of the software.15 FMEA-FTA could not have identified
this fault mode for the following reasons:

" FMEA-FTA does not analyze the source code and does not compare it to the actual needs.

" FMEA-FTA provides no means to identify this fault rather than any other potential fault.

19 The mistake was in the specification rather than in the software design.

3-7

4. MISCELLANEOUS OBSERVATIONS
FMEA-FTA has been used in hazard analysis of software-reliant systems as discussed in
Section 4.1. However, in addition to the issues identified above (mostly common to various
realizations of Complex Logic), FMEA-FTA for software-reliant safety systems encounters some
other pitfalls. Section 4.2 discusses uncertainties in large, complex, electronic hardware and
assumptions about such hardware, which can affect the validity of safety analysis concerning
software.

4.1 Reported beneficial uses of FMEA for software
Whereas this study questions the suitability of FMEA for the assurance of Complex Logic, it is
also acknowledged that others [14-25] (as discussed in Appendix C) have found these
techniques useful in hazard analysis leading to the discovery or identification of safety
requirements. This activity is part of the system development process, performed by the license
applicant or its agent and tailored to suit the applicant's needs (e.g., system characteristics).

FMEA has been used to analyze whether the architecture will bring the system to a safe state
when something in the system does not behave as intended, whether it be a hardware
component1 6 or a software component. The use of FMEA is a part of system-internal hazard
analysis [23], which abstracts in terms of system functions (as discussed in Section 3.2) the
fault modes attributable to software.

The Korean Atomic Energy Research Institute (KAERI) has implemented a digital reactor
protection system, for which it performed safety analysis of the software as a part of software
development (23]. KAERI devised a "software HAZOP" technique, different from conventional
hazard and operability (HAZOP) analysis. In KAERI's technique, for each system hazard, it
searches for adverse effects of qualitative software functional characteristics identified in the
NRC's "Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power
Plants: LWR Edition" (NUREG-0800), Branch Technical Position 7-14, "Guidance on Software
Reviews for Digital Computer-Based Instrumentation and Control Systems," Revision 5 [26].
Limiting the search space to paths leading to critical system hazards helps reduce the analysis
time compared to that of a conventional FMEA. From the result of the "software HAZOP,"
KAERI selected a search subspace leading to the most critical system hazard (failure to trip on
demand) and applied a software FTA technique for a detailed traversal through the software
logic structure. The software FTA revealed a software defect 17 that was not found in formal
verification and testing. KAERI acknowledges that the use of software FTA was redundant (the
"software HAZOP" could have been extended in the causal direction), but the experience on this
project shows the value of redundancy in testing and formal verification techniques. This
experience report raises the following questions:

" Should one accept such "misses" to be "normal" and overcome these weaknesses through
redundant techniques? Or

* Should the focus be on finding and fixing systemic weaknesses1 8 in the state of the art for
formal verification and testing techniques19?

16 An example would be the effect of a bit flip.

17 Further investigation of KAERI's experience is needed to understand how the FTA was effective in identifying the

fault.
18 It is not a reflection on KAERI but indicates promising avenues for advancing the state of the art.

4-1

4.2 Assumptions about physical faults in digital electronics
The economically useful life of digital component technologies has become so short that it is
difficult to accumulate adequate operational experience with their respective fault modes and
likeli.hoods.

In addition, digital state switching time is being reduced continually, as well as switching voltage
or energy threshold, which makes digital electronics more and more sensitive to radiation or
high-energy particles. On the other hand, with the increasing use of electronics, electromagnetic
emissions in the environment (e.g., from power electronics), are increasing. This makes it
increasingly difficult to identify elementary physical faults in digital electronic hardware
components, such as sensors, actuators, and computing devices, and to analyze how such
elementary faults, propagate within the circuit. Therefore, commensurate mitigating safety
requirements (often for' detection software) are not derivable through a well-defined, repeatable
procedure,

Uncertainties about the nature and occurrence of physical faults in new digital component
technologies, especially faults leading to partial or intermittent component failure, may lead to
unintended effects on the functionality of the impacted integrated circuit. In particular, the
propagation paths of physical faults within an integrated circuit depend on complex and
undisclosed microelectronic processes at nanometric scale. However, FMEA-FTA applied to the
physical faults in a high-density integrated circuit often consider only the case of total failure of
all functions provided by this circuit.

These uncertainties increase system complexity and add to the challenges of validating
assumptions about hardware when analyzing software.

This may also apply to development constraints (see second note under the definition of Complex Logic in
Appendix A).

4-2'

5. CONCLUSIONS
IRSN and NRC researchers have jointly analyzed the role of FMEA in regulatory assurance of
Complex Logic, especially software, in an NPP safety system and concluded that its contribution
is marginal.

The root cause of this limitation lies in the fundamentally different characteristics of faults in
Complex Logic, especially software, compared to physical faults for which FMEA-FTA had been
developed. Whereas hardwired devices have only a few predetermined fault modes, the
potential fault space in Complex Logic is huge; yet the actual number of faults is an extremely
small fraction of the potential fault space. Finding these faults through FMEA is akin to
searching for a needle in a haystack. Therefore, extending methods that have been successfully
used for analyzing traditional hardware to Complex Logic does not yield similar benefits.

5-1

6. ADDITIONAL INVESTIGATIONS
Before further investigation into the appropriate role of FTA and FMEA in safety analysis of
Complex Logic, a broader question must be addressed: Under what verifiable conditions would
development documents be dependable for obtaining FMEA-FTA results 20 for hypothetical
software faults, when such faults always result from development mistakes (and are in most
cases undocumented behaviors)?

The dependability of documentation is in question for two well-known causes of concern:
(1) incomplete, inconsistent, or ambiguous requirements
(2) inadequate or unenforceable or unverifiable architectural constraints 21

This leads to related research questions: What is the appropriate role for techniques such as
FMEA and FTA in addressing these areas of concern? How effective are these techniques in
comparison with other alternatives?

Further investigations are needed to understand and evaluate the benefits of application of
FMEA-FTA for software, reported by several experts and expert groups (14-25]. An initial study
of their publications indicates that the techniques were useful in support of system-internal
hazard analysis and for discovering and identifying safety requirements. The reported
applications were successful under certain specific conditions.

