Enclosure 6 GDP 11-0014

REVERSE WORK AUTHORIZATION

t

Reverse Work Authorization Form (For Services provided to United States Enrichment Corporation)

Reverse Work Authorization		
WA Title: PORTS Source, Special Nuclear, and/or Byproduct Material Project	Date Prepared: June	27, 2011
USEC Contact: Brian Bell (Technical) Dale Bauer (Contracts)	Work Authorization N	o.: 815763
USEC Phone No.: 270-441-6698 (Technical) 740-897-2185 (Contracts)	Requester, USEC	
DOE Contact: Matt Vick	Work Order No .: n/a	
Phone No.: 740-897-2089	MODIFICATION	
Start Date: Return Date as defined in the MBFA	Modification No.: 0	Date of Modification :
End Date: * Thirty-six months after Return Date (as defined in MBFA)	Funding (+/-): + \$	
Estimated Cost: \$7,817,915.05		
Funding Obligation: \$642,321.78 (60 days)	ì	

WORK EXPLANATION/REQUIREMENTS: SCOPE (Define deliverables, milestones, quantities, special requirements, etc.) (If modification, describe change.)

DOE shall provide the services as set forth in the attached "Source, Special Nuclear, and/or Byproduct Material Project for the UNITED STATES ENRICHMENT CORPORATION Portsmouth Facility" number SOW-11-360-001 (Attachment A) and subject to all the terms and conditions included therein.

Work will be performed under the September 2006 "Agreement for Services between the United States Department of Energy and the United States Enrichment Corporation" (the "Services Agreement") and under the December 2006 "Memorandum of Agreement between United States Department of Energy and United States Enrichment Corporation for the Supply of Services, Modification No. 1" (the "Services MOA"), as set forth in Exhibit F to the Lease Agreement dated July 1, 1993 (the "GDP Lease"), and modified by the March 2011 "Master Binding Facility Agreement For Return and Transfer of Property Leased by United States Enrichment Corporation at the Former Gaseous Diffusion Plant in Piketon, Ohio" (the "MBFA"), and shall be in accordance with Article IV – CHARGES of the Services MOA except as modified in the attached SOW.

INVOICING AND PAYMENTS

- a) Invoicing will occur on a monthly basis. Invoices will be submitted electronically to acctspay@PORTS.USEC.com and Bellba@padp.usec.com. Invoices must include:
 - (i) Invoice date;

(ii) Work Authorization number,

- (iii) Description, quantity, unit of measure, unit price and extended price of services performed; and
- (iv) Name, title and mailing address of the person or office to whom payment is to be sent:

b) Cost will be full cost recovery, consistent with DOE Order DOE O 522.1, Pricing of Departmental Materials and Services and applicable Government Cost Accounting Standards. DOE and its contractors reserve the right to revisit the cost estimate to accommodate full cost recovery. DOE will include an appropriate and reasonable fee structure to incentivize DOE's

Work Authorization #815763

PORTS Source, Special Nuclear, and/or Byproduct Material Project

contractor to perform the Work in a timely manner

c) Incremental funds in the amount of \$642,321.78 are obligated herewith and shall be made available within five (5) business days after the date of the last signature below for payment of allowable costs incurred for an estimated sixty calendar days from the effective date of this work authorization (WA).DOE agrees to use its beet efforts to perform the work specified under this WA within the estimated cost. USEC and DOE contemplate that USEC will provide additional funds as necessary to ensure DOE is reimbursed full costs for this work. DOE shall notify USEC in writing whenever it has reason to believe that the costs it expects to incur under this WA in the next 60 days, when added to all costs previously incurred, will exceed 75 percent of the total amount allotted to the WA by USEC. DOE shall include in this notification the estimated amount of additional funds, if any, required to continue timely performance under the WA for the next 60 days. USEC will within 15 (fifteen) days of DOE's notice, provide an additional advance payment equal to the amount indicated in DOE's notice.

d) On or before the Return Date (as defined in the MBFA) USEC shall provide advance payment or a payment bond by any one of the following: (1) additional funds to DOE in an amount that, together with any funds previously provided to DOE under this WA, equals the total estimated costs of this WA; (2) a payment bond in favor of DOE in an amount that, together with any funds previously provided to DOE under this WA, equals the total estimated costs of this WA; or (3) a combination of additional funds and payment bond in favor of DOE in an amount that, together with any funds previously provided to DOE under this WA, equals the Estimated Cost of this WA.

Any payment bond shall be acceptable to DOE and provide payment to DOE of any monies due to DOE under this WA in the event USEC falls to make such payments within fifteen (15) days of notice from DOE under paragraph (c).

e) Upon final closeout of this WA, DOE will return to USEC any unexpended funds.

*END DATE

DOE though its contractor performing the services currently anticipates completing the work within 24 months of the Start Date. If DOE, despite its good faith efforts, cannot complete the activities under the SOW within 36 months after the Start Date. DOE and USEC shall mutually agree to exercise one of the following options (a) agree upon a final lump sum payment that is adequate to cover DOE's remaining costs for completing disposition of Attachment 1 items; or (b) agree to extend the End Date for such period as needed for DOE in good faith to complete work under the SOW.;

USEC Approval:	U.S. DEPARTMENT OF ENERGY APPROVAL:
	Work Authorization Technical Representative:
	Signature A The Date: 6/27/11
	Contracting Officer:
	Signature: Mary Les Con Date: 4/29/11
	DOE-ORO Manágement Approval
	Signature: A. M. Mersher Date: 6/28/11
	DOE Management Approprial:
Signature: Alalif Ram Date: (1/27/11	Signature: WEMme Date: 6/27/11
Title Manager, Government Contracts	Title: PPPO/Mgr

ATTACHMENT A

STATEMENT OF WORK

SOURCE, SPECIAL NUCLEAR, AND/OR BYPRODUCT MATERIAL PROJECT

for the

UNITED STATES ENRICHMENT CORPORATION Portsmouth Facility

NUMBER: SOW-11-360-003 Revision: 0

DATE: June 27, 2011

United States Enrichment Corporation P.O. Box 628 3930 US Route 23 South Piketon, Ohio 45601

> Type of Service: Non-Safety

SOW-11-360-003 Rev. 0

USEC Source, Special Nuclear, and/or Byproduct Material Project

I. SCOPE:

Disposition of certain source, special nuclear, and/or byproduct material at the Portsmouth Gaseous Diffusion Plant as identified in Attachment (1). USEC has indicated to DOE that the disposition of the Attachment 1 items will delay the return of the facilities listed for return under the March 2011 "Master Binding Facility Agreement For Return and Transfer of Property Leased by United States Enrichment Corporation at the Former Gaseous Diffusion Plant in Piketon, Ohio" (MBFA) so long as those items remained owned by USEC. USEC asserts this delay is attributable to NRC's approval of USEC's termination of its Certificate for the Portsmouth Gaseous Diffusion Plant. DOE desires to have the return of these facilities as soon as possible, consistent with all legal/regulatory and Lease requirement, to expedite the ultimate Decontamination and Decommissioning of the Portsmouth Gaseous Diffusion Plant. Therefore. as of the Return Date, as defined in the MBFA, ownership and possession of these Attachment. 1 items shall be transferred from USEC to DOE. Despite this change in ownership and possession. USEC shall remain responsible for fully reimbursing DOE for all costs associated with performing the work associated with the acceptance of ownership and possession and the disposition of the Attachment 1 items. Further, all work conducted by DOE or its contractors related to the Attachment 1 items shall for the purposes of Section 5.3 of the GDP Lease be considered as attributable to or arising out of the operations of the GDPs by the Corporation after July 1, 1993.

This Work Authorization provides for the payment to DOE of the costs for work performed to prepare containers for off-site shipment per applicable Department of Transportation (DOT) requirements and selected Treatment, Storage & Disposal Facility (TSDF) Waste Acceptance Criteria (WAC), arrange for disposal, load trailers, coordinate with approved transportation carriers, document final disposal of the Attachment 1 items, and take other actions necessary to disposition Attachment 1 items.

II. ROLES AND RESPONSIBILITIES:

A. DOE:

Upon the Return Date, DOE shall accept ownership and possession of the items listed in Attachment 1, updated as of the Return Date.

During the period of performance of this Work Authorization DOE though its contractor performing the services currently anticipates performing the following activities related to the Attachment 1 items:

- Storage, surveillance and maintenance of the items
- Prepare containers for shipment to TSDF. This will include the following actions:
 - Re-packaging of the content to reduce the level of radioisotope activity per container, if required, in order to meet the requirements of the DOT and the requirements of the TSDF WAC.

- Potential blending/treatment/solidification of low level radioactive contaminated oils in order to meet the requirements of the DOT and the TSDF WAC for disposal/destruction.
- Batching of small diameter containers into DOT compliant containers, as necessary to meet the requirements of both the DOT and the TSDF WAC for disposal.
- Provide all necessary support services (e.g. HP technician, IH technician, Safety Officer and Non Destructive Analysis [NDA] measurement process, and characterization as required), for all aspects of the project.
- Provide logistics and oversight of shipment of the Attachment 1 items to the TSDF in compliance with all applicable regulations.
- Ship Attachment 1 items to a licensed TSDF site for disposal in accordance with applicable regulations. Licensed TSDF include, but are not limited to:
 - o Nevada National Security Site (NNSS)
 - o Energy Solutions (Clive, Utah; Bear Creek)
 - o Perma-Fix (Florida, DSSI, Permafix NW, M&EC)
 - o Impact Services
 - o Studsvik
- Maintain documentation required to meet regulatory requirements
- Permit access to USEC personnel with reasonable notice to observe activities under this Work Authorization.
- Maintain all required waste tracking documents (e.g. request for disposal or equivalent) and shipping documentation (including Certificates of Destruction and Certificates of Disposal); and, at USEC's request, provide copies of same to USEC.
- Provide periodic reporting on project status and costs.
- Take other actions necessary to disposition Attachment 1 items in accordance with applicable regulations.
- Complete work within 24 months of the Return Date, unless extended in accordance with this WA.

B. USEC:

USEC shall provide a projection of the items which will remain at the leased facilities as of the Return Date. (Attachment 1) Upon the Return Date, USEC shall provide an updated Attachment 1 reflecting the actual remaining inventory.

USEC shall provide copies of the current approved TSDF Waste Profiles to DOE. (Attachment 3)

SOW-11-360-003

Rev. 0

1.00

USEC shall provide its Sampling and Analysis Plan for the Characterization for the Attachment 1 items. (Attachment 4)

USEC shall reimburse DOE for the costs incurred by DOE in performing the work detailed in Section II. A. during the period of performance of this Work Authorization above in accordance with the payment terms of the Work Authorization. An estimate of the costs to perform such work is attached as Attachment 2. DOE shall provide an updated Attachment 2 estimate based on the updated Attachment 1 reflecting any changes costs due to changes in the actual remaining inventory.

ATTACHMENTS:

- Attachment 1: Source and/or byproduct materials
- Attachment 2: Cost estimate.
- Attachment 3: USEC Waste Profiles.
- Attachment 4: Sampling and Analysis Plan for the Characterization of Attachment 1 Items.

Source And/Or Byproduct Materials

.

						USEC II	nventory Pr	ojected a	s of 6/27/1:	1				
<u>RFD</u> Number	Owner	Wastestream	Container number	Container Volume (Gallons)	Container Volume (Ft. 3)	Total Volume (Ft. 3)	Waste Location	Row	Position	Waste Description	Gross Weight (lbs)	<u>Net</u> <u>Weight</u> (lbs)	Grams U- 235	Activity U- 235 (pCi/g)
55298	USEC	RD-101	1	55P	7.4	7.40	C5	16	6	Batch 197	126.12	103.12	234.92	11023.0022
49394	USEC	RD-101	1	B-25 box	90	90.00	CW	10	Ŭ	DAW	1592	845	1	5.7262
63488	USEC	RD-101	1	B-25 box	90	90	NH			DAW	872	0.0	-	#DIV/0!
61963	USEC	RD-101	1	B-25 box	90	90.00	NR			DAW	1022			#DIV/0!
64256	USEC	RD-101	1	B-25 box	90	90	SA			DAW		and the second		#DIV/0!
65248	USEC	RD-101	1	B-25 box	90	90	NR			DAW	964			#DIV/0!
65552	USEC	RD-101	1	B-25 box	90	90	NR			DAW	1048			#DIV/0!
65557	USEC	RD-101	1	B-25 box	90	90	NR			DAW	1198			#DIV/0!
65558	USEC	RD-101	1	B-25 box	90	90	NR			DAW	1157			#DIV/0!
65559	USEC	RD-101	1	B-25 box	90	90	NR			DAW	1157			#DIV/0!
65851	USEC	RD-101	1	B-25 box	90	90	CH			DAW	1045			#DIV/0!
65852	USEC	RD-101	1	B-25 box	90	90	CH			DAW	1216			#DIV/0!
65876	USEC	RD-101	1	B-25 box	90	90	NR	2.04		DAW	929			#DIV/0!
65887	USEC	RD-101	1	B-25 box	90	90	NR			DAW	1607			#DIV/0!
65888	USEC	RD-101	1	B-25 box	90	90	NR			DAW	1212			#DIV/0!
65889	USEC	RD-101	1	B-25 box	90	90	NR			DAW	1168			#DIV/0!
65890	USEC	RD-101	1	B-25 box	90	90	NR			DAW	1191			#DIV/0!
65895	USEC	RD-101	1	B-25 box	90	90	CH			DAW	1219			#DIV/0!
65536	USEC	RD-101	1	55	7.4	7.4	\$3-3			DAW	88.48	24.48	58.82	11626.1631
65535	USEC	RD-101	1	55	7.4	7.4	S3-3			DAW	85.56	21.56	58.56	13142.4132
G	eneral DAW	waste	15	B-25 box	1350									
Total			35		2902.2									
59308	USEC	RD-101	1	55P	7.4	7.40	N4	1	1	Floor sweepings, chessecloth	187.95	164.95	279.12	8187.6910
53073	USEC	RD-101	1	55P	7.4	7.40	N4	8	2A	Misc. scrap(rags, wipes)	250	227	120	2557.8684
50982	USEC	RD-101	1	55P	7.4	7.40	N4	6	7A	Misc. scrap(rags, wipes)	181	159	151.94	4623.7868
50981	USEC	RD-101	1	55P	7.4	7.40	N4	7	8	Misc. scrap(rags, wipes)	154	132	249	9127.4239
48886	USEC	RD-101	1	55M	7.4	7.40	C6	2	6A	PCB cont. dirt, rubber, plastic	486	422	15	171.9894
23285	USEC	RD-101	1	5M	0.65	0.65	N4	3	6C	PG, Plastic, Paper	25	20	22	5322.4978
34876	USEC	RD-101	1	5M	0.65	0.65	C6	5	14G	Pigs, sponges& H2O	25	20	1	241.9317
55280	USEC	RD-101	1	55P	7.4	7.40	N4	6	5C	Rags, wipes, shoe covers	101.01	78.01	64.45	3997.5642
56041	USEC	RD-101	1	55P	7.4	7.40	N4	11	4B	Rags, wipes, shoe covers	105.23	83.23	155.03	9012.7777
50979	USEC	RD-101	1	55P	7.4	7.40	N4	2	4D	Yellow cloth, gaskets, rubber tubing	234	212	28	639.0649
65550	USEC	RD-101	1	55	7.4	7.4	\$3-3			Floor Sweepings	77.24	13.24	35.2	12864.0430
65549	USEC	RD-101	1	55	7.4	7.4	53-3			Floor Sweepings	77.46	13.46	25	8987.0623

65313	USEC	RD-101	1	55	7.4	7.4	\$3-3			PG Dust, Rags	151.77	87.77	50.14	2764.1464
65307	USEC	RD-101	1	55	7.4	7.4	\$3-3			PG Dust, Rags	80.71	16.71	34.17	9894.4426
65308	USEC	RD-101	1	55	7.4	7.4	\$3-3			PG Dust, Rags	77.91	13.91	36.15	12574.8837
65302	USEC	RD-101	1	55	7.4	7.4	S3-3			PG Dust, Rags	84.22	20.22	46.51	11129.8162
65548	USEC	RD-101	1	55	7.4	7.4	\$3-3		$ _{\mathcal{L}} \in \mathcal{L}^{\infty}$	PG Dust, Rags	77.21	13.21	60.58	22189.5889
65301	USEC	RD-101	1	55	7.4	7.4	S3-3			PG Dust, Rags	90.65	26.65	57.5	10439.8302
65309	USEC	RD-101	1	55	7.4	7.4	\$3-3			Sweeper Bags & Debris	89.48	25.48	33.52	6365.4248
65310	USEC	RD-101	1	55	7.4	7.4	S3-3			Sweeper Bags & Debris	72.18	8.18	50.4	29812.6127
65531	USEC	RD-101	1	55	7.4	7.4	\$3-3			Tephlon gasket & plastic			1	#DIV/0!
Total	and the second		21		141.9	353.255	Contraction 2					NAMES OF		
64145	USEC	RD-101G	1	55	7.4	7.4	N1			Oily 3M Cloth, PPE	252			#DIV/0!
65316	USEC	RD-101G	1	55	7.4	7.4	S3-3			Oily rags, 3M	110.88	46.88	52.7	5439.3351
65315	USEC	RD-101G	1	55	7.4	7.4	S3-3			Oily rags, 3M	109.77	45.77	43.96	4647.2879
65314	USEC	RD-101G	1	55	7.4	7.4	S3-3			Oily rags, 3M	112.93	48.93	51.31	5073.9900
Total			4		29.6									
53686	USEC	RD-101P	1	55M	7.4	7.40	C4	2	3C	Fire Debris (used pigs, filter bags, etc.)	115.00	51.00	17	1612.8781
53374	USEC	RD-101P	1	55M	7.4	7.40	C4	5	1D	Fire Debris (used pigs, filter bags, etc.)	110.00	46.00	15.54	1634.6169
53667	USEC	RD-101P	1	55M	7.4	7.40	C4	6	6C	Fire Debris (used pigs, filter bags, etc.)	110.00	46.00	17.39	1829.2142
53452	USEC	RD-101P	1	55M	7.4	7.40	C4	7	2A	Fire Debris (used pigs, filter bags, etc.)	110.00	46.00	18	1893.3787
53464	USEC	RD-101P	1	55M	7.4	7.40	C4	7	5B	Fire Debris (used pigs, filter bags, etc.)	105.00	41.00	17	2006.2630
53661	USEC	RD-101P	1	55M	7.4	7.40	C4	6	4B	Fire Debris (used pigs, filter bags, etc.)	95.00	31.00	13.14	2050.9566
53390	USEC	RD-101P	1	55M	7.4	7.40	C4	5	4C	Fire Debris (used pigs, filter bags, etc.)	81.00	17.00	7.26	2066.3815
53399	USEC	RD-101P	1	55M	7.4	7.40	C4	3	4D	Fire Debris (used pigs, filter bags, etc.)	85.00	21.00	9	2073.7004
53697	USEC	RD-101P	1	55M	7.4	7.40	C4	5	2C	Fire Debris (used pigs, filter bags, etc.)	75.00	11.00	4.98	2190.5817
53672	USEC	RD-101P	1	55M	7.4	7.40	C4	1	ЗA	Fire Debris (used pigs, filter bags, etc.)	75.00	11.00	5	2199.3793
53689	USEC	RD-101P	1	55M	7.4	7.40	C4	6	5A	Fire Debris (used pigs, filter bags, etc.)	80.00	16.00	7.36	2225.7718
53485	USEC	RD-101P	1	55M	7.4	7.40	C4	1	4A	Fire Debris (used pigs, filter bags, etc.)	155.00	91.00	42	2233.2159

8 53478 USEC RD-101P 1 55M 7.4 7.40 C4 5D Fire Debris (used pigs, filter bags, etc.) 120.00 56.00 28 2419.3172 USEC 3 53489 **RD-101P** 1 55M 7.4 7.40 C4 4C Fire Debris (used pigs, filter bags, etc.) 70.00 6.00 3 2419.3172 53495 USEC RD-101P 55M 7.4 7.40 C4 3 Fire Debris (used pigs, filter bags, etc.) 80.00 8 2419.3172 1 3C 16.00 53400 USEC **RD-101P** 1 55M 7.4 7.40 C4 3 4A Fire Debris (used pigs, filter bags, etc.) 85.00 21.00 11 2534.5228 7 51801 USEC **RD-101P** 1 55M 7.4 7.40 C4 3B Fire Debris (used pigs, filter bags, etc.) 75.00 11.00 5.82 2560.0775 8 53474 USEC **RD-101P** 1 55M 7.4 7.40 C4 2A Fire Debris (used pigs, filter bags, etc.) 85.00 21.00 11.25 2592.1256 53664 USEC RD-101P 1 55M 7.4 7.40 C4 6 2A Fire Debris (used pigs, filter bags, etc.) 90.00 26.00 14.81 2756.1606 53492 USEC RD-101P 1 55M 3 90.00 26.00 15 2791.5198 7.4 7.40 C4 2B Fire Debris (used pigs, filter bags, etc.) USEC RD-101P 1 55M 1 33.55 3183.0624 53398 7.4 7.40 C4 1A Fire Debris (used pigs, filter bags, etc.) 115.00 51.00 51797 USEC RD-101P 1 55M 7.4 7.40 C4 3 5C 112.00 48.00 31.65 3190.4745 Fire Debris (used pigs, filter bags, etc.) 7 53457 USEC RD-101P 1 55M 7.4 7.40 C4 5C Fire Debris (used pigs, filter bags, etc.) 100.00 36.00 24 3225.7562 USEC RD-101P 3 3225.7562 53493 1 55M 7.4 7.40 C4 2A Fire Debris (used pigs, filter bags, etc.) 85.00 21.00 14 53484 USEC RD-101P 55M 9 61.00 40.73 1 7.4 7.40 C4 1B Fire Debris (used pigs, filter bags, etc.) 125.00 3230.7800 53436 USEC **RD-101P** 1 55M 5 96.00 3436.4384 7.4 7.40 C4 3D Fire Debris (used pigs, filter bags, etc.) 160.00 68.18 53455 USEC **RD-101P** 1 55M 7.4 7.40 C4 6 Fire Debris (used pigs, filter bags, etc.) 11.00 3589.3869 1B 75.00 8.16 53682 USEC RD-101P 1 55M 7.4 7.40 C4 9 4D Fire Debris (used pigs, filter bags, etc.) 95.00 31.00 23 3589.9545 5 53397 USEC RD-101P 1 55M 7.4 7.40 C4 5A Fire Debris (used pigs, filter bags, etc.) 105.00 41.00 31.12 3672.6415 53482 USEC RD-101P 55M 1 7.4 7.40 C4 8 5C Fire Debris (used pigs, filter bags, etc.) 95.00 31.00 28 4370.3794 53691 USEC RD-101P 1 55M 7.4 7.40 8 C4 4A Fire Debris (used pigs, filter bags, etc.) 51.00 115.00 46.34 4396.5160

	r				r —			r	T	T		r – – – – – – – – – – – – – – – – – – –	<u> </u>	r
51795	USEC	RD-101P	1	55M	7.4	7.40	C4	3	5A	Fire Debris (used pigs, filter bags, etc.)	108.00	44.00	40.06	4405.3566
53467	USEC	RD-101P	1	55M	7.4	7.40	C4	8	2C	Fire Debris (used pigs, filter bags, etc.)	95.00	31.00	29.47	4599.8243
53389	USEC	RD-101P	1	55M	7.4	7.40	C4	5	6A	Fire Debris (used pigs, filter bags, etc.)	73.00	9.00	8.63	4639.7127
53476	USEC	RD-101P	1	55M	7.4	7.40	C4	3	2D	Fire Debris (used pigs, filter bags, etc.)	80.00	16.00	17	5141.0490
53393	USEC	RD-101P	1	55M	7.4	7.40	C4	5	 5C	Fire Debris (used pigs, filter bags, etc.)	75.00	11.00	11.73	5159.7437
		10-101	<u>_</u>	55141		7.40	<u> </u>			The Debris (used pigs, inter bags, etc.)	75.00	11.00		5155.7457
53698	USEC	RD-101P	1	55M	7.4	7.40	C4	8	3B	Fire Debris (used pigs, filter bags, etc.)	90.00	26.00	28	5210.8370
53459	USEC	RD-101P	1	55M	7.4	7.40	C4	7	6C	Fire Debris (used pigs, filter bags, etc.)	85.00	21.00	23	5299.4567
53677	USEC	RD-101P	1	55M	7.4	7.40	C4	6	6A	Fire Debris (used pigs, filter bags, etc.)	100.00	36.00	42.23	5675.9869
53394	USEC	RD-101P	1	55M	7.4	7.40	C4	5	5B	Fire Debris (used pigs, filter bags, etc.)	90.00	26.00	30.72	5717.0326
							-							
51794	USEC	RD-101P	1	55M	7.4	7.40	C4	7	3D	Fire Debris (used pigs, filter bags, etc.)	75.00	11.00	13.31	5854.7476
53456	USEC	RD-101P	1	55M	7.4	7.40	C4	7	6A	Fire Debris (used pigs, filter bags, etc.)	135.00	71.00	90	6133.4802
53468	USEC	RD-101P	1	55M	7.4	7.40	C4	6	4A	Fire Debris (used pigs, filter bags, etc.)	120.00	56.00	71.49	6177.0352
53688	USEC	RD-101P	1	55M	7.4	7.40	C4	9	4C	Fire Debris (used pigs, filter bags, etc.)	80.00	16.00	21	6350.7076
53449	USEC	RD-101P	1	55M	7.4	7.40	C4	8	3A	Fire Debris (used pigs, filter bags, etc.)	140.00	76.00	113	7194.2853
53469	USEC	RD-101P	1	55M	7.4	7.40	C4	2	<u>5</u> B	Fire Debris (used pigs, filter bags, etc.)	140.00	76.00	113	7194.2853
53497	USEC	RD-101P	1	55M	7.4	7.40	C4	7	6B	Fire Debris (used pigs, filter bags, etc.)	135.00	71.00	107	7292.0264
53660	USEC	RD-101P	1	55M	7.4	7.40	C4	7	1C	Fire Debris (used pigs, filter bags, etc.)	120.00	56.00	87	7517.1641
53388	USEC	RD-101P	1	55M	7.4	7.40	C4	5	4A	Fire Debris (used pigs, filter bags, etc.)	92.00	28.00	45.12	7797.1137
53386	USEC	RD-101P		55M	7.4	7.40	C4	5	6B	Fire Debris (used pigs, filter bags, etc.)	82.00	18.00	29.81	8013.3161

	<u>, </u>	,	r					r	1			<u> </u>	r ·· · · · · · · · · · · · · · · · · ·	<u> </u>
53446	USEC	RD-101P	1	55M	7.4	7.40	C4	8	3D	Fire Debris (used pigs, filter bags, etc.)	80.00	16.00	29	8770.0248
51799	USEC	RD-101P	1	55M	7.4	7.40	C4	3	6	Fire Debris (used pigs, filter bags, etc.)	101.00	37.00	69.57	9097.9403
53679	USEC	RD-101P	1	55M	7.4	7.40	C4	5	1A	Fire Debris (used pigs, filter bags, etc.)	130.00	66.00	126.11	9245.4573
53453	USEC	RD-101P	1	55M	7.4	7.40	C4	7	4A	Fire Debris (used pigs, filter bags, etc.)	110.00	46.00	90	9466.8933
51798	USEC	RD-101P	1	55M	7.4	7.40	C4	7	3C	Fire Debris (used pigs, filter bags, etc.)	97.00	33.00	65.22	9562.9010
51796	USEC	RD-101P	1	55M	7.4	7.40	C4	3	5B	Fire Debris (used pigs, filter bags, etc.)	111.00	47.00	96.62	9946.9969
53440	USEC	RD-101P	1	55M	7.4	7.40	C4	1	4D	Fire Debris (used pigs, filter bags, etc.)	120.00	56.00	120	10368.5022
53458	USEC	RD-101P	1	55M	7.4	7.40	C4	1	2B	Fire Debris (used pigs, filter bags, etc.)	105.00	41.00	89	10503.3770
53461	USEC	RD-101P	1	55M	7.4	7.40	C4	2	2A	Fire Debris (used pigs, filter bags, etc.)	115.00	51.00	113	10720.8957
53685	USEC	RD-101P	1	55M	7.4	7.40	 C4	5	1B	Fire Debris (used pigs, filter bags, etc.)	75.00	11.00	25.39	11168.4479
53477	USEC			55M		7.40	C4	8	5A	Fire Debris (used pigs, filter bags, etc.)	75.00	11.00	28	12316.5238
		RD-101P	1		7.4									
53659	USEC	RD-101P	1	55M	7.4	7.40	C4	1	2A	Fire Debris (used pigs, filter bags, etc.)	150.00	86.00	242	13615.6920
53448	USEC	RD-101P	1	55M	7.4	7.40	C4	2	4C	Fire Debris (used pigs, filter bags, etc.)	145.00	81.00	231	13799.0684
53395	USEC	RD-101P	1	55M	7.4	7.40	C4	1	1B	Fire Debris (used pigs, filter bags, etc.)	80.00	16.00	53.99	16327.3668
53483	USEC	RD-101P	1	55M	7.4	7.40	C4	8	5B	Fire Debris (used pigs, filter bags, etc.)	130.00	66.00	252	18474.7857
53443	USEC	RD-101P	1	55M	7.4	7.40	C4	8	3C	Fire Debris (used pigs, filter bags, etc.)	70.00	6.00	29	23386.7327
65080A	USEC	RD-101P	1	Lab Packs			N2			Fire Debris Samples	45.6			#DIV/0!
65080B	USEC	RD-101P	1	Lab Packs			N2			Fire Debris Samples	49.1			#DIV/0!
65080C	USEC	RD-101P	1	Lab Packs			N2			Fire Debris Samples	45.3			#DIV/0!
65080D	USEC	RD-101P	1	Lab Packs			N2			Fire Debris Samples	45.6			#DIV/0!
65080E	USEC	RD-101P	1	Lab Packs			N2			Fire Debris Samples	47.6			#DIV/0!
65080F	USEC	RD-101P	1	Lab Packs			N2			Fire Debris Samples	58.8			#DIV/0!
65538	USEC	RD-101P	1	55	7.4	7.4	S3-3			Fire Ash, rags	85.87	21.87	44.28	9796.7412

65537	USEC	RD-101P	1	55	7.4	7.4	\$3-3	1	T	Fire Ash, rags	82.28	18.28	44.6	11805.4208
65539	USEC	RD-101P	1	55	7.4	7.4	S3-3			Fire Ash, rags	80.03	16.03	44.55	13447.3588
65540	USEC	RD-101P	1	55	7.4	7.4	S3-3		-	Fire Ash, rags	77.88	13.88	44.53	15516.3988
65544	USEC	RD-101P	1	55	7.4	7.4	S3-3			Fire Ash, rags	83.99	19.99	39.96	9672.4277
65543	USEC	RD-101P	1	55	7.4	7.4	S3-3			Fire Ash, rags	85.06	21.06	39.89	9164.9157
65542	USEC	RD-101P	1	55	7.4	7.4	S3-3			Fire Ash, rags	79.44	15.44	44.29	13879.7355
65541	USEC	RD-101P	1	55	7.4	7.4	S3-3				75.79	11.79	35.8	14692.3758
65545	USEC	RD-101P	1	55	7.4	7.4	S3-3			Fire Ash, rags	80.85	16.85	43.63	12528.7607
65546	USEC	RD-101P	1	55	7.4	7.4	\$3-3			Fire Ash, rags	79.61	15.61	36.8	11406.9023
				55					-	Fire Ash, rags			-	
65547	USEC	RD-101P	1	55	7.4	7.4	\$3-3			Fire Ash, rags	102.71	38.71	26.59	3323.6706
Total	1165.0	55 40411	83	555	569.8	7.40		-			405.40	00.40	0.47.70	44506 0060
60272	USEC	RD-101U	1	55P	7.4	7.40	N4	2	3B	dust and rags	105.12	82.12	247.72	14596.0363
60271	USEC	RD-101U	1	55P	7.4	7.40	N4	2	4C	Grease and oily rags	85.76	62.76	38.53	2970.5638
Total			2	2.25.1	14.8							1070		
52912	USEC	RD-102	1	B-25 box	90	90	NR			Category 1 Scrap Metal	5439	4670	5.8	6.0094
59621	USEC	RD-102	1	B-25 box	90	90	NH			Scrap Metal	1269	1264		0.0000
54988	USEC	RD-102	1	B-25 box	90	90.00	CW			Scrap metal	2190	1446	1	3.3462
57458	USEC	RD-102	1	B-25 box	90	90.00	CW			Scrap metal	1552	810	1	5.9736
57677	USEC	RD-102	1	B-25 box	90	90.00	NH			Scrap Metal	1358			#DIV/0!
63811	USEC	RD-102	1	B-25 box	90	90	NH		-	Scrap Metal	1738			#DIV/0!
64449	USEC	RD-102	1	B-25 box	90	90	NH			Scrap Metal	1765	The second second		#DIV/0!
65582	USEC	RD-102	1	B-25 box	90	90	NH			Scrap Metal	1731			#DIV/0!
65583	USEC	RD-102	1	B-25 box	90	90	NH			Scrap Metal	1823			#DIV/0!
65584	USEC	RD-102	1	B-25 box	90	90	NH			Scrap Metal	1293	and the second second		#DIV/0!
65585	USEC	RD-102	1	B-25 box	90	90	NH			Scrap Metal	1253			#DIV/0!
65590	USEC	RD-102	1	B-25 box	90	90	NH			Scrap Metal	2820			#DIV/0!
65591	USEC	RD-102	1	B-25 box	90	90	NH			Scrap Metal	3103			#DIV/0!
65877	USEC	RD-102	1	B-25 box	90	90	NH			Scrap Metal	1914			#DIV/0!
65926	USEC	RD-102	1	B-25 box	90	90	NH			Scrap Metal	1046			#DIV/0!
65927	USEC	RD-102	1	B-25 box	90	90	NH			Scrap Metal	994			#DIV/0!
52714	USEC	RD-102	1	B-25 box	90	90.00	CW			Steelcans, plastic, sorbal	1362	615	53.5	420.9219
65530	USEC		1	55	7.4	7.4	S3-3			Nuts, bolts, floor sweepings, plastic	173.1	109.1	4	177.4018
65532	USEC	RD-102	1	55	7.4	7.4	S3-3			Scrap Metal	170.22	106.22	14.02	638.6524
65533	USEC	RD-102	1	55	7.4	7.4	S3-3			Scrap Metal			16.53	#DIV/0!
65534	USEC	RD-102	1	55	7.4	7.4	\$3-3			Scrap Metal	170.41	106.41	49.83	2265.8505
64775	USEC	RD-102	1	55	7.4	7.4	\$3-3			Scrap Metal	151.93	87.93	16.27	895.3097
Gene	ral Scrap Me	etal Waste	5		450	- Maria and			A State State		a se lo			
Total			27		2017									
53066	USEC	RD-103	1	55P	7.4	7.40	C5	1	12C	Alumina	413	390	13.5	167.4912

				1										
54511	USEC	RD-103	1	55P	7.4	7.40	C5	17	9	Alumina	304	281	20	344.3868
53052	USEC	RD-103	1	55P	7.4	7.40	C5	9	6A	Alumina	455	432	45.9	514.1049
48899	USEC	RD-103	1	55P	7.4	7.40	C5	5	7C	Alumina	381	359	41.9	564.7320
48337	USEC	RD-103	1	55P	7.4	7.40	C5	8	9B	Alumina	418	399	46.97	569.6006
48363	USEC	RD-103	1	55P	7.4	7.40	C5	3	1D	Alumina	335	313	38.2	590.5298
48360	USEC	RD-103	1	55P	7.4	7.40	C5	8	6B	Alumina	327	305	41.26	654.5641
48358	USEC	RD-103	1	55P	7.4	7.40	C5	5	2D	Alumina	335	314	44.85	691.1234
40559	USEC	RD-103	1	55P	7.4	7.40	C5	8	6C	Alumina	347	328	48.46	714.8787
48327	USEC	RD-103	1	55P	7.4	7.40	C5	7	1C	Alumina	452	433	69.95	781.6685
48341	USEC	RD-103	1	55P	7.4	7.40	C5	8	7A	Alumina	436	417	80.12	929.6676
54036	USEC	RD-103	1	55P	7.4	7.40	C5	9	9B	Alumina	465	442	90.68	992.6863
48333	USEC	RD-103	1	55P	7.4	7.40	C5	8	7B	Alumina	332	313	65.45	1011.7847
55276	USEC	RD-103	1	55P	7.4	7.40	C5	11	3	Alumina	307.14	284.14	75	1277.1788
48339	USEC	RD-103	1	55P	7.4	7.40	C5	9	4B	Alumina	368	349	102.33	1418.7320
54034	USEC	RD-103	1	55P	7.4	7.40	C5	9	9A	Alumina	455	432	194.59	2179.5136
48362	USEC	RD-103	1	55P	7.4	7.40	C5	5	4C	Alumina	483	461	210.33	2207.6138
48361	USEC	RD-103	1	55P	7.4	7.40	C5	5	9D	Alumina	392	370	185.39	2424.4174
54509	USEC	RD-103	1	55P	7.4	7.40	C5	13	6	Alumina	320	298	206.36	3350.6731
54510	USEC	RD-103	1	55P	7.4	7.40	C5	14	5	Alumina	310	288	206.89	3475.9204
54507	USEC	RD-103	1	55P	7.4	7.40	C5	13	11	Alumina	279	257	190.7	3590.3797
54521	USEC	RD-103	1	55P	7.4	7.40	C5	12	3	Alumina	339.06	317.06	236.18	3604.3293
54508	USEC	RD-103	1	55P	7.4	7.40	C5	11	2	Alumina	306	283	222.93	3811.5787
53068	USEC	RD-103	1	55P	7.4	7.40	C5	15	5	Alumina	314	292	248.91	4124.6044
54525	USEC	RD-103	1	55P	7.4	7.40	C5	10	6	Alumina	276.5	253.5	218.12	4163.3252
54522	USEC	RD-103	1	55P	7.4	7.40	C5	14	7	Alumina	250.26	227.26	214.99	4577.3915
54516	USEC	RD-103	1	55P	7.4	7.40	C5	13	8	Alumina	269	247	235.56	4614.5292
55278	USEC	RD-103	1	55P	7.4	7.40	C5	14	8	Alumina	252.02	229.02	259.37	5479.8559
55279	USEC	RD-103	1	55P	7.4	7.40	C5	12	8	Alumina	224.95	201.95	263.05	6302.5638
61461A	USEC	RD-103	1	5	0.65	0.65	C5	1	8A	Alumina	21		1	#DIV/0!
61461B	USEC	RD-103	1	5	0.65	0.65	C5	1	8B	Alumina	21		1	#DIV/0!
61461C	USEC	RD-103	1	5	0.65	0.65	C5	1	8C	Alumina	21		1	#DIV/0!
61461D	USEC	RD-103	1	5	0.65	0.65	C5	1	8D	Alumina	21		1	#DIV/0!
61461E	USEC	RD-103	1	5	0.65	0.65	C5	1	8E	Alumina	21		1	#DIV/0!
61461F	USEC	RD-103	1	5	0.65	0.65	C5	1	8F	Alumina	20		1	#DIV/0!
61461G	USEC	RD-103	1	5	0.65	0.65	C5	1	8G	Alumina	22		1	#DIV/0!
61461H	USEC	RD-103	1	5	0.65	0.65	C5	1	8H	Alumina	22		1	#DIV/0!
614611	USEC	RD-103	1	5	0.65	0.65	C5	1	81	Alumina	21		1	#DIV/0!
61461J	USEC	RD-103	1	5	0.65	0.65	C5	1	8J	Alumina	20		1	#DIV/0!
61461K	USEC	RD-103	1	5	0.65	0.65	C5	1	8K	Alumina	21		1	#DIV/0!

61461L	USEC	RD-103	1	5	0.65	0.65	C5	1	8L	Alumina	20		1	#DIV/0!
48359	USEC	RD-103	1	55P	7.4	7.40	C5	5	2B	Alumina accountable container	339	318	43.96	668.8879
60996	USEC	RD-103	1	55P	7.4	7.40	C5	1	10D	Alumina and Soda lime	65.22	42.22	9	1031.4474
50519H	USEC	RD-103	1	55M	7.4	7.40	C5	2	8D	Alumina pellets from air plant dryers	506	442	15	164.2070
50519D	USEC	RD-103	1	55M	7.4	7.40	C5	2	7B	Alumina pellets from air plant dryers	468	404	15 .	179.6523
50519A	USEC	RD-103	1	55M	7.4	7.40	C5	2	7C	Alumina pellets from air plant dryers	444	380	15	190.9987
50519C	USEC	RD-103	1	55M	7.4	7.40	C5	2	8C	Alumina pellets from air plant dryers	444	380	15	190.9987
50519B	USEC	RD-103	1	55M	7.4	7.40	C5	2	7D	Alumina pellets from air plant dryers	424	360	15	201.6098
50519E	USEC	RD-103	1	55M	7.4	7.40	C5	2	7A	Alumina pellets from air plant dryers	404	340	15	213.4692
50519F	USEC	RD-103	1	55M	7.4	7.40	C5	2	8A	Alumina pellets from air plant dryers	397	333	15	217.9565
50519G	USEC	RD-103	1	55M	7.4	7.40	C5	2	8B	Alumina pellets from air plant dryers	341	277	15	262.0199
62202G	USEC	RD-103	1	20	2.7	2.70	N3			Alumina Sample returns	29	16	0.5	151.2073
62202H	USEC	RD-103	1	20	2.7	2.70	N3			Alumina Sample returns	27	14	0.5	172.8084
622020	USEC	RD-103	1	20	2.7	2.70	N3			Alumina Sample returns	24	11	0.5	219.9379
63114A	USEC	RD-103	1	55	7.4	7.4	N3			Alumina, U, Tc	222			#DIV/0!
63114B	USEC	RD-103	1	55	7.4	7.4	N3			Alumina, U, Tc	242			#DIV/0!
64327A	USEC	RD-103	1	55	7.4	7.4	N3			Alumina, U, Tc	246			#DIV/0!
64327B	USEC	RD-103	1	55	7.4	7.4	N3			Alumina, U, Tc	252			#DIV/0!
48313	USEC	RD-103	1	55P	7.4	7.40	C5	2	10C	Alumina, Waste code 801	467	445	8.63	93.8369
48311	USEC	RD-103	1	55P	7.4	7.40	C5	2	12B	Alumina, Waste code 801	464	442	11.4	124.7974
48316	USEC	RD-103	1	55P	7.4	7.40	C5	3	5B	Alumina, Waste code 801	473	451	15.57	167.0455
48317	USEC	RD-103	1	55P	7.4	7.40	C5	3	5D	Alumina, Waste code 801	465	443	30.94	337.9398
48319	USEC	RD-103	1	55P	7.4	7.40	C5	3	4C	Alumina, Waste code 801	465	443	31.34	342.3088
48322	USEC	RD-103	1	55P	7.4	7.40	C5	3	1B	Alumina, Waste code 801	466	444	37.35	407.0338
48318	USEC	RD-103	1	55P	7.4	7.40	C5	7	7A	Alumina, Waste code 801	465	443	41.23	450.3316
48312	USEC	RD-103	1	55P	7.4	7.40	C5	4	2D	Alumina, Waste code 801	456	434	42.35	472.1571
48366	USEC	RD-103	1	55P	7.4	7.40	C5	12	10	Alumina, Waste code 801	464	442	43.5	476.2004
48323	USEC	RD-103	1	55P	7.4	7.40	C5	3	1A	Alumina, Waste code 801	471	449	49.72	535.8060
48368	USEC	RD-103	1	55P	7.4	7.40	C5	3	4B	Alumina, Waste code 801	420	398	49.22	598.3859
48320	USEC	RD-103	1	55P	7.4	7.40	C5	3	2C	Alumina, Waste code 801	471	449	85.49	921.2803
48303	USEC	RD-103	1	55P	7.4	7.40	C5	6	6A	Alumina, Waste code 801	472	451	96.59	1036.2831

48367	USEC	RD-103	1	55P	7.4	7.40	C5	6	6C	Alumina, Waste code 801	426	404	110.07	1318.2883
48306	USEC	RD-103	1	55P	7.4	7.40	C5	17	11	Alumina, Waste code 801	404	382	165.13	2091.6327
48310	USEC	RD-103	1	55P	7.4	7.40	C5	4	3C	Alumina, Waste code 801	446	424	188.8	2154.5617
50986	USEC	RD-103	1	55P	7.4	7.40	C5	7	7B	Alumina, Waste code 801	442	420	198.23	2283.7202
50987	USEC	RD-103	1	55P	7.4	7.40	C5	9	2C	Alumina, Waste code 801	510	488	255.8	2536.3169
53069	USEC	RD-103	1	55P	7.4	7.40	C5	15	4	Alumina, Waste code 801	291	269	264.4	4755.8919
53053	USEC	RD-103	1	55P	7.4	7.40	C5	3	6C	Alumina, Waste code 803	440	417	101.34	1175.8926
53051	USEC	RD-103	1	55P	7.4	7.40	C5	9	8A	Alumina, Waste code 803	450	427	106.7	1209.0920
54519	USEC	RD-103	1	55P	7.4	7.40	C5	10	9	Alumina, Waste code 803	351	329	189.31	2784.2002
54520	USEC	RD-103	1	55P	7.4	7.40	C5	14	6	Alumina, Waste code 810	77	55	28.15	2476.5010
54027	USEC	RD-103	1	55P	7.4	7.40	C5	8	3A	Alumina, Waste code 820	515	492	173.83	1709.5525
48924	USEC	RD-103	1	55P	7.4	7.40	C5	2	12D	Alumina, Waste code 821	370	347	2.16	30.1195
40564	USEC	RD-103	1	55	7.4	7.40	C5	2	12C	Alumina, Waste code 821	336	317	2.35	35.8700
54029	USEC	RD-103	1	55P	7.4	7.40	C5	2	11B	Alumina, Waste code 821	305	282	2.34	40.1504
46188	USEC	RD-103	1	55P	7.4	7.40	C5	2	13A	Alumina, Waste code 821	332	309	2.87	44.9414
45142	USEC	RD-103	1	55P	7.4	7.40	C5	2	13B	Alumina, Waste code 821	366	344	3.41	47.9644
52717	USEC	RD-103	1	55P	7.4	7.40	C5	3	8C	Alumina, Waste code 821	471	448	17.87	193.0053
50054	USEC	RD-103	1	55P	7.4	7.40	C5	1	11C	Alumina, Waste code 821	340	318	13.48	205.1094
50053	USEC	RD-103	1	55P	7.4	7.40	C5	5	4D	Alumina, Waste code 821	395	373	22.15	287.3345
48678	USEC	RD-103	1	55P	7.4	7.40	C5	4	6C	Alumina, Waste code 821	343	321	21.06	317.4506
48679	USEC	RD-103	1	55P	7.4	7.40	C5	4	6D	Alumina, Waste code 821	334	312	20.75	321.8002
52712	USEC	RD-103	1	55P	7.4	7.40	C5	7	6B	Alumina, Waste code 821	505	483	44.73	448.0996
48676	USEC	RD-103	1	55P	7.4	7.40	C5	4	5A	Alumina, Waste code 821	347	325	30.38	452.3007
50209	USEC	RD-103	1	55P	7.4	7.40	C5	8	1A	Alumina, Waste code 821	338	316	29.9	457.8328
48921	USEC	RD-103	1	55P	7.4	7.40	C5	3	9C	Alumina, Waste code 821	397	374	36.18	468.0797
52722	USEC	RD-103	1	55P	7.4	7.40	C5	3	8B	Alumina, Waste code 821	382	359	35.45	477.7983
48920	USEC	RD-103	1	55P	7.4	7.40	C5	8	9A	Alumina, Waste code 821	237	215	22.61	508.8443
48900	USEC	RD-103	1	55P	7.4	7.40	C5	5	7B	Alumina, Waste code 821	392	370	40.08	524.1418
40554	USEC	RD-103	1	55P	7.4	7.40	C5	8	4A	Alumina, Waste code 821	339	320	35.03	529.6793
50213	USEC	RD-103	1	55P	7.4	7.40	C5	5	5C	Alumina, Waste code 821	337	315	36.43	559.5919
52719	USEC	RD-103	1	55P	7.4	7.40	C5	3	8D	Alumina, Waste code 821	365	342	39.87	564.0829
52716	USEC	RD-103	1	55P	7.4	7.40	C5	7	6C	Alumina, Waste code 821	520	497	60	584.1410
50050	USEC	RD-103	1	55P	7.4	7.40	C5	8	5C	Alumina, Waste code 821	410	387	48.27	603.5165
40574	USEC	RD-103	1	55P	7.4	7.40	C5	5	5D	Alumina, Waste code 821	435	416	52.59	611.6918
50221	USEC	RD-103	1	55P	7.4	7.40	C5	5	9A	Alumina, Waste code 821	345	323	41.17	616.7386
50205	USEC	RD-103	1	55P	7.4	7.40	C5	5	7A	Alumina, Waste code 821	341	319	41.01	622.0451
50210	USEC	RD-103	1	55P	7.4	7.40	C5	8	1B	Alumina, Waste code 821	346	324	41.71	622.8995
40573	USEC	RD-103	1	55	7.4	7.40	C5	5	4B	Alumina, Waste code 821	423	404	52.45	628.1841
50212	USEC	RD-103	1	55P	7.4	7.40	C5	5	3D	Alumina, Waste code 821	331	309	41.14	644.2117

					_	-	1						1	
50211	USEC	RD-103	1	55P	7.4	7.40	C5	8	1C	Alumina, Waste code 821	347	325	43.38	645.8460
48919	USEC	RD-103	1	55P	7.4	7.40	C5	3	9B	Alumina, Waste code 821	486	464	64.64	674.0718
48677	USEC	RD-103	1	55P	7.4	7.40	C5	4	5B	Alumina, Waste code 821	333	311	44.16	687.0550
50058	USEC	RD-103	1	55P	7.4	7.40	C5	9	2A	Alumina, Waste code 821	325	302	42.98	688.6242
46200	USEC	RD-103	1	55P	7.4	7.40	C5	4	5C	Alumina, Waste code 821	313	290	41.59	693.9269
52723	USEC	RD-103	1	55P	7.4	7.40	C5	3	8A	Alumina, Waste code 821	365	342	49.173	695.7022
48456	USEC	RD-103	1	55P	7.4	7.40	C5	8	7D	Alumina, Waste code 821	340	318	46.08	701.1455
40571	USEC	RD-103	1	55P	7.4	7.40	C5	8	7C	Alumina, Waste code 821	420	401	60.31	727.7258
40578	USEC	RD-103	1	55P	7.4	7.40	C5	3	7D	Alumina, Waste code 821	337	318	50.27	764.8998
40557	USEC	RD-103	1	55P	7.4	7.40	C5	7	1D	Alumina, Waste code 821	320	297	47.2	768.9682
50052	USEC	RD-103	1	55P	7.4	7.40	C5	5	9C	Alumina, Waste code 821	405	382	61.36	777.2215
40583	USEC	RD-103	1	55P	7.4	7.40	C5	4	2C	Alumina, Waste code 821	344	323	53.7	804.4417
50069	USEC	RD-103	1	55P	7.4	7.40	C5	3	2D	Alumina, Waste code 821	390	368	62.01	815.3362
48922	USEC	RD-103	1	55P	7.4	7.40	C5	5	7D	Alumina, Waste code 821	466	444	78.73	857.9858
40582	USEC	RD-103	1	55P	7.4	7.40	C5	5	3B	Alumina, Waste code 821	354	333	59.86	869.7918
50074	USEC	RD-103	1	55P	7.4	7.40	C5	8	8D	Alumina, Waste code 821	370	347	64.43	898.4242
50059	USEC	RD-103	1	55P	7.4	7.40	C5	7	7C	Alumina, Waste code 821	375	352	65.36	898.4464
50045	USEC	RD-103	1	55P	7.4	7.40	C5	8	5A	Alumina, Waste code 821	390	367	68.46	902.5965
40572	USEC	RD-103	1	55	7.4	7.40	C5	5	4A	Alumina, Waste code 821	425	406	76.21	908.2570
40563	USEC	RD-103	1	55P	7.4	7.40	C5	9	7A	Alumina, Waste code 821	325	306	57.49	909.0624
50204	USEC	RD-103	1	55P	7.4	7.40	C5	4	6B	Alumina, Waste code 821	352	330	63.44	930.1908
40579	USEC	RD-103	1	55P	7.4	7.40	C5	3	7C	Alumina, Waste code 821	342	321	62.18	937.2781
40581	USEC	RD-103	1	55P	7.4	7.40	C5	5	3A	Alumina, Waste code 821	344	323	62.6	937.7663
50072	USEC	RD-103	1	55P	7.4	7.40	C5	8	8C	Alumina, Waste code 821	380	358	71.03	960.0229
40569	USEC	RD-103	1	55P	7.4	7.40	C5	9	4A	Alumina, Waste code 821	345	326	65.19	967.5784
40585	USEC	RD-103	1	55P	7.4	7.40	C5	4	2B	Alumina, Waste code 821	357	336	67.68	974.6392
50071	USEC	RD-103	1	55P	7.4	7.40	C5	3	2B	Alumina, Waste code 821	375	353	72.96	1000.0758
50073	USEC	RD-103	1	55P	7.4	7.40	C5	8	8B	Alumina, Waste code 821	375	353	73.7	1010.2191
50219	USEC	RD-103	1	55P	7.4	7.40	C5	5	9B	Alumina, Waste code 821	375	353	74.38	1019.5400
40584	USEC	RD-103	1	55P	7.4	7.40	C5	4	2A	Alumina, Waste code 821	372	351	76.34	1052.3685
40560	USEC	RD-103	1	55P	7.4	7.40	C5	8	6A	Alumina, Waste code 821	366	347	76.16	1061.9896
40555	USEC	RD-103	1	55P	7.4	7.40	C5	8	4B	Alumina, Waste code 821	243	224	49.92	1078.3242
40565	USEC	RD-103	1	55P	7.4	7.40	C5	8	9D	Alumina, Waste code 821	335	316	70.74	1083.1804
40575	USEC	RD-103	1	55P	7.4	7.40	C5	5	5B	Alumina, Waste code 821	394	375	86.26	1113.0149
48301	USEC	RD-103	1	55P	7.4	7.40	C5	6	6B	Alumina, Waste code 821	472	450	104.5	1123.6384
50070	USEC	RD-103	1	55P	7.4	7.40	C5	3	2A	Alumina, Waste code 821	380	358	84.15	1137.3494
40553	USEC	RD-103	1	55P	7.4	7.40	C5	8	4C	Alumina, Waste code 821	343	324	76.59	1143.7994
40580	USEC	RD-103	1	55P	7.4	7.40	C5	5	3C	Alumina, Waste code 821	408	387	92.8	1160.2720
40576	USEC	RD-103	1	55P	7.4	7.40	C5	5	5A	Alumina, Waste code 821	403	384	94.55	1191.3877

48897	USEC	RD-103	1	55P	7.4	7.40	C5	4	6A	Alumina, Waste code 821	424	402	99.28	1194.9742
40577	USEC	RD-103	1	55P	7.4	7.40	C5	3	7A	Alumina, Waste code 821	416	397	99.07	1207.4648
52720	USEC	RD-103	1	55P	7.4	7.40	C5	3	6B	Alumina, Waste code 821	361	338	85.89	1229.5571
52721	USEC	RD-103	1	55P	7.4	7.40	C5	3	6D	Alumina, Waste code 821	366	343	87.41	1233.0759
40567	USEC	RD-103	1	55P	7.4	7.40	C5	3	1C	Alumina, Waste code 821	367	348	89.9	1249.9805
50049	USEC	RD-103	1	55P	7.4	7.40	C5	8	5B	Alumina, Waste code 821	400	378	98.67	1263.0372
40561	USEC	RD-103	1	55P	7.4	7.40	C5	8	6D	Alumina, Waste code 821	371	352	93.72	1288.2864
40561	USEC	RD-103	1	55P	7.4	7.40	C5	5	2A	Alumina, Waste code 821	360	339	101.21	1444.5964
			1		7.4	7.40	C5	7	1B	Alumina, Waste code 821	355	332	99.41	1448.8212
40558	USEC USEC	RD-103	1	55P 85M	11	11.00	C5	17	5	Alumina, Waste code 821 Alumina, Waste code 821	438	416	125.65	1461.4769
39466	USEC	RD-103	1	85M	11	11.00	C5	17	9	Alumina, Waste code 821	438	410	163.8	1734.2851
39466	USEC	RD-103 RD-103	1	85M	11	11.00	C5	18	9 11	Alumina, Waste code 821	393	370	137	1791.6025
52725	USEC		1	55P	7.4	7.40	C5	8	3B	Alumina, Waste code 821	475	452	168.25	1801.1067
		RD-103			11	11.00	C5	18	3	Alumina, Waste code 821	374	351	108.25	1985.0808
37709	USEC	RD-103	1	85M			C5	18	7	Alumina, Waste code 821 Alumina, Waste code 821	435	412	183.497	2155.0361
37711	USEC	RD-103	1	85M	11	11.00	C5	18	6	Alumina, Waste code 821 Alumina, Waste code 821	435	412	203.18	2175.0304
37721	USEC	RD-103	1	85M	11		C5	18	2	Alumina, Waste code 821	4/3	432	191.37	2204.6892
37715	USEC	RD-103	1	85M	11	11.00	C5	17	6		445	420	215.86	2475.0417
37714	USEC	RD-103	1	85M	11	11.00	C5	17	3	Alumina, Waste code 821	512	422	215.86	2539.9868
37720	USEC	RD-103	1	85M	11	11.00		=-		Alumina, Waste code 821	375			2735.2030
37713	USEC	RD-103	1	85M	11	11.00	C5	18	12	Alumina, Waste code 821		352 437	198.98	
53063	USEC	RD-103	1	55P	7.4	7.40	C5	12	9	Alumina, Waste code 821	459		283.08	3134.3721 3372.3126
53062	USEC	RD-103	1	55P	7.4	7.40	C5	13	9	Alumina, Waste code 821	426	404	281.57	
53075	USEC	RD-103	1	55P	7.4	7.40	C5	14	3	Alumina, Waste code 821	306	284 302	252.28	4298.2066 59.9222
45141	USEC	RD-103	1	55P	7.4	7.40	C5	2	13C	Alumina, Waste code 821	324 600	302	327.6	#DIV/0!
49777	USEC	RD-103	1	85M	11	11.00	C5	18	4	Alumina, Waste code 821		205		
48369	USEC	RD-103	1	55P	7.4	7.40	C5	3	3C	Alumina, Waste code 823	417	395	133.47	1634.9684
52083	USEC	RD-103	1	55P	7.4	7.40	C5	9	6B	Alumina, Waste code 823	465	442	180.4	1974.8634
52084	USEC	RD-103	1	55P	7.4	7.40	C5	9	8B	Alumina, Waste code 823	451	428	178.58	2018.8863
54514	USEC	RD-103	1	55P	7.4	7.40	C5	11	6	Alumina, Waste code 823	256	333	188.78	2743.0552
53067	USEC	RD-103	1	55P	7.4	7.40	C5	15	6	Alumina, Waste code 823	363	341	231.7	3287.7172
52076	USEC	RD-103	1	55P	7.4	7.40	C5	15	3	Alumina, Waste code 823	436	414	329.7	3853.3762
55277	USEC	RD-103	1	55P	7.4	7.40	C5	11	5	Alumina, Waste code 823	230.67	207.67	250.2	5829.5677
54524	USEC	RD-103	1	55P	7.4	7.40	C5	13	5	Alumina, Waste code 823, 827	304.24	281.24	233.55	4018.1448
55281	USEC	RD-103	1	55P	7.4	7.40	C5	11	7	Alumina, Waste code 823, 827	275.82	252.82	265.15	5074.6140
54523	USEC	RD-103	1	55P	7.4	7.40	C5	13	3	Alumina, Waste code 823, 827	222.39	199.39	252.07	6117.0298
54515	USEC	RD-103	1	55P	7.4	7.40	C5	11	4	Alumina, Waste code 827	329	307	243.57	3838.9126
47995	USEC	RD-103	1	85M	11	11.00	C5	1	14A	Alumina, Waste code 828	526	425	0	0.0000
47996	USEC	RD-103	1	85M	11	11.00	C5	1	14D	Alumina, Waste code 828	537	436	1	11.0978
52506	USEC	RD-103	1	85M	11	11.00	C5	1	12D	Alumina, Waste code 828	484	461	14.8	155.3401

				-		-								
53056	USEC	RD-103	1	85M	11	11.00	C5	1	13D	Alumina, Waste code 828	480	379	13	165.9690
53058	USEC	RD-103	1	85M	11	11.00	C5	18	10	Alumina, Waste code 828	540	439	15.21	167.6438
52077	USEC	RD-103	1	85M	11	11.00	C5	1	12B	Alumina, Waste code 828	500	399	14	169.7766
50325	USEC	RD-103	1	85M	11	11.00	C5	1	13C	Alumina, Waste code 828	360	259	9.5	177.4789
50989	USEC	RD-103	1	85M	11	11.00	C5	1	13B	Alumina, Waste code 828	416	393	14.5	178.5247
50976	USEC	RD-103	1	55P	7.4	7.40	C5	5	2C	Alumina, Waste code 828	406	384	15	189.0092
50990	USEC	RD-103	1	85M	11	11.00	C5	7	4A	Alumina, Waste code 828	500	399	17.13	207.7339
52078	USEC	RD-103	1	85M	11	11.00	C5	7	5A	Alumina, Waste code 828	445	344	17.22	242.2130
52079	USEC	RD-103	1	85M	11	11.00	C5	7	4B	Alumina, Waste code 828	496	395	20.36	249.4040
50988	USEC	RD-103	1	55P	7.4	7.40	C5	9	2B	Alumina, Waste code 828	429	407	21	249.6593
54512	USEC	RD-103	1	85M	11	11.00	C5	17	4	Alumina, Waste code 828	341	240	16	322.5756
50977	USEC	RD-103	1	55P	7.4	7.40	C5	3	3D	Alumina, Waste code 828	436	414	28	327.2506
48466	USEC	RD-103	1	85M	11	11.00	C5	7	3B	Alumina, Waste code 828	492	391	27	334.1256
50978	USEC	RD-103	1	85M	11	11.00	C5	7	2B	Alumina, Waste code 828	495	394	28	343.8623
50980	USEC	RD-103	1	55P	7.4	7.40	C5	6	2B	Alumina, Waste code 828	417	395	29.73	364.1838
48296	USEC	RD-103	1	85M	11	11.00	C5	6	3B	Alumina, Waste code 828	494	393	30	369.3614
55292	USEC	RD-103	1	55P	7.4	7.40	C5	4	7A	Alumina, Waste code 828	217	194	18	448.9455
48297	USEC	RD-103	1	85M	11	11.00	C5	7	2A	Alumina, Waste code 828	494	393	42	517.1060
48302	USEC	RD-103	1	55P	7.4	7.40	C5	7	1A	Alumina, Waste code 828	430	407	62	737.0893
52080	USEC	RD-103	1	85M	11	11.00	C5	7	8A	Alumina, Waste code 828	490	389	67.71	842.2209
52081	USEC	RD-103	1	55P	7.4	7.40	C5	6	2C	Alumina, Waste code 828	415	392	83	1024.5068
48285	USEC	RD-103	1	55P	7.4	7.40	C5	6	3C	Alumina, Waste code 828	410	388	100	1247.0707
50991	USEC	RD-103	1	55P	7.4	7.40	C5	5	6D	Alumina, Waste code 828	417	395	137	1678.2099
48308	USEC	RD-103	1	55P	7.4	7.40	C5	6	2A	Alumina, Waste code 828	522	499	188.98	1832.4752
53061	USEC	RD-103	1	55P	7.4	7.40	C5	13	4	Alumina, Waste code 828	411	389	275.06	3421.3747
53060	USEC	RD-103	1	55P	7.4	7.40	C5	14	10	Alumina, Waste code 828	416	394	309.82	3804.8368
52082	USEC	RD-103	1	85M	11	11.00	C5	7	8B	Alumina, Waste code 828	515		125.4	#DIV/0!
53074	USEC	RD-103	1	85M	11	11.00	C5	2	10B	Alumina, Waste code 828	540		14.5	#DIV/0!
54502	USEC	RD-103	1	85M	11	11.00	C5	18	5	Alumina, Waste code 828	435		29.4	#DIV/0!
56047	USEC	RD-103	1	55P	7.4	7.40	C5	16	9	Alumina, Waste code 841, 842	302.06	279.06	250.77	4348.1127
53065	USEC	RD-103	1	55P	7.4	7.40	C5	14	4	Alumina, Waste code 846	305	283	255.05	4360.7551
58053	USEC	RD-103	1	55M	7.4	7.40	C5	2	5A	DAW and Alumina	217	153	15	474.3759
54077	USEC	RD-103	1	5M	0.65	0.65	C5	1	12A	Excess Alumina samples	17	12	0.5	201.6098
54078	USEC	RD-103	1	5M	0.65	0.65	C5	2	14B	Excess Alumina samples	10	5	0.5	483.8634
54082	USEC	RD-103	1	5M	0.65	0.65	C5	1	13A	Excess Alumina samples	27	22	2.68	589.4336
51355	USEC	RD-103	1	30M	4	4.00	C5	2	4B	Excess Alumina samples	60	23	4.9	1030.8395
61435B	USEC	RD-103	1	5M	0.65	0.65	C5	19	12C	Filter Media, Alumina trap material	43	38	100	12733.2483

			1				1					Bel Sel mo		
61435A	USEC	RD-103	1	5M	0.65	0.65	C5	19	12B	Filter Media, Alumina trap material	39	34	100	14231.277
61435C	USEC	RD-103	1	5M	0.65	0.65	C5	19	12A	Filter Media, Alumina trap material	24	19	100	25466.496
										Magnesium Fluoride Pellets and				
62135	USEC	RD-103	1	55P	7.4	7.40	C5	1	10C	powder unused	466	402	1	12.0364
53777	USEC	RD-103	1	55M	7.4	7.40	C6	2	9D	NAF Powder/Dust	367	303	1	15.9691
										New Alumina from floor sweeping X-				
62142	USEC	RD-103	1	5M	0.65	0.65	C5	2	3A	760	22.8	17.8	1	271.833
49797	USEC	RD-103	1	55M	7.4	7.40	C5	17	7	Sample jars of Alumina	338	274	251	4432.471
53064	USEC	RD-103	1	55P	7.4	7.40	C5	1	11B	Sodium Fluoride	430	407	4.5	53.4984
48460	USEC	RD-103	1	55P	7.4	7.40	C5	2	12A	Sodium Fluoride	471	449	5.66	60.9948
48461	USEC	RD-103	1	55P	7.4	7.40	C5	1	14B	Sodium Fluoride	473	451	6.89	73.9206
50992	USEC	RD-103	1	55P	7.4	7.40	C5	5	6B	Sodium Fluoride	481	459	16.8	177.100
48455	USEC	RD-103	1	55P	7.4	7.40	C5	3	3B	Sodium Fluoride	469	447	35.44	383.626
50995	USEC	RD-103	1	55P	7.4	7.40	C5	5	6A	Sodium Fluoride	477	454	36.7	391.140
48458	USEC	RD-103	1	55P	7.4	7.40	C5	3	3A	Sodium Fluoride	462	440	42.96	472.426
50993	USEC	RD-103	1	55P	7.4	7.40	C5	5	6C	Sodium Fluoride	483	461	50.24	527.316
48462	USEC	RD-103	1	55P	7.4	7.40	C5	3	5C	Sodium Fluoride	465	443	63.9	697.943
48457	USEC	RD-103	1	55P	7.4	7.40	C5	3	4D	SOdium Fluoride	470	448	74.56	805.287
53072	USEC	RD-103	1	55P	7.4	7.40	C5	7	6A	Sodium Fluoride	358	336	70.01	1008.192
45139	USEC	RD-103	1	55P	7.4	7.40	C5	8	9C	Used Alumina	367	344	66.07	929.327
45140	USEC	RD-103	1	55P	7.4	7.40	C5	9	7B	Used Alumina	400	378	76.22	975.663
45137	USEC	RD-103	1	85M	11	11.00	C5	7	3A	Used Alumina	462	361	74.66	1000.699
										Vent sampler alumina trap change				
47363	USEC	RD-103	1	55M	7.4	7.40	C5	2	13D	outs	469	405	0.5	5.9736
										Vent sampler alumina trap change				
49160	USEC	RD-103	1	55M	7.4	7.40	C5	4	2A	outs	456	392	0.5	6.1717
										Vent sampler alumina trap change				
52294	USEC	RD-103	1	55M	7.4	7.40	C5	2	4D	outs	400	336	5	72.0035
										Vent sampler alumina trap change				
52295	USEC	RD-103	1	55M	7.4	7.40	C5	2	4C	outs	330	266	4	72.7614
										Vent sampler alumina trap change				
53185	USEC	RD-103	1	55M	7.4	7.40	C5	2	5B	outs	336	272	5	88.9455
										Vent sampler alumina trap change				
54432	USEC	RD-103	1	55M	7.4	7.40	C5	2	11C	outs	330	266	10	181.903
										Vent sampler alumina trap change				
54433	USEC	RD-103	1	55M	7.4	7.40	C5	2	11D	outs	330	266	10	181.903
65319	USEC	RD-103	1	55	7.4	7.4	\$3-3			Alumina	108.45	44.45	47.62	5183.706

65320	USEC	RD-103	1	55	7.4	7.4	\$3-3			Alumina	99.18	35.18	41.5	5707.8831
64760	USEC	RD-103	1	55	7.4	7.4	\$3-3			Alumina	223.24	159.24	26	790.0307
64762	USEC	RD-103	1	55	7.4	7.4	\$3-3			Alumina	238.24	174.24	25	694.2485
64761	USEC	RD-103	1	55	7.4	7.4	\$3-3			Alumina	225.68	161.68	23	688.3263
65759	USEC	RD-103	1	55	7.4	7.4	\$3-3			Alumina	226.28	162.28	25	745.4145
65324	USEC	RD-103	1	55	7.4	7.4	\$3-3			Alumina	89.12	25.12	43.8	8436.7908
65323	USEC	RD-103	1	55	7.4	7.4	\$3-3			Alumina	105.91	41.91	59	6811.7258
Total			260		1893.45		ALC: NO.							
62203A	USEC	RD-104	1	20	2.7	2.70	N3			Sample Returns	95	82	0.5	29.5039
62203B	USEC	RD-104	1	20	2.7	2.70	N3			Sample Returns	63	50	0.5	48.3863
62203D	USEC	RD-104	1	20	2.7	2.70	N3			Sample Returns	31	18	0.5	134.4065
62203C	USEC	RD-104	1	20	2.7	2.70	N3			Sample Returns	16	3	0.5	806.4391
47929	USEC	RD-114	1	5M	0.65	0.65	N3	5	1D	4 gunk samples	11	6	8.24	6645.0579
Sample I	Returns		5	5	3.25								A CONTRACTOR	
Total			10		14.7									
58999	USEC	RD-105	1	5M	0.65	0.65	C6	5	16B	Excess U Standard	12	7	0	0.0000
59278A	USEC	RD-105	1	5M	0.65	0.65	C6	5	16G	Radioactive sources	68	63	0	0.0000
59278B	USEC	RD-105	1	5M	0.65	0.65	C6	5	16E	Radioactive sources	21	16	0	0.0000
59278C	USEC	RD-105	1	5M	0.65	0.65	C6	5	161	Radioactive sources	86	81	0	0.0000
59278D	USEC	RD-105	1	5M	0.65	0.65	C6	5	16H	Radioactive sources	31	26	0	0.0000
61667	USEC	RD-105	1	5M	0.65	0.65	C6	5	16D	Radioactive sources	6	1	0	0.0000
61556	USEC	RD-105	1	30M	4	4.00	C6	1	6C	Smoke detectors	85	48	1	100.8049
60707	USEC	RD-105	1	5M	0.65	0.65	C6	5	16A	Smoke head sources	25	20	0	0.0000
63106	USEC	RD-105	1	5	0.65	0.65	C6			Smoke head sources				#DIV/0!
63235	USEC	RD-105	1	55	7.4	7.4	C6	2	13D	Smokeheads	119	55	0	0.0000
61466	USEC	RD-105	1	5	0.65	0.65	C6	5	17C	Smokeheads	8		1	#DIV/0!
62915A	USEC	RD-105	1	5	0.65	0.65	C6	5	17A	Sources	51	46	0	0.0000
62915B	USEC	RD-105	1	5	0.65	0.65	C6	5	17B	Sources	55	50	0	0.0000
61179	USEC	RD-105	1	5M	0.65	0.65	C6	5	16F	U-233 Standard	42	37	0	0.0000
Total			14		19.2									
										absorbal to soak up water, some				
19573	USEC	RD-107	1	85M	11	11.00	C6	3	10A	grease and new PCB oil	460	318	5	76.0792
Total			1		11									
48548A	USEC	RD-107	1	55M	7.4	7.40	C6	2	7A	Black Beauty sand from sand blasting	891	827	1	5.8508
48548D	USEC	RD-107	1	55M	7.4	7.40	C6	2	1A	Black Beauty sand from sand blasting	624	560	1	8.6404
48548B	USEC	RD-107	1	85M	11	11.00	C6	1	10B	Black Beauty sand from sand blasting	613	471	1	10.2731