With respect to results from others' research [14-25], reported in Section 4, the NRC intends to
contact these experts to gain a deeper understanding of their experience.

In the case of the KAERI application [21], in the context of the broad research questions
mentioned above, the NRC has identified the following coupled research questions:

" Should the assessor accept "inadequately specified verification cases" to be "normal" and
overcome these weaknesses through redundant techniques? Or,

* Should the focus be on finding and fixing underlying systemic weaknesses in the upstream
review criteria? 22

These questions will be considered in NRC's on-going research program.

20 FMEA-FTA results can be used for software analysis.

21 As an example of architectural concerns, if some dependency or flow path is not shown in the design, fault
propagation paths or unwanted flow paths would escape analysis.

22 See the second note under the definition of Complex Logic in Appendix A.

6-1

7. REFERENCES

1. U.S. Nuclear Regulatory Commission, "NRC Digital System Research Plan FY 2010 -
FY2014," (ML1 00541484), Washington, DC, February 2010.

2. U.S. Nuclear Regulatory Commission, "Commission Meeting with Advisory Committee on
Reactor Safeguards," Staff Requiement Memoranda M080605B (ADAMS Accession
Number ML081780761), Washington, DC, June 26, 2008.

3. U.S. Nuclear Regulatory Commission, "Digital Instrumentation and Controls Systems Interim
Staff Guidance," Advisory Committee on Reactor Safeguards, 551th Meeting Letter Report
(ML081050636), Washington, DC, April 29, 2008.

4. U.S. Nuclear Regulatory Commission, "Draft Final Digital Instrumentation & Control Interim
Staff Guidane-06: Licensing Process," Advisory Committee on Reactor Safeguards, 5 7 6 th

Meeting Letter Report (ML102850357), Washington, DC, October 10, 2010.

5. U.S. Nuclear Regulatory Commission, "Digital Instrumentation & Control Interim Staff
Guidane-06: Licensing Process,"(ML110140103), Washington, DC, January 19, 2011.

6. Katz, R., Barto, R., and Erickson, K., "Logic Design Pathology and Space Flight Electronics,"
NASA Goddard Space Flight Center, 1997.

7. U.S. Federal Aviation Administration, "Design, Test, and Certification Issues for Complex
Integrated Circuits," DOT FAA AR-95/31, Washington, DC, 1996.

8. Lutz, R.R. and Woodhouse, R.M., "Bi-Directional Analysis for Certification of Safety-Critical
Software," Proceedings, ISACC 1999, International Software Assurance Certification
Conference, Chantilly, VA, February 28-March 2, 1999.

9. Garrett, C. and Apostolakis, G., "Context and Software Safety Assessment,"
2nd International Workshop on Human Error, Safety and System Development, Seattle, WA,
1998.

10. Toy, W.N., "Fault-Tolerant Design of AT&T Telephone Switching Systems," in Reliable
Computer Systems: design and evaluation, Siewiorek and Swarz, Eds., Digital Press,
Burlington, MA, 1992.

11. European Space Agency, "Ariane 501r-Presentation of Inquiry Board Report," Press
Release No. 33-1996, July 23, 1996.

12. Bickel, J.H., "Risk Implications of Digital RPS Operating Experience," International Atomic
Energy Agency Technical Meeting, June 19-21, 2007.

13. U.S. Nuclear Regulatory Commission, "Technical Specification Required Shutdown Due to
Core Protection Calculators Inoperable," Licensee Event Report 52992005004, Washington,
DC, May 22, 2005.

14. Goddard, P.L., "Software FMEA Techniques," Proceedings Annual Reliability and
Maintainability Symposium, pp. 118-123, 2000.

15. Goddard, P.L., "Validating the Safety of Embedded Real-Time Control Systems Using
FMEA," Proceedings Annual Reliability and Maintainability Symposium, pp. 227-230, 1993.

16. Leveson, N.G., "Safeware: System Safety and Computers," ISBN 0-201-11972, Addison-
Wesley Professional, Reading, MA, April 17, 1995.

7-1

17. Lutz, R.R. and Shaw, H.Y., "Applying Integrated Safety Analysis Techniques (Software
FMEA and FTA)," Jet Propulsion Laboratory (JPL) D-16168, Pasadena, CA,
November 30, 1998.

18. Lutz, R.R. and Woodhouse, R.M., "Experience Report: Contributions of SFMWA to
Requirements Analysis," Proceedings of ICRE 1996, pp. 44-51, Colorado Springs, CO,
April 1996.

19. McDermid, J.A., Nicholson, M., Pimfrey, D.J., and Fenelon, P., "Experience with the
Application of HAZOP to Computer-Based Systems," Proceedings of COMPASS 1995,
IEEE, Gaithersburg, MD, pp. 37-48, 1995.

20. Pentti, H. and Atte, H., "Failure Mode and Effects Analysis of Software-Based Automation
Systems," STUK-Radiation and Nuclear Safety Authority, p. 37, Helsinki, August 2002.

21. Kwon, K.C. and Lee, M., "Technical Review on the Localized Digital Instrumentation and
Controls Systems," Special Issue in Celebration of the Korean Nuclear Society, Nuclear
Engineering Technology, Vol. 40, No. 5, August 2008.

22. Park, G.Y., Koh, K.Y., Jee, E., Seong, P.H., Kwon, K.C., and Lee, D.H., "Fault Tree Analysis
of KNICS RPS Software," Nuclear Engineering Technology, Vol. 41, No. 4, May 2009.

23. Park, G.Y., Lee, J.S., Cheon, S.W., Kwon, K.C., Jee, W., and Koh, K.Y., "Safety Analysis of
Safety-Critical Software for Nuclear Digital Protection Systems," Proceedings of
SAFECOMP 2007, Lecture Notes in Computer Science 4680, pp. 148-161, 2007.

24. Kwon, K.C. and Park, G.Y., "Formal Verification and Validation of the Safety-Critical
Software in a Digital Reactor Protection System," NPIC & HMIT 2006, Albuquerque, NM,
November 12-16, 2006.

25. Lee, J.S., Lindner, A., Choi, J.G., Miedl, H., and Kwon, K.C., "Software Safety Lifecycles and
the Methods of a Programmable Electronic Safety System for a Nuclear Power Plant,"
Proceedings of SAFECOMP 2006, Lecture Notes in Computer Science 4166, pp. 85-98,
2006.

26. U.S. Nuclear Regulatory Commission, "Standard Review Plan for the Review of Safety
Analysis Reports for Nuclear Power Plants: LWR Edition," Branch Technical Position 7-14,
"Guidance on Software Reviews for Digital Computer-Based Instrumentation and Control
Systems," NUREG-0800, Revision 5, Washington, DC, 2007.

7-2

APPENDIX A: GLOSSARY
The scope of this glossary is limited to this document.

Complexity

(A) (software) The degree to which a system or component has a design or implementation that
is difficult to understand and verify. (Definition (1)(A) in [1])

(B) (software) Pertaining to any of a set of structure-based metrics that measure the attribute in
Definition (1)(A) in [1]. (Definition (1)(B) in [1])

Notes:

" There are other perspectives on the definition of complexity as illustrated below
(i.e., there is no broadly accepted definition, even in the limited context of safety-critical
software engineering).

* The number of linearly independent paths (one plus the number of conditions) through
the source code of a computer program is an indicator of control flow complexity, known
as McCabe's cyclomatic complexity. [2]

* Sometimes, the term "size-complexity" is used to refer to the effect of the number of
states and number of inputs and their values and combinations.

" An ill-defined term that means many things to many people. [3]

Complex Logic

An item of logic for which it is not practicable to ensure the correctness of all behaviors1 through
verification alone.

Notes:

" This definition is derived from a combination of the definition of complexity given above
and the following definition in DO-254/ED-80 in Appendix C [4], for "simple hardware
item": "A hardware item is considered simple if a comprehensive combination of
deterministic tests and analyses can ensure correct functional performance under all
foreseeable operating conditions with no anomalous behaviour." The conditional clause
"if a comprehensive combination of deterministic tests and analyses..." is summarized
as "verification" (defined below in this glossary).

" Therefore, in addition to verification (see definition below), the demonstration of
correctness of Complex Logic requires a combination of evidence from various phases
of the development life cycle, integrated with reasoning to justify the completeness of
coverage provided (summarized as development assurance). Examples include the
following:

o evaluation of the system concept (and conceptual architecture)

o evaluation of the verification and validation plan

o criticality analysis

o evaluation of the architecture including requirements allocation

o evaluation of the system-internal hazard analysis

This refers to behaviour under all foreseeable operating conditions with no anomalous behaviour.

A-1

o validation of requirements and constraints on the design and implementation

o assessment and audit of all the processes, including supporting processes and
management processes

o certifying 2 organizations developing software

o evaluation of the independence 3 of the assurance activities

(See [5] for more detail.)

Complex Logic is typically produced by techniques such as software or hardware
description languages and their related tools. Thus, the assurance of correctness also
requires commensurate assurance of the languages and tools.

Design Defect

Frailty or shortcoming of an item resulting from a defect in its concept, and which can be
avoided only through an alteration or redesign of the item. [6]

Error

The difference between a computed, observed, or measured value or condition and the true,
specified, or theoretically correct value or condition (Definition (8)(A) in [1])

Failure

The termination of the ability of an item to perform a required function. [7]

Note 1: After failure, the item has a fault. [5]

Note 2: "Failure" is an event, as distinguished from "fault" which is a state. [7]

Note 3: This concept as defined does not apply to items consisting of software only. [7]

Note 4: The following definitions represent the perspectives of different disciplines to
reinforce the definition given above:

" the termination of the ability of an item to perform a required function (Definition (1)(A) in
[1])

* the termination of the ability of a functional unit to perform its required function
(Definition (1)(N) in [1])

* an event in which a system or system component does not perform a required function
within specified limits; a failure may be produced when a fault is encountered
(Definition (1)(O) in [1])

* the termination of the ability of an item to perform its required function (Definition 9 in [1]
from "nuclear power generating station")

* the loss of ability of a component, equipment, or system to perform a required function
(Definition 13 in [1] Safety systems equipment in "nuclear power generating stations")

2 Certification of the development organization should be a continual process of certification and recertification
much in the same manner as reactor operators are certified periodically. For example, the capability maturity
model integrated certification process developed by the Software Engineering Institute focuses on assessing the
capabilities of development.

3 For example, independence can be evaluated through certification of the assurance process for the Complex
Logic (e.g., software).

A-2

* an event that may limit the capability of equipment or a system to perform its function(s)
(Definition 14 in [1] "Supervisory control, data acquisition, and automatic control")

* the termination of the ability of an item to perform a required function (Definition 15 in [1]
"nuclear power generating systems")

Failure Analysis

The logical, systematic examination of a failed item to identify and analyze the failure
mechanism, the failure cause, and the consequences of failure. (191-16-12 in [7])

Fault

The state of an item characterized by inability to perform a required function, excluding the
inability during preventive maintenance or other planned actions, or due to lack of external
resources. (191-05-01 in [7])

Note 1: A fault is often the result of a failure of the item itself but may exist without prior
failure. (191-05-01 in [7])

Note 2: Following are other definitions, relating "fault" and "defect":

" a defect or flaw in a hardware or software component (Definition 13 in [1])

* a defect in a hardware device or component; for example, a short circuit or broken wire
(Definition 9 in [1])

Synonym: physical defect

Note 3: The following definition is specific to software:

An incorrect step, process, or data definition in a computer program (Definition (7)(A) in [1])

Fault Analysis

The logical, systematic examination of an item to identify and analyze the probability, causes,
and consequences of potential faults. (191-16-11 in [7])

Fault Mode

One of the possible states of a faulty item, for a given required function.

Note: The use of the term "failure mode" in this sense is now deprecated.

Fault Modes and Effects Analysis (FMEA)

A qualitative method of reliability analysis, which involves the study of the fault modes, which
can exist in every subitem of the item, and the determination of the effects of each fault mode
on other subitems of the item and on the required functions of the item. (191-16-03 in [7])

Note: The term "failure modes and effects analysis" is deprecated.

Fault Tree Analysis (FTA)

An analysis to determine which fault modes of the subitems or external events, or combinations
thereof, may result in a stated fault mode of the item, presented in the form of a fault tree.
(191-16-05 in [7])

A-3

Faulty

Pertaining to an item that has a fault.