56373	USEC	RD-107	1	30M	4	4	C6	1	11A	Blasting media	460	423	1	11.4389
48548C	USEC	RD-107	1	55M	7.4	7.40	C6	2	7D	Black Beauty sand from sand blasting	321	257	1	18.8274
49792A	USEC	RD-107	1	55M	7.4	7.40	C6	1	3B	Sand bags	396	332	2	29.1484
54976B	USEC	RD-107	1	85M	11	11.00	C6	5	12A	Black Beauty sand from sand blasting	415	273	3	53.1718
54976A	USEC	RD-107	1	55M	7.4	7.40	C6	4	10B	Black Beauty sand from sand blasting	330	266	3	54.5711
49792C	USEC	RD-107	1	55M	7.4	7.40	C6	1	3A	Sand bags	503	439	6	66.1317
49792B	USEC	RD-107	1	55M	7.4	7.40	C6	1	3D	Sand bags	611	547	8	70.7661
50145A	USEC	RD-107	1	85M	11	11.00	C6	1	10A	Filters from sand blasting unit	665	523	15	138.7754
54301	USEC	RD-107	1	55M	7.4	7.40	C6	2	7B	Blasting media	541	477	15	152.1583
50145B	USEC	RD-107	1	85M	11	11.00	C6	2	10B	Filters from sand blasting unit	586	444	15	163.4674
58806	USEC	RD-107	1	55M	7.4	7.4	C6	4	10C	Blasting media	177	113	15	642.2966
54569B	USEC	RD-107	1	5M	0.65	0.65	C6	5	16B	Blasting media	65	60	15	1209.6586
54569D	USEC	RD-107	1	5M	0.65	0.65	C6	5	15D	Blasting media	65	60	15	1209.6586
54569A	USEC	RD-107	1	5M	0.65	0.65	C6	5	15E	Blasting media	60	55	15	1319.6276
49813A	USEC	RD-107	1	5M	0.65	0.65	C6	5	14F	Blasting media	52	47	15	1544.2450
49813B	USEC	RD-107	1	5M	0.65	0.65	C6	5	14A	Blasting media	36	31	15	2341.2747
54569C	USEC	RD-107	1	5M	0.65	0.65	C6	5	15C	Blasting media	20	15	15	4838.6344
50137	USEC	RD-107	1	30M	4	4.00	C6	5	13C	Blasting media (Glass beads)	291	254	1	19.0497
57898	USEC	RD-107	1	55M	7.4	7.4	C6	1	2D	Blasting media (Glass beads)	402	338	15	214.7323
53753	USEC	RD-107	1	55M	7.4	7.40	N4	6	2A	Blasting media (Glass beads)	368	304	17	270.5815
49847	USEC	RD-107	1	5M	0.65	0.65	C6	5	13D	Blasting media (Glass beads)	50	45	15	1612.8781
56533A	USEC	RD-107	1	5M	0.65	0.65	C6	5	14D	Blasting media (Glass beads)	47	42	15	1728.0837
59605B	USEC	RD-107	1	5M	0.65	0.65	C6	5	14K	Blasting media (Glass beads)	45	40	15	1814.4879
56533B	USEC	RD-107	1	5M	0.65	0.65	C6	5	14J	Blasting media (Glass beads)	44	39	15	1861.0132
57425A	USEC	RD-107	1	5M	0.65	0.65	C6	5	141	Blasting media (Glass beads)	42	37	15	1961.6085
59605A	USEC	RD-107	1	5M	0.65	0.65	C6	5	14H	Blasting media (Glass beads)	37	32	15	2268.1099
57425B	USEC	RD-107	1	5M	0.65	0.65	C6	5	14C	Blasting media (Glass beads)	28	23	15	3155.6311
59553A	USEC	RD-107	1	5M	0.65	0.65	C6	5	14E	Blasting media (Glass beads) possible metals	47	42	15	1728.0837
										Blasting media (Glass beads) possible				
59553B	USEC	RD-107	1	5M	0.65	0.65	C6	5	14B	metals	47	42	15	1728.0837
57418	USEC	RD-107	1	85M	11	11	C6	1	6B	Ceramic tumbling media	788	646	15	112.3522
Total			33		154.15									
55026	USEC	RD-107	1	55M	7.4	7.40	N4	6	3C	Concrete	483	419	69	796.8157
55028	USEC	RD-107	1	55M	7.4	7.4	N4	6	3B	Concrete	379	315	63	967.7269
55027	USEC	RD-107	1	55M	7.4	7.4	N4	6	4C	Concrete	424	360	236	3171.9936

62501	USEC	RD-107	1	30	4	4	C6	2	12D	Concrete			1	#DIV/0!
52120	USEC	RD-107	1	55M	7.4	7.40	C6	3	6B	Concrete	473	409	10	118.3040
55034	USEC	RD-107	1	55M	7.4	7.4	N4	6	4A	Concrete and ceramic tile	252	188	32	823.5973
55033	USEC	RD-107	1	55M	7.4	7.4	N4	6	4B	Concrete and ceramic tile	327	263	60	1103.8710
55035	USEC	RD-107	1	55M	7.4	7.4	N4	6	3A	Concrete and ceramic tile	494	430	189	2126.7486
								-		Concrete saturated with lube oil, < 50			15	15110150
32902D	USEC	RD-107	1	5M	0.65	0.65	C6	5	13G	ppm PCB	52	47	15	1544.2450
32902C	USEC	RD-107	1	5M	0.65	0.65	C6	5	13E	Concrete saturated with lube oil, < 50 ppm PCB	47	42	15	1728.0837
										Concrete saturated with lube oil, < 50				
32902B	USEC	RD-107	1	5M	0.65	0.65	C6	5	13B	ppm PCB	41	36	15	2016.0977
										Concrete saturated with lube oil, < 50				
32902A	USEC	RD-107	1	5M	0.65	0.65	C6	5	13A	ppm PCB	40	35	15	2073.7004
Total			12		58.4				A Department					
55932	USEC	RD-107	1	85M	11	11	N4	3	5	rust, metal dirt	1092	950	350	1782.6548
54632	USEC	RD-107	1	55M	7.4	7.40	C6	4	10D	Soils	350	286	15	253.7745
55645	USEC	RD-108	1	B-25 box	90	90.00	NR			Soils	2587			#DIV/0!
55646	USEC	RD-108	1	B-25 box	90	90.00	NR			Soils	2581			#DIV/0!
Total			4		198.4									
62147A	USEC	RD-109	1	55	7.4	7.40	C6	2	13C	Welding slag for #3 econimizer tubes			1	#DIV/0!
62147B	USEC	RD-109	1	55	7.4	7.40	C6	2	13B	Welding slag for #3 econimizer tubes			1	#DIV/0!
62147C	USEC	RD-109	1	55	7.4	7.40	C6	2	13A	Welding slag for #3 econimizer tubes			1	#DIV/0!
Total			3		22.2				R. C. Starter					
61474	USEC	RD-111	1	5	0.65	0.65	N3			Grease /Oil Mixture				#DIV/0!
62217	USEC	RD-111	1	20	2.7	2.70	N3			Misc. grease from XT-847 sorting				#DIV/0!
19628	USEC	RD-111	1	5	0.65	0.65	N3	5	1C	Used Oil	42.00	37.00	15	1961.6085
45474	USEC	RD-111	1	5	0.65	0.65	N3	3	2B	Used Oil	46.00	41.00	20.8	2454.7218
45488	USEC	RD-111	1	55	7.4	7.40	N3	4	2A	Used Oil	376.00	329.00	167.2	2459.0263
44821	USEC	RD-111	1	5	0.65	0.65	N3	3	5F	Used Oil	50.00	45.00	35.7	3838.6499
44019	USEC	RD-111	1	5	0.65	0.65	N3	3	2A	Used Oil	44.00	39.00	31.38	3893.2396
43990	USEC	RD-111	1	5	0.65	0.65	N3	3	4A	Used Oil	45.00	40.00	33.76	4083.8074
44785	USEC	RD-111	1	5	0.65	0.65	N3	3	1E	Used Oil	46.00	41.00	38.1	4496.3895
44372	USEC	RD-111	1	5	0.65	0.65	N3	3	5A	Used Oil	44.00	39.00	36.65	4547.0756
44014	USEC	RD-111	1	5	0.65	0.65	N3	3	1C	Used Oil	45.00	40.00	39.09	4728.5554
44387	USEC	RD-111	1	5	0.65	0.65	N3	3	5B	Used Oil	45.00	40.00	39.24	4746.7003
43698	USEC	RD-111	1	5	0.65	0.65	N3	3	2C	Used Oil	45.00	40.00	46.2	5588.6227

44388	USEC	RD-111	1	5	0.65	0.65	N3	3	5G	Used Oil	49.00	44.00	52.25	5745.8783
44388	USEC			5					1B			39.00	46.4	
	USEC	RD-111	1	5	0.65	0.65	N3	3	1B 1G	Used Oil	44.00			5756.7342
44379	USEC	RD-111	1		0.65	0.65	N3	3		Used Oil	52.00	47.00	60.6	6238.7498
43981		RD-111	1	5	0.65	0.65	N3	3	2G	Used Oil	51.00	46.00	59.9	6300.7434
44024	USEC	RD-111	1	5	0.65	0.65	N3	4	6A	Used Oil	50.00	45.00	63.8	6860.1083
44001	USEC	RD-111	1	5	0.65	0.65	N3	3	4C	Used Oil	51.00	46.00	71.2	7489.3645
44025	USEC	RD-111	1	5	0.65	0.65	N3	4	60	Used Oil	48.00	43.00	70.1	7888.0993
44398	USEC	RD-111	1	5	0.65	0.65	N3	3	1F	Used Oil	44.00	39.00	73.4	9106.5580
44786	USEC	RD-111	1	5	0.65	0.65	N3	3	4D	Used Oil	54.00	49.00	92.7	9153.9062
43685	USEC	RD-111	1	5	0.65	0.65	N3	3	4E	Used Oil	53.00	48.00	98.5	9929.2809
61434B	USEC	RD-111	1	5	0.65	0.65	N3	1	2A	Used Oil	42.00	37.00	100	13077.3902
61433A	USEC	RD-111	1	5	0.65	0.65	N3	1	2B	Used Oil	41.00	36.00	100	13440.6510
61433B	USEC	RD-111	1	5	0.65	0.65	N3	1	2C	Used Oil	41.00	36.00	100	13440.6510
61434A	USEC	RD-111	1	5	0.65	0.65	N3	1	2D	Used Oil	24.00	19.00	100	25466.4966
61413	USEC	RD-111	1	5	0.65	0.65	N3	1	1	Used Oil	43.00	38.00	350	44566.3691
44009	USEC	RD-111	1	5 (Overpack)	0.65	0.65	N3	3	3B	Used Oil	49.00		45.04	#DIV/0!
44016	USEC	RD-111	1	5 (Overpack)	0.65	0.65	N3	3	ЗA	Used Oil	48.00		24.66	#DIV/0!
44358	USEC	RD-111	1	5 (Overpack)	0.65	0.65	N3	3	3D	Used Oil	42.00		20.88	#DIV/0!
50062	USEC	RD-111	1	55	7.4	7.40	N3	3	6D	Used Seal Exhaust Oil	398.00	351.00	31.2	430.1008
50063	USEC	RD-111	1	55	7.4	7.40	N3	4	5B	Used Seal Exhaust Oil	404.00	357.00	52.8	715.6300
54042	USEC	RD-111	1	55	7.4	7.40	N3	2	5B	Used Seal Exhaust Oil	390.00	343.00	54	761.7675
50046	USEC	RD-111	1	55	7.4	7.40	N3	4	5C	Used Seal Exhaust Oil	387.00	340.00	58.6	833.9529
50066	USEC	RD-111	1	55	7.4	7.40	N3	2	6A	Used Seal Exhaust Oil	384.00	337.00	58.3	837.0694
44761	USEC	RD-111	1	55	7.4	7.40	N3	4	5A	Used Seal Exhaust Oil	407.00	360.00	68.5	920.6846
50067	USEC	RD-111	1	55	7.4	7.40	N3	2	6B	Used Seal Exhaust Oil	361.00	314.00	60.5	932.2846
50041	USEC	RD-111	1	55	7.4	7.40	N3	3	6A	Used Seal Exhaust Oil	395.00	348.00	75.3	1046.9804
50040	USEC	RD-111	1	55	7.4	7.40	N3	3	6B	Used Seal Exhaust Oil	365.00	318.00	75.7	1151.8384
44760	USEC	RD-111	1	55	7.4	7.40	N3	2	6D	Used Seal Exhaust Oil	397.00	350.00	90.2	1246.9852
39440	USEC	RD-111	1	55	7.4	7.40	N3	4	3A	Used Seal Exhaust Oil	317.00	270.00	78.612	1408.7953
50038	USEC	RD-111	1	55	7.4	7.40	N3	3	6C	Used Seal Exhaust Oil	404.00	357.00	106.2	1439.3921
38526B	USEC	RD-111	1	55	7.4	7.40	N3	2	5C	Used Seal Exhaust Oil	392.00	345.00	113.6	1593.2431
38526A	USEC	RD-111	1	55	7.4	7.40	N3	2	5C 5D	Used Seal Exhaust Oil	381.00	334.00	121.8	1764.5080
38534	USEC	RD-111	1	55	7.4	7.40	N3	4	4B	Used Seal Exhaust Oil	412.00	365.00	144	1908.9407
39443	USEC	RD-111	1	55	7.4	7.40	N3	4	4B	Used Seal Exhaust Oil	331.00	284.00	112.24	1908.9407
44759	USEC	RD-111	1	55	7.4	7.40	N3	4	20			355.00		
44759	USEC		1							Used Seal Exhaust Oil	402.00		140.3	1912.2828
45225	USEC	RD-111	L 1	5	0.65	0.65	N3	2	1B	Used Seal Exhaust Oil	48.00	43.00	17.5	1969.2117

39451	USEC	RD-111	1	55	7.4	7.40	N3	4	3B	Used Seal Exhaust Oil	359.00	312.00	165.6	2568.1982
44766	USEC	RD-111	1	55	7.4	7.40	N3	4	4A	Used Seal Exhaust Oil	391.00	344.00	184.6	2596.5462
45301	USEC	RD-111	1	5	0.65	0.65	N3	2	11	Used Seal Exhaust Oil	45.00	40.00	21.6	2612.8626
44822	USEC	RD-111	1	5	0.65	0.65	N3	2	1E	Used Seal Exhaust Oil	44.00	39.00	21.5	2667.4523
43688	USEC	RD-111	1	5	0.65	0.65	N3	2	2D	Used Seal Exhaust Oil	47.00	42.00	28.8	3317.9207
45455	USEC	RD-111	1	5	0.65	0.65	N3	2	1A	Used Seal Exhaust Oil	48.00	43.00	29.6	3330.7809
45102	USEC	RD-111	1	5	0.65	0.65	N3	4	6F	Used Seal Exhaust Oil	45.00	40.00	28.7	3471.7202
44007	USEC	RD-111	1	5	0.65	0.65	N3	2	4A	Used Seal Exhaust Oil	50.00	45.00	33	3548.3319
45112	USEC	RD-111	1	5	0.65	0.65	N3	2	1D	Used Seal Exhaust Oil	43.00	38.00	31.4	3998.2400
44384	USEC	RD-111	1	5	0.65	0.65	N3	2	4D	Used Seal Exhaust Oil	46.00	41.00	34	4012.5261
43697	USEC	RD-111	1	5	0.65	0.65	N3	3	2D	Used Seal Exhaust Oil	44.00	39.00	32.4	4019.7885
44013	USEC	RD-111	1	5	0.65	0.65	N3	3	1D	Used Seal Exhaust Oil	46.00	41.00	36.94	4359.4915
43998	USEC	RD-111	1	5	0.65	0.65	N3	3	1A	Used Seal Exhaust Oil	47.00	42.00	39	4493.0176
44804	USEC	RD-111	1	5	0.65	0.65	N3	2	3E	Used Seal Exhaust Oil	50.00	45.00	43.7	4698.8516
44825	USEC	RD-111	1	5	0.65	0.65	N3	4	6D	Used Seal Exhaust Oil	46.00	41.00	40.1	4732.4204
43994	USEC	RD-111	1	5	0.65	0.65	N3	2	2A	Used Seal Exhaust Oil	46.00	41.00	41.1	4850.4359
45105	USEC	RD-111	1	5	0.65	0.65	N3	4	6B	Used Seal Exhaust Oil	48.00	43.00	44.5	5007.4239
44811	USEC	RD-111	1	5	0.65	0.65	N3	2	4E	Used Seal Exhaust Oil	49.00	44.00	45.6	5014.5847
44378	USEC	RD-111	1	5	0.65	0.65	N3	2	4C	Used Seal Exhaust Oil	56.00	51.00	53.8	5104.2849
43681	USEC	RD-111	1	5	0.65	0.65	N3	2	3B	Used Seal Exhaust Oil	48.00	43.00	47.5	5345.0031
44385	USEC	RD-111	1	5	0.65	0.65	N3	3	5C	Used Seal Exhaust Oil	50.00	45.00	52.6	5655.8259
45306	USEC	RD-111	1	5	0.65	0.65	N3	2	1C	Used Seal Exhaust Oil	49.00	44.00	54	5938.3240
4397 9	USEC	RD-111	1	5	0.65	0.65	N3	2	1H	Used Seal Exhaust Oil	45.00	40.00	49.4	5975.7134
44351	USEC	RD-111	1	5	0.65	0.65	N3	3	5D	Used Seal Exhaust Oil	47.00	42.00	51.9	5979.1696
44824	USEC	RD-111	1	5	0.65	0.65	N3	2	1F	Used Seal Exhaust Oil	45.00	40.00	50.6	6120.8725
45208	USEC	RD-111	1	5	0.65	0.65	N3	2	2C	Used Seal Exhaust Oil	52.00	47.00	60.9	6269.6347
44002	USEC	RD-111	1	5	0.65	0.65	N3	2	2E	Used Seal Exhaust Oil	52.00	47.00	62	6382.8794
44394	USEC	RD-111	1	5	0.65	0.65	N3	3	5E	Used Seal Exhaust Oil	50.00	45.00	60.6	6516.0276
44823	USEC	RD-111	1	5	0.65	0.65	N3	3	4B	Used Seal Exhaust Oil	47.00	42.00	57.7	6647.3620
44395	USEC	RD-111	1	5	0.65	0.65	N3	2	2F	Used Seal Exhaust Oil	52.00	47.00	67.2	6918.2176
45209	USEC	RD-111	1	5	0.65	0.65	N3	2	4F	Used Seal Exhaust Oil	53.00	48.00	69.1	6965.6174
45309	USEC	RD-111	1	5	0.65	0.65	N3	2	1G	Used Seal Exhaust Oil	51.00	46.00	67.2	7068.6137
44023	USEC	RD-111	1	5	0.65	0.65	N3	2	3C	Used Seal Exhaust Oil	49.00	44.00	65.4	7191.9702
44790	USEC	RD-111	1	5	0.65	0.65	N3	3	2F	Used Seal Exhaust Oil	50.00	45.00	68.8	7397.7343
44397	USEC	RD-111	1	5	0.65	0.65	N3	2	2B	Used Seal Exhaust Oil	51.00	46.00	75.8	7973.2279
45104	USEC	RD-111	1	5	0.65	0.65	N3	4	6E	Used Seal Exhaust Oil	49.00	44.00	73.2	8049.7281
43695	USEC	RD-111	1	5	0.65	0.65	N3	4	1A	Used Seal Exhaust Oil	49.00	44.00	73.7	8104.7126
44393	USEC	RD-111	1	5	0.65	0.65	N3	2	3A	Used Seal Exhaust Oil	52.00	47.00	80.7	8308.0381
44383	USEC	RD-111	1	5	0.65	0.65	N3	2	4B	Used Seal Exhaust Oil	49.00	44.00	77.2	8489.6039

44380	USEC	RD-111	1	5	0.65	0.65	N3	3	2E	Used Seal Exhaust Oil	51.00	46.00	82.3	8656.9480
44399	USEC	RD-111	1	5	0.65	0.65	N3	2	3D	Used Seal Exhaust Oil	50.00	45.00	87	9354.6931
44389	USEC	RD-111	1	5 (Overpack)	0.65	0.65	N3	3	3C	Used Seal Exhaust Oil	48.00		30.22	#DIV/0!
54043	USEC	RD-111	1	55	7.4	7.40	N3	2	5A	Used Seal Exhaust Oil (10 buckets)	372.00	325.00	19	282.8740
Total		Sector Sector	92		203.6	The Second Second								
G	eneral HMS	Waste	8		118.4									
Total			8		118.4				and the second					
Sewage	Sludge	RD-114	14	B-25 box	1260									
Total			14		1260									
54086B	USEC	RD-114	1	85M	7.4	7.40	C6	1	4C	Ion Exchange Resin	238	174	0.004	0.1112
54086A	USEC	RD-114	1	55M	7.4	7.40	C6	1	4D	Ion Exchange Resin	328	264	0.25	4.5820
57673B	USEC	RD-114	1	55M	7.4	7.40	N4	2	7A	Ion Exchange Resin	278	198	6.76	165.1978
59403	USEC	RD-114	1	55M	7.4	7.4	C6	4	6B	Ion Exchange Resin	307	243	8.63	171.8412
19940C	USEC	RD-114	1	85M	11	11.00	C6	1	9A	Ion Exchange Resin	340	276	15	262.9693
53003A	USEC	RD-114	1	55M	7.4	7.40	C6	4	6C	Ion Exchange Resin	265	201	12.03	289.5959
53003B	USEC	RD-114	1	55M	7.4	7.40	C6	4	6A	Ion Exchange Resin	256	192	11.577	291.7545
53003C	USEC	RD-114	1	55M	7.4	7.40	C6	4	6D	Ion Exchange Resin	244	180	11.78	316.6617
58834C	USEC	RD-114	1	55M	7.4	7.4	C6	1	11C	Ion Exchange Resin	272	208	15	348.9400
58834A	USEC	RD-114	1	55M	7.4	7.4	C6	4	10A	Ion Exchange Resin	271	207	15	350.6257
58834B	USEC	RD-114	1	55M	7.4	7.4	C6	4	9A	Ion Exchange Resin	267	203	15	357.5346
19940B	USEC	RD-114	1	55M	7.4	7.40	C6	3	9D	Ion Exchange Resin	261	197	15	368.4239
57673C	USEC	RD-114	1	55M	7.4	7.40	N4	2	7B	Ion Exchange Resin	262	178	16.16	439.2828
57673A	USEC	RD-114	1	55M	7.4	7.40	N4	2	7D	Ion Exchange Resin	238	174	100	2780.8243
57673D	USEC	RD-114	1	55M	7.4	7.40	N4	2	7C	Ion Exchange Resin	236	172	100	2813.1595
63595	USEC	RD-114	1	55	7.4	7.4	N1			Ion Exchange Resin	309	245		0.0000
63596	USEC	RD-114	1	55	7.4	7.4	N1			Ion Exchange Resin	260	196		0.0000
63597	USEC	RD-114	1	55	7.4	7.4	N1			Ion Exchange Resin	232	168		0.0000
63612A	USEC	RD-114	1	55	7.4	7.4	N1			Ion Exchange Resin	259	195		0.0000
63612B	USEC	RD-114	1	55	7.4	7.4	N1			Ion Exchange Resin	225	161		0.0000
63612C	USEC	RD-114	1	55	7.4	7.4	N1			Ion Exchange Resin	229	165		0.0000
63613A	USEC	RD-114	1	55	7.4	7.4	N1			Ion Exchange Resin	230	166		0.0000
63613B	USEC	RD-114	1	55	7.4	7.4	N1			Ion Exchange Resin	265	201		0.0000
63613C	USEC	RD-114	1	55	7.4	7.4	N1			Ion Exchange Resin	222	158		0.0000
63634A	USEC	RD-114	1	55	7.4	7.4	N1			Ion Exchange Resin	304	240		0.0000
63634B	USEC	RD-114	1	55	7.4	7.4	N1			Ion Exchange Resin	301	237		0.0000
63634C	USEC	RD-114	1	55	7.4	7.4	N1			Ion Exchange Resin	248	184		0.0000
54087	USEC	RD-114	1	85M	11	11.00	C6	1	7B	Spent resin	360	282	0.003	0.0515
50103	USEC	RD-114	1	55M	7.4	7.40	C6	2	8B	Spent resin	340	276	0.56	9.8175

			المعلم الأرباطي					لمناقلهم						
50104	USEC	RD-114	1	55M	7.4	7.40	C6	2	5B	Spent resin	268	204	1	23.7188
59402	USEC	RD-114	1	55M	7.4	7.4	C6	2	4D	Spent resin	278	214	8.9	201.2329
47039	USEC	RD-114	1	55M	7.4	7.40	C6	4	8D	Spent resin	309	245	10.35	204.4076
22405B	USEC	RD-114	1	85M	11	11.00	C6	1	9B	Spent resin	487	345	15	210.3754
50105	USEC	RD-114	1	55M	7.4	7.40	C6	2	2D	Spent resin	278	214	9.92	224.2956
46300	USEC	RD-114	1	55M	7.4	7.40	C6	2	2A	Spent resin	342	276	15	262.9693
37693	USEC	RD-114	1	55M	7.4	7.40	C6	1	5B	Spent resin	335	271	15	267.8211
45570	USEC	RD-114	1	55M	7.4	7.40	C6	1	4B	Spent resin	298	234	13.53	279.7723
45572	USEC	RD-114	1	55M	7.4	7.40	C6	1	4A	Spent resin	264	200	11.99	290.0761
21838A	USEC	RD-114	1	85M	11	11.00	C6	1	6A	Spent resin	356	214	15	339.1566
50100	USEC	RD-114	1	55M	7.4	7.40	C6	2	2C	Spent resin	267	203	15	357.5346
50099	USEC	RD-114	1	55M	7.4	7.40	C6	2	3C	Spent resin	265	201	15	361.0921
21838B	USEC	RD-114	1	85M	11	11.00	C6	5	12B	Spent resin	340	198	15	366.5632
51337	USEC	RD-114	1	55M	7.4	7.40	C6	2	3D	Spent resin	261	195	15	372.2026
22405A	USEC	RD-114	1	55M	7.4	7.40	C6	3	9B	Spent resin	258	194	15	374.1212
51339	USEC	RD-114	1	55M	7.4	7.40	C6	2	3B	Spent resin	258	194	15	374.1212
21838C	USEC	RD-114	1	55M	7.4	7.40	C6	1	5A	Spent resin	250	186	15	390.2124
51338	USEC	RD-114	1	55M	7.4	7.40	C6	2	3A	Spent resin	251	184	15	394.4539
37695	USEC	RD-114	1	85M	11	11.00	C6	1	12A	Spent resin	395		15	#DIV/0!
Gener	ral Ion Excha	ange Resin	3	55	22.2	and a start of					Contractor of			
Total			51		399								The second	
58816	USEC	RD-114	1	55M	7.4	7.40	C6	1	1C	Liquid and sludge from V-12 tank	482	418	15	173.6352
Total			1		7.4			S Sandara						
52516	USEC	RD-114	1	B-25 box	90	90.00	N4	9	4	Micro and Ogru sludge	4781		327.97	#DIV/0!
22804	USEC	RD-114	1	55M	7.4	7.40	C6	4	7B	Micro Sludge	399	335	3	43.3311
22440	USEC	RD-114	1	55M	7.4	7.40	C6	4	8B	Micro Sludge	375	311	3	46.6749
41459	USEC	RD-114	1	55M	7.4	7.40	C6	2	5A	Micro Sludge	163	99	1	48.8751
25465	USEC	RD-114	1	55M	7.4	7.40	C6	1	2A	Micro Sludge	276	212	- 5	114.1187
41453	USEC	RD-114	1	55M	7.4	7.40	C6	2	6D	Micro Sludge	380	316	7.7	117.9034
44747	USEC	RD-114	1	55M	7.4	7.40	C6	1	2B	Micro Sludge	378	314	11.2	172.5882
44734	USEC	RD-114	1	55M	7.4	7.40	C6	2	8A	Micro Sludge	296	232	9.5	198.1337
41452	USEC	RD-114	1	55M	7.4	7.40	C6	2	1B	Micro Sludge	279	215	9.09	204.5730
53778	USEC	RD-114	1	55M	7.4	7.40	C6	1	11B	Micro Sludge	376	312	14.09	218.5140
46323	USEC	RD-114	1	55M	7.4	7.40	C6	1	1D	Micro Sludge	342	278	12.82	223.1341
25469	USEC	RD-114	1	55M	7.4	7.40	C6	1	2C	Micro Sludge	323	259	13.3	248.4704
43630	USEC	RD-114	1	55M	7.4	7.40	N4	3	8D	Micro Sludge	350	284	15.2	258.9692
46346	USEC	RD-114	1	55M	7.4	7.40	N4	6	5B	Micro Sludge	343	279	19.75	342.5198
22412	USEC	RD-114	1	55M	7.4	7.40	N4	3	7A	Micro Sludge	302	238	17.8	361.8811
25090	USEC	RD-114	1	55M	7.4	7.40	N4	3	7D	Micro Sludge	324	260		375.9247

Ge	eneral Micro	sludge	2 55	55	14.8 489.6									
56583	USEC	RD-114	1	55	7.4	7.40	N4			Micro Sludge	358			#DIV/0
24497	USEC	RD-114	1	55M	7.4	7.40	N4	11	3	Micro Sludge	154	93	228	11862.45
25460	USEC	RD-114	1	55M	7.4	7.40	N4	6	6C	Micro Sludge	184	123	215.6	8481.37
41342	USEC	RD-114	1	55M	7.4	7.40	N4	7	7	Micro Sludge	304	240	350	7056.34
22414	USEC	RD-114	1	55M	7.4	7.40	N4	2	2	Micro Sludge	300	236	321.9	6599.81
44750	USEC	RD-114	1	55M	7.4	7.40	N4	7	4	Micro Sludge	340	276	350	6135.94
41458	USEC	RD-114	1	55M	7.4	7.40	N4	7	1	Micro Sludge	346	282	350	6005.39
13822	USEC	RD-114	1	55M	7.4	7.40	N4	8	2B	Micro Sludge	208	147	169.26	5571.3
41339	USEC	RD-114	1	55M	7.4	7.40	C6	2	5D	Micro Sludge	282	218	155.94	3461.1
53787	USEC	RD-114	1	55M	7.4	7.40	N4	6	18	Micro Sludge	328	267	183.25	3320.8
57206	USEC	RD-114	1	55M	7.4	7.40	N4	1	8	Micro Sludge	425	365	249.03	3301.2
41454	USEC	RD-114	1	55M	7.4	7.40	C6	2	7C	Micro Sludge	322	258	166.58	3124.1
53013	USEC	RD-114	1	55M	7.4	7.40	N4	1	7	Micro Sludge	376	315	196.43	3017.3
18759	USEC	RD-114	1	55M	7.4	7.40	N4	2	5B	Micro Sludge	331	267	153	2772.7
56580	USEC	RD-114	1	55M	7.4	7.40	N4	3	3	Micro Sludge	351	291	160.365	2666.4
18756	USEC	RD-114	1	55M	7.4	7.40	N4	2	5A	Micro Sludge	284	220	119.4	2626.0
46341	USEC	RD-114	1	55M	7.4	7.40	N4	6	7B	Micro Sludge	264	198	104.38	2550.7
53793	USEC	RD-114	1	55M	7.4	7.40	N4	3	6B	Micro Sludge	352	292	142.67	2364.1
46638	USEC	RD-114	1	55M	7.4	7.40	N4	6	2B	Micro Sludge	338	270	127.21	2279.7
53001	USEC	RD-114	1	55M	7.4	7.40	N4	6	1A	Micro Sludge	368	308	121.17	1903.5
25455	USEC	RD-114	1	55M	7.4	7.40	N4	8	1B	Micro Sludge	181	120	46.45	1872.9
6581	USEC	RD-114	1	55M	7.4	7.40	N4	8	7	Micro Sludge	355	293	106.18	1753.4
46331	USEC	RD-114	1	55M	7.4	7.40	N4	8	1A	Micro Sludge	315	249	86.49	1680.6
52012	USEC	RD-114	1	55	7.4	7.40	N4	9	1B	Micro Sludge	361	297	80.01	1303.4
46318	USEC	RD-114	1	55M	7.4	7.40	N4	3	7B	Micro Sludge	302	235	62.7	1290.9
18991	USEC	RD-114	1	55M	7.4	7.40	N4	2	5C	Micro Sludge	222	158	38.5	1179.0
52368	USEC	RD-114	1	55M	7.4	7.40	N4	6	2D	Micro Sludge	318	257	52.82	994.4
18989	USEC	RD-114	1	55M	7.4	7.40	N4	3	7C	Micro Sludge	250	186	37.5	975.5
25456	USEC	RD-114	1	55M	7.4	7.40	N4	6	6B	Micro Sludge	170	109	21.2	941.0
38190	USEC	RD-114	1	55M	7.4	7.40	N4	7	6	Micro Sludge	161	97	11	548.7
46327	USEC	RD-114	1	55M	7.4	7.40	N4	6	2C	Micro Sludge	274	209	22.45	519.7
42639	USEC	RD-114 RD-114	1	55M	7.4	7.40	C6	2	6C	Micro Sludge	207	143	15	507.5
25081	USEC	RD-114	1	55M	7.4	7.40	N4	7	2	Micro Sludge	324	260	27	502.4
38118	USEC	RD-114	1	55M	7.4	7.40	N4 N4	7	9	Micro Sludge	144	80	8	483.8
22411 25463	USEC	RD-114 RD-114	1	55IVI	7.4	7.40	N4 N4	6	5 5A	Micro Sludge	311	200	23.19	454.2
38191	USEC USEC	RD-114 RD-114	1	55M	7.4	7.40	N4	3	2	Micro Sludge Micro Sludge	172 324	108 260	9	403.2

52985	USEC	RD-114	1	55M	7.4	7.40	C6	2	1D	Ogru sludge, gloves, absorbent	523	459	0.1065	1.1227
52984	USEC	RD-114	1	85M	11	11.00	C6	2	10A	Ogru sludge, gloves, absorbent	553	411	0.222	2.6136
46629	USEC	RD-114	1	55M	7.4	7.40	C6	2	2B	Oil and grease sludge	473	409	0.06	0.7098
49419	USEC	RD-114	1	55M	7.4	7.40	C6	1	8A	Oil and grease sludge	576	512	0.49	4.6307
49403	USEC	RD-114	1	55M	7.4	7.40	C6	4	9D	Oil and grease sludge	483	419	1	11.5481
53779	USEC	RD-114	1	55M	7.4	7.40	C6	2	90	Oil and grease sludge	466	402	6.2173	74.8339
52982	USEC	RD-114	1	85M	11	11.00	N4	3	6A	Oil and grease sludge	588	446	15.856	172.0210
55070	USEC	RD-114	1	55M	7.4	7.40	C6	4	10C	Oil and grease sludge	303	239	9.09	184.0301
55970	USEC	RD-114	1	55M	7.4	7.40	C6	4	8A	Oil and grease sludge	90	26	1	186.1013
53764	USEC	RD-114	1	55M	7.4	7.40	C6	2	1C	Oil and grease sludge	325	261	13.84	256.5774
53780	USEC	RD-114	1	55M	7.4	7.40	N4	3	8B	Oil and grease sludge	501	437	32.967	365.0235
46324	USEC	RD-114	1	55M	7.4	7.40	N4	6	6A	Oil and grease sludge	362	298	27.472	446.0636
55045	USEC	RD-114	1	55M	7.4	7.40	N4	3	8A	Oil and grease sludge	355	291	46.058	765.8344
50086	USEC	RD-114	1	55M	7.4	7.40	N4	3	8C	Oil and grease sludge	420	356	58.9	800.5493
62255	USEC	RD-114	1	55M	7.4	7.40	N4	11	2B	Oil and grease sludge	418	354	70.91	969.2304
59905	USEC	RD-114	1	55M	7.4	7.4	N4	2	6A	Oil and grease sludge	412	348	185.609	2580.7301
49417	USEC	RD-114	1	85M	11	11.00	N4	5	2	Oil and grease sludge	530	388	250.66	3125.9074
50084	USEC	RD-114	1	55M	7.4	7.40	N4	7	3	Oil and grease sludge	481	417	350	4061.2039
64071	USEC	RD-114	1	55	7.4	7.4	N1			Oil and grease sludge	520			#DIV/0!
64225	USEC	RD-114	1	55	7.4	7.4	N1			Oil and grease sludge	514			#DIV/0!
42660	USEC	RD-114	1	55M	7.4	7.40	C6	4	9C	Press sludge, gloves, rags	292	228	2	42.4442
										Sample jars of micro & heavy metal				
49794	USEC	RD-114	1	55M	7.4	7.40	C6	2	8D	sludge	346	282	13.7	235.0684
										Sample jars of micro & heavy metal				
49795	USEC	RD-114	1	55M	7.4	7.40	C6	2	8C	sludge	339	275	13.4	235.7735
										Sample jars of micro & heavy metal				
49796	USEC	RD-114	1	55M	7.4	7.40	C6	4	5C	sludge	126	62	15	1170.6373
47095	USEC	RD-114	1	55M	7.4	7.40	N4	8	8	sludge, gloves, cheese cloth	370	306	227.15	3591.8163
49434	USEC	RD-114	1	55M	7.4	7.40	C6	4	9B	Sludge, paper, gloves, cheesecloth	448	384	2	25.2012
Total			26	Hand States	203.2				A CARLEN					
X-710 Waste	USEC		5	5	3.25			C. S. S. S. S.						
Total					3.25									
65322	USEC		1	55	7.4	7.4	\$3-3			Gunk			37.81	#DIV/0!
65317	USEC		1	55	7.4	7.4	\$3-3			Gunk	101.89	37.89	51.95	6634.1266
65318	USEC		1	55	7.4	7.4	\$3-3			Gunk	111.05	47.05	51.11	5256.1658
65321	USEC		1	55	7.4	7.4	\$3-3			Gunk			45.93	#DIV/0!
65312	USEC		1	55	7.4	7.4	\$3-3			Gunk	263.81	199.81	86.7	2099.5426
65311	USEC		1	55	7.4	7.4	\$3-3			Gunk	147.39	83.39	41.58	2412.6444

The second second second second second second	a she ta she a she a	married and the state	6		44.4		Carlo Section		Contraction of the				And	an the state state	
Small Diam	eter Contain	ers Remaining to													
be batch	ed or remain	ing in the field	160		48		ANDER								
X-70	0 Tank Wast	te (Liquid)	39	275	1053										
×	-705 Tunnel	Waste	1	55	7.4							167	116.3	111	4618.1291
					Items that	have appr	oved profile	es and will b	e shipped pi	rior to 6/24/11					
				Items that	he profiles hav	ve been su	bmitted to t	he disposal	facility and v	vill be projected to be	shipped				
					Items n	ot shaded	will not be s	hipped and	will remain a	after 6/27/11					
					Items curren	tly NOT in	XT-847 or p	projected to	be generate	d prior to 6/27/11					
					Small Diamete	er Containe	ers Remaini	ng to be bat	ched or rem	aining in the field					
						Currentl	ly located in	the X-326 I	RCRA storag	le					

Cost Estimate

This proposal includes data that shall not be disclosed outside USEC and shall not be duplicated, used, or disclosed – in whole or in part – for any purpose other than to evaluate this proposal.

this proposal.	USEC	USEC
	DAW	Floor Sweepings
ACTIVITY ID	COST	COST
WASTE CHARACTERIZATION USEC-		
Owned X-847 (Sampling, NDA, Profile		
Development)	\$114,473.94	\$125,421.66
ENCLOSURE - APPLIES TO ALL WASTE IN 847	\$165,652.64	
MGMT ASSESSMENT FOR ENCLOSURE	\$144,643.68	
NCSE DEVELOPMENT	\$21,046.56	
LEVEL 1 READINESS ASSESSMENT	\$159,043.68	
WORK PACKAGE DEVELOPMENT	\$66,979.68	
DRAFT & ISSUE OPERATING PROCEDURE(S)	\$42,232.56	
BRIEF & TRAIN ON OPERATIONS	\$96,295.20	
WASTE OPERATIONS FOR DISPOSAL	\$147,238.90	\$111,068.89
LOAD FOR SHIPMENT	\$11,167.68	\$10,368.77
TRANSPORTATION	\$37,500.00	\$15,000.00
DISPOSAL	\$80,594.21	\$39,007.56
Operational Surveillance (25% of 3 FTEs at 2 yrs)		
Total Cost By Waste Stream	\$1,086,868.73	\$300,866.88

G & A

Sub-total Fee (9%) FBP Total DOE est. for Oversight and Support (3.3%) Facility Administrative Charge (3%) -(DOE on subtotal, not Fee) (Invoiced as applicable)

TOTAL

USEC Oily 3M	USEC Fire Debris	USEC Dust/Rags	USEC Scrap Metal	USEC Alumina
COST	COST	COST	COST	COST
\$57,858.24	\$183,518.64	\$19,135.80	\$19,135.80	\$383,812.08
\$10,304.87	\$171,015.19	\$5,910.34	\$8,498.12	\$510,958.18
\$10,304.87 \$2,214.46	\$171,015.19 \$18,595.78	\$5,910.34 \$599.14	\$8,498.12 \$3,351.38	\$510,958.18 \$17,867.42
\$2,214.46	\$18,595.78	\$599.14	\$3,351.38	\$17,867.42

USEC	USEC	USEC	USEC	USEC
Sample Returns	Sources	Absorbal	Black Beauty	Concrete
COST	COST	COST	COST	COST
\$15,267.48	\$11,654.40	\$7,108.45	\$128,086.92	\$16,611.14
	\$13,755.36 \$6,273.48	\$3,844.61 \$381.11	\$35,251.90 \$3,646.32	\$13,728.25 \$3,072.94
	\$6,275.48 \$7,500.00	\$375.00 \$1,167.00	\$3,646.52 \$7,500.00 \$17,801.10	\$7,120.44
\$15,267.48	\$39,183.24	\$12,876.17	\$192,286.24	\$40,532.76

USEC	USEC	USEC	USEC	USEC
Soils	Welding Slag	Used Oil	HM Sludge	Resin
COST	COST	COST	COST	COST
\$10,313.57	\$10,294.02	\$189,859.28	\$62,980.94	\$105,755.28
\$9,160.29	\$5,164.95	\$284,217.66	\$19,840.18	\$58,412.47
\$1,732.12	\$883.37	\$31,093.54	\$6,928.46	\$4,680.24
\$8,250.00	\$750.00	\$112,500.00	\$52,500.00	\$15,000.00
\$8,900.55	\$855.91	\$789,680.20	\$8,169.00	\$29,094.87
\$38,356.52	\$17,948.25	\$1,407,350.67	\$150,418.58	\$212,942.86

USEC	USEC	USEC	USEC
V-12 Tank	Microsludge	Oil & Grease	Gunk
COST	COST	COST	COST
\$11,897.95	\$100,518.24	\$47,720.88	\$67,363.44
\$3,844.61	\$148,496.66	\$24,550.48	\$27,037.08
\$383.08	\$8,075.23	\$3,646.32	\$3,646.32
	\$15,000.00	\$7,500.00	\$7,500.00
\$750.00	<i><i>w</i></i>i<i>c</i>00000		
\$750.00 \$1,167.00	\$71,817.51	\$19,581.21	\$16,020.99
		\$19,581.21	\$16,020.99

USEC	USEC	USEC	DOE
Oil To-Be Collected	X-700 Aqueous Waste	L-Cage Drum	X-700 Sludge/Solids
COST	COST	COST	COST
Moved out of the estimate	\$16,154.75	\$6,990.96	Moved out of estimate
USEC to self perform oil is not contaminated	\$2,805.16		DOE-owned
	\$505.68 \$15,332.71	\$5,237.80	
	\$4,676.50	\$406.73	
	\$30,000.00	\$750.00	
	\$184,183.35	\$3,555.65	
\$0.00	\$253,658.15	\$16,941.13	\$0.00

U	C	F	1	٦
U	0	L	L	-

	TOTAL	
	TOTAL	
	COST	
\$	1,711,933.87	
\$	165,652.64	
\$	144,643.68	
\$	21,046.56	
\$	159,043.68	
\$	69,784.84	
\$	42,232.56	
\$	96,800.88	
\$	1,632,869.48	
\$	143,690.36	
\$	493,500.00	
\$	1,798,281.99	
\$	170,732.20	
\$	6,650,212.75	
<u>\$</u>	127,684.09	G & A
\$	6,777,896.83	Sub-total
\$	610,010.72	Fee (9%)
\$	7,387,907.55	FBP Total
\$	223,670.60	
\$	203,336.91	Facility Administrative Charge (3%) -As Applicable

\$

7,814,915.05 TOTAL

USEC Waste Profiles

A. GENERATOR AND WASTE STREAM INFORMATION

GENERAL: Complete this form for one waste stream. Contact EnergySolutions at (801) 532-1330 if you have any questions while completing this form. Please indicate "N/A" if a category does not apply.

1. GENERATOR INFORMATION

Generator Name:	USEC/ Portsmouth	EPA ID #: <u>OHD987054723</u>	
Generator Contact	Elizabeth D. Lamerson	Title: Environmental Engineer	
Mailing Address:	P.O. Box 628 M/S 9030		
	Piketon, OH 45661	Utah Site Access Permit #: 0111000043	
Phone	.740-897-2812 Fax:740-897-2143	Email: lamersoned@ports.usec.com	
Contractor Name:	N/A	Location of Waste (City, State): Portsmouth	
Name & Title of P	erson Completing Form: Elizabeth Lamerson/Env. E	ng. Phone: 740-897-2812 Email: lamersoned@ports.usec.com	
2. WASTE ST	TREAM INFORMATION		
Waste Stream I	D: 0691A-07 Waste Stream Name: Vamish Chi	inksState of Origin: OH	
Revisio	n: 0 Date: 04/20/2011 Volum	e (ft ³): TBD Delivery Date: Ongoing	
CHIROL (DDDO			

CHECK APPROPRIATE BOXES BELOW. Please verify the required forms requested below are completed and submitted with the Radioactive Waste Profile Record.

HAZARDOUS WASTE: Is the waste classified as hazardous waste as defined by 40 CFR 261?

- N If NO, complete and attach the "Low-Level Radioactive Waste Certification Attachment".
- Y I If YES, complete and attach the "Hazardous Waste Certification Attachment" and check applicable box below. Has the waste been treated to meet applicable treatment standards per 40 CFR 268? Y N N Is the waste to be treated by EnergySolutions? Y N N

LOW-LEVEL RADIOACTIVE WASTE: Is the radioactive waste defined as Low-Level Radioactive Waste in accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985 or in DOE Order 435.1?

- Y If YES, a current copy of a LLRW Compact Export letter authorizing export must be submitted if applicable. This authorization is applicable for non-DOE LLRW (i.e., Mixed Waste, NORM/NARM, 11e.(2) material, and waste from DOE do not require a Compact Export Letter).
- N If NO, check appropriate box: NORM/NARM 11e.(2) Byproduct Material D Other:

SPECIAL NUCLEAR MATERIAL: Does the waste stream contain material with uranium enriched in U-235 or any of the following radionuclides: U-233, Pu-236, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, Pu-243, or Pu-244?

Y X N I If Yes, complete and attach the "SNM Exemption Certification" form (EC-0230-SNM). Supporting statements, analytical results, and documentation must be included with the submittal.

PCB WASTE: Does the waste contain Polychlorinated Biphenyls (PCB) that are regulated for disposal per 40 CFR 761?

Y N N If Yes, complete and attach the "PCB Waste Certification" form (EC-98279).

ASBESTOS: Does the waste contain Asbestos Containing Material?

Y N N If Yes, Asbestos Containing Material must be managed in accordance with applicable federal regulations. Provide a detailed description of the waste containing asbestos in Section B.5 of the waste profile.

CL-WM-PR-001 F2 (EC-0230) Revision 7

RADIOACTIVE WASTE PROFILE RECORD

B. WASTE PHYSICAL PROPERTIES & PACKAGE INFORMATION

1. GENERAL CHARACTERISTICS

Does the waste contain free liquids? Y [_ N ⊠	If Yes, what is the percent	t of free	liquid by waste	volume?	%
		If Yes, is th	he liquid	d aqueous (wate	er-based)?Y 🗌	N 🗌
Does the waste contain absorbent? Y	א 🗖	Density range of the waste	e: <u>0.47</u>	<u>– 0,9</u> g/cc 🛛	16/ft³ 🔲	
List percentage of waste type by volume:	Soil%	Concrete & Metal	_% 1	DAW <u>5</u> %	Resins <u>95</u> %	Sludge%
Other constituents and percentage by volu	1me? <u>N/A</u>					

2. MATERIAL SIZE

Gradation of Material: Indicate the percentage of waste material that would <u>pass through</u> the following grid sizes. For example, 95% of the material would pass through a 12" square, 90% passes through a 4" square, 80% passes through a 1" square, etc.

12"<u>95</u>% 4"<u>50</u>% 1"<u>20</u>% 1/4"<u>2</u>% 1/40"<u><1</u>% 1/200"<u><1</u>%

Does the waste stream contain oversize debris (i.e., no dimension < 10 inches and any dimension > 12 feet)? Y 🗌 N 🖾 If Yes, include a detailed description (i.e., weight, size, drawings, etc.) of the oversize debris in the narrative of Section B.5.

3. MOISTURE CONTENT

For soil or soil-like materials, please use Std. Proctor Method ASTM D-698 to determine the optimum moisture content. The waste material must not exceed 3 percentage points above optimum moisture upon arrival at EnergySolutions' disposal facility unless approved by EnergySolutions.

Optimum Moisture Content: N/A % at Maximum Dry Density (lb/ft3): N/A

Average Moisture Content: N/A % Moisture Content Range: N/A% - N/A%

4. WASTE SHIPPING & PACKAGING

Transportation Mode: 🛛 Highway 🖾 Rail

Shipping & Container Packages:	\square Drums* (≤ 85 gallons)	Boxes ($\leq 100 \text{ ft}^3$)	Soft-Sided Bags	s (≤ 10 yd³)
(Check all that apply)				
	Intermodal	🛛 Sealand	Gondola**	Box Car

Other[.]

*Palletized drums are preferred by the disposal site. Please specify in the "Other" field if drums will not be palletized.

**Dimensions of gondola railcars must be between 48 to 65 feet in length and 8.5 to 12.5 feet in height as measured from the top of the rail to the top of the railcar unless approved by EnergySolutions.

5. NARRATIVE DESCRIPTION AND HISTORY OF WASTE

Please submit a narrative description and history of the waste as an attachment to the Radioactive Waste Profile Record. This attachment should include the following:

- Process that generated the waste
- Waste material physical composition and characteristics
- Radiological and chemical characterization method
- Basis for determining manifested radionuclide concentrations
- Description and amounts of absorbents, if applicable
- · Basis of non-hazardous or hazardous waste determinations
- Treatment processes, if applicable
- Product information or Material Safety Data Sheets associated with the waste as applicable
- Information requested in other sections of this form

Waste Stream ID: 0691A-07 Revision: 0

Date of Revision: 04/20/2011

C. RADIOLOGICAL INFORMATION

Obtain sufficient samples to adequately determine a range and weighted average of activity in the waste. Attach the gamma spectroscopy or radiochemistry data supporting the radionuclide information listed below.

- 1. Does the waste material contain accessible surfaces with contact dose rates greater than 500 mR/hr? Y 🗌 N 🔀
- 2. Does the waste material contain any of the following isotopes: Aluminum-26, Berkelium-247, Calcium-41, Californium-250, Chlorine-36, Rhenium-187, Terbium-157, or Terbium-158? Y NX
- 3. Please list the following information for each isotope associated with the waste. Provide an explanation in the narrative description of Section B.5 if the waste contains localized "hot spots" or elevated concentrations that significantly exceed the upper concentration range. If additional space is needed, provide an Attachment C.3 to this profile record formatted as below.

Isotope	Manifested Upper Concentration (pCi/g)	Weighted Avg. per Container (pCi/g)	Isotope	Manifested Upper Concentration (pCi/g)	Weighted Avg. per Container (pCi/g)
Tc-99	501	105.802			
Pu-239/240	0.04056	0.04056			
<u>Th-232</u>	300	10			
<u>Th-234</u>	0.3113	0.18368			
Fotal U	6:9405	0.55365 D 5	2/11		
U-233/234	38000	5000			
<u>U-238</u>	16500	2000			
U-235	1900	100			
Ac-227	100	10			
<u>Cs-137</u>	100	10			
Np-237	300	10		·	
Pa-231	100	10			<u> </u>
Ra-226	300	10			
Th-228	300	10			
<u>Th-229</u>	100	10			
······································					
		······································			
		·····			······································

0691A-07 Rev 0

......

pH (Liquid only): N/A

RADIOACTIVE WASTE PROFILE RECORD

HAZARDOUS WASTE CERTIFICATION ATTACHMENT

This form is required only if the checkbox for Hazardous Waste on page one has been checked YES. Otherwise, complete the Low-Level Radioactive Waste Certification Attachment instead of this attachment. EnergySolutions may waive the chemical laboratory analyses if the material is not amenable to chemical sampling and analysis (e.g., debris items including metal pieces, concrete, plastic, etc.). Justification for waiving the chemical analyses must be provided in Section B.5.

D. MINIMUM REQUIRED CHEMICAL ANALYSIS

The following parameters must be analyzed by a Utah or NELAC certified laboratory. Typical SW-846 analytical methods have been listed. Other approved methods are acceptable. Attach the most recent or applicable chemical analytical results representing the waste.

1. GENERAL CHEMICAL PARAMETERS

SW-846 Analytical Methods

Method 9045 Please provide the range of the pH analyses performed.

PFLT: Pass Pass / Fail Method 9095 Not applicable for liquid radioactive waste streams.

Analyze the waste for volatile or semi-volatile constituents (Methods 8260 & 8270), and attach the data.

Any distinguishing color or odor? Y 🛛 N 🗌 If Yes, color: ____; odor: <u>Varnish odor</u>

2. HAZARDOUS WASTE CODES AND TREATMENT STANDARDS (40 CFR 268)

List all hazardous waste codes and treatment standards. Include hazardous waste codes that have been removed through treatment and indicate "Former" in the second column. Worst-case concentrations only need to be provided for concentration based treatment standards. If additional space is needed, provide an Attachment D.2 to this profile record formatted as below. Include a description of hazardous waste determinations and any variances, exclusions, etc. in the narrative requested in Section B.5.

EPA HW Codes	Description, Constituent of Concern, or Subcategory	Treatment Standard (mg/kg unless noted as mg/L TCLP or Technology Code)	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)
N/A	<u>N/A</u>	N/A	N/A
·			
<u></u>	· ·····		
		<u> </u>	
			<u> </u>
· ····			

	· ····································		

Hazardous Waste Certification Attachment

CL-WM-PR-001 F2 (EC-0230) Revision 7

3. UNDERYLYING HAZARDOUS CONSTITUENTS (40 CFR 268.48)

List all underlying hazardous constituents (UHCs) and treatment standards. Include UHCs that have been removed through treatment. Worst-case concentrations only need to be provided for concentration based treatment standards. If additional space is needed, provide an Attachment D.3 to this profile record formatted as below.

Underlying Hazardous Constituents	Treatment Standard (mg/kg unless noted as mg/L TCLP or Technology Code)	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)
N/A	N/A	N/A
	·····	

D. 4. OTHER CHEMICAL CONSTITUENTS

List any other chemical constituents of concern (e.g., PCBs, chelating agents, etc.) and worst-case concentrations. If additional space is needed, provide an Attachment D.4 to this profile record formatted as below.

g unless noted ng/L TCLP)
N/A
~

5. LABORATORY CERTIFICATION INFORMATION

UTAH or NELAC CERTIFIED

The Utah or NELAC certified laboratory holds a current certification for the applicable chemical test methods insofar as such official certifications are given. Please provide a copy of the laboratory's current certification letter for each parameter analyzed and each method used for chemical analyses required by this form.

OTHER LABORATORY CERTIFICATION (Describe below)

6. CERTIFICATION

I certify that sample results representative of the waste described in this profile were or shall be obtained using state- and EPAapproved analytical methods. I also certify that where necessary representative samples were or shall be provided to EnergySolutions and to qualified laboratories for the analytical results reported herein. I further certify that the waste described in this record is not prohibited from land disposal in 40 CFR 268 (unless prior arrangements are made for treatment at EnergySolutions) and that all applicable treatment standards are clearly indicated on this form. I also certify that the information provided on this form is complete, true, and correct and is accurately supported and documented by any laboratory testing as required by EnergySolutions. I certify that the results of any said testing have been submitted to EnergySolutions. I certify that the waste does not cortain any prohibited items listed in EnergySolutions' Radioactive Material License or RCRA Permit.

Date: Generator's Signature:

Hazardous Waste Certification Attachment

Generator Name: USEC/Por	rtsmouth	Waste Stream ID:	<u>0691A-07</u>
Revision #: 0	Revision Date:		

VARNISH CHUNKS WASTE STREAM

The Varnish Chunks waste stream originates in the Portsmouth Gaseous Diffusion Plant (PORTS) X-720 Motor Shop. Periodically electric motor coils would fail and need to be replaced. The old varnish insulation was burned off and new insulation was applied by dipping the coil in a tank of varnish. This process on plant site has been discontinued. The varnish that remained in the dip tank harden and was broken up and placed into 55 gallon drums.

The waste stream also contains small amounts of Dry Active Waste (DAW) that was used in cleanup, sampling, and operation of the process.

The varnish containers were sampled and analyzed for the purpose of characterization and this profile. The results were found to be non-hazardous.

The waste will not contain free liquids. Loose absorbent material may be added to the waste to mitigate the risk of free liquids >1% in waste containers that have the potential for free liquids/condensate.

Radiological and Chemical Characterization Requirements and Methods:

The primary objective of the characterization sampling design was to achieve high confidence that at least a high percentage of the items in population are acceptable. A hypergeometric model with a 95%/90% confidence interval was used to characterize this waste stream. The sample size was calculated using a similar method to Bowen and Bennett 1988 (*Statistical Methods for Nuclear Material Management*, NUREG/CR-4604, US Nuclear Regulatory Commission, Washington, DC). Sixteen random samples were taken to meet the 95/90 confidence interval.

Chemical Characterization

Ohio Administrative Code (OAC) Section 3745-51 *et seq* and Title 40 Code of Federal Regulations (CFR) § 261 *et seq* clearly define the process for identifying a waste based on characteristics. OAC 3745-51-20 (40 CFR § 261.24) states:

"A waste is a hazardous waste if it exhibits any of the characteristics identified in rules 3745-51-20 (40 CFR § 261.20) to 3745-51-24 (40 CFR § 261.24) of the Administrative Code."

To determine the regulatory status of this waste stream the following requirements were met:

- 1. Collect a representative sample.
- 2. Analyze the sample using TCLP Method 1311 in "Test Methods for the Evaluation of Solid Waste, Physical/Chemical Methods," EPA Publication SW-846.
- 3. Compare the results of the analysis to OAC 3745-51-24, Table 1 (40 CFR § 261.24, Table 1).
- 4. If the contaminate is statistically (as defined by Chapter Nine of SW-846) at or above the regulatory limit outlined in Table 1 of OAC 3745-51-24 (40 CFR § 261.24), then the waste is characteristically hazardous for that contaminant and must be managed as such.

0691A-07 Rev 0

Also, waste may be characteristically hazardous if it meets the criteria outlined in OAC 3745-51-21 (40 CFR § 261.21) to OAC 3745-51-23 (40 CFR § 261.23). OAC 3745-51-30 (40 CFR § 261.30) clearly define the process for identifying a waste based on a listing. OAC 3745-51-30 (A) [40 CFR § 261.30 (a)] states:

"A waste is a hazardous waste if it is listed as such in rules 3745-51-30 (§ 261.30) to 3745-51-35 (§ 261.35) of the Administrative Code."

To determine the regulatory status of this waste stream for listed hazardous waste, the following requirements were met:

- 1. Identify the generating process or identify the waste as derived from an already listed hazardous waste.
- 2. Identify the constituents, which may cause the waste to be classified as hazardous.
- 3. Compare the waste descriptions provided in OAC 3745-51-31 (40 CFR § 261.31) to OAC 3745-51-33 (40 CFR § 261.33).
- 4. If the process and constituents are listed in OAC 3745-51-31 (40 CFR § 261.31 to OAC 3745-51-33 (40 CFR § 261.33), then the waste is listed as hazardous and is managed as such.

This waste stream is not regulated for disposal as a RCRA hazardous waste as defined in 40 CFR 261. This waste is not regulated as TSCA (PCB) waste as defined in 40 CFR 761.

Radiological Characterization

Radiological characterization is performed through a combination of laboratory data and a Non-Destructive Analysis (NDA) method. Sixteen random samples of the total population were analyzed to provide the radiological characterization data to adequately determine a range and concentration of activity in the waste.

Basis for Determining Manifested Radionuclide Concentrations

Radiological characterization of outgoing shipments is performed through a combination of laboratory data and a Non-Destructive Analysis (NDA) method. The radiological laboratory results were used to establish scaling factors which are then synchronized with the NDA results and divided by net weight in the container to develop manifested nuclide concentrations. The SNM is typically in the form of dry non-visible uranium dust made up of oxide compounds, primarily UO_2F_2 . The SNM is essentially distributed homogenously throughout the waste.

Typically the waste will be packaged for transportation and disposal in drums or metal boxes. Optional packages include soft-sided bags, intermodal containers and sea-land containers. Notification will be provided prior to shipping if any optional containers are to be utilized.

0691A-07 Rev 0

SPECIAL NUCLEAR MATERIAL EXEMPTION CERTIFICATION

The Special Nuclear Material Exemption Certification form must be completed and signed by each generator certifying to the following conditions. Please attach this form and all required information to the Radioactive Waste Profile Record (EC-0230). A completed and signed copy of this form must also accompany each waste manifest.

Waste Stream ID: 0691A-07 Manifest No. 0691A-07

1. Check applicable category below for the waste stream:

1	Uranium Enrichment Percent	Weight Percent of Chemicals in Condition 2c	Weight Percent of Materials in Condition 2d	U-235 Concentration (pCi/g)	Measurement Uncertainty* (pCi/g)
\boxtimes	< 10 %	≤ 20 %	≤ 1 %	≤ 1,900	≤ 285
	Unlimited	≤ 20 %	≤1 %	≤ 1,190	≤ 179
	Unlimited	Sum of both \leq 45 %	of waste by weight	≤ 680	≤ 102
	Unlimited	Unlimited	Unlimited	≤ 26	≤ 10
	Not Applicable	e - Enriched U-235 is	not present in the wast	te.	

* A concentration value is used for the maximum measurement uncertainty limit rather than a percentage value to allow greater flexibility for generators with waste having very low SNM concentrations.

2. Certify to the following requirements by checking each box:

- a. Concentrations of SNM in individual waste containers do not exceed the applicable values listed in the above table and SNM isotope concentrations listed in Table 1.
- b. The SNM is homogeneously distributed throughout the waste or the SNM concentrations in any contiguous mass of 600 kilograms (1,323 lbs) do not exceed on average the specified limits. (Based on process knowledge or testing).
- c. Except as allowed by Condition 1, the waste does not contain "pure forms" of chemicals containing carbon, fluorine, magnesium, or bismuth in bulk quantities (e.g., a pallet of drums, a B-25 box). By "pure forms," it is meant that mixtures of the above elements such as magnesium oxide, magnesium carbonate, magnesium fluoride, bismuth oxide, etc. do not contain other elements. (Based on process knowledge or testing).
- d. Except as allowed by Condition 1, the waste does not contain total quantities of beryllium, hydrogenous material enriched in deuterium, or graphite above one percent of the total weight of the waste. (Based on process knowledge, physical observations, or testing).
- e. Waste packages do not contain highly soluble forms of uranium greater than 350 grams of uranium-235 or 200 grams of uranium-233. If the waste contains mixtures of U-233 and U-235, the waste meets the sum of the fractions rule. Highly soluble forms of uranium include, but are not limited to: uranium sulfate, uranyl acetate, uranyl chloride, uranyl formate, uranyl fluoride, uranyl nitrate, uranyl potassium carbonate, and uranyl sulfate. (Based on process knowledge or testing).
- f. For containers of <u>liquid waste</u> with more than 600 kilograms of waste, the total activity (pCi) of SNM in the manifested container does not exceed the SNM concentration in the above table or Table 1 times 600 kilograms of waste (based on process knowledge or testing). For example, the maximum activity of Pu-239 in any manifested container of liquid waste is 6.0 mCi (6.0E+09 pCi) as shown below:

$$10,000 \frac{pCi}{g} \times 600,000 g = 6.0 \text{X} 10^9 \text{ pCi} = 6.0 \text{ mCi Pu} - 239$$

Page 1 of 2

SPECIAL NUCLEAR MATERIAL EXEMPTION CERTIFICATION

Table 1. Maximum concentrations of SNM in individual waste containers (refer to above table for U-235 limits).

Radionuclide	Maximum Concentration (pCi/g)	Measurement Uncertainty (pCi/g)	Radionuclide	Maximum Concentration (pCi/g)	Measurement Uncertainty (pCi/g)
U-233	75,000	11,250	Pu-241	350,000	50,000
Pu-236	500	75	Pu-242	10,000	1,500
Pu-238	10,000	1,500	Pu-243	500	75
Pu-239	10,000	1,500	Pu-244	500	75
Pu-240	10.000	1.500			

- 3. Indicate that the following information is attached to the Radioactive Waste Profile Record by checking each box. (Note: Only the two-page Special Nuclear Material Exemption Certification form needs to be included with each manifest).
 - a. Provide a description of how the waste was generated, list the physical forms in the waste, and identify the uranium chemical composition.
 - b. Provide a general description of how the waste was characterized (including the volumetric extent of the waste, and the number, location, type, and results of any analytical testing), the range of SNM concentrations, and the analytical results with error values used to develop the concentration ranges.
 - c. Describe the process by which the waste was generated showing that the spatial distribution of SNM must be uniform, or other information supporting spatial distribution.
 - d. Describe the methods to be used to determine the concentrations on the manifests. These methods could include direct measurement and the use of scaling factors. Describe the uncertainty associated with sampling and testing used to obtain the manifest concentrations.
- 4. Generator's certification of compliance with the SNM exemption: I certify that the information provided on this form is complete, true, and correct and is based on process knowledge, physical observations, or approved laboratory testing. I also certify that sampling and radiological testing of waste containing SNM was performed in accordance with EnergySolutions' Radioactive Material License and that any supporting documentation and analytical results have been submitted to EnergySolutions.

Elizabeth Lamerson **Environmental Engineer** horized Signature Printed Name Title

A. GENERATOR AND WASTE STREAM INFORMATION

GENERAL: Complete this form for one waste stream. Contact EnergySolutions at (801) 532-1330 if you have any questions while completing this form. Please indicate "N/A" if a category does not apply.

1. GENERATOR INFORMATION

Generator Name:	USEC/ Portsmouth		EPA II	#: OHD987054723	
Generator Contact	Elizabeth D. Lamerson		Ti	tle: Environmental Engineer	
Mailing Address:	P.O. Box 628 M/S 9030				
	Piketon, OH 45661	<u></u>	Utah Site Access Permi	t #: <u>0111000043</u>	
Phone	: <u>740-897-2812</u>	Fax:740-897-2143	Em	ail: lamersoned@ports.usec.com	
Contractor Name:	Contractor Name: N/A Location of Waste (City, State): Portsmouth				
Name & Title of P	Name & Title of Person Completing Form: Elizabeth Lamerson/Env. Eng. Phone: 740-897-2812 Email: lamersoned@ports.usec.com				
2. WASTE ST	2. WASTE STREAM INFORMATION				
Waste Stream I	D: 0691A-08Waste :	Stream Name: Alumina		State of Origin: OH	

Revision: 0_____ Date: 05/13/2011 Volume (ft³): TBD Delivery Date: Ongoing

CHECK APPROPRIATE BOXES BELOW. Please verify the required forms requested below are completed and submitted with the Radioactive Waste Profile Record.

HAZARDOUS WASTE: Is the waste classified as hazardous waste as defined by 40 CFR 261?

- N 🛛 If NO, complete and attach the "Low-Level Radioactive Waste Certification Attachment".
- Y I If YES, complete and attach the "Hazardous Waste Certification Attachment" and check applicable box below. Has the waste been treated to meet applicable treatment standards per 40 CFR 268? Y N N I Is the waste to be treated by EnergySolutions? Y N N

LOW-LEVEL RADIOACTIVE WASTE: Is the radioactive waste defined as Low-Level Radioactive Waste in accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985 or in DOE Order 435.1?

- Y X If YES, a current copy of a LLRW Compact Export letter authorizing export must be submitted if applicable. This authorization is applicable for non-DOE LLRW (i.e., Mixed Waste, NORM/NARM, 11e.(2) material, and waste from DOE do not require a Compact Export Letter).
- N I If NO, check appropriate box: NORM/NARM I 11e.(2) Byproduct Material I Other:

SPECIAL NUCLEAR MATERIAL: Does the waste stream contain material with uranium enriched in U-235 or any of the following radionuclides: U-233, Pu-236, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, Pu-243, or Pu-244?

Y 🛛 N 🗌 If Yes, complete and attach the "SNM Exemption Certification" form (EC-0230-SNM). Supporting statements, analytical results, and documentation must be included with the submittal.

PCB WASTE: Does the waste contain Polychlorinated Biphenyls (PCB) that are regulated for disposal per 40 CFR 761?

Y N N If Yes, complete and attach the "PCB Waste Certification" form (EC-98279).

ASBESTOS: Does the waste contain Asbestos Containing Material?

Y N M If Yes, Asbestos Containing Material must be managed in accordance with applicable federal regulations. Provide a detailed description of the waste containing asbestos in Section B.5 of the waste profile.

B. WASTE PHYSICAL PROPERTIES & PACKAGE INFORMATION

1. GENERAL CHARACTERISTICS

Does the waste contain free liquids? Y	N 🖾	If Yes, what is the percent of fr	ee liquid by waste	volume? %	
		If Yes, is the liqu	uid aqueous (water	r-based)? Y 🔲 N 🗌	נ
Does the waste contain absorbent? Y	א 🗖	Density range of the waste: 1.6	<u>51 – 0,7</u> g/cc ⊠	1b/ft³ 🗀	
List percentage of waste type by volume:	Soil%	Concrete & Metal%	DAW <u>5</u> %	Resins%	Sludge <u>3</u> %
Other constituents and percentage by volum	ne? 92% Alun	nina/MoFI/NaFI nellets			

2. MATERIAL SIZE

Gradation of Material: Indicate the percentage of waste material that would <u>pass through</u> the following grid sizes. For example, 95% of the material would pass through a 12" square, 90% passes through a 4" square, 80% passes through a 1" square, etc.

12" <u>99</u> %	4" 95 %	1" <u>85</u> %	1/4" 50 %	1/40" <1 %	1/200" ≤1 %

Does the waste stream contain oversize debris (i.e., no dimension < 10 inches and any dimension > 12 feet)? Y [] N X If Yes, include a detailed description (i.e., weight, size, drawings, etc.) of the oversize debris in the narrative of Section B.5.

3. MOISTURE CONTENT

For soil or soil-like materials, please use Std. Proctor Method ASTM D-698 to determine the optimum moisture content. The waste material must not exceed 3 percentage points above optimum moisture upon arrival at EnergySolutions' disposal facility unless approved by EnergySolutions.

Optimum Moisture Content: N/A % at Maximum Dry Density (lb/ft³): N/A

Average Moisture Content: N/A % Moisture Content Range: N/A% - N/A%

4. WASTE SHIPPING & PACKAGING

Transportation Mode: 🛛 Highway 🖾 Rail

Shipping & Container Packages: (Check all that apply)	⊠ Drums* (≤ 85 gallons)	Boxes ($\leq 100 \text{ ft}^3$)	Soft-Sided Bags	(≤ 10 yd³)
(0.000 al 2.2. 499.5)	Intermodal	Sealand	🗋 Gondola**	🗌 Box Car

Other:

*Palletized drums are preferred by the disposal site. Please specify in the "Other" field if drums will not be palletized.

**Dimensions of gondola railcars must be between 48 to 65 feet in length and 8.5 to 12.5 feet in height as measured from the top of the rail to the top of the railcar unless approved by EnergySolutions.

5. NARRATIVE DESCRIPTION AND HISTORY OF WASTE

Please submit a narrative description and history of the waste as an attachment to the Radioactive Waste Profile Record. This attachment should include the following:

- Process that generated the waste
- Waste material physical composition and characteristics
- Radiological and chemical characterization method
- Basis for determining manifested radionuclide concentrations
- Description and amounts of absorbents, if applicable
- Basis of non-hazardous or hazardous waste determinations
- Treatment processes, if applicable
- Product information or Material Safety Data Sheets associated with the waste as applicable
- Information requested in other sections of this form

Waste Stream ID: 0691A-08 Revision: 0

Date of Revision: 05/13/2011

C. RADIOLOGICAL INFORMATION

Obtain sufficient samples to adequately determine a range and weighted average of activity in the waste. Attach the gamma spectroscopy or radiochemistry data supporting the radionuclide information listed below.