Feasible

Capable of being done with the means at hand and circumstances as they are. [8]

Other definitions also impose such constraints as "practicably," "reasonable amount of effort,
cost, or other hardship" [9], cost-effectiveness [10].

Such constraints distinguish "feasibility" from "possibility."

Hardwired

Pertaining to a circuit or device whose characteristics are permanently determined by the
interconnections 4 between components5 (Adapted from Definition 3 in [1]).

Note:

* The referred-to connections are at the printed circuit board level (or cabinet level), not
internal to integrated circuits.

Item (Entity)

Any part, component, device, subsystem, functional unit, equipment, or system that can be
individually considered. (191-01-01 in [7])

Notes:

* An item may consist of hardware, software, or both, and may, in particular cases, include
people.

* A number of items (e.g., a population of items or a sample) may itself be considered an
item.

Mistake

A human action that produces an unintended result (Definition 1 in [1] "electronic computation")

Editorial note (contrary to the note attached to Definition 1 in [1]): In the context of software
engineering, this definition should be applied to mistakes concerning requirements
development (including elicitation, transformation of intent into requirement or constraint
specification, and explicit statement of assumptions (e.g., about the environment) and
respective validation.

A human action that produces an incorrect result (Definition 3 in [1] "software")

Note: The fault tolerance discipline distinguishes between the human action (a mistake), its
manifestation (a hardware or software fault), the result of the fault (a failure), and the
amount by which the result is incorrect (the error). [1]

Editorial note (complementing the note in the previous definition of "mistake"): In the context
of software engineering, this definition should be applied to mistakes concerning
transformation of requirements specifications and constraints into successive work products
and their respective verification.

4 Examples: Wiring in cabinets; Printed paths in circuit boards
5 Examples: Relays; AND-gates; OR-gates

A-4

Noninterference

Absence of cascading failures between two or more elements that could lead to the violation of
a safety requirement [11]."

Example 1: Element 1 is interference-free of Element 2 if no failure of'Element 2 can cause
Element 1 to fail.

Example 2: Element 3 interferes with Element 4 if there exists a failure of Element 3 that
causes Element 4 to fail.

Reliability (symbol: R(t1 , t2))

The probability that an item can perform a required function under given conditions for a given
time interval (ti, t2). (191-12-01 in [7])

Note: It is generally assumed that the item is in a state to perform this required function at
the beginning of the time interval.7

* The term "reliability" is also used to denote the reliability performance quantified by this
probability (see 191-02-06 in [7]).

" This definition does not apply to items for which development mistakes can cause
failures, because there is no recognized way to assign a probability to development
mistakes.

Systemic

Embedded within and spread throughout and affecting a group, system, or body. Also see
"systemic cause" in [12].

Systematic Failure

Failure, related in a deterministic way to a certain cause, that can be eliminated only by a
modification of the design or of the manufacturing process, operational procedures,
documentation, or other relevant factors. [7]

Note 1: Corrective maintenance without modification will usually not eliminate the failure
cause.

Note 2: A systematic failure can be induced by simulating the failure cause.

Note 3: In International Electrotechnical Commission 61508-4 CDV 3.6.6 [13]: Examples of
causes of systematic failures include human mistakes in the following areas:

* the safety requirements specification
* the design, manufacture, installation, and operation of the hardware
* the design, implementation, etc. of the software

Also, see "systemic cause" in [12].

6 This reference uses the term "freedom from interference."
7 For a software component that is faulty to begin with, use of the term reliability is neither meaningful nor helpful;

instead, it leads to the misapplication of analysis techniques that served well for traditional hardware.

A-5

Verification
The process of providing objective evidence that the software and its associated products
conform to requirements (e.g., for correctness, completeness, consistency, accuracy) for all life-
cycle activities during each life-cycle process (acquisition, supply, development, operation, and
maintenance); satisfy standards, practices, and conventions during life-cycle processes; and
successfully complete each life-cycle activity and satisfy all the criteria for initiating succeeding
life-cycle activities (e.g., building the software correctly). (Definition 3.1.36 B in [5])

References for Appendix A

1. IEEE Standard 100-2000, "The Authoritative Dictionary of IEEE Standards Terms,"
7th edition, 2000.

2. McCabe, T.H., "A complexity measure," IEEE Transactions on Software Engineering,
Vol. SE-2, No. 4, December 1976.

3. Flake, G.W., The Computational Beauty of Nature: Computer Explorations of Fractals,
Chaos, Complex Systems, and Adaptation, November 30, 2002,
<http:/lmitpress.mit.edu/books/FLAOH/cbnhtml/>, October 1, 2010.

4. RTCA DO-254/Eurocae ED-80 Standard, "Design Assurance for Airborne Electronic
Hardware," Radio Technical Commission for Aeronautics/EUROCAE, April 19, 2000.

5. IEEE Standard 1012-2004, "IEEE Standard for Software Verification and Validation," IEEE
Computer Society, 2004.

6. BusinessDictionary.com, "Design Defect,"
<http:/lwww.businessdictionary.com/definition/desian-defect.html>, December 17, 2010.

7. International Electrotechnical Commission, "International Electrotechnical Vocabulary,
Chapter 191: Dependability and Quality of Service," IEC 60050-191:1990-12, 1st edition,
1990.

8. WordNet, "Feasible," Princeton University,
<http://wordnetweb.princeton.edu/perl/webwn?s=feasible>, December 17, 2010.

9. U.S. Department of Transportation, Federal Highway Administration, "Feasible,"
<http://www.fhwa.dot.qov/environment/sidewalks/appb. htm>, December 17, 2010.

10. Georgetown University, "Feasible,"
<http://uis.,eorgetown.edu/departments/eets/dw/GLOSSARY0816.html>,
December 17, 2010.

11. International Organization for Standardization, "Road Vehicles-Functional Safety-Part 1:
Vocabulary," ISO/DIS 26262-1, 1st edition, 2009.

12. Chris Eckert, Apollo Associated Services, LLC, "Identification and Elimination of Systemic
Problems," Proceedings of the Society of Maintenance and Reliability Professionals Annual
Symposium, St. Louis, MO, October 20-22, 2009.

13. International Electrotechnical Commission, "Functional Safety of
electrical/electronic/programmable electronic safety-related systems - Part 4: Definitions
and Abbreviations," IEC 61508-4:2010-04, 2nd edition, 2010.

A-6

APPENDIX B: OTHER CAUSES OF FAULTS

In analyzing how safety systems may fail, identifying the cause in terms of a distinct fault mode
has been useful when different fault modes could lead to different effects requiring different
means and degrees of mitigation. When the differences in effects are unclear, as in the case of
the logic fault modes characterized in Section 3.2, a root cause analysis offers more information
and utility. Even the identification of intermediate links in the causality chain can lead to specific
corrective actions and effective reduction of the possible ways a safety system may fail.
Software engineering experts have identified some such causes or types of causes, as
discussed below. Some types of causes, as in Sections B.1 and B.2, apply to Complex Logic in
general, while others, as in Section B.3, occur more in software.

B.1 Pervasive causes preclude localization of fault mode to item

Systemic root causes of software defects tend to have influences that pervade the product and
the process. Such pervasive causes include weaknesses in the culture of an organization or a
division of work and people that prevents adequate communication and weaknesses in the
process of identifying safety requirements, architectural standards, process standards,
management of procurement processes, and the supply chain. Effects cannot be localized as in
the case of failure caused by the wear and tear of a hardware component for which fault mode
and effects analysis has proven useful.

B.2 Unknown effect of change

Changes, modifications, and updates occur during the usage life of a digital instrumentation and
control system; not only do the systems change, but also the resources used in their
performance (e.g., people and tools). These changes can introduce -defects. For example, at the
Jet Propulsion Laboratory, the software used for navigation from Earth to Mars was created
30 years ago. It is robust, but revised from time to time to meet changing needs. One would
expect that after 4 or 5 years, it would be defect free. However, over a 30-year period, the
number of defects discovered has not decreased. It is reasonable to assume that there are still
latent faults. What is the required rigor and granularity in configuration control and management,
change control and management, and change impact analysis? There is no proven record of
accomplishment to answer these questions.

B.3 Other causes of faults when Complex Logic is in the form of software

In most software systems, there is a significant amount of unpredictability of behavior. This may
be surprising at first glance because a software program is a mathematical formula, which
should provide only one well-defined result for a given input history. However, inadequately
engineered software may depend not only on its functional inputs, but also on hidden,
uncontrolled inputs,1 variability of computation times (e.g., because of the state of the cache
memory resulting from the activities of other programs), and other inputs. Then, the behavior of
the software is, nondeterministic. Some of the contributing causes are discussed below.

Assumptions about the environment of the software: In a software system that is composed of N
individual components, each individual component can be designed "correctly," and yet the
composition can have flaws. The flaw is generally in the specific assumptions (explicit or
implicit) about the operating environment made in the design and construction of each

Examples include the state of the computing hardware such as time, environment variables, or availability of

resources

B-1

component. A software component can be completely robust with respect to a specific set of
environmental assumptions ("environment" refers to the rest of the system, including all other
software components, and the rest of the world outside the system itself that can provide events
that are visible to the system). Yet, there can be subtle discrepancies in the assumptions
between components that could lead to failure of the system as a whole.

Process scheduling: Another source of unpredictable behavior can come from process
scheduling,2 actual concurrency,3 and the outside environment (providing input triggers that the
software responds to, or is sensitive to). This unpredictability makes standard software testing
extremely difficult. In general, this is known as the oracle problem. Any specific execution of the
system as a whole is generally an unpredictable occurrence of a specific interleaving of small-
grained instruction executions. If there is a vulnerability 4 of this type in the system, it can remain
hidden for long periods (years), until it finally strikes when just the right interleaving of events
happens. Those bugs also tend to be irreproducible even when they are known to be possible
(too many things beyond the testers' control need to happen in just the right order).

Change in environmental conditions: A software component can function correctly for a long
time, and just a small change in its environment (i.e., not in the component itself) can trigger a
system failure. The change could be a change in the scheduler, or the speed of the CPU, or the
speed at which external events occur. Concurrency issues make deterministic arguments
difficult. Typically, when a race condition causes a problem, simply rebooting the system will
remove all evidence of it, and the same problem may never strike again. The software may
appear to work correctly and will be fully functional most of the time, even though it has
vulnerabilities that can strike unpredictably at some point in its lifetime when the right conditions
occur.

Unpredictable effects of trigqgered faults: Most importantly, the possible effects of a triggered
fault (defect) (for example, one that allows a subtle race condition, which can cause data
corruption somewhere) are generally unpredictable. There are many examples of major system
failures that were caused by seemingly small one-line bugs. One example is the AT&T disaster
in January 1990, described in Section 3.3.2, where intermittent failure caused a major service
outage on the entire long-distance U.S. telephone network. Other examples of seemingly
"small" problems that lead to large failures abound. The National Aeronautics and Space
Agency, for instance, lost an expensive spacecraft (the Mars Global Surveyor spacecraft)
recently because of 1 byte of memory having the wrong value. These observations emphasize
that the consequences of even very small defects in software can be quite unpredictable. So
even if we could assign a reasonably accurate probability of a defect existing in a software
system (which we cannot), that in itself does not help us assess the potential effect of such a
defect. The effect could be benign, or it could bring down the entire system in an unforeseeable
way.

Mitigating measures are useful but limited: Intervention mechanisms outside the software (and
independent of it) can (and should) be provided to mitigate the effects mentioned above. Strong
mechanisms (e.g., the use of memory protection and partitioning kernels) should be provided to
prevent the propagation of failures within software systems. Detection through runtime
monitoring and other fault monitoring techniques can and should be exploited. Prevention
techniques through defensive coding techniques, consistency checking, and static source code

2 This refers to the way in which a process scheduler interleaves the execution of multiple tasks on a single

processor.
3 Multiple central processing units (CPUs) are running multiple tasks in parallel at unpredictable relative speeds.
4 It is often the case.

B-2

analyzers can and should be used. Even then, mistakes can occur, but their likelihood and
effects cannot be determined.