- 1. Does the waste material contain accessible surfaces with contact dose rates greater than 500 mR/hr? Y 🗌 N 🔀
- 2. Does the waste material contain any of the following isotopes: Aluminum-26, Berkelium-247, Calcium-41, Californium-250, Chlorine-36, Rhenium-187, Terbium-157, or Terbium-158? Y □ N ⊠
- 3. Please list the following information for each isotope associated with the waste. Provide an explanation in the narrative description of Section B.5 if the waste contains localized "hot spots" or elevated concentrations that significantly exceed the upper concentration range. If additional space is needed, provide an Attachment C.3 to this profile record formatted as below.

Isotope	Manifested Upper Concentration (pCi/g)	Weighted Avg. per Container (pCi/g)	Isotope	Manifested Upper Concentration (pCi/g)	Weighted Avg. per Container (pCi/g)
Ac-228	50	14.87			
Bi-214	50	6.812			
K-40	53.91	53.91			
Pa-234m	26210	5800.8			
Ra-226	300	30			
Ra-228	50	14.87			
Tc-99	250000	21646.34			
T1-208	50	3.511			
Th-227	50	26.875			
Th-231	5331	1270.23			
Th-234	17540	2824.28			
U-234	38000	10000			
U-235	1900	500			
U-238	16500	5000			
<u>Am-241</u>	100_	10			
<u>Cm-248</u>	50	0.089			
Np-237	1000	10			
Pu-238	50	0.05862			
Pu-239/240	50	0.36865			
Th-228	300	10			
Th-230	50	3.3562			
<u>Th-231</u>	6574	1699.89			
Th-232	300	30			
Th-234	65410	13584.39			
U-233/234	38000	5000			
U-236	834	134.7922			
Ac-227	300	30			
Cs-137	300	10			
Pa-231	1000	10			·
Th-229	300	10			

HAZARDOUS WASTE CERTIFICATION ATTACHMENT

This form is required only if the checkbox for Hazardous Waste on page one has been checked YES. Otherwise, complete the Low-Level Radioactive Waste Certification Attachment instead of this attachment. EnergySolutions may waive the chemical laboratory analyses if the material is not amenable to chemical sampling and analysis (e.g., debris items including metal pieces, concrete, plastic, etc.). Justification for waiving the chemical analyses must be provided in Section B.5.

D. MINIMUM REQUIRED CHEMICAL ANALYSIS

The following parameters must be analyzed by a Utah or NELAC certified laboratory. Typical SW-846 analytical methods have been listed. Other approved methods are acceptable. Attach the most recent or applicable chemical analytical results representing the waste.

1. GENERAL CHEMICAL PARAMETERS

SW-846 Analytical Methods

pH (Liquid only): N/A Method 9045 Please provide the range of the pH analyses performed.

PFLT: Pass Pass / Fail Method 9095 Not applicable for liquid radioactive waste streams.

Analyze the waste for volatile or semi-volatile constituents (Methods 8260 & 8270), and attach the data.

Any distinguishing color or odor? Y 🗌 N 🛛 If Yes, color: ____; odor: ____;

2. HAZARDOUS WASTE CODES AND TREATMENT STANDARDS (40 CFR 268)

List all hazardous waste codes and treatment standards. Include hazardous waste codes that have been removed through treatment and indicate "Former" in the second column. Worst-case concentrations only need to be provided for concentration based treatment standards. If additional space is needed, provide an Attachment D.2 to this profile record formatted as below. Include a description of hazardous waste determinations and any variances, exclusions, etc. in the narrative requested in Section B.5.

EPA HW Codes	Description, Constituent of Concern, or Subcategory	Treatment Standard (mg/kg unless noted as mg/L TCLP or Technology Code)	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)
N/A	N/A	N/A	N/A

CL-WM-PR-001 F2 (EC-0230) Revision 7

3. UNDERYLYING HAZARDOUS CONSTITUENTS (40 CFR 268.48)

List all underlying hazardous constituents (UHCs) and treatment standards. Include UHCs that have been removed through treatment. Worst-case concentrations only need to be provided for concentration based treatment standards. If additional space is needed, provide an Attachment D.3 to this profile record formatted as below.

Underlying Hazardous Constituents	Treatment Standard (mg/kg unless noted as mg/L TCLP or Technology Code)	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)
<u>N/A</u>	N/A	N/A
		· · · · · · · · · · · · · · · · · · ·
		<u></u>
·····		

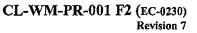
D. 4. OTHER CHEMICAL CONSTITUENTS

List any other chemical constituents of concern (e.g., PCBs, chelating agents, etc.) and worst-case concentrations. If additional space is needed, provide an Attachment D.4 to this profile record formatted as below.

Other Chemical Constituents	Worst Case Concentration (mg/kg unless noted as mg/L TCLP)	Other Hazardous Constituents	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)	
N/A		N/A	N/A	

5. LABORATORY CERTIFICATION INFORMATION

UTAH or NELAC CERTIFIED


The Utah or NELAC certified laboratory holds a current certification for the applicable chemical test methods insofar as such official certifications are given. Please provide a copy of the laboratory's current certification letter for each parameter analyzed and each method used for chemical analyses required by this form.

OTHER LABORATORY CERTIFICATION (Describe below)

6. CERTIFICATION

I certify that sample results representative of the waste described in this profile were or shall be obtained using state- and EPAapproved analytical methods. I also certify that where necessary representative samples were or shall be provided to EnergySolutions and to qualified laboratories for the analytical results reported herein. I further certify that the waste described in this record is not prohibited from land disposal in 40 CFR 268 (unless prior arrangements are made for treatment at EnergySolutions) and that all applicable treatment standards are clearly indicated on this form. I also certify that the information provided on this form is complete, true, and correct and is accurately supported and documented by any laboratory testing as required by EnergySolutions. I certify that the results of any said testing have been submitted to EnergySolutions. I certify that the waste does not contain any prohibiteditems listed in EnergySolutions' Radioactive Material License or RCRA Permit.

the waste does not contain any prohibited items listed in EnergySolutions' Radioactive Material License or RCRA Permit Generator's Signature: Title: Environmental Engineer

LOW-LEVEL RADIOACTIVE WASTE CERTIFICATION ATTACHMENT

This form is required only if the checkbox for Hazardous Waste on page one has been checked No. Otherwise, complete the Hazardous Waste Certification Attachment instead of this attachment. EnergySolutions may waive the chemical laboratory analyses if the material is not amenable to chemical sampling and analysis (e.g., debris items including metal pieces, concrete, plastic, etc.). Justification for waiving the chemical analyses must be provided in Section B.5.

D. MINIMUM REQUIRED CHEMICAL ANALYSIS

The following parameters must be analyzed by a Utah or NELAC certified laboratory. Typical SW-846 analytical methods have been listed. Other approved methods are acceptable. Attach the most recent or applicable chemical analytical results representing the waste.

1. GENERAL CHEMICAL PARAMETERS

SW-846 Analytical Methods

PFLT: Pass _____Pass / Fail Method 9095 Not applicable for liquid radioactive waste streams.

2. 40 CFR 261.24 Table 1 - Contaminants of Toxicity Characteristic

Metals: Methods 6010 & *7470 X TCLP (mg/L) or Total (mg/kg)

Arsenic 0.08	Chromium 0.72	Selenium_	0.13
Barium0.07	Lead 0.04	Silver_	0.05
Cadmium 0.05	*Mercury <u>ND</u>		

Organics, Pesticides/Herbicides: Methods 8081/*8151 🛛 TCLP (mg/L) or 🗌 Total (mg/kg)

Endrin	ND	Toxaphene	ND	Chlordane	ND
Lindane	ND	*2,4-D	0.02	Heptachlor	ND
Methoxychlor	ND	*2,4,5-TP Silvex	0.02		
Organics, Semi-Volatile: N	fethod 8270) 🛛 TCLP (mg/L) or 🗌 Tota	al (mg/kg)		
o-Cresol	ND	Hexachlorobenzene	ND	Pentachlorophenol	ND
m-Cresol	0.1	Hexachlorobutadiene	ND	Pyridine	ND
p-Cresol	0.1	Hexachloroethane	ND	2,4,5-Trichlorophenol	ND
Total Cresol	0.1	Nitrobenzene	ND	2,4,6-Trichlorophenol	ND
2,4-Dinitrotoluene	ND				
Organics, Volatile: Metho	1 8260 🖾	TCLP (mg/L) or 🗌 Total (mg	/kg)		
Benzene	ND	1,4-Dichlorobenzene	ND	Methyl ethyl keytone	ND
Carbon Tetrachloride	ND	1,2-Dichloroethane	ND	Tetrachloroethylene	ND
Chlorobenzene	ND	1,1-Dichloroethylene	ND	Trichloroethylene	ND
Chloroform	0.2	Vinyl Chloride	ND		

3. Was the waste at the point of generation a RCRA hazardous waste per 40 CFR 261? Y 🔲 N 🛛

If Yes, list former hazardous waste codes and former underlying hazardous constituents. List worst-case concentrations for each hazardous constituent. If additional space is needed, provide an Attachment D.3 to this profile record formatted as below. Attach the most recent chemical analytical results demonstrating compliance with applicable treatment standards. If No, indicate "N/A" in Section D.3 below.

Low-Level Radioactive Waste Certification Attachment

RADIOACTIVE WASTE PROFILE RECORD

D. 3	Former EPA HW Codes or Underlying Hazardous Constituents	Treatment Standard (mg/kg unless noted as mg/L TCLP or Technology Code)	Concentration (mg/kg unless noted as mg/L TCLP)
-			
_			

4. OTHER CHEMICAL CONSTITUENTS

List any other chemical constituents of concern (e.g., PCBs, chelating agents, etc.) and worst-case concentrations. If additional space is needed, provide an Attachment D.4 to this profile record formatted as below.

Other Chemical Constituents	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)	Other Hazardous Constituents	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)
Beryllium	2.68 mg/kg	N/A	<u>N/A</u>

5. LABORATORY CERTIFICATION

UTAH or NELAC CERTIFIED

The Utah or NELAC certified laboratory holds a current certification for the applicable chemical test methods insofar as such official certifications are given. Please provide a copy of the laboratory's current certification letter for each parameter analyzed and each method used for chemical analyses required by this form.

OTHER LABORATORY CERTIFICATION (Describe below)

6. CERTIFICATION

I certify that sample results representative of the waste described in this profile were or shall be obtained using state- and EPAapproved analytical methods. I also certify that where necessary representative samples were or shall be provided to EnergySolutions and to qualified laboratories for the analytical results reported herein. I further certify that the waste described in this record is not prohibited from land disposal in 40 CFR 268 (unless prior arrangements are made for treatment at EnergySolutions) and that all applicable treatment standards are clearly indicated on this form. I also certify that the information provided on this form is complete, true, and correct and is accurately supported and documented by any laboratory testing as required by EnergySolutions. I certify that the results of any said testing have been submitted to EnergySolutions. I certify that the waste does not contain any emphibited items listed in EnergySolutions' Radioactive Material License.

the waste does not contain any prohibited items listed in Energy Solutions' Radioactive Material License. Date: Title:Environmental Engineer Generator's Signature:

Low-Level Radioactive Waste Certification Attachment

Page 5 of 5

Generator Name: USEC/Pot	tsmouth	Waste Stream ID:
Revision #: 0	Revision Date:	

D:_____0691A-08

ALUMINA WASTE STREAM

The alumina, magnesium fluoride (MgFl) and sodium fluoride (Na Fl) were generated at vent points throughout the cascade at the Portsmouth Gaseous Diffusion Plant (PORTS) facility. During operations and maintenance of the gaseous diffusion process, unwanted gases, such as nitrogen, dry air and wet air inadvertently inner the system. These gases are expelled from the diffusion cascade through venting systems comprised of chemical traps filled with activated alumina. As needed, the activated alumina from these chemical traps is replaced. The activated alumina is a porous, granular, sometimes powder, substance that is used as a filter media to trap uranium hexafluoride. The alumina is a synthetic material made from aluminum hydroxide. NaF traps were used in Cold Recovery units (located in the X333 & X330) process to recover UF6 for use in the cascade. MgF traps were used to remove Tc from process gas streams and were predominately used in the X340 Complex. The spent activated alumina, MgFl, and NaFl is containerized and handled as Radioactive Waste.

The waste stream also contains small amounts of Dry Active Waste (DAW) that was used in cleanup, sampling, and operation of the process

The containers of alumina, MgFl, NaFl are sampled at the point of generation for TCLP metals and Utah rads. Once data is received, the containers are determined to be non-hazardous or hazardous after review of the analytical data. Only non-hazardous alumina, MgFl, and NaFl will be disposed of under this profile.

The waste will not contain free liquids. Loose absorbent material may be added to the waste to mitigate the risk of free liquids >1% in waste containers that have the potential for free liquids/condensate.

Radiological and Chemical Characterization Requirements and Methods:

The primary objective of the characterization sampling design was to achieve high confidence that at least a high percentage of the items in population are acceptable. A hypergeometric model with a 95%/90% confidence interval was used to characterize this waste stream. The sample size was calculated using a similar method to Bowen and Bennett 1988 (*Statistical Methods for Nuclear Material Management*, NUREG/CR-4604, US Nuclear Regulatory Commission, Washington, DC). Twenty-eight random samples were taken to meet the 95/90 confidence interval.

Chemical Characterization

Ohio Administrative Code (OAC) Section 3745-51 *et seq* and Title 40 Code of Federal Regulations (CFR) § 261 *et seq* clearly define the process for identifying a waste based on characteristics. OAC 3745-51-20 (40 CFR § 261.24) states:

"A waste is a hazardous waste if it exhibits any of the characteristics identified in rules 3745-51-20 (40 CFR § 261.20) to 3745-51-24 (40 CFR § 261.24) of the Administrative Code."

To determine the regulatory status of this waste stream the following requirements were met:

- 1. Collect a representative sample.
- 2. Analyze the sample using TCLP Method 1311 in "Test Methods for the Evaluation of Solid Waste, Physical/Chemical Methods," EPA Publication SW-846.

- 3. Compare the results of the analysis to OAC 3745-51-24, Table 1 (40 CFR § 261.24, Table 1).
- 4. If the contaminate is statistically (as defined by Chapter Nine of SW-846) at or above the regulatory limit outlined in Table 1 of OAC 3745-51-24 (40 CFR § 261.24), then the waste is characteristically hazardous for that contaminant and must be managed as such.

Also, waste may be characteristically hazardous if it meets the criteria outlined in OAC 3745-51-21 (40 CFR § 261.21) to OAC 3745-51-23 (40 CFR § 261.23). OAC 3745-51-30 (40 CFR § 261.30) clearly define the process for identifying a waste based on a listing. OAC 3745-51-30 (A) [40 CFR § 261.30 (a)] states:

"A waste is a hazardous waste if it is listed as such in rules 3745-51-30 (§ 261.30) to 3745-51-35 (§ 261.35) of the Administrative Code."

To determine the regulatory status of this waste stream for listed hazardous waste, the following requirements were met:

- 1. Identify the generating process or identify the waste as derived from an already listed hazardous waste.
- 2. Identify the constituents, which may cause the waste to be classified as hazardous.
- 3. Compare the waste descriptions provided in OAC 3745-51-31 (40 CFR § 261.31) to OAC 3745-51-33 (40 CFR § 261.33).
- 4. If the process and constituents are listed in OAC 3745-51-31 (40 CFR § 261.31 to OAC 3745-51-33 (40 CFR § 261.33), then the waste is listed as hazardous and is managed as such.

This waste stream is not regulated for disposal as a RCRA hazardous waste as defined in 40 CFR 261. This waste is not regulated as TSCA (PCB) waste as defined in 40 CFR 761.

Radiological Characterization

Radiological characterization is performed through a combination of laboratory data and a Non-Destructive Analysis (NDA) method. Twenty-eight random samples of the total population were analyzed to provide the radiological characterization data to adequately determine a range and concentration of activity in the waste.

Basis for Determining Manifested Radionuclide Concentrations

Radiological characterization of outgoing shipments is performed through a combination of laboratory data and a Non-Destructive Analysis (NDA) method. The radiological laboratory results were used to establish scaling factors which are then synchronized with the NDA results and divided by net weight in the container to develop manifested nuclide concentrations. The SNM is typically in the form of dry non-visible uranium dust made up of oxide compounds, primarily UO_2F_2 . The SNM is essentially distributed homogenously throughout the waste.

Typically the waste will be packaged for transportation and disposal in drums or metal boxes. Optional packages include soft-sided bags, intermodal containers and sea-land containers. Notification will be provided prior to shipping if any optional containers are to be utilized.

EC-0230 Attachment B.5

SPECIAL NUCLEAR MATERIAL EXEMPTION CERTIFICATION

The Special Nuclear Material Exemption Certification form must be completed and signed by each generator certifying to the following conditions. Please attach this form and all required information to the Radioactive Waste Profile Record (EC-0230). A completed and signed copy of this form must also accompany each waste manifest.

Waste Stream ID: 0691A-08 Manifest No. 0691A-08

1. Check applicable category below for the waste stream	1.	eck applicable category below for the waste stream:
---	----	---

1	Uranium Enrichment Percent	Weight Percent of Chemicals in Condition 2c	Weight Percent of Materials in Condition 2d	U-235 Concentration (pCi/g)	Measurement Uncertainty* (pCi/g)			
\boxtimes	< 10 %	≤ 20 %	≤1%	≤ 1,900	≤ 285			
	Unlimited	≤ 20 %	≤ 1 %	≤ 1,190	≤ 179			
	Unlimited	Sum of both $\leq 45 \%$	of waste by weight	≤ 680	≤ 102			
	Unlimited	Unlimited Unlimited		≤ 26	≤ 10			
	Not Applicable - Enriched U-235 is not present in the waste.							

* A concentration value is used for the maximum measurement uncertainty limit rather than a percentage value to allow greater flexibility for generators with waste having very low SNM concentrations.

2. Certify to the following requirements by checking each box:

- a. Concentrations of SNM in individual waste containers do not exceed the applicable values listed in the above table and SNM isotope concentrations listed in Table 1.
- b. The SNM is homogeneously distributed throughout the waste or the SNM concentrations in any contiguous mass of 600 kilograms (1,323 lbs) do not exceed on average the specified limits. (Based on process knowledge or testing).
- c. Except as allowed by Condition 1, the waste does not contain "pure forms" of chemicals containing carbon, fluorine, magnesium, or bismuth in bulk quantities (e.g., a pallet of drums, a B-25 box). By "pure forms," it is meant that mixtures of the above elements such as magnesium oxide, magnesium carbonate, magnesium fluoride, bismuth oxide, etc. do not contain other elements. (Based on process knowledge or testing).
- ☑ d. Except as allowed by Condition 1, the waste does not contain total quantities of beryllium, hydrogenous material enriched in deuterium, or graphite above one percent of the total weight of the waste. (Based on process knowledge, physical observations, or testing).
- e. Waste packages do not contain highly soluble forms of uranium greater than 350 grams of uranium-235 or 200 grams of uranium-233. If the waste contains mixtures of U-233 and U-235, the waste meets the sum of the fractions rule. Highly soluble forms of uranium include, but are not limited to: uranium sulfate, uranyl acetate, uranyl chloride, uranyl formate, uranyl fluoride, uranyl nitrate, uranyl potassium carbonate, and uranyl sulfate. (Based on process knowledge or testing).
- f. For containers of <u>liquid waste</u> with more than 600 kilograms of waste, the total activity (pCi) of SNM in the manifested container does not exceed the SNM concentration in the above table or Table 1 times 600 kilograms of waste (based on process knowledge or testing). For example, the maximum activity of Pu-239 in any manifested container of liquid waste is 6.0 mCi (6.0E+09 pCi) as shown below:

$$10,000 \frac{\text{pCi}}{g} \times 600,000 g = 6.0 \text{X} 10^9 \text{ pCi} = 6.0 \text{ mCi} \text{ Pu} - 239$$

SPECIAL NUCLEAR MATERIAL EXEMPTION CERTIFICATION

Radionuclide	Maximum Concentration (pCi/g)	Measurement Uncertainty (pCi/g)	Radionuclide	Maximum Concentration (pCi/g)	Measurement Uncertainty (pCi/g)
U-233	75,000	11,250	Pu-241	350,000	50,000
Pu-236	500	75	Pu-242	10,000	1,500
Pu-238	10,000	1,500	Pu-243	500	75
Pu-239	10,000	1,500	Pu-244	500	75
P11-240	10.000	1.500			

Table 1. Maximum concentrations of SNM in individual waste containers (refer to above table for U-235 limits).

- 3. Indicate that the following information is attached to the Radioactive Waste Profile Record by checking each box. (Note: Only the two-page Special Nuclear Material Exemption Certification form needs to be included with each manifest).
 - a. Provide a description of how the waste was generated, list the physical forms in the waste, and identify the uranium chemical composition.
 - b. Provide a general description of how the waste was characterized (including the volumetric extent of the waste, and the number, location, type, and results of any analytical testing), the range of SNM concentrations, and the analytical results with error values used to develop the concentration ranges.
 - C. Describe the process by which the waste was generated showing that the spatial distribution of SNM must be uniform, or other information supporting spatial distribution.
 - A. Describe the methods to be used to determine the concentrations on the manifests. These methods could include direct measurement and the use of scaling factors. Describe the uncertainty associated with sampling and testing used to obtain the manifest concentrations.
- 4. Generator's certification of compliance with the SNM exemption: I certify that the information provided on this form is complete, true, and correct and is based on process knowledge, physical observations, or approved laboratory testing. I also certify that sampling and radiological testing of waste containing SNM was performed in accordance with EnergySolutions' Radioactive Material License and that any supporting documentation and analytical results have been submitted to EnergySolutions.

Elizabeth Lamerson **Environmental Engineer** thorized Signature Printed Name Title

3× SITEour. NEIGU-Siter BR 7/18/00 **RADIOLOGICAL EVALUATION** STATEMENT OF ACCEPTANCE/REJECTION AND BASIS FOR DETERMINATION 7/1/99 (EC-0675) Revision Waste Stream Name: MOTAL; Delivery Date: ONGOING Generator Name Check appropriate boxes: Licensed X Non-Licensed ; NORM ; LARW X; MW Treated ; MW Needing Trant ; DOE ; FUSRAP ; 11e.(2) Original Submission: Y; X N: Revision # 2; Date of Revision 7/18/00 Name & Title of Person Completing Form: WAYAIE JOANS, DET RSU SOURCES OF INFORMATION Where applicable, a copy of a current Interstate Compact Commission Letter authorizing export is attached. STATEMENT OF SUFFICIENT INFORMATION AND ACCEPTANCE OR REJECTION FOR NORM CELL MANAGEMENT (Y 'N There exists sufficient information to make a responsible determination. < ACCEPTED REJECTED The waste is hereby accepted or rejected for management in the NORM/LARW/MW/11e.(2) cell for the reasons indicated below or on the reverse side. (Circle selection; cross out item not applicable.) This determination is based on G the Radiological Evaluation Record, statements, analyses and information attached with the evaluation, the evaluation's certification signed by the generator or its associate(s). 0 **AREAS OF RADIOLOGICAL CONCERN** The following items were of concern for this particular waste: The concerns above were resolved by the following methods: Remarks: INCREAKE RANGES. *** Regulator's or Contact Person's Name, Phone Number, and Time and Date of Call: ____ Information from Contact Person: over CERTIFICATION AND STATEMENT OF SUFFICIENT BASIS FOR DETERMINATION THAT WASTE IS RADIOLOGICALLY ACCEPTABLE: If accepted, the waste described on this document has been determined to be low-activity radioactive waste based on the information available to Envirocare at the time of acceptance as described in this document. Licence condition 13 (Swn) Serso 4-20-06 Signature of Envirocare ·ets

LETTER TO FILE: 0691A-02, "METAL" USEC – PORTSMOUTH DATE: 4/13/00

THE PURPOSE OF CREATING 0691A-02 WAS TO ESTABLISH A UNIQUE GENERATOR ID #/ WASTE STREAM # FOR USEC – PORTSMOUTH AND TO SEPARATE IT FROM USEC – PADUCAH IN TERMS OF A POINT OF GENERATION AND SHIPMENT.

THE ATTACHED EC-0230, REVISION \mathbf{Z} , DATED 7/22/99 AND OTHER ATTACHED DOCUMENTATION ARE REPRESENTATIVE OF THE WASTE TO BE SENT. THE EC-0230 HAS BEEN EDITED TO REMOVE USEC PADUCAH AS A POINT OF GENERATION AND SHIPMENT.

HISTORICAL INFORMATION, INCLUDING EC-0325, EC-0025 REVIEW FORMS REMAIN EFFECTIVE FOR 0691B-02. IF CHANGES OCCUR TO 0691A-02 SUBSEQUENT TO 4/13/00, REVISED WASTE PROFILE INFORMATION AND REQUIRED REVIEW DOCUMENTATION WILL BE GENERATED FOR ENVIROCARE OPERATING RECORDS.

EXISTING ACCEPTANCE RANGES, AS DOCUMENTED ON EC-1775/1875 FOR 0691-02, REMAIN APPLICABLE AND EFFECTIVE FOR 0691A-02 AND 0691B-02.

4/13/a -St hm ANDREW E. DROM, DIRECTOR, TECHNICAL SERVICES

	9/99 .27.	THU 12:25 FAX 614 897	-151 WASTE	MGNT USEC	- N	0.764	н.2/24	Ø 001
ہ بیالیا ان			· · · ·					
		•	1					
		RADIOA	TIVE WASTE F	ROFILE RE	CORD		(11)	
			(80-0230)	0691A-02	. .		(11/21/95)	
					4/15/0-	man a futurlula		
Gen	alstol y	irro; United States Enrichment Corporati	on i Generator #/Waste St					
		rmut N/A	;Wanto Stream Nazz			Date: <u>7/99- 4/00</u>		
Cho	uk appre	idate bacas: Liouased Y XN;N	ORMINARIA : LLRW X ;)	AW; MW Treated	_; MW Needin	C i induit g	DR; 11a.(2)	
Orig	ninal Qu:	eristion: YN X_; Revision#	cil 84 96 Date of Revision	7/22/09		0		
Nate	in de Tit:	: uf Person Completing Ponns <u>J. Michael</u>	Howk, Pancle A. Kulik Rov. A		Fhone: 624	897-3612/502-	41-5610	-
	entiret.	OMER INFORMATION;						
A .					e		nomenter mannen ti	h
	GEN	BAL: Please read carefully and complete Birould there be any questions while	to this form for one waste stream	n. This information will Envirocare at (201) 532-	1330. WAST	inna lov (2 y Lis Cannot	BE ACCEPTE	D
	ATE	VIROCARE UNLESS THIS FORM		And OCT RODIV, DICUSS 100		ш шох ре про	REPERTING AND A CONTRACT OF A	
	1.	HINTERATOR INFORMATION	* 0691A-0 1	PPLIES TO USE	EC- POPTJ.	mouth c		
) / Fed-KYK-000-004-424	RPA Harmonia Wasta	Number(s) (if applicable)	N/A		4/13.	100.
		Ports - 080987054723						
	Maiji	p Address: Fadural + P.O. Dox 1410, Pad						
	Phone	Paducah - 502-441-5610; Portemouth 6	NO 14-897-3614 ¥ Pax	Paduesh 602-441-6966;	Ports 614-897	2151	() () () () () () () () () () () () ()	
	Locat	: a al' Majerial (City, ST): Pedacale, HT: 1	Portsmouth OH X					
		un Contan: Paduesh - Pamela A. Kuth		e Chemical Engineer, Er	wironmantal Er	gineer		'
		he Address (if different from shove): gam						
		· · ·	1					
				Semo				
Э.		TE THYSICAL PROPERTIES (Should be a should be should be a should be should be a should be a should be	q han pues sub dressions aprile o	mplating this section, con	lact Envirocate	Customer Supp	set Representative	nt
		·32•1330.)	1					
	3.	HYPICAL DATA (Indinate perceptage 1. id dizes, o.g., 12" 100%, 4" 56%, 1" 74			GRAD	ation of M	ATERIAL:	
		FURNING OF IN TOOL A NOTALE IN	in the second state better sitter					
		· · · ·	ł		12"	10	76	
	2.	MECRIPTION: Color various	Odor <u>none</u>		4"	5	14	
			: Skidao Povede	/Dust	1"	<1	¥ 6	
					7 (4)7		ad	
		· · · ·			1/4**	0	9A	
	3,	SINETTY RANCE: (Indicate dimensio	ne) <u>10 - 120 -</u>	S.G. 16./12 16./yd3	1/40"	0	%	
					1/200	• 0	48	
	4	IPMERAL CHARACTERISTICS (M				•		
		ioli 0_ Building Debris 10_ Ru	ubble <u>O</u> Pipe Soule <u>O</u>	alilings 0 Process W	Vanie 0 C	merete 0	Plasilo/Resin 0	
		. ther constitutions and approximate ps ca	ntribution of each: 90 Serap M	[sts]				
	-							
	5.	+IOISTURE CONTENT: (For soil or "In Std Frontor Mothod ASTM D-698)	kotleting tilstetistik")		_			
		•		Optimum Meisture Centers	* <u>N/A</u>	9%		
				Average Moisture Content:	N/A	%		

DESCRIPTION OF WARTE (Places and b a description of the waste with respect to its physical composition and characteristics. This description is the attachment for item D.1.). б. . 9-0000-1. E-000-1

Moistore Content Range:

N/A

۶4

Post-it* Fax Note 7671	Date pages 24
TO BRETT KOGERS	From MICFERSE HAWK
Co./Depl.	Co. USEC
Phone #	Phone #
Fox #	Fax #

. -

C. RAEIOLOGICAL EVALUATION.

1. WASTE STREAM INFORMATION. For each radionative isotope associated with the waste, please list the following information. Baviceeare's linesse assumes daughter products to be present in equilibrium, there are not required to be listed below and do not require manifesting. (Use additional 1 opter of this form if necessary.)

	Тесторан	Concentration Kings	Walginad Average (pCi/g)	Isotopes	Concellization Range (pCi/g)	Weighted Average (pCi/g)
ı.	<u></u>	<u><1</u> to 100.	55	B Np 237	<u><1</u> to <u>50</u>	5
k.	U238	<1 to 100:	50	h. Am 241	<u>51 in 10</u>	2
.h.,	U235	<1 to 100!	20	i		
ı L	U 134	<1 to 1000.		١	07	
۴.	To 99	<1 to 200.	50	k	to	······································
片	Pn 230	<1 to 30	2	۱	to	

- 2. IL N Is the radioactivity contained in the warm general Low-Level Radioactive Warts as defined in the Low-Level Radioactive Warts Policy Amondments Act of 1985 or in DOR Order 1820.2A, Chapter III? (Please Circle) If yes, check "LLRW" block on line 3 of yeage 1.
- 3. IX N LICENSED MATERIAL: Is the waste material listed or included on an active Nuclear Regulatory Commission or Agroement State license? (Please Circle)

(If Yes) TYPE OF LICENSE: Source X; Speciel Nuclear Metariel X; By Aradust X_; NORM___; NARM___;

LICENSING AGENCY. NRO

D. CHI MICAL AND HAZARDOUS CHARACTERISTICS

1. DESCRIPTION AND HISTORY OF WASTE

Hence attach a description of the waste to the profile. Include the following as applicable: The process by which the waste wast generated. Available process knowledge of the waste. The basis of bazandous waste determinations. A list of the chemicals and materials used in or commingled with the reasts a list of any and all applicable BPA Hazandous Waste Numbers, carrent or former and, a list of any and all applicable indedisposed prohibition or lazardous waste exclusions, extensions, extendious, effective dates, variances, or delistings. Attach any applicable indedisposed prohibition or lazardous waste exclusions, extensions, effective dates, variances, or delistings. Attach any applicable analytical results involving the compassions of the waste. Attach any product information or measures tandards. Attach any applicable analytical results incomposition of the waste. Attach any product information or material Safety Data Sheets associated with the waste. If a category on this Waste Profile Attach and apply, describe why it dates not.

House describe the history, and include the following:

- 📉 NX Was this waste mixed, treated, neutralized, solidified, someningled, dried, or otherwise processed upon generation or at any time thereafter?
- 1/ NX Has this waste been transported as other your removed from the location or site where it was eriginally generated?
- 🖞 NX Was this waste derived from (or is the waste a residue of) the treatment, storage, and/or disposal of hezardous waste defined by 40 CFR 261?
- " NX Has this muterial been treated at any time to most any applicable treatment pandard?

2. 12SF ALL KNOWN AND POSSIBLE CHEMICAL COMPONENTS OR HAZARDOUS WASTE CHARACTERISTICS

		\mathfrak{S}	(N)	•		ŝ	(N)			(Y)	(N)
140	Listed HW		<u> </u>	Þ.	"Derlyed-Fr	om" HW	<u> </u>	¢.	Taxia		<u></u>
ť.	Cyanides		<u>_X</u>	· C,	Sulfides		X_	£,	Dioxina		_X
ţ.	Pesticidas		X	h.	Herbicides		x	L	FCBL	X	
i.	Explasives		X	k.	Pyrophories		X	L	Solvenia		<u>x</u>
;:3	Organica		X	Б.	Thenalics		<u>x</u>	٥,	Infectious		X
2.	Ignitable		<u>'X</u>	9 ,	Corresive		X	۲.	Ronotiva		X
i	Antimony		X	۲.	Beryllium		X	12,	Copper	X	
Ŀ.	Nickol	X	<u> </u>	Ψ,	Thellium		X	X.	Vanndium		X
ŀ.	Alcohole		X	x.	Arsenio		x	B.	Bariva		X
:t.	Cadmium		X	C0.	. Chromium		X	dd.	Lead		X
ŗē,	Mercury		X	Ľ	Scionium		X	92.	Silver		<u>x</u>
ih,	Benzana		<u>x</u>	ii.	Nitrate		X		Nitrito		X
- cka	Fluorido		X	. n .	Oll		X		Fun		X
38.	Christing Agenia		X	-1							
	Other Visitian on Por	ALL MA		Charminala.	•		7-				

2

-

NU. 164

			li				
	J.	HINLYTICAL RESULTS FOR Secta Masseded, Indicale range or			leve tin us squaran 6699].	blank spaces provided. A	itoch edditional
•		fapula (circle ano): Total (mg/	kg) or TCLI	(mg/l) Organics	(circle one) Total (mg/	kg) or TCLP (mg/l)	
		the second se	end <u>N/A</u>				
		Contraction of the local division of the loc	(ercary N/A			······	
			ilvor <u>N/A</u>	and the second		·	
		a state of the sta	Inc N/A				
	4.	MALYTICAL RESULTS DO	R REQUIRED 1	PARAMETERS: (Pleu	e trentaribe results as the bim	nk spaces provided. Attack	h additional sheets if
•		(sadad).		•			· _
		silpH_MA	Paint Piltor	WINNED_	Cyaulda <u>NA</u>		_N/A
			Liquids Test	(Porr/Fail)	Released mg/kg	Rulessed	myrr
	s.	CINTABILITY (40 CPB 261.	21[4][7],[4].)				
		illash Foint <u>> n/a</u>	·	2 ° 3	Is the warts a RCRA or	ddizer) Y NA	
	б,	::EEMICAL COMPOSITION :emplete, if necessary.)	(Listall known	chemical components an	d circle the applicable concern	tration dimensions. Use at	aritheits to
	•	Dienical Component	Concentration		Chanical Component	Concentration	
		l'inrous	<u>70 ji</u>	(%)mg/kg			% mg/kg
		Cuminum	20	Buske			% mg/kg
		Concer	<u>5 1.</u>	(Bing/kg	Halogenie Organie (HO		
		Shome, Nickel, stc.	5	(Bray/kg	Compounds (Sum of the ROCs.)	MA	mg/kg
	7.	URLATMENT STANDARDS, Visite Numbers and information Londmont standards and exposition wiri uncas, extension, allowances, UPA, HW Subcaragory Wathor	with respect to the atlong of technolo etc. The follows	waste's subcategory (s. 157 (c.g. 5,7 mg/) seleniu	y, low meroury inbediegory), n stinct or INCIN [inciderat fadditional space is avoided, p Trostability Standard(s) : Concentrations or	, treatability group (e.g. no ion)), and any applicable a rowlds an attachment to thi and Any Brangelious, Extensions or Exc	n-wettewaters), eccaptions, exclusions, is profile record, Variances, clusions
		A			Technology	(List 40 CPR refs	•
		<u>NIA</u>	<u>li</u>	·····			
		NIK		·····		[א צ]	
e.	Labo	() INRED CHEMICAL LABOR secry for the following analytical secry for the following analytical secry for the following analytical secry for the following analytical secry for the following and the following and secry for the following and the following and secry for the following and the follo	varametershinlar	a nonemplicability of the r	malvels for the waxte can be e	tated and justified in attack	ad gratomonta, Attach
	FOI	R ALL WASTE TYPES: CHEN	TICAL ANALY	SIS: Soil pH (9045), Pa	im Filter Liquids Test (9095)	; Reactivity (syanida and s	ulli4=).
	1.	MINIMUM ADDITIONAL A	NALYTICAL R	Equined for:			
		n. Non-RCRA Waste (Non Mi				etals, and capper (Cu) and	zino (Cn).
		1. Mixed Wante: Results to th					
					emi-volatile organics (8240+	8270, <u>comined</u> if TOX >2	00 mg/kg)
		 (2) Applicable contantratio (3) Total and Americable Ca 	1.		reactive eventde >20 mg/kg		,
		fal. 9 alde bite knimping of	1 1 1	and an indexed the solution of	a normal of a gradienter of the state of the state		
			,				
			•				

3

ļ

· --

- . : ROTTRED RADIOLOGICAL ANALYSES: Please obtain sufficient samples to adequately dotarmine a range and weighted average of anivity in) is whate. Have a sufficient number of straights analyzed by gamma spectral analysis for all natural and momented isotopes with that they support the : ages and weighted average information for the works afreen that will be recorded in item D.1. If Uranium, Platonium, Thorium, or other non-gamma : rotsing nuclides are present in the material, have at least (1) sample available by indichemistry to determine the concentration of these additional : rotsing nuclides are present in the material, have at least (1) sample available by indichemistry to determine the concentration of these additional : rotsing nuclides are present in the material, have at least (1) sample available by indichemistry to determine the concentration of these additional
- 3. RE-SHIPMENT SAMPLES OF WASTE TO ENVIROCADE

These permutation has been obtained from Envirocence, please send 5 ropt contaitive samples of the waste to Envirocents. A completed EC-2000 Form must be included with the sample containers. These samples will be used to establish the waste's incoming dipment scoptanes parameter there are and may be avalyzed for additional parameters. Send about two pounds (one fitse) for seah sample in an air tight clean gloss container via there are loss (CRS) or Federal Expression:

Serviceours of Utah, Inc., Aun: Sample County, Interdute-80, Edit 49, Clive, Utah 84029 Ser Jederal Express Use Exp Code 84083). [Phone: (801) 521-9619

- 4. IntiORATORY CERTIFICATION INFORMATION. Please indicate below which of the following categories applies to your indecatory data.
 - ... Note analytical data that is to represent mixed warts much be Utah certified or from the USERA. All radiological data used to support the data in item C.1. must be from a Utal-certified laboratory.
 - ITTAN CHERTIFIED. The laboratory holds a current certification for the applicable chemical or radiologic parameters from the Utah Department of Fighth integer as such afficial certifications are given.
 - GENERATOR'S STATE CERTIFICATION. The laboratory holds a current certification for the applicable chemical parameters from the generator's State income as such official contifications are given, or
 - CERCERATOR'S STATE LABORATORY REQUIREMENTS. The laboratory means the requirements of the generator's State or cognizant

If using a non-Link contilled informary, briefly describe the generator state's requirements for elsembrai analytical informations to defend the determination that the laboratory used meric these requirements, aspecially in terms of whether the requirements are parameter specific, mathed specific, or invelve CLP or other QA data packages. Note: When process or project knowledge of this waste is applied, additional analytical results may not be necessary to complete Service B, D.2, D.5, or D.6 of this form.

- It. For annipulcul work done by Upsil-excitined ishormaries, please provide a copy of the isbornary's carrent confidentian letter for such parameter analyzed and each method used for analyzes required by this form.
- r. For analytical work dana by laboratorias which are not Utah-Certified, please provide the following information

ï

Sinte or Other Agency Contact Person	Generalor's State	Telephone Number
Lab Contast Porton	Laboratory's State	Telephone Number

F. CERLIFICATION

CEN HZATOR'S CENTIFICATION OF DETREGENTATIVE SAMPLES, ANALYTICAL RESULTS FROM QUALIFIED LABORATORIES, USE LIF APPROVED ANALYTICAL AND SEMPLING METHODS, AND ARRANGEMENTS FOR TREATMENT OR NON-PRODUBITED DIST 135.1. I certify that samples representative of the waste described in this profile wase or shall be obtained using faite- and EPA-approved sampling meth. M. I also certify that where necessary these impresentative samples were or shall be provided to Environse and to qualified laboratories for the analytical tends. Toported herein, If inther certify that the wate described in this record is not provided to Environe and to qualified laboratories for the analytical are reade for treatment at Environers) and the all applicable beatment readereds are clearly indicated on this form. I also certify that the information provided on the form is complete, the and ennot and is acquirately supported and documented by any laboratory testing as required by Environers of Utah, Inc. I certify that the the results of any said participation that the Environers of Utah, Inc.

Chune mfor's Signoture (Sign the above certification).

THIS Waste Characterization Dava 7/20/99

2004

C. 3/24

NU. (64

4

Envirocare of Utah, Inc. EC-0230-SNM Revision 0, 6/11/99

SNM Exemption Certification

The SNM Exemption Certification form must be completed and signed by each generator certifying to the following convictors. Please attach this form and all required information to the Radioactive Waste Profile Record (BC-0230). A completed and signed copy of this form must also accompany each waste manifest.

1. Mease check one of the following that applies to the waste stream:

,	V	Uranium Enrichment Percept	Percent MgO by Weight	Percent Beryllium by Weight	U-235 Concentration (pCi/g)	Measurement Uncertainty* (pCi/g)
	R	< 10 %	≤ 20 %	≤1%	≤ 1900	≤ 285
≯	x	≥ 10 %	≤ 20 %	51%	≤ 1190	≤ 179
		Unlimited	Unlimited	Unlimited	≤ 160	≤ 24
		Unlimited	Sum of both \$ 49 %	of waste by weight	≤ 680	≤ 102

" A concentration value is used for the maximum measurement uncertainty limit rather than a percentage value to allow greater flexibility for generators with waste having very low SNM concentrations.

2. Please certify to the following requirements by checking each box:

- [1] a. Concentrations of SNM in individual waste containers do not exceed the applicable values listed in the above table and SNM isolope concentrations listed in Table 1.
- [2] b. The SNM is homogeneously distributed throughout the waste or the SNM concentrations in any contiguous mass of 145 kilograms (320 lbs) do not exceed on average the specified limits. (Based on process knowledge or testing).
- [2] c. Except as allowed by Condition 1, the waste does not contain "pure forms" of chemicals containing carbon, fluorine, magnesium, or bismuth in bulk quantities (e.g., a pallet of drums, a B-25 box). By "pure forms," it is meant that mixtures of the above elements such as magnesium oxids, magnesium carbonate, magnesium fluoride, bismuth oxide, etc. do not contain other elements. (Based on process knowledge or testing).
- d. Except as allowed by Condition 1, the waste does not contain total quantities of beryllium, hydrogenous material enriched in denterium, or graphite above one percent of the total weight of the waste, (Based on process knowledge, physical observations, or testing).
- El e. Waste packages do not chutain highly soluble forms of uranium greater than 350 grams of uranium-235 or 200 grams of uranium-233. If the waste contains mixtures of U-233 and U-235, the waste meets the sum of the fractions rule. Highly soluble forms of uranium include, but are not limited to: unmium sulfate, uranyl acctate, uranyl chloride, uranyl formate, uranyl fluoride, uranyl nirate, uranyl potassium cathonate, and uranyl sulfate. (Based on process knowledge or testing).

•	
Table 1. Maximum concentrations of S	NM in individual waste containers (refer to above table for U-235 limits)

Radionuclide	Maximum Concentration (pCi/g)	Measurement Uncertainty (pCi/g)	Radionuclide	Maximum Concentration (pCl/g)	Measurement Uncertainty (pCVg)
U-233	75,000	11,250	Pu-241	350,000	50,000
Pu-236	500	75	Pu-242	10,000	1,500
Pu-238	10,000	1,500	Pu-243	500	75
Pu-239	10,000	1,500	Pu-244	500	75
Pu-240	_10,000	1,500	1		

2

Page 1 of 2

2006

Envirocare of Utah, Inc. EC-0230-SNM Revision 0, 6/11/99

1963 - C3 IN

- 3. Rease indicate that the following information is attached to the Radioactive Waste Profile Record by thecking each box. (Note: Only the two-page SNM Exemption Certification form needs to be included with each manifest).
 - a. Provide a description of how the waste was generated, list the physical forms in the waste, and identify the manium chamical composition. X
 - b. Provide a general description of how the waste was characterized (including the volumetric extent of the waste, and the number, location, type, and results of any analytical testing), the range of SNM concentrations, and the analytical results with error values used to develop the concentration ranges.
 c. Describe the process by which the waste was generated showing that the spatial distribution of SNM must be uniform, or other information supporting spatial distribution.

 - d. Describe the methods to be used to determine the concentrations on the manifests. These methods could include direct measurement and the use of scaling factors. Describe the uncertainty associated with sampling and testing used to obtain the manifest concentrations.
- 4, Benerator's certification of compliance with the SNM exemption: I certify that the information provided on this form is complete, mue, and correct and is based on process knowledge, physical observations, or approved laboratory testing. I also certify that sampling and radiological testing of waste containing SNM was performed in accordance with Envirocare's Radioactive Material License and that any supporting documentation and inalytical results have been submitted to Environment of Litah, Inc.

amela H. WASK Characterization unt anized Printed Name Siedature AICHAEL HAWIZ ENV. ENGINEER 7-28-99

Page 2 of 2

	SPC Ris actors (Scale 3 3 concord	
1	Rediological Risk: Chornical Risk: Physical Risk:	Handling Risk:

ATTACHMENT C.1 RADIOLOGICAL EVALUATION, CONTINUATION

evision #: <u>2</u>	USEC-PORTS Revision Date: 7/18/00		······			
Isotopes	Concen	tration Range (pCi/g)	Weighted Avg. per Container (pCVg)	Isotopes	Concentration Range (pCi/g)	Weighted Avg per Container (pCi/g)
. <u>TH-230</u>	1	to <u>300</u>	55	am	to	
U-238	1	to <u>1000</u>	50	an	to	
U-235	1	to <u>300</u>	20	80.		
. <u>U-234</u>	1	to <u>5000</u>	500	ap		•
	<u> </u>	to 1000	50	aq	to	• •••••
PU-239	1	to100	2	ar	A -	
. <u>NP-237</u>	<u> </u>	to <u>200</u>	55	as	to	
- AM-241	1	to <u>50</u>	2	at	to	
Ka-226		to 100	30	au	to	
		to		87.	to	
		to		aw	to	
		to		ax	to	
n		to		ау	to	
L		A -		az.	to	
		to		ba		
				bb	to	
		÷ .		aw	to	•
·		to	•			
·				ау	.	
· ,			_	8Z.	to	÷
l		to		ba	to	
·		to	-	bb	to	
Y		to	-	bc		
د		to		bd	4-	
		to		be	to	
18,		to		bf	to	
ıb		to		bg		<u> </u>
ic		to	•	bh	to	
ad.		to		bi		
ic.		to		bj		<u> </u>
ı£		to		bk		
ıg				bl.	to	
				bm		
ai.		-		bs		
aj						
ak				bp		
al		•		bq		

EC-0230 Attachment C.1

07/29/99 THU 12:32 FAX 614 897-9151

022

letter 8/4/98

DRTS ONLY

per

information for SNM Exemption Certification sections 3 a-d.

- Contaminated scrap metal is generated at the Portsmouth Gaseous Diffusion Plant by typical ٤. maintenance activities. The waste is solid consisting of such materials as structural steel, pipe, sheet metal, equipment, filters and metal stock with small amounts of glass and debris. These materials come into contact with uranium compounds enriched in U-235 and become contaminated. Contamination is typically in the form of dry non-visible uranium dust made up of oxide compounds, primarily UO2F2 which is essentially homogeneously distributed throughout the waste.
- b. Scrap metal collected in B-25 boxes is measured for uranium U-235 using a non-destructive analysis method known as box monitoring. This "box monitor" consists of four high purity germanium detectors and neutron slabs coupled with a computerized system which give U-235 values in grams with an error of +/- 50%. On average a B-25 box consisting of 90 ft3 of scrap metal contains approximately 2 grams of U-235. The actual U-235 concentration in scrap metal currently being shipped to Envirocare ranges from less than 1 pCi/gram up to 570 pCi/gram. BR 8/6/99
- Referring to sections a and b above, the box monitor system is designed to detect "hot spots" of higher concentrations of U-235. On those rare occasions when hot spots are detected in a B-25, it is segregated and is not released for shipment. In this manner it is assured that in scrap metal sent to Envirocare the U-235 Is uniformly distributed.
- J. U-235 concentrations used on manifests are simply calculated by taking the gram amount of U235 as determined by NDA methods (see b above) divided into the weight of the actual waste (net). The scales used to weigh the B-25 boxes are highly accurate electronic scales.

3x site ~ NTT ~ site ~ ENIS V BR RADIOLOGICAL EVALUATION 8/10/99 STATEMENT OF ACCEPTANCE/REJECTION AND BASIS FOR DETERMINATION (EC-0675) 0691A-02 (Revised 04/97) THE NAME USET a 200.000 nton Milliana Ru Constant Name ______ METAL 760 Wenne Common Maria Delivery Date: NORM : MW Trested __ : MW Needlag Tr DOE FUSRAF Y: X N. Revision # Name & Title of Person Completing SOURCES OF INFORMATION This determination by Envirocare is based on the information provided by ______ the generator or the generator's associates and contractors, AND/OR ______ information gathered by Envirocare. (Place N/A if not applicable.) STATEMENT OF SUFFICIENT INFORMATION AND ACCEPTANCE OR REJECTION FOR MANAGEMENT There exists sufficient information to make a responsible determination. The waste is hereby accepted or rejected for management in the NGRMLARW/MV/IIe.(2) cell for the CCEPTED/BEJECTED reasons indicated below or on the reverse side. (Circle selection; cross out item not applicable.) statements, analyses and information attached with the the Radiological Evaluation Record, This determination is based on the evaluation's certification signed by the generator or its associate(s). evaluation. **AREAS OF RADIOLOGICAL CONCERN** The following items were of concern for this particular waste: (Codes: A-Analysis; G-General nature of the waste; i-Inconsistencies in the information provided and available; U-Unanswered questions raised as a result of the information provided; and, Z-Other reasons explained below or on the reverse side.) The concerns above were resolved by the following methods: (Codes: A-Further Analysis; R-An appeal to a regulator or member of the staff of the USEPA or Utah Bureau of Radiation Control ***; V-Verbal statements ***; W-Written statements of processes or knowledge from the generator or generator's associate[s], Z-Other means explained below or on the reverse side.) Remarks: JNM REV -*** Regulator's or Contact Person's Name, Phone Number, and Time and Date of Call: ____ Information from Contact Person: __ OVER CERTIFICATION AND STATEMENT OF SUFFICIENT BASIS FOR DETERMINATION THAT WASTE IS RADIOLOGICALLY ACCEPTABLE: If accepted, the waster described on this document has been determined to be low-activity radioactive waste based on the information available to Eavisocate at the time of acceptance as described in this document. Signature of Envirocare

Bret Rogers

From: Sent: To: Subject: Hawk, James M [hawkjm1@ports.usec.com] Tuesday, July 18, 2000 12:09 PM 'brogers@envirocareutah.com' FW: Revision 2 to 0691A-02 (Att C.1)

Attachment C. 11...

> -----Original Message- > From: Hawk, James M
 > Sent: Tuesday, July 18, 2000 1:37 PM
 > To: 'brogers@envirocareutah.com'
 > Subject: RE: Revision 2 to 0691A-02 (Att C.1) <<0691A-02 Rev 2 Attachment C.11.doc>> Bret, per our phone conversation
 earlier I am submitting a revised profile for waste stream 0691A-02 (att.
 C1). The upper range of all radionuclides listed previously were
 increased, however in all cases the numbers are well below Envirocare's > license limits. No new radionuclides were included nor were any other
 > changes made. Please be advised USEC Portsmouth Waste Management is in the process of revising how shipment manifests are generated in order to
 prevent the shipping of any waste which would exceed profile limits. Thank
 you for your assistance in these matters. Michael Hawk USEC Portsmouth > -----Original Message---- > From: Bret Rogers [SMTP:brogers@envirocareutah.com]
 > Sent: Tuesday, July 18, 2000 12:31 PM
 > To: Michael Hawk (E-mail) > Subject: Revision 2 to 0691A-02 (Att C.1) > Michael, > Please review the attachment and return email authorizing Envirocare to > amend profile (concentration ranges for Tc-99 and U-234). > Bret > > > > > Bret C. Rogers
 > Technical Services Director
 > Envirocare of Utah, Inc. > 46 W. Broadway, Suite 116
 > Salt Lake City, UT 84101
 > Voice: (801) 532-1330
 > Fax: (801) 537-7345 > http://www.envirocareutah.com << File: 0691A-02 Rev 2 Attachment C.1.doc > >>

Bret Rogers

From: Sent: To: Subject: Hawk, James M [hawkjm1@ports.usec.com] Friday, August 06, 1999 11:14 AM 'brogers@envirocareutah.com' snm exemption form change

1

Bret, on our scrap metal (0691-02) SNM Exemption Certification form page one, please change the item one check mark to indicate the second selection i.e. greater than or equal to 10% enrichment. If you have any questions email me at hawkjm1@ports.usec.com tnx Michael Hawk United States Enrichment Corporation Portsmouth Ohio

PAGE 1

To: Andy Drom Mike Hawk From: Date: 9/22/95

Gaseous Diffusion Plant Scrap Metal Radiological Portsmouth Analyses

Enclosed are the radiological results of ten smear samples taken on contaminated scrap metal at Portsmouth. The results are in picocurie per gram of smear material. To convert the results to meaningful numbers i.e. picocuries per gram of scrap metal the enclosed model (developed at Paducah) was employed. For example: The highest U-234 activity was measured at 90680 pCi/gram (of smear material). Using the model the U-234 activity per gram of scrap metal is calculated to be 759 pCi/gram or 800 pCi/gram, as reported on form EC-650 block 3.

Please call me if you have any questions.

have any questions. Derived \Rightarrow See next page. Faitor \Rightarrow See next page. Since a activity (rug) $\neq 8.37 \times 10^{-3} =$ Waste Activity (1g)

P.01

FAX:2151

NI. 321 001

DERIVATION OF ACTIVITIES FOR METAL SHIPMENTS

A metal waste model was developed that would maximize surface area and correlate to the density calculated from actual shipments to SEG. It was calculated that four inch diameter schedule ten scamless mild steel pipe met this requirement. A cross section of this pipe divided into 144 square inches equaled 9.057 cross sections per square foot.

CALCULATION OF DENSITY PER CUBIC FOOT:

9.057 pieces/ $\hbar^2 \propto 5.61$ pounds / 12 linear inches = 50.31 lbs/ \hbar^3

INNER AND OUTER SURFACE AREAS WERE CALCULATED:

inner surface area per piece equaled outer surface area per piece equaled total

160.60 square inches 169.65 squere inches 330.25 square inches

NUMBER OF SMEARS REQUIRED TO SMEAR TOTAL SURFACE AREA OF PIPE WAS CALCULATED:

330.25 in² X 9.057 pieces/ $t^3 = 2991.07$ in²/ tt^3 2991.07 in²/ tt^3 X 6.452cm²/in² = 19298.4cm²/ tt^3 19298.4cm²/ tt^3 / 100cm²/wipe = 193wipes/ tt^3

GRAMS PER CUBIC FOOT CALCULATIONS:

50.811bs/ft³ X 453.6z/lbs = 23047g/ft³

FORMULA FOR CALCULATING METAL ACTIVITIES:

8.37 XIO FACTOR Activity/ft³ Activity/wipe X 193wiges/ft³ = _ Activity/g Material Activity/It³ / 23047g/ft³ = e/Container = Activity/Container per Isotope Activity/g Material X Highest U234 = 90080pCex 8.37x10³ = 759.4pG; rub

09-22-1995 01:17PM

PORTSMOUTH

Lockheed Martin Utility Services ES&# Laporatory Analysis Results

Matl. I Subpro	Description: X ject Number: W	705 SCRAP ME MS	TAL SMEARS
Units	950601-076 WMS13671	950601-077 WMS13672	950601-078 WMS13673
pCi/g	1.2	1.5	<0.56
	SEE COMM	see comm	SEE COMM
	<.12	13.3	U.84
		1.5	<0.56
	-		<0,56
			305
			2. <u>61</u> 2344
			25,12 49
			1 22
۔ بنیار مخذ ہے تی بیناد ہیں میں ہے۔ ۔ بنیار مخذ ہے تی بیناد ہیں میں ہے۔		علم من حل جل حل نظر غذه منذ، بلند يسم بعد إسلام بالا حالة الله الله فا	علم هم منه بين منه بين منه بين علم بين يود. ير جدر علي فاد منه جد جد حد منه بين منه بين علي ور.
	950601-079 WMS13674	950601-080 WH913675	930601~081 WMS13576
			<1.08
E. and J	SHE COMM	SEE COMM	SEE COMM
pCi/g	1.36	<0,50	<0.78
pC1/g	0.47	<0.82	<1.08
pCi/g	3.05	<0.18	<0.2
		129	165
			1.23
pCi/g		03906	2502
	7.1 (* * * *		18.1% 104
pc1/g	930	11500	`≠ 73
Units	950601-082 WMS13677	950601-083 WMS13678	950601-084 WMS13679
bCi/a	<0.47		1.6
513	SEE COM		SEE COMM
pCi/g	2.64	<0.78	3.6
pci/g	<0.47	<0,53	1.5
pCi/g	2.03	0.43	4.2
	767		11668
	28.6		33
			36640 \2. ²⁷⁰ 1341
	15.11 1451		·
pc1/g	1269	- 387	<u> </u>
Units	950601-085 MH8136710		
pCi/g	<0,46		
	Subpro Units pCi/g	Subproject Number: W Units 950601-076 WMS13671 pCi/g 1.2 pCi/g 1.2 pCi/g 1.2 pCi/g 1.2 pCi/g 1.2 pCi/g 1.2 pCi/g 1.2 pCi/g 1.2 pCi/g 1.2 pCi/g 1.36 pCi/g 0.47 SHE COMM pCi/g 0.47 SHE COMM pCi/g 0.47 SHE COMM pCi/g 1.36 pCi/g 0.47 pCi/g 3.05 pCi/g 7351 pCi/g 5.14 320 pCi/g 2.64 pCi/g 2.64 pCi/g 2.64 pCi/g 2.64 pCi/g 39780 pCi/g 39780 pCi/g 1269 Units 950601-082	WMS13671 WMS13672 pCi/g 1.2 1.5 sEE COMM SEE COMM pCi/g 1.2 13.3 pCi/g 1.2 13.3 pCi/g 1.2 13.3 pCi/g 1.2 13.3 pCi/g 1.2 1.5 pCi/g 1.2 1.5 pCi/g 1.2 109 pCi/g 1.5 109 pCi/g 1.2 109 pCi/g 1.5 109 pCi/g 1.5 109 pCi/g 1.5 109 pCi/g 1.5 109 pCi/g 0.47 69 pCi/g 0.47 <0.82

09/22 '95 15:26	ID:WAS IPPNAGEMENT-MINUS	Fax:2151 -	PAGE 3
•	:	· .	POPTSMOUTH
Plutonium 238 Flutonium 239+240 Tc99 Th23J U234 U235 U238	pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	<.046 1.7 2169 8.0 11620 5.19. 426 1230	

09-22-1995 0i:17Pm

A. GENERATOR AND WASTE STREAM INFORMATION

GENERAL: Complete this form for one waste stream. Contact EnergySolutions at (801) 532-1330 if you have any questions while completing this form. Please indicate "N/A" if a category does not apply.

1. GENERATOR INFORMATION

Generator Name:	USEC/ Portsmouth	······	EPA ID #: <u>OHD987054723</u>
Generator Contact:	Elizabeth D. Lamerson		Title: Environmental Engineer
Mailing Address:	P.O. Box 628 M/S 9030		
	Piketon, OH 45661	Utah Site Ac	ccess Permit #: 0111000043
Phone	: <u>740-897-2812</u>	Fax:740-897-2143	Email: lamersoned@ports.usec.com
Contractor Name:	<u>N/A</u>	Location of Wast	e (City, State): Portsmouth
Name & Title of P	erson Completing Form: Eliza	beth Lamerson/Env. Eng. Phone: 74	0-897-2812 Email: lamersoned@ports.usec.com

2. WASTE STREAM INFORMATION

Waste Stream ID: 0691A-05 Waste Stream Name: Dirt/Filters/Coal/Carbon State of Origin: OH

Revision: ()	Date: 04/08/2011	Volume (ft'): TBD	Delivery Date: Ongoing

CHECK APPROPRIATE BOXES BELOW. Please verify the required forms requested below are completed and submitted with the Radioactive Waste Profile Record.

HAZARDOUS WASTE: Is the waste classified as hazardous waste as defined by 40 CFR 261?

- N 🖾 If NO, complete and attach the "Low-Level Radioactive Waste Certification Attachment".
- Y I If YES, complete and attach the "Hazardous Waste Certification Attachment" and check applicable box below. Has the waste been treated to meet applicable treatment standards per 40 CFR 268? Y N I Is the waste to be treated by EnergySolutions? Y N N

LOW-LEVEL RADIOACTIVE WASTE: Is the radioactive waste defined as Low-Level Radioactive Waste in accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985 or in DOE Order 435.1?

Y ⊠ If YES, a current copy of a LLRW Compact Export letter authorizing export must be submitted if applicable. This authorization is applicable for non-DOE LLRW (i.e., Mixed Waste, NORM/NARM, 11e.(2) material, and waste from DOE do not require a Compact Export Letter). N □ If NO, check appropriate box: NORM/NARM □ 11e.(2) Byproduct Material □ Other.

SPECIAL NUCLEAR MATERIAL: Does the waste stream contain material with uranium enriched in U-235 or any of the following radionuclides: U-233, Pu-236, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, Pu-243, or Pu-244?

Y 🕅 N 🗌 If Yes, complete and attach the "SNM Exemption Certification" form (EC-0230-SNM). Supporting statements, analytical results, and documentation must be included with the submittal.

PCB WASTE: Does the waste contain Polychlorinated Biphenyls (PCB) that are regulated for disposal per 40 CFR 761?

Y N M If Yes, complete and attach the "PCB Waste Certification" form (EC-98279).

ASBESTOS: Does the waste contain Asbestos Containing Material?

Y N N If Yes, Asbestos Containing Material must be managed in accordance with applicable federal regulations. Provide a detailed description of the waste containing asbestos in Section B.5 of the waste profile.

CL-WM-PR-001 F2 (EC-0230)

Revision 7

RADIOACTIVE WASTE PROFILE RECORD

B. WASTE PHYSICAL PROPERTIES & PACKAGE INFORMATION

1. GENERAL CHARACTERISTICS

Does the waste contain free liquids? Y \square N \boxtimes	If Yes, what is the percent of free liquid by waste	volume?%
	If Yes, is the liquid aqueous (water	-based)?Y 🗋 N 🛄
Does the waste contain absorbent? Y 🛛 N 🗋	Density range of the waste: 0.44 - 1.84 g/cc	ib/ft ³
List percentage of waste type by volume: Soil <u>90</u> %	Concrete & Metal% DAW 5%	Resins% Sludge <u>5</u> %

Other constituents and percentage by volume? N/A

2. MATERIAL SIZE

Gradation of Material: Indicate the percentage of waste material that would <u>pass through</u> the following grid sizes. For example, 95% of the material would pass through a 12" square, 90% passes through a 4" square, 80% passes through a 1" square, etc.

12" <u>98</u> % 4" <u>75</u> % 1" <u>60</u> % 1/4" <u>50</u> % 1/40" <u><1</u> %	5 1/200" <u><1</u> %
---	-------------------------

Does the waste stream contain oversize debris (i.e., no dimension < 10 inches and any dimension > 12 feet)? Y 🗌 N 🕅 If Yes, include a detailed description (i.e., weight, size, drawings, etc.) of the oversize debris in the narrative of Section B.5.

3. MOISTURE CONTENT

For soil or soil-like materials, please use Std. Proctor Method ASTM D-698 to determine the optimum moisture content. The waste material must not exceed 3 percentage points above optimum moisture upon arrival at EnergySolutions' disposal facility unless approved by EnergySolutions.

Optimum Moisture Content: N/A % at Maximum Dry Density (lb/ft3): N/A

Average Moisture Content: 46.63 % Moisture Content Range: 0.24% - 77.7%

4. WASTE SHIPPING & PACKAGING

Transportation Mode: 🛛 Highway 🖾 Rail

Shipping & Container Packages: (Check all that apply)	⊠ Drums* (≤ 85 gallons)	Boxes ($\leq 100 \text{ ft}^3$)	Boxes (≤ 100 ft³) ⊠ Soft-Sided Bags (≤	
(0.000,000 0.000 0.000,000,000,000,000,00	Intermodal	🛛 Sealand	Gondola**	Box Car

Other:

*Palletized drums are preferred by the disposal site. Please specify in the "Other" field if drums will not be palletized. **Dimensions of gondola railcars must be between 48 to 65 feet in length and 8.5 to 12.5 feet in height as measured from the top of the rail to the top of the railcar unless approved by EnergySolutions.

5. NARRATIVE DESCRIPTION AND HISTORY OF WASTE

Please submit a narrative description and history of the waste as an attachment to the Radioactive Waste Profile Record. This attachment should include the following:

- Process that generated the waste
- Waste material physical composition and characteristics
- Radiological and chemical characterization method
- Basis for determining manifested radionuclide concentrations
- Description and amounts of absorbents, if applicable
- · Basis of non-hazardous or hazardous waste determinations
- Treatment processes, if applicable
- Product information or Material Safety Data Sheets associated with the waste as applicable
- · Information requested in other sections of this form

Waste Stream ID: 0691A-05 Revision: 0

Date of Revision: 04/08/2011

C. RADIOLOGICAL INFORMATION

Obtain sufficient samples to adequately determine a range and weighted average of activity in the waste. Attach the gamma spectroscopy or radiochemistry data supporting the radionuclide information listed below.

- 1. Does the waste material contain accessible surfaces with contact dose rates greater than 500 mR/hr? Y 🛄 N 🖂
- 2. Does the waste material contain any of the following isotopes: Aluminum-26, Berkelium-247, Calcium-41, Californium-250, Chlorine-36, Rhenium-187, Terbium-157, or Terbium-158? Y 🗌 N 🔀
- 3. Please list the following information for each isotope associated with the waste. Provide an explanation in the narrative description of Section B.5 if the waste contains localized "hot spots" or elevated concentrations that significantly exceed the upper concentration range. If additional space is needed, provide an Attachment C.3 to this profile record formatted as below.

Isotope	Manifested Upper Concentration (pCi/g)	Weighted Avg. per Container (pCi/g)	Isoto pe	Manifested Upper Concentration (pCi/g)	Weighted Avg. per Container (pCi/g)
Am-241	100	10			
Np-237	300	30			
Pu-238	0.04	0.04			
Pu-239/240	0.05	0.05			
Th-228	300	10			
Th-230	2.475	0.43			
Th-231	1.196	0.526			
Th-232	300	10			
Th-234	19.14	1.652			
Potal U	57:49	<u></u>	5/12/11		
<u>U-232</u>	0.0718	0.0633		·····	
U-233/234	38000	100			
U-235	<u>-1190-190</u>	100 5/12/4 10	·		
U-236	0.3094	0.0854			
U-238	16500	100			······································
Ac-228	6.618	6.2665			
Bi-214	4.654	4.319		······································	
Pb-210	6.512	5.5665			
Pb-212	3.626	3.626	<u>*</u>		······
<u>Nb-95</u>	1.152	1.152			
<u>K-40</u>	70.38	50.37		·	
Ra-226	300	10	<u> </u>		
Ra-228	6.618	6.2665		······································	
<u> </u>	401	148.3476			
Ac-227	300	10			
U-Dep	18000	500			
Th-229	100	10	·······		
<u>Cs-137</u>	100	10			
Pa-231	100	10			
<u>Tc-99</u>	200		· · · · · · · · · · · · · · · · · · ·		
5/13					

EL 5/4/1

0691A-05 Rev 0

CL-WM-PR-001 F2 (EC-0230) Revision 7

RADIOACTIVE WASTE PROFILE RECORD

HAZARDOUS WASTE CERTIFICATION ATTACHMENT

This form is required only if the checkbox for Hazardous Waste on page one has been checked YES. Otherwise, complete the Low-Level Radioactive Waste Certification Attachment instead of this attachment. EnergySolutions may waive the chemical laboratory analyses if the material is not amenable to chemical sampling and analysis (e.g., debris items including metal pieces, concrete, plastic, etc.). Justification for waiving the chemical analyses must be provided in Section B.5.

D. MINIMUM REQUIRED CHEMICAL ANALYSIS

The following parameters must be analyzed by a Utah or NELAC certified laboratory. Typical SW-846 analytical methods have been listed. Other approved methods are acceptable. Attach the most recent or applicable chemical analytical results representing the waste.

1. GENERAL CHEMICAL PARAMETERS

SW-846 Analytical Methods

pH (Liquid only): N/A Method 9045 Please provide the range of the pH analyses performed.

PFLT: Pass _____ Pass / Fail Method 9095 Not applicable for liquid radioactive waste streams.

Analyze the waste for volatile or semi-volatile constituents (Methods 8260 & 8270), and attach the data.

Any distinguishing color or odor? Y 🗋 N 🖾 If Yes, color; ____; odor; ____;

2. HAZARDOUS WASTE CODES AND TREATMENT STANDARDS (40 CFR 268)

List all hazardous waste codes and treatment standards. Include hazardous waste codes that have been removed through treatment and indicate "Former" in the second column. Worst-case concentrations only need to be provided for concentration based treatment standards. If additional space is needed, provide an Attachment D.2 to this profile record formatted as below. Include a description of hazardous waste determinations and any variances, exclusions, etc. in the narrative requested in Section B.5.

EPA HW Codes	Description, Constituent of Concern, or Subcategory	Treatment Standard (mg/kg unless noted as mg/L TCLP or Technology Code)	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)
N/A	N/A	N/A	N/A
<u></u>			
<u></u>			
	· · · · · · · · · · · · · · · · · · ·		
·	·		<u></u>
	· · · · · · · · · · · · · · · · · · ·		<u> </u>
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
••••			
<u></u>			
<u> </u>			

CL-WM-PR-001 F2 (EC-0230) Revision 7

3. UNDERYLYING HAZARDOUS CONSTITUENTS (40 CFR 268.48)

List all underlying hazardous constituents (UHCs) and treatment standards. Include UHCs that have been removed through treatment. Worst-case concentrations only need to be provided for concentration based treatment standards. If additional space is needed, provide an Attachment D.3 to this profile record formatted as below.

Underlying Hazardous Constituents	Treatment Standard (mg/kg unless noted as mg/L TCLP or Technology Code)	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)
N/A	N/A	N/A
······································		
		

D. 4. OTHER CHEMICAL CONSTITUENTS

List any other chemical constituents of concern (e.g., PCBs, chelating agents, etc.) and worst-case concentrations. If additional space is needed, provide an Attachment D.4 to this profile record formatted as below.

Other Chemical Constituents	Worst Case Concentration (mg/kg unless noted as mg/L TCLP)	Other Hazardous Constituents	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)
N/A	<u>N/A</u>	N/A	N/A

5. LABORATORY CERTIFICATION INFORMATION

UTAH or NELAC CERTIFIED

The Utah or NELAC certified laboratory holds a current certification for the applicable chemical test methods insofar as such official certifications are given. Please provide a copy of the laboratory's current certification letter for each parameter analyzed and each method used for chemical analyses required by this form.

OTHER LABORATORY CERTIFICATION (Describe below)

6. CERTIFICATION

I certify that sample results representative of the waste described in this profile were or shall be obtained using state- and EPAapproved analytical methods. I also certify that where necessary representative samples were or shall be provided to EnergySolutions and to qualified laboratories for the analytical results reported herein. I further certify that the waste described in this record is not prohibited from land disposal in 40 CFR 268 (unless prior arrangements are made for treatment at EnergySolutions) and that all applicable treatment standards are clearly indicated on this form. I also certify that the information provided on this form is complete, true, and correct and is accurately supported and documented by any laboratory testing as required by EnergySolutions. I certify that the results of any said testing have been submitted to EnergySolutions. I certify that the waste does not contain any prohibited items listed in EnergySolutions' Radioactive Material License or RCRA Permit.