Glossary for Appendix B

Latent Fault

An existing fault that has not yet been recognized. (191-05-20 in [1])

Oracle

An oracle is a mechanism used by software testers and software engineers for determining
whether a test has passed or failed. It is used by comparing the output(s) of the system under
test, for a given test case input, to the outputs that the oracle determines that product should
have. (Adapted from [2])

Examples:

* an expected result
* a requirements document
* a previous version of the product
" a human judgment

The Oracle Problem

Whether a decision procedure can be defined for interpreting the results of tests. (Adapted from
3])

Examples:

* Requirements specifications are incomplete, contain conflicting information, or are
ambiguous.

" Expected results in a test case detail only a small portion of what is expected (the tiny
portion of the application and functionality the test is designed to expose).

Notes:

* The oracle problem is that all oracles are fallible.
* Oracles are hard to find and require work to use effectively.

References for Appendix B
1. International Electrotechnical Commission, "International Electrotechnical Vocabulary,

Chapter 191: Dependability and Quality of Service," IEC 60050-191:1990-12, 1st edition,
1990.

2. Wikipedia, "Oracle (software testing),"
<http://en.wikipedia.ora/wiki/Oracle (software testingq)>, December 17, 2010.

3. Machado, P.D.L., "Testing from Structured Algebraic Specifications: The Oracle Problem,"
May 5, 2006, <http://www.lfcs.inf.ed.ac.uk/reports/00/ECS-LFCS-00-423/>,
December 17, 2010.

B-3

APPENDIX C: STATE OF THE ART IN FMEA FOR SOFTWARE
Fault modes and effects analysis (FMEA) and fault tree analysis (FTA) have been used as a
part of system-internal hazard analysis (HA) in nonnuclear application domains for identifying
software requirements (e.g., monitoring and detection of a fault and mitigating its effect). Unlike
hardware and system FMEA, a software FMEA cannot be easily used to identify system-level
hazards [1]. Software analyses, reviews, and tests directed at finding faults in the software are
not considered to be a direct part of software HA (i.e., verification and validation activities are
not considered to be part of the HA). When performed on software, the HA considers only the
following two questions [2]1:

" If the software operates correctly (i.e., follows its specifications), what is the potential effect
on system hazards?

* If the software operates incorrectly (i.e., deviates from specifications), what is the potential
effect on system hazards?

Whereas the FMEA method looks at all faults and their effects, the FTA is limited to analysis of
faults leading to events of interest (e.g., safety related or of the highest criticality) [3]. This
appendix will briefly review specific viewpoints outside the U.S. commercial nuclear power plant
industry that are relevant to a determination of the suitability of software FMEA, software FTA,
or an FMEA-FTA combination, in the safety assurance of Complex Logic.

C.1 Fault Modes and Effects Analysis

FMEA is characterized as a bottom-up analysis technique that identifies the consequences of
the credible fault modes for the system. The results of the FMEA are documented in a tabular
format. However, this representation makes it difficult to understand the logical relationships
among the causes of a failure [4] and does not group together the items causing the effects. For
example, when performed on software, FMEA does not consider the correctness of algorithms
or problems [5] resulting from design mistakes, but assumes that every variable may fail without
regard to cause. FMEA is independent of two essential but different kinds of analysis: how the
software design meets requirements and the adequacy of the requirements themselves23.
Goddard4 notes that the intent of software FMEA is not to verify the quality of the software, but
to provide assurance that should something go wrong (whether the problem is induced b
hardware or software), the software will detect it and maintain the system in a safe state.
According to Goddard [1], two types of software FMEA are used in embedded control systems:
a system software FMEA and detailed software FMEA. A system software FMEA, performed on
the architecture, can support its evaluation for effectiveness, but does not examine the
implemented functional code. The detailed software FMEA, performed on the code, can be used
for identifying unexpected8 paths, which could lead to an adverse effect on safety. However,

This reference assumes that the computer hardware operates without failure. In addition, it assumes that a
separate system HA and a separate hardware HA are performed.

2 Private communications with NRC in a teleconference with Ram Chillarege September 1, 2010

3 Private communications with NRC in a teleconference with Peter Goddard, September 10, 2010
4 Private communications with NRC in a teleconference with Peter Goddard, September 10, 2010
5 This amounts to a system hazard analysis.
6 The examination is limited to documented design. However, there could be other unexpected paths not visible in

the documented design.

C-1

compared to the system software FMEA, the detailed software FMEA can be lengthy and labor
intensive [1]. For example, if the system-level software FMEA consumes 6 weeks of labor, the
detailed FMEA will probably take 6 or 7 man-months of labor [1]. In Goddard's experience7

FMEA is more effective at the system level; its suitability and effectiveness at the detailed
software level are questionable.

The definition of fault modes is one of the hardest parts of the FMEA of a software-based
system. Unlike for hardware, a complete list of fault modes for software cannot be assembled
[4, 7]. Software fault modes generally are unknown ("software modules do not fail, they only
display incorrect behaviour" [7]). The analysts must apply their own knowledge about the
software and postulate the relevant fault modes [8]. Banerjee [9] provided an insightful look at
how teams should use FMEA in software development. However, the effectiveness depends on
the domain knowledge of the review team and the accuracy of the documentation [4]. In
particular, inadequate software responses to extreme conditions and boundary cases are of
concern [4]. Similarly, Fenelon and McDermid [10] and Pfleeger [11] pointed out that FMEA is
highly labor intensive and relies on the experience of the analysts.

The Radiation and Nuclear Safety Authority of Finland stated [7] that FMEA cannot alone
provide the necessary evidence for the qualification of software-based safety critical
applications in nuclear power plants, but the method should be combined with other safety and
reliability engineering methods.

C.2 Fault Tree Analysis

FTA is characterized as a top-down analysis technique to identify the contributing elements that
could cause the system-level undesired events (top events) [12]. Analysts have used FTA to
discover design defects during the development of a system and to investigate the causes of
accidents or problems that occur during system operation [13]. Software developers have used
FTA to discover software defects [13, 14]. It has also been used for verifying software code, but
it has been difficult and labor intensive to use it for large software (4]. A limitation of FTA is that
the top event can describe only a known failure [13]. Because of lack of experience, it is difficult
for analysts to select8 an adequate set of top events, which results in the risk of leaving critical,
system-level undesired events out of the analysis [12]. In addition, it cannot identify the effects
of "sneak paths" not reflected in the documented design. Like FMEA, FTA is only as good as the
domain and system expertise of the analyst.