Title: Envinnmental Engineer Date: Generator's Signature:

Hazardous Waste Certification Attachment

LOW-LEVEL RADIOACTIVE WASTE CERTIFICATION ATTACHMENT

This form is required only if the checkbox for Hazardous Waste on page one has been checked No. Otherwise, complete the Hazardous Waste Certification Attachment instead of this attachment. EnergySolutions may waive the chemical laboratory analyses if the material is not amenable to chemical sampling and analysis (e.g., debris items including metal pieces, concrete, plastic, etc.). Justification for waiving the chemical analyses must be provided in Section B.5.

D. MINIMUM REQUIRED CHEMICAL ANALYSIS

The following parameters must be analyzed by a Utah or NELAC certified laboratory. Typical SW-846 analytical methods have been listed. Other approved methods are acceptable. Attach the most recent or applicable chemical analytical results representing the waste.

1. GENERAL CHEMICAL PARAMETERS

SW-846 Analytical Methods

PFLT: Pass / Fail Method 9095 Not applicable for liquid radioactive waste streams.

2. 40 CFR 261.24 Table 1 - Contaminants of Toxicity Characteristic

Metals: Methods 6010 & *7470 X TCLP (mg/L) or Total (mg/kg)

Metals: Methods 0010 &	1470 M		Kg)		
Arsenic	0.205	Chromium	0.056	Selenium_	0.198
Barium_	0.252	Lead	0.235	Silver	ND
Cadmium	0.014	*Mercury	0.00088		
Organics, Pesticides/Herb	icides: Me	thods 8081/*8151 🛛 TCLP (mg/L) or] Total (mg/kg)	
Endrin	ND	Toxaphene	ND	Chlordane	ND
Lindane	_ND	*2,4-D_	ND	Heptachlor_	ND
Methoxychlor	ND	*2,4,5-TP Silvex	ND		
Organics, Semi-Volatile: N	Aethod 827	0 🛛 TCLP (mg/L) or 🗌 Tot	al (mg/kg)		
o-Cresol	ND	Hexachlorobenzene	ND	Pentachlorophenol_	ND
m-Cresol	ND	Hexachlorobutadiene	ND	Pyridine_	ND
p-Cresol	ND	Hexachloroethane	ND	2,4,5-Trichlorophenol_	ND
Total Cresol	ND	Nitrobenzene	ND	2,4,6-Trichlorophenol	ND
2,4-Dinitrotoluene	ND				
Organics, Volatile: Metho	d 8260 🛛	TCLP (mg/L) or Total (mg	/kg)		
Benzene	ND	1,4-Dichlorobenzene	0.05	Methyl ethyl keytone_	0.05
Carbon Tetrachloride	ND	1,2-Dichloroethane	ND	Tetrachloroethylene_	0.05
Chlorobenzene	0.05	1,1-Dichloroethylene_	ND	Trichloroethylene_	ND
Chloroform_	ND	Vinyl Chloride	ND		

3. Was the waste at the point of generation a RCRA hazardous waste per 40 CFR 261? Y 🔲 N 🔀

If Yes, list former hazardous waste codes and former underlying hazardous constituents. List worst-case concentrations for each hazardous constituent. If additional space is needed, provide an Attachment D.3 to this profile record formatted as below. Attach the most recent chemical analytical results demonstrating compliance with applicable treatment standards. If No, indicate "N/A" in Section D.3 below.

0691A-05 Rev 0

Low-Level Radioactive Waste Certification Attachment

CL-WM-PR-001 F2 (EC-0230) Revision 7

Worst Case

RADIOACTIVE WASTE PROFILE RECORD

Treatment Standard

D.	3.	Former EPA HW Codes or Underlying Hazardous Constituents	(mg/kg unless noted as mg/L TCLP or Technology Code)	Concentration (mg/kg unless noted as mg/L TCLP)

4. OTHER CHEMICAL CONSTITUENTS

List any other chemical constituents of concern (e.g., PCBs, chelating agents, etc.) and worst-case concentrations. If additional space is needed, provide an Attachment D.4 to this profile record formatted as below.

Other Chemical Constituents	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)	Other Hazardous Constituents	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)
Aroclor 1262	2600 ug/kg	N/A	N/A
Beryllium	0.734 mg/kg		
		······	·

5. LABORATORY CERTIFICATION

UTAH or NELAC CERTIFIED

The Utah or NELAC certified laboratory holds a current certification for the applicable chemical test methods insofar as such official certifications are given. Please provide a copy of the laboratory's current certification letter for each parameter analyzed and each method used for chemical analyses required by this form.

OTHER LABORATORY CERTIFICATION (Describe below)

6. CERTIFICATION

I certify that sample results representative of the waste described in this profile were or shall be obtained using state- and EPAapproved analytical methods. I also certify that where necessary representative samples were or shall be provided to EnergySolutions and to qualified laboratories for the analytical results reported herein. I further certify that the waste described in this record is not prohibited from land disposal in 40 CFR 268 (unless prior arrangements are made for treatment at EnergySolutions) and that all applicable treatment standards are clearly indicated on this form. I also certify that the information provided on this form is complete, true, and correct and is accurately supported and documented by any laboratory testing as required by EnergySolutions. I certify that the results of any said testing have been submitted to EnergySolutions. I certify that the waste does not contain any prohibited items listed in EnergySolutions' Radioactive Material License.

Generator's Signature:

Title: EnvironmentalEyiner Date:

ATTACHMENT B.5 PHYSICAL PROPERTIES

Generator Name: USEC/Por	tsmouth	Waste Stream ID:	0691A-05
Revision #: 0	Revision Date:		

DIRT/COAL/CARBON WASTE STREAM

The Dirt/Coal/Carbon waste stream originates in the Portsmouth Gaseous Diffusion Plant (PORTS) X-700 and X-342 Buildings. The dirt and coal were generated in the X-700 Building. The dirt was removed from a large dip tank that was used to clean filters from the process buildings. The liquid was removed from the tank and the solids on the bottom of the tank were allowed to dry and were placed in drums. The coal is generated from filtering media from the Biodenitrification system as associated with our NPDES permit. The carbon was generated in the X-342 Building. It was generated from carbon blades in a fluorine generator that were cleaned and replaced. The carbon was contained in drums. The waste stream also contains small amounts of Dry Active Waste (DAW) that was used in cleanup, sampling, and operation of the process.

The containers of Dirt/Coal/Carbon were sampled at the point of generation. These containers were resampled and analyzed for the purpose of characterization and this profile. The results were found to be non-hazardous.

The waste will not contain free liquids. Loose absorbent material may be added to the waste to mitigate the risk of free liquids >1% in waste containers that have the potential for free liquids/condensate.

Radiological and Chemical Characterization Requirements and Methods:

The primary objective of the characterization sampling design was to achieve high confidence that at least a high percentage of the items in population are acceptable. A hypergeometric model with a 95%/90% confidence interval was used to characterize this waste stream. The sample size was calculated using a similar method to Bowen and Bennett 1988 (*Statistical Methods for Nuclear Material Management*, NUREG/CR-4604, US Nuclear Regulatory Commission, Washington, DC). Twenty-two random samples were taken to meet the 95/90 confidence interval.

Chemical Characterization

Ohio Administrative Code (OAC) Section 3745-51 *et seq* and Title 40 Code of Federal Regulations (CFR) § 261 *et seq* clearly define the process for identifying a waste based on characteristics. OAC 3745-51-20 (40 CFR § 261.24) states:

"A waste is a hazardous waste if it exhibits any of the characteristics identified in rules 3745-51-20 (40 CFR § 261.20) to 3745-51-24 (40 CFR § 261.24) of the Administrative Code."

To determine the regulatory status of this waste stream the following requirements were met:

- 1. Collect a representative sample.
- 2. Analyze the sample using TCLP Method 1311 in "Test Methods for the Evaluation of Solid Waste, Physical/Chemical Methods," EPA Publication SW-846.
- 3. Compare the results of the analysis to OAC 3745-51-24, Table 1 (40 CFR § 261.24, Table 1).

ATTACHMENT B.5 PHYSICAL PROPERTIES

4. If the contaminate is statistically (as defined by Chapter Nine of SW-846) at or above the regulatory limit outlined in Table 1 of OAC 3745-51-24 (40 CFR § 261.24), then the waste is characteristically hazardous for that contaminant and must be managed as such.

Also, waste may be characteristically hazardous if it meets the criteria outlined in OAC 3745-51-21 (40 CFR § 261.21) to OAC 3745-51-23 (40 CFR § 261.23). OAC 3745-51-30 (40 CFR § 261.30) clearly define the process for identifying a waste based on a listing. OAC 3745-51-30 (A) [40 CFR § 261.30 (a)] states:

"A waste is a hazardous waste if it is listed as such in rules 3745-51-30 (§ 261.30) to 3745-51-35 (§ 261.35) of the Administrative Code."

To determine the regulatory status of this waste stream for listed hazardous waste, the following requirements were met:

- 1. Identify the generating process or identify the waste as derived from an already listed hazardous waste.
- 2. Identify the constituents, which may cause the waste to be classified as hazardous.
- 3. Compare the waste descriptions provided in OAC 3745-51-31 (40 CFR § 261.31) to OAC 3745-51-33 (40 CFR § 261.33).
- 4. If the process and constituents are listed in OAC 3745-51-31 (40 CFR § 261.31 to OAC 3745-51-33 (40 CFR § 261.33), then the waste is listed as hazardous and is managed as such.

This waste stream is not regulated for disposal as a RCRA hazardous waste as defined in 40 CFR 261. This waste is not regulated as TSCA (PCB) waste as defined in 40 CFR 761.

Radiological Characterization

Radiological characterization is performed through a combination of laboratory data and a Non-Destructive Analysis (NDA) method. Twenty-two random samples of the total population were analyzed to provide the radiological characterization data to adequately determine a range and concentration of activity in the waste.

Basis for Determining Manifested Radionuclide Concentrations

Radiological characterization of outgoing shipments is performed through a combination of laboratory data and a Non-Destructive Analysis (NDA) method. The radiological laboratory results were used to establish scaling factors which are then synchronized with the NDA results and divided by net weight in the container to develop manifested nuclide concentrations. The SNM is typically in the form of dry non-visible uranium dust made up of oxide compounds, primarily UO_2F_2 . The SNM is essentially distributed homogenously throughout the waste.

Typically the waste will be packaged for transportation and disposal in drums or metal boxes. Optional packages include soft-sided bags, intermodal containers and sea-land containers. Notification will be provided prior to shipping if any optional containers are to be utilized.

SPECIAL NUCLEAR MATERIAL EXEMPTION CERTIFICATION

The Special Nuclear Material Exemption Certification form must be completed and signed by each generator certifying to the following conditions. Please attach this form and all required information to the Radioactive Waste Profile Record (EC-0230). A completed and signed copy of this form must also accompany each waste manifest.

Waste Stream ID: 0691A-05

Manifest No. 0691A-05

1. Check applicable category below for the waste stream:

	1	Uranium Enrichment Percent	Weight Percent of Chemicals in Condition 2c	Weight Percent of Materials in Condition 2d	U-235 Concentration (pCi/g)	Mcasurement Uncertainty* (pCi/g)		
Х	\boxtimes	< 10 %	≤ 20 %	<u>≤1%</u>	≤ 1,900	≤ 285		
*	\boxtimes	Unlimited	≤ 20 %	≤1 %	≤ 1,190	≤ 179		
		Unlimited	Sum of both \leq 45 %	Sum of both \leq 45 % of waste by weight		≤ 102		
		Unlimited	Unlimited	Unlimited	≤26	≤ 10		
		Not Applicable - Enriched U-235 is not present in the waste.						

* A concentration value is used for the maximum measurement uncertainty limit rather than a percentage value to

allow greater flexibility for generators with waste having very low SNM concentrations. # Some of the containers, will exceed 10% enrichment, but the concentration will not exceed 1,190 pCilg. U-235 for those containers. 2. Certify to the following requirements by checking each box:

- - a. Concentrations of SNM in individual waste containers do not exceed the applicable values listed in the \boxtimes above table and SNM isotope concentrations listed in Table 1.
 - b. The SNM is homogeneously distributed throughout the waste or the SNM concentrations in any M contiguous mass of 600 kilograms (1,323 lbs) do not exceed on average the specified limits. (Based on process knowledge or testing).
 - c. Except as allowed by Condition 1, the waste does not contain "pure forms" of chemicals containing \square carbon, fluorine, magnesium, or bismuth in bulk quantities (e.g., a pallet of drums, a B-25 box). By "pure forms," it is meant that mixtures of the above elements such as magnesium oxide, magnesium carbonate, magnesium fluoride, bismuth oxide, etc. do not contain other elements. (Based on process knowledge or testing).
 - d. Except as allowed by Condition 1, the waste does not contain total quantities of beryllium, \boxtimes hydrogenous material enriched in deuterium, or graphite above one percent of the total weight of the waste. (Based on process knowledge, physical observations, or testing).
 - e. Waste packages do not contain highly soluble forms of uranium greater than 350 grams of uranium- \boxtimes 235 or 200 grams of uranium-233. If the waste contains mixtures of U-233 and U-235, the waste meets the sum of the fractions rule. Highly soluble forms of uranium include, but are not limited to: uranium sulfate, uranyl acetate, uranyl chloride, uranyl formate, uranyl fluoride, uranyl nitrate, uranyl potassium carbonate, and uranyl sulfate. (Based on process knowledge or testing).
 - f. For containers of liquid waste with more than 600 kilograms of waste, the total activity (pCi) of SNM in the manifested container does not exceed the SNM concentration in the above table or Table 1 times 600 kilograms of waste (based on process knowledge or testing). For example, the maximum activity of Pu-239 in any manifested container of liquid waste is 6.0 mCi (6.0E+09 pCi) as shown below:

$$10,000 \frac{\text{pCi}}{\text{g}} \times 600,000 \text{g} = 6.0 \text{X} 10^9 \text{ pCi} = 6.0 \text{ mCi Pu} - 239$$

SPECIAL NUCLEAR MATERIAL EXEMPTION CERTIFICATION

Radionuclide	Maximum Concentration (pCi/g)	Measurement Uncertainty (pCi/g)	Radionuclide	Maximum Concentration (pCi/g)	Measurement Uncertainty (pCi/g)
U-233	75,000	11,250	Pu-241	350,000	50,000
Pu-236	500	75	Pu-242	10,000	1,500
Pu-238	10,000	1,500	Pu-243	500	75
Pu-239	10,000	1,500	Pu-244	500	75
Pn-240	10 000	1 500			

Table 1. Maximum concentrations of SNM in individual waste containers (refer to above table for U-235 limits).

- 3. Indicate that the following information is attached to the Radioactive Waste Profile Record by checking each box. (Note: Only the two-page Special Nuclear Material Exemption Certification form needs to be included with each manifest).
 - a. Provide a description of how the waste was generated, list the physical forms in the waste, and identify the uranium chemical composition.
 - b. Provide a general description of how the waste was characterized (including the volumetric extent of the waste, and the number, location, type, and results of any analytical testing), the range of SNM concentrations, and the analytical results with error values used to develop the concentration ranges.
 - c. Describe the process by which the waste was generated showing that the spatial distribution of SNM must be uniform, or other information supporting spatial distribution.
 - d. Describe the methods to be used to determine the concentrations on the manifests. These methods could include direct measurement and the use of scaling factors. Describe the uncertainty associated with sampling and testing used to obtain the manifest concentrations.
- 4. Generator's certification of compliance with the SNM exemption: I certify that the information provided on this form is complete, true, and correct and is based on process knowledge, physical observations, or approved laboratory testing. I also certify that sampling and radiological testing of waste containing SNM was performed in accordance with EnergySolutions' Radioactive Material License and that any supporting documentation and analytical results have been submitted to EnergySolutions.

Elizabeth Lamerson **Environmental Engineer** norized Signature Printed Name Title

A. GENERATOR AND WASTE STREAM INFORMATION

GENERAL: Complete this form for one waste stream. Contact EnergySolutions at (801) 532-1330 if you have any questions while completing this form. Please indicate "N/A" if a category does not apply.

1. GENERATOR INFORMATION

Generator Name:	USEC/Portsmouth	······		EPA ID #:_	OHD987	054723
Generator Contact	Elizabeth D. Lamerson			Title:	Environi	nental Engineer
Mailing Address:	PO Box 628,M/S9030					
	Piketon, OH 45661		Utah Site	Access Permit #:	0111000	043
Phone	: <u>740-897-2812</u>	Fax: 740 897 2143		Email:	lamerson	ed@ports.used.com
Contractor Name:	<u>NA</u>		Location of W	aste (City, State):	Portsmou	nth, OH
Name & Title of P	erson Completing Form:	Elizabeth D. Lamerson/	Phone:	740-897-2812	Email:	lamersoned@ports.used.com
2. WASTE STREAM INFORMATION						
Waste Stream I	D: 0691A-01 Waste	Stream Name: DAW				State of Origin: OH
Revisio	n: 6 Date: 10)/5/2010 Volume	(ft ³): 200000_	_	Deliv	ery Date: on-going

CHECK APPROPRIATE BOXES BELOW. Please verify the required forms requested below are completed and submitted with the Radioactive Waste Profile Record.

HAZARDOUS WASTE: Is the waste classified as hazardous waste as defined by 40 CFR 261?

- N If NO, complete and attach the "Low-Level Radioactive Waste Certification Attachment".
- Y I If YES, complete and attach the "Hazardous Waste Certification Attachment" and check applicable box below. Has the waste been treated to meet applicable treatment standards per 40 CFR 268? Y N N Is the waste to be treated by EnergySolutions? Y N N

LOW-LEVEL RADIOACTIVE WASTE: Is the radioactive waste defined as Low-Level Radioactive Waste in accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985 or in DOE Order 435.1?

- Y X If YES, a current copy of a LLRW Compact Export letter authorizing export must be submitted if applicable. This authorization is applicable for non-DOE LLRW (i.e., Mixed Waste, NORM/NARM, 11e.(2) material, and waste from DOE do not require a Compact Export Letter).
- N If NO, check appropriate box: NORM/NARM I 11e.(2) Byproduct Material Other:

SPECIAL NUCLEAR MATERIAL: Does the waste stream contain material with uranium enriched in U-235 or any of the following radionuclides: U-233, Pu-236, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, Pu-243, or Pu-244?

Y 🛛 N 🗌 If Yes, complete and attach the "SNM Exemption Certification" form (EC-0230-SNM). Supporting statements, analytical results, and documentation must be included with the submittal.

PCB WASTE: Does the waste contain Polychlorinated Biphenyls (PCB) that are regulated for disposal per 40 CFR 761?

Y I N I If Yes, complete and attach the "PCB Waste Certification" form (EC-98279).

ASBESTOS: Does the waste contain Asbestos Containing Material?

Y 🖾 N 🗐 If Yes, Asbestos Containing Material must be managed in accordance with applicable federal regulations. Provide a detailed description of the waste containing asbestos in Section B.5 of the waste profile.

1. GENERAL CHARACTERISTICS

Does the waste contain free liquids? Y	N 🛛	If Yes, what is the percent of free	liquid by waste vo	olume? <u>N/A</u> %	
		If Yes, is the liquid	l aqueous (water-b	nased)?Y 🗋 N 🗌]
Does the waste contain absorbent? Y 🛛 N		Density range of the waste: 2-25	g/cc 🗖	lb/ft ³ 🔀	
List percentage of waste type by volume: Soi	il <u>5</u> %	Concrete & Metal 5%	DAW 89%	Resins%	Sludge%
Other constituents and percentage by volume?	1% glass				

2. MATERIAL SIZE

Gradation of Material: Indicate the percentage of waste material that would pass through the following grid sizes. For example, 95% of the material would pass through a 12" square, 90% passes through a 4" square, 80% passes through a 1" square, etc.

12" <u>50</u> % 4" <u>40</u> %	1" 10 %	1/4" <u><1</u> %	1/40" <u><1</u> %	1/200" <u>≤1</u> %
--------------------------------	---------	---------------------	----------------------	--------------------

Does the waste stream contain oversize debris (i.e., no dimension < 10 inches and any dimension > 12 feet)? Y 🖾 N 🖾 If Yes, include a detailed description (i.e., weight, size, drawings, etc.) of the oversize debris in the narrative of Section B.5.

3. MOISTURE CONTENT

For soil or soil-like materials, please use Std. Proctor Method ASTM D-698 to determine the optimum moisture content. The waste material must not exceed 3 percentage points above optimum moisture upon arrival at EnergySolutions' disposal facility unless approved by EnergySolutions.

Optimum Moisture Content: N/A % at Maximum Dry Density (lb/ft³): N/A

Average Moisture Content: N/A % Moisture Content Range: N/A% - N/A%

4. WASTE SHIPPING & PACKAGING

Transportation Mode: 🛛 Highway 🖾 Rail

🛛 Intermodal 🛛 🖾 Sealand 🔄 🖾 Gondola** 🔤 Box Car

Other:

*Palletized drums are preferred by the disposal site. Please specify in the "Other" field if drums will not be palletized.

**Dimensions of gondola railcars must be between 48 to 65 feet in length and 8.5 to 12.5 feet in height as measured from the top of the rail to the top of the railcar unless approved by EnergySolutions.

5. NARRATIVE DESCRIPTION AND HISTORY OF WASTE

Please submit a narrative description and history of the waste as an attachment to the Radioactive Waste Profile Record. This attachment should include the following:

- Process that generated the waste
- Waste material physical composition and characteristics
- Radiological and chemical characterization method
- Basis for determining manifested radionuclide concentrations
- Description and amounts of absorbents, if applicable
- Basis of non-hazardous or hazardous waste determinations
- Treatment processes, if applicable
- Product information or Material Safety Data Sheets associated with the waste as applicable
- Information requested in other sections of this form

EC-0230 Revision 7

ENERGYSOLUTIONS

EC-0230 Revision 7

RADIOACTIVE WASTE PROFILE RECORD

Waste Stream ID: 0691A-01 Revision: 6

Date of Revision: 10/5/10

C. RADIOLOGICAL INFORMATION

Obtain sufficient samples to adequately determine a range and weighted average of activity in the waste. Attach the gamma spectroscopy or radiochemistry data supporting the radionuclide information listed below.

- 1. Does the waste material contain accessible surfaces with contact dose rates greater than 500 mR/hr? Y 🖾 N 🕅
- 2. Does the waste material contain any of the following isotopes: Aluminum-26, Berkelium-247, Calcium-41, Californium-250, Chlorine-36, Rhenium-187, Terbium-157, or Terbium-158? Y □ N ⊠
- 3. Please list the following information for each isotope associated with the waste. Provide an explanation in the narrative description of Section B.5 if the waste contains localized "hot spots" or elevated concentrations that significantly exceed the upper concentration range. If additional space is needed, provide an Attachment C.3 to this profile record formatted as below.

Isotope	Manifested Upper Concentration (pCi/g)	Weighted Avg. per Container (pCi/g)	Isotope	Manifested Upper Concentration (pCi/g)	Weighted Avg. per Container (pCi/g)
U-234	37970	2844	Tc-99	8000	750
U-235	858	79	U-238	16500	480
U-236	35	35	Pu-240	12	3.7
Pu-239	12	3.7	Th-230	25	<1
Pu-238	12	3.7	Np-237	100	10
Am-241	20	9.1	Udep	18000	500
<u>CS-137</u>	100	10	Np-237	100	10
Ra-226	100	10	Th-228	100	10
Th-229	100	10	Th-232	100	10
Ac-227	100	10	Pa-231	100	10
				<u>, , , , , , , , , , , , , , , , , </u>	
					·····
		<u> </u>	<u></u>		
·····					
·					·
					
					·
					<u> </u>
					
**************************************					<u></u>
,					
·					
			······································		

0691A-01 Rev 6

ENERGYSOLUTIONS

RADIOACTIVE WASTE PROFILE RECORD

HAZARDOUS WASTE CERTIFICATION ATTACHMENT

This form is required only if the checkbox for Hazardous Waste on page one has been checked YES. Otherwise, complete the Low-Level Radioactive Waste Certification Attachment instead of this attachment. EnergySolutions may waive the chemical laboratory analyses if the material is not amenable to chemical sampling and analysis (e.g., debris items including metal pieces, concrete, plastic, etc.). Justification for waiving the chemical analyses must be provided in Section B.5.

D. MINIMUM REQUIRED CHEMICAL ANALYSIS

The following parameters must be analyzed by a Utah or NELAC certified laboratory. Typical SW-846 analytical methods have been listed. Other approved methods are acceptable. Attach the most recent or applicable chemical analytical results representing the waste.

1. GENERAL CHEMICAL PARAMETERS

SW-846 Analytical Methods

pH (Liquid only):_____ Method 9045 Please provide the range of the pH analyses performed.

PFLT: _____Pass / Fail Method 9095 Not applicable for liquid radioactive waste streams.

Analyze the waste for volatile or semi-volatile constituents (Methods 8260 & 8270), and attach the data.

Any distinguishing color or odor? Y 🗌 N 🛛 If Yes, color: _____; odor: _____;

2. HAZARDOUS WASTE CODES AND TREATMENT STANDARDS (40 CFR 268)

List all hazardous waste codes and treatment standards. Include hazardous waste codes that have been removed through treatment and indicate "Former" in the second column. Worst-case concentrations only need to be provided for concentration based treatment standards. If additional space is needed, provide an Attachment D.2 to this profile record formatted as below. Include a description of hazardous waste determinations and any variances, exclusions, etc. in the narrative requested in Section B.5.

EPA HW Codes	Description, Constituent of Concern, or Subcategory	Treatment Standard (mg/kg unless noted as mg/L TCLP or Technology Code)	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)

0691A-01 Rev 6

Hazardous Waste Certification Attachment

ENERGYSOLUTIONS---

3. UNDERYLYING HAZARDOUS CONSTITUENTS (40 CFR 268.48)

List all underlying hazardous constituents (UHCs) and treatment standards. Include UHCs that have been removed through treatment. Worst-case concentrations only need to be provided for concentration based treatment standards. If additional space is needed, provide an Attachment D.3 to this profile record formatted as below.

Underlying Hazardous Constituents	Treatment Standard (mg/kg unless noted as mg/L TCLP or Technology Code)	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)
		· · · · · · · · · · · · · · · · · · ·

D. 4. OTHER CHEMICAL CONSTITUENTS

List any other chemical constituents of concern (e.g., PCBs, chelating agents, etc.) and worst-case concentrations. If additional space is needed, provide an Attachment D.4 to this profile record formatted as below.

Other Chemical Constituents	Worst Case Concentration (mg/kg unless noted as mg/L TCLP)	Other Hazardous Constituents	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)
	·		
	·		

5. LABORATORY CERTIFICATION INFORMATION

UTAH or NELAC CERTIFIED

The Utah or NELAC certified laboratory holds a current certification for the applicable chemical test methods insofar as such official certifications are given. Please provide a copy of the laboratory's current certification letter for each parameter analyzed and each method used for chemical analyses required by this form.

OTHER LABORATORY CERTIFICATION (Describe below)

6. CERTIFICATION

I certify that sample results representative of the waste described in this profile were or shall be obtained using state- and EPAapproved analytical methods. I also certify that where necessary representative samples were or shall be provided to EnergySolutions and to qualified laboratories for the analytical results reported herein. I further certify that the waste described in this record is not prohibited from land disposal in 40 CFR 268 (unless prior arrangements are made for treatment at EnergySolutions) and that all applicable treatment standards are clearly indicated on this form. I also certify that the information provided on this form is complete, true, and correct and is accurately supported and documented by any laboratory testing as required by EnergySolutions. I certify that the results of any said testing have been submitted to EnergySolutions. I certify that the waste does not centary any publicited items listed in EnergySolutions' Radioactive Material License or RCRA Permit.

the waste does not contain any prohibited items listed in Energy Solutions' Radioactive Material License or RCRA Per	nit.
Generator's Signature: MAN	110
	/
V	

Hazardous Waste Certification Attachment

LOW-LEVEL RADIOACTIVE WASTE CERTIFICATION ATTACHMENT

This form is required only if the checkbox for Hazardous Waste on page one has been checked No. Otherwise, complete the Hazardous Waste Certification Attachment instead of this attachment. EnergySolutions may waive the chemical laboratory analyses if the material is not amenable to chemical sampling and analysis (e.g., debris items including metal pieces, concrete, plastic, etc.). Justification for waiving the chemical analyses must be provided in Section B.5.

D. MINIMUM REQUIRED CHEMICAL ANALYSIS

The following parameters must be analyzed by a Utah or NELAC certified laboratory. Typical SW-846 analytical methods have been listed. Other approved methods are acceptable. Attach the most recent or applicable chemical analytical results representing the waste.

1. GENERAL CHEMICAL PARAMETERS

SW-846 Analytical Methods

PFLT: Pass Pass / Fail Method 9095 Not applicable for liquid radioactive waste streams.

2. 40 CFR 261.24 Table 1 - Contaminants of Toxicity Characteristic

Metals: Methods 6010 & *7470 X TCLP (mg/L) or Total (mg/kg)

.180	Selenium 0.76
23	
	Silver 0.084
0.01	
/L) or 🔲 Total (mg/kg)	
VA	Chlordane N/A
<u>005 </u>	leptachlor <u>N/A</u>
<u> </u>	
mg/kg)	
N/A Pentrachl	lorophenol <u>N/A</u>
N/A	Pyridine N/A
<u>N/A</u> 2,4,5-Trichl	lorophenol <u>N/A</u>
<u>N/A</u> 2,4,6-Trichl	lorophenol <u>N/A</u>
;)	
V/A Methyl eth	yl keytone <u>N/A</u>
V/A Tetrachlor	roethylene <u>N/A</u>
N/A Trichlor	roethylene N/A
001	
	N/A Pentrachi N/A Pentrachi N/A 2,4,5-Trichi N/A 2,4,6-Trichi N/A 2,4,6-Trichi g) N/A Tetrachio

3. Was the waste at the point of generation a RCRA hazardous waste per 40 CFR 261? Y 🗌 N 🛛

If Yes, list former hazardous waste codes and former underlying hazardous constituents. List worst-case concentrations for each hazardous constituent. If additional space is needed, provide an Attachment D.3 to this profile record formatted as below. Attach the most recent chemical analytical results demonstrating compliance with applicable treatment standards.

If No, indicate "N/A" in Section D.3 below.

0691A-01 Rev 6

Low-Level Radioactive Waste Certification Attachment

D. 3.	Former EPA HW Codes or Underlying Hazardous Constituents	Treatment Standard (mg/kg unless noted as mg/L TCLP or Technology Code)	Worst Case Concentration (mg/kg unless noted as mg/L TCLP)
	N/A		
			····
	······································		
	Salt the second s	· •••••••	

4. OTHER CHEMICAL CONSTITUENTS

List any other chemical constituents of concern (e.g., PCBs, chelating agents, etc.) and worst-case concentrations. If additional space is needed, provide an Attachment D.4 to this profile record formatted as below.

Other Chemical Constituents	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)	Other Hazardous Constituents	Worst-Case Concentration (11g/kg unless noted as mg/L TCLP)
1,1,2,2-Tetrachloroethane	0.002		
Carbon disulfide	0.046		
m,p-Xylene	0.002		
Toluene	0.003		
		<u></u>	

5. LABORATORY CERTIFICATION

UTAH or NELAC CERTIFIED

The Utah or NELAC certified laboratory holds a current certification for the applicable chemical test methods insofar as such official certifications are given. Please provide a copy of the laboratory's current certification letter for each parameter analyzed and each method used for chemical analyses required by this form.

OTHER LABORATORY CERTIFICATION (Describe below)

6. CERTIFICATION

I certify that sample results representative of the waste described in this profile were or shall be obtained using state- and EPAapproved analytical methods. I also certify that where necessary representative samples were or shall be provided to EnergySolutions and to qualified laboratories for the analytical results reported herein. I further certify that the waste described in this record is not prohibited from land disposal in 40 CFR 268 (unless prior arrangements are made for treatment at EnergySolutions) and that all applicable treatment standards are clearly indicated on this form. I also certify that the information provided on this form is complete, true, and correct and is accurately supported and documented by any laboratory testing as required by EnergySolutions. I certify that the results of any said testing have been submitted to EnergySolutions. I certify that the waste does not contain any prohibited items listed in EnergySolutions' Radioactive Material License.

the waste does not	concam any promotion tems instea in Energy	gysolutions Radioactive Material Licens	ic.	
Generator's Signature:	Shitter	Title:Environmental Engineer	Date:	10/5/10

Low-Level Radioactive Waste Certification Attachment

Page 5 of 5

Attachment B.5 Physical Properties

Generator Name: USEC – Portsmouth Revision #: 6

Waste Stream ID: 0691A-01 Revision Date: October 5, 2010

Dry Active Waste (DAW) at the Portsmouth Gaseous Diffusion Plant is generated by typical maintenance and decommissioning activities. The solid waste consists of such materials as clothing (cloth, plastic, Tyvek), plastic, paper, wood, insulation, ventilation filters, cardboard, rubber, mop heads, absorbents (pigs, pads, pans), respirator canisters, scrap metal, glass, vegetation, soil, and industrial non-medical sharps. Loose absorbent material will be added to waste containers to mitigate the risk of free liquids >1% in waste containers that have the potential for free liquids either through weather intrusion, potentially wet waste by definition (i.e. mop heads) or condensation. The waste may contain both friable and non-friable asbestos, which will be indicated on the five day shipment notification when applicable, as well as non-regulated detectable PCBs from <50 ppm sources. These materials come into contact with radioactive material and become contaminated.

This material is not characterized as hazardous waste as defined in 40 CFR 261. Although laboratory analysis confirmed this characterization on the initial revision of the profile, continued assurance that waste shipped under the 0691A-01 profile is not hazardous waste is obtained through process controls. Materials that are RCRA regulated are kept segregated from work areas where the DAW is generated and waste is routinely inspected for non-conforming items.

Radiological characterization of outgoing shipments is performed through a combination of laboratory data and a Non-Destructive Analysis (NDA) method. The radiological laboratory results were used to establish scaling factors which are then synchronized with the NDA results and divided by net waste weight in the container to develop manifested nuclide concentrations. The SNM is typically in the form of dry non-visible uranium dust made up of oxide compounds, primarily UO_2F_2 . The SNM is essentially distributed homogeneously throughout the waste because of the varying sizes of the malleable DAW. Any "hot spots" of concentrated SNM identified in the NDA analysis, the system consists of 4 HPGe detectors, are located and removed from the waste contents prior to shipment.

A. GENERATOR AND WASTE STREAM INFORMATION

GENERAL: Complete this form for one waste stream. Contact EnergySolutions at (801) 532-1330 if you have any questions while completing this form. Please indicate "N/A" if a category does not apply.

1. GENERATOR INFORMATION

Generator Name:	USEC/ Portsmouth		E	EPA ID #: <u>OHD987</u>	054723
Generator Contact	: Elizabeth D. Lamerson			Title: Environn	nental Engineer
Mailing Address:	P.Q. Box 628 M/S 9030				
	Piketon, OH 45661		Utah Site Access	; Permit # <u>: 01110000</u>)43
Phone	:740-897-2812	Fax:740-897-2143		Email: lamerson	ed@ports.usec.com
Contractor Name:	N/A		Location of Waste (Cit	ity, State): Portsmou	th
Name & Title of F	erson Completing Form:	Nathan Banks/Env. Engine	er Phone: 740-897	7-2641 Email:	banksnj@usec.com
2. WASTE S	TREAM INFORMAT	ION			
Waste Stream I	D: 0691A-03 Waste	Stream Name: Fire Debris			State of Origin: OH
Revisio	on: 0 Date: 1)	/16/2010 Volum	ue (ft ³): <u>TBD</u>	Delive	ry Date: Ongoing

CHECK APPROPRIATE BOXES BELOW. Please verify the required forms requested below are completed and submitted with the Radioactive Waste Profile Record.

HAZARDOUS WASTE: Is the waste classified as hazardous waste as defined by 40 CFR 261?

- N If NO, complete and attach the "Low-Level Radioactive Waste Certification Attachment".
- Y I If YES, complete and attach the "Hazardous Waste Certification Attachment" and check applicable box below. Has the waste been treated to meet applicable treatment standards per 40 CFR 268? Y N I Is the waste to be treated by EnergySolutions? Y N N

LOW-LEVEL RADIOACTIVE WASTE: Is the radioactive waste defined as Low-Level Radioactive Waste in accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985 or in DOE Order 435.1?

Y X If YES, a current copy of a LLRW Compact Export letter authorizing export must be submitted if applicable. This authorization is applicable for non-DOE LLRW (i.e., Mixed Waste, NORM/NARM, 11e.(2) material, and waste from DOE do not require a Compact Export Letter).

N If NO, check appropriate box: NORM/NARM 11e.(2) Byproduct Material Other:

SPECIAL NUCLEAR MATERIAL: Does the waste stream contain material with uranium enriched in U-235 or any of the following radionuclides: U-233, Pu-236, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, Pu-243, or Pu-244?

Y X N I If Yes, complete and attach the "SNM Exemption Certification" form (EC-0230-SNM). Supporting statements, analytical results, and documentation must be included with the submittal.

PCB WASTE: Does the waste contain Polychlorinated Biphenyls (PCB) that are regulated for disposal per 40 CFR 761?

Y N M If Yes, complete and attach the "PCB Waste Certification" form (EC-98279).

ASBESTOS: Does the waste contain Asbestos Containing Material?

Y IN N If Yes, Asbestos Containing Material must be managed in accordance with applicable federal regulations. Provide a detailed description of the waste containing asbestos in Section B.5 of the waste profile.

Box Car

RADIOACTIVE WASTE PROFILE RECORD

B. WASTE PHYSICAL PROPERTIES & PACKAGE INFORMATION

1. GENERAL CHARACTERISTICS

Does the waste contain free liquids? Y 🛄 N 🖾	If Yes, what is the percent of free liquid by	waste volume?%
	If Yes, is the liquid aqueous	(water-based)?Y 🔲 N 🔲
Does the waste contain absorbent? Y 🖾 N 🗋	Density range of the waste: 0.81-13.0 g/o	cc 🔲 lb/ft ³ 🛛
List percentage of waste type by volume: Soil 5%	Concrete & Metal 10% DAW 85	% Resins% Sludge%
Other constituents and percentage by volume? N/A		

2. MATERIAL SIZE

Gradation of Material: Indicate the percentage of waste material that would pass through the following grid sizes. For example, 95% of the material would pass through a 12" square, 90% passes through a 4" square, 80% passes through a 1" square, etc.

4" <u>5</u> % 1/4" ≤1 % 1/40" <1 % 1/200" ≤1 % 12" 20 % 1" <1 %

Does the waste stream contain oversize debris (i.e., no dimension < 10 inches and any dimension > 12 feet)? Y 🗋 N 🔀 If Yes, include a detailed description (i.e., weight, size, drawings, etc.) of the oversize debris in the narrative of Section B.5.

3. MOISTURE CONTENT

For soil or soil-like materials, please use Std. Proctor Method ASTM D-698 to determine the optimum moisture content. The waste material must not exceed 3 percentage points above optimum moisture upon arrival at EnergySolutions' disposal facility unless approved by EnergySolutions.

Optimum Moisture Content: N/A % at Maximum Dry Density (lb/ft³): N/A

Average Moisture Content: 2.7629 % Moisture Content Range: 0.37% - 8.21%

WASTE SHIPPING & PACKAGING

Transportation Mode: 🛛 Highway 🛛 Rail

Shipping & Container Packages: ⊠ Drums* (≤ 85 gallons) ⊠ Boxes (≤ 100 ft³) ⊠ Soft-Sided Bags (≤ 10 yd³) (Check all that apply)

> Gondola** 🛛 Intermodal Sealand

Other:

*Palletized drums are preferred by the disposal site. Please specify in the "Other" field if drums will not be palletized. **Dimensions of gondola railcars must be between 48 to 65 feet in length and 8.5 to 12.5 feet in height as measured from the top of the rail to the top of the railcar unless approved by EnergySolutions.

5. NARRATIVE DESCRIPTION AND HISTORY OF WASTE

Please submit a narrative description and history of the waste as an attachment to the Radioactive Waste Profile Record. This attachment should include the following:

- Process that generated the waste
- Waste material physical composition and characteristics
- Radiological and chemical characterization method
- Basis for determining manifested radionuclide concentrations
- · Description and amounts of absorbents, if applicable
- Basis of non-hazardous or hazardous waste determinations
- Treatment processes, if applicable
- Product information or Material Safety Data Sheets associated with the waste as applicable
- Information requested in other sections of this form

0691A-03 Rev 0

CL-WM-PR-001 F2 (EC-0230) Revision 7

RADIOACTIVE WASTE PROFILE RECORD

Waste Stream ID: 0691A-03 Revision: 0

Date of Revision: 11/16/2010

C. RADIOLOGICAL INFORMATION

Obtain sufficient samples to adequately determine a range and weighted average of activity in the waste. Attach the gamma spectroscopy or radiochemistry data supporting the radionuclide information listed below.

- 1. Does the waste material contain accessible surfaces with contact dose rates greater than 500 mR/hr? Y 🛄 N 🔀
- 2. Does the waste material contain any of the following isotopes: Aluminum-26, Berkelium-247, Calcium-41, Californium-250, Chlorine-36, Rhenium-187, Terbium-157, or Terbium-158? Y□ N⊠
- 3. Please list the following information for each isotope associated with the waste. Provide an explanation in the narrative description of Section B.5 if the waste contains localized "hot spots" or elevated concentrations that significantly exceed the upper concentration range. If additional space is needed, provide an Attachment C.3 to this profile record formatted as below.

Isotope Concentration per Container Isotope Concentration p (pCi/g) (pCi/g) (pCi/g)	er Container (pCi/g)
Am-241 100 20 Pa-231 300	75
Bi-214 5.993 5.993 Ra-223 20.5	20.5
<u>Ce-141 2.015 2.015</u>	
Fr-223 56.43 30.8	
<u>Pb-212</u> <u>3</u> <u>3</u>	
Np-237 300 30	
<u>P1-239/240 0.1066 0.8</u>	
<u>K-40 54.72 54.72</u>	
Pa-234m 21440 5483.84	
Tc-99 209000 30397.87	
Th-227 13.05 9.85	
Th-231 6142 1123.9	
Th-234 15030 2507.81	
U-233/234 75000 10000	
<u>U-234 66500 36890.54</u>	
U-235 1900 500	
U-236 426.5 57.03	
U-238 16500 5000	
Pa-234 67.41 67.41	
Pu-239 100 10	
Th-230 300 30	
Pu-240 100 10	
U-dep 18000 500	
Pu-238 100 10	
Cs-137 100 10	
Ra-226 100 10	
Th-228 300 30	
Th-229 100 10	
Th-232 300 30	
Ac-227 100 10	

0691A-03 Rev 0

Page 3 of 5

HAZARDOUS WASTE CERTIFICATION ATTACHMENT

This form is required only if the checkbox for Hazardous Waste on page one has been checked YES. Otherwise, complete the Low-Level Radioactive Waste Certification Attachment instead of this attachment. EnergySolutions may waive the chemical laboratory analyses if the material is not amenable to chemical sampling and analysis (e.g., debris items including metal pieces, concrete, plastic, etc.). Justification for waiving the chemical analyses must be provided in Section B.5.

D. MINIMUM REQUIRED CHEMICAL ANALYSIS

The following parameters must be analyzed by a Utah or NELAC certified laboratory. Typical SW-846 analytical methods have been listed. Other approved methods are acceptable. Attach the most recent or applicable chemical analytical results representing the waste

1. GENERAL CHEMICAL PARAMETERS

SW-846 Analytical Methods

pH (Liquid only): N/A Method 9045 Please provide the range of the pH analyses performed.

PFLT: Pass Pass / Fail Method 9095 Not applicable for liquid radioactive waste streams.

Analyze the waste for volatile or semi-volatile constituents (Methods 8260 & 8270), and attach the data.

Any distinguishing color or odor? Y 🗌 N 🛛 If Yes, color: ____; odor: ____;

2. HAZARDOUS WASTE CODES AND TREATMENT STANDARDS (40 CFR 268)

List all hazardous waste codes and treatment standards. Include hazardous waste codes that have been removed through treatment and indicate "Former" in the second column. Worst-case concentrations only need to be provided for concentration based treatment standards. If additional space is needed, provide an Attachment D.2 to this profile record formatted as below. Include a description of hazardous waste determinations and any variances, exclusions, etc. in the narrative requested in Section B.5.

EPA HW Codes	Description, Constituent of Concern, or Subcategory	Treatment Standard (mg/kg unless noted as mg/L TCLP or Technology Code)	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)
N/A	N/A	N/A	N/A
<u></u>			
			······································
	·		
		······	
		······	
	·		
	·		

0691A-03 Rev 0

Hazardous Waste Certification Attachment

CL-WM-PR-001 F2 (EC-0230) Revision 7

3. UNDERYLYING HAZARDOUS CONSTITUENTS (40 CFR 268.48)

List all underlying hazardous constituents (UHCs) and treatment standards. Include UHCs that have been removed through treatment. Worst-case concentrations only need to be provided for concentration based treatment standards. If additional space is needed, provide an Attachment D.3 to this profile record formatted as below.

Underlying Hazardous Constituents	Treatment Standard (mg/kg unless noted as mg/L TCLP or Technology Code)	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)
N/A	N/A	N/A
·····		

D. 4. OTHER CHEMICAL CONSTITUENTS

List any other chemical constituents of concern (e.g., PCBs, chelating agents, etc.) and worst-case concentrations. If additional space is needed, provide an Attachment D.4 to this profile record formatted as below.

less noted TCLP)	Hazardous Constituents	(mg/kg unless noted as mg/L TCLP)
A	N/A	N/A
	TCLP) A	

5. LABORATORY CERTIFICATION INFORMATION

UTAH or NELAC CERTIFIED

The Utah or NELAC certified laboratory holds a current certification for the applicable chemical test methods insofar as such official certifications are given. Please provide a copy of the laboratory's current certification letter for each parameter analyzed and each method used for chemical analyses required by this form.

OTHER LABORATORY CERTIFICATION (Describe below)

6. CERTIFICATION

I certify that sample results representative of the waste described in this profile were or shall be obtained using state- and EPAapproved analytical methods. I also certify that where necessary representative samples were or shall be provided to EnergySolutions and to qualified laboratories for the analytical results reported herein. I further certify that the waste described in this record is not prohibited from land disposal in 40 CFR 268 (unless prior arrangements are made for treatment at EnergySolutions) and that all applicable treatment standards are clearly indicated on this form. I also certify that the information provided on this form is complete, true, and correct and is accurately supported and documented by any laboratory testing as required by EnergySolutions. I certify that the results of any said testing have been submitted to EnergySolutions. I certify that

the waste does not containany prohibited items listed in EnergySolutions' Radioactive Material License or RCRA Permit. Date: Generator's Signature: Title: Environmental Engineer

Hazardous Waste Certification Attachment

Page 5 of 5

LOW-LEVEL RADIOACTIVE WASTE CERTIFICATION ATTACHMENT

This form is required only if the checkbox for Hazardous Waste on page one has been checked No. Otherwise, complete the Hazardous Waste Certification Attachment instead of this attachment. EnergySolutions may waive the chemical laboratory analyses if the material is not amenable to chemical sampling and analysis (e.g., debris items including metal pieces, concrete, plastic, etc.). Justification for waiving the chemical analyses must be provided in Section B.5.

D. MINIMUM REQUIRED CHEMICAL ANALYSIS

The following parameters must be analyzed by a Utah or NELAC certified laboratory. Typical SW-846 analytical methods have been listed. Other approved methods are acceptable. Attach the most recent or applicable chemical analytical results representing the waste.

1. GENERAL CHEMICAL PARAMETERS

SW-846 Analytical Methods

PFLT: Pass / Pass / Fail Method 9095 Not applicable for liquid radioactive waste streams.

2. 40 CFR 261.24 Table 1 - Contaminants of Toxicity Characteristic

Metals: Methods 6010 & *7470 X TCLP (mg/L) or Total (mg/kg)

Arsenic 1	.19	Chromium	0.145	Selenium	0.262
Barium0.	.157	Lead	0.181	Silver	1.64
Cadmium 0.	.345	*Mercury	0.01		

Organics, Pesticides/Herbicides: Methods 8081/*8151 🖾 TCLP (mg/L) or 🗌 Total (mg/kg)

Endrin_	0.0004	Toxaphene	0.008	Chlordane_	0.004
Lindane_	0.0004	*2,4-D	0.01	Heptachlor_	0.0004
Methoxychlor	0.0004	*2,4,5-TP Silvex	0.008		
Organics, Semi-Volatile:	Method 8270	TCLP (mg/L) or Tota	al (mg/kg)		
o-Cresol	ND	Hexachlorobenzene	ND	Pentachlorophenol	ND
m-Cresol_	ND	Hexachlorobutadiene	ND	Pyridine	ND
p-Cresol_	ND	Hexachloroethane	ND	2,4,5-Trichlorophenol	ND
Total Cresol	ND	Nitrobenzene	ND	2,4,6-Trichlorophenol	ND
2,4-Dinitrotoluene	ND				
Organics, Volatile: Metho	d 8260 🛛 T	CLP (mg/L) or 🗌 Total (mg/	/kg)		
Benzene	0.02	1,4-Dichlorobenzene	_ND	Methyl ethyl keytone_	0.5
Carbon Tetrachloride	0.02	1,2-Dichloroethane	0.02	Tetrachloroethylene_	0.02
Chlorobenzene_	0.02	1,1-Dichloroethylene	0.02	Trichloroethylene_	0.02
Chloroform	0.04	Vinyl Chloride	0.01		

3. Was the waste at the point of generation a RCRA hazardous waste per 40 CFR 261? Y 🗋 N 🔀

If Yes, list former hazardous waste codes and former underlying hazardous constituents. List worst-case concentrations for each hazardous constituent. If additional space is needed, provide an Attachment D.3 to this profile record formatted as below. Attach the most recent chemical analytical results demonstrating compliance with applicable treatment standards. If No, indicate "N/A" in Section D.3 below.

0691A-03 Rev 0

Low-Level Radioactive Waste Certification Attachment

Page 4 of 5

D. 3	Former EPA HW Codes or Underlying Hazardous Constituents	Treatment Standard (mg/kg unless noted as mg/L TCLP or Technology Code)	Worst Case Concentration (mg/kg unless noted as mg/L TCLP)
	N/A	N/A	N/A

4. OTHER CHEMICAL CONSTITUENTS

List any other chemical constituents of concern (e.g., PCBs, chelating agents, etc.) and worst-case concentrations. If additional space is needed, provide an Attachment D.4 to this profile record formatted as below.

Other Chemical Constituents	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)	Other Hazardous Constituents	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)
Zinc	58.4 mg/L TCLP	N/A	N/A
Beryllium	0.712		······································
		•	
		·	
			······································

5. LABORATORY CERTIFICATION

UTAH or NELAC CERTIFIED

The Utah or NELAC certified laboratory holds a current certification for the applicable chemical test methods insofar as such official certifications are given. Please provide a copy of the laboratory's current certification letter for each parameter analyzed and each method used for chemical analyses required by this form.

OTHER LABORATORY CERTIFICATION (Describe below)

6. CERTIFICATION

I certify that sample results representative of the waste described in this profile were or shall be obtained using state- and EPAapproved analytical methods. I also certify that where necessary representative samples were or shall be provided to EnergySolutions and to qualified laboratories for the analytical results reported herein. I further certify that the waste described in this record is not prohibited from land disposal in 40 CFR 268 (unless prior arrangements are made for treatment at EnergySolutions) and that all applicable treatment standards are clearly indicated on this form. I also certify that the information provided on this form is complete, true, and correct and is accurately supported and documented by any laboratory testing as required by EnergySolutions. I certify that the results of any said testing have been submitted to EnergySolutions. I certify that the waste does not complete in any prohibited items listed in EnergySolutions' Radioactive Material License

the waste does not comain any problem ited items listed in	EnergySolutions' Radioactive Material Licent	ise.
Generator's Signature:	Title:Environmental Engineer	Date: 2/24/11

A. GENERATOR AND WASTE STREAM INFORMATION

GENERAL: Complete this form for one waste stream. Contact EnergySolutions at (801) 532-1330 if you have any questions while completing this form. Please indicate "N/A" if a category does not apply.

1. GENERATOR INFORMATION

Generator Name:	USEC/ Portsmouth		EPA ID #: OHD987054723	
Generator Contact	Elizabeth D. Lamerson	····	Title: Environmental Engineer	
Mailing Address:	P.O. Box 628 M/S 9030	·		
	Piketon, OH 45661	Utah Site A	ccess Permit #: 0111000043	
Phone	:740-897-2812	Fax:740-897-2143	Email: lamersoned@ports.usec.com	
Contractor Name:	<u>N/A</u>	Location of Was	te (City, State): Portsmouth	
Name & Title of P	erson Completing Form: Nath	an Banks/Env. Engineer Phone: 7	40-897-2641 Email: <u>banksnj@usec.com</u>	
2. WASTE S	FREAM INFORMATION			
Waste Stream I	D: 0691A-04 Waste Stream	n Name: Heavy Metal Sludge	State of Origin: OH	
Revisio	n: 1 Date: 05/13/2	011 Volume (ft ³): TBD	Delivery Date: Ongoing	

CHECK APPROPRIATE BOXES BELOW. Please verify the required forms requested below are completed and submitted with the Radioactive Waste Profile Record.

HAZARDOUS WASTE: Is the waste classified as hazardous waste as defined by 40 CFR 261?

- N 🛛 If NO, complete and attach the "Low-Level Radioactive Waste Certification Attachment".
- Y I If YES, complete and attach the "Hazardous Waste Certification Attachment" and check applicable box below. Has the waste been treated to meet applicable treatment standards per 40 CFR 268? Y N N Is the waste to be treated by EnergySolutions? Y N N

LOW-LEVEL RADIOACTIVE WASTE: Is the radioactive waste defined as Low-Level Radioactive Waste in accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985 or in DOE Order 435.1?

Y X If YES, a current copy of a LLRW Compact Export letter authorizing export must be submitted if applicable. This authorization is applicable for non-DOE LLRW (i.e., Mixed Waste, NORM/NARM, 11e.(2) material, and waste from DOE do not require a Compact Export Letter).

N I If NO, check appropriate box: NORM/NARM I 11e.(2) Byproduct Material Other:

SPECIAL NUCLEAR MATERIAL: Does the waste stream contain material with uranium enriched in U-235 or any of the following radionuclides: U-233, Pu-236, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, Pu-243, or Pu-244?

Y 🔀 N 🗌 If Yes, complete and attach the "SNM Exemption Certification" form (EC-0230-SNM). Supporting statements, analytical results, and documentation must be included with the submittal.

PCB WASTE: Does the waste contain Polychlorinated Biphenyls (PCB) that are regulated for disposal per 40 CFR 761?

Y N X If Yes, complete and attach the "PCB Waste Certification" form (EC-98279).

ASBESTOS: Does the waste contain Asbestos Containing Material?

Y N X If Yes, Asbestos Containing Material must be managed in accordance with applicable federal regulations. Provide a detailed description of the waste containing asbestos in Section B.5 of the waste profile.

CL-WM-PR-001 F2 (EC-0230) Revision 7

RADIOACTIVE WASTE PROFILE RECORD

B. WASTE PHYSICAL PROPERTIES & PACKAGE INFORMATION

1. GENERAL CHARACTERISTICS

Does the waste contain free liquids? Y \square N \boxtimes	If Yes, what is the percent of free liquid by waste volume?%
	If Yes, is the liquid aqueous (water-based)?Y 🔲 N 🗔
Does the waste contain absorbent? Y \boxtimes N	Density range of the waste: $1.04 - 1.35$ g/cc \boxtimes lb/ft ³
List percentage of waste type by volume: Soil 5%	Concrete & Metal% DAW 5% Resins% Sludge 90%
Other constituents and percentage by volume? N/A	

2. MATERIAL SIZE

Gradation of Material: Indicate the percentage of waste material that would <u>mass through</u> the following grid sizes. For example, 95% of the material would pass through a 12" square, 90% passes through a 4" square, 80% passes through a 1" square, etc.

$12 \frac{y_2}{y_2} \frac{y_1}{y_2} \frac{y_1}{y_1} \frac{y_2}{y_1} \frac{y_1}{y_1} \frac$)0" <u><1</u> %	1/200" <u><1</u>	1/40" <u>≤1</u> %	1/4" <u><1</u> %	1" <u>75</u> %	4" <u>90</u> %	12" <u>95</u> %
--	--------------------	---------------------	-------------------	---------------------	----------------	----------------	-----------------

Does the waste stream contain oversize debris (i.e., no dimension < 10 inches and any dimension > 12 feet)? Y \square N \boxtimes If Yes, include a detailed description (i.e., weight, size, drawings, etc.) of the oversize debris in the narrative of Section B.5.

3. MOISTURE CONTENT

For soil or soil-like materials, please use Std. Proctor Method ASTM D-698 to determine the optimum moisture content. The waste material must not exceed 3 percentage points above optimum moisture upon arrival at EnergySolutions' disposal facility unless approved by EnergySolutions.

Optimum Moisture Content: N/A % at Maximum Dry Density (lb/ft3): N/A

Average Moisture Content: N/A.% Moisture Content Range: N/A% - N/A%

4. WASTE SHIPPING & PACKAGING

Transportation Mode: 🛛 Highway 🖾 Rail

Shipping & Container Packages:	⊠ Drums* (≤ 85 gallons)	Boxes ($\leq 100 \text{ ft}^3$)	Soft-Sided Bags	(≤ 10 yd³)
(Check all that apply)				
	Intermodal	🖾 Sealand	Gondola**	🔲 Box Car

Other:

*Palletized drums are preferred by the disposal site. Please specify in the "Other" field if drums will not be palletized. **Dimensions of gondola railcars must be between 48 to 65 feet in length and 8.5 to 12.5 feet in height as measured from the top of the rail to the top of the railcar unless approved by EnergySolutions.

5. NARRATIVE DESCRIPTION AND HISTORY OF WASTE

Please submit a narrative description and history of the waste as an attachment to the Radioactive Waste Profile Record. This attachment should include the following:

- Process that generated the waste
- Waste material physical composition and characteristics
- Radiological and chemical characterization method
- Basis for determining manifested radionuclide concentrations
- Description and amounts of absorbents, if applicable
- Basis of non-hazardous or hazardous waste determinations
- Treatment processes, if applicable
- Product information or Material Safety Data Sheets associated with the waste as applicable
- Information requested in other sections of this form

.

0691A-04 Rev 1

CL-WM-PR-001 F2 (EC-0230) Revision 7

RADIOACTIVE WASTE PROFILE RECORD

Waste Stream ID: 0691A-04 Revision: 1

Date of Revision: 05/13/2011

C. RADIOLOGICAL INFORMATION

Obtain sufficient samples to adequately determine a range and weighted average of activity in the waste. Attach the gamma spectroscopy or radiochemistry data supporting the radionuclide information listed below.

- 1. Does the waste material contain accessible surfaces with contact dose rates greater than 500 mR/hr? Y 🗌 N 🔀
- 2. Does the waste material contain any of the following isotopes: Aluminum-26, Berkelium-247, Calcium-41, Californium-250, Chlorine-36, Rhenium-187, Terbium-157, or Terbium-158? Y □ N ⊠
- 3. Please list the following information for each isotope associated with the waste. Provide an explanation in the narrative description of Section B.5 if the waste contains localized "hot spots" or elevated concentrations that significantly exceed the upper concentration range. If additional space is needed, provide an Attachment C.3 to this profile record formatted as below.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Isotope	Manifested Upper Concentration (pCi/g) <u>D. 5/19/11</u>	Weighted Avg. per Container (pCi/g)	Isotope	Manifested Upper Concentration (pCi/g)	Weighted Avg. per Container (pCi/g)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Am-241	-100 300		Pa-234m	16500	402.34
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	_	Am-242	0.606	0.606	Ra-223	258	101.65
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Am-243	0.608	0.608	Ra-224	97.25	56.23
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	_	Cm-243/244	0.991	0.72	Ra-226	300	30
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Cm-245/246	9.69	2.89	Ra-228	5.392	5.39
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	_	Cm-248	0.591	0.591	Rn-219	274.6	88.94
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	Np-237	1200	300	Tc-99	11900	2243.97
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Pu-238	184.8	34.63	T1-208	8.006	3.43
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Pu-239/240	261.4	57.32	Th-227	180.9	58.21
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	_	Th-228	300	30	Ac-227	1000	500
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	_	Th-230	6354	1387.7	Pa-231	1200	500
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	_	Th-231	1027	360.02	U-Dep	18000	500
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	_	Th-232	300	30	Th-229	100	10
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Th-234	16500	201.16			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		U-233/234	38000	2053.94			
U-238 16500 5000 Ac-228 22.16 15.87 Bi-211 271.6 91.63 Bi-212 26.54 9.53 Bi-214 25.69 7.07 Cs-137 100 10 Fr-223 74.93 26.97 Pb-211 271.7 98.23	_	U-235	1900	500			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	_	U-236	40.72	11.13			
Bi-211 271.6 91.63 Bi-212 26.54 9.53 Bi-214 25.69 7.07 Cs-137 100 10 Fr-223 74.93 26.97 Pb-211 271.7 98.23	_	U-238	16500	5000			
Bi-212 26.54 9.53 Bi-214 25.69 7.07 Cs-137 100 10 Fr-223 74.93 26.97 Pb-211 271.7 98.23	_	Ac-228	22.16	15.87			
Bi-214 25.69 7.07 Cs-137 100 10 Fr-223 74.93 26.97 Pb-211 271.7 98.23		Bi-211	271.6	91.63			
Cs-137 100 10 Fr-223 74.93 26.97 Pb-211 271.7 98.23		Bi-212	26.54	9.53			
Fr-223 74.93 26.97 Pb-211 271.7 98.23	_	Bi-214	25.69	7.07			
<u>Pb-211</u> 271.7 98.23	_	Cs-137	100	10			•
		Fr-223	74.93	26.97			
		Pb-211	271.7	98.23			
<u>Pb-212</u> <u>19.76</u> <u>7.64</u>		Pb-212	19.76	7.64			
Pb-214 26.65 10.96		Pb-214	26.65	10.96			
<u>Mn-54 2.022 2.022</u>	-	Mn-54	2.022	2.022			
K-40 22.87 22.13	-	K-40	22.87	22.13			
Pa-233 275 98.62	_	Pa-233	275	98.62			

0691A-04 Rev 1

.

HAZARDOUS WASTE CERTIFICATION ATTACHMENT

This form is required only if the checkbox for Hazardous Waste on page one has been checked YES. Otherwise, complete the Low-Level Radioactive Waste Certification Attachment instead of this attachment. EnergySolutions may waive the chemical laboratory analyses if the material is not amenable to chemical sampling and analysis (e.g., debris items including metal pieces, concrete, plastic, etc.). Justification for waiving the chemical analyses must be provided in Section B.5.

D. MINIMUM REQUIRED CHEMICAL ANALYSIS

The following parameters must be analyzed by a Utah or NELAC certified laboratory. Typical SW-846 analytical methods have been listed. Other approved methods are acceptable. Attach the most recent or applicable chemical analytical results representing the waste.

1. GENERAL CHEMICAL PARAMETERS

SW-846 Analytical Methods

pH (Liquid only): N/A Method 9045 Please provide the range of the pH analyses performed.

PFLT: Pass Pass / Fail Method 9095 Not applicable for liquid radioactive waste streams.

Analyze the waste for volatile or semi-volatile constituents (Methods 8260 & 8270), and attach the data.

Any distinguishing color or odor? Y 🗌 N 🛛 If Yes, color: ____; odor: ____;

2. HAZARDOUS WASTE CODES AND TREATMENT STANDARDS (40 CFR 268)

List all hazardous waste codes and treatment standards. Include hazardous waste codes that have been removed through treatment and indicate "Former" in the second column. Worst-case concentrations only need to be provided for concentration based treatment standards. If additional space is needed, provide an Attachment D.2 to this profile record formatted as below. Include a description of hazardous waste determinations and any variances, exclusions, etc. in the narrative requested in Section B.5.

EPA HW Codes	Description, Constituent of Concern, or Subcategory	Treatment Standard (mg/kg unless noted as mg/L TCLP or Technology Code)	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)
<u> </u>	N/A	N/A	<u>N/A</u>
·			·

0691A-04 Rev 1

Hazardous Waste Certification Attachment

CL-WM-PR-001 F2 (EC-0230) Revision 7

3. UNDERYLYING HAZARDOUS CONSTITUENTS (40 CFR 268.48)

List all underlying hazardous constituents (UHCs) and treatment standards. Include UHCs that have been removed through treatment. Worst-case concentrations only need to be provided for concentration based treatment standards. If additional space is needed, provide an Attachment D.3 to this profile record formatted as below.

Underlying Hazardous Constituents	Treatment Standard (mg/kg unless noted as mg/L TCLP or Technology Code)	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)
N/A	N/A	N/A
<u></u>		
······································		
		<u></u>

D. 4. OTHER CHEMICAL CONSTITUENTS

List any other chemical constituents of concern (e.g., PCBs, chelating agents, etc.) and worst-case concentrations. If additional space is needed, provide an Attachment D.4 to this profile record formatted as below.

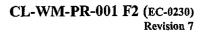
Other	Concentration	Other	Concentration
Chemical	(mg/kg unless noted	Hazardous	(mg/kg unless noted
Constituents	as mg/L TCLP)	Constituents	as mg/L TCLP)
N/A	N/A	N/A	<u>N/A</u>

5. LABORATORY CERTIFICATION INFORMATION

UTAH or NELAC CERTIFIED

The Utah or NELAC certified laboratory holds a current certification for the applicable chemical test methods insofar as such official certifications are given. Please provide a copy of the laboratory's current certification letter for each parameter analyzed and each method used for chemical analyses required by this form.

OTHER LABORATORY CERTIFICATION (Describe below)


6. CERTIFICATION

I certify that sample results representative of the waste described in this profile were or shall be obtained using state- and EPAapproved analytical methods. I also certify that where necessary representative samples were or shall be provided to EnergySolutions and to qualified laboratories for the analytical results reported herein. I further certify that the waste described in this record is not prohibited from land disposal in 40 CFR 268 (unless prior arrangements are made for treatment at EnergySolutions) and that all applicable treatment standards are clearly indicated on this form. I also certify that the information provided on this form is complete, true, and correct and is accurately supported and documented by any laboratory testing as required by EnergySolutions. I certify that the results of any said testing have been submitted to EnergySolutions. I certify that the waste does not contain any prohibited items listed in EnergySolutions' Radioactive Material License or RCRA Permit.

Title: Environnental Engineer Date: Generator's Signature:

Hazardous Waste Certification Attachment

Page 5 of 5

LOW-LEVEL RADIOACTIVE WASTE CERTIFICATION ATTACHMENT

This form is required only if the checkbox for Hazardous Waste on page one has been checked No. Otherwise, complete the Hazardous Waste Certification Attachment instead of this attachment. EnergySolutions may waive the chemical laboratory analyses if the material is not amenable to chemical sampling and analysis (e.g., debris items including metal pieces, concrete, plastic, etc.). Justification for waiving the chemical analyses must be provided in Section B.5.

D. MINIMUM REQUIRED CHEMICAL ANALYSIS

The following parameters must be analyzed by a Utah or NELAC certified laboratory. Typical SW-846 analytical methods have been listed. Other approved methods are acceptable. Attach the most recent or applicable chemical analytical results representing the waste.

1. GENERAL CHEMICAL PARAMETERS

SW-846 Analytical Methods

PFLT: Pass Pass / Fail Method 9095 Not applicable for liquid radioactive waste streams.

2. 40 CFR 261.24 Table 1 – Contaminants of Toxicity Characteristic

Metals: Methods 6010 & *7470 X TCLP (mg/L) or Total (mg/kg)

Chromium 2.12	Selenium 0.049
Lead 0.393	Silver 0.009
*Mercury 0.010	
	Lead 0.393

Organics, Pesticides/Herbicides: Methods 8081/*8151 X TCLP (mg/L) or Total (mg/kg)

0 .		•			
Endrin_	ND	Toxaphene	ND	Chlordane	ND
Lindane_	ND	*2,4-D	ND	Heptachlor	ND
Methoxychlor	ND	*2,4,5-TP Silvex	ND		
Organics, Semi-Volatile:	Method 8270	TCLP (mg/L) or 🗌 Tota	al (mg/kg)		
o-Cresol_	ND	Hexachlorobenzene	ND	Pentachlorophenol	ND
m-Cresol_	ND	Hexachlorobutadiene	ND	Pyridine	ND
p-Cresol_	ND	Hexachloroethane	ND	2,4,5-Trichlorophenol	ND
Total Cresol	ND	Nitrobenzene	ND	2,4,6-Trichlorophenol	ND
2,4-Dinitrotoluene_	ND				
Organics, Volatile: Metho	d 8260 🛛 🕄	ICLP (mg/L) or 🗌 Total (mg	/kg)		
Benzene_	ND	1,4-Dichlorobenzene	<u>ND</u>	Methyl ethyl keytone	ND
Carbon Tetrachloride_	ND	1,2-Dichloroethane	ND	Tetrachloroethylene_	ND
Chlorobenzene_	ND	1,1-Dichloroethylene	ND	Trichloroethylene	ND
Chloroform	ND	Vinyl Chloride	ND		

3. Was the waste at the point of generation a RCRA hazardous waste per 40 CFR 261? Y 🗌 N 🖾

If Yes, list former hazardous waste codes and former underlying hazardous constituents. List worst-case concentrations for each hazardous constituent. If additional space is needed, provide an Attachment D.3 to this profile record formatted as below. Attach the most recent chemical analytical results demonstrating compliance with applicable treatment standards. If No, indicate "N/A" in Section D.3 below.

0691A-04 Rev 1

Low-Level Radioactive Waste Certification Attachment

D .	3.	Former EPA HW Codes or Underlying Hazardous Constituents	Treatment Standard (mg/kg unless noted as mg/L TCLP or Technology Code)	Worst Case Concentration (mg/kg unless noted as mg/L TCLP)
	-			
	-			

4. OTHER CHEMICAL CONSTITUENTS

List any other chemical constituents of concern (e.g., PCBs, chelating agents, etc.) and worst-case concentrations. If additional space is needed, provide an Attachment D.4 to this profile record formatted as below.

Other Chemical Constituents	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)	Other Hazardous Constituents	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)
Aroclor 1260	l ug/g	N/A	N/A
Beryllium	0.72		
p	• ••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·	

5. LABORATORY CERTIFICATION

UTAH or NELAC CERTIFIED

The Utah or NELAC certified laboratory holds a current certification for the applicable chemical test methods insofar as such official certifications are given. Please provide a copy of the laboratory's current certification letter for each parameter analyzed and each method used for chemical analyses required by this form.

OTHER LABORATORY CERTIFICATION (Describe below)

6. CERTIFICATION

I certify that sample results representative of the waste described in this profile were or shall be obtained using state- and EPAapproved analytical methods. I also certify that where necessary representative samples were or shall be provided to EnergySolutions and to qualified laboratories for the analytical results reported herein. I further certify that the waste described in this record is not prohibited from land disposal in 40 CFR 268 (unless prior arrangements are made for treatment at EnergySolutions) and that all applicable treatment standards are clearly indicated on this form. I also certify that the information provided on this form is complete, true, and correct and is accurately supported and documented by any laboratory testing as required by EnergySolutions. I certify that the results of any said testing have been submitted to EnergySolutions. I certify that the waste does not contain any prohibited items listed in EnergySolutions' Radioactive Material License.

nonmental Engineer Date: Generator's Signature: Title:

ATTACHMENT B.5 PHYSICAL PROPERTIES

 Generator Name: USEC/Portsmouth
 Waste Stream ID:_____

 Revision #: 1
 Revision Date: 05/13/2011

HEAVY METAL SLUDGE WASTE STREAM

The Heavy Metal Sludge waste stream originates in the Portsmouth Gaseous Diffusion Plant (PORTS) Decontamination Building (X-705) and is generated by the heavy metals precipitation process, which filters precipitated solids (including metals) from the solution prior to that solution entering the Technetium Ion Exchange System. The waste consists of sludge material that contains small amounts of heavy metals and radiological contamination. The waste stream also contains small amounts of Dry Active Waste (DAW) that was used in cleanup, sampling, and operation of the process.

The containers of heavy metal sludge are sampled at the point of generation. Once data is received, the containers are determined to be non-hazardous or hazardous after review of the analytical data. Only non-hazardous heavy metal sludge will be disposed of under this profile.

The waste will not contain free liquids. Loose absorbent material may be added to the waste to mitigate the risk of free liquids >1% in waste containers that have the potential for free liquids/condensate.