Leveson states [15] that the purpose of HA is to discover or identify safety requirements (or
derived requirements including design constraints and implementation constraints)-not to
ensure that the logic will not lead to unsafe system failure.

According to some experts, FTA has shown weaknesses when the code has loops, but loops
are common in embedded software [16]. The Korean Atomic Energy Research Institute (KAERI)
has reported [17-21] the use of carefully crafted FTA (different from the FTA used in traditional
hardware) on a critical software module as a technique redundant and complementary to other
techniques used in the project, including HAZOP, formal verification, and testing. The software
FTA revealed a defect that was not found in formal verification and testing [17]. KAERI found
the redundancy worthwhile.

Fault trees are static approaches that cannot reach all the dynamic aspects of the software.

7 Private communications with NRC in a teleconference with Peter Goddard, September 10, 2010

8 Often, the range of scenarios leading to unwanted events is too large to consider exhaustively, and the analyst

does not have enough explicit information about their likelihood to make a well-informed selection.

C-2

C.3 FTA-FMEA Combination

Several experts and expert groups have considered the integrated use of both bottom-up and
top-down techniques to fill the gaps when both techniques are applied separately. There are two
ways to perform this integrated analysis [12]:

(1) Bottom-up [16, 22-25]
In this method, the FMEA is taken as the main method and then followed with software
FTA as a supplement. The method is described as follows:

1. Identify the fault modes.
2. Evaluate the impact of the fault modes on the system and the severity of the impact.
3. Select the effects with greater severity as top events for the software FTA.
4. Determine the actions needed according to the causes of the fault modes.

(2) Top-down [8, 26]
In this method, the FTA is the main method, followed with FMEA as a supplement. This
method is applied at the design phase. The method is described as follows:

1. Identify the top events.
2. Evaluate the minimal cut-sets and important bottom events.
3. Perform the FMEA with the most important bottom events.
4. Determine the actions needed with the new failure effects as top events.
5. Continue analysis.

Some experts prefer the bottom-up FMEA-FTA combination [16, 22-25], while others prefer the
top-down FTA-FMEA combination [8, 26]. In the latter case, the preliminary FTA and resulting
minimal cut-sets direct the identification of failure modes to those that are most significant for
the system reliability. Then, the effects analysis of these failures steers the refinement of the
fault trees and the final detailed FMEA [7].

References for Appendix C
1. Goddard, P.L., "Software FMEA Techniques," Proceedings of the Annual Reliability and

Maintainability Symposium, pp. 118-123, 2000.

2. U.S. Nuclear Regulatory Commission, "Software Safety Hazard Analysis,"
NUREG/CR-6430, Washington, DC, February 1996 (Agencywide Documents Access and
Management System (ADAMS) Public Legacy Library Accession No. 9602290270).

3. U.S. Federal Aviation Administration, System Safety Handbook, Washington, DC,
December 2000.

4. Lutz, R.R. and Woodhouse, R.M., "Experience Report: Contributions of SFMWA to
Requirements Analysis," Proceedings of ICRE 1996, Colorado Springs, CO, pp. 44-51,
April 1996.

5. Czerny, B.J., D'Ambrosio, J.G., Murray, B.T., and Sundaram, P., "Effective Application of
Software Safety Techniques for Automotive Embedded Controls Systems," 2005 SAE World
Congress, Detroit, MI, April 11-14, 2005.

6. Goddard, P.L., "Validating the Safety of Embedded Real-Time Control Systems Using
FMEA," Proceedings Annual Reliability and Maintainability Symposium, pp. 227-230, 1993.

7. Pentti, H. and Atte, H., "Failure Mode and Effects Analysis of Software-Based Automation
Systems," p.37, STUK-Radiation and Nuclear Safety Authority, Helsinki, August 2002.

C-3

8. McDermid, J.A., Nicholson, M., Pumfrey, D.J., and Fenelon, P., "Experience with the
application of HAZOP to computer-based systems," Proceedings of COMPASS 1995,
pp. 37-48, IEEE, Gaithersburg, MD, 1995.

9. Banerjee, N., "Utilization of FMEA Concept in Software Lifecycle Management,"
Proceedings of Conference on Software Quality Management, pp. 219-230, 1999.

10. Fenelon, P. and McDermid, K.A., "Integrated Techniques for Software Safety Analysis,"
Proceedings of the lEE Colloquium on Hazard Analysis, Institution of Electrical Engineers,
1992.

11. Pfleeger, S.L., "Software Engineering: Theory and Practice," Prentice Hall, Upper Saddle
River, NJ, 1998.

12. Hong, Z. and Binbin, L., "Integrated Analysis of Software FMEA and FTA," Proceedings of
the 2009 International Conference on Information Technology and Computer Science, 2009.

13. Lutz, R.R. and Nikora, A., "Failure Assessment," First International Forum on Integrated
System Health Engineering and Management in Aerospace (ISHEM), Napa Valley, CA,
November 9, 2010.

14. Towhidnejad, M., Wallace, D.R., Gallo, A.M., Jr., "Validation of Object Oriented Software
Design with Fault Tree Analysis," Proceedings of the 28th Annual NASA Goddard Software
Engineering Workshop, pp. 209-215, December 2003.

15. Leveson, N.G., "Safeware: System Safety and Computers," ISBN 0-201-11972, Addison-
Wesley Professional, Reading, MA, April 17,1995.

16. Maier, T., "FMEA and FTA to Support Safe Design of Embedded Software in Safety-Critical
Systems," CSR 12th Annual Workshop on Safety and Reliability of Software Based
Systems, Bruges, Belgium, 1995.

17. Park, G.Y., Lee, J.S., Cheon, S.W., Kwon, K.C., Jee, E., Koh, K.Y., "Safety Analysis of
Safety-Critical Software for Nuclear Digital Protection System," The 26th International
Conference on Computer Safety, Reliability and Security, Nuremberg, Germany,
pp. 148-161, September 2007.