Radiological and Chemical Characterization Requirements and Methods:

The primary objective of the characterization sampling design was to achieve high confidence that at least a high percentage of the items in population are acceptable. A hypergeometric model with a 95%/90% confidence interval was used to characterize this waste stream. The sample size was calculated using a similar method to Bowen and Bennett 1988 (*Statistical Methods for Nuclear Material Management*, NUREG/CR-4604, US Nuclear Regulator Commission, Washington, DC). Twenty-four random samples were taken to meet the 95/90 confidence interval.

Chemical Characterization

Ohio Administrative Code (OAC) Section 3745-51 *et seq* and Title 40 Code of Federal Regulations (CFR) § 261 *et seq* clearly define the process for identifying a waste based on characteristics. OAC 3745-51-20 (40 CFR § 261.24) states:

"A waste is a hazardous waste if it exhibits any of the characteristics identified in rules 3745-51-20 (40 CFR § 261.20) to 3745-51-24 (40 CFR § 261.24) of the Administrative Code."

To determine the regulatory status of this waste stream the following requirements were met:

- 1. Collect a representative sample.
- 2. Analyze the sample using TCLP Method 1311 in "Test Methods for the Evaluation of Solid Waste, Physical/Chemical Methods," EPA Publication SW-846.
- 3. Compare the results of the analysis to OAC 3745-51-24, Table 1 (40 CFR § 261.24, Table 1).
- 4. If the contaminate is statistically (as defined by Chapter Nine of SW-846) at or above the regulatory limit outlined in Table 1 of OAC 3745-51-24 (40 CFR § 261.24), then the waste is characteristically hazardous for that contaminant and must be managed as such.

0691A-04

ATTACHMENT B.5 PHYSICAL PROPERTIES

Also, waste may be characteristically hazardous if it meets the criteria outlined in OAC 3745-51-21 (40 CFR § 261.21) to OAC 3745-51-23 (40 CFR § 261.23). OAC 3745-51-30 (40 CFR § 261.30) clearly define the process for identifying a waste based on a listing. OAC 3745-51-30 (A) [40 CFR § 261.30 (a)] states:

"A waste is a hazardous waste if it is listed as such in rules 3745-51-30 (§ 261.30) to 3745-51-35 (§ 261.35) of the Administrative Code."

To determine the regulatory status of this waste stream for listed hazardous waste, the following requirements were met:

- 1. Identify the generating process or identify the waste as derived from an already listed hazardous waste.
- 2. Identify the constituents, which may cause the waste to be classified as hazardous.
- 3. Compare the waste descriptions provided in OAC 3745-51-31 (40 CFR § 261.31) to OAC 3745-51-33 (40 CFR § 261.33).
- 4. If the process and constituents are listed in OAC 3745-51-31 (40 CFR § 261.31 to OAC 3745-51-33 (40 CFR § 261.33), then the waste is listed as hazardous and is managed as such.

This waste stream is not regulated for disposal as a RCRA hazardous waste as defined in 40 CFR 261. This waste is not regulated as TSCA (PCB) waste as defined in 40 CFR 761.

Radiological Characterization

Radiological characterization is performed through a combination of laboratory data and a Non-Destructive Analysis (NDA) method. Twenty-four random samples of the total population were analyzed to provide the radiological characterization data to adequately determine a range and concentration of activity in the waste.

Basis for Determining Manifested Radionuclide Concentrations

Radiological characterization of outgoing shipments is performed through a combination of laboratory data and a Non-Destructive Analysis (NDA) method. The radiological laboratory results were used to establish scaling factors which are then synchronized with the NDA results and divided by net weight in the container to develop manifested nuclide concentrations. The SNM is typically in the form of dry non-visible uranium dust made up of oxide compounds, primarily UO_2F_2 . The SNM is essentially distributed homogenously throughout the waste.

Typically the waste will be packaged for transportation and disposal in drums or metal boxes. Optional packages include soft-sided bags, intermodal containers and sea-land containers. Notification will be provided prior to shipping if any optional containers are to be utilized.

ستستدع والمحاد والمتعاد فالتسمين المتحد المتحد والمحاصر والمراجع المراجع المراجع

SPECIAL NUCLEAR MATERIAL EXEMPTION CERTIFICATION

The Special Nuclear Material Exemption Certification form must be completed and signed by each generator certifying to the following conditions. Please attach this form and all required information to the Radioactive Waste Profile Record (EC-0230). A completed and signed copy of this form must also accompany each waste manifest.

Waste Stream ID: 0691A-04 Manifest No. 0691A-04

1. Check applicable category below for the waste stream:	1.	Check applicable category	y below for the waste stream:
--	----	---------------------------	-------------------------------

V	Uranium Enrichment Percent	Weight Percent of Chemicals in Condition 2c	Weight Percent of Materials in Condition 2d	U-235 Concentration (pCi/g)	Measurement Uncertainty* (pCi/g)
\boxtimes	< 10 %	≤ 20 %	≤1 %	≤ 1,900	≤ 285
	Unlimited	≤ 20 %	≤1 %	≤ 1,190	≤ 179
	Unlimited	Sum of both \leq 45 %	6 of waste by weight	≤ 680	≤ 102
	Unlimited	Unlimited	Unlimited	≤26	≤ 10
	Not Applicabl	e - Enriched U-235 is	not present in the wast	te.	· · , · · · · · · · · · · · · · · · · ·

* A concentration value is used for the maximum measurement uncertainty limit rather than a percentage value to allow greater flexibility for generators with waste having very low SNM concentrations.

2. Certify to the following requirements by checking each box:

- a. Concentrations of SNM in individual waste containers do not exceed the applicable values listed in the above table and SNM isotope concentrations listed in Table 1.
- b. The SNM is homogeneously distributed throughout the waste or the SNM concentrations in any contiguous mass of 600 kilograms (1,323 lbs) do not exceed on average the specified limits. (Based on process knowledge or testing).
- C. Except as allowed by Condition 1, the waste does not contain "pure forms" of chemicals containing carbon, fluorine, magnesium, or bismuth in bulk quantities (e.g., a pallet of drums, a B-25 box). By "pure forms," it is meant that mixtures of the above elements such as magnesium oxide, magnesium carbonate, magnesium fluoride, bismuth oxide, etc. do not contain other elements. (Based on process knowledge or testing).
- ☑ d. Except as allowed by Condition 1, the waste does not contain total quantities of beryllium, hydrogenous material enriched in deuterium, or graphite above one percent of the total weight of the waste. (Based on process knowledge, physical observations, or testing).
- e. Waste packages do not contain highly soluble forms of uranium greater than 350 grams of uranium-235 or 200 grams of uranium-233. If the waste contains mixtures of U-233 and U-235, the waste meets the sum of the fractions rule. Highly soluble forms of uranium include, but are not limited to: uranium sulfate, uranyl acetate, uranyl chloride, uranyl formate, uranyl fluoride, uranyl nitrate, uranyl potassium carbonate, and uranyl sulfate. (Based on process knowledge or testing).
- f. For containers of <u>liquid waste</u> with more than 600 kilograms of waste, the total activity (pCi) of SNM in the manifested container does not exceed the SNM concentration in the above table or Table 1 times 600 kilograms of waste (based on process knowledge or testing). For example, the maximum activity of Pu-239 in any manifested container of liquid waste is 6.0 mCi (6.0E+09 pCi) as shown below:

$$10,000 \frac{\text{pCi}}{\text{g}} \times 600,000 \text{g} = 6.0 \text{X} 10^9 \text{ pCi} = 6.0 \text{ mCi Pu} - 239$$

Page 1 of 2

SPECIAL NUCLEAR MATERIAL EXEMPTION CERTIFICATION

Radionuclide	Maximum Concentration (pCi/g)	Measurement Uncertainty (pCi/g)	Radionuclide	Maximum Concentration (pCi/g)	Measurement Uncertainty (pCi/g)
U-233	75,000	11,250	Pu-241	350,000	50,000
Pu-236	500	75	Pu-242	10,000	1,500
Pu-238	10,000	1,500	Pu-243	500	75
Pu-239	10,000	1,500	Pu-244	500	75
Pu-240	10.000	1,500		·	

Table 1. Maximum concentrations of SNM in individual waste containers (refer to above table for U-235 limits).

- 3. Indicate that the following information is attached to the Radioactive Waste Profile Record by checking each box. (Note: Only the two-page Special Nuclear Material Exemption Certification form needs to be included with each manifest).
 - a. Provide a description of how the waste was generated, list the physical forms in the waste, and identify the uranium chemical composition.
 - b. Provide a general description of how the waste was characterized (including the volumetric extent of the waste, and the number, location, type, and results of any analytical testing), the range of SNM concentrations, and the analytical results with error values used to develop the concentration ranges.
 - C. Describe the process by which the waste was generated showing that the spatial distribution of SNM must be uniform, or other information supporting spatial distribution.
 - ☑ d. Describe the methods to be used to determine the concentrations on the manifests. These methods could include direct measurement and the use of scaling factors. Describe the uncertainty associated with sampling and testing used to obtain the manifest concentrations.
- 4. Generator's certification of compliance with the SNM exemption: I certify that the information provided on this form is complete, true, and correct and is based on process knowledge, physical observations, or approved laboratory testing. I also certify that sampling and radiological testing of waste containing SNM was performed in accordance with EnergySolutions' Radioactive Material License and that any supporting documentation and analytical results have been submitted to EnergySolutions.

Elizabeth Lamerson **Environmental Engineer** horized Signature Printed Name Title

A. GENERATOR AND WASTE STREAM INFORMATION

GENERAL: Complete this form for one waste stream. Contact EnergySolutions at (801) 532-1330 if you have any questions while completing this form. Please indicate "N/A" if a category does not apply.

1. GENERATOR INFORMATION

Generator Name:	USEC/ Portsmouth		EPA	ID #: <u>OHD987</u>	054723
Generator Contact	Elizabeth D. Lamerson			Title: Environr	nental Engineer
Mailing Address:	P.O. Box 628 M/S 9030				
	Piketon, OH 45661		Utah Site Access Per	rmit #: <u>0111000</u>	043
Phone	: <u>740-897-2812</u>	Fax: <u>740-897-2143</u>	1	Email: lamerson	ed@ports.usec.com
Contractor Name:	<u>N/A</u>	Loca	tion of Waste (City,	State): <u>Portsmor</u>	
Name & Title of P	erson Completing Form: El	izabeth Lamerson/Env. Eng.	Phone: 740-897-2	812 Email:	lamersoned@ports.usec.com
2. WASTE ST	FREAM INFORMATIO	ON			
Waste Stream I	D: 0691A-06 Waste Str	ream Name: Ion Exchange Res	sin		State of Origin: OH

Revision: 0 Date: 05/09/2011 Volume (ft³): TBD Delivery Date: Ongoing

CHECK APPROPRIATE BOXES BELOW. Please verify the required forms requested below are completed and submitted with the Radioactive Waste Profile Record.

HAZARDOUS WASTE: Is the waste classified as hazardous waste as defined by 40 CFR 261?

- N 🔯 If NO, complete and attach the "Low-Level Radioactive Waste Certification Attachment".
- Y I If YES, complete and attach the "Hazardous Waste Certification Attachment" and check applicable box below. Has the waste been treated to meet applicable treatment standards per 40 CFR 268? Y N I Is the waste to be treated by EnergySolutions? Y N I

LOW-LEVEL RADIOACTIVE WASTE: Is the radioactive waste defined as Low-Level Radioactive Waste in accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985 or in DOE Order 435.1?

- Y X If YES, a current copy of a LLRW Compact Export letter authorizing export must be submitted if applicable. This authorization is applicable for non-DOE LLRW (i.e., Mixed Waste, NORM/NARM, 11e.(2) material, and waste from DOE do not require a Compact Export Letter).
- N If NO, check appropriate box: NORM/NARM I 11e.(2) Byproduct Material Other:

SPECIAL NUCLEAR MATERIAL: Does the waste stream contain material with uranium enriched in U-235 or any of the following radionuclides: U-233, Pu-236, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, Pu-243, or Pu-244?

Y 🛛 N 🗋 If Yes, complete and attach the "SNM Exemption Certification" form (EC-0230-SNM). Supporting statements, analytical results, and documentation must be included with the submittal.

PCB WASTE: Does the waste contain Polychlorinated Biphenyls (PCB) that are regulated for disposal per 40 CFR 761?

Y I N I If Yes, complete and attach the "PCB Waste Certification" form (EC-98279).

ASBESTOS: Does the waste contain Asbestos Containing Material?

Y N X If Yes, Asbestos Containing Material must be managed in accordance with applicable federal regulations. Provide a detailed description of the waste containing asbestos in Section B.5 of the waste profile.

CL-WM-PR-001 F2 (EC-0230)

RADIOACTIVE WASTE PROFILE RECORD

B. WASTE PHYSICAL PROPERTIES & PACKAGE INFORMATION

1. GENERAL CHARACTERISTICS

Does the waste contain free liquids? Y 🗋 N 🔯	If Yes, what is the percent of free liquid by waste volume?%
	If Yes, is the liquid aqueous (water-based)? Y \square N \square
Does the waste contain absorbent? Y 🛛 N 🛄	Density range of the waste: 0.55 – 1.17 g/cc \boxtimes lb/ft ³
List percentage of waste type by volume: Soil 3%	Concrete & Metal% DAW <u>5</u> % Resins <u>90</u> % Sludge <u>2</u> %
Other constituents and percentage by volume? N/A	

2. MATERIAL SIZE

Gradation of Material: Indicate the percentage of waste material that would <u>pass through</u> the following grid sizes. For example, 95% of the material would pass through a 12" square, 90% passes through a 4" square, 80% passes through a 1" square, etc.

$12^{"}98\%$ $4^{"}95\%$ $1^{"}85\%$ $1/4^{"}50\%$ $1/40^{"}\leq 1\%$	2" <u>98</u> %	4" <u>95</u> %	1" <u>85</u> %	1/4" <u>50</u> %	1/40" <u>≤1</u> %	1/200" <u>≤1</u> %
---	----------------	----------------	----------------	------------------	-------------------	--------------------

Does the waste stream contain oversize debris (i.e., no dimension < 10 inches and any dimension > 12 feet)? Y \square N \boxtimes If Yes, include a detailed description (i.e., weight, size, drawings, etc.) of the oversize debris in the narrative of Section B.5.

3. MOISTURE CONTENT

For soil or soil-like materials, please use Std. Proctor Method ASTM D-698 to determine the optimum moisture content. The waste material must not exceed 3 percentage points above optimum moisture upon arrival at EnergySolutions' disposal facility unless approved by EnergySolutions.

Optimum Moisture Content: N/A % at Maximum Dry Density (lb/ft³): N/A

Average Moisture Content: N/A % Moisture Content Range: N/A% - N/A%

4. WASTE SHIPPING & PACKAGING

Transportation Mode: 🛛 Highway 🖾 Rail

Shipping & Container Packages:	⊠ Drums* (≤ 85 gallons)	Boxes ($\leq 100 \text{ ft}^3$)	Soft-Sided Bags	(≤ 10 yd³)
(Check all that apply)				
	[] Intermodal	□ Sealand	Gondola**	Box Car

Other:

*Palletized drums are preferred by the disposal site. Please specify in the "Other" field if drums will not be palletized.

**Dimensions of gondola railcars must be between 48 to 65 feet in length and 8.5 to 12.5 feet in height as measured from the top of the rail to the top of the railcar unless approved by EnergySolutions.

5. NARRATIVE DESCRIPTION AND HISTORY OF WASTE

Please submit a narrative description and history of the waste as an attachment to the Radioactive Waste Profile Record. This attachment should include the following:

- Process that generated the waste
- Waste material physical composition and characteristics
- Radiological and chemical characterization method
- Basis for determining manifested radionuclide concentrations
- Description and amounts of absorbents, if applicable
- Basis of non-hazardous or hazardous waste determinations
- Treatment processes, if applicable
- Product information or Material Safety Data Sheets associated with the waste as applicable
- Information requested in other sections of this form

Waste Stream ID: 0691A-06 Revision: 0

Date of Revision: 05/09/2011

C. RADIOLOGICAL INFORMATION

Obtain sufficient samples to adequately determine a range and weighted average of activity in the waste. Attach the gamma spectroscopy or radiochemistry data supporting the radionuclide information listed below.

- 1. Does the waste material contain accessible surfaces with contact dose rates greater than 500 mR/hr? Y 🛄 N 🔀
- 2. Does the waste material contain any of the following isotopes: Aluminum-26, Berkelium-247, Calcium-41, Californium-250, Chlorine-36, Rhenium-187, Terbium-157, or Terbium-158? Y □ N ⊠
- 3. Please list the following information for each isotope associated with the waste. Provide an explanation in the narrative description of Section B.5 if the waste contains localized "hot spots" or elevated concentrations that significantly exceed the upper concentration range. If additional space is needed, provide an Attachment C.3 to this profile record formatted as below.

Isotope	Manifested Upper Concentration (pCi/g)	Weighted Avg. per Container (pCi/g)	Isotope	Manifested Upper Concentration (pCi/g)	Weighted Avg. per Container (pCi/g)
Pa-233	50	12.79	<u></u>		
Pa-234m	388.5	334.633	<u>.</u>		
Tc-99	250000	131134			
Th-231	87.63	53.185			
Am-241	100	1.014		······	
Np-237	300	10			
Pu-238	50	0.4237			
Pu-239/240	50	0.5607			
Th-228	300	10			
Th-230	300	20.02			·
Th-232	300	10		•	
Th-234	50	3.2951			
Total U	50	10.199			
U-233/234	38000	5000			
U-236	50	0.2471			
U-238	16500	2000			
Ac-227	300	10			
Cs-137	300	10			
Np-237	300	10			
Pa-231	300	10			
Ra-226	300	10			
Th-229		10	<u></u>		
U-235	1900*	500	*See B.5		
<u>U-235</u>	1190*	500	*See B.5		
<u></u>	·		<u></u>		
	••••••••••••••••••••••••••••••••••••••	<u></u>			
				·	

HAZARDOUS WASTE CERTIFICATION ATTACHMENT

This form is required only if the checkbox for Hazardous Waste on page one has been checked YES. Otherwise, complete the Low-Level Radioactive Waste Certification Attachment instead of this attachment. EnergySolutions may waive the chemical laboratory analyses if the material is not amenable to chemical sampling and analysis (e.g., debris items including metal pieces, concrete, plastic, etc.). Justification for waiving the chemical analyses must be provided in Section B.5.

D. MINIMUM REQUIRED CHEMICAL ANALYSIS

The following parameters must be analyzed by a Utah or NELAC certified laboratory. Typical SW-846 analytical methods have been listed. Other approved methods are acceptable. Attach the most recent or applicable chemical analytical results representing the waste.

1. GENERAL CHEMICAL PARAMETERS

SW-846 Analytical Methods

pH (Liquid only): N/A Method 9045 Please provide the range of the pH analyses performed.

PFLT: Pass Pass / Fail Method 9095 Not applicable for liquid radioactive waste streams.

Analyze the waste for volatile or semi-volatile constituents (Methods 8260 & 8270), and attach the data.

Any distinguishing color or odor? Y 🛛 N 🗌 If Yes, color: ____; odor: Benzene odor

2. HAZARDOUS WASTE CODES AND TREATMENT STANDARDS (40 CFR 268)

List all hazardous waste codes and treatment standards. Include hazardous waste codes that have been removed through treatment and indicate "Former" in the second column. Worst-case concentrations only need to be provided for concentration based treatment standards. If additional space is needed, provide an Attachment D.2 to this profile record formatted as below. Include a description of hazardous waste determinations and any variances, exclusions, etc. in the narrative requested in Section B.5.

EPA HW Codes	Description, Constituent of Concern, or Subcategory	Treatment Standard (mg/kg unless noted as mg/L TCLP or Technology Code)	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)
<u>N/A</u>	N/A	N/A	<u>N/A</u>
		·	
	· · · · · · · · · · · · · · · · · · ·		
		<u> </u>	
<u></u>	·	·······	

CL-WM-PR-001 F2 (EC-0230) Revision 7

3. UNDERYLYING HAZARDOUS CONSTITUENTS (40 CFR 268.48)

List all underlying hazardous constituents (UHCs) and treatment standards. Include UHCs that have been removed through treatment. Worst-case concentrations only need to be provided for concentration based treatment standards. If additional space is needed, provide an Attachment D.3 to this profile record formatted as below.

Underlying Hazardous Constituents	Treatment Standard (mg/kg unless noted as mg/L TCLP or Technology Code)	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)
N/A	N/A	N/A
		kanaan kanaa ka
······································		······································
		·····
	·	

D. 4. OTHER CHEMICAL CONSTITUENTS

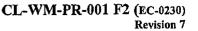
List any other chemical constituents of concern (e.g., PCBs, chelating agents, etc.) and worst-case concentrations. If additional space is needed, provide an Attachment D.4 to this profile record formatted as below.

Other Chemical Constituents	Worst Case Concentration (mg/kg unless noted as mg/L TCLP)	Other Hazardous Constituents	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)
N/A	N/A	N/A	N/A

5. LABORATORY CERTIFICATION INFORMATION

UTAH or NELAC CERTIFIED

The Utah or NELAC certified laboratory holds a current certification for the applicable chemical test methods insofar as such official certifications are given. Please provide a copy of the laboratory's current certification letter for each parameter analyzed and each method used for chemical analyses required by this form.


OTHER LABORATORY CERTIFICATION (Describe below)

6. CERTIFICATION

I certify that sample results representative of the waste described in this profile were or shall be obtained using state- and EPAapproved analytical methods. I also certify that where necessary representative samples were or shall be provided to EnergySolutions and to qualified laboratories for the analytical results reported herein. I further certify that the waste described in this record is not prohibited from land disposal in 40 CFR 268 (unless prior arrangements are made for treatment at EnergySolutions) and that all applicable treatment standards are clearly indicated on this form. I also certify that the information provided on this form is complete, true, and correct and is accurately supported and documented by any laboratory testing as required by EnergySolutions. I certify that the results of any said testing have been submitted to EnergySolutions. I certify that the waste does not contain any prohibited items listed in EnergySolutions' Radioactive Material License or RCRA Permit.

Title: Khviron mentel f Ninel Date: Generator's Signature:

Hazardous Waste Certification Attachment

LOW-LEVEL RADIOACTIVE WASTE CERTIFICATION ATTACHMENT

This form is required only if the checkbox for Hazardous Waste on page one has been checked No. Otherwise, complete the Hazardous Waste Certification Attachment instead of this attachment. EnergySolutions may waive the chemical laboratory analyses if the material is not amenable to chemical sampling and analysis (e.g., debris items including metal pieces, concrete, plastic, etc.). Justification for waiving the chemical analyses must be provided in Section B.5.

D. MINIMUM REQUIRED CHEMICAL ANALYSIS

The following parameters must be analyzed by a Utah or NELAC certified laboratory. Typical SW-846 analytical methods have been listed. Other approved methods are acceptable. Attach the most recent or applicable chemical analytical results representing the waste.

1. GENERAL CHEMICAL PARAMETERS

SW-846 Analytical Methods

PFLT: Pass _____ Pass / Fail Method 9095 Not applicable for liquid radioactive waste streams.

2. 40 CFR 261.24 Table 1 - Contaminants of Toxicity Characteristic

Metals: Methods 6010 & *7470 X TCLP (mg/L) or Total (mg/kg)

Arsenic 0.5	Chromium 0.121	Selenium	0.5
Barium 0.125	Lead 0.642	Silver_	0.052
Cadmium 0.875	*Mercury 0.044		

Organics, Pesticides/Herbicides: Methods 8081/*8151 X TCLP (mg/L) or Total (mg/kg)

Endrin	0.0004	Toxaphene	ND	Chlordane_	ND
Lindane	ND	*2,4-D	ND	Heptachlor_	0.008
Methoxychlor_	0.005	*2,4,5-TP Silvex	ND		
Organics, Semi-Volatile:	Method 8270	TCLP (mg/L) or 🗌 Tota	al (mg/kg)		
o-Cresol_	ND	Hexachlorobenzene	ND	Pentachlorophenol	ND
m-Cresol_	ND	Hexachlorobutadiene	ND	Pyridine_	ND
p-Cresol_	ND	Hexachloroethane	ND	2,4,5-Trichlorophenol_	ND
Total Cresol	ND	Nitrobenzene	ND	2,4,6-Trichlorophenol_	ND
2,4-Dinitrotoluene	ND				
Organics, Volatile: Metho	d 8260 🛛 1	TCLP (mg/L) or 🗌 Total (mg	/kg)		
Benzene	ND	1,4-Dichlorobenzene	0.05	Methyl ethyl keytone_	ND
Carbon Tetrachloride	ND	1,2-Dichloroethane	ND	Tetrachloroethylene_	ND
Chlorobenzene_	0.05	1,1-Dichloroethylene	ND	Trichloroethylene	ND
Chloroform	0.05	Vinyl Chloride	ND		

3. Was the waste at the point of generation a RCRA hazardous waste per 40 CFR 261? Y 🗌 N 🔀

If Yes, list former hazardous waste codes and former underlying hazardous constituents. List worst-case concentrations for each hazardous constituent. If additional space is needed, provide an Attachment D.3 to this profile record formatted as below. Attach the most recent chemical analytical results demonstrating compliance with applicable treatment standards. If No, indicate "N/A" in Section D.3 below.

Former EPA HW Codes or Underlying Hazardous Constituents	mg/L TCLP or Technology Code)	(mg/kg unless noted as mg/L TCLP)
	Underlying Hazardous Constituents	Underlying Hazardous Constituents Technology Code)

4. OTHER CHEMICAL CONSTITUENTS

List any other chemical constituents of concern (e.g., PCBs, chelating agents, etc.) and worst-case concentrations. If additional space is needed, provide an Attachment D.4 to this profile record formatted as below.

Other Chemical Constituents	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)	Other Hazardous Constituents	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)
Beryllium	0.523 mg/kg	N/A	N/A
Arcolor 1268	3.3 mg/kg	<u>N/A</u>	N/A
	·····		· ····································
			·
			•

5. LABORATORY CERTIFICATION

UTAH or NELAC CERTIFIED

The Utah or NELAC certified laboratory holds a current certification for the applicable chemical test methods insofar as such official certifications are given. Please provide a copy of the laboratory's current certification letter for each parameter analyzed and each method used for chemical analyses required by this form.

OTHER LABORATORY CERTIFICATION (Describe below)

6. CERTIFICATION

I certify that sample results representative of the waste described in this profile were or shall be obtained using state- and EPAapproved analytical methods. I also certify that where necessary representative samples were or shall be provided to EnergySolutions and to qualified laboratories for the analytical results reported herein. I further certify that the waste described in this record is not prohibited from land disposal in 40 CFR 268 (unless prior arrangements are made for treatment at EnergySolutions) and that all applicable treatment standards are clearly indicated on this form. I also certify that the information provided on this form is complete, true, and correct and is accurately supported and documented by any laboratory testing as required by EnergySolutions. I certify that the results of any said testing have been submitted to EnergySolutions. I certify that the waste does not contain any-prohibited items listed in EnergySolutions' Radioactive Material License.

vironmental CycineoDate: 6/15/11 Generator's Signature: Title: **En**

Low-Level Radioactive Waste Certification Attachment

ATTACHMENT B.5 PHYSICAL PROPERTIES

Generator Name: USEC/Pc	rtsmouth	Waste Stream ID:	0691A-06_
Revision #: <u>0</u>	Revision Date:		

ION EXCHANGE RESIN WASTE STREAM

The Ion Exchange Resin waste stream originates in the Portsmouth Gaseous Diffusion Plant (PORTS) Decontamination Building (X-705) and is generated by the heavy metals filtrate solutions (raffinate solutions which have been neutralized and processed through heavy metals precipitation) are transferred to the technetium ion exchange feed tank. The solutions are then pumped from the feed tank using a metering pump through ion exchange columns for technetium removal by ion exchange onto the resin.

The waste stream also contains small amounts of Dry Active Waste (DAW) that was used in cleanup, sampling, and operation of the process.

The containers of Ion Exchange Resin were sampled at the point of generation for Tc-99. These containers were re-sampled and analyzed for the purpose of characterization and this profile. The results were found to be non-hazardous.

The waste will not contain free liquids. Loose absorbent material may be added to the waste to mitigate the risk of free liquids >1% in waste containers that have the potential for free liquids/condensate.

*The containers have <10% and >10% enrichment. The containers that exceed 10% enrichment will not exceed 1,190 pCi/g U-235. The containers that are <10% will not exceed 1,900 pCi/g U-235.

Radiological and Chemical Characterization Requirements and Methods:

The primary objective of the characterization sampling design was to achieve high confidence that at least a high percentage of the items in population are acceptable. A hypergeometric model with a 95%/90% confidence interval was used to characterize this waste stream. The sample size was calculated using a similar method to Bowen and Bennett 1988 (*Statistical Methods for Nuclear Material Management*, NUREG/CR-4604, US Nuclear Regulatory Commission, Washington, DC). Thirty random samples were taken to meet the 95/90 confidence interval.

Chemical Characterization

Ohio Administrative Code (OAC) Section 3745-51 *et seq* and Title 40 Code of Federal Regulations (CFR) § 261 *et seq* clearly define the process for identifying a waste based on characteristics. OAC 3745-51-20 (40 CFR § 261.24) states:

"A waste is a hazardous waste if it exhibits any of the characteristics identified in rules 3745-51-20 (40 CFR § 261.20) to 3745-51-24 (40 CFR § 261.24) of the Administrative Code."

To determine the regulatory status of this waste stream the following requirements were met:

- 1. Collect a representative sample.
- 2. Analyze the sample using TCLP Method 1311 in "Test Methods for the Evaluation of Solid Waste, Physical/Chemical Methods," EPA Publication SW-846.
- 3. Compare the results of the analysis to OAC 3745-51-24, Table 1 (40 CFR § 261.24, Table 1).

ATTACHMENT B.5 PHYSICAL PROPERTIES

4. If the contaminate is statistically (as defined by Chapter Nine of SW-846) at or above the regulatory limit outlined in Table 1 of OAC 3745-51-24 (40 CFR § 261.24), then the waste is characteristically hazardous for that contaminant and must be managed as such.

Also, waste may be characteristically hazardous if it meets the criteria outlined in OAC 3745-51-21 (40 CFR § 261.21) to OAC 3745-51-23 (40 CFR § 261.23). OAC 3745-51-30 (40 CFR § 261.30) clearly define the process for identifying a waste based on a listing. OAC 3745-51-30 (A) [40 CFR § 261.30 (a)] states:

"A waste is a hazardous waste if it is listed as such in rules 3745-51-30 (§ 261.30) to 3745-51-35 (§ 261.35) of the Administrative Code."

To determine the regulatory status of this waste stream for listed hazardous waste, the following requirements were met:

- 1. Identify the generating process or identify the waste as derived from an already listed hazardous waste.
- 2. Identify the constituents, which may cause the waste to be classified as hazardous.
- 3. Compare the waste descriptions provided in OAC 3745-51-31 (40 CFR § 261.31) to OAC 3745-51-33 (40 CFR § 261.33).
- 4. If the process and constituents are listed in OAC 3745-51-31 (40 CFR § 261.31 to OAC 3745-51-33 (40 CFR § 261.33), then the waste is listed as hazardous and is managed as such.

This waste stream is not regulated for disposal as a RCRA hazardous waste as defined in 40 CFR 261. This waste is not regulated as TSCA (PCB) waste as defined in 40 CFR 761.

Radiological Characterization

Radiological characterization is performed through a combination of laboratory data and a Non-Destructive Analysis (NDA) method. Thirty random samples of the total population were analyzed to provide the radiological characterization data to adequately determine a range and concentration of activity in the waste.

Basis for Determining Manifested Radionuclide Concentrations

Radiological characterization of outgoing shipments is performed through a combination of laboratory data and a Non-Destructive Analysis (NDA) method. The radiological laboratory results were used to establish scaling factors which are then synchronized with the NDA results and divided by net weight in the container to develop manifested nuclide concentrations. The SNM is typically in the form of dry non-visible uranium dust made up of oxide compounds, primarily UO_2F_2 . The SNM is essentially distributed homogenously throughout the waste.

The waste will be packaged for transportation and disposal in drums or metal boxes.

SPECIAL NUCLEAR MATERIAL EXEMPTION CERTIFICATION

The Special Nuclear Material Exemption Certification form must be completed and signed by each generator certifying to the following conditions. Please attach this form and all required information to the Radioactive Waste Profile Record (EC-0230). A completed and signed copy of this form must also accompany each waste manifest.

Waste Stream ID: 0691A-06 Manifest No. 0691A-06

V	Uranium Enrichment Percent	Weight Percent of Chemicals in Condition 2c	Weight Percent of Materials in Condition 2d	U-235 Concentration (pCi/g)	Measurement Uncertainty* (pCi/g)			
\boxtimes	< 10 %	≤ 20 %	≤ 1 %	≤ 1,900	≤ 285			
\boxtimes	Unlimited	≤ 20 %	≤ 1 %	≤ 1,190	≤ 179			
	Unlimited	Sum of both $\leq 45 \%$	of waste by weight	≤ 680	≤ 102			
	Unlimited	Unlimited	Unlimited	≤ 26	≤ 10			
	Not Applicable - Enriched U-235 is not present in the waste.							

1. Check applicable category below for the waste stream:

⁶ A concentration value is used for the maximum measurement uncertainty limit rather than a percentage value to allow greater flexibility for generators with waste having very low SNM concentrations.

2. Certify to the following requirements by checking each box:

- a. Concentrations of SNM in individual waste containers do not exceed the applicable values listed in the above table and SNM isotope concentrations listed in Table 1.
- b. The SNM is homogeneously distributed throughout the waste or the SNM concentrations in any contiguous mass of 600 kilograms (1,323 lbs) do not exceed on average the specified limits. (Based on process knowledge or testing).
- C. Except as allowed by Condition 1, the waste does not contain "pure forms" of chemicals containing carbon, fluorine, magnesium, or bismuth in bulk quantities (e.g., a pallet of drums, a B-25 box). By "pure forms," it is meant that mixtures of the above elements such as magnesium oxide, magnesium carbonate, magnesium fluoride, bismuth oxide, etc. do not contain other elements. (Based on process knowledge or testing).
- ☑ d. Except as allowed by Condition 1, the waste does not contain total quantities of beryllium, hydrogenous material enriched in deuterium, or graphite above one percent of the total weight of the waste. (Based on process knowledge, physical observations, or testing).
- e. Waste packages do not contain highly soluble forms of uranium greater than 350 grams of uranium-235 or 200 grams of uranium-233. If the waste contains mixtures of U-233 and U-235, the waste meets the sum of the fractions rule. Highly soluble forms of uranium include, but are not limited to: uranium sulfate, uranyl acetate, uranyl chloride, uranyl formate, uranyl fluoride, uranyl nitrate, uranyl potassium carbonate, and uranyl sulfate. (Based on process knowledge or testing).
- f. For containers of <u>liquid waste</u> with more than 600 kilograms of waste, the total activity (pCi) of SNM in the manifested container does not exceed the SNM concentration in the above table or Table 1 times 600 kilograms of waste (based on process knowledge or testing). For example, the maximum activity of Pu-239 in any manifested container of liquid waste is 6.0 mCi (6.0E+09 pCi) as shown below:

$$10,000 \frac{pCi}{g} \times 600,000 g = 6.0 \times 10^9 pCi = 6.0 mCi Pu - 239$$

SPECIAL NUCLEAR MATERIAL EXEMPTION CERTIFICATION

Radionuclide	Maximum Concentration (pCi/g)	Measurement Uncertainty (pCi/g)	Radionuclide	Maximum Concentration (pCi/g)	Measurement Uncertainty (pCi/g)
U-233	75,000	11,250	Pu-241	350,000	50,000
Pu-236	500	75	Pu-242	10,000	1,500
Pu-238	10,000	1,500	Pu-243	500	75
Pu-239	10,000	1,500	Pu-244	500	75
Pu-240	10.000	1.500			

Table 1. Maximum concentrations of SNM in individual waste containers (refer to above table for U-235 limits).

- 3. Indicate that the following information is attached to the Radioactive Waste Profile Record by checking each box. (Note: Only the two-page Special Nuclear Material Exemption Certification form needs to be included with each manifest).
 - a. Provide a description of how the waste was generated, list the physical forms in the waste, and identify the uranium chemical composition.
 - b. Provide a general description of how the waste was characterized (including the volumetric extent of the waste, and the number, location, type, and results of any analytical testing), the range of SNM concentrations, and the analytical results with error values used to develop the concentration ranges.
 - c. Describe the process by which the waste was generated showing that the spatial distribution of SNM must be uniform, or other information supporting spatial distribution.
 - d. Describe the methods to be used to determine the concentrations on the manifests. These methods could include direct measurement and the use of scaling factors. Describe the uncertainty associated with sampling and testing used to obtain the manifest concentrations.
- 4. Generator's certification of compliance with the SNM exemption: I certify that the information provided on this form is complete, true, and correct and is based on process knowledge, physical observations, or approved laboratory testing. I also certify that sampling and radiological testing of waste containing SNM was performed in aesordance with EnergySolutions' Radioactive Material License and that any supporting documentation and analytical/results have been submitted to EnergySolutions.

Elizabeth Lamerson **Environmental Engineer** brized Signature Printed Name Title

A. GENERATOR AND WASTE STREAM INFORMATION

GENERAL: Complete this form for one waste stream. Contact EnergySolutions at (801) 532-1330 if you have any questions while completing this form. Please indicate "N/A" if a category does not apply.

1. GENERATOR INFORMATION

Generator Name:	USEC/ Portsmouth		EPA ID #:	OHD987054723
Generator Contact	Elizabeth D. Lamerson		Title:_	Environmental Engineer
Mailing Address:	P.O. Box 628 M/S 9030	an a		
	Piketon, OH 45661		Utah Site Access Permit #:	0111000043
Phone	:740-897-2812	Fax:740-897-2143	Email:	lamersoned@ports.usec.com
Contractor Name:	<u>N/A</u>	Loca	ation of Waste (City, State):	Portsmouth
Name & Title of P	erson Completing Form: E	lizabeth Lamerson/Env. Eng.	Phone: 740-897-2812	Email: lamersoned@ports.usec.com
2. WASTE STREAM INFORMATION				
Waste Stream I	D: 0691A-09 Waste St	ream Name: Oil and Grease S	udge	State of Origin: OH

 Revision:
 Date:
 05/17/2011
 Volume (ft³): TBD
 Delivery Date:
 Ongoing

CHECK APPROPRIATE BOXES BELOW. Please verify the required forms requested below are completed and submitted with the Radioactive Waste Profile Record.

HAZARDOUS WASTE: Is the waste classified as hazardous waste as defined by 40 CFR 261?

- N X If NO, complete and attach the "Low-Level Radioactive Waste Certification Attachment".
- Y I If YES, complete and attach the "Hazardous Waste Certification Attachment" and check applicable box below. Has the waste been treated to meet applicable treatment standards per 40 CFR 268? Y N I Is the waste to be treated by EnergySolutions? Y N N

LOW-LEVEL RADIOACTIVE WASTE: Is the radioactive waste defined as Low-Level Radioactive Waste in accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985 or in DOE Order 435.1?

Y X If YES, a current copy of a LLRW Compact Export letter authorizing export must be submitted if applicable. This authorization is applicable for non-DOE LLRW (i.e., Mixed Waste, NORM/NARM, 11e.(2) material, and waste from DOE do not require a Compact Export Letter).

N 🗌 If NO, check appropriate box: NORM/NARM 🔲 11e.(2) Byproduct Material 🗌 Other:

SPECIAL NUCLEAR MATERIAL: Does the waste stream contain material with uranium enriched in U-235 or any of the following radionuclides: U-233, Pu-236, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, Pu-243, or Pu-244?

Y 🛛 N 🗋 If Yes, complete and attach the "SNM Exemption Certification" form (EC-0230-SNM). Supporting statements, analytical results, and documentation must be included with the submittal.

PCB WASTE: Does the waste contain Polychlorinated Biphenyls (PCB) that are regulated for disposal per 40 CFR 761?

Y N M If Yes, complete and attach the "PCB Waste Certification" form (EC-98279).

ASBESTOS: Does the waste contain Asbestos Containing Material?

Y I N M If Yes, Asbestos Containing Material must be managed in accordance with applicable federal regulations. Provide a detailed description of the waste containing asbestos in Section B.5 of the waste profile.

B. WASTE PHYSICAL PROPERTIES & PACKAGE INFORMATION

1. GENERAL CHARACTERISTICS

Does the waste contain free liquids? Y 🗍 N 🔀	If Yes, what is the percent of free liquid by waste	volume?%
	If Yes, is the liquid aqueous (wate	r-based)?Y 🔲 N 🗌
Does the waste contain absorbent? Y \boxtimes N \square	Density range of the waste: $0.62 - 1.29$ g/cc 🔀	lb/ft³
List percentage of waste type by volume: Soil%	Concrete & Metal% DAW 5%	Resins% Sludge 25%
Other constituents and percentage by volume? N/A		

2. MATERIAL SIZE

Gradation of Material: Indicate the percentage of waste material that would <u>pass through</u> the following grid sizes. For example, 95% of the material would pass through a 12" square, 90% passes through a 4" square, 80% passes through a 1" square, etc.

12" <u>95</u> % 4" <u>85</u> % 1" <u>75</u> % 1/4" <u>50</u> % 1/40" <u><1</u> % 1/200" <u><1</u> %

Does the waste stream contain oversize debris (i.e., no dimension < 10 inches and any dimension > 12 feet)? Y \square N \boxtimes If Yes, include a detailed description (i.e., weight, size, drawings, etc.) of the oversize debris in the narrative of Section B.5.

3. MOISTURE CONTENT

For soil or soil-like materials, please use Std. Proctor Method ASTM D-698 to determine the optimum moisture content. The waste material must not exceed 3 percentage points above optimum moisture upon arrival at EnergySolutions' disposal facility unless approved by EnergySolutions.

Optimum Moisture Content: N/A % at Maximum Dry Density (ib/ft³): N/A

Average Moisture Content: <u>N/A %</u> Moisture Content Range: <u>N/A% - N/A%</u>

4. WASTE SHIPPING & PACKAGING

Transportation Mode: 🛛 Highway 🖾 Rail

Shipping & Container Packages:	⊠ Drums* (≤ 85 gallons)	Boxes ($\leq 100 \text{ ft}^3$)	Soft-Sided Bags	(≤ 10 yd³)
(Check all that apply)				
	🛛 Intermodal	Sealand	Gondola**	Box Car

Other:

*Palletized drums are preferred by the disposal site. Please specify in the "Other" field if drums will not be palletized.

**Dimensions of gondola railcars must be between 48 to 65 feet in length and 8.5 to 12.5 feet in height as measured from the top of the rail to the top of the railcar unless approved by EnergySolutions.

5. NARRATIVE DESCRIPTION AND HISTORY OF WASTE

Please submit a narrative description and history of the waste as an attachment to the Radioactive Waste Profile Record. This attachment should include the following:

- Process that generated the waste
- Waste material physical composition and characteristics
- Radiological and chemical characterization method
- Basis for determining manifested radionuclide concentrations
- Description and amounts of absorbents, if applicable
- Basis of non-hazardous or hazardous waste determinations
- Treatment processes, if applicable
- Product information or Material Safety Data Sheets associated with the waste as applicable
- Information requested in other sections of this form

CL-WM-PR-001 F2 (EC-0230) Revision 7

RADIOACTIVE WASTE PROFILE RECORD

Waste Stream ID: 0691A-09 Revision: 0

Date of Revision: 05/17/2011

C. RADIOLOGICAL INFORMATION

Obtain sufficient samples to adequately determine a range and weighted average of activity in the waste. Attach the gamma spectroscopy or radiochemistry data supporting the radionuclide information listed below.

- 1. Does the waste material contain accessible surfaces with contact dose rates greater than 500 mR/hr? Y 🗌 N 🔀
- 2. Does the waste material contain any of the following isotopes: Aluminum-26, Berkelium-247, Calcium-41, Californium-250, Chlorine-36, Rhenium-187, Terbium-157, or Terbium-158? Y □ N ⊠
- 3. Please list the following information for each isotope associated with the waste. Provide an explanation in the narrative description of Section B.5 if the waste contains localized "hot spots" or elevated concentrations that significantly exceed the upper concentration range. If additional space is needed, provide an Attachment C.3 to this profile record formatted as below.

Isotope	Manifested Upper Concentration (pCi/g)	Weighted Avg. per Container (pCi/g)	Isotope	Manifested Upper Concentration (pCi/g)	Weighted Avg. per Container (pCi/g)
Pa-234	50	36.68			
Pa-234m	18800	7442.7			
Tc-99	13000	1288.09			
TI-208	50	3.952			
<u>Th-231</u>	1336	619.57			
<u>Th-234</u>	13480	6484.46			
<u>U-234</u>	38000	5000			
U-235	1328	360.29			
Am-241	100	10			
Cm-248	50	0.1308			
Np-237	300	10			
Pu-238	50	0.29052			
Pu-239/240	50	0.51516			
<u>Th-228</u>	300	10			
Th-230	50	3.615			
Th-231	1358	262.944			
<u>Th-232</u>	300	10			
Th-234	16290	3489.785			
Total U	38000	5000			
U-233/234	38000	4755.454		_	
U-235	1900	262.94			
U-236	116.4	15.985			
U-238	16500	5000			
Th-229	300	10			
Ac-227	300	10			
Cs-137	300	10			
Pa-231	300	10			
Ra-226	300	10			

0691A-09 Rev 0

Page 3 of 5

HAZARDOUS WASTE CERTIFICATION ATTACHMENT

This form is required only if the checkbox for Hazardous Waste on page one has been checked YES. Otherwise, complete the Low-Level Radioactive Waste Certification Attachment instead of this attachment. EnergySolutions may waive the chemical laboratory analyses if the material is not amenable to chemical sampling and analysis (e.g., debris items including metal pieces, concrete, plastic, etc.). Justification for waiving the chemical analyses must be provided in Section B.5.

D. MINIMUM REQUIRED CHEMICAL ANALYSIS

The following parameters must be analyzed by a Utah or NELAC certified laboratory. Typical SW-846 analytical methods have been listed. Other approved methods are acceptable. Attach the most recent or applicable chemical analytical results representing the waste.

1. GENERAL CHEMICAL PARAMETERS

SW-846 Analytical Methods

pH (Liquid only): N/A

_____ Method 9045 Please provide the range of the pH analyses performed.

PFLT: Pass Pass / Fail Method 9095 Not applicable for liquid radioactive waste streams.

Analyze the waste for volatile or semi-volatile constituents (Methods 8260 & 8270), and attach the data.

Any distinguishing color or odor? Y 🔲 N 🛛 If Yes, color: _____; odor: _____

2. HAZARDOUS WASTE CODES AND TREATMENT STANDARDS (40 CFR 268)

List all hazardous waste codes and treatment standards. Include hazardous waste codes that have been removed through treatment and indicate "Former" in the second column. Worst-case concentrations only need to be provided for concentration based treatment standards. If additional space is needed, provide an Attachment D.2 to this profile record formatted as below. Include a description of hazardous waste determinations and any variances, exclusions, etc. in the narrative requested in Section B.5.

EPA HW Codes	Description, Constituent of Concern, or Subcategory	Treatment Standard (mg/kg unless noted as mg/L TCLP or Technology Code)	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)
<u>N/A</u>	N/A	<u> </u>	<u>N/A</u>
			·
·			
<u></u>	·		

0691A-09 Rev 0

Hazardous Waste Certification Attachment

CL-WM-PR-001 F2 (EC-0230) Revision 7

3. UNDERYLYING HAZARDOUS CONSTITUENTS (40 CFR 268.48)

List all underlying hazardous constituents (UHCs) and treatment standards. Include UHCs that have been removed through treatment. Worst-case concentrations only need to be provided for concentration based treatment standards. If additional space is needed, provide an Attachment D.3 to this profile record formatted as below.

Underlying Hazardous Constituents	Treatment Standard (mg/kg unless noted as mg/L TCLP or Technology Code)	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)	
<u>N/A</u>	N/A	N/A	
		<u></u>	
		Hare an Marked Street Barren and Street Bar	
		<u></u>	
		*_*_	

D. 4. OTHER CHEMICAL CONSTITUENTS

List any other chemical constituents of concern (e.g., PCBs, chelating agents, etc.) and worst-case concentrations. If additional space is needed, provide an Attachment D.4 to this profile record formatted as below.

Other Chemical Constituents	Worst Case Concentration (mg/kg unless noted as mg/L TCLP)	Other Hazardous Constituents	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)
N/A			N/A

5. LABORATORY CERTIFICATION INFORMATION

UTAH or NELAC CERTIFIED

The Utah or NELAC certified laboratory holds a current certification for the applicable chemical test methods insofar as such official certifications are given. Please provide a copy of the laboratory's current certification letter for each parameter analyzed and each method used for chemical analyses required by this form.

OTHER LABORATORY CERTIFICATION (Describe below)

6. CERTIFICATION

I certify that sample results representative of the waste described in this profile were or shall be obtained using state- and EPAapproved analytical methods. I also certify that where necessary representative samples were or shall be provided to EnergySolutions and to qualified laboratories for the analytical results reported herein. I further certify that the waste described in this record is not prohibited from land disposal in 40 CFR 268 (unless prior arrangements are made for treatment at EnergySolutions) and that all applicable treatment standards are clearly indicated on this form. I also certify that the information provided on this form is complete, true, and correct and is accurately supported and documented by any laboratory testing as required by EnergySolutions. I certify that the results of any said testing have been submitted to EnergySolutions. I certify that the waste does not prohibited items listed in EnergySolutions' Radioactive Material License or RCRA Permit.

Generator's Signature: Title:Environmental Engineer Date

Hazardous Waste Certification Attachment

LOW-LEVEL RADIOACTIVE WASTE CERTIFICATION ATTACHMENT

This form is required only if the checkbox for Hazardous Waste on page one has been checked No. Otherwise, complete the Hazardous Waste Certification Attachment instead of this attachment. EnergySolutions may waive the chemical laboratory analyses if the material is not amenable to chemical sampling and analysis (e.g., debris items including metal pieces, concrete, plastic, etc.). Justification for waiving the chemical analyses must be provided in Section B.5.

D. MINIMUM REQUIRED CHEMICAL ANALYSIS

The following parameters must be analyzed by a Utah or NELAC certified laboratory. Typical SW-846 analytical methods have been listed. Other approved methods are acceptable. Attach the most recent or applicable chemical analytical results representing the waste.

1. GENERAL CHEMICAL PARAMETERS

SW-846 Analytical Methods

PFLT: Pass _____ Pass / Fail Method 9095 Not applicable for liquid radioactive waste streams.

2. 40 CFR 261.24 Table 1 - Contaminants of Toxicity Characteristic

Metals: Methods 6010 & *7470 X TCLP (mg/L) or Total (mg/kg)

Arsenic 0.3	609 Chromium	0.061	Selenium	0.062
Barium0.	84 Lead_	0.381	Silver	0.228
Cadmium 0.0	181 *Mercury_	0.00043		
		_		

Organics, Pesticides/Herbicides: Methods 8081/*8151 🛛 TCLP (mg/L) or 🗌 Total (mg/kg)

Endrin	ND	Toxaphene	ND	Chlordane	ND
Lindane	ND	*2,4-D	ND	Heptachlor	ND
Methoxychlor	ND	*2,4,5-TP Silvex	ND		
Organics, Semi-Volatile: N	Aethod 8270	TCLP (mg/L) or 🗌 Tota	ıl (mg/kg)		
o-Cresol	ND	Hexachlorobenzene	ND	Pentachlorophenol	ND
m-Cresol	ND	Hexachlorobutadiene	ND	Pyridine	ND
p-Cresol	ND	Hexachloroethane	ND	2,4,5-Trichlorophenol	ND
Total Cresol	ND	Nitrobenzene	ND	2,4,6-Trichlorophenol	ND
2,4-Dinitrotoluene	ND				
Organics, Volatile: Metho	1 8260 🛛 1	FCLP (mg/L) or 🗌 Total (mg/	′kg)		
Benzene	ND	1,4-Dichlorobenzene	ND	Methyl ethyl keytone	ND
Carbon Tetrachloride	ND	1,2-Dichloroethane	ND	Tetrachloroethylene	0.05
Chlorobenzene	ND	1,1-Dichloroethylene	ND	Trichloroethylene	ND
Chloroform	ND	Vinyl Chloride	ND		

3. Was the waste at the point of generation a RCRA hazardous waste per 40 CFR 261? Y 🗌 N 🛛

If Yes, list former hazardous waste codes and former underlying hazardous constituents. List worst-case concentrations for each hazardous constituent. If additional space is needed, provide an Attachment D.3 to this profile record formatted as below. Attach the most recent chemical analytical results demonstrating compliance with applicable treatment standards. If No, indicate "N/A" in Section D.3 below.

0691A-09 Rev 0

Low-Level Radioactive Waste Certification Attachment

Wovet Cone

RADIOACTIVE WASTE PROFILE RECORD

D. 3.	Former EPA HW Codes or Underlying Hazardous Constituents	(mg/kg unless noted as mg/L TCLP or Technology Code)	Concentration (mg/kg unless noted as mg/L TCLP)
•		•	

4. OTHER CHEMICAL CONSTITUENTS

List any other chemical constituents of concern (e.g., PCBs, chelating agents, etc.) and worst-case concentrations. If additional space is needed, provide an Attachment D.4 to this profile record formatted as below.

Other Chemical Constituents	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)	Other Hazardous Constituents	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)
Beryllium	0.868 mg/kg	N/A	N/A
· · · · · · · · · · · · · · · · · · ·		······	
		<u> </u>	
	·····		
	·····		

5. LABORATORY CERTIFICATION

UTAH or NELAC CERTIFIED

The Utah or NELAC certified laboratory holds a current certification for the applicable chemical test methods insofar as such official certifications are given. Please provide a copy of the laboratory's current certification letter for each parameter analyzed and each method used for chemical analyses required by this form.

OTHER LABORATORY CERTIFICATION (Describe below)

6. CERTIFICATION

I certify that sample results representative of the waste described in this profile were or shall be obtained using state- and EPAapproved analytical methods. I also certify that where necessary representative samples were or shall be provided to EnergySolutions and to qualified laboratories for the analytical results reported herein. I further certify that the waste described in this record is not prohibited from land disposal in 40 CFR 268 (unless prior arrangements are made for treatment at EnergySolutions) and that all applicable treatment standards are clearly indicated on this form. I also certify that the information provided on this form is complete, true, and correct and is accurately supported and documented by any laboratory testing as required by EnergySolutions. I certify that the results of any said testing have been submitted to EnergySolutions. I certify that the waste does not contait any prohibited in EnergySolutions? Redicative Material License

the waste does not contain any provibited items listed in Generator's Signature:	TenergySolutions' Radioactive Material Licen	se. Date: 4/15/11
V		

Low-Level Radioactive Waste Certification Attachment

ATTACHMENT B.5 PHYSICAL PROPERTIES

 Generator Name: USEC/Portsmouth
 Waste Stream ID:_____

 Revision #: 0_____
 Revision Date:_____

:_____0691A-09

OIL AND GREASE SLUDGE WASTE STREAM

The Oil and Grease Sludge waste stream originates in the Portsmouth Gaseous Diffusion Plant (PORTS) Decontamination Building (X-705). The function of the X-705 Oil and Grease Removal Unit (OGRU) is to remove oil and grease from solutions in preparation for processing through the Microfiltration System. This system consists of geometrically favorable storage columns and the OGRU (reaction tank, permeate tray, and sludge drum). Chemicals are added to the solution in the OGRU reservoir to break the oil and grease loose from suspension and encapsulate them so the oil and grease can be filtered out. After the chemicals are added, a turbo mixer agitates the solution. The liquid is drained off through filter paper and collected in the filtrate collection tray. The solids collect on the filter paper and are eventually fed through the sludge chute to an approved container for disposal.

The waste stream also contains small amounts of Dry Active Waste (DAW) that was used in cleanup, sampling, and operation of the process.

The containers of oil and grease sludge were sampled and analyzed for the purpose of characterization and this profile. The results were found to be non-hazardous.

The waste will not contain free liquids. Loose absorbent material may be added to the waste to mitigate the risk of free liquids >1% in waste containers that have the potential for free liquids/condensate.

Radiological and Chemical Characterization Requirements and Methods:

The primary objective of the characterization sampling design was to achieve high confidence that at least a high percentage of the items in population are acceptable. A hypergeometric model with a 95%/90% confidence interval was used to characterize this waste stream. The sample size was calculated using a similar method to Bowen and Bennett 1988 (*Statistical Methods for Nuclear Material Management*, NUREG/CR-4604, US Nuclear Regulator Commission, Washington, DC). Eighteen random samples were taken to meet the 95/90 confidence interval.

Chemical Characterization

Ohio Administrative Code (OAC) Section 3745-51 *et seq* and Title 40 Code of Federal Regulations (CFR) § 261 *et seq* clearly define the process for identifying a waste based on characteristics. OAC 3745-51-20 (40 CFR § 261.24) states:

"A waste is a hazardous waste if it exhibits any of the characteristics identified in rules 3745-51-20 (40 CFR § 261.20) to 3745-51-24 (40 CFR § 261.24) of the Administrative Code."

To determine the regulatory status of this waste stream the following requirements were met:

1. Collect a representative sample.

- 2. Analyze the sample using TCLP Method 1311 in "Test Methods for the Evaluation of Solid Waste, Physical/Chemical Methods," EPA Publication SW-846.
- 3. Compare the results of the analysis to OAC 3745-51-24, Table 1 (40 CFR § 261.24, Table 1).

0691A-09 Rev 0

ATTACHMENT B.5 PHYSICAL PROPERTIES

4. If the contaminate is statistically (as defined by Chapter Nine of SW-846) at or above the regulatory limit outlined in Table 1 of OAC 3745-51-24 (40 CFR § 261.24), then the waste is characteristically hazardous for that contaminant and must be managed as such.

Also, waste may be characteristically hazardous if it meets the criteria outlined in OAC 3745-51-21 (40 CFR § 261.21) to OAC 3745-51-23 (40 CFR § 261.23). OAC 3745-51-30 (40 CFR § 261.30) clearly define the process for identifying a waste based on a listing. OAC 3745-51-30 (A) [40 CFR § 261.30 (a)] states:

"A waste is a hazardous waste if it is listed as such in rules 3745-51-30 (§ 261.30) to 3745-51-35 (§ 261.35) of the Administrative Code."

To determine the regulatory status of this waste stream for listed hazardous waste, the following requirements were met:

- 1. Identify the generating process or identify the waste as derived from an already listed hazardous waste.
- 2. Identify the constituents, which may cause the waste to be classified as hazardous.
- 3. Compare the waste descriptions provided in OAC 3745-51-31 (40 CFR § 261.31) to OAC 3745-51-33 (40 CFR § 261.33).
- 4. If the process and constituents are listed in OAC 3745-51-31 (40 CFR § 261.31 to OAC 3745-51-33 (40 CFR § 261.33), then the waste is listed as hazardous and is managed as such.

This waste stream is not regulated for disposal as a RCRA hazardous waste as defined in 40 CFR 261. This waste is not regulated as TSCA (PCB) waste as defined in 40 CFR 761.

Radiological Characterization

Radiological characterization is performed through a combination of laboratory data and a Non-Destructive Analysis (NDA) method. Eighteen random samples of the total population were analyzed to provide the radiological characterization data to adequately determine a range and concentration of activity in the waste.

Basis for Determining Manifested Radionuclide Concentrations

Radiological characterization of outgoing shipments is performed through a combination of laboratory data and a Non-Destructive Analysis (NDA) method. The radiological laboratory results were used to establish scaling factors which are then synchronized with the NDA results and divided by net weight in the container to develop manifested nuclide concentrations. The SNM is typically in the form of dry non-visible uranium dust made up of oxide compounds, primarily UO_2F_2 . The SNM is essentially distributed homogenously throughout the waste.

Typically the waste will be packaged for transportation and disposal in drums or metal boxes. Optional packages include soft-sided bags, intermodal containers and sea-land containers. Notification will be provided prior to shipping if any optional containers are to be utilized.

0691A-09 Rev 0

SPECIAL NUCLEAR MATERIAL EXEMPTION CERTIFICATION

The Special Nuclear Material Exemption Certification form must be completed and signed by each generator certifying to the following conditions. Please attach this form and all required information to the Radioactive Waste Profile Record (EC-0230). A completed and signed copy of this form must also accompany each waste manifest.

Waste Stream ID: 0691A-09 Manifest No. 0691A-09

1. Check applicable category below for the waste stream:

V	Uranium Enrichment Percent	Weight Percent of Chemicals in Condition 2c	Weight Percent of Materials in Condition 2d	U-235 Concentration (pCi/g)	Measurement Uncertainty* (pCi/g)		
\boxtimes	< 10 %	≤ 20 %	≤ 1 %	≤ 1,900	≤ 285		
	Unlimited	≤ 20 %	≤ 1 %	≤ 1,190	≤ 179		
	Unlimited	Sum of both ≤ 45 %	of waste by weight	≤ 680	≤ 102		
	Unlimited	Unlimited	Unlimited	≤ 26	≤ 10		
	Not Applicable - Enriched U-235 is not present in the waste.						

A concentration value is used for the maximum measurement uncertainty limit rather than a percentage value to allow greater flexibility for generators with waste having very low SNM concentrations.

2. Certify to the following requirements by checking each box:

- a. Concentrations of SNM in individual waste containers do not exceed the applicable values listed in the above table and SNM isotope concentrations listed in Table 1.
- b. The SNM is homogeneously distributed throughout the waste or the SNM concentrations in any contiguous mass of 600 kilograms (1,323 lbs) do not exceed on average the specified limits. (Based on process knowledge or testing).
- C. Except as allowed by Condition 1, the waste does not contain "pure forms" of chemicals containing carbon, fluorine, magnesium, or bismuth in bulk quantities (e.g., a pallet of drums, a B-25 box). By "pure forms," it is meant that mixtures of the above elements such as magnesium oxide, magnesium carbonate, magnesium fluoride, bismuth oxide, etc. do not contain other elements. (Based on process knowledge or testing).
- ☑ d. Except as allowed by Condition 1, the waste does not contain total quantities of beryllium, hydrogenous material enriched in deuterium, or graphite above one percent of the total weight of the waste. (Based on process knowledge, physical observations, or testing).
- e. Waste packages do not contain highly soluble forms of uranium greater than 350 grams of uranium-235 or 200 grams of uranium-233. If the waste contains mixtures of U-233 and U-235, the waste meets the sum of the fractions rule. Highly soluble forms of uranium include, but are not limited to: uranium sulfate, uranyl acetate, uranyl chloride, uranyl formate, uranyl fluoride, uranyl nitrate, uranyl potassium carbonate, and uranyl sulfate. (Based on process knowledge or testing).
- f. For containers of <u>liquid waste</u> with more than 600 kilograms of waste, the total activity (pCi) of SNM in the manifested container does not exceed the SNM concentration in the above table or Table 1 times 600 kilograms of waste (based on process knowledge or testing). For example, the maximum activity of Pu-239 in any manifested container of liquid waste is 6.0 mCi (6.0E+09 pCi) as shown below:

$$10,000 \frac{pCi}{g} \times 600,000 g = 6.0 \times 10^9 pCi = 6.0 mCi Pu - 239$$

SPECIAL NUCLEAR MATERIAL EXEMPTION CERTIFICATION

Table 1. Maximum concentrations of SNM in individual waste containers (refer to above table for U-235 limits).

Radionuclide	Maximum Concentration (pCi/g)	Measurement Uncertainty (pCi/g)	Radionuclide	Maximum Concentration (pCi/g)	Measurement Uncertainty (pCi/g)
U-233	7 <u>5</u> ,000	11,250	Pu-241	350,000	50,000
Pu-236	500	75	Pu-242	10,000	1,500
Pu-238	10,000	1,500	Pu-243	500	75
Pu-239	10,000	1,500	Pu-244	500	75
Pu-240	10,000	1 500			**************************************

3. Indicate that the following information is attached to the Radioactive Waste Profile Record by checking each box. (Note: Only the two-page Special Nuclear Material Exemption Certification form needs to be included with each manifest).

- a. Provide a description of how the waste was generated, list the physical forms in the waste, and identify the uranium chemical composition.
- b. Provide a general description of how the waste was characterized (including the volumetric extent of the waste, and the number, location, type, and results of any analytical testing), the range of SNM concentrations, and the analytical results with error values used to develop the concentration ranges.
- c. Describe the process by which the waste was generated showing that the spatial distribution of SNM must be uniform, or other information supporting spatial distribution.
- ☑ d. Describe the methods to be used to determine the concentrations on the manifests. These methods could include direct measurement and the use of scaling factors. Describe the uncertainty associated with sampling and testing used to obtain the manifest concentrations.
- 4. Generator's certification of compliance with the SNM exemption: I certify that the information provided on this form is complete, true, and correct and is based on process knowledge, physical observations, or approved laboratory testing. I also certify that sampling and radiological testing of waste containing SNM was performed in accordance with EnergySolutions' Radioactive Material License and that any supporting documentation and family fical results have been submitted to EnergySolutions.

Elizabeth Lamerson **Environmental Engineer** horized Signature Printed Name Title

Northwest, Inc.

July 24, 2008 化合成 化合物 医结核 化合成合金 Elizabeth Lamerson

USEC

P.O. Box 628 - MS9030 Piketon, OH 45661

RE: Waste Profile Approval

Profile Number: 2008-USEC-0002 LLW Oily absorbent

We are providing written notification that Perma-Fix Northwest has reviewed and approved the Low Level Waste profile. Perma-Fix Northwest has the appropriate permits and licenses and can accept the waste identified in the profile.

. • • • • • • •

ing the second second

Please note that this approval is for the profile only, and does not authorize shipment of this waste to Perma-Fix Northwest. To obtain authorization and schedule shipment, please contact Mr. Larry Morin at (509) 375-7046

All waste shipped to PermaFix Northwest under this profile number must match the waste descriptions and other information provided on the Waste Profile Record.

This profile is valid through the date listed below. The Waste Profile Record must be recertified by submitting an Annual Profile Review form. Perma-Fix Northwest will provide a copy of this form thirty (30) days before the profile expires.

The Waste Profile Record must be revised and resubmitted for approval any time there are significant changes to;

- 1. The waste generating process
- Characterization
 Regulatory status

 - 4. Waste codes and associated Land Disposal Restrictions
 - 5. Any other changes that could affect PermaFix Northwest ability to manage the waste safely and in compliance with permits and regulations.

07/24/2008

07/24/2009

Approval Date

Expiration Date

Sincerely

Jock Thompson Waste Acceptance Specialist

cc: Tibby Snipes Jamie Granger Larry Morin Mike McCargar Zane Turner File

Richland Office: 2025 Battelle Blvd. • Richland, WA 99354 • Phone: (509) 375-5160 • Fax: (509) 375-0613

	((
		E PROFILE C * Perma-Fix of Florida * Perma-Fix Northwest	2008 USEC-002 Profile Number
Generator Information:		Billing Information:	
EPA ID#	OHD887054723	Bectronic users: check here to copy Gener	netor Inio. 17 samo.
Generator Name	USEC Portsmouth	Broker/Site	
Generator Address	3930 US RT 235 PO Box 628	Address	
City/State/Zip	Piketon, Ohio 45661	City/St/Zip	
Telephone	740-897-2812	Tekphone	
Fax		Fax	
Mercury >250 A Elemental Marc Reactives - spi Please provide a detailed du Solide with free liquide p	PPM Oxklizers	d into B-25 boxes or 1A2 drums. Waste streams could o	Universal Weste Used Oil Filter Used Oil break, press all-return. ponsist of: regs, pads, plastic,
Characterization Method: (check ONE only) Physical Description: (check all that apply)	✓ Laboratory Analysis MSDS ✓ Solid ✓ Liquid ✓ Other: oily absorbents (describe what type of absorbents)		Total Number of
(If checked, com This waste stream cont	5 gal, etc) (include units: 75 fbs. 10 kg. etc.) T) 7) No US DOT Hazardous Material: Yes primary substokary bject to the Land Disposal Restriction of 40 CFR 268. mplete a Land Disposal Restriction of 40 CFR 268. mplete a Land Disposal Restriction of 40 CFR 268. mplete to the Land Disposal Restriction of 40 CFR 268. mplete to the Disposal Restriction of 40 CFR 268. stars Berzene. vele (he Benzene MESHAP Worksheet) lsts of off-spec used cil.	PP4:	
CHEMICAL PROPERTIES	AND COMPOSITION:	Name	Date
Percent Free Liquid:	25 % (Nona=0%, ali=100%) Percent Settled Soldes	75 % (None=0%, all=100%) Viscosily:	N/A Centistokes
pH Actual: N	/A OR Range: >2 to <12.5	Specific Gravity N/A OR Range:	bb
reguires additional hand 1. Any sampla subm	known or suspected, have been disclosed on this profile. Furthe ling due to the material being inconsistent with the profile, impro lited is representative as defined in 40 CFR 261-Appendix (or is - Ports oblet) a sample from any waste shimpment for purposes	per of demaged containers, or improper shipping docur obtained using an equivalent method. of vanification.	ients.
Name	Afam	Environmental Engine	<u>er 1117/08</u>
Perma-Fix Use O	Accepted with the following conditions:		Designated Facility: DSSI M&EC PF Florida PFNW
Perma-Fix has all of the	Accessed permits and licenses for the waste that has been cha	· · · · · · · · · · · · · · · · · · ·	cepted by Perma-Fix.
Richard Grondin	S WICH	VP/GM Title	
Rad Only Oily This Page Re	Aborbents (Portis).xls v 9/9/02		Page 1 of 5

RADIOACTIVE WASTE ADDENDUM

DSSI• M&EC• Perma-Fix of Florida• Perma-Fix Northwest (Per Waste Stream)

Help creating more of these worksheets

	Radionuclides	Activity (mCi) *	Concentration pCi/g	Radionuclides	Activity (mCi) *	Concentration	Radionuclides	Activity (mCi) *	Concentration
	U-234	Activity (mon)	1.37E+03	nauionucides		pCl/g	(nationactives	Acuvacy (IIICI)	Concernation
	U-235		1.67E+02	l					
	U-238		4.25E+02						
	Tc-99		1.00E+02						
	* Not required for	LSVs			l				
	SNM in grams:	38.7	Total Pu:	0.00E+00	U-235:	38.7	U-233:]
RAI	DIATION LEVE	LS FROM OU		CE OF PACKA	GE(S):	Max	<0.5	mR/hr	
						Avg	<0.5	mR/hr	

How to Fill out this Form

What is a Waste Stream:

1. If there are different types of waste, there are different waste streams (i.e. liquids, soil, PPE are different waste streams)

- 2. Multiple containers of the same type of waste are considered part of one waste stream (i.e. 4 drums of LSV).
- 3. a. Annual profiling is required by generator only, not by shipment or package.
 - b. Total types of radionuclides are to be listed. Total radioactivity is not required.
 - c. Each drum will be priced upon receipt according to established fee schedules. If there are questions, please contact Perma-Fix prior to shipping.

For each radionuclide in this particular Waste Stream, list the radionuclide (i.e. Cs-137) and the activity in millicuries, and the concentration or specific Activity (activity per unit mass).

Measure the outside of the package(s) and record the highest reading.

Help creating additional Rad Waste Addendum worksheets

1. With your mouse, move the cursor over the tab below which is marked Rad Waste Addendum.

1

- 2. Click using your right mouse button.
- 3. Select the option Move or Copy...
- 4. In the box Before sheet:, highlight LDR.
- 5. Also check the box labeled Create a copy.
- 6. Hit OK.
- 7. A duplicate worksheet will be created and it will be called Rad Waste Addendum (2).
- 8. Repeat the above procedure as often as required.

Rev. 5/02

PERMA-FIX ENVIRONMENTAL SERVICES WASTE CODE INFORMATION

Please list all D,F,K,P, U and WA State codes that this waste carries.	WA state codes for PFNW only.

EPA Hazardous Waste Codes							
None							
		ľ					

ADDITIONAL CHEMICAL CONSTITUENT DISCLOSURE List any known chemical components that are not reported elsewhere in the profile. Attach additional sheets if necessary. (Constituents should add up to 100%)

Concen- tration	(Units)
25%	
75%	
	tration25%

Concen- tration	(Units)

;

<u> </u>		E NESHAP QUESTIONN		······
	DSSI • M&EC • P	erma-Fix of Florida • Perma-F	ix Northwest	
Generator: U.S. Enrich	ment Corp Portsmouth.	Profile Numbe	r.	
1. Does the waste stream	n come from a facility with NESHAP SIC Codes	one of the following SIC c	odes listed under the NES	HAP?
	2812	2813	2816	
	2819	2821	2822	
	2823	2824	2833	
	2834	2835	2836	
	2841	2842	2843	
	2844	2851	2861	
	2865	2869	2873	
	2874	2875	2879	
	2891	2892	2893	
	2895	2899	2911	
	3087	3312	3861	
	3952	3999	4923	
	4924	4925	4931	
	4932	4939	4953	
	4959	7389	9511	
 For what calendar yea 	ar was the TAB calculated?	,		
3. For what calendar yea	ar was the TAB calculated?	,		
4. What is the total Benz	ene concentration in your	waste?		
Please atta	ch analytical.	ppm weight	Unknown	
EPA SW-	table EPA SW-846 or Wat 846 Method or, thod, or r Knowledge, if generator knowled			
	m contain greater than 109			
T Yes	-			
No No	This waste stream is exe	mpt.		
If yes, w	hat is the average concen	tration?	%	
Certification	.*			
I hereby certify, under	penalty of law, that the ab	ove information is true, co	mplete and factual and is a	an
acurate representation	n of the known and suspec	ted hazards, pertaining to		
	any of the information abo			
Wille Var	·····	Convironmenta	1 Envineer	
Name		Title	<u>i ciguren _</u>	Date
namy	a.	100	-	Date

PCB ADDENDUM DSSI • M&EC • Perma-Fix of Florida • Perma-Fix Northwest							
Generator: USEC Port			EC Portsmouth		2007-USEC-0001 Rev. 01		
	Please o		ste Description	ch PCB waste stream			
Physical Description (e.g., sludge, diele		Number/Type of Containers	Total PCB Waste Weight	Date Article Removed from Service for Disposal	Total PCB Concentration		
N/A	\						

Certification

I hereby certify, under penalty of law, that the above information is true, accurate and complete to the best of my knowledge.

no ng kapatan sa tanang s

.....