18. Kwon, K.C. and Park, G.Y., "Formal Verification and Validation of the Safety-Critical
Software in a Digital Reactor Protection System," NPIC & HMIT 2006, Albuquerque, NM,
November 12-16, 2006.

19. Park, G.Y., Koh, K.Y., Jee, E., Seong, P.H., Kwon, K.C., and Lee, D.H., "Fault Tree Analysis
of KNICS RPS Software," Nuclear Engineering Technology, Vol. 41, No. 4, May 2009.

20. Kwon, K.C. and Lee, M., "Technical Review on the Localized Digital Instrumentation and
Controls Systems," Special Issue.in Celebration of the Korean Nuclear Society, Nuclear
Engineering Technology, Vol. 40, No. 5, August 2008.

21. Lee, J.S., Lindner, A., Choi, J.G., Miedl, H., and Kwon, K.C., "Software Safety Lifecycles and
the Methods of a Programmable Electronic Safety System for a Nuclear Power Plant,"
Proceedings of SAFECOMP 2006, LNCS 4166, pp. 85-98, 2006.

22. Lutz, R.R. and Shaw, H.Y., "Applying Integrated Safety Analysis Techniques (Software
FMEA and FTA)," Jet Propulsion Laboratory (JPL) D-16168, Pasadena, CA,
November 30, 1998.

23. Lutz, R.R. and Woodhouse, R.M., "Requirements Analysis Using Forward and Backward
Search," Annals of Software Engineering, pp. 459-475, Pasadena, CA, 1997.

C-4

24. Hecht, H., "A System Approach to Exception Handling," Third Annual Conference on
Systems, pp. 190-195, April 2008.

25. Hecht, H., Xuegao, A., and Hecht, M., "Computer Aided Software FMEA for Unified
Modeling Language Based Software," Proceedings of the 2004 Annual Symposium-
RAMS, pp. 243-248, August 24, 2004.

26. Hassan, A., Goseva-Popstojanova, K., Ammar, H., "Methodology for Architecture Level
Hazard Analysis, A Survey," ACS/IEEE International Conference on Computer Systems and
Applications (AICCSA 2003), pp. 68-70, Tunis, Tunisia, July 14-18, 2003.

C-5

NRC FORM 335 U.S. NUCLEAR REGULATORY COMMISSION 1. REPORT NUMBER
(12-2010) (Assigned by NRC. Add Vol., Supp.. Rev.,

NRCMD 3.7 and Addendum Numbere, if any.)

BIBLIOGRAPHIC DATA SHEET
(See instructions on the reverse) NUREG-I/A-0254

2. TITLE AND SUBTITLE 3. DATE REPORT PUBLISHED

Suitability of Fault Modes and Effects Analysis for Regulatory Assurance of Corn plex Logic in MONTH YEAR

Digital I&C Systems June 2011

4. FIN OR GRANT NUMBER

5. AUTHOR(S) 8. TYPE OF REPORT

Luis Betancourt, Sushil Birla, Jean Gassino, Pascal Regnier NUREG-I/A

7. PERIOD COVERED (Inclusive Dates)

March 2010 - March 2011

8. PERFORMING ORGANIZATION - NAME AND ADDRESS (If NRC. provide Division, Offtce or Region, U.S. Nuclear Regulatory Commission, and mailing address; if contractor,
provide name and mailing address.)

Institut de Radioprotection et de SOrete Nucleaire, France
BP 17-92262 FONTENAR aux roses cedex- France
U.S. Nuclear Regulatory Commission, USA
Washington, DC 20555-0001

9. SPONSORING ORGANIZATION - NAME AND ADDRESS (If NRC, type 'Same as above'. it contractor, provide NRC Division, Office or Region, U.S. Nuclear Regulatory Commission.
and mailing address.)

Same as above

10. SUPPLEMENTARY NOTES

L. Betancourt, NRC Proiect Manager
11. ABSTRACT (200 words or less)

The Institut de Radioprotection et de S Orete Nuclaire (IRSN) and the U.S. Nuclear Regulatory Commission (NRC) jointly
investigated and evaluated the suitability of applying fault modes and effects analysis (FMEA), as a techniques for identifying
faults attributable to Complex Logic (such as logic in the form of software or in the form of programmed hardware, for which is
not practicable to assure correctness of all behaviors through verification alo ne) in Digital Instrumentation and Controls (DI&C)
for safety functions in nuclear power plants (NPP). When FMEA techniques, which have been used effectively for traditional
hardware, are applied to Complex Logic, such extension does not yield a similar benefit to regulatory assurance, due to the
fundamentals differences in the nature of faults in traditional hardware versus Complex Logic. Whereas hardwired devices
(such as eletromechanical relays) have only a few predetermined faults, the pot ential fault space is huge; yet the actual number
of faults is an extremenly small fraction of the potential fault space. Finding these faults through FMEA is akin to searching for a
needle in a haytasck. Through analysis and examples of several real-life catast rophes, it is shown that FMEA could not have
helped in the discovery of the underlying faults. The report concludes that the contribution of FMEA in regulatory assurance of
Complex Logic, especially software, in a NPP safety system is marginal. Further investigations, not in the scope of the current
IRSN-NRC collaboration study, are needed to understand the appropiate roles and combination of FMEA and fault tree analysis
and appropiate application constraints for reliable results from such analysis techniques.

12. KEY WORDS/DESCRIPTORS (List words or phrases that will assist researchers in locating the report.) 13. AVAILABILITY STATEMENT

Complex Logic, Digital Instrumentation and Controls, Failure Modes and Effects Analysis, unlimited
Fault, Fault Modes and Effects Analysis, Hardwired, Logic, Programmed Hardware, Regulatory 14 SECURITY CLASSIFICATION

Assurance, Software, Software Failure Modes and Effects Analysis, Verification (This Page)
unclassified

(This Report)

unclassified
15. NUMBER OF PAGES

16. PRICE

NRC FORM 335 (12-2010)

Fhefal RIycling Praw

NUREG/IA-0254 Suitability of Fault Modes and Effects Analysis for Regulatory Assurance of
Complex Logic in Digital Instrumentation and Controls Systems

June 2011

UNITED STATES
NUCLEAR REGULATORY COMMISSION

WASHINGTON, DC 20555-0001

OFFICIAL BUSINESS