A. GENERATOR AND WASTE STREAM INFORMATION

GENERAL: Complete this form for one waste stream. Contact EnergySolutions at (801) 532-1330 if you have any questions while completing this form. Please indicate "N/A" if a category does not apply.

1. GENERATOR INFORMATION

Generator Name:	USEC/ Portsmouth		EPA ID #:_	OHD987054723
Generator Contact:	Elizabeth D. Lamerson		Title:	Environmental Engineer
Mailing Address:	P.O. Box 628 M/S 9030			
manning / cources.			The L Site Access Demait #	0111000042
	Piketon, OH 45661		Utah Site Access Permit #:	0111000043
Phone	:740-897-2812	Fax:740-897-2143	Email:	lamersoned@ports.usec.com
Contractor Name:	N/A	Loc	ation of Waste (City, State):	Portsmouth
Contractor Manie.			atton of music (Onj. Suite).	A OLOHIOLUI
Name & Title of P	erson Completing Form: Eliza	beth Lamerson/Env. Eng.	Phone: 740-897-2812	Email: lamersoned@ports.usec.com
2. WASTE ST	TREAM INFORMATION			·
Waste Stream I	D: 0691A-11 Waste Stream	m Name: <u>Rubble, Sand, C</u>	oncrete	State of Origin: OH
Revisio	m: <u>4</u> Date: <u>04/21/2</u>	2011 Volume (ft ³): TBD	Delivery Date: Ongoing
CHECK APPRO	PRIATE BOXES BELOW. I	lease verify the required	forms requested below are	completed and submitted with the Radloactive

CHECK APPROPRIATE BOXES BELOW. Please verify the required forms requested below are completed and submitted with the Radioactive Waste Profile Record.

HAZARDOUS WASTE: Is the waste classified as hazardous waste as defined by 40 CFR 261?

- N If NO, complete and attach the "Low-Level Radioactive Waste Certification Attachment".
- Y I If YES, complete and attach the "Hazardous Waste Certification Attachment" and check applicable box below. Has the waste been treated to meet applicable treatment standards per 40 CFR 268? Y N N I Is the waste to be treated by EnergySolutions? Y N N

LOW-LEVEL RADIOACTIVE WASTE: Is the radioactive waste defined as Low-Level Radioactive Waste in accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985 or in DOE Order 435.1?

Y X If YES, a current copy of a LLRW Compact Export letter authorizing export must be submitted if applicable. This authorization is applicable for non-DOE LLRW (i.e., Mixed Waste, NORM/NARM, 11e.(2) material, and waste from DOE do not require a Compact Export Letter).

N [] If NO, check appropriate box: NORM/NARM [] 11e.(2) Byproduct Material [] Other: _____

SPECIAL NUCLEAR MATERIAL: Does the waste stream contain material with uranium enriched in U-235 or any of the following radionuclides: U-233, Pu-236, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, Pu-243, or Pu-244?

Y 🛛 N 🗍 If Yes, complete and attach the "SNM Exemption Certification" form (EC-0230-SNM). Supporting statements, analytical results, and documentation must be included with the submittal.

PCB WASTE: Does the waste contain Polychlorinated Biphenyls (PCB) that are regulated for disposal per 40 CFR 761?

Y N X If Yes, complete and attach the "PCB Waste Certification" form (EC-98279).

ASBESTOS: Does the waste contain Asbestos Containing Material?

Y N X If Yes, Asbestos Containing Material must be managed in accordance with applicable federal regulations. Provide a detailed description of the waste containing asbestos in Section B.5 of the waste profile.

B. WASTE PHYSICAL PROPERTIES & PACKAGE INFORMATION

1. GENERAL CHARACTERISTICS

•	Does the waste contain free liquids? Y	N 🖾	If Yes, what is the percent of fre	e liquid by waste v	olume? <u>N/A</u> %	
			If Yes, is the liqu	id aqueous (water-	based)?Y 🔲 N 🗌]
	Does the waste contain absorbent? Y 🛛 N		Density range of the waste: 40-	<u>140 - 50</u> g/cc 🗌	lb/ft³ ⊠	
	List percentage of waste type by volume: So	oil <u>2</u> %	Concrete & Metal 5%	DAW <u>≤1</u> %	Resins 0%	Sludge <u>0</u> %

Other constituents and percentage by volume? Sand - 50%, Concrete - 30%, Glass - 2%, Gravel - 10%

2. MATERIAL SIZE

Gradation of Material: Indicate the percentage of waste material that would <u>pass through</u> the following grid sizes. For example, 95% of the material would pass through a 12" square, 90% passes through a 4" square, 80% passes through a 1" square, etc.

12" <u>99</u> %	4" <u>95</u> %	1" <u>80</u> %	1/4" <u>30</u> %	1/40" <1 %	1/200" <1 %
12 22 /0	1 25 /0	I <u>00</u> 70	1/1 <u>30</u> /u	1/40 51 /0	1/200 51 /6

Does the waste stream contain oversize debris (i.e., no dimension < 10 inches and any dimension > 12 feet)? Y \square N \boxtimes If Yes, include a detailed description (i.e., weight, size, drawings, etc.) of the oversize debris in the narrative of Section B.5.

3. MOISTURE CONTENT

For soil or soil-like materials, please use Std. Proctor Method ASTM D-698 to determine the optimum moisture content. The waste material must not exceed 3 percentage points above optimum moisture upon arrival at EnergySolutions' disposal facility unless approved by EnergySolutions.

Optimum Moisture Content: N/A % at Maximum Dry Density (lb/ft3): N/A

Average Moisture Content: <u>N/A %</u> Moisture Content Range: <u>N/A% - N/A%</u>

4. WASTE SHIPPING & PACKAGING

Transportation Mode: 🛛 Highway 🖾 Rail

Shipping & Container Packages:	⊠ Drums* (≤ 85 gallons)	⊠ Boxes (≤ 100 ft ³)	Soft-Sided Bags	(≤ 10 yd³)
(Check all that apply)				
	🛛 Intermodal	🛛 Sealand	Gondola**	🔲 Box Car

Other:

*Palletized drums are preferred by the disposal site. Please specify in the "Other" field if drums will not be palletized.

**Dimensions of gondola railcars must be between 48 to 65 feet in length and 8.5 to 12.5 feet in height as measured from the top of the rail to the top of the railcar unless approved by EnergySolutions.

5. NARRATIVE DESCRIPTION AND HISTORY OF WASTE

Please submit a narrative description and history of the waste as an attachment to the Radioactive Waste Profile Record. This attachment should include the following:

- · Process that generated the waste
- Waste material physical composition and characteristics
- Radiological and chemical characterization method
- · Basis for determining manifested radionuclide concentrations
- · Description and amounts of absorbents, if applicable
- Basis of non-hazardous or hazardous waste determinations
- Treatment processes, if applicable
- Product information or Material Safety Data Sheets associated with the waste as applicable
- Information requested in other sections of this form

.....

Waste Stream ID: 0691A-11 Revision: 4

Date of Revision: 04/21/2011

C. RADIOLOGICAL INFORMATION

Obtain sufficient samples to adequately determine a range and weighted average of activity in the waste. Attach the gamma spectroscopy or radiochemistry data supporting the radionuclide information listed below.

- 1. Does the waste material contain accessible surfaces with contact dose rates greater than 500 mR/hr? Y 🗌 N 🔀
- 2. Does the waste material contain any of the following isotopes: Aluminum-26, Berkelium-247, Calcium-41, Californium-250, Chlorine-36, Rhenium-187, Terbium-157, or Terbium-158? Y 🗌 N 🔀
- 3. Please list the following information for each isotope associated with the waste. Provide an explanation in the narrative description of Section B.5 if the waste contains localized "hot spots" or elevated concentrations that significantly exceed the upper concentration range. If additional space is needed, provide an Attachment C.3 to this profile record formatted as below.

Isotope	Manifested Upper Concentration (pCi/g)	Weighted Avg. per Container (pCi/g)	Isotope	Manifested Upper Concentration (pCi/g)	Weighted Avg. per Container (pCi/g)
U-234	13766	2756			
U-235	1900	104			
U-238	16500	119			
Tc-99	39080	7818		·	
U-Dep	16500	5000			
Ac-227	100	10			
Cs-137	100	10			
<u>Np-237</u>		10			
Pa-231	100	10			
Ra-226		10			
Th-228	300	10	·····		
Th-229	100	10			
Th-232	300	30	-		
·			<u> </u>	· · · · · · · · · · · · · · · · · · ·	
<u></u>	······				
			<u> </u>		
				<u> </u>	
	······································		·		<u></u>
	•··· ,			· · · · · · · · · · · · · · · · · · ·	<u></u>
					<u> </u>
					6
<u></u>	<u> </u>		<u> </u>		<u></u>
	A	<u></u>	······		<u></u>
	······································		·		
		······			
	·		B		·

0691A-11 Rev 4

.....

Page 3 of 5.

HAZARDOUS WASTE CERTIFICATION ATTACHMENT

This form is required only if the checkbox for Hazardous Waste on page one has been checked YES. Otherwise, complete the Low-Level Radioactive Waste Certification Attachment instead of this attachment. EnergySolutions may waive the chemical laboratory analyses if the material is not amenable to chemical sampling and analysis (e.g., debris items including metal pieces, concrete, plastic, etc.). Justification for waiving the chemical analyses must be provided in Section B.5.

D. MINIMUM REQUIRED CHEMICAL ANALYSIS

The following parameters must be analyzed by a Utah or NELAC certified laboratory. Typical SW-846 analytical methods have been listed. Other approved methods are acceptable. Attach the most recent or applicable chemical analytical results representing the waste.

1. GENERAL CHEMICAL PARAMETERS

SW-846 Analytical Methods

pH (Liquid only): N/A Method 9045 Please provide the range of the pH analyses performed.

PFLT: Pass _____ Pass / Fail Method 9095 Not applicable for liquid radioactive waste streams.

Analyze the waste for volatile or semi-volatile constituents (Methods 8260 & 8270), and attach the data.

Any distinguishing color or odor? Y 🛛 N 🗌 If Yes, color: ____; odor: Varnish odor

2. HAZARDOUS WASTE CODES AND TREATMENT STANDARDS (40 CFR 268)

List all hazardous waste codes and treatment standards. Include hazardous waste codes that have been removed through treatment and indicate "Former" in the second column. Worst-case concentrations only need to be provided for concentration based treatment standards. If additional space is needed, provide an Attachment D.2 to this profile record formatted as below. Include a description of hazardous waste determinations and any variances, exclusions, etc. in the narrative requested in Section B.5.

EPA HW Codes	Description, Constituent of Concern, or Subcategory	Treatment Standard (mg/kg unless noted as mg/L TCLP or Technology Codc)	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)
N/A	N/A	<u>N/A</u>	N/A
	·		
			. <u> </u>
	· · · · · · · · · · · · · · · · · · ·		
			······································

0691A-11 Rev 4

CL-WM-PR-001 F2 (EC-0230) Revision 7

3. UNDERYLYING HAZARDOUS CONSTITUENTS (40 CFR 268.48)

List all underlying hazardous constituents (UHCs) and treatment standards. Include UHCs that have been removed through treatment. Worst-case concentrations only need to be provided for concentration based treatment standards. If additional space is needed, provide an Attachment D.3 to this profile record formatted as below.

Underlying Hazardous Constituents	Treatment Standard (mg/kg unless noted as mg/L TCLP or Technology Code)	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)
<u>N/A</u>	N/A	N/A

······		

D. 4. OTHER CHEMICAL CONSTITUENTS

List any other chemical constituents of concern (e.g., PCBs, chelating agents, etc.) and worst-case concentrations. If additional space is needed, provide an Attachment D.4 to this profile record formatted as below.

Other Chemical Constituents	Worst Case Concentration (mg/kg unless noted as mg/L TCLP)	Other Hazardous Constituents	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)	
N/A	N/A	N/A	N/A	

5. LABORATORY CERTIFICATION INFORMATION

UTAH or NELAC CERTIFIED

The Utah or NELAC certified laboratory holds a current certification for the applicable chemical test methods insofar as such official certifications are given. Please provide a copy of the laboratory's current certification letter for each parameter analyzed and each method used for chemical analyses required by this form.

OTHER LABORATORY CERTIFICATION (Describe below)

6. CERTIFICATION

I certify that sample results representative of the waste described in this profile were or shall be obtained using state- and EPAapproved analytical methods. I also certify that where necessary representative samples were or shall be provided to EnergySolutions and to qualified laboratories for the analytical results reported herein. I further certify that the waste described in this record is not prohibited from land disposal in 40 CFR 268 (unless prior arrangements are made for treatment at EnergySolutions) and that all applicable treatment standards are clearly indicated on this form. I also certify that the information provided on this form is complete, true, and correct and is accurately supported and documented by any laboratory testing as required by EnergySolutions. I certify that the results of any said testing have been submitted to EnergySolutions. I certify that the waste does not contain any prohibited items listed in EnergySolutions' Radioactive Material License or RCRA Permit.

Environmental Engineer Date: Generator's Signature: Title:

Hazardous Waste Certification Attachment

LOW-LEVEL RADIOACTIVE WASTE CERTIFICATION ATTACHMENT

This form is required only if the checkbox for Hazardous Waste on page one has been checked No. Otherwise, complete the Hazardous Waste Certification Attachment instead of this attachment. EnergySolutions may waive the chemical laboratory analyses if the material is not amenable to chemical sampling and analysis (e.g., debris items including metal pieces, concrete, plastic, etc.). Justification for waiving the chemical analyses must be provided in Section B.5.

D. MINIMUM REQUIRED CHEMICAL ANALYSIS

The following parameters must be analyzed by a Utah or NELAC certified laboratory. Typical SW-846 analytical methods have been listed. Other approved methods are acceptable. Attach the most recent or applicable chemical analytical results representing the waste.

1. GENERAL CHEMICAL PARAMETERS

SW-846 Analytical Methods

PFLT: Pass Pass / Fail Method 9095 Not applicable for liquid radioactive waste streams.

2. 40 CFR 261.24 Table 1 - Contaminants of Toxicity Characteristic

Metals: Methods 6010 & *7470 X TCLP (mg/L) or Total (mg/kg)

Arsenic 0.519	Chromium 0.108	Selenium 0.076
Barium 0.196	Lead0.676	Silver 0.007
Cadmium 0.089	*Mercury 0.01	

Organics, Pesticides/Herbicides: Methods 8081/*8151 TCLP (mg/L) or Total (mg/kg)

Endrin	Toxaphene	Chlordane
Lindane	*2,4-D	Heptachlor
Methoxychlor	*2,4,5-TP Silvex	
Organics, Semi-Volatile: Method 827	70 🔲 TCLP (mg/L) or 🗌 Total (mg/kg)	
o-Cresol	Hexachlorobenzene	Pentachlorophenol
m-Cresol	Hexachlorobutadiene	Pyridine
p-Cresol	Hexachloroethane	2,4,5-Trichlorophenol
Total Cresol	Nitrobenzene	2,4,6-Trichlorophenol
2,4-Dinitrotoluene		
Organics, Volatile: Method 8260	TCLP (mg/L) or 🗌 Total (mg/kg)	
Benzene	1,4-Dichlorobenzene	Methyl ethyl keytone
Carbon Tetrachloride	1,2-Dichloroethane	Tetrachloroethylene
Chlorobenzene	1,1-Dichloroethylene	Trichloroethylene
Chloroform	Vinvl Chloride	

3. Was the waste at the point of generation a RCRA hazardous waste per 40 CFR 261? Y 🗌 N 🔀

If Yes, list former hazardous waste codes and former underlying hazardous constituents. List worst-case concentrations for each hazardous constituent. If additional space is needed, provide an Attachment D.3 to this profile record formatted as below. Attach the most recent chemical analytical results demonstrating compliance with applicable treatment standards. If No, indicate "N/A" in Section D.3 below.

0691A-11 Rev 4

Low-Level Radioactive Waste Certification Attachment

D. 3.	Former EPA HW Codes or Underlying Hazardous Constituents	Treatment Standard (mg/kg unless noted as mg/L TCLP or Technology Code)	Worst Case Concentration (mg/kg unless noted as mg/L TCLP)

4. OTHER CHEMICAL CONSTITUENTS

List any other chemical constituents of concern (e.g., PCBs, chelating agents, etc.) and worst-case concentrations. If additional space is needed, provide an Attachment D.4 to this profile record formatted as below.

Other Chemical Constituents	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)	Other Hazardous Constituents	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)
N/A	N/A	N/A	<u>N/A</u>
	<u> </u>		
N., 199 - 1991 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 199			
·			

5. LABORATORY CERTIFICATION

UTAH or NELAC CERTIFIED

The Utah or NELAC certified laboratory holds a current certification for the applicable chemical test methods insofar as such official certifications are given. Please provide a copy of the laboratory's current certification letter for each parameter analyzed and each method used for chemical analyses required by this form.

OTHER LABORATORY CERTIFICATION (Describe below)

6. CERTIFICATION

I certify that sample results representative of the waste described in this profile were or shall be obtained using state- and EPAapproved analytical methods. I also certify that where necessary representative samples were or shall be provided to EnergySolutions and to qualified laboratories for the analytical results reported herein. I further certify that the waste described in this record is not prohibited from land disposal in 40 CFR 268 (unless prior arrangements are made for treatment at EnergySolutions) and that all applicable treatment standards are clearly indicated on this form. I also certify that the information provided on this form is complete, true, and correct and is accurately supported and documented by any laboratory testing as required by EnergySolutions. I certify that the results of any said testing have been submitted to EnergySolutions. I certify that the waste does not contain any prohibited items listed in EnergySolutions' Radioactive Material License.

Title: Environmenta/Engineer Date: 4/21/11 Generator's Signature:

Low-Level Radioactive Waste Certification Attachment

 Generator Name: USEC/Portsmouth
 Waste Stream ID: ______0691A-11

 Revision #: 4______
 Revision Date: 4/21/11_____

RUBBLE, SAND, CONCRETE WASTE STREAM

This waste stream is generated from a variety of non-RCRA hazardous operations that took place at the Portsmouth site. A significant portion is generated by sand blast cleaning of equipment which is potentially uranium contaminated. A significant portion is comprised of concrete chunks generated from floor removal projects. The majority of the waste is analyzed for RCRA metals and radionuclide concentrations in the plant's certified laboratory. The waste is also NDA analyzed.

SPECIAL NUCLEAR MATERIAL EXEMPTION CERTIFICATION

The Special Nuclear Material Exemption Certification form must be completed and signed by each generator certifying to the following conditions. Please attach this form and all required information to the Radioactive Waste Profile Record (EC-0230). A completed and signed copy of this form must also accompany each waste manifest.

Waste Stream ID: 0691A-11 Manifest No. 0691A-11

1	Uranium Enrichment Percent	Weight Percent of Chemicals in Condition 2c	Weight Percent of Materials in Condition 2d	U-235 Concentration (pCi/g)	Measurement Uncertainty* (pCi/g)
\boxtimes	< 10 %	≤ 20 %	≤ 1 %	≤ 1,900	≤ 285
	Unlimited	≤ 20 %	≤ 1 %	≤ 1,190	≤ 179
	Unlimited	Sum of both $\leq 45 \%$	Sum of both \leq 45 % of waste by weight		≤ 102
	Unlimited	Unlimited	Unlimited	≤ 26	≤ 10
	Not Applicabl	e - Enriched U-235 is	not present in the was	te.	

1. Check applicable category below for the waste stream:

⁶ A concentration value is used for the maximum measurement uncertainty limit rather than a percentage value to allow greater flexibility for generators with waste having very low SNM concentrations.

2. Certify to the following requirements by checking each box:

- a. Concentrations of SNM in individual waste containers do not exceed the applicable values listed in the above table and SNM isotope concentrations listed in Table 1.
- b. The SNM is homogeneously distributed throughout the waste or the SNM concentrations in any contiguous mass of 600 kilograms (1,323 lbs) do not exceed on average the specified limits. (Based on process knowledge or testing).
- c. Except as allowed by Condition 1, the waste does not contain "pure forms" of chemicals containing carbon, fluorine, magnesium, or bismuth in bulk quantities (e.g., a pallet of drums, a B-25 box). By "pure forms," it is meant that mixtures of the above elements such as magnesium oxide, magnesium carbonate, magnesium fluoride, bismuth oxide, etc. do not contain other elements. (Based on process knowledge or testing).
- d. Except as allowed by Condition 1, the waste does not contain total quantities of beryllium, hydrogenous material enriched in deuterium, or graphite above one percent of the total weight of the waste. (Based on process knowledge, physical observations, or testing).
- e. Waste packages do not contain highly soluble forms of uranium greater than 350 grams of uranium-235 or 200 grams of uranium-233. If the waste contains mixtures of U-233 and U-235, the waste meets the sum of the fractions rule. Highly soluble forms of uranium include, but are not limited to: uranium sulfate, uranyl acetate, uranyl chloride, uranyl formate, uranyl fluoride, uranyl nitrate, uranyl potassium carbonate, and uranyl sulfate. (Based on process knowledge or testing).
- f. For containers of <u>liquid waste</u> with more than 600 kilograms of waste, the total activity (pCi) of SNM in the manifested container does not exceed the SNM concentration in the above table or Table 1 times 600 kilograms of waste (based on process knowledge or testing). For example, the maximum activity of Pu-239 in any manifested container of liquid waste is 6.0 mCi (6.0E+09 pCi) as shown below:

$$10,000 \frac{\text{pCi}}{\text{g}} \times 600,000 \text{g} = 6.0 \text{X} 10^9 \text{ pCi} = 6.0 \text{ mCi} \text{ Pu} - 239$$

Page 1 of 2

SPECIAL NUCLEAR MATERIAL EXEMPTION CERTIFICATION

Radionuclide	Maximum Concentration (pCi/g)	Measurement Uncertainty (pCi/g)	Radionuclide	Maximum Concentration (pCi/g)	Measurement Uncertainty (pCi/g)
U-233	75,000	11,250	Pu-241	350,000	50,000
Pu-236	500	75	Pu-242	10,000	1,500
Pu-238	10,000	1,500	Pu-243	500	75
Pu-239	10,000	1,500	Pu-244	500	75
Pu-240	10,000	1.500			

Table 1. Maximum concentrations of SNM in individual waste containers (refer to above table for U-235 limits).

- 3. Indicate that the following information is attached to the Radioactive Waste Profile Record by checking each box. (Note: Only the two-page Special Nuclear Material Exemption Certification form needs to be included with each manifest).
 - a. Provide a description of how the waste was generated, list the physical forms in the waste, and identify the uranium chemical composition.
 - b. Provide a general description of how the waste was characterized (including the volumetric extent of the waste, and the number, location, type, and results of any analytical testing), the range of SNM concentrations, and the analytical results with error values used to develop the concentration ranges.
 - c. Describe the process by which the waste was generated showing that the spatial distribution of SNM must be uniform, or other information supporting spatial distribution.
 - d. Describe the methods to be used to determine the concentrations on the manifests. These methods could include direct measurement and the use of scaling factors. Describe the uncertainty associated with sampling and testing used to obtain the manifest concentrations.
- 4. Generator's certification of compliance with the SNM exemption: I certify that the information provided on this form is complete, true, and correct and is based on process knowledge, physical observations, or approved laboratory testing. I also certify that sampling and radiological testing of waste containing SNM was performed in accordance with EnergySolutions' Radioactive Material License and that any supporting documentation and analytical results have been submitted to EnergySolutions.

Elizabeth Lamerson **Environmental Engineer** thorized Signature Printed Name Title Date

A. GENERATOR AND WASTE STREAM INFORMATION

GENERAL: Complete this form for one waste stream. Contact EnergySolutions at (801) 532-1330 if you have any questions while completing this form. Please indicate "N/A" if a category does not apply.

1. GENERATOR INFORMATION

Generator Name: United States Enrichment Corporation Portsmouth, Ohio	EPA ID #: <u>N/A</u>
Generator Contact: Elizabeth Lamerson	Title: Environmental Engineer
Mailing Address: P.O. Box 628 Piketon, Ohio 45661	
Utah Site	Access Permit #: 0111000043
Phone: 740-897-2812 Fax: 740-897-2143	Email: <u>lamersoned@ports.usec.com</u>
Contractor Name: Location of W	aste (City, State): <u>Piketon, Ohio</u>
Name & Title of Person Completing Form: <u>Elizabeth Lamerson, Env. Eng.</u> Phone:	740-897-2812 Email: lamersoned@ports.usec.com
2. WASTE STREAM INFORMATION	
Waste Stream ID: 0691A-10 Waste Stream Name: Sewage Sludge	State of Origin: Ohio
Revision: 5 Date: 9/15/09 Volume (ft ³): 5000	Delivery Date: on Going

CHECK APPROPRIATE BOXES BELOW. Please verify the required forms requested below are completed and submitted with the Radioactive Waste Profile Record.

HAZARDOUS WASTE: Is the waste classified as hazardous waste as defined by 40 CFR 261?

- N 🛛 If NO, complete and attach the "Low-Level Radioactive Waste Certification Attachment".
- Y I If YES, complete and attach the "Hazardous Waste Certification Attachment" and check applicable box below. Has the waste been treated to meet applicable treatment standards per 40 CFR 268? Y N N I Is the waste to be treated by EnergySolutions? Y N N

LOW-LEVEL RADIOACTIVE WASTE: Is the radioactive waste defined as Low-Level Radioactive Waste in accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985 or in DOE Order 435.1?

Y If YES, a current copy of a LLRW Compact Export letter authorizing export must be submitted if applicable. This authorization is applicable for non-DOE LLRW (i.e., Mixed Waste, NORM/NARM, 11e.(2) material, and waste from DOE do not require a Compact Export Letter).

N I If NO, check appropriate box: NORM/NARM I 11e.(2) Byproduct Material O Other:

SPECIAL NUCLEAR MATERIAL: Does the waste stream contain material with uranium enriched in U-235 or any of the following radionuclides: U-233, Pu-236, Pu-239, Pu-240, Pu-241, Pu-242, Pu-243, or Pu-244?

Y 🛛 N 🗌 If Yes, complete and attach the "SNM Exemption Certification" form (EC-0230-SNM). Supporting statements, analytical results, and documentation must be included with the submittal.

PCB WASTE: Does the waste contain Polychlorinated Biphenyls (PCB) that are regulated for disposal per 40 CFR 761?

Y N N If Yes, complete and attach the "PCB Waste Certification" form (EC-98279).

ASBESTOS: Does the waste contain Asbestos Containing Material?

Y 🗌 N 🔯 If Yes, Asbestos Containing Material must be managed in accordance with applicable federal regulations. Provide a detailed description of the waste containing asbestos in Section B.5 of the waste profile.

B. WASTE PHYSICAL PROPERTIES & PACKAGE INFORMATION

1. GENERAL CHARACTERISTICS

Does the waste contain free liquids? Y 🔲 N 🔀	If Yes, what is the percent of free liquid t	y waste volume? <u>N/A</u> %
	If Yes, is the liquid aqueor	us (water-based)?Y 🗌 N 🗍
Does the waste contain absorbent? Y \boxtimes N \square	Density range of the waste: 25 - 50 g/cc	□ 1b/ft³ ⊠
List percentage of waste type by volume: Soil 10%	Concrete & Metal <1% DAW <	3% Resins 0% Sludge 80%
Other constituents and percentage by volume? Sand - 59	6. Vegetation - 2%	

2. MATERIAL SIZE

Gradation of Material: Indicate the percentage of waste material that would <u>pass through</u> the following grid sizes. For example, 95% of the material would pass through a 12" square, 90% passes through a 4" square, 80% passes through a 1" square, etc.

12 100 70 + 22 70 + 1 20 70 + 1/4 70 70 + 1/40 20 70 + 1/200	12" <u>100</u> %	4" <u>99</u> %	1" <u>98</u> %	1/4" <u>75</u> %	1/40" <u>20</u> %	1/200" <u>1</u>
--	------------------	----------------	----------------	------------------	-------------------	-----------------

Does the waste stream contain oversize debris (i.e., no dimension < 10 inches and any dimension > 12 feet)? Y 🗌 N 🖾 If Yes, include a detailed description (i.e., weight, size, drawings, etc.) of the oversize debris in the narrative of Section B.5.

3. MOISTURE CONTENT

For soil or soil-like materials, please use Std. Proctor Method ASTM D-698 to determine the optimum moisture content. The waste material must not exceed 3 percentage points above optimum moisture upon arrival at EnergySolutions' disposal facility unless approved by EnergySolutions.

Optimum Moisture Content: 24.2 % at Maximum Dry Density (lb/ft³):

Average Moisture Content: <u>36 %</u> Moisture Content Range: <u>34% - 40%</u>

I. WASTE SHIPPING & PACKAGING

Transportation Mode: 🛛 🛛 I	Highway 🔲 🗌	Rail
----------------------------	-------------	------

•	Shipping & Container Packages: (Check all that apply)	☐ Drums* (≤ 85 gallons)	\boxtimes Boxes ($\leq 100 \text{ ft}^3$)	\Box Soft-Sided Bags ($\leq 10 \text{ yd}^3$)	

🗌 Intermodal 👘 Sealand 🗖 Gondola** 🔲 Box Car

Other:

*Palletized drums are preferred by the disposal site. Please specify in the "Other" field if drums will not be palletized.

**Dimensions of gondola railcars must be between 48 to 65 feet in length and 8.5 to 12.5 feet in height as measured from the top of the rail to the top of the railcar unless approved by EnergySolutions.

5. NARRATIVE DESCRIPTION AND HISTORY OF WASTE

Please submit a narrative description and history of the waste as an attachment to the Radioactive Waste Profile Record. This attachment should include the following:

- Process that generated the waste
- Waste material physical composition and characteristics
- · Radiological and chemical characterization method
- Basis for determining manifested radionuclide concentrations
- Description and amounts of absorbents, if applicable
- Basis of non-hazardous or hazardous waste determinations
- Treatment processes, if applicable
- · Product information or Material Safety Data Sheets associated with the waste as applicable
- Information requested in other sections of this form

Waste Stream ID: 0691A-10 Revision: 5

Date of Revision: 9/15/09

C. RADIOLOGICAL INFORMATION

Obtain sufficient samples to adequately determine a range and weighted average of activity in the waste. Attach the gamma spectroscopy or radiochemistry data supporting the radionuclide information listed below.

- 1. Does the waste material contain accessible surfaces with contact dose rates greater than 500 mR/hr? Y 🗌 N 🔀
- 2. Does the waste material contain any of the following isotopes: Aluminum-26, Berkelium-247, Calcium-41, Californium-250, Chlorine-36, Rhenium-187, Terbium-157, or Terbium-158? Y
- 3. Please list the following information for each isotope associated with the waste. Provide an explanation in the narrative description of Section B.5 if the waste contains localized "hot spots" or elevated concentrations that significantly exceed the upper concentration range. If additional space is needed, provide an Attachment C.3 to this profile record formatted as below.

Isotope	Manifested Upper Concentration (pCi/g)	Weighted Avg. per Container (pCi/g)	Isotope	Manifested Upper Concentration (pCi/g)	Weighted Avg. per Container (pCi/g)
U-234	4000	1400			
U-235	500	40			
U-238	1000	70			
<u>Tc-99</u>	3000	350			
Ac-227	100				
Cs-137	100				
Np-237	100				
Ra-231	100				
Ra-226	100				
Th-228	100				
Th-229	100				
Th-232	100				
•		•	•	•	•
<u></u>					
					·
·	<u> </u>			•	
		·			
					<u></u>
·					

0691A-10 Rev 5

.

LOW-LEVEL RADIOACTIVE WASTE CERTIFICATION ATTACHMENT

This form is required only if the checkbox for Hazardous Waste on page one has been checked No. Otherwise, complete the Hazardous Waste Certification Attachment instead of this attachment. EnergySolutions may waive the chemical laboratory analyses if the material is not amenable to chemical sampling and analysis (e.g., debris items including metal pieces, concrete, plastic, etc.). Justification for waiving the chemical analyses must be provided in Section B.5.

D. MINIMUM REQUIRED CHEMICAL ANALYSIS

The following parameters must be analyzed by a Utah or NELAC certified laboratory. Typical SW-846 analytical methods have been listed. Other approved methods are acceptable. Attach the most recent or applicable chemical analytical results representing the waste.

1. GENERAL CHEMICAL PARAMETERS

SW-846 Analytical Methods

PFLT: Pass Pass / Fail Method 9095 Not applicable for liquid radioactive waste streams.

2. 40 CFR 261.24 Table 1 - Contaminants of Toxicity Characteristic

Metals: Methods 6010 & *7470 TCLP (mg/L) or Total (mg/kg)

413.	Methods 0010 &			(A^ 8)				
	Arsenic	0.056	Chromium	0.018		Selenium	0.76	
	Barium	0.895	Lead	0.028		Silver_	0.040	
	Cadmium_	0.045	*Mercury_	0.010				
anio	s, Pesticides/Herb	icides: Met	hods 8081/*8151	(mg/L) or	Total (mg/kg)			

Orga

Endrin	Toxaphene	Chlordane
Lindane	*2,4-D	Heptachlor
Methoxychlor	*2,4,5-TP Silvex	
Organics, Semi-Volatile: Method 827	0 🔲 TCLP (mg/L) or 🗌 Total (mg/kg)	
• o-Cresol	Hexachlorobenzene	Pentrachlorophenol
m-Cresol	Hexachlorobutadiene	Pyridine
p-Cresol	Hexachloroethane	2,4,5-Trichlorophenol
Total Cresol	Nitrobenzene	2,4,6-Trichlorophenol
2,4-Dinitrotoluene		
Organics, Volatile: Method 8260	TCLP (mg/L) or 🗌 Total (mg/kg)	
Benzene	1,4-Dichlorobenzene	Methyl ethyl keytone
Carbon Tetrachloride	1,2-Dichloroethane	Tetrachloroethylene
Chlorobenzene	1,1-Dichloroethylene	Trichloroethylene
Chloroform	Vinyl Chloride	

3. Was the waste at the point of generation a RCRA hazardous waste per 40 CFR 261? Y 🗌 N 🛛

If Yes, list former hazardous waste codes and former underlying hazardous constituents. List worst-case concentrations for each hazardous constituent. If additional space is needed, provide an Attachment D.3 to this profile record formatted as below. Attach the most recent chemical analytical results demonstrating compliance with applicable treatment standards. If No, indicate "N/A" in Section D.3 below.

Low-Level Radioactive Waste Certification Attachment

D. 3.	Former EPA HW Codes or Underlying Hazardous Constituents	Treatment Standard (mg/kg unless noted as mg/L TCLP or Technology Code)	Worst Case Concentration (mg/kg unless noted as mg/L TCLP)
-			
-			
-			

4. OTHER CHEMICAL CONSTITUENTS

List any other chemical constituents of concern (e.g., PCBs, chelating agents, etc.) and worst-case concentrations. If additional space is needed, provide an Attachment D.4 to this profile record formatted as below.

Other Chemical Constituents	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)	Other Hazardous Constituents	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)

5. LABORATORY CERTIFICATION

UTAH or NELAC CERTIFIED

The Utah or NELAC certified laboratory holds a current certification for the applicable chemical test methods insofar as such official certifications are given. Please provide a copy of the laboratory's current certification letter for each parameter analyzed and each method used for chemical analyses required by this form.

OTHER LABORATORY CERTIFICATION (Describe below)

6. CERTIFICATION

I certify that sample results representative of the waste described in this profile were or shall be obtained using state- and EPAapproved analytical methods. I also certify that where necessary representative samples were or shall be provided to EnergySolutions and to qualified laboratories for the analytical results reported herein. I further certify that the waste described in this record is not prohibited from land disposal in 40 CFR 268 (unless prior arrangements are made for treatment at EnergySolutions) and that all applicable treatment standards are clearly indicated on this form. I also certify that the information provided on this form is complete, true, and correct and is accurately supported and documented by any laboratory testing as required by EnergySolutions. I certify that the results of any said testing have been submitted to EnergySolutions. I certify that the waste does not contain any prohibited items listed in EnergySolutions' Radioactive Material License.

Generator's Signature: Title:Environmental Engineer Date:9/15/09

Low-Level Radioactive Waste Certification Attachment

 Generator Name:
 United States Enrichment Corporatio

 Revision #:
 5
 Revision Date:
 9/15/09

Waste Stream ID:___

0691A-10

This waste is generated as the result of cleaning open air sand filter beds at the plant's sewage treatment facility. Liquid is discharged to the drying beds from an aerobic digester with the filtrate returning to the plant. The plant processes typical sewage sludge plus it receives low volumes of plant process wastes. The sludge exhibits no characteristics of hazardous waste and no listed hazardous waste is processed at the treatment plant. Detectable PCBs (<50 ppm) are from a source less than 50 ppm PCBs or from an unknown source making this waste non regulated for disposal under the RCRA or TSCA regulations. This material was analyzed in the plant's certified laboratory.

The sludge is removed from the beds manually and may contain sand, gravel, and vegetation as well as incidental amounts of plastic. The sludge is removed only after it has sufficiently dried but Quid Solid® aqueous absorbent is added as a precaution to ensure no free liquids are present.

0691A-10 Rev 5 9/15/09

Page 1 of 1

SPECIAL NUCLEAR MATERIAL EXEMPTION CERTIFICATION

The Special Nuclear Material Exemption Certification form must be completed and signed by each generator certifying to the following conditions. Please attach this form and all required information to the Radioactive Waste Profile Record (EC-0230). A completed and signed copy of this form must also accompany each waste manifest.

Waste Stream ID: 0691A-10 Manifest No.

1. Check applicable category below for the waste stream:

۸	Uranium Enrichment Percent	Weight Percent of Chemicals in Condition 2c	Weight Percent of Materials in Condition 2d	U-235 Concentration (pCi/g)	Measurement Uncertainty* (pCi/g)		
\boxtimes	< 10 %	≤ 20 %	≤ 1 %	≤ 1,900	≤ 285		
	Unlimited	≤ 20 %	≤ 1 %	≤ 1,190	≤ 179		
	Unlimited	Sum of both $\leq 45 \%$	of waste by weight	≤ 680	≤ 102		
	Unlimited	Unlimited	Unlimited	≤ 26	≤ 10		
	Not Applicable - Enriched U-235 is not present in the waste.						

* A concentration value is used for the maximum measurement uncertainty limit rather than a percentage value to allow greater flexibility for generators with waste having very low SNM concentrations.

2. Certify to the following requirements by checking each box:

- a. Concentrations of SNM in individual waste containers do not exceed the applicable values listed in the above table and SNM isotope concentrations listed in Table 1.
- b. The SNM is homogeneously distributed throughout the waste or the SNM concentrations in any contiguous mass of 600 kilograms (1,323 lbs) do not exceed on average the specified limits. (Based on process knowledge or testing).
- c. Except as allowed by Condition 1, the waste does not contain "pure forms" of chemicals containing carbon, fluorine, magnesium, or bismuth in bulk quantities (e.g., a pallet of drums, a B-25 box). By "pure forms," it is meant that mixtures of the above elements such as magnesium oxide, magnesium carbonate, magnesium fluoride, bismuth oxide, etc. do not contain other elements. (Based on process knowledge or testing).
- d. Except as allowed by Condition 1, the waste does not contain total quantities of beryllium, hydrogenous material enriched in deuterium, or graphite above one percent of the total weight of the waste. (Based on process knowledge, physical observations, or testing).
- e. Waste packages do not contain highly soluble forms of uranium greater than 350 grams of uranium-235 or 200 grams of uranium-233. If the waste contains mixtures of U-233 and U-235, the waste meets the sum of the fractions rule. Highly soluble forms of uranium include, but are not limited to: uranium sulfate, uranyl acetate, uranyl chloride, uranyl formate, uranyl fluoride, uranyl nitrate, uranyl potassium carbonate, and uranyl sulfate. (Based on process knowledge or testing).
- ✓ f. For containers of <u>liquid waste</u> with more than 600 kilograms of waste, the total activity (pCi) of SNM in the manifested container does not exceed the SNM concentration in the above table or Table 1 times 600 kilograms of waste (based on process knowledge or testing). For example, the maximum activity of Pu-239 in any manifested container of liquid waste is 6.0 mCi (6.0E+09 pCi) as shown below:

$$10,000 \frac{pCi}{g} \times 600,000 g = 6.0 \times 10^9 \text{ pCi} = 6.0 \text{ mCi Pu} - 239$$

Page 1 of 2

SPECIAL NUCLEAR MATERIAL EXEMPTION CERTIFICATION

Table 1. Maximum concentrations of SNM in individual waste containers (refer to above table for U-235 limits).

Radionuclide	Maximum Concentration (pCi/g)	Measurement Uncertainty (pCi/g)	Radionuclide	Maximum Concentration (pCi/g)	Measurement Uncertainty (pCi/g)
U-233	75,000	11,250	Pu-241	350,000	50,000
Pu-236	500	75	Pu-242	10,000	1,500
Pu-238	10,000	1,500	Pu-243	500	75
Pu-239	10,000	1,500	Pu-244	500	75
Pu-240	10.000	1 500		·	

3. Indicate that the following information is attached to the Radioactive Waste Profile Record by checking each box. (Note: Only the two-page Special Nuclear Material Exemption Certification form needs to be included with each manifest).

- a. Provide a description of how the waste was generated, list the physical forms in the waste, and identify the uranium chemical composition.
- b. Provide a general description of how the waste was characterized (including the volumetric extent of the waste, and the number, location, type, and results of any analytical testing), the range of SNM concentrations, and the analytical results with error values used to develop the concentration ranges.
- c. Describe the process by which the waste was generated showing that the spatial distribution of SNM must be uniform, or other information supporting spatial distribution.
- d. Describe the methods to be used to determine the concentrations on the manifests. These methods could include direct measurement and the use of scaling factors. Describe the uncertainty associated with sampling and testing used to obtain the manifest concentrations.
- 4. Generator's certification of compliance with the SNM exemption: I certify that the information provided on this form is complete, true, and correct and is based on process knowledge, physical observations, or approved laboratory testing. I also certify that sampling and radiological testing of waste containing SNM was performed in accordance with EnergySolutions' Radioactive Material License and that any supporting documentation and analytical results have been submitted to EnergySolutions.

	Elizabeth Lamerson	Environmental Engineer	
Authorized Signature	Printed Name	Title	Date

Delivery Date: Ongoing

RADIOACTIVE WASTE PROFILE RECORD

A. GENERATOR AND WASTE STREAM INFORMATION

GENERAL: Complete this form for one waste stream. Contact EnergySolutions at (801) 532-1330 if you have any questions while completing this form. Please indicate "N/A" if a category does not apply.

1. GENERATOR INFORMATION

Generator Name:	USEC/ Portsmouth		EPA ID #	: OHD987054723
Generator Contact	Elizabeth D. Lamerson		Title	: Environmental Engineer
Mailing Address:	P.O. Box 628 M/S 9030			
	Piketon, OH 45661		Utah Site Access Permit #	: 0111000043
Phone	:: <u>740-897-2812</u>	Fax:740-897-2143	Email	: lamersoned@ports.usec.com
Contractor Name:	<u>N/A</u>	Loca	tion of Waste (City, State)	Portsmouth
Name & Title of P	erson Completing Form: Elizal	beth Lamerson/Env. Eng.	Phone: <u>740-897-2812</u>	Email: lamersoned@ports.usec.com
2. WASTE S	TREAM INFORMATION			
Waste Stream I	D: 0691A-12 Waste Stream	n Name: Used Oil		State of Origin: OH

CHECK APPROPRIATE BOXES BELOW. Please verify the required forms requested below are completed and submitted with the Radioactive

Waste Profile Record.

Revision: 0

HAZARDOUS WASTE: Is the waste classified as hazardous waste as defined by 40 CFR 261?

- N 🛛 If NO, complete and attach the "Low-Level Radioactive Waste Certification Attachment".
- Y [] If YES, complete and attach the "Hazardous Waste Certification Attachment" and check applicable box below. Has the waste been treated to meet applicable treatment standards per 40 CFR 268? Y Is the waste to be treated by EnergySolutions? Y IN N

Date: 05/31/2011 Volume (ft³): TBD

LOW-LEVEL RADIOACTIVE WASTE: Is the radioactive waste defined as Low-Level Radioactive Waste in accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985 or in DOE Order 435.1?

- Y 🛛 If YES, a current copy of a LLRW Compact Export letter authorizing export must be submitted if applicable. This authorization is applicable

SPECIAL NUCLEAR MATERIAL: Does the waste stream contain material with uranium enriched in U-235 or any of the following radionuclides: U-233, Pu-236, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, Pu-243, or Pu-244?

Y 🛛 א 🗋 If Yes, complete and attach the "SNM Exemption Certification" form (EC-0230-SNM). Supporting statements, analytical results, and documentation must be included with the submittal.

PCB WASTE: Does the waste contain Polychlorinated Biphenyls (PCB) that are regulated for disposal per 40 CFR 761?

Y 🗋 N 🖾 If Yes, complete and attach the "PCB Waste Certification" form (EC-98279).

ASBESTOS: Does the waste contain Asbestos Containing Material?

א 🗋 צ 🖾 If Yes, Asbestos Containing Material must be managed in accordance with applicable federal regulations. Provide a detailed description of the waste containing asbestos in Section B.5 of the waste profile.

B. WASTE PHYSICAL PROPERTIES & PACKAGE INFORMATION

1. GENERAL CHARACTERISTICS

Does the waste contain free liquids? Y 🛛 N 🗌	If Yes, what is the percent of free liquid by waste	volume? <u>75</u> %
	If Yes, is the liquid aqueous (water	r-based)?Y 🗋 N 🛛
Does the waste contain absorbent? Y 🖄 N 🗌	Density range of the waste: $1.03 - 0.81$ g/cc \boxtimes	lb/ft³
List percentage of waste type by volume: Soil%	Concrete & Metal% DAW 5%	Resins% Sludge 45%
Other constituents and percentage by volume? Oil - 50%		

2. MATERIAL SIZE

Gradation of Material: Indicate the percentage of waste material that would pass through the following grid sizes. For example, 95% of the material would pass through a 12" square, 90% passes through a 4" square, 80% passes through a 1" square, etc.

12" <u>100</u> %	4" <u>100</u> %	1" <u>80</u> %	1/4" <u>70</u> %	1/40" <u><1</u> %	1/200" ≤1 %

Does the waste stream contain oversize debris (i.e., no dimension < 10 inches and any dimension > 12 feet)? Y 🔲 N 🔯 If Yes, include a detailed description (i.e., weight, size, drawings, etc.) of the oversize debris in the narrative of Section B.5.

3. MOISTURE CONTENT

For soil or soil-like materials, please use Std. Proctor Method ASTM D-698 to determine the optimum moisture content. The waste material must not exceed 3 percentage points above optimum moisture upon arrival at EnergySolutions' disposal facility unless approved by EnergySolutions.

Optimum Moisture Content: N/A % at Maximum Dry Density (lb/ft³): N/A

Average Moisture Content: ____% Moisture Content Range: ____ % % -

🛛 Rail

4. WASTE SHIPPING & PACKAGING

Transportation Mode: 🛛 Highway

Shipping & Container Packages: (Check all that apply)	⊠ Drums* (≤ 85 gallons)	⊠ Boxes (≤ 100 ft ³)	Soft-Sided Bags	(≤ 10 yd³)
	🔀 Intermodal	🛛 Sealand	Gondola**	

X Intermodal

Gondola**

Box Car

Other:

*Palletized drums are preferred by the disposal site. Please specify in the "Other" field if drums will not be palletized. **Dimensions of gondola railcars must be between 48 to 65 feet in length and 8.5 to 12.5 feet in height as measured from the top of the rail to the top of the railcar unless approved by EnergySolutions.

5. NARRATIVE DESCRIPTION AND HISTORY OF WASTE

Please submit a narrative description and history of the waste as an attachment to the Radioactive Waste Profile Record. This attachment should include the following:

- Process that generated the waste
- Waste material physical composition and characteristics
- Radiological and chemical characterization method
- Basis for determining manifested radionuclide concentrations
- Description and amounts of absorbents, if applicable
- Basis of non-hazardous or hazardous waste determinations
- Treatment processes, if applicable
- Product information or Material Safety Data Sheets associated with the waste as applicable
- Information requested in other sections of this form

0691A-12 Rev 0

Page 2 of 5

Revision 7

RADIOACTIVE WASTE PROFILE RECORD

Waste Stream ID: 0691A-12 Revision: 0

Date of Revision: 05/31/2011

C. RADIOLOGICAL INFORMATION

Obtain sufficient samples to adequately determine a range and weighted average of activity in the waste. Attach the gamma spectroscopy or radiochemistry data supporting the radionuclide information listed below.

- 1. Does the waste material contain accessible surfaces with contact dose rates greater than 500 mR/hr? Y 🗌 N 🛛
- 2. Does the waste material contain any of the following isotopes: Aluminum-26, Berkelium-247, Calcium-41, Californium-250, Chlorine-36, Rhenium-187, Terbium-157, or Terbium-158? Y □ N ⊠
- 3. Please list the following information for each isotope associated with the waste. Provide an explanation in the narrative description of Section B.5 if the waste contains localized "hot spots" or elevated concentrations that significantly exceed the upper concentration range. If additional space is needed, provide an Attachment C.3 to this profile record formatted as below.

Isotope	Manifested Upper Concentration (pCi/g)	Weighted Avg. per Container (pCi/g)	Isotope	Manifested Upper Concentration (pCi/g)	Weighted Avg. per Container (pCi/g)
Am-241	100	10			
Cm-248	0.08558	0.08558			<u></u>
Th-228	300	10			
Th-230	300	10		<u></u>	· · · · · · · · · · · · · · · · · · ·
Th-231	2420	237.207			
Th-234	37010	3523.183			
Total U	38000	5000			<u> </u>
U-233/234	38000	5000			
U-235	1900	237.207			
U-236	181.1	29.668			· · · ·
U-238	16500	5000			
Bi-214	0.5479	0.5479			
Fr-223	16.77	16.77			
Pa-234	112.2	13.091			
Pa-234m	16500	3966.195			
Tc-99	200	5.2312			·
T1-208	0.2854	0.2854			<u> </u>
U-234	38000	4658.064	<u></u>		
Ac-227	300	10	<u></u>		
Cs-137	300	10	<u> </u>		
Np-237	300	10			
Pa-231	300	10			
Ra-226	300	10	<u></u>		
Th-229	300	10	<u> </u>		
Th-232	300	10		·	·
		<u></u>			
-					
			······		·
		6 00.01			

0691A-12 Rev 0

Page 3 of 5%

HAZARDOUS WASTE CERTIFICATION ATTACHMENT

This form is required only if the checkbox for Hazardous Waste on page one has been checked YES. Otherwise, complete the Low-Level Radioactive Waste Certification Attachment instead of this attachment. EnergySolutions may waive the chemical laboratory analyses if the material is not amenable to chemical sampling and analysis (e.g., debris items including metal pieces, concrete, plastic, etc.). Justification for waiving the chemical analyses must be provided in Section B.5.

D. MINIMUM REQUIRED CHEMICAL ANALYSIS

The following parameters must be analyzed by a Utah or NELAC certified laboratory. Typical SW-846 analytical methods have been listed. Other approved methods are acceptable. Attach the most recent or applicable chemical analytical results representing the waste.

1. GENERAL CHEMICAL PARAMETERS

SW-846 Analytical Methods

pH (Liquid only): 5.45-6.9 Method 9045 Please provide the range of the pH analyses performed.

PFLT: N/A Pass / Fail Method 9095 Not applicable for liquid radioactive waste streams.

Analyze the waste for volatile or semi-volatile constituents (Methods 8260 & 8270), and attach the data.

Any distinguishing color or odor? Y 🗌 N 🛛 If Yes, color: ____; odor: ____;

2. HAZARDOUS WASTE CODES AND TREATMENT STANDARDS (40 CFR 268)

List all hazardous waste codes and treatment standards. Include hazardous waste codes that have been removed through treatment and indicate "Former" in the second column. Worst-case concentrations only need to be provided for concentration based treatment standards. If additional space is needed, provide an Attachment D.2 to this profile record formatted as below. Include a description of hazardous waste determinations and any variances, exclusions, etc. in the narrative requested in Section B.5.

EPA HW Codes	Description, Constituent of Concern, or Subcategory	Treatment Standard (mg/kg unless noted as mg/L TCLP or Technology Code)	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)
N/A	N/A	<u>N/A</u>	N/A
		·····	
		••• <u></u>	·····
·······			
	· ·····		
	· · · · · · · · · · · · · · · · · · ·		

0691A-12 Rev 0

Hazardous Waste Certification Attachment

CL-WM-PR-001 F2 (EC-0230) Revision 7

3. UNDERYLYING HAZARDOUS CONSTITUENTS (40 CFR 268.48)

List all underlying hazardous constituents (UHCs) and treatment standards. Include UHCs that have been removed through treatment. Worst-case concentrations only need to be provided for concentration based treatment standards. If additional space is needed, provide an Attachment D.3 to this profile record formatted as below.

Underlying Hazardous Constituents	Treatment Standard (mg/kg unless noted as mg/L TCLP or Technology Code)	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)
N/A	N/A	N/A
	<u> </u>	
		······

D. 4. OTHER CHEMICAL CONSTITUENTS

List any other chemical constituents of concern (e.g., PCBs, chelating agents, etc.) and worst-case concentrations. If additional space is needed, provide an Attachment D.4 to this profile record formatted as below.

Other Chemical Constituents	Worst Case Concentration (mg/kg unless noted as mg/L TCLP)	Other Hazardous Constituents	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)
	N/A	N/A	

5. LABORATORY CERTIFICATION INFORMATION

UTAH or NELAC CERTIFIED

The Utah or NELAC certified laboratory holds a current certification for the applicable chemical test methods insofar as such official certifications are given. Please provide a copy of the laboratory's current certification letter for each parameter analyzed and each method used for chemical analyses required by this form.

OTHER LABORATORY CERTIFICATION (Describe below)

6. CERTIFICATION

I certify that sample results representative of the waste described in this profile were or shall be obtained using state- and EPAapproved analytical methods. I also certify that where necessary representative samples were or shall be provided to EnergySolutions and to qualified laboratories for the analytical results reported herein. I further certify that the waste described in this record is not prohibited from land disposal in 40 CFR 268 (unless prior arrangements are made for treatment at EnergySolutions) and that all applicable treatment standards are clearly indicated on this form. I also certify that the information provided on this form is complete, true, and correct and is accurately supported and documented by any laboratory testing as required by EnergySolutions. I certify that the results of any said testing have been submitted to EnergySolutions. I certify that the waste does not control and prohibited in EnergySolutions' Padioactive Meterial License or RCR A Permit

the waste does not contain any prohibited in	toms listed in EnergySolutions' Radioactive Material Lie	cense or RCRA Permit.
		1. lali
Generator's Signature:	Title:Environmental Engineer	Date:
		11
V		

Hazardous Waste Certification Attachment

Page 5 of 5

LOW-LEVEL RADIOACTIVE WASTE CERTIFICATION ATTACHMENT

This form is required only if the checkbox for Hazardous Waste on page one has been checked No. Otherwise, complete the Hazardous Waste Certification Attachment instead of this attachment. EnergySolutions may waive the chemical laboratory analyses if the material is not amenable to chemical sampling and analysis (e.g., debris items including metal pieces, concrete, plastic, etc.). Justification for waiving the chemical analyses must be provided in Section B.5.

D. MINIMUM REQUIRED CHEMICAL ANALYSIS

The following parameters must be analyzed by a Utah or NELAC certified laboratory. Typical SW-846 analytical methods have been listed. Other approved methods are acceptable. Attach the most recent or applicable chemical analytical results representing the waste.

1. GENERAL CHEMICAL PARAMETERS

SW-846 Analytical Methods

PFLT: N/A Pass / Fail Method 9095 Not applicable for liquid radioactive waste streams.

2. 40 CFR 261.24 Table 1 - Contaminants of Toxicity Characteristic

Metals: Methods 6010 & *7470 X TCLP (mg/L) or Total (mg/kg)

Arsenic_	ND	Chromium_	0.00011	Selenium_	0.0005
Barium_	0.0003	Lead_	0.0003	Silver_	0.00007
Cadmium	0.000014	*Mercury_	0.0000004		
Organics, Pesticides/Her	bicides: Me	thods 8081/*8151 🛛 TCLP	(mg/L) or 🗌] Total (mg/kg)	
Endrin_	0.012	Toxaphene_	ND	Chlordane_	ND
Lindane_	ND	*2,4-D_	ND	Heptachlor_	ND
Methoxychlor_	ND	*2,4,5-TP Silvex_	ND		
Organics, Semi-Volatile:	Method 827	0 🛛 TCLP (mg/L) or 🗌 To	tal (mg/kg)		
o-Cresol	ND	Hexachlorobenzene_	ND	Pentachlorophenol	ND
m-Cresol_	ND	Hexachlorobutadiene_	ND	Pyridine_	ND
p-Cresol	ND	Hexachloroethane	ND	2,4,5-Trichlorophenol	ND
Total Cresol	ND	Nitrobenzene_	ND	2,4,6-Trichlorophenol	ND
2,4-Dinitrotoluene	ND				
Organics, Volatile: Meth	od 8260 🛛	TCLP (mg/L) or 🗌 Total (m	g/kg)		
Benzene	0.012	1,4-Dichlorobenzene	ND	Methyl ethyl keytone	0.114
Carbon Tetrachloride_	0.034	1,2-Dichloroethane	ND	Tetrachloroethylene	0.097
Chlorobenzene_	ND	1,1-Dichloroethylene	ND	Trichloroethylene_	ND
Chloroform_	0.012	Vinyl Chloride	ND		

3. Was the waste at the point of generation a RCRA hazardous waste per 40 CFR 261? Y 🗌 N 🛛

If Yes, list former hazardous waste codes and former underlying hazardous constituents. List worst-case concentrations for each hazardous constituent. If additional space is needed, provide an Attachment D.3 to this profile record formatted as below. Attach the most recent chemical analytical results demonstrating compliance with applicable treatment standards. If No, indicate "N/A" in Section D.3 below.

0691A-12 Rev 0

Low-Level Radioactive Waste Certification Attachment

D. 3.	Former EPA HW Codes or Underlying Hazardous Constituents	Treatment Standard (mg/kg unless noted as mg/L TCLP or Technology Code)	Worst Case Concentration (mg/kg unless noted as mg/L TCLP)

4. OTHER CHEMICAL CONSTITUENTS

List any other chemical constituents of concern (e.g., PCBs, chelating agents, etc.) and worst-case concentrations. If additional space is needed, provide an Attachment D.4 to this profile record formatted as below.

Other Chemical Constituents	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)	Other Hazardous Constituents	Worst-Case Concentration (mg/kg unless noted as mg/L TCLP)
Beryllium	0.198 mg/kg	N/A	N/A
<u> </u>			
<u> </u>	, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	••••••••••••••••••••••••••••••••••••••	

5. LABORATORY CERTIFICATION

UTAH or NELAC CERTIFIED

The Utah or NELAC certified laboratory holds a current certification for the applicable chemical test methods insofar as such official certifications are given. Please provide a copy of the laboratory's current certification letter for each parameter analyzed and each method used for chemical analyses required by this form.

OTHER LABORATORY CERTIFICATION (Describe below)

6. CERTIFICATION

I certify that sample results representative of the waste described in this profile were or shall be obtained using state- and EPAapproved analytical methods. I also certify that where necessary representative samples were or shall be provided to EnergySolutions and to qualified laboratories for the analytical results reported herein. I further certify that the waste described in this record is not prohibited from land disposal in 40 CFR 268 (unless prior arrangements are made for treatment at EnergySolutions) and that all applicable treatment standards are clearly indicated on this form. I also certify that the information provided on this form is complete, true, and correct and is accurately supported and documented by any laboratory testing as required by EnergySolutions. I certify that the results of any said testing have been submitted to EnergySolutions. I certify that the waste does not containdant prohibited; the formation is form in the state of the state

the waste does not		
Generator's Signature:	Title:Environme	ental Engineer Date: 6/9/11
	1	

Low-Level Radioactive Waste Certification Attachment

Page 5 of 5

Generator Name: USEC/Portsmouth		Waste Stream ID:	0691A-12
Revision #: 0	Revision Date:		

USED OIL WASTE STREAM

The used oil waste stream originates in various buildings in the Portsmouth Gaseous Diffusion Plant (PORTS). Some of the gaseous diffusion process equipment employs a Buffer Gas System to prevent the in-leakage of moist, ambient air around motor shaft seals. During normal operations, wet-air will collect within the buffer gas system. A Seal Exhaust System is used to remove the gas from the Buffer Gas System. The Seal Exhaust System consists of one or more pumping stations for each process building. The station is equipped with multiple vacuum pumps that can be used for seal buffer gas exhaust. During the operation of the vacuum pump the oil becomes the sump for any solids and/or condensables carried over from the process and must be changed out. In accordance with the Preventative Maintenance Program Schedule, the oil used as a lubricant in these vacuum pumps is removed and placed into containers, along with any flushing fluid that may have been used as a rinsate. Oils that were used often with these pumps are Kinney mineral oil KV-100, Inland synthetic oil HV-68, and Inland Flushing Fluid FF-10.

Oil is used as a lubricant and coolant for motors and rotating shafts and bearings within many types of equipment employed at this facility. Over time and usage this oil becomes a sump for metal solids and condensables and must be replaced to maintain their lubricant and coolant property efficiency. In accordance to a Preventive Maintenance Program Schedule, this oil is removed from the equipment and place into containers for disposal.

The used oil is currently in a liquid or sludge form. The used oil waste stream is projected to be solidified prior to shipment. We will add some type of absorbent (i.e., Petroset II) to solidify the used oil. This waste stream should be considered a solid at the time of shipment. All of the samples were collected as a liquid/sludge.

The waste stream also contains small amounts of Dry Active Waste (DAW) that was used in cleanup, sampling, and operation of the process.

The containers of used oil were sampled and analyzed for the purpose of characterization and this profile. The results were found to be non-hazardous.

Radiological and Chemical Characterization Requirements and Methods:

The primary objective of the characterization sampling design was to achieve high confidence that at least a high percentage of the items in population are acceptable. A hypergeometric model with a 95%/90% confidence interval was used to characterize this waste stream. The sample size was calculated using a similar method to Bowen and Bennett 1988 (*Statistical Methods for Nuclear Material Management*, NUREG/CR-4604, US Nuclear Regulator Commission, Washington, DC). Twenty-five random samples were taken to meet the 95/90 confidence interval.

Chemical Characterization

Ohio Administrative Code (OAC) Section 3745-51 *et seq* and Title 40 Code of Federal Regulations (CFR) § 261 *et seq* clearly define the process for identifying a waste based on characteristics. OAC 3745-51-20 (40 CFR § 261.24) states:

"A waste is a hazardous waste if it exhibits any of the characteristics identified in rules 3745-51-20 (40 CFR § 261.20) to 3745-51-24 (40 CFR § 261.24) of the Administrative Code."

0691A-12 Rev 0

EC-0230 Attachment B.5

To determine the regulatory status of this waste stream the following requirements were met:

- 1. Collect a representative sample.
- 2. Analyze the sample using TCLP Method 1311 in "Test Methods for the Evaluation of Solid Waste, Physical/Chemical Methods," EPA Publication SW-846.
- 3. Compare the results of the analysis to OAC 3745-51-24, Table 1 (40 CFR § 261.24, Table 1).
- 4. If the contaminate is statistically (as defined by Chapter Nine of SW-846) at or above the regulatory limit outlined in Table 1 of OAC 3745-51-24 (40 CFR § 261.24), then the waste is characteristically hazardous for that contaminant and must be managed as such.

Also, waste may be characteristically hazardous if it meets the criteria outlined in OAC 3745-51-21 (40 CFR § 261.21) to OAC 3745-51-23 (40 CFR § 261.23). OAC 3745-51-30 (40 CFR § 261.30) clearly define the process for identifying a waste based on a listing. OAC 3745-51-30 (A) [40 CFR § 261.30 (a)] states:

"A waste is a hazardous waste if it is listed as such in rules 3745-51-30 (§ 261.30) to 3745-51-35 (§ 261.35) of the Administrative Code."

To determine the regulatory status of this waste stream for listed hazardous waste, the following requirements were met:

- 1. Identify the generating process or identify the waste as derived from an already listed hazardous waste.
- 2. Identify the constituents, which may cause the waste to be classified as hazardous.
- 3. Compare the waste descriptions provided in OAC 3745-51-31 (40 CFR § 261.31) to OAC 3745-51-33 (40 CFR § 261.33).
- 4. If the process and constituents are listed in OAC 3745-51-31 (40 CFR § 261.31 to OAC 3745-51-33 (40 CFR § 261.33), then the waste is listed as hazardous and is managed as such.

This waste stream is not regulated for disposal as a RCRA hazardous waste as defined in 40 CFR 261. This waste is not regulated as TSCA (PCB) waste as defined in 40 CFR 761.

Radiological Characterization

Radiological characterization is performed through a combination of laboratory data and a Non-Destructive Analysis (NDA) method. Twenty-five random samples of the total population were analyzed to provide the radiological characterization data to adequately determine a range and concentration of activity in the waste.

Basis for Determining Manifested Radionuclide Concentrations

0691A-12 Rev 0

EC-0230 Attachment B.5

Radiological characterization of outgoing shipments is performed through a combination of laboratory data and a Non-Destructive Analysis (NDA) method. The radiological laboratory results were used to establish scaling factors which are then synchronized with the NDA results and divided by net weight in the container to develop manifested nuclide concentrations. The SNM is typically in the form of dry non-visible uranium dust made up of oxide compounds, primarily UO_2F_2 . The SNM is essentially distributed homogenously throughout the waste.

Typically the waste will be packaged for transportation and disposal in drums or metal boxes. Optional packages include soft-sided bags, intermodal containers and sea-land containers. Notification will be provided prior to shipping if any optional containers are to be utilized.

SPECIAL NUCLEAR MATERIAL EXEMPTION CERTIFICATION

The Special Nuclear Material Exemption Certification form must be completed and signed by each generator certifying to the following conditions. Please attach this form and all required information to the Radioactive Waste Profile Record (EC-0230). A completed and signed copy of this form must also accompany each waste manifest.

Waste Stream ID: 0691A-12 Manifest No. 0691A-12

1. Check applicable category below for the waste stream:

1	Uranium Enrichment Percent	Weight Percent of Chemicals in Condition 2c	Weight Percent of Materials in Condition 2d	U-235 Concentration (pCi/g)	Measurement Uncertainty* (pCi/g)
\boxtimes	< 10 %	≤ 20 %	≤1 %	≤ 1,900	≤ 285
	Unlimited	≤ 20 %	≤ 1 %	≤ 1,190	≤ 179
	Unlimited	Sum of both \leq 45 % of waste by weight		≤ 680	≤ 102
	Unlimited	Unlimited	Unlimited	≤ 26	<u>≤</u> 10
	Not Applicable - Enriched U-235 is not present in the waste.				

* A concentration value is used for the maximum measurement uncertainty limit rather than a percentage value to allow greater flexibility for generators with waste having very low SNM concentrations.

2. Certify to the following requirements by checking each box:

- a. Concentrations of SNM in individual waste containers do not exceed the applicable values listed in the above table and SNM isotope concentrations listed in Table 1.
- b. The SNM is homogeneously distributed throughout the waste or the SNM concentrations in any contiguous mass of 600 kilograms (1,323 lbs) do not exceed on average the specified limits. (Based on process knowledge or testing).
- C. Except as allowed by Condition 1, the waste does not contain "pure forms" of chemicals containing carbon, fluorinc, magnesium, or bismuth in bulk quantities (e.g., a pallet of drums, a B-25 box). By "pure forms," it is meant that mixtures of the above elements such as magnesium oxide, magnesium carbonate, magnesium fluoride, bismuth oxide, etc. do not contain other elements. (Based on process knowledge or testing).
- d. Except as allowed by Condition 1, the waste does not contain total quantities of beryllium, hydrogenous material enriched in deuterium, or graphite above one percent of the total weight of the waste. (Based on process knowledge, physical observations, or testing).
- e. Waste packages do not contain highly soluble forms of uranium greater than 350 grams of uranium-235 or 200 grams of uranium-233. If the waste contains mixtures of U-233 and U-235, the waste meets the sum of the fractions rule. Highly soluble forms of uranium include, but are not limited to: uranium sulfate, uranyl acetate, uranyl chloride, uranyl formate, uranyl fluoride, uranyl nitrate, uranyl potassium carbonate, and uranyl sulfate. (Based on process knowledge or testing).
- f. For containers of <u>liquid waste</u> with more than 600 kilograms of waste, the total activity (pCi) of SNM in the manifested container does not exceed the SNM concentration in the above table or Table 1 times 600 kilograms of waste (based on process knowledge or testing). For example, the maximum activity of Pu-239 in any manifested container of liquid waste is 6.0 mCi (6.0E+09 pCi) as shown below:

$$10,000 \frac{\text{pCi}}{\text{g}} \times 600,000 \text{g} = 6.0 \text{X} 10^9 \text{ pCi} = 6.0 \text{ mCi} \text{ Pu} - 239$$

SPECIAL NUCLEAR MATERIAL EXEMPTION CERTIFICATION

Table 1. Maximum concentrations of SNM in individual waste containers (refer to above table for U-235 limits).

Radionuclide	Maximum Concentration (pCi/g)	Measurement Uncertainty (pCi/g)	Radionuclide	Maximum Concentration (pCi/g)	Measurement Uncertainty (pCi/g)
U-233	75,000	11,250	Pu-241	350,000	50,000
Pu-236	500	75	Pu-242	10,000	1,500
Pu-238	10,000	1,500	Pu-243	500	75
Pu-239	10,000	1,500	Pu-244	500	75
 Pu-240	10 000	1 500			

- 3. Indicate that the following information is attached to the Radioactive Waste Profile Record by checking each box. (Note: Only the two-page Special Nuclear Material Exemption Certification form needs to be included with each manifest).
 - a. Provide a description of how the waste was generated, list the physical forms in the waste, and identify the uranium chemical composition.
 - b. Provide a general description of how the waste was characterized (including the volumetric extent of the waste, and the number, location, type, and results of any analytical testing), the range of SNM concentrations, and the analytical results with error values used to develop the concentration ranges.
 - c. Describe the process by which the waste was generated showing that the spatial distribution of SNM must be uniform, or other information supporting spatial distribution.
 - d. Describe the methods to be used to determine the concentrations on the manifests. These methods could include direct measurement and the use of scaling factors. Describe the uncertainty associated with sampling and testing used to obtain the manifest concentrations.
- 4. Generator's certification of compliance with the SNM exemption: I certify that the information provided on this form is complete, true, and correct and is based on process knowledge, physical observations, or approved laboratory testing. I also certify that sampling and radiological testing of waste containing SNM was performed in accordance with EnergySolutions' Radioactive Material License and that any supporting documentation and analytical results have been submitted to EnergySolutions.

MAL	Elizabeth Lamerson	Environmental Engineer	6/9/11	
Authorized Signature	Printed Name	Title	Date	

Sampling and Analysis Plan For the Characterization of Source and Byproduct Materials

Sampling & Analysis Plan for the Characterization of Waste in the XT-847

United States Enrichment Corporation P.O. Box 628 3930 US Route 23 South Piketon, Ohio 45661

> December 21, 2010 Revised: January 18, 2011 Revised: February 9, 2011

TABLE OF CONTENTS

.

.

1.0	PRO	JECT OVERVIEW	1
	1 .1	Purpose	1
	1.2	Waste Stream Description	1
	1.3	Data Quality Objectives	1
2.0	MET	HODOLOGY FOR SAMPLE COLLECTION AND ANALYSIS	2
	2.1	Sample Collection	2
	2.2	Sample Management	2
	2.3	Analytical Parameters	3
		 2.3.1 TCLP Constituent Parameters. 2.3.2 Total Constituent Parameters. 2.3.3 Physical Parameters	3 4 4
BERY	'LLIUI	Μ	5
3.0	ANA	LYTICAL METHODS	5
4.0	QUA	ALITY ASSURANCE REQUIREMENTS	6
	4.1	QA/QC SAMPLES	6
	4.2	ANALYSIS	6
	4.3	STATISTICAL APPROACH	6
5.0	DAT	A MANAGEMENT	7
	5.1	Data Verification	7
	5.2	Data Summary	7
		PENDIX A—XT-847 Inventory	
		PENDIX BAnalyte Summary	
		PENDIX CRandom Selection for Statistical Analysis or Sweepings, Misc. Rags	
		rags, dust	
		nt Carbon	
		mina/Sodium Fluoride/Magnesium Fluoride sting Media	
		l from BioD	
	Con	icrete	71
		ding Slag	
		/Soap Filters	
		Exchange Resin	/၁

Microsludge	
Oil and Grease Sludge	
Spent Resin	
Varnish Chunks	
APPENDIX DParameter Analysis by Container	80
APPENDIX E—Sampling schedule	

ACRONYM LIST

ASTM- American Society for Testing and Materials

DOT- Department of Transportation

EPA- Environmental Protection Agency

LDR- Land Disposal Restrictions

NCS- Nuclear Criticality Safety

NRC- Nuclear Regulatory Commission

PCB- Polychlorinated Biphenyl

PORTS- Portsmouth Gaseous Diffusion Plant

QA/QC- Quality Assurance/Quality Control

RCRA- Resource Conservation and Recovery Act

RFD- Request For Disposal

SAP- Sampling & Analysis Plan

SVOC- Semi-Volatile Organic Compound

TCLP- Toxicity Characteristic Leaching Procedure

TSCA- Toxic Substances Control Act

TSD- Treatment Storage and Disposal

USEC- United States Enrichment Corporation

VOC- Volatile Organic Compound

WAC- Waste Acceptance Criteria

1.0 **PROJECT OVERVIEW**

1.1 <u>Purpose</u>

A. This Sampling and Analysis Plan (SAP) describes the process for collection and analysis of waste characterization samples of the waste streams in the XT-847. The characterization process will ensure safe storage, treatment, and disposal of the waste. The SAP also describes the quality assurance (QA)/quality control (QC) processes for sampling.

B. The sampling and analysis of these waste streams ensure that the actual chemical, physical and radioactive properties of the wastes are identified and documented for characterization of the various waste streams in the XT-847. The planned disposal option for the waste stream is land disposal at the EnergySolutions facility in Clive, Utah.

1.2 Waste Stream Description

A. These waste streams originate in various locations at the Portsmouth Gaseous Diffusion Plant (PORTS). The wastes consist of sludge material, dirt, floor sweepings, alumina, concrete, resin, and varnish chunks that contain radiological contamination.

B. The inventory currently consists of one thousand two hundred ninety containers (1290) containers inventoried under Requests for Disposals (RFDs). All of the containers are 5-gallon drums, 30-gallon drums, 55-gallon drums, 85-gallon drums, 110-gallon drums, B-25 boxes or over-packed B-25 boxes. The current inventory information is given in Appendix A.

1.3 Data Quality Objectives

A. The objective of characterization is to provide data to evaluate the preferred Treatment, Storage, and Disposal (TSD) option as well as alternative TSD options. The intended uses of the characterization data are:

- to confirm the regulatory status of the waste streams under RCRA,
- to determine the chemical, physical and radiological properties of the waste stream,
- to determine that the waste stream meets the potential treatment or disposal facility's Waste Acceptance Criteria (WAC),
- to determine compliance with the Land Disposal Restrictions (LDR) (40 CFR 268), and
- to provide information to satisfy Department of Transportation (DOT) requirements for off-site waste shipments.

B. Analytical data will be generated using EPA SW-846, EPA-600-4-80-032, and American Society for Testing and Materials (ASTM) methods for the regulatory

based parameters. For radiological parameters, EPA approved methods or other wellestablished, approved methods shall be used.

C. The analytical data will be statistically evaluated in accordance with EPA SW-846 methods to confirm that the waste stream is properly classified under RCRA.

2.0 <u>METHODOLOGY FOR SAMPLE COLLECTION AND ANALYSIS</u>

2.1 <u>Sample Collection</u>

A. Collection of representative samples is of primary importance during the sampling event. Extra care must be taken to minimize sample bias and increase representativeness when sampling. The sampling of this waste stream will adhere to XP4-EW-WM7582, *Sampling of Waste*.

B. An adequate sample size is determined by the greater of: 1) the minimum sample size required by the appropriate analytical method; or 2) the requirements of the analytical laboratory.

C. Waste characterization samples shall be collected from selected waste containers as specified in Appendix D. The sample quantities, containers, preservatives, holding times for each parameter will be determined by the laboratory or will be by test method.

D. Sample containers and volumes are specified by the laboratories. This information is shall be included in the Chain of Custody forms which accompany the samplers to the sampling location.

E. The Sampling schedule is listed in Appendix E.

2.2 Sample Management

2.2.1 Sample Identification and Labeling

A. Sample identification numbers will be assigned. Samples will be labeled in accordance with applicable procedures. Appropriate sample labels (e.g. analytical, hazard, polychlorinated biphenyl (PCB), and radioactive) are affixed to all sample containers prior to or at the time of sampling. To the extent practical, sample bottles are labeled prior to filling. Sample labels are waterproof paper or plastic with gummed backs or waterproof tags and completed with black indelible ink, as appropriate.

2.2.2 Chain-of-Custody

A. To ensure the security of samples from collection to final disposition, a chain-of-custody form (also called a sample log) is used. The chain-of-custody form is completed before transfer of sample custody. The chain-of-custody form provides an accurate written record that can be used

to trace the possession and handling of samples from the time of collection through data analysis and reporting.

B. The following information is included on the chain-of-custody form.

- Unique sample number
- Signature of sampler
- Date and time of sample collection
- Sample matrix type
- Sampling site
- Number of sample containers
- Sample handling and preservatives
- Date and time custody is accepted and relinquished
- Signature of custodian

C. If samples are shipped off-site, a signed or initialed custody seal will be affixed to the shipping container to ensure that the samples have not been disturbed during transportation.

2.3 Analytical Parameters

2.3.1 <u>TCLP Constituent Parameters</u>

A. Randomly selected containers will be sampled and analyzed for the following chemical parameters:

- Toxicity Characteristic Leaching Procedure (TCLP) Metals including Copper and Zinc
- TCLP Volatile Organic Compounds (VOCs)
- TCLP Semi-Volatile Organic Compounds (SVOCs)
- TCLP Herbicides and Pesticides

B. The objective of these analyses is to demonstrate whether or not the waste is a RCRA characteristic waste.

2.3.2 <u>Total Constituent Parameters</u>

A. Randomly selected containers will be sampled and analyzed for the following chemical parameters:

- Total Metals
- Total VOCs
- Total SVOCs

• Total Herbicides and Pesticides

B. The objective is to confirm the available process knowledge and to determine the parameter concentrations for compliance with the WAC for the chosen TSD option.

2.3.3 Physical Parameters

A. Randomly selected containers will be sampled and analyzed for the following physical parameters:

- Moisture Content
- Bulk Density
- Paint Filter Test

B. The objective is to determine the parameter properties for compliance with the WAC for the chosen TSD option.

2.3.4 <u>Radiological Parameters</u>

Uranium and Transuranic Parameters

A. Randomly selected containers will be sampled and analyzed for the following radiological parameters: Total Uranium

- Wt. % Uranium-235
- Uranium Isotopes ²³²U, ²³³U, ²³⁴U, ²³⁵U, ²³⁶U, ²³⁸U
- Total Uranium
- Technetium-99
- Transuranic Isotopes ²³⁷Np, ²³⁸Pu, ²³⁹Pu, ²⁴⁰Pu, ²⁴²Pu, ²⁴⁴Pu

B. The purpose of this sampling is to prevent unintentional release of radioactively contaminated materials to facilities that do not have the appropriate license to manage radioactive materials. This information will also meet the WAC for the chosen TSD facility.

Other Radiological Parameters

C. Randomly selected containers will be analyzed for the following radiological parameters:

- Gross Alpha and Beta
- Thorium Isotopes ²²⁸Th, ²³⁰Th, ²³¹Th, ²³²Th, ²³⁴Th
- Transuranic Isotopes ²⁴¹Am, ²⁴²Am, ²⁴³Am, ²⁴³Cm, ²⁴⁴Cm, ²⁴⁵Cm, ²⁴⁶Cm, ²⁴⁷Cm, ²⁴⁸Cm,
- Strontium-90
- Gamma Scan

- Fission Products ¹⁴¹Ce, ¹⁴⁴Ce, ¹³⁴Cs, ¹³⁷Cs, ⁹⁵Nb, ¹⁰³Ru, ¹⁰⁶Ru, ⁹⁵Zr, ¹²⁵Sb
- Actinium Isotopes ²²⁷Ac, ²²⁸Ac
- Bismuth Isotopes ²¹²Bi, ²¹⁴Bi
- o Cadmium-109
- Cobalt Isotopes ⁵⁷Co, ⁶⁰Co
- Iodine Isotopes-¹²⁹I, ¹³¹I
- o Krypton -85
- Lead Isotopes ²¹⁰Pb, ²¹²Pb, ²¹⁴Pb
- Radium Isotopes ²²⁴Ra, ²²⁶Ra, ²²⁸Ra
- o Potassium-40
- Protactinium Isotopes ²³¹Pa, ^{234m}Pa
- o Thallium-208

D. The parameters are not reasonably expected to be a concern in the waste. Therefore, the objective is to determine the parameter concentrations for compliance with the WAC for the chosen TSD option.

2.3.5 Polychlorinated Biphenyls

A. This waste is not considered to be PCB waste. To confirm this characteristic, a representative amount of each waste stream will be sampled and analyzed for PCB's.

Beryllium

B. These wastes may or may not contain beryllium. A representative number of containers will be sampled and analyzed for beryllium.

3.0 ANALYTICAL METHODS

Samples will be analyzed for the parameters listed in Appendix B. Unless otherwise specified, Test Method numbers are from U.S. Environmental Protection Agency (U.S. EPA) SW-846, Test Methods for Evaluating Solid Waste.

The laboratories selected to analyze samples collected in accordance with this SAP follow established QA/QC programs for sampling, handling, and analysis.

Samples will be preserved as required by the analytical laboratory. Samples will be extracted and analyzed within the holding times specified in SW-846. The laboratory will be required to provide results within 28 days of receipt.

All analyses shall be performed by a laboratory certified by the State of Utah. The approved laboratory shall possess an appropriate license issued by the Nuclear Regulatory Commission (NRC) or a license issued by an NRC-approved agreement state.

4.0 <u>OUALITY ASSURANCE REQUIREMENTS</u>

4.1 OA/OC SAMPLES

A. QC samples will be analyzed to provide data that can be compared to characterization sample data to assess the quality of the sample collection process, sample handling, shipment, and sample analysis. The following quality control samples will be obtained during the sampling operation:

- Field Blanks One for each analytical batch or one for each 20 samples, whichever is greater. Field blanks shall be analyzed for the full set of analytical parameters. The purpose of field blanks is to assess the potential of sample contamination from the existing environmental conditions at the sampling location.
- **Trip Blanks** One for each analytical batch or one for each container used to transport VOC samples to the laboratory. Trip blanks shall be analyzed for VOCs only. The purpose of trip blanks is to assess the potential of sample contamination from the existing environmental conditions during the transport.
- Equipment Blanks One for each analytical batch or one for each 10 samples, whichever is greater. Equipment blanks shall be analyzed for the full set of analytical parameters. The purpose of equipment blanks is to determine whether the decontamination procedure is adequate to avoid carryover of contamination from one sampling location to another.
- Field Duplicates One duplicate for each analytical batch or for every 10 samples, whichever is greater. Field duplicates shall be analyzed for the full set of analytical parameters. The purpose of field duplicates is to determine precision that is function of variance in waste composition, sampling techniques and analytical techniques. Duplicate samples shall be collected in the same manner as waste characterization samples.

4.2 <u>ANALYSIS</u>

A. Analytical data obtained shall comply with applicable SW-846 regulatory methods and this SAP. The primary regulatory methods for compliance are the applicable methods described in *Test Methods for Evaluating Solid Waste, SW-846,* Third Edition, Final Update III, United States Environmental Protection Agency.

4.3 STATISTICAL APPROACH

A. The approach to this sampling event is based on a statistical sampling of TCLP constituent parameters, total constituent parameters, physical parameters and

radiological parameters. The waste population to be sampled is selected to yield the desired confidence level based on process knowledge, available analytical data, total number of containers, and the WAC requirements of the TSD Facility and regulatory requirements.

5.0 DATA MANAGEMENT

5.1 Data Verification

A. Data verification is the process by which analytical data provided by the laboratory are checked against the SAP to ensure that data are provided as stated in the SAP. Data verification consists of checking the data to ensure that a value is provided for every analyte that was listed in the SAP and chain-of-custody.

5.2 Data Summary

A. After completion of the activities discussed in the SAP, including data verification, a summary of analytical data will be completed. This summary will provide an assessment of the data for its intended use.

APPENDIX A-XT-847 INVENTORY

<u>RFD</u> Number	<u>Waste</u> stream	<u>Container</u> <u>number</u>	<u>Container</u> <u>Type</u>	<u>Container</u> <u>Volume</u> (Gallons)	Waste Location	<u>Waste</u> Description PCB cont.	<u>Gross</u> <u>Weight</u> (Ibs)	<u>Net</u> <u>Weight</u> <u>(Ibs)</u>
48886	RD-101	1	55M	7.4	C6	dirt, rubber, plastic PG, Plastic,	486	422
23285	RD-101	1	5M	.65	N4	Paper	25	20
Mage		2.000						
59308	RD-101	1	55P	7.4	N4	Floor sweepings, chessecloth Misc.	187.95	164.95
50981	RD-101	1	55P	7.4	N4	scrap(rags, wipes) Misc.	154	132
50982	RD-101	1	55P	7.4	N4	scrap(rags, wipes) Misc.	181	159
53073	RD-101	1	55P	7.4	N4	scrap(rags, wipes) Misc.	250	227
57327	RD-101	1	55P	7.4	N4	scrap(rags, wipes) Misc.	87.64	64.64
57935	RD-101	1	55P	7.4	N4	scrap(rags, wipes) Misc.	106.43	83.43
57936	RD-101	1	55P	7.4	N4	scrap(rags, wipes) Pigs,	104.67	81.67
34876	RD-101	1	5M	7.4	C6	sponges& H2O rags, mop heads, PG	25	20
59314	RD-101	1	55P	7.4	N4	dust	84.38	61.38
55280	RD-101	1	55P	7.4	N4	Rags, wipes, shoe covers Rags, wipes,	101.01	78.01
56041	RD-101	1	55P	7.4	N4	shoe covers	105.23	83.23
60946	RD-101	1	30M	4	C6	Roofing tar Teflon	165	128
62463	RD-101	1	55	7.4	N4	gaskets	311	

50979 Total	RD-101	1 1 14	55P	7.4	N4	Yellow cloth, gaskets, rubber tubing	234	212
60272 60271 60990 60989 Total	RD- 101U RD- 101U RD- 101U RD- 101U	1 1 1 1 2	55P 55P 55P 55P	7.4 7.4 7.4 7.4	N4 N4 C5 C5	dust and rags Grease and oily rags PG dust side purge Side purge dust debris	105.12 85.76 71.21 40.64	82.12 62.76 48.21 17.64
32130A	RD-102	1	55M	7.4	C6	Spent carbon	351	287
32130B	RD-102	1 	55M	7.4	C6	Spent carbon	418	354
58425 59301	RD-101 RD-101	1	55P 55P	7.4 7.4	C5 C5	Alumina, Waste code 828 Alumina, Waste code 828	211.18 205.97	188.18 182.97
55298 40559	RD-101 RD-103	1	55P 55P	7.4	C5 C5	Batch 197 Alumina	126.12 347	103.12 328

48327	RD-103	1	55P	7.4	C5	Alumina	452	433
48333	RD-103	1	55P	7.4	C5	Alumina	332	313
48337	RD-103	1	55P	7.4	C5	Alumina	418	399
48339	RD-103	1	55P	7.4	C5	Alumina	368	349
48341	RD-103	1	55P	7.4	C5	Alumina	436	417
48358	RD-103	1	55P	7.4	C5	Alumina	335	314
48360	RD-103	1	55P	7.4	C5	Alumina	327	305
48361	RD-103	1	55P	7.4	C5	Alumina	392	370
48362	RD-103	1	55P	7.4	C5	Alumina	483	461
48363	RD-103	1	55P	7.4	C5	Alumina	335	313
48899	RD-103	1	55P	7.4	C5	Alumina	381	359
53052	RD-103	1	55P	7.4	C5	Alumina	455	432
53066	RD-103	1	55P	7.4	C5	Alumina	413	390
53068	RD-103	1	55P	7.4	C5	Alumina	314	292

54034	RD-103	1	55P	7.4	C5	Alumina	455	432
54036	RD-103	1	55P	7.4	C5	Alumina	465	442
54507	RD-103	1	55P	7.4	C5	Alumina	279	257
54508	RD-103	1	55P	7.4	C5	Alumina	306	283
54509	RD-103	1	55P	7.4	C5	Alumina	320	298
54510	RD-103	1	55P	7.4	C5	Alumina	310	288
54511	RD-103	1	55P	7.4	C5	Alumina	304	281
54516	RD-103	1	55P	7.4	C5	Alumina	269	247
54521	RD-103	1	55P	7.4	C5	Alumina	339.06	317.06
54522	RD-103	1	55P	7.4	C5	Alumina	250.26	227.26
54525	RD-103	1	55P	7.4	C5	Alumina	276.5	253.5
55276	RD-103	1	55P	7.4	C5	Alumina	307.14	284.14
55278	RD-103	1	55P	7.4	C5	Alumina	252.02	229.02
55279	RD-103	1	55P	7.4	C5	Alumina	224.95	201.95

55282	RD-103	1	55P	7.4	C5	Alumina	216	193
55283	RD-103	1	55P	7.4	C5	Alumina	208	185
55284	RD-103	1	55P	7.4	C5	Alumina	204.1	181.1
55285	RD-103	1	55P	7.4	C5	Alumina	226.09	203.09
55296	RD-103	1	55P	7.4	C5	Alumina	224	201
55379A	RD-103	1	55P	7.4	C5	Alumina	420	397
55379B	RD-103	1	55P	7.4	C5	Alumina	435	412
55379C	RD-103	1	55P	7.4	C5	Alumina	430	407
55379D	RD-103	1	55P	7.4	C5	Alumina	430	407
55379E	RD-103	1	55P	7.4	C5	Alumina	445	422
55396	RD-103	1	55P	7.4	C5	Alumina	456	433
55397	RD-103	1	55P	7.4	C5	Alumina	426	403
55398	RD-103	1	55P	7.4	C5	Alumina	444	421
55399	RD-103	1	55P	7.4	C5	Alumina	452	429

55400	RD-103	1	55P	7.4	C5	Alumina	460	437
56028	RD-103	1	55P	7.4	C5	Alumina	403.18	380.18
56030	RD-103	1	55P	7.4	C5	Alumina	279.29	256.29
56031	RD-103	1	55P	7.4	C5	Alumina	284.72	261.72
56045	RD-103	1	55P	7.4	C5	Alumina	212.19	189.19
58408	RD-103	1	55P	7.4	C5	Alumina	201	178
58409	RD-103	1	55P	7.4	C5	Alumina	191	168
59011	RD-103	1	55M	7.4	C5	Alumina	318	254
59012	RD-103	1	55M	7.4	C5	Alumina	316	252
59018	RD-103	1	55M	7.4	C5	Alumina	261	197
59019	RD-103	1	55M	7.4	C5	Alumina	259	195
60549	RD-103	1	55M	7.4	C5	Alumina	255	191
60765	RD-103	1	55P	7.4	C5	Alumina	196.13	173.13
60994	RD-103	1	55P	7.4	C5	Alumina	44.58	21.58

60995	RD-103	1	55P	7.4	C5	Alumina	66.99	43.99
6146 1 A	RD-103	1	5	0.65	C5	Alumina	21	
61461B	RD-103	1	5	0.65	C5	Alumina	21	
61461C	RD-103	1	5	0.65	C5	Alumina	21	
61461D	RD-103	1	5	0.65	C5	Alumina	21	
61461E	RD-103	1	5	0.65	C5	Alumina	21	
61461F	RD-103	1	5	0.65	C5	Alumina	20	
61461G	RD-103	1	5	0.65	C5	Alumina	22	
61461H	RD-103	1	5	0.65	C5	Alumina	22	
614611	RD-103	1	5	0.65	C5	Alumina	21	
61461J	RD-103	1	5	0.65	C5	Alumina	20	
61461K	RD-103	1	5	0.65	C5	Alumina	21	
61461L	RD-103	1	5	0.65	C5	Alumina	20	
62034	RD-103	1	5	0.65	C5	Alumina	28	

62951	RD-103	1	55	7.4	C5	Alumina	25 9		
62952	RD-103	1	55	7.4	C5	Alumina	256		
62953	RD-103	1	55	7.4	C5	Alumina Alumina	246		
48359	RD-103	1	55P	7.4	C5	accountable container	339	318	
60996	RD-103	1	55P	7.4	C5	Alumina and Soda lime Alumina pellets from	65.22	42.22	
50519A	RD-103	1	55M	7.4	C5	air plant dryers Alumina pellets from	444	380	
50519B	RD-103	1	55M	7.4	C5	air plant dryers Alumina pellets from	424	360	
50519C	RD-103	1	55M	7.4	C5	air plant dryers Alumina pellets from	444	380	
50519D	RD-103	1	55M	7.4	C5	air plant dryers Alumina pellets from	468	404	
50519E	RD-103	1	55M	7.4	C5	air plant dryers Alumina pellets from	404	340	
50519F	RD-103	1	55M	7.4	C5	air plant dryers Alumina pellets from	397	333	
50519G	RD-103	1	55M	7.4	C5	air plant dryers Alumina	341	277	
50519H	RD-103	1	55M	7.4	C5	pellets from air plant	506	442	

dryers

62202G	RD-103	1	20	2.7	N3	Alumina Sample returns	29	16
62202H	RD-103	1	20	2.7	N3	Alumina Sample returns	27	14
622020	RD-103	1	20	2.7	N3	Alumina Sample returns	24	11
48303	RD-103	1	55P	7.4	C5	Alumina, Waste code 801	472	451
48306	RD-103	1	55P	7.4	C5	Alumina, Waste code 801	404	382
48310	RD-103	1	55P	7.4	C5	Alumina, Waste code 801	446	424
48311	RD-103	1	55P	7.4	C5	Alumina, Waste code 801	464	442
48312	RD-103	1	55P	7.4	C5	Alumina, Waste code 801	456	434
48313	RD-103	1	55P	7.4	C5	Alumina, Waste code 801	467	445
48316	RD-103	1	55P	7.4	C5	Alumina, Waste code 801	473	451
48317	RD-103	1	55P	7.4	C5	Alumina, Waste code 801	465	443
48318	RD-103	1	55P	7.4	C5	Alumina, Waste code 801	465	443
48319	RD-103	1	55P	7.4	C5	Alumina, Waste code 801	465	443

48320	RD-103	1	55P	7.4	C5	Alumina, Waste code 801	471	449
48322	RD-103	1	55P	7.4	C5	Alumina, Waste code 801	466	444
48323	RD-103	1	55P	7.4	C5	Alumina, Waste code 801	471	449
48366	RD-103	1	55P	7.4	C5	Alumina, Waste code 801	464	442
48367	RD-103	1	55P	7.4	C5	Alumina, Waste code 801	426	404
48368	RD-103	1	55P	7.4	C5	Alumina, Waste code 801	420	398
50986	RD-103	1	55P	7.4	C5	Alumina, Waste code 801	442	420
50987	RD-103	1	55P	7.4	C5	Alumina, Waste code 801	510	488
53069	RD-103	1	55P	7.4	C5	Alumina, Waste code 801	291	269
56043	RD-103	1	55P	7.4	C5	Alumina, Waste code 801 Alumina,	347.38	325.38
56036	RD-103	1	55P	7.4	C5	Waste code 801, 821, 823, 846	193.81	170.81
60768	RD-103	1	55P	7.4	C5	Alumina, Waste code 801, 823, 841	107.55	85.55
59307	RD-103	1	55P	7.4	C5	Alumina, Waste code 801, 841	163.66	140.66
53051	RD-103	1	55P	7.4	C5	Alumina, Waste code 803	450	427

and the second second

.....

53053	RD-103	1	55P	7.4	C5	Alumina, Waste code 803	440	417
54519	RD-103	1	55P	7.4	C5	Alumina, Waste code 803	351	329
54520	RD-103	1	55P	7.4	C5	Alumina, Waste code 810	77	55
54027	RD-103	1	55P	7.4	C5	Alumina, Waste code 820	515	492
37709	RD-103	1	85M	11.4	C5	Alumina, Waste code 821	374	351
37711	RD-103	1	85M	11.4	C5	Alumina, Waste code 821	435	412
37713	RD-103	1	85M	11.4	C5	Alumina, Waste code 821	375	352
37714	RD-103	1	85M	11.4	C5	Alumina, Waste code 821	445	422
37715	RD-103	1	85M	11.4	C5	Alumina, Waste code 821	443	420
37716	RD-103	1	85M	11.4	C5	Alumina, Waste code 821	393	370
37717	RD-103	1	85M	11.4	C5	Alumina, Waste code 821	438	416
37720	RD-103	1	85M	11.4	C5	Alumina, Waste code 821	512	490
37721	RD-103	1	85M	11.4	C5	Alumina, Waste code 821	475	452
39466	RD-103	1	85M	11.4	C5	Alumina, Waste code 821	480	457

·						Alumina, Waste code		
40553	RD-103	1	55P	7.4	C5	821 Alumina,	343	324
40554	RD-103	1	55P	7.4	C5	Waste code 821	339	320
40555	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	243	224
40557	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	320	297
40558	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	355	332
40560	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	366	347
40561	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	371	352
40563	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	325	306
40564	RD-103	1	55	7.4	C5	Alumina, Waste code 821	336	317
40565	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	335	316
40567	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	367	348
		_				Alumina, Waste code		3 10
40569	RD-103	1	55P	7.4	C5	821 Alumina,	345	326
40571	RD-103	1	55P	7.4	C5	Waste code 821	420	401
40572	RD-103	1	55	7.4	C5	Alumina, Waste code 821	425	406

40573	RD-103	1	55	7.4	C5	Alumina, Waste code 821	423	404
40574	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	435	416
40575	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	394	375
40576	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	403	384
40577	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	416	397
40578	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	337	318
40579	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	342	321
40580	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	408	387
40581	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	344	323
40582	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	354	333
40583	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	344	323
40584	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	372	351
40585	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	357	336
40586	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	360	339

÷.,

						Alumina, Waste code		
45141	RD-103	1	55P	7.4	C5	821	324	302
45142	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	366	344
46188	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	332	309
46200	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	313	290
48301	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	472	450
48456	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	340	318
48676	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	347	325
48677	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	333	311
48678	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	343	321
48679	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	334	312
48897	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	424	
40057	105	1	J JF	7.4	C	Alumina,	424	402
48900	RD-103	1	55P	7.4	C5	Waste code 821	392	370
48919	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	486	464
48920	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	237	215

48921	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	397	374
48922	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	466	444
48924	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	370	347
49777	RD-103	1	85M	11.4	C5	Alumina, Waste code 821	600	
50045	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	390	367
50049	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	400	378
50050	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	410	387
50052	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	405	382
50053	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	395	373
50054	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	340	318
50058	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	325	302
50059	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	375	352
50069	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	390	368
50070	RD-103	1	55P	7.4	C5	Alumina, Waste code 821	380	358
	*							

						Alumina,		
50071	RD-103	1	55P	7.4	C5	Waste code 821	375	353
50071	ND 105	Ŧ	JJF	7.4	C	Alumina,	373	333
						Waste code		
50072	RD-103	1	55P	7.4	C5	821	380	358
						Alumina,		
50073	RD-103	1	55P	7.4	C5	Waste code 821	375	353
	10 200	-	551	7.4	05	Alumina,	575	222
						Waste code		
50074	RD-103	1	55P	7.4	C5	821	370	347
						Alumina, Waste code		
50204	RD-103	1	55P	7.4	C5	821	352	330
						Alumina,		
50205	RD-103	1	55P	7.4	C5	Waste code 821	241	210
50205	ND-105	1	JJL	7.4	65	Alumina,	341	319
						Waste code		
50209	RD-103	1	55P	7.4	C5	821	338	316
						Alumina, Waste code		
50210	RD-103	1	55P	7.4	C5	821	346	324
						Alumina,		
E0311	DD 103	1	FFD	7.4	05	Waste code		
50211	RD-103	1	55P	7.4	C5	821 Alumina,	347	325
						Waste code		
50212	RD-103	1	55P	7.4	C5	821	331	309
						Alumina,		,
50213	RD-103	1	55P	7.4	C5	Waste code 821	337	315
						Alumina,		020
50240	DD 103		550	- 4		Waste code	.	
50219	RD-103	1	55P	7.4	C5	821 Alumina,	375	353
						Waste code		
50221	RD-103	1	55P	7.4	C5	821	345	323
						Alumina,		
52712	RD-103	1	55P	7.4	C5	Waste code 821	505	483
		_				Alumina,	503	405
		_				Waste code		
52716	RD-103	1	55P	7.4	C5	821	520	497
52717	RD-103	1	55P	7.4	C5	Alumina, Waste code	471	448
JE111	10 103	*	JJF	7.4	63	waste toue	4/1	440

						Alumina,		
						Waste code		
52719	RD-103	1	55P	7.4	C5	821	365	342
						Alumina,		
						Waste code		
52720	RD-103	1	55P	7.4	C5	821	361	338
						Alumina,		
50304	DD 400					Waste code	244	.
52721	RD-103	1	55P	7.4	C5	821	366	343
						Alumina,		
50700	DD 103	1		7.4	65	Waste code	202	250
52722	RD-103	1	55P	7.4	C5	821	382	359
						Alumina,		
52723	RD-103	1	55P	7.4	C5	Waste code 821	365	342
52725	KD-102	T	55F	7.4	CS	821 Alumina,	505	342
						Waste code		
52725	RD-103	1	55P	7.4	C5	821	475	452
56125	10 100	-	551	7.4	C	Alumina,	475	776
						Waste code		
53062	RD-103	1	55P	7.4	C5	821	426	404
00001		-	50.		05	Alumina,		101
						Waste code		
53063	RD-103	1	55P	7.4	C5	821	459	437
						Alumina,		
						Waste code		
53075	RD-103	1	55P	7.4	C5	821	306	284
						Alumina,		
						Waste code		
54029	RD-103	1	55P	7.4	C5	821	305	282
						Alumina,		
						Waste code		
57945	RD-103	1	55P	7.4	C5	821, 823	217.94	194.94
						Alumina,		
						Waste code		
59309	RD-103	1	55P	7.4	C5	821, 823	235.12	212.12
						Alumina,	•	
						Waste code		
						821, 823,		
						841, 842,		
57348	RD-103	1	55P	7.4	C5	846, 801	201.44	178.44
						Alumina,		
co n co	DD 400			- -	<u></u>	Waste code	405 4 -	
60760	RD-103	1	55P	7.4	C5	822, 823	135.84	113.84
10200	00 100	-		¬ ,	6 5	Alumina,	A 4 7	205
48369	RD-103	1	55P	7.4	C5	Waste code	417	395

. . .

						823		
			•			Alumina,		
						Waste code		
52076	RD-103	1	55P	7.4	C5	823	436	414
						Alumina,		
						Waste code		
52083	RD-103	1	55P	7.4	C5	823	465	442
						Alumina,		
						Waste code		
52084	RD-103	1	55P	7.4	C5	823	451	428
						Alumina,		
						Waste code		
53067	RD-103	1	55P	7.4	C5	823	363	341
						Alumina,		
			•			Waste code		
54514	RD-103	1	55P	7.4	C5	823	256	333
						Alumina,		
						Waste code		
55277	RD-103	1	55P	7.4	C5	823	230.67	207.67
						Alumina,		
FF207	DD 402					Waste code		
55287	RD-103	1	55P	7.4	C5	823	304.87	281.87
						Alumina,		
56033	BD 102					Waste code		
56032	RD-103	1	55P	7.4	C5	823	219.84	196.84
						Alumina,		
56022	00 100	4	550			Waste code		
56033	RD-103	1	55P	7.4	C5	823	225.45	202.45
						Alumina,		
57226	DD 103	1	550			Waste code		
57336	RD-103	1	55P	7.4	C5	823	217.48	194.48
						Alumina,		
57927	RD-103	1	55P	7.4	C.	Waste code	240.00	
37927	10-103	T	55P	7.4	C5	823	240.89	217.89
						Alumina,		
58404	RD-103	1	55P	7.4	C5	Waste code	267.00	244.00
50404	105-105	T	JJF	7.4	C5	823	267.88	244.88
						Alumina, Waste code		
58405	RD-103	1	55P	7.4	C5		202.44	260.44
30403	10-103	T	J Jr	7.4	65	823	283.44	260.44
						Alumina, Waste code		
60757	RD-103	1	55P	7.4	C5	823	152 67	120.67
00757	10 100	T	JJr	7.4	C		152.67	129.67
						Alumina, Waste code		
60758	RD-103	1	55P	7.4	C5	823	100 25	166.25
		-	301	7.4	CJ CJ	825 Alumina,	189.35	166.35
60769	RD-103	1	55P	7.4	C5	Waste code	76.6 7	54.67
		_					, 0.07	J .V/

						823		
						Alumina,		
						Waste code		
55290	RD-103	1	55P	7.4	C5	823, 824, 827	189.63	166.63
						Alumina,		
						Waste code		
55293	RD-103	1	55P	7.4	C5	823, 824, 827	190.54	167.54
						Alumina,		
						Waste code		
						823, 824,		
55294	RD-103	1	55P	7.4	C5	827, 842, 846	185.5	162.5
						Alumina,		
						Waste code		
54523	RD-103	1	55P	7.4	C5	823, 827	222.39	199.39
						Alumina,		
						Waste code		
54524	RD-103	1	55P	7.4	C5	823, 827	304.24	281.24
						Alumina,		
						Waste code		
55281	RD-103	1	55P	7.4	C5	823, 827	275.82	252.82
						Alumina,		
						Waste code		
55286	RD-103	1	55P	7.4	C5	823, 827	240.73	217.73
						Alumina,		
						Waste code		
54501	RD-103	1	85M	11.4	C5	827	515	414
						Alumina,		
			:			Waste code		
54515	RD-103	1	55P	7.4	C5	827	329	307
						Alumina,		
47005	DD 400					Waste code		
47995	RD-103	1	85M	11.4	C5	828	526	425
						Alumina,		
47000	DD 102	1	0584		05	Waste code		40.5
47996	RD-103	1	85M	11.4	C5	828	537	436
						Alumina,		
40305	DD 102	1	550	7 4	6 5	Waste code	440	200
48285	RD-103	1	55P	7.4	C5	828	410	388
						Alumina,		
48306	RD-103	1	OFM	11.4	6F	Waste code		202
48296	VD-102	T	85M	11.4	C5	828	494	393
						Alumina,		
48297	RD-103	1	85M	11 /	Cr	Waste code	40.4	202
40231	VD-103	Ŧ	IVICO	11.4	C5	828 Alumina	494	393
						Alumina, Waste code		
48302	RD-103	1	55P	7.4	C5	828	430	407
48302	RD-103	1	55P	7.4	C5	Alumina,	430 522	407 499
0000	NO 103	-	JJF	/.4	C)	raunnind,	322	433

						Waste code 828 Alumina,		
						Waste code		
48466	RD-103	1	85M	11.4	C5	828	492	391
		-			65	Alumina,	152	551
						Waste code		
50325	RD-103	1	85M	11.4	C5	828	360	259
						Alumina,		
						Waste code		
50976	RD-103	1	55P	7.4	C5	828	406	384
						Alumina,		
						Waste code		
50977	RD-103	1	55P	7.4	C5	828	436	414
						Alumina,		
50070	DD 403		0544		05	Waste code	105	
50978	RD-103	1	85M	11.4	C5	828	495	394
						Alumina, Waste code		
50980	RD-103	1	55P	7.4	C5	828	417	395
50500	10 100	-	551	7.4	C.J	Alumina,	41/	555
						Waste code		
50988	RD-103	1	55P	7.4	C5	828	429	407
						Alumina,		
						Waste code		
50989	RD-103	1	85M	11.4	C5	828	416	393
						Alumina,		
						Waste code		
50990	RD-103	1	85M	11.4	C5	828	500	39 9
						Alumina,		
50004	DD 400					Waste code		
50991	RD-103	1	55P	7.4	C5	828	417	395
						Alumina,		
52077	RD-103	1	85M	11.4	C5	Waste code 828	500	399
52077	10 100	T	05141	11.4	C.J	Alumina,	500	
						Waste code		
52078	RD-103	1	85M	11.4	C5	828	445	344
						Alumina,		-
	`					Waste code		
52079	RD-103	1	85M	11.4	C5	828	496	395
						Alumina,		
						Waste code		
52080	RD-103	1	85M	11.4	C5	828	490	389
						Alumina,		
F2004	BD 400			_ .		Waste code	~ ~ =	
52081	RD-103	1	55P	7.4	C5	828	415	392
52082	RD-103	1	85M	11.4	C5	Alumina,	515	

:....

						Waste code 828 Alumina,		
52506	RD-103	1	85M	11.4	C5	Waste code 828 Alumina,	484	461
53054	RD-103	1	85M	11.4	C5	Waste code 828 Alumina,	445	344
53056	RD-103	1	85M	11.4	C5	Waste code 828 Alumina,	480	379
53058	RD-103	1	85M	11.4	C5	Waste code 828 Alumina,	540	439
53060	RD-103	1	55P	7.4	C5	Waste code 828 Alumina,	416	394
53061	RD-103	1	55P	7.4	C5	Waste code 828 Alumina,	411	389
53074	RD-103	<u>1</u>	85M	11.4	C5	Waste code 828 Alumina,	540	
54502	RD-103	1	85M	11.4	C5	Waste code 828 Alumina,	435	
54512	RD-103	1	85M	11.4	C5	Waste code 828 Alumina,	341	240
55291	RD-103	1	55P	7.4	C5	Waste code 828 Alumina,	201	178
55292	RD-103	1	55P	7.4	C5	Waste code 828 Alumina,	217	194
55297	RD-103	1	55P	7.4	C5	Waste code 828 Alumina,	215	192
56038	RD-103	1	55P	7.4	C5	Waste code 828 Alumina,	202.23	180.23
56039	RD-103	1	55P	7.4	C5	Waste code 828 Alumina,	223	200
56044 56049	RD-103 RD-103	1 1	55P 55P	7.4 7.4	C5 C5	Waste code 828 Alumina,	229.04 222.2	206.04 199.2

.

						Waste code 828 Alumina,		
56050	RD-103	1	55P	7.4	C5	Waste code 828 Alumina,	223	200
56827	RD-103	1	55P	7.4	C5	Waste code 828 Alumina, Waste code	236.97	213.97
56828	RD-103	1	55P	7.4	C5	828 Alumina, Waste code	237.05	214.05
56831	RD-103	1	55P	7.4	C5	828 Alumina, Waste code	238.19	215.19
56832	RD-103	1	55P	7.4	C5	828 Alumina, Waste code	231.23	208.23
57930	RD-103	1	55P	7.4	C5	828 Alumina, Waste code	195.53	172.53
57931	RD-103	1	55P	7.4	C5	828 Alumina, Waste code	217.72	194.72
57946	RD-103	1	55P	7.4	C5	828 Alumina, Waste code	219.27	196.27
57947	RD-103	1	55P	7.4	C5	828 Alumina, Waste code	195.78	172.78
58413	RD-103	1	55P	7.4	C5	828 Alumina, Waste code	201.73	178.73
59312	RD-103	1	55P	7.4	C5	828 Alumina, Waste code	220.8	197.8
59313	RD-103	1	55P	7.4	C5	828 Alumina, Waste code	222.9	199.9
57941	RD-103	1	55P	7.4	C5	841 Alumina, Waste code	229.86	206.86
57942	RD-103	1	55P	7.4	C5	841 Alumina, Waste code	223.69	200.69
58407 56037	RD-103 RD-103	1 1	55P 55P	7.4 7.4	C5 C5	841 Alumina,	197.45 186.23	174.45 163.23

....

						Waste code 841, 842 Alumina, Waste code		
56042	RD-103	1	55P	7.4	C5	841, 842 Alumina, Waste code	294.11	272.11
56047	RD-103	1	55P	7.4	C5	841, 842 Alumina, Waste code	302.06	279.06
57943	RD-103	1	55P	7.4	C5	841, 842, 846 Alumina, Waste code	197.68	174.68
57337	RD-103	1	55P	7.4	C5	842 Alumina, Waste code	221	198
57344	RD-103	1	55P	7.4	C5	842 Alumina, Waste code	186.18	163.18
57926	RD-103	1	55P	7.4	C5	842 Alumina, Waste code	295	272
58415	RD-103	1	55P	7.4	C5	842 Alumina, Waste code	272.62	249.62
58416	RD-103	1	55P	7.4	C5	842 Alumina, Waste code	276.46	253.46
60756	RD-103	1	55P	7.4	C5	842 Alumina, Waste code	210.96	187.96
53065	RD-103	1	55P	7.4	C5	846 DAW and	305	283
58053	RD-103	1	55M	7.4	C5	Alumina Filter Media, Alumina trap	217	153
61435A	RD-103	1	5M	0.65	C5	material Filter Media, Alumina trap	39	34
61435B	RD-103	1	5M	0.65	C5	material Filter Media, Alumina trap	43	38
61435C	RD-103	1	5M	0.65	C5	material Floor	24	19
60759	RD-103	1	55P	7.4	N4	sweepings Magnesium Fluoride	115.43	92.43
62135	RD-103	1	55P	7.4	C5	Pellets and	466	402

....

						powder unused		
56833	RD-103	1	55P	7.4	C5	Mg Fluoride	122	99
56834	RD-103	1	55P	7.4	C5	Mg Fluoride	114	71
56839	RD-103	1	55P	7.4	C5	Mg Fluoride	135	93
57328	RD-103	1	55P	7.4	C5	Mg Fluoride	132	89
57329	RD-103	1	55P	7.4	C5	Mg Fluoride	151	106
57338	RD-103	1	55P	7.4	C5	Mg Fluoride	156	110
57350	RD-103	1	55P	7.4	C5	Mg Fluoride	121.76	82.86
59 302	RD-103	1	55P	7.4	C5	Mg Fluoride	181.97	132.5
59304	RD-103	1	55P	7.4	C5	Mg Fluoride	110.59	71.21
59305	RD-103	1	55P	7.4	C5	Mg Fluoride NAF	162.67	117.89
53777	RD-103	1	55M	7.4	C6	Powder/Dust New Alumina from floor sweeping X-	367	303
62142	RD-103	1	5M	0.65	C5	760 Sample jars	22.8	17.8
49797	RD-103	1	55M	7.4	C5	of Alumina Sodium	338	274
48455	RD-103	1	55P	7.4	C5	Fluoride Sodium	469	447
48457	RD-103	1	55P	7.4	C5	Fluoride Sodium	470	448
48458	RD-103	1	55P	7.4	C5	Fluoride Sodium	462	440
48460	RD-103	1	55P	7.4	C5	Fluoride Sodium	471	449
48461	RD-103	1	55P	7.4	C5	Fluoride Sodium	473	451
48462	RD-103	1	55P	7.4	C5	Fluoride Sodium	465	443
50992	RD-103	1	55P	7.4	C5	Fluoride Sodium	481	459
50993	RD-103	1	55P	7.4	C5	Fluoride Sodium	483	461
50995	RD-103	1	55P	7.4	C5	Fluoride Sodium	477	454
53064	RD-103	1	55P	7.4	C5	Fluoride Sodium	430	407
53072	RD-103	1	55P	7.4	C5	Fluoride Sodium	358	336
56026	RD-103	1	55P	7.4	C5	Fluoride Sodium	280.05	257.05
56027	RD-103	1	55P	7.4	C5	Fluoride	291.89	268.89

						Cadium		
56040	RD-103	1	55P	7.4	C5	Sodium Fluoride Sodium	287.1	265.1
56048	RD-103	1	55P	7.4	C5	Sodium Fluoride Sodium	337.89	314.89
56829	RD-103	1	55P	7.4	C5	Sodium Fluoride Sodium	209.32	186.32
56830	RD-103	1	55P	7.4	C5	Sodium Fluoride Sodium	311.67	288.67
56838	RD-103	1	55P	7.4	C5	Sodium Fluoride Sodium	303.24	280.24
56849	RD-103	1	55P	7.4	C5	Fluoride Sodium	332.55	309.55
56850	RD-103	1	55P	7.4	C5	Fluoride Sodium	341.59	318.59
57326	RD-103	1	55P	7.4	C5	Fluoride Sodium	324	301
57332	RD-103	1	55P	7.4	C5	Fluoride Sodium	349	326
57343	RD-103	1	55P	7.4	C5	Fluoride Sodium	315.27	292.27
5792 9	RD-103	1	55P	7.4	C5	Fluoride Sodium	307.93	284.93
57938	RD-103	1	55P	7.4	C5	Fluoride Sodium	340.83	317.83
57950	RD-103	1	55P	7.4	C5	Fluoride Sodium	308.27	285.27
58401	RD-103	1	55P	7.4	C5	Fluoride Sodium	318.66	259.66
58420	RD-103	1	55P	7.4	C5	Fluoride Sodium	309.57	286.57
58423	RD-103	1	55P	7.4	C5	Fluoride Sodium	300.22	277.22
60259	RD-103	1	55P	7.4	C5	Fluoride Sodium	305.62	283.62
60260	RD-103	1	55P	7.4	C5	Fluoride Sodium	307.29	285.29
60264	RD-103	1	55P	7.4	C5	Fluoride Sodium	321.42	298.42
60265	RD-103	1	55P	7.4	C5	Fluoride Sodium	335.17	312.17
60751	RD-103	1	55P	7.4	C5	Fluoride Sodium	328.18	305.81
60752	RD-103	1	55P	7.4	C5	Fluoride Sodium	327.56	304.56
60753	RD-103	1	55P	7.4	C5	Fluoride Sodium	310.36	287.36
59306	RD-103	1	55P	7.4	C5	Fluoride and	274.61	251.61

						Alumina		
						Tc Trap		
52133	RD-103	1	B-25 box	90	C5	System	2618	
						Top Purge		
63347	RD-103	1	55	7.4	C5	Alumina		
						Top Purge		
63348	RD-103	1	55	7.4	C5	Alumina		
						Top Purge		
63349	RD-103	1	55	7.4	C5	Alumina		
						Top Purge		
63350	RD-103	1	55	7.4	C5	Alumina		
						Top Purge		
63794	RD-103	1	55	7.4	C5	Alumina		
						Top Purge		
63797	RD-103	1	55	7.4	C5	Alumina		
						Top Purge		
63798	RD-103	1	55	7.4	C5	Alumina		
						Top Purge		
63799	RD-103	1	55	7.4	C5	Alumina		
						Top Purge		
63800	RD-103	1	55	7.4	C5	Alumina		
	RD-					Top Purge		
64751	103	1	55	7.4	C5	Alumina		
64752	RD- 103	1	EE	7.4	05	Top Purge		
04752	103	T	55	7.4	C5	Alumina		
	RD-					Top Purge		
64753	103	1	55	7.4	C5	Alumina		
	RD-					Top Purge		
64754	103	1	55	7.4	C5	Alumina		
60991	RD-103	1	55P	7.4	C5	Trap Change	156.49	133.49
						hap anange	100.15	133.43
60992	RD-103	4		74	65	T 01		
00992	KD-103	1	55P	7.4	C5	Trap Change	154.14	131.14
60993	RD-103	1	55P	7.4	C5	Trap Change	147.49	124.49
45137	RD-103	1	85M	11.4	C5	Used Alumina	462	361
45139	RD-103	1	55P	7.4	C5	Used Alumina	367	344
	105	*	531	/ . "		USEL AIUMINI	507	544

45140	RD-103	1	55P	7.4	C5	Used Alumina	400	378
						Vent sampler		
						alumina trap		
47363	RD-103	1	55M	7.4	C5	change outs	469	405
						-		
						Vent sampler		
49160	RD-103	1	55M	7.4	C5	alumina trap	456	202
45100	NB-105	7	22141	7.4	65	change outs	450	392
						Vent sampler alumina trap		
52294	RD-103	1	55M	7.4	C5	change outs	400	336
32234	105	T	14166	7.4	63	Vent sampler	400	330
						alumina trap		
52295	RD-103	1	55M	7.4	C5	•	330	266
52255	ND 105	Т		7.4	63	change outs Vent sampler	550	266
						alumina trap		
53185	RD-103	1	55M	7.4	C5		336	170
55105	10 105	-	55(4)	7.4	CJ	change outs Vent sampler	220	272
						alumina trap		
54432	RD-103	1	55M	7.4	C5	change outs	330	266
¢¢L		-	33111	7.4	05	Vent sampler	330	200
						alumina trap		
54433	RD-103	1	55M	7.4	C5	change outs	330	266
•••••		-	00111	7.4	ÇJ	Vent sampler	330	200
						alumina trap		
55869	RD-103	1	55M	7.4	C5	change outs	332	268
		-			05	Vent sampler	552	200
						alumina trap		
56128	RD-103	1	55M	7.4	C5	change outs	350	286
						Vent sampler	000	200
						alumina trap		
56676	RD-103	1	55M	7.4	C5	change outs	336	272
						Vent sampler		
						alumina trap		
57744	RD-103	1	55M	7.4	C5	change outs	366	302
						Vent sampler		
						alumina trap		
57745	RD-103	1	55M	7.4	C5	change outs	358	294
						Vent sampler		
						alumina trap		
6077 7	RD-103	1	55M	7.4	C5	change outs	259	195
						Vent sampler		
		•				alumina trap		
60778	RD-103	1	55M	7.4	C5	change outs	271	207
						v		

57333	RD- 103C	1	55P	7.4	C5	Alumina, Waste code 823 Class C	220.62	197.62
57339	RD- 103C	1	55P	7.4	C5	Alumina, Waste code 828 Class C Alumina;	205.47	182.47
57340	RD- 103C	1	55P	7.4	C5	Waste code 828 Class C	184.71	161.71
Fotal		398						
59899A	RD-104	1	55M	7.4	C6	Mississippi Lime	213	149
59899B	RD-104	1	55M	7.4	C6	Mississippi Lime	161	97
Total		2000 1997 1997						
	<u> </u>							<u>ar - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 -</u>
62444	RD-104	1	5	0.65	N3	Epoxy Resin B		
62442	RD-104	1	5	0.65	N3	Penn Mar Kote 2260		
Total								
						Sodium		
60650	RD-104	1	55M	7.4	C6	Bisulfate	424	360
Total								
						absorbal to		

						absorbal to		
						soak up		
						water, some		
						grease and		
19573	RD-107	1	85M	11.4	C6	new PCB oil	460	318
Total		- I						

						Black Beauty		
48548A	RD-107	1	55M	7.4	C6	sand from sand blasting	891	827
	ND-107	+	00101	7.4	CU	Black Beauty	091	027
						sand from		
48548B	RD-107	1	85M	11.4	C6	sand blasting	613	471
						Black Beauty sand from		
48548C	RD-107	1	55M	7.4	C6	sand blasting	321	257
						Black Beauty		
405400	DD 107	4		7.4	66	sand from	63.4	5.60
48548D	RD-107	1	55M	7.4	C6	sand blasting Black Beauty	624	560
						sand from		
54976A	RD-107	1	55M	7.4	C 6	sand blasting	330	266
						Black Beauty		
54976B	RD-107	1	85M	11.4	C6	sand from sand blasting	415	273
						Blasting	. 20	270
49813A	RD-107	1	5M	0.65	C6	media	52	47
						Blasting		
49813B	RD-107	1	5M	0.65	C6	media	36	31
54301	RD-107	1	55M	7.4	C (Blasting	F 4 1	477
54501	KD-107	Ŧ	22141	7.4	C6	media	541	477
54569A	RD-107	1	5M	0.65	C6	Blasting media	60	55
						Blasting		
54569B	RD-107	1	5M	0.65	C6	media	65	60
						Blasting		
54569C	RD-107	1	5M	0.65	C6	media	20	15
54569D	RD-107	1	5M	0.65	C6	Blasting media	65	60
545050	ND-107	1		0.05	CO	Blasting	05	00
56373	RD-107	1	30M	4	C6	media	460	423
						Blasting		
58806	RD-107	1	55M	7.4	C6	media	177	113
						Blasting		
49847	RD-107	1	5M	0.65	C6	media (Glass beads)	50	45
						Blasting	- •	
50407	DD 407			-		media (Glass		
50137	RD-107	1	30M	4	C6	beads)	291	254

					•			
						Blasting		
						media (Glass		
53753	RD-107	1	55M	7.4	N4	beads)	368	304
						Blasting		
						media (Glass		
56533A	RD-107	1	5M	0.65	C6	beads)	47	42
505557	10 107	*	5.01	0.05	CŪ	Blasting		74
						media (Glass		
56533B	RD-107	1	5M	0.65	C6	beads)	44	39
303330	10-107	I	JIVI C	0.05	CO	Blasting	44	33
						media (Glass		
57425A	RD-107	1	5M	0.65	C6		42	77
374Z3A	KD-107	1	2101	0.05	Co	beads)	42	37
						Blasting		
F743ED	RD-107	1	CN4	0.65	66	media (Glass	20	22
57425B	KD-107	T	5M	0.65	C6	beads)	28	23
						Blasting		
57000	00 107	1	FFN 4	7.4	66	media (Glass	400	220
57898	RD-107	1	55M	7.4	C6	beads}	402	338
						Blasting		
	DD 407	•				media (Glass		
59605A	RD-107	1	5M	0.65	C6	beads)	37	32
						Blasting		
		_				media (Glass		
59605B	RD-107	1	5M	0.65	C6	beads)	45	40
						Blasting		
						media (Glass		
						beads)		
		_				possible		
59553A	RD-107	1	5M	0.65	C6	metais	47	42
						Blasting		
						media (Glass		
						beads)		
						possible		
59553B	RD-107	1	5M	0.65	C6	metals	47	42
						Ceramic		
						tumbling		
57418	RD-107	1	85M	11.4	C6	media	788	646
						Filters from		
						sand blasting		
50145A	RD-107	1	85M	11.4	C6	unit	665	523
						Filters from		
						sand blasting		
50145B	RD-107	1	85M	11.4	C6	unit	586	444
49792A	RD-107	1	55M	7.4	C6	Sand bags	396	332
		-			~~	54.12 54B4	000	
49792B	DD 107	1	EENA	7 4	<u>cc</u>	Cond have	C11	F 47
43/32D	RD-107	1	55M	7.4	C6	Sand bags	611	547

49792C	RD-107	1	55M	7.4	C6	Sand bags	503	439
Total		38						
51282A	RD-107	1	55M	7.4	C6	Coal from Bio D Reactors	528	464
						Coal from Bio		
51282B	RD-107	1	55M	7.4	C6	D Reactors	448	384
Total		2						
55026	RD-107	1	55M	7.4	N4	Concrete	483	419
55027	RD-107	1	55M	7.4	N4	Concrete	424	360
55028	RD-107	1	55M	7.4	N4	Concrete	379	315
62501	RD-107	1	30	4	C6	Concrete		
52120	RD-107	1	55M	7.4	C6	Concrete	473	409
55033	RD-107	1	55M	7.4	N4	Concrete and ceramic tile	327	263
55034	RD-107	1	55M	7.4	N4	Concrete and ceramic tile	252	188
		-				Concrete and		
55035	RD-107	1	55M	7.4	N4	ceramic tile Concrete saturated	494	430
32902A	RD-107	1	5M	0.65	C6	with lube oil, < 50 ppm PCB Concrete	40	35
						saturated		
32902B	RD-107	1	5M	0.65	C6	with lube oil, < 50 ppm PCB	41	36
·						Concrete saturated		
32902C	RD-107	1	5M	0.65	C6	with lube oil, < 50 ppm PCB	47	42
						Concrete		
32902D	RD-107	1	5M	0.65	C6	saturated	52	47

a Patal		12	46			with lube oil, < 50 ppm PCB		
55932	RD-107	1	85M	11.4	N4	rust, metal dirt	1092	950
Fotal								
62147A	RD-109	1	55	7.4	C6	Welding slag for #3 economizer tubes Welding slag		
62147B	RD-109	1	55	7.4	C6	for #3 economizer tubes Welding slag for #3 economizer		
62147C	RD-109	1	55	7.4	C6	tubes		
Total		8						
61474	RD-111	1	5	0.65	N3	Grease /Oil Mixture Misc. grease from XT-847		
62217	RD-111	1	20	2.7	N3	sorting		
59802	RD-111	1	55	7.4	N3	Oil and water Saturated material soaked with		
62462	RD-111	1	55M	7.4	N3	oil	199	
19628	RD-111	1	5	0.65	N3	Used Oil	42.00	37.00
43685	RD-111	1	5	0.65	N3	Used Oil	53.00	48.00

43698	RD-111	1	5	0.65	N3	Used Oil	45.00	40.00
43981	RD-111	1	5	0.65	N3	Used Oil	51.00	46.00
43990	RD-111	1	5	0.65	N3	Used Oil	45.00	40.00
44001	RD-111	1	5	0.65	N3	Used Oil	51.00	46.00
44009	RD-111	1	5 (Overpack)	0.65	N3	Used Oil	49.00	
44014	RD-111	1	5	0.65	N3	Used Oil	45.00	40.00
44016	RD-111	1	5 (Overpack)	0.65	N3	Used Oil	48.00	
4401 9	RD-111	1	5	0.65	N3	Used Oil	44.00	39.00
44021	RD-111	1	5	0.65	N3	Used Oil	44.00	39.00
44024	RD-111	1	5	0.65	N3	Used Oil	50.00	45.00
44025	RD-111	1	5 5	0.65	N3	Used Oil	48.00	43.00
44358	RD-111	1	o (Overpack)	0.65	N3	Used Oil	42.00	
44372	RD-111	1	5	0.65	N3	Used Oil	44.00	39.00
44379	RD-111	1	5	0.65	N3	Used Oil	52.00	47.00
44387	RD-111	1	5	0.65	N3	Used Oil	45.00	40.00
44388	RD-111	1	5	0.65	N3	Used Oil	49.00	44.00
44398	RD-111	1	5	0.65	N3	Used Oil	44.00	39.00
44785	RD-111	1	5	0.65	N3	Used Oil	46.00	41.00
44786	RD-111	1	5	0.65	N3	Used Oil	54.00	49.00
44821	RD-111	1	5	0.65	N3	Used Oil	50.00	45.00
45474	RD-111	1	5	0.65	N3	Used Oil	46.00	41.00

45488	RD-111	1	55	7.4	N3	Used Oil	376.00	329.00
55117	RD-111	1	55	7.4	N3	Used Oil	305.00	258.00
62221	RD-111	1	5	0.65	N3	Used Oil		-5.00
58713	RD-111	1	55	7.4	N3	Used Oil	285.00	238.00
58714	RD-111	1	55	7.4	N3	Used Oil	301.00	254.00
59801	RD-111	1	55	7.4	N3	Used Oil	335	288
61413	RD-111	1	5	0.65	N3	Used Oil	43.00	38.00
61433A	RD-111	1	5	0.65	N3	Used Oil	41.00	36.00
61433B	RD-111	1	5	0.65	N3	Used Oil	41.00	36.00
61434A	RD-111	1	5	0.65	N3	Used Oil	24.00	19.00
61434B	RD-111	1	5	0.65	N3	Used Oil	42.00	37.00
62187	RD-111	1	55	7.4	N3	Used Oil		
63176	RD-111	1	55	7.4	N3	Used Oil		
63388	RD-111	1	55	7.4	N3	Used Oil		
55614	RD-111	1	55	7.4	N3	Used Oil from Blending Unit	304.00	257.00
64803A	RD- 111	1	55	7.4	N3	Used oil from tail lube oil		
64803B	RD- 111	1	55	7.4	N3	Used oil from tail lube oil		
64803C	RD- 111	1	55	7.4	N3	Used oil from tail lube oil		
38526A	RD-111	1	55	7.4	N3	Used Seal Exhaust Oil	381.00	334.00
38526B	RD-111	1	55	7.4	N3	Used Seal Exhaust Oil	392.00	345.00
38534	RD-111	1	55	7.4	N3	Used Seal Exhaust Oil	412.00	365.00

39440	RD-111	1	55	7 4	812	Used Seal	247.00	270.00
33440	ND-111	T	55	7.4	N3	Exhaust Oil Used Seal	317.00	270.00
39443	RD-111	1	55	7.4	N3	Exhaust Oil	331.00	284.00
						Used Seal		
39451	RD-111	1	55	7.4	N3	Exhaust Oil	359.00	312.00
43681	RD-111	1	5	0.65	N3	Used Seal Exhaust Oil	48.00	43.00
40.000			_			Used Seal		
43688	RD-111	1	5	0.65	N3	Exhaust Oil	47.00	42.00
						Used Seal		
43695	RD-111	1	5	0.65	N3	Exhaust Oil	49.00	44.00
						Used Seal		
43697	RD-111	1	5	0.65	N3	Exhaust Oil	44.00	39.00
43979	RD-111	1	5	0.65	N3	Used Seal Exhaust Oil	45.00	40.00
		_	J	0.00		Used Seal	+3.00	40.00
43994	RD-111	1	5	0.65	N3	Exhaust Oil	46.00	41.00
42000			_			Used Seal		
43998	RD-111	1	5	0.65	N3	Exhaust Oil	47.00	42.00
44002	RD-111	1	5	0.65	N3	Used Seal Exhaust Oil	52.00	47.00
						Used Seal	01.00	
44007	RD-111	1	5	0.65	N3	Exhaust Oil	50.00	45.00
44013	RD-111	1	5	0.65	ND	Used Seal	46.00	
44013	ND-111	Ŧ	5	0.65	N3	Exhaust Oil Used Seal	46.00	41.00
44023	RD-111	1	5	0.65	N3	Exhaust Oil	49.00	44.00
						Used Seal		
44351	RD-111	1	5	0.65	N3	Exhaust Oil	47.00	42.00
44378	RD-111	1	5	0.65	N3	Used Seal Exhaust Oil	EC 00	F1 00
11070		1	J	0.05	NS	Used Seal	56.00	51.00
44380	RD-111	1	5	0.65	N3	Exhaust Oil	51.00	46.00
						Used Seal		
44383	RD-111	1	5	0.65	N3	Exhaust Oil	49.00	44.00
44384	RD-111	1	5	0.65	N3	Used Seal Exhaust Oil	46.00	41.00
	,	-	÷	0.00		Used Seal	40.00	71.00
44385	RD-111	1	5	0.65	N3	Exhaust Oil	50.00	45.00

.

.....

			5			Used Seal		
44389	RD-111	1	(Overpack)	0.65	N3	Exhaust Oil	48.00	
44393	RD-111	1	5	0.65	N3	Used Seal Exhaust Oil	52.00	47.00
		-		0.00	113	Used Seal	52.00	47.00
44394	RD-111	1	5	0.65	N3	Exhaust Oil	50.00	45.00
44005		-	_			Used Seal		
44395	RD-111	1	5	0.65	N3	Exhaust Oil	52.00	47.00
44397	RD-111	1	5	0.65	N3	Used Seal Exhaust Oil	51.00	46.00
						Used Seal	,	
44399	RD-111	1	5	0.65	N3	Exhaust Oil	50.00	45.00
44759	RD-111	1	55	7.4	N O	Used Seal	402.00	355.00
55177	ND-111	+		7.4	N3	Exhaust Oil Used Seal	402.00	355.00
44760	RD-111	1	55	7.4	N3	Exhaust Oil	397.00	350.00
						Used Seal		
44761	RD-111	1	55	7.4	N3	Exhaust Oil	407.00	360.00
44766	RD-111	1	55	7.4	N3	Used Seal Exhaust Oil	391.00	344.00
		-		7.4	NS	Used Seal	591.00	544.00
44790	RD-111	1	5.	0.65	N3	Exhaust Oil	50.00	45.00
44904	DD 414		-	<u> </u>		Used Seal		
44804	RD-111	1	5	0.65	N3	Exhaust Oil	50.00	45.00
44811	RD-111	1	5	0.65	N3	Used Seal Exhaust Oil	49.00	44.00
						Used Seal		
44822	RD-111	1	5	0.65	N3	Exhaust Oil	44.00	39.00
44823	RD-111	1	5	0.65	N3	Used Seal Exhaust Oil	47.00	42.00
11025		-	5	0.05	NS.	Used Seal	47.00	42.00
44824	RD-111	1	5	0.65	N3	Exhaust Oil	45.00	40.00
44005						Used Seal		
44825	RD-111	1	5	0.65	N3	Exhaust Oil	46.00	41.00
45102	RD-111	1	5	0.65	N3	Used Seal Exhaust Oil	45.00	40.00
						Used Seal	10100	10.00
45104	RD-111	1	5	0.65	N3	Exhaust Oil	49.00	44.00
45105	PD_111	1	F	0.65	NO	Used Seal	40.00	
49109	RD-111	1	5	0.65	N3	Exhaust Oil Used Seal	48.00	43.00
45112	RD-111	1	5	0.65	N3	Exhaust Oil	43.00	38.00

.....

45208	RD-111	1	5	0.65	N3 .	Used Seal Exhaust Oil	52.00	47.00
						Used Seal		
45209	RD-111	1	5	0.65	N3	Exhaust Oil	53.00	48.00
						Used Seal		
45225	RD-111	1	5	0.65	N3	Exhaust Oil	48.00	43.00
			_			Used Seal		
45301	RD-111	1	5	0.65	N3	Exhaust Oil	45.00	40.00
45200	DD 444		_	0.65		Used Seal		
45306	RD-111	1	5	0.65	N3	Exhaust Oil	49.00	44.00
45200	DD 111		F	0.65		Used Seal		
45309	RD-111	1	5	0.65	N3	Exhaust Oil	51.00	46.00
45455	RD-111	1	5	0.65	NI-2	Used Seal	40.00	42.00
49499	ND-111	T	3	0.65	N3	Exhaust Oil	48.00	43.00
50038	RD-111	1	55	7.4	N3	Used Seal Exhaust Oil	404.00	357.00
50050		-	55	7.4	113		404.00	557.00
50040	RD-111	1	55	7.4	N3	Used Seal Exhaust Oil	365.00	318.00
		-	55	7.4	140	Used Seal	303.00	515.00
50041	RD-111	1	55	7.4	N3	Exhaust Oil	395.00	348.00
						Used Seal	333.00	3-0.00
50046	RD-111	1	55	7.4	N3	Exhaust Oil	387.00	340.00
						Used Seal		
50062	RD-111	1	55	7.4	N3	Exhaust Oil	398.00	351.00
						Used Seal		
50063	RD-111	1	55	7.4	N3	Exhaust Oil	404.00	357.00
						Used Seal		
50066	RD-111	1	55	7.4	N3	Exhaust Oil	384.00	337.00
						Used Seal		
50067	RD-111	1	55	7.4	N3	Exhaust Oil	361.00	314.00
						Used Seal		
54042	RD-111	1	55	7.4	N3	Exhaust Oil	390.00	343.00
						Used Seal		
54043	RD-111	1	55	7.4	N3	Exhaust Oil (10 buckets)	372.00	325.00
34043		-	55	7.4	N)	Waste	572.00	525.00
						eubeocl and		
59803	RD-111	1	55	7.4	N3	water		
Total		107						

- 6

.....

55636	RD-114	1	55M	7.4	C6	Chromate sweepings	265	201
Total		1						
						Dirt and soap to clean		
51152A	RD-114	1	55M	7.4	C6	filters Dirt and soap to clean	532	468
51152B	RD-114	1	55M	7.4	C6	filters Dirt and soap to clean	129	65
51152C	RD-114	1	55M	7.4	C6	filters Dirt and soap to clean	478	414
51152D	RD-114	1	55M	7.4	C6	filters Dirt and soap to clean	584	520
51152E	RD-114	1	55M	7.4	C6	filters Dirt and soap	568	504
51152F	RD-114	1	55M	7.4	C6	to clean filters Dirt and soap to clean	535	471
51152G	RD-114	1	55M	7.4	C6	filters Dirt and soap to clean	458	394
51152H	RD-114	1	55M	7.4	C6	filters Dirt and soap to clean	595	531
511521	RD-114	1	55M	7.4	C6	filters Dirt and soap to clean	506	442
51152J	RD-114	1	55M	7.4	C6	filters Dirt and soap to clean	526	462
51152K	RD-114	1	55M	7.4	C6	filters Dirt and soap to clean	401	337
51152L	RD-114	1	55M	7.4	C6	filters Dirt and soap to clean	314	250
511 52 M	RD-114	1	55M	7.4	C6	filters	407	343

						Dirt and soap to clean		
51152N	RD-114	1	55M	7.4	C6	filters	364	300
						Dirt and soap to clean		
511520	RD-114	1	55M	7.4	C6	filters	243	179
						Dirt and soap		
						to clean		
62426A	RD-114	1	55M	7.4	C6	filters	200	136
						Dirt and soap		
62426B	RD-114	1	55M	7.4	C6	to clean filters	334	270
						Dirt and soap		
62426C	RD-114	1	55M	7.4	C6	to clean filters	531	467
624260	KD-114	T	32101	7.4	6	linters	221	407
						Dirt and soap		
						to clean		
62426D	RD-114	1	55M	7.4	C6	filters	418	354
						Dirt and soap		
C24265	00 114	1	E E M	7.4	66	to clean	470	406
62426E	RD-114	1	55M	7.4	C6	filters Dirt and soap	470	400
						to clean		
62426F	RD-114	1	55M	7.4	C6	filters	454	390
						Dirt and soap		
						to clean		
62426G	RD-114	1	55M	7.4	C6	filters	540	476
						Dirt and soap		
62426H	RD-114	1	55M	7.4	C6	to clean filters	449	385
0242011	KU-114	T	53101	7.4	CO	Dirt and soap	443	303
						to clean		
624261	RD-114	1	55M	7.4	C6	filters	482	418
						Dirt and soap		
						to clean		
62426J	RD-114	1	55M	7.4	C6	filters	498	434
						Dirt and soap		
62426K	DD 114	1	EENA	7.4	C6	to clean filters	284	220
UZ420N	RD-114	1	55M	7.4	CO	Dirt and soap	204	220
•						to clean		
62426L	RD-114	1	55M	7.4	C6	filters	293	229
						Dirt and soap		
						to clean		
62426M	RD-114	1	55M	7.4	C6	filters	426	362

624260 RD-114 1 55M 7.4 C6 filters 47138 RD-114 1 55M 7.4 C6 X-342 dirt 51166 RD-107 1 55M 7.4 C6 Dry Dirt 54632 RD-107 1 55M 7.4 C6 Soils 1018 83 1 55M 7.4 C6 Soils 1018 83 1 55M 7.4 C6 Resin 109408 RD-114 1 55M 7.4 C6 Resin 199400 RD-114 1 85M 11.4 C6 Resin 199400 RD-114 1 85M 11.4 C6 Resin 100 Exchange 1 55M 7.4 C6 Resin Ion Exchange 199402 RD-114 1 85M 11.4 C6 Resin 100 Exchange 1 55M 7.4 C6 Resin 100 Exchange Resin Ion Exchange Resin Ion Exchange		250
51166 RD-107 1 55M 7.4 C6 Dry Dirt 54632 RD-107 1 55M 7.4 C6 Soils 10tal 43 43 1 1 Sold Ion Exchange 199408 RD-114 1 55M 7.4 C6 Resin lon Exchange 19940C RD-114 1 85M 11.4 C6 Resin lon Exchange 19940C RD-114 1 85M 11.4 C6 Resin lon Exchange 53003A RD-114 1 55M 7.4 C6 Resin lon Exchange 53003A RD-114 1 55M 7.4 C6 Resin lon Exchange 53003A RD-114 1 55M 7.4 C6 Resin lon Exchange	289	225
54632 RD-107 1 55M 7.4 C6 Soils 1010 13 13 14 16	460	396
Total33Ion Exchange19940BRD-114155M7.4C6Resin Ion Exchange19940CRD-114185M11.4C6Resin Ion Exchange53003ARD-114155M7.4C6Resin Ion Exchange53003ARD-114155M7.4C6Resin Ion Exchange	150	86
lon Exchange 19940B RD-114 1 55M 7.4 C6 Resin lon Exchange 19940C RD-114 1 85M 11.4 C6 Resin lon Exchange 53003A RD-114 1 55M 7.4 C6 Resin lon Exchange	350	286
19940B RD-114 1 55M 7.4 C6 Resin Ion Exchange 19940C RD-114 1 85M 11.4 C6 Resin Ion Exchange 19940C RD-114 1 85M 11.4 C6 Resin Ion Exchange 53003A RD-114 1 55M 7.4 C6 Resin Ion Exchange Ion Exchange Ion Exchange Ion Exchange Ion Exchange		
19940B RD-114 1 55M 7.4 C6 Resin Ion Exchange 19940C RD-114 1 85M 11.4 C6 Resin Ion Exchange 19940C RD-114 1 85M 11.4 C6 Resin Ion Exchange 53003A RD-114 1 55M 7.4 C6 Resin Ion Exchange Ion Exchange Ion Exchange Ion Exchange Ion Exchange		
19940C RD-114 1 85M 11.4 C6 Resin Ion Exchange 53003A RD-114 1 55M 7.4 C6 Resin Ion Exchange	261	197
Ion Exchange	340	276
	265	201
53003B RD-114 1 55M 7.4 C6 Resin Ion Exchange	256	192
53003C RD-114 1 55M 7.4 C6 Resin Ion Exchange	244	180
54086A RD-114 1 55M 7.4 C6 Resin Ion Exchange 54086B RD-114 1 55M 7.4 C6 Resin	328 238	264 174
Ion Exchange		
57673A RD-114 1 55M 7.4 N4 Resin Ion Exchange	238	174
57673B RD-114 1 55M 7.4 N4 Resin Ion Exchange	278	198
57673C RD-114 1 55M 7.4 N4 Resin Ion Exchange	262	178
57673D RD-114 1 55M 7.4 N4 Resin Ion Exchange	236	172
58834A RD-114 1 55M 7.4 C6 Resin Ion Exchange	271	207
58834B RD-114 1 55M 7.4 C6 Resin Ion Exchange	267	203
58834C RD-114 1 55M 7.4 C6 Resin		
Ion Exchange 59403 RD-114 1 55M 7.4 C6 Resin Total	272	208

						Micro and		
52516	RD-114	1	B-25 box	90	N4	Ogru sludge	4781	
13822	RD-114	1	55M	7.4	N4	Micro Sludge	208	147
18756	RD-114	1	55M	7.4	N4	Micro Sludge	284	220
18759	RD-114	1	55M	7.4	N4	Micro Sludge	331	267
18989	RD-114	1	55M	7.4	N4	Micro Sludge	250	186
18991	RD-114	1	55M	7.4	N4	Micro Sludge	222	158
22411	RD-114	1	55M	7.4	N4	Micro Sludge	324	260
22412	RD-114	1	55M	7.4	N4	Micro Sludge	302	238
22414	RD-114	1	55M	7.4	N4	Micro Sludge	300	236
22440	RD-114	1	55M	7.4	C6	Micro Sludge	375	311
22804	RD-114	1	55M	7.4	C6	Micro Sludge	399	335
24497	RD-114	1	55M	7.4	N4	Micro Sludge	154	93
25081	RD-114	1	55M	7.4	N4	Micro Sludge	324	260
25090	RD-114	1	55M	7.4	N4	Micro Sludge	324	260
25455	RD-114	1	55M	7.4	N4	Micro Sludge	181	120
25456	RD-114	1	55M	7.4	N4	Micro Sludge	170	109
	BB 4 4 4							
25460	RD-114	1	55M	7.4	N4	Micro Sludge	184	123
25463	RD-114	1	55M	7.4	N4	Micro Sludge	311	247
25465	00 114	4		7.4	0.0			
25465	RD-114	1	55M	7.4	C6	Micro Sludge	276	212
25469	RD-114	1	55M	7 4	66	Minne Cludes	111	250
23403	ND-114	Ŧ	55101	7.4	C6	Micro Sludge	323	259
38118	RD-114	1	55M	7.4	N4	Micro Sludge	144	80
30110	NO 114	-	55141	7.4	(84	Micro Studge	144	80
38190	RD-114	1	55M	7.4	N4	Micro Sludge	161	97
		-	00111			Micro Studge	101	51
38191	RD-114	1	55M	7.4	N4	Micro Sludge	172	108
							-/-	
41339	RD-114	1	55M	7.4	C6	Micro Sludge	282	218
						U		
41342	RD-114	1	55M	7.4	N4	Micro Sludge	304	240
						-		
41452	RD-114	1	55M	7.4	C6	Micro Sludge	279	215
41453	RD-114	1	55M	7.4	C6	Micro Sludge	380	316
		_						
41454	RD-114	1	55M	7.4	C6	Micro Sludge	322	258
41458	RD-114	1	55M	7.4	N4	Micro Sludge	346	282
		-		, . 	: 4 - †	WICE JUUGE	340	202
41459	RD-114	1	55M	7.4	C6	Micro Sludge	163	99
						-		

.

į.

42639	RD-114	1	55M	7.4	C6	Micro Sludge	207	143
43630	RD-114	1	55M	7.4	N4	Micro Sludge	350	284
44734	RD-114	1	55M	7.4	C6	Micro Sludge	296	232
44747	RD-114	1	55M	7.4	C6	Micro Sludge	378	314
44750	RD-114	1	55M	7.4	N4	Micro Sludge	340	276
46318	RD-114	1	55M	7.4	N4	Micro Sludge	302	235
46323	RD-114	1	55M	7.4	C6	Micro Sludge	342	278
46327	RD-114	1	55M	7.4	N4	Micro Sludge	274	209
46331	RD-114	1	55M	7.4	N4	Micro Sludge	315	249
46341	RD-114	1	55M	7.4	N4	Micro Sludge	264	198
46346	RD-114	1	55M	7.4	N4	Micro Sludge	343	279
46638	RD-114	1	55M	7.4	N4	Micro Sludge	338	270
52368	RD-114	1	55M	7.4	N4	Micro Sludge	318	257
53004	DD 444							
53001	RD-114	1	55M	7.4	N4	Micro Sludge	368	308
E2012	RD-114	1	EENA	7 4	814		270	345
53013	KD-114	1	55M	7.4	N4	Micro Sludge	376	315
53778	RD-114	1	55M	74	C C	Migro Studeo	770	212
55776	ND-114	T	55101	7.4	C6	Micro Sludge	376	312
53787	RD-114	1	55M	7.4	N4	Miero Sludeo	220	367
22101	UD-TŤ4	T	INICC	7.4	114	Micro Sludge	328	267
53793	RD-114	1	55M	7.4	N4	Micro Sludge	352	292
JJ(JJ	()~ ~~7	-	53101	7.4	144	MILLO SIUURE	532	232

56580	RD-114	1	55M	7.4	N4	Micro Sludge	351	291
56581	RD-114	1	55M	7.4	N4	Micro Sludge	355	293
57206	RD-114	1	55M	7.4	N4	Micro Sludge	425	365
62012	RD-114	1	55	7.4	N4	Micro Sludge	361	297
fotal .		52						

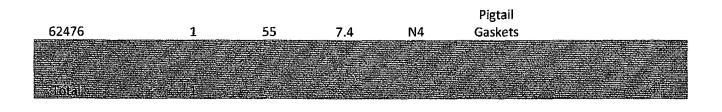
.....

						Liquid and sludge from		
58816	RD-114	1	55M	7.4	C6	V-12 tank Ogru sludge,	482	418
						gioves,		
52984	RD-114	1	85M	11.4	C6	absorbent	553	411
						Ogru sludge, gloves,		
52985	RD-114	1	55M	7.4	C6	absorbent	523	459
						Oil and		
46324	RD-114	1	55M	7.4	N4	grease sludge	362	298
						Oil and		
46629	RD-114	1	55M	7.4	C6	grease sludge Oil and	473	409
49403	RD-114	1	55M	7.4	C6	grease sludge	483	419
						Oil and		
49417	RD-114	1	85M	11.4	N4	grease sludge	530	388
						Oil and		
49419	RD-114	1	55M	7.4	C6	grease sludge	576	512
						Oil and		
50084	RD-114	1	55M	7.4	N4	grease sludge Oil and	481	417
E0096		1	EENA	7 4	NI /		420	256
50086	RD-114	1	55M	7.4	N4	grease sludge Oil and	420	356
52982	RD-114	1	85M	11.4	N4	grease sludge	588	446
						Oil and		
53764	RD-114	1	55M	7.4	C6	grease sludge	325	261

						0.1		
53779	RD-114	1	55M	7.4	C6	Oil and grease sludge	466	402
33773	110 114	-	55111	7.4	0	Oil and	400	402
53780	RD-114	1	55M	7.4	N4	grease sludge	501	437
						Oil and		
55045	RD-114	1	55M	7.4	N4	grease sludge	355	291
						Oil and		
55070	RD-114	1	55M	7.4	C6	grease sludge	303	239
						Oil and		
55970	RD-114	1	55M	7.4	C6	grease sludge	90	26
						Oil and		
59905	RD-114	1	55M	7.4	N4	grease sludge	412	348
						Oil and		
62255	RD-114	1	55M	7.4	N4	grease sludge	418	354
-						Press sludge,		
42660	RD-114	1	55M	7.4	C6	gloves, rags	292	228
						Sample jars of micro &		
						heavy metal		
49794	RD-114	1	55M	7.4	C6	sludge	346	282
		-		,	20	Sample jars	0.0	
						of micro &		
						heavy metal		
49795	RD-114	1	55M	7.4	C6	sludge	339	275
				,		Sample jars		
						of micro & heavy metal		
49796	RD-114	1	55M	7.4	C6	sludge	126	62
		_				Sludge		••
62045	RD-114	1	5	0.65	N3	samples		
						sludge,		
	.	_				gloves,		
47095	RD-114	1	55M	7.4	N4	cheese cloth	370	306
						Sludge, paper,		
						gloves,		
49434	RD-114	1	55M	7.4	C6	cheesecloth	448	384
Total		- 26						
18765A	RD-114	1	55M	7.4	C6	Spent resin	320	256
18765B	RD-114	1	55M	7.4	C6	Spent resin	302	238
18765C	RD-114	1	55M	7.4	C6	Spent resin	244	180
21837	RD-114	1	85M	11.4	C6	Spent resin	362	
21838A	RD-114	1	85M	11.4	C6	Spent resin	356	214

....

240200	DD 444		0514				2.40	400
21838B	RD-114	1	85M	11.4	C6	Spent resin	340	198
21838C	RD-114	1	55M	7.4	C6	Spent resin	250	186
22405A	RD-114	1	55M	7.4	C6	Spent resin	258	194
224050			0514		6 6	C	407	2.45
22405B	RD-114	1	85M	11.4	C6	Spent resin	487	345
37693	RD-114	1	55M		C6	Spent resin	335	271
27032	ND-114	T	33101		Co	spenciesin	333	271
37694	RD-114	1	85M	11.4	C6	Spent resin	390	
07001		-	0.5.11	11,4		openeresni	550	
37695	RD-114	1	85M	11.4	C6	Spent resin	395	
45570	RD-114	1	55M	7.4	C6	Spent resin	298	234
						·		
45572	RD-114	1	55M	7.4	C6	Spent resin	264	200
46300	RD-114	1	55M	7.4	C6	Spent resin	342	276
47039	RD-114	1	55M	7.4	C6	Spent resin	309	245
50099	RD-114	1	55M	7.4	C6	Spent resin	265	201
50100	RD-114	1	55M	7.4	C6	Spent resin	267	203
50103	RD-114	1	55M	7.4	C6	Spent resin	340	276
50104	RD-114	1	55M	7.4	C6	Spent resin	268	204
50105	RD-114	1	55M	7.4	C6	Spent resin	278	214
51337	RD-114	1	55M	7.4	C6	Spent resin	261	195
51338	RD-114	1	55M	7.4	C6	Spent resin	251	184
51339	RD-114	1	55M	7.4	C6	Spent resin	258	194
54087	RD-114	1	85M	11.4	C6	Spent resin	360	282
59402	RD-114	1	55M	7.4	C 6	Spent resin	278	214
atotal		26						


40487A	RD-114	1	55M	7.4	C6	Varnish chunks	520	456
						Varnish		
40487B	RD-114	1	55M	7.4	C6	chunks	520	456
						Varnish	520	490
40487C	RD-114	1	55M	7.4	C6	chunks	505	441
101070		-	55141	7.4	CU		505	441
40487D	RD-114	1	6674	7 4	C C	Varnish	F 40	
404070	KD-114	T	55M	7.4	C6	chunks	540	476
404075	DD 444					Varnish		
40487E	RD-114	1	55M	7.4	C6	chunks	505	441
						Varnish		
40487F	RD-114	1	55M	7.4	C6	chunks	545	481
						Varnish		
40487G	RD-114	1	55M	7.4	C 6	chunks	513	449
						Varnish		
40487H	RD-114	1	55M	7.4	C6	chunks	404	340
						Varnish		
404871	RD-114	1	55M	7.4	C6	chunks	520	456
						Varnish		
40487J	RD-114	1	55M	7.4	C6	chunks	520	456
						Varnish	520	-10
40487K	RD-114	1	55M	7.4	C6	chunks	383	319
						Varnish		
40487L	RD-114	1	55M	7.4	C6	chunks	525	461
						Varnish		
40487M	RD-114	1	55M	7.4	C6	chunks	500	436
						Varnish		
40487N	RD-114	1	55M	7.4	C6	chunks	515	451
404070						Varnish		
404870	RD-114	1	55M	7.4	C6	chunks	520	456
						Varnish		
40487P	RD-114	1	55M	7.4	C6	chunks	541	477
						Varnish		
40487Q	RD-114	1	55M	7.4	C6	chunks	520	456
404070					•	Varnish		
40487R	RD-114	1	55M	7.4	C6	chunks	545	481
101975	DD 111	1	FFA	7.4	00	Varnish		
404875	RD-114	1	55M	7.4	C6	chunks	515	451
39064A	RD-104	1	55M	7.4	C6	Solid chunks	450	200
550044	UD-T04	*	55101	7.4	LO	of varnish Solid chunks	452	388
39064B	RD-104	1	85M	11.4	C6	of varnish	606	453
39064C	RD-104	1	55M	7.4	C6	Solid chunks	245	455
220010		-	33143	/ • •	CU	John Chully?	242	101

.

						of varnish		PH-14
Total		22						
						Sample		
62206A	RD-103	1	20	2.7	N3	Returns	30	17
						Sample		
62206B	RD-103	1	20	2.7	N3	Returns	23	10
						Sample		
62206C	RD-103	1	20	2.7	N3	Returns	30	17
					2.4			
						Sample		
62206D	RD-103	1	20	2.7	N3	Returns	29	16
						Sample		
62206E	RD-103	1	20	2.7	N3	Returns	26	13
						Sample		
62206F	RD-103	1	20	2.7	N3	Returns	29	16
						Sample		
62206G	RD-103	1	20	2.7	N3	Returns	29	16
62206H	RD-103	1	5	0.65	N3	Sample Returns	7	2
OLLOGI		-	-	0.00	113	Sample	•	2
622061	RD-103	1	20	2.7	N3	Returns	32	19
622061	RD-103	1	5	0.65	ND	Sample	8	2
62206J	VD-102	T	5	0.65	N3	Returns Sample	0	3
62206K	RD-103	1	5	0.65	N3	Returns	11	6
		_	_			Sample		
62206L	RD-103	1	5	0.65	N3	Returns Sample	19	14
62206M	RD-103	1	5	0.65	N3	Returns	13	8
			-					U
						Sample		
62206N	RD-103	1	5	0.65	N3	Returns	7	2
622060	DD 101	1	r	0.05	110	Sample	40	F
622060	RD-103	1	5	0.65	N3	Returns	10	5

62206P	RD-103	1	5	0.65	N3	Sample Returns	6	1
62206Q	RD-103	1	5	0.65	N3	Sample Returns	18	5
62206R	RD-103	1	5	0.65	N3	Sample Returns Treatability study	16	3
42490A	RD-116	1	55M	7.4	C6	residuals	286	222
						Treatability study		
42490B	RD-116	1	55M	7.4	C6	residuals Unused	542	478
63137	RD-114	1	5	0.65	N2	samples		
						4 gunk		
47929	RD-114	1	5M	0.65	N3	samples Sample	11	6
62203A	RD-104	1	20	2.7	N3	Returns Sample	95	82
62203B	RD-104	1	20	2.7	N3	Returns	63	50
62203C	RD-104	1	20	2.7	N3	Sample Returns	16	3
62203D	RD-104	1	20	2.7	N3	Sample Returns	31	18
						lapping compound		
52002	DD 101		5 1	0.65		sample	22	20
52092	RD-104	1	5M	0.65	N3	returns Excess	33	28
51355	RD-103	1	30M		65	Alumina	60	10
51355	KD-105	1	20141		C5	samples Excess	60	23
						Alumina		
54077	RD-103	1	5M	0.65	C5	samples Excess	17	12
						Alumina		
54078	RD-103	1	5M	0.65	C5	samples	10	5
						Excess Alumina		
54082	RD-103	1	5M	0.65	C5	samples	27	22
						Excess Alumína		
61751	RD-103	1 12	55M	7.4	C5	samples	252	188
		26. 10						

. ...

Total

APPENDIX B--ANALYTE SUMMARY

ANALYTE SUMMARY				
Analyte	Method	Req'd Reporting Limit		
TCLP Metals + Cu + Zn	6010B	Per method		
TCLP Hg	7470A	Per method		
TCLP Volatile Organic Compounds	8260B	Per method		
TCLP Semi-Volatile Organic Compounds	8270C	Per method		
TCLP Herbicides and Pesticides	8151A/8081A	Per method		
Metals	6010B	Per method		
VOC	8260B	Per method		
SVOC	8270C	Per method		
Herbicides and Pesticides	8151A/8081A	Per method		
Bulk Density	ASTM D-5057	Per method		
Moisture Content	ASTM D-2216	Per method		
Polychlorinated Biphenyls	8082	Per method		
Gross Alpha/Gross Beta	Approved Method	Per method		
Am-241	Approved Method	Per method		
Am-242	Approved Method	Per method		
Am-243	Approved Method	Per method		
Cm-243	Approved Method	Per method		
Cm-244	Approved Method	Per method		
Cm-245	Approved Method	Per method		
Cm-246	Approved Method	Per method		
Cm-247	Approved Method	Per method		
Cm-248	Approved Method	Per method		
Np-237	Approved Method	Per method		
Pu-238	Approved Method	Per method		

ANALYTE SUMMARY				
Analyte	Method	Req'd Reporting Limit		
Pu-239/240	Approved Method	Per method		
Pu-242	Approved Method	Per method		
Pu-244	Approved Method	Per method		
Th-228	Approved Method	Per method		
Th-230	Approved Method	Per method		
Th-231 (assumes secular equilibrium)	Approved Method	Per method		
Th-232	Approved Method	Per method		
Th-234 (assumes secular equilibrium)	Approved Method	Per method		
U-232	Approved Method	Per Method		
U-233/234	Approved Method	Per method		
U-235	Approved Method	Per method		
U-236	Approved Method	Per method		
U-238	Approved Method	Per method		
% U-235	Approved Method	None		
Total Uranium	Approved Method	Per method		
B. Fission Products - ¹⁴¹ Ce, ¹⁴⁴ Ce, ¹³⁴ Cs, ¹³⁷ Cs, ⁹⁵ Nb, ¹⁰³ Ru, ¹⁰⁶ Ru, ⁹⁵ Zr, ¹²⁵ Sb	Gamma Spectroscopy (Scan)	Per method		
Actinium Isotopes - ²²⁷ Ac, ²²⁸ Ac	Gamma Spectroscopy (Scan)	Per method		
C. Bismuth Isotopes - ²¹² Bi, ²¹⁴ Bi	Gamma Spectroscopy (Scan)	Per method		
Cd-109	Gamma Spectroscopy (Scan)	Per method		
Co-57, Co-60	Gamma Spectroscopy (Scan)	Per method		
Cs-134, Cs-137	Gamma Spectroscopy (Scan)	Per method		

ANALYTE SUMMARY				
Analyte	Method	Req'd Reporting Limit		
I-129-Qualified "J" as an estimate- out of calibration	Gamma Spectroscopy (Scan)	Per method		
I-131	Gamma Spectroscopy (Scan)	Per method		
K-40	Gamma Spectroscopy (Scan)	Per method		
Kr-85	Gamma Spectroscopy (Scan)	Per method		
Pa-231, Pa-234m	Gamma Spectroscopy (Scan)	Per method		
Pb-210	Gamma Spectroscopy (Scan)	Per method		
Pb-212, Pb-214	Gamma Spectroscopy (Scan)	Per method		
Ra-224, Ra-226, Ra-228	Gamma Spectroscopy (Scan)	Per method		
Tl-208	Gamma Spectroscopy (Scan)	Per method		
Strontium-90	Approved Method	Per method		
Tc-99	Approved Method	Per method		
Any gamma detected at or greater than "per method".	Gamma Spectroscopy (Scan)	Per method		

APPENDIX C--RANDOM SELECTION FOR STATISTICAL ANALYSIS

PCB dirt, PG, plastic

.

	Random-Value	Selected Containers by
READ	Assignment	Rankers -
23285	0.113852187949512	23285
48886	0.326450013926988	48886
55645	0.700748471354676	55645
55646	0.737513795951433	

Floor Sweepings, Misc. Rags

	Random Value	Selected Containers by
RED	Assignment	Rank
50981	0.019807897	50981
34876	0.078237634	-34876
50979	0.079414007	50979
57327	0.300296517	57327
53073	0.41887113	53073
55280	0.593161574	55280
56041	0.625731294	56041
57936	0.626418997	57936
57935	0.737036736	57935
59308	0.76843301	59308
60946	0.814432151	60946
59314	0.875781222	59314
62463	0.96143278	62463
50982	0.968205749	

Oily rags, dust

	Random Value	Selected Containersiby
60271	0.158539361	60271 60989
60989	0.170572744	60989
60990	0.183344121	60990
60272	0.661305684	60272

Spent Carbon

RFD	Random Value	Selected Containers by Rank
32130A	0.11772800185252	32130A

32130B 0.258072834492149

.

Alumina/Sodium Fluoride/Magnesium Fluoride

	Random Value	Scleded Comainers by
RED	Assignment	Renk
52079	0.000558768	57344
63800	0.003710135	40583
63797	0.019152939	48900
56850	0.019516956	56850
57945	0.028368519	57945
57930	0.028615864	57930
48677	0.029843006	48677
56036	0.033914768	56036
57745	0.036449111	57745
53058	0.038274663	49160
56043	0.039001921	56043
60759	0.0412429	61461K
56829	0.05236851	56829
63349	0.05889305	52083
52717	0.061238725	52717
62953	0.064269171	48320
59305	0.066341687	56042
61461A	0.067490723	61461A
62202G	0.075235865	56039
50072	0.07661461	50072
57941	0.079023734	57941
54516	0.081112555	54516
50976	0.084215541	50976
50052	0.085110057	50052
61435A	0.08515609	61435A
59301	0.0860636322821016	59301
52077	0.088565829	50219
56026	0.09196425	56026
61461K	0.0936719	
57344	0.095980607	
40583	0.096743785	
48900	0.106828801	
49160	0.109230558	
52083	0.11138725	
48320	0.114189463	
56042	0.114189797	
53777	0.114800128	

0.115615975

56039	0.120073333
60752	0.12231971
54522	0.123175149
47363	0.130388387
61461E	0.130532021
59312	0.130658879
54523	0.130738678
60777	0.132547853
54510	0.134380987
55396	0.137689805
60778	0.139540513
48327	0.140424319
56050	0.147980004
59309	0.14860092
63348	0.14954102
48333	0.150996632
50519D	0.152922949
55296	0.155333235
50988	0.15556131
48317	0.157140668
56037	0.159344796
58423	0.162913803
55294	0.164213967
37720	0.164694015
56038	0.165906304
54524	0.172198595
56128	0.177105937
53074 40569	0.180347374
40589 56831	0.180406029
57931	0.181491852 0.186668217
64752	0.187059928
47996	0.189788401
54525	0.195320551
50977	0.196031624
52133	0.196375425
56032	0.204497041
48458	0.207289459
50213	0.209329997
56028	0.211586042
56030	0.212668064
55287	0.213894075
50045	0.217057633

37717	0.219388035
53064	0.221416087
37714	0.229414364
50993	0.229798339
57929	0.231302117
57328	0.247882745
48296	0.250099585
55379D	0.261396555
61461F	0.268783253
59018	0.272284956
54519	0.27313638
50995	0.275571625
57744	0.276244895
59012	0.279097749
40574	0.27924629
58420	0.280622227
48306	0.280671258
55283	0.281856686
54433	0.282395987
62952	0.285414897
48899	0.287810639
50990	0.287984119
48455	0.29082258
48313	0.290961087
40584	0.292721877
56047	0.294824151
48679 60765	0.296009472
	0.297169692
50519E 37715	0.298775169
54508	0.299927012
54501	0.303941056
40564	0.306470543
4 0304 52722	0.306753598
54507	0.311796534
57338	0.315442335
53185	0.317981725
48318	0.318285259
40572	0.32628195
40372 59011	0.327950357
55398	0.331446413
37709	0.342315231
40555	0.344963792

58408	0.345507509
48360	0.350070454
61435B	0.350537015
60751	0.351278328
50212	0.360419941
50221	0.366885664
55379E	0.367897757
49777	0.370538075
62142	0.372070453
48919	0.373215178
52719	0.373423629
40571	0.376075837
55284	0.37965197
50325	0.381685903
54502	0.38352396
53069	0.385303802
48362	0.386462286
52720	0.391390712
48311	0.392200765
52721	0.394791779
60760	0.397993724
58409	0.399141035
50991	0.401335177
50210	0.402494698
56827	0.40362586
58413 60768	0.403830887
55292	0.404779035
53292 54036	0.404973802
40575	0.408104258
40373 53056	0.413953071
60265	0.418844726
40581	0.419381036
55277	0.421145742
50519A	0.423001778
55279	0.42459689
48339	0.429404081
64753	0.437159761
57926	0.437636354
55379C	0.441570545
50519F	0.441648154
58053	0.449295575
48323	0.450807091

56838	0.451226427
55282	0.453162357
60996	0.453624809
48341	0.455453044
56832	0.456876079
55400	0.457753902
52295	0.459344394
55285	0.46278895
52294	0.462950171
4 9 797	0.463322522
56027	0.471307524
60769	0.474431825
50073	0.475710224
48297	0.475798856
60259	0.477450802
55276	0.478512152
48920	0.47899563
48361	0.48015889
56045	0.481578959
50205	0.484359335
40579	0.490138863
55298	0.496245566045964
48457	0.503631648
60757	0.506267481
60995	0.50673186
57326	0.512858989
614611	0.513598031
40582	0.514224565
50519H	0.515315816
53053	0.515873167
48337	0.516060329
59304	0.519209025
37711	0.520094893
63350	0.522836638
6 2 951	0.523816875
48303	0.530970841
50992	0.535784804
40577	0.536382698
48897	0.538215014
60756	0.544599933
56839	0.544915417
	0.545513921
40559	0.54894728202117

61461H	0.552986339
56044	0.55512259
56040	0.556991784
63798	0.562595241
52506	0.563109319
50209	0.568192243
53051	0.575385206
48924	0.579410582
60994	0.585059092
48676	0.585351026
57343	0.591350776
59306	0.592309117
37713	0.068769509
50986	0.594882453
48369	0.595990636
60549	0.602562296
59302	0.603323471
54520	0.607443007
46200	0.609430946
40586	0.613752105
56830	0.621872427
53066	0.62363059
54521	0.632571295
45141	0.632817936
52084	0.632992392
57942	0.63335239
48456	0.636142503
55379B	0.636224565
55293	0.637876424
40561	0.640974489
48461	0.645992939
48678	0.649517963
53067	0.652243007
53062	0.653819979
48363	0.660768052
45142	0.663709503
61461D	0.664334754
54432	0.665321496
50059	0.668817594
48922	0.66934308
40580	0.670509304
45140	0.671207168
63347	0.675339864

57947	0.676640648
55291	0.677319222
63799	0.681789828
53054	0.683746761
48322	0.685014293
52082	0.693211799
58425	0.688032308708048
37721	0.694320304
60264	0.696764762
57946	0.697096872
40573	0.701576261
60993	0.704453362
55399	0.705018213
55290	0.712047742
48310	0.71280348
52712	0.717501638
53072	0.718001796
60992	0.721774442
622020	0.721907081
55397	0.723454898
40565	0.725060163
48301	0.726929782
52078	0.727091034
63794	0.731336523
56049	0.731915008
55281	0.734233397
40567	0.735100004
57332	0.737407075
48921	0.742511458
48316	0.743354208
50989	0.747449977
57337	0.748539218
48366	0.752146189
52723	0.754970869
61461 B	0.755024414
57350	0.755068233
40560	0.761118065
50519G	0.768859925
53052	0.773428148
40557	0.780141494
61435C	0.785198719
45139	0.788025728
56676	0.789933403

52076	0.792924819
48368	0.793776318
50058	0.795662031
59019	0.79983158
48319	0.801333058
50070	0.802685425
57950	0.816974498
57329	0.820454728
57348	0.821296468
54512	0.821909041
60758	0.825484216
58407	0.827356693
47995	0.827903055
48308	0.82929628
50204	0.831360893
53065	0.832331505
53061	0.833417378
56834	0.835020783
37716	0.835760261
60991	0.838191774
54515	0.83907021
54511	0.839100956
40576	0.840724076
50069	0.841427565
50049	0.842379221
60753	0.842773188
56828	0.843577902
48367	0.845903481
40558	0.846401697
46188	0.84746116
53075	0.849972011
52725	0.85325341
60260	0.853735831
50987	0.856528159
40554	0.858605087
48460	0.858702159
48359	0.859361561
54027	0.859624613
52081	0.864531921
48285	0.865993475
57938	0.866499926
64754	0.866715034
52716	0.867845928

F0F10D	0.074000406
50519B	0.871803186
58416	0.875215278
54509	0.879607923
48462	0.881711902
40585	0.882400238
50054	0.888145058
59307	0.890089298
54029	0.897586925
48466	0.901620609
56031	0.903544914
56849	0.912038736
45137	0.92083134
40553	0.921319998
58404	0.923405611
55297	0.926103767
50980	0.92718073
53063	0.930888523
57336	0.933708848
61461L	0.935089874
62135	0.935173144
50053	0.938104055
48302	0.938797095
54514	0.944255536
59313	0.94435537
57943	0.952913488
56833	0.953072443
55278	0.953693247
56048	0.956008107
50071	0.956530162
62034	0.959478819
58415	0.96005941
48358	0.960402037
61461C	0.960739646
50050	0.962898834
58401	0.964401916
40578	0.964695962
61461J	0.967854614
62202H	0.969262499
50519C	0.972018952
58405	0.97262924
50074	0.973642083
50211	0.973872018
61461G	0.976299482

48312	0.977995282
55869	0.978522697
64751	0.979017339
53060	0.980816369
39466	0.980871455
57927	0.981036296
55286	0.982603726
54034	0.983146099
53068	0.983255986
52080	0.987213567
50978	0.991148392
40563	0.991791942
56033	0.997858621

Blasting Media

	Random Value	Sciccied Containers by
RED	Assignment	Bank
54976A	0.0419067903488337	54976A
49792A	0.0565213572065253	49792A
49792B	0.072787737271045	49792B
49847	0.0760153346715864	49847
50145A	0.0785101754773359	50145A
54569A	0.107796328013678	54569A
48548B	0.128332785101361	48548B
49813B	0.139588000960728	498 13 B
59553B	0.181256343777172	59553B
49792C	0.18131590063044	49792C
57418	0.208564262970747	57418
57425B	0.411264026028507	574258
59553A	0.461570001563258	59553A
54569D	0.466252506616638	54569D
58806	0.520684445584452	58806
56533B	0.629332677428125	56533B
49813A	0.657610907691348	49813A
53753	0.658513420275185	53753
57425A	0.667350261084479	57425A
54976B	0.685940027548958	54976B
57898	0.707793592807187	
50137	0.712233832604853	
50145B	0.731917155793971	
48548C	0.7759148542557	

ħ.

59605B 0.808247846922587

59605A	0.819644969594624
56533A	0.84798224675632
54301	0.851447227639741
54569B	0.869048606839554
48548A	0.888818920540986
56373	0.968399970519967
48548D	0.972188684632561
54569C	0.974147523848621

Coal from BioD

	Random value 7	Selected Containers by Rank
51282A	0.603973992406518	51282A
51282B	0.983141839633003	

. •....

.

Concrete

	Random Value	Selected Containers by
RFD	Assignment	Rank
32902C	0.0822625223060083	32902C
62501	0.138711259854328	62501
55026	0.246940579501298	55026
55027	0.371646034298157	55027
32902B	0.588029889831595	32902B
32902D	0.67663598274195	32902D
52120	0.712850528852572	52120
55033	0.832283858831656	55033
32902A	0.860719357659592	32902A
55035	0.866997812468517	55035
55028	0.872743293365595	55028
55034	0.967487692401104	

Welding Slag

	Random Value	Selected Containers by
RED	Assignment	Rank Park in
62147C	0.432667378287317	62147C
62147B	0.495551656323473	62147B
62147A	0.570420974555525	62147A

<u>Used Oil</u>

	Random Value	Selected Containers by
RED	Assignment	Rank and
19628	0.00035442416943865	44393
44393	0.00509158080388161	44372
44372	0.00613034929722112	.62221
62221	0.017610141606859	61434B
61434B	0.0209642863440558	43698
43698	0.0258552960288592	50062
5006 2	0.0332563530452639	39440
39440	0.0333669923370215	43981
43981	0.0403857368741214	58714
58714	0.046495258435657	44002
54043	0.0479898245994872	44383
44002	0.0532270523118843	54042
44383	0.0606632238955962	43685
54042	0.0759259560925041	61433B
43685	0.0908722664441211	44388
61433B	0.123506085543718	45455
44388	0.129503377718574	44822
45455	0.132511381996647	43688
44822	0.138323933005439	44021
43688	0.146258112685992	44804
44021	0.151571588480702	44398
44804	0.17368171550531	45488
44398	0.174685012029232	58713
45488	0.177010198905648	45225
58713	0.178341552530308	39451
45225	0.217885806379576	
39451	0.219059865571831	
44394	0.220448010637944	
45112	0.23483340050907	
44024	0.250036194972668	
38534	0.25561393953836	
44007	0.272895641015322	
43979	0.277462051837653	
61474	0.288323341920613	
44821	0.298886787046582	
38526A	0.302720412833359	

44825 0.310730251762531

4520 9	0.314821628646829
63176	0.319590308885993
59802	0.320948811580854
43998	0.322008006221007
43990	0.343022037094737
44384	0.386048249272882
50038	0.393468432878213
50041	0.405979632654627
44399	0.430671621951895
44790	0.438410134215415
45105	0.457096695923989
44009	0.460533143335105
50063	0.461963686720373
44760	0.46392647534873
43695	0.469704718731103
44785	0.487208127670147
43697	0.495336591800195
44766	0.509007048935167
59803	0.518042349603993
50067	0.522276877667701
50040	0.524529078108845
45208	0.53420876132836
44380	0.542163334167297
61434A	0.543062800631667
44397	0.55059413662172
45301	0.564830956001144
44811	0.59869352473925
44389	0.628377734178374
44387	0.633126106867145
43681	0.63414159474944
61413	0.655876715490812
45306	0.658029999590831
59801	0.667135170261407
64803C	0.668493655737155
50066	0.684501397290857
44013	0.694262245684097
62187	0.702493937983543
44823	0.732244708245204
44395	0.750497050522112
44001	0.752530448736914
61433A	0.768493084693217
45104	0.779208523329428
55117	0.783445801063698

62217	0.791226822538461
45309	0.799163433635109
44351	0.800602042840951
44378	0.804752705467286
55614	0.80899930578132
44759	0.814122309962836
44761	0.815105321760175
44824	0.823584983518574
44019	0.827716029445661
44016	0.829383433867187
44023	0.833315124281318
45102	0.84007156162657
39443	0.840828881345641
45474	0.850996686684405
44786	0.862589354452201
44385	0.874562216688413
38526B	0.889004436436323
64803B	0.911200783985082
44014	0.912570098412043
44358	0.932081567853721
44379	0.945515429528279
63388	0.948417060128755
44025	0.95910364775759
50046	0.962013019982895
43994	0.994314387388478

Dirt/Soap Filters

	Random Value	Selected Containers by
RED	Assignment	Rank - Rank
51152H	0.0243376983396617	51152H
62426A	0.0411602783926635	62426A
51152D	0.0578305276558777	51152D
62426K	0.0901576577849257	62426K
62426J	0.0967270827576403	62426J
51152F	0.0975478686930229	51152F
51152E	0.102425309899684	51152E
62426E	0.10946167527186	62426E
47138	0.180404319027532	47138
51166	0.180651970966192	51166
54632	0.190167271999597	54632

51152J	0.244649947240996
51152G	0.276361376131549
51152B	0.28288249832845
511521	0.331459136360396
62426G	0.343711765382375
51152K	0.367955808498825
62426H	0.457899351697454
62426B	0.542836584492625
51152C	0.54748051700147
624261	0.556103771505202
51152N	0.614296412719346
624260	0.627207282598341
62426F	0.672395984384693
62426C	0.688344927412643
62426L	0.716159869672094
62426M	0.776959117150098
62426N	0.837816443138399
51152L	0.872435612817714
51152A	0.926160263861962
51152M	0.92771275515772
62426D	0.93202678683196
511520	0.938091471599518

51152J
the second s
a second s
511152G
511528
511521
a fan de state a ser
62426G
51152K
62426H
and the second
624268
UZC ZOD
Contraction () and a state of the state of
51152C

Ion Exchange Resin

	Random Value	Selected Containers by
RID	Assignment	Rank
57673A	0.0552971605530685	57673A
53003B	0.0817955833803214	53003B
53003C	0.119391126307894	53003C
57673C	0.404820050229005	57673C
58834B	0.512476838426117	58834B
54086B	0.518840870707124	54086B
58834C	0.55064534667479	58834C
54086A	0.562484880039374	54086A
19940C	0.737748056426324	19940C
57673D	0.753990834354644	57673D
53003A	0.776614394759664	53003A
57673B	0.850520075328972	57673B
58834A	0.923843830972787	
19940B	0.950999205094776	
59403	0.965256677518882	

Microsludge

	RandomWalue	Selected Containers by
RED	Assignment	Rank
46331	0.00318326937209967	46330
53787	0.0038117833224951	53787
25081	0.00882217166368715	25081
22414	0.0255014273408563	22414
41452	0.0354035271552267	41452
25465	0.0445901094558421	25465
53001	0.0605536628786219	53001
53793	0.103561017816321	53793
62012	0.126691990894129	62012
43630	0.130039887406211	43630
18991	0.159059304729485	18991
18989	0.204681640409672	18989
42639	0.29119939552576	42639
24497	0.311070740652344	-24497
25456	0.31724394684685	25456
44734	0.339217646044198	44734
18759	0.388054014891624	18759
38118	0.388984438275184	38118
41342	0.416662027313303	41342
46638	0.419396903432751	46638
41339	0.419760038731077	41339
53013	0.419993979245169	53013
46341	0.431479192779143	
41458	0.438576284430964	
13822	0.442593406625015	
56580	0.46049573529873	
22440	0.461342437827577	
18756	0.471734370801808	
56581	0.480472950733945	
25460	0.521395480527813	
52368	0.527829166425706	
25455	0.558347763794618	
44747	0.619856284845504	
46346	0.660094604203487	
53778	0.665211546769884	

0.673941939880662

0.678030006170534

38190 57206

46318	0.684837308053321
22412	0.706532100556601
25090	0.714292215496873
52516	0.781294236443212
46323	0.783302772499811
4145 9	0.827985965699022
25469	0.84453743016301
25463	0.867781819704462
22804	0.92984190054914
38191	0.940041998665782
22411	0.946004429198631
41454	0.950763059556883
41453	0.954317661811491
46327	0.961428003692226
44750	0.989016055996923

Oil and Grease Sludge

50086

	Random Value	Selected Containers by
RED	Assignment	Rank
53780	0.0248962694277299	-53780
49417	0.0306314799360461	49417
49419	0.0688830410793537	49419
46324	0.137643050903525	46324
52984	0.137994367284627	52984
55970	0.273985841139336	55970
53779	0.275736032880867	53779
49403	0.295029138365257	49403
55070	0.376543469255392	- 55070
42660	0.379132771327862	55045
49434	0.508578251735194	49434
59905	0.603459890731892	59905
53764	0.650886457743105	53764
50084	0.666396053661991	50084
58816	0.719696564941182	58816
52982	0.73654682250125	52982
46629	0.762428018152168	46629
62255	0.764759315078131	62255
49795	0.823043901500053	
55045	0.877720563808094	
52985	0.936458036206613	

0.993172576523167

<u>Spent Resin</u>

	Random Value	Selected Containers by
RED	Assignment	Ronks - P
21838A	0.0234236451477319	21838A
50104	0.0905152550337349	50104
50100	0.106730744879504	50100
18765B	0.118586717856325	187658
37693	0.146024543639327	37693
45572	0.18266662849186	45572
47039	0.185659100302135	47039
37694	0.22002304403527	37694
51339	0.251802307559811	51339
51338	0.291297887893243	51338
50105	0.294205240721042	50105
46300	0.306105489058879	46300
18765A	0.435255217557978	18765A
54087	0.446308889472416	54087
21838B	0.498384388752325	21838B
21837	0.574160433560404	21837
21838C	0.575833476868854	218386
50099	0.594782849273466	50099
37695	0.597007663959982	
45570	0.673097828921874	
18765C	0.757764210395997	
22405B	0.776630527108718	
59402	0.861647629961132	
51337	0.881219461154287	
50103	0.939376885080368	

<u>Varnish Chunks</u>

22405A 0.961729859233254

	Random Value	Selected Containers by
THE REAL		
40487J	0.10767487994975	40487 J
40487C	0.12877478060497	40487C
40487M	0.144983899446195	40487M
40487E	0.239230564045539	40487E

40487F	0.286395644419008
40487P	0.338681830505912
40487K	0.354402765044644
39064B	0.427985806252943
40487H	0.490407388525242
404871	0.506847933189621
40487Q	0.512108776625733
39064A	0.531242922319199
40487B	0.610714603769392
40487N	0.659518669751817
40487R	0.696528510636329
404870	0.727247111229993
404875	0.760483406774871
40487D	0.797051114869118
39064C	0.823299764435764
40487L	0.854068087471962
40487A	0.923939312629215
40487G	0.994770453246276

aaaaaa ee	NATION CONTRACTOR	noucators	ale alle company		
112					
		- 4 - 1	87F	1	************
11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1					
1210.201	the station of the state			····	
2.1.1.1.1.1	ingern coreren i'v	1. A CA A	070	2012 C 201420	
CONTRACT OF A STATE		- 404	87P		
	2		tore presente to a		danie est est.
(Contrate)		te constant for the		2102122022	matero in Ouro
10000000000		- AOA	87L		
(Blank and			OFL	er Chinais MCC	
Strate data					
			the second s		
auguesen.			648		
interior dilla					
				11 220 C. 115	1, 16.17
		101	87H	USE STORE	·····
	Stan - Halffeld	404	0/ 170		
1				anishi maranba	
A CONTRACTOR OF A				three weeks to the second s	decide and the
	1	/_/	871		0.0000000000000000000000000000000000000
	A		CO / Laza		
1-				(h)	
Listing and the second	**************************************	40.4	0		-tablesinerer
in the second		-404	87Q	ave by d be internet	
			CLASSICAL ST	142-112-1220	COMPLEX.
a more that the	Contract of the same be	11211211210		17431351261365	
	ALL	390	CAA.		
	erererer brettefent		0.4.6.	113.3. Xead	
1					10111111111111111111111111111111111111
1.191910	the state of the state of the		070	it that as all	
· · · · · · · · · · · · · · · · · · ·		404	878-		
			and the factor	A CULTURE OF	Miner Procession
State Fre - w		122 W121 12 12 12 12 12 12 12 12 12 12 12 12		Charles Charles	
		404	071		
1.1.1.1.1.1.1.1.1.1		SHUH	07 IN-	C.C.102.1898	
Christin Collan.		24. VA / VA h *!.	MINAS		
		micolaretrathth.	n (an in the state	Webberger P	
11-11-1	Sector a birby att	404	X/R	14/11/11/11/11	
and a set of the set		Stat Marc		00740726	
Section and	Ling (Jourhaus	Malana making	nee e stat		
		ACA	070	10101010	
1911 1420 221		404	0/0		
A		the state of a low and a film	A-12 25 26 19 19 19 19	A . W. A PARA AWAY AND	

RFD No.	Notes
23285	1,2,3,4,5,6,7
48886	1,2,3,4,5,6
55645	1,2,3,4,5,6,7
RED No.	Notes
50981	1,2,3,4,5,6,7
34876	1,2,3,4,5,6,7
50979	1,2,3,4,5,6
57327	1,2,3,4,5
53073	1,2,3,4,5
55280	1,2,3,4,5
56041	1,2,3,4,5
57936	1,2,3,4,5
57935	1,2,3,4,5
59308	1,2,3,4,5
60946	1,2,3,4,5
59314	1,2,3,4,5
62463	1,2,3,4,5
REDINO	Notes
60271	1,2,3,4,5,6,7
60989	1,2,3,4,5,6,7
60990	1,2,3,4,5,6
60272	1,2,3,4,5
RED No.	Notes
32130A	1,2,3,4,5,6,7
REDNO	Notes
52079	1,2,3,4,5,6,7
63800	1,2,3,4,5,6,7
63797	1,2,3,4,5,6
56850	1,2,3,4,5

APPENDIX D--PARAMETER ANALYSIS BY CONTAINER

57945	1,2,3,4,5
57930	1,2,3,4,5
48677	1,2,3,4,5
56036	1,2,3,4,5
57745	1,2,3,4,5
53058	1,2,3,4,5
56043	1,2,3,4,5
60759	1,2,3,4,5
56829	1,2,3,4,5
63349	1,2,3,4,5
52717	1,2,3,4,5
62953	1,2,3,4,5
59305	1,2,3,4,5
61461A	1,2,3,4,5
62202G	1,2,3,4,5
50072	1,2,3,4,5
57941	1,2,3,4,5
54516	1,2,3,4,5
50976	1,2,3,4,5
50052	1,2,3,4,5
61435A	1,2,3,4,5,6,7
59301	1,2,3,4,5,6,7
52077	1,2,3,4,5,6
56026	1,2,3,4,5,6
RIDNO	<u>Notes</u> .
54976A	1,2,3,4,5,6,7
49792A	1,2,3,4,5,6,7
49792B	1,2,3,4,5,6
49847	1,2,3,4,5
50145A	1,2,3,4,5
54569A	1,2,3,4,5
48548B	1,2,3,4,5
49813B	1,2,3,4,5
59553B	1,2,3,4,5
49792C	1,2,3,4,5
P	

57418 1,2,3,4,5 574258 1,2,3,4,5 59553A 1,2,3,4,5 58500 1,2,3,4,5 58501 1,2,3,4,5 58532 1,2,3,4,5 585338 1,2,3,4,5 595533 1,2,3,4,5 595533 1,2,3,4,5 597425A 1,2,3,4,5 57425A 1,2,3,4,5 57425A 1,2,3,4,5 57425A 1,2,3,4,5 57425A 1,2,3,4,5,6,7 51282A 1,2,3,4,5,6,7 51282A 1,2,3,4,5,6,7 52020 1,2,3,4,5,6,7 52021 1,2,3,4,5,6,7 52022 1,2,3,4,5,6,7 52023 1,2,3,4,5 52024 1,2,3,4,5 52035 1,2,3,4,5 52035 1,2,3,4,5 52035 1,2,3,4,5 52035 1,2,3,4,5 52035 1,2,3,4,5 52035 1,2,3,4,5 52035 1,2,3,4,5 52036 1,2,3,4,5 62147C 1,2,3,4,5,6 62147A 1,2					
59553A 1,2,3,4,5 54569D 1,2,3,4,5 58806 1,2,3,4,5 55533B 1,2,3,4,5 56533B 1,2,3,4,5 595733 1,2,3,4,5 53753 1,2,3,4,5 54576B 1,2,3,4,5 54976B 1,2,3,4,5,6,7 S1282A 1,2,3,4,5,6,7 62501 1,2,3,4,5,6,7 62501 1,2,3,4,5,6,7 52026 1,2,3,4,5,6,7 52027 1,2,3,4,5,6,7 52028 1,2,3,4,5 329020 1,2,3,4,5 52120 1,2,3,4,5 52120 1,2,3,4,5 52033 1,2,3,4,5 52035 1,2,3,4,5 52036 1,2,3,4,5 52037 1,2,3,4,5 52038 1,2,3,4,5 52039 1,2,3,4,5 52030 1,2,3,4,5 52031 1,2,3,4,5 52032 1,2,3,4,5 52033 1,2,3,4,5 52035 1,2,3,4,5	57418	1,2,3,4,5			
545690 1,2,3,4,5 58806 1,2,3,4,5 565338 1,2,3,4,5 49813A 1,2,3,4,5 53753 1,2,3,4,5 57425A 1,2,3,4,5 54976B 1,2,3,4,5 54976B 1,2,3,4,5 51282A 1,2,3,4,5,6,7 7800 Notes 32902C 1,2,3,4,5,6,7 62501 1,2,3,4,5,6,7 55026 1,2,3,4,5,6 52027 1,2,3,4,5,6 53028 1,2,3,4,5 329020 1,2,3,4,5,6 55027 1,2,3,4,5 52100 1,2,3,4,5 52120 1,2,3,4,5 52120 1,2,3,4,5 55033 1,2,3,4,5 55034 1,2,3,4,5 55035 1,2,3,4,5 55028 1,2,3,4,5 62147C 1,2,3,4,5,6,7 62147C 1,2,3,4,5,6,7 62147A 1,2,3,4,5,6,7 62147A 1,2,3,4,5,6,7 62147A 1,2,3,4,5,6,7 </td <td>57425B</td> <td colspan="3"></td>	57425B				
58806 1,2,3,4,5 565338 1,2,3,4,5 49813A 1,2,3,4,5 53753 1,2,3,4,5 57425A 1,2,3,4,5 54976B 1,2,3,4,5,6,7 RED No. Notes 32902C 1,2,3,4,5,6,7 62501 1,2,3,4,5,6,7 55026 1,2,3,4,5,6 51282A 1,2,3,4,5,6,7 52020 1,2,3,4,5,6,7 52021 1,2,3,4,5,6,7 52022 1,2,3,4,5,6,7 55026 1,2,3,4,5,6,7 52020 1,2,3,4,5,6,7 52020 1,2,3,4,5 52033 1,2,3,4,5 52034 1,2,3,4,5 52035 1,2,3,4,5 52038 1,2,3,4,5 52038 1,2,3,4,5,6,7 62147C 1,2,3,4,5,6,7 62147C 1,2,3,4,5,6,7 62147A 1,2,3,4,5,6,7 19628 1,2,3,4,5,6,7 44393 1,2,3,4,5,6,7 44393 1,2,3,4,5,6,7 44392	59553A	1,2,3,4,5			
565338 1,2,3,4,5 49813A 1,2,3,4,5 53753 1,2,3,4,5 57425A 1,2,3,4,5 54976B 1,2,3,4,5 51282A 1,2,3,4,5,6,7 RED No. Notes 32902C 1,2,3,4,5,6,7 62501 1,2,3,4,5,6,7 55026 1,2,3,4,5 52020 1,2,3,4,5,6,7 52021 1,2,3,4,5,6,7 52022 1,2,3,4,5,6,7 52026 1,2,3,4,5,6,7 52027 1,2,3,4,5 329020 1,2,3,4,5 52120 1,2,3,4,5 52033 1,2,3,4,5 52034 1,2,3,4,5 52035 1,2,3,4,5 52038 1,2,3,4,5 52028 1,2,3,4,5 62147C 1,2,3,4,5,6,7 62147C 1,2,3,4,5,6,7 62147A 1,2,3,4,5,6,7 62147A 1,2,3,4,5,6,7 62147A 1,2,3,4,5,6,7 62147A 1,2,3,4,5,6,7 643393 1,2,	54569D	1,2,3,4,5			
49813A 1.2,3,4,5 53753 1,2,3,4,5 57425A 1,2,3,4,5 54976B 1,2,3,4,5 Statas 1,2,3,4,5,6,7 RED No. Notes 51282A 1,2,3,4,5,6,7 82902C 1,2,3,4,5,6,7 62501 1,2,3,4,5,6,7 62501 1,2,3,4,5,6,7 55026 1,2,3,4,5,6 55027 1,2,3,4,5 329028 1,2,3,4,5 329020 1,2,3,4,5 55033 1,2,3,4,5 55034 1,2,3,4,5 55035 1,2,3,4,5 55028 1,2,3,4,5 55028 1,2,3,4,5,6,7 62147C 1,2,3,4,5,6,7 62147C 1,2,3,4,5,6,7 62147A 1,2,3,4,5,6,7 62147A 1,2,3,4,5,6,7 19628 1,2,3,4,5,6,7 19628 1,2,3,4,5,6,7 44393 1,2,3,4,5,6,7 44393 1,2,3,4,5,6,7 61348 1,2,3,4,5,6	58806	1,2,3,4,5			
53753 1,2,3,4,5 57425A 1,2,3,4,5 54976B 1,2,3,4,5 RFD No. Notes 51282A 1,2,3,4,5,6,7 RED No. Notes 32902C 1,2,3,4,5,6,7 62501 1,2,3,4,5,6,7 62502 1,2,3,4,5,6,7 55026 1,2,3,4,5,6,7 55026 1,2,3,4,5,6 55027 1,2,3,4,5,6 55028 1,2,3,4,5 329020 1,2,3,4,5 55033 1,2,3,4,5 55034 1,2,3,4,5 55035 1,2,3,4,5 55038 1,2,3,4,5 55028 1,2,3,4,5,6,7 62147C 1,2,3,4,5,6,7 62147A 1,2,3,4,5,6,7 62147A 1,2,3,4,5,6,7 62147A 1,2,3,4,5,6,7 19628 1,2,3,4,5,6,7 19628 1,2,3,4,5,6,7 44393 1,2,3,4,5,6,7 44393 1,2,3,4,5,6,7 61348 1,2,3,4,5,6	56533B	1,2,3,4,5			
57425A 1,2,3,4,5 54976B 1,2,3,4,5 RFD NO. Notes 51282A 1,2,3,4,5,6,7 RFD NO. Notes 32902C 1,2,3,4,5,6,7 62501 1,2,3,4,5,6 55026 1,2,3,4,5,6 55027 1,2,3,4,5 329020 1,2,3,4,5 52020 1,2,3,4,5 52020 1,2,3,4,5 52020 1,2,3,4,5 52020 1,2,3,4,5 52020 1,2,3,4,5 52020 1,2,3,4,5 52020 1,2,3,4,5 52033 1,2,3,4,5 52034 1,2,3,4,5 55035 1,2,3,4,5 55028 1,2,3,4,5 62147C 1,2,3,4,5,6,7 62147E 1,2,3,4,5,6,7 62147A 1,2,3,4,5,6,7 62147A 1,2,3,4,5,6,7 62147A 1,2,3,4,5,6,7 62147A 1,2,3,4,5,6,7 64393 1,2,3,4,5,6,7 64393 1,2,3,4,5,6,7	49813A	1,2,3,4,5			
549768 1,2,3,4,5 RED No. Notes 51282A 1,2,3,4,5,6,7 RED No. Notes 32902C 1,2,3,4,5,6,7 62501 1,2,3,4,5,6 55026 1,2,3,4,5,6 55027 1,2,3,4,5 329020 1,2,3,4,5 52021 1,2,3,4,5 329028 1,2,3,4,5 329020 1,2,3,4,5 52120 1,2,3,4,5 52120 1,2,3,4,5 52033 1,2,3,4,5 52034 1,2,3,4,5 55035 1,2,3,4,5 55036 1,2,3,4,5 55037 1,2,3,4,5 55038 1,2,3,4,5 62147C 1,2,3,4,5,6,7 62147C 1,2,3,4,5,6,7 62147A 1,2,3,4,5,6,7 62147A 1,2,3,4,5,6,7 62147A 1,2,3,4,5,6,7 44393 1,2,3,4,5,6,7 44393 1,2,3,4,5,6 61221 1,2,3,4,5,6 614348 1,2,3,4,5 <	53753	1,2,3,4,5			
RED No. Notes 51282A 1,2,3,4,5,6,7 RED No. Notes 32902C 1,2,3,4,5,6,7 62501 1,2,3,4,5,6,7 55026 1,2,3,4,5,6 55027 1,2,3,4,5 32902B 1,2,3,4,5 32902D 1,2,3,4,5 52120 1,2,3,4,5 52120 1,2,3,4,5 52033 1,2,3,4,5 52028 1,2,3,4,5 55033 1,2,3,4,5 55034 1,2,3,4,5 55035 1,2,3,4,5 55028 1,2,3,4,5 62147C 1,2,3,4,5,6,7 62147E 1,2,3,4,5,6 62147A 1,2,3,4,5,6 62147A 1,2,3,4,5,6 7 1,2,3,4,5,6,7 44393 1,2,3,4,5,6,7 44393 1,2,3,4,5,6,7 44393 1,2,3,4,5,6 61221 1,2,3,4,5 614348 1,2,3,4,5	57425A	1,2,3,4,5			
KED No.Notes32902C $1,2,3,4,5,6,7$ 62501 $1,2,3,4,5,6,7$ 55026 $1,2,3,4,5,6$ 55027 $1,2,3,4,5,6$ 329028 $1,2,3,4,5$ 329020 $1,2,3,4,5$ 329020 $1,2,3,4,5$ 52120 $1,2,3,4,5$ 52120 $1,2,3,4,5$ 55033 $1,2,3,4,5$ 55035 $1,2,3,4,5$ 55028 $1,2,3,4,5$ 55028 $1,2,3,4,5$ 62147C $1,2,3,4,5,6$ 62147A $1,2,3,4,5,6$ 19628 $1,2,3,4,5,6,7$ 44393 $1,2,3,4,5,6,7$ 44372 $1,2,3,4,5,6,7$ 614348 $1,2,3,4,5,6$	54976B	1,2,3,4,5			
51282A 1,2,3,4,5,6,7 RED.No. Notes 32902C 1,2,3,4,5,6,7 62501 1,2,3,4,5,6,7 55026 1,2,3,4,5,6 55027 1,2,3,4,5 329020 1,2,3,4,5 329021 1,2,3,4,5 329020 1,2,3,4,5 329020 1,2,3,4,5 329020 1,2,3,4,5 52120 1,2,3,4,5 52033 1,2,3,4,5 52034 1,2,3,4,5 55035 1,2,3,4,5 55036 1,2,3,4,5 55037 1,2,3,4,5 55038 1,2,3,4,5 62147C 1,2,3,4,5,6 62147C 1,2,3,4,5,6 62147A 1,2,3,4,5,6 62147A 1,2,3,4,5,6 19628 1,2,3,4,5,6,7 44393 1,2,3,4,5,6 62221 1,2,3,4,5,6 614348 1,2,3,4,5	RED No.	Notes			
Xiew $1,2,3,4,5,6,7$ 62501 $1,2,3,4,5,6,7$ 55026 $1,2,3,4,5,6$ 55027 $1,2,3,4,5,6$ 32902B $1,2,3,4,5$ 32902D $1,2,3,4,5$ 52120 $1,2,3,4,5$ 55033 $1,2,3,4,5$ 32902A $1,2,3,4,5$ 55035 $1,2,3,4,5$ 55036 $1,2,3,4,5$ 55037 $1,2,3,4,5$ 55038 $1,2,3,4,5$ 62147C $1,2,3,4,5,6,7$ 62147B $1,2,3,4,5,6,7$ 62147A $1,2,3,4,5,6,7$ 19628 $1,2,3,4,5,6,7$ 44393 $1,2,3,4,5,6,7$ 44372 $1,2,3,4,5,6,7$ 614348 $1,2,3,4,5$	51282A	1,2,3,4,5,6,7			
62501 $1,2,3,4,5,6,7$ 55026 $1,2,3,4,5,6$ 55027 $1,2,3,4,5$ 329028 $1,2,3,4,5$ 329020 $1,2,3,4,5$ 52120 $1,2,3,4,5$ 52033 $1,2,3,4,5$ 55033 $1,2,3,4,5$ 55035 $1,2,3,4,5$ 55035 $1,2,3,4,5$ 55028 $1,2,3,4,5$ 62147C $1,2,3,4,5,6,7$ 62147C $1,2,3,4,5,6,7$ 62147A $1,2,3,4,5,6,7$ 19628 $1,2,3,4,5,6,7$ 44393 $1,2,3,4,5,6,7$ 44393 $1,2,3,4,5,6,7$ 44372 $1,2,3,4,5,6,7$ 62221 $1,2,3,4,5,6,7$ 614348 $1,2,3,4,5,6,7$	REDINO	Notes			
55026 $1,2,3,4,5,6$ 55027 $1,2,3,4,5$ 329028 $1,2,3,4,5$ 329020 $1,2,3,4,5$ 52120 $1,2,3,4,5$ 52120 $1,2,3,4,5$ 52033 $1,2,3,4,5$ 52034 $1,2,3,4,5$ 55035 $1,2,3,4,5$ 55036 $1,2,3,4,5$ 55028 $1,2,3,4,5$ 62147C $1,2,3,4,5,6,7$ 62147C $1,2,3,4,5,6,7$ 62147A $1,2,3,4,5,6,7$ 19628 $1,2,3,4,5,6,7$ 44393 $1,2,3,4,5,6,7$ 44372 $1,2,3,4,5,6,7$ 44372 $1,2,3,4,5,6,7$ 62221 $1,2,3,4,5,6,7$	32902C	1,2,3,4,5,6,7			
55027 1,2,3,4,5 329028 1,2,3,4,5 329020 1,2,3,4,5 52120 1,2,3,4,5 55033 1,2,3,4,5 32902A 1,2,3,4,5 55035 1,2,3,4,5 55036 1,2,3,4,5 55037 1,2,3,4,5 55038 1,2,3,4,5 62147C 1,2,3,4,5,6,7 62147B 1,2,3,4,5,6 62147A 1,2,3,4,5,6 62147A 1,2,3,4,5,6,7 19628 1,2,3,4,5,6,7 44393 1,2,3,4,5,6,7 44393 1,2,3,4,5,6,7 44372 1,2,3,4,5,6 62221 1,2,3,4,5	62501	1,2,3,4,5,6,7			
32902B $1,2,3,4,5$ $32902D$ $1,2,3,4,5$ 52120 $1,2,3,4,5$ 55033 $1,2,3,4,5$ $32902A$ $1,2,3,4,5$ 52033 $1,2,3,4,5$ 55035 $1,2,3,4,5$ 55028 $1,2,3,4,5$ RED No. Notes $62147C$ $1,2,3,4,5,6,7$ $62147B$ $1,2,3,4,5,6$ $62147A$ $1,2,3,4,5,6$ 19628 $1,2,3,4,5,6,7$ 19628 $1,2,3,4,5,6,7$ 44393 $1,2,3,4,5,6,7$ 44372 $1,2,3,4,5,6$ 62221 $1,2,3,4,5,6$ 614348 $1,2,3,4,5$	55026	1,2,3,4,5,6			
32902D 1,2,3,4,5 52120 1,2,3,4,5 55033 1,2,3,4,5 32902A 1,2,3,4,5 55035 1,2,3,4,5 55028 1,2,3,4,5 62147C 1,2,3,4,5,6,7 62147B 1,2,3,4,5,6 62147A 1,2,3,4,5,6 19628 1,2,3,4,5,6,7 19628 1,2,3,4,5,6,7 44393 1,2,3,4,5,6,7 44372 1,2,3,4,5,6 62221 1,2,3,4,5 61434B 1,2,3,4,5	55027	1,2,3,4,5			
52120 1,2,3,4,5 55033 1,2,3,4,5 32902A 1,2,3,4,5 55035 1,2,3,4,5 55028 1,2,3,4,5 Notes 62147C 1,2,3,4,5,6,7 62147B 1,2,3,4,5,6 62147A 1,2,3,4,5,6 9628 1,2,3,4,5,6,7 19628 1,2,3,4,5,6,7 44393 1,2,3,4,5,6,7 44372 1,2,3,4,5,6,7 62221 1,2,3,4,5 61434B 1,2,3,4,5	32902B	1,2,3,4,5			
55033 $1,2,3,4,5$ 32902A $1,2,3,4,5$ 55035 $1,2,3,4,5$ 55028 $1,2,3,4,5$ RED NO. Notes 62147C $1,2,3,4,5,6,7$ 62147B $1,2,3,4,5,6$ 62147A $1,2,3,4,5,6$ RED No. Notes 19628 $1,2,3,4,5,6,7$ 44393 $1,2,3,4,5,6,7$ 44372 $1,2,3,4,5,6,7$ 62221 $1,2,3,4,5,6$ 61434B $1,2,3,4,5$	32902D	1,2,3,4,5			
32902A 1,2,3,4,5 55035 1,2,3,4,5 55028 1,2,3,4,5 RFD No. Notes 62147C 1,2,3,4,5,6,7 62147B 1,2,3,4,5,6 62147A 1,2,3,4,5,6 19628 1,2,3,4,5,6,7 19628 1,2,3,4,5,6,7 44393 1,2,3,4,5,6,7 44372 1,2,3,4,5,6,7 62221 1,2,3,4,5 61434B 1,2,3,4,5	52120	1,2,3,4,5			
55035 $1,2,3,4,5$ 55028 $1,2,3,4,5$ RFD No. Notes $62147C$ $1,2,3,4,5,6,7$ $62147B$ $1,2,3,4,5,6$ $62147A$ $1,2,3,4,5,6$ RED No. Notes 19628 $1,2,3,4,5,6,7$ 19628 $1,2,3,4,5,6,7$ 44393 $1,2,3,4,5,6,7$ 44372 $1,2,3,4,5,6$ 62221 $1,2,3,4,5,6$ $61434B$ $1,2,3,4,5$	55033	1,2,3,4,5			
55028 1,2,3,4,5 RFD No. Notes 62147C 1,2,3,4,5,6,7 62147B 1,2,3,4,5,6 62147A 1,2,3,4,5,6 62147A 1,2,3,4,5,6 9628 1,2,3,4,5,6,7 19628 1,2,3,4,5,6,7 44393 1,2,3,4,5,6,7 44372 1,2,3,4,5,6 62221 1,2,3,4,5 61434B 1,2,3,4,5	32902A	1,2,3,4,5			
RFD No. Notes 62147C 1,2,3,4,5,6,7 62147B 1,2,3,4,5,6 62147A 1,2,3,4,5 RED No. Notes 19628 1,2,3,4,5,6,7 44393 1,2,3,4,5,6,7 44372 1,2,3,4,5,6,7 62221 1,2,3,4,5,6 61434B 1,2,3,4,5	55035	1,2,3,4,5			
62147C $1,2,3,4,5,6,7$ $62147B$ $1,2,3,4,5,6$ $62147A$ $1,2,3,4,5$ RED No.Notes 19628 $1,2,3,4,5,6,7$ 44393 $1,2,3,4,5,6,7$ 44372 $1,2,3,4,5,6$ 62221 $1,2,3,4,5,6$ $61434B$ $1,2,3,4,5$	55028	1,2,3,4,5			
62147B 1,2,3,4,5,6 62147A 1,2,3,4,5 RED No. Notes 19628 1,2,3,4,5,6,7 44393 1,2,3,4,5,6,7 44372 1,2,3,4,5,6 62221 1,2,3,4,5 61434B 1,2,3,4,5	RED No.	Notes			
62147A 1,2,3,4,5 RED No. Notes 19628 1,2,3,4,5,6,7 44393 1,2,3,4,5,6,7 44372 1,2,3,4,5,6 62221 1,2,3,4,5 61434B 1,2,3,4,5	62147C	1,2,3,4,5,6,7			
62147A 1,2,3,4,5 RED No. Notes 19628 1,2,3,4,5,6,7 44393 1,2,3,4,5,6,7 44372 1,2,3,4,5,6 62221 1,2,3,4,5 61434B 1,2,3,4,5	62147B	1,2,3,4,5,6			
19628 1,2,3,4,5,6,7 44393 1,2,3,4,5,6,7 44372 1,2,3,4,5,6 62221 1,2,3,4,5 61434B 1,2,3,4,5	62147A	1,2,3,4,5			
19628 1,2,3,4,5,6,7 44393 1,2,3,4,5,6,7 44372 1,2,3,4,5,6 62221 1,2,3,4,5 61434B 1,2,3,4,5	RED No.	Notes			
44372 1,2,3,4,5,6 62221 1,2,3,4,5 61434B 1,2,3,4,5		1,2,3,4,5,6,7			
62221 1,2,3,4,5 61434B 1,2,3,4,5	44393	1,2,3,4,5,6,7			
61434B 1,2,3,4,5	44372	1,2,3,4,5,6			
61434B 1,2,3,4,5	62221	1,2,3,4,5			
10045		1,2,3,4,5			
		1,2,3,4,5			

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
64803A 1,2,3,4,5 43981 1,2,3,4,5 58714 1,2,3,4,5 54043 1,2,3,4,5 44002 1,2,3,4,5				
43981 1,2,3,4,5 58714 1,2,3,4,5 54043 1,2,3,4,5 44002 1,2,3,4,5				
58714 1,2,3,4,5 54043 1,2,3,4,5 44002 1,2,3,4,5				
54043 1,2,3,4,5 44002 1,2,3,4,5				
44002 1,2,3,4,5				
10245				
12345				
44383 1,2,3,4,5				
54042 1,2,3,4,5				
43685 1,2,3,4,5				
62462 1,2,3,4,5,6,7				
61433B 1,2,3,4,5,6,7				
44388 1,2,3,4,5,6				
45455 1,2,3,4,5				
44822 1,2,3,4,5				
43688 1,2,3,4,5				
44021 1,2,3,4,5	1,2,3,4,5			
44804 1,2,3,4,5	1,2,3,4,5			
44398 1,2,3,4,5				
RED No.				
51152H 1,2,3,4,5,6,7				
62426A 1,2,3,4,5,6,7				
51152D 1,2,3,4,5,6				
62426K 1,2,3,4,5				
62426J 1,2,3,4,5				
51152F 1,2,3,4,5				
51152E 1,2,3,4,5				
62426E 1,2,3,4,5				
47138 1,2,3,4,5				
51166 1,2,3,4,5	1,2,3,4,5			
54632 1,2,3,4,5	1,2,3,4,5			
51152J 1,2,3,4,5	1,2,3,4,5			
51152G 1,2,3,4,5	1,2,3,4,5			
51152B 1,2,3,4,5	1,2,3,4,5			
511521 1,2,3,4,5				

....

83

	10245			
62426G	1,2,3,4,5			
51152K	1,2,3,4,5,6,7			
62426H	1,2,3,4,5,6,7			
62426B	1,2,3,4,5,6			
51152C	1,2,3,4,5			
REEDENIO	<u>Notes</u>			
57673A	1,2,3,4,5,6,7			
53003B	1,2,3,4,5,6,7			
53003C	1,2,3,4,5,6			
57673C	1,2,3,4,5			
58834B	1,2,3,4,5			
54086B	1,2,3,4,5			
58834C	1,2,3,4,5			
54086A	1,2,3,4,5			
19940C	1,2,3,4,5			
57673D	1,2,3,4,5			
53003A	1,2,3,4,5			
57673B	1,2,3,4,5			
RED No.	Notes			
46331	1,2,3,4,5,6,7			
53787	1,2,3,4,5,6,7			
25081	1,2,3,4,5,6			
22414	1,2,3,4,5			
41452	1,2,3,4,5			
25465	1,2,3,4,5			
53001	1,2,3,4,5			
53793	1,2,3,4,5			
62012	1,2,3,4,5			
43630	1,2,3,4,5			
18991	1,2,3,4,5			
18989	1,2,3,4,5			
42639	1,2,3,4,5			
24497	1,2,3,4,5			
25456	1,2,3,4,5			
44734	1,2,3,4,5			
44/34	······································			

· · · · · · · · · · · · · · · · · · ·				
18759	1,2,3,4,5,6,7			
38118	1,2,3,4,5,6,7			
41342	1,2,3,4,5,6			
46638	1,2,3,4,5			
41339	1,2,3,4,5			
53013	1,2,3,4,5			
REDENO	Notes			
53780	1,2,3,4,5,6,7			
49417	1,2,3,4,5,6,7			
49419	1,2,3,4,5,6			
46324	1,2,3,4,5			
52984	1,2,3,4,5			
49794	1,2,3,4,5			
55970	1,2,3,4,5			
53779	1,2,3,4,5			
49403	1,2,3,4,5			
47095	1,2,3,4,5			
55070	1,2,3,4,5			
55045	1,2,3,4,5			
62045	1,2,3,4,5			
49796	1,2,3,4,5			
49434	1,2,3,4,5			
59905	1,2,3,4,5			
53764	1,2,3,4,5,6,7			
50084	1,2,3,4,5,6			
RED No.	Notes			
21838A	1,2,3,4,5,6,7			
50104	1,2,3,4,5,6,7			
50100	1,2,3,4,5,6			
18765B	1,2,3,4,5			
37693	1,2,3,4,5			
45572	1,2,3,4,5			
47039	1,2,3,4,5			
37694	1,2,3,4,5			
51339	1,2,3,4,5			

51338	1,2,3,4,5			
50105	1,2,3,4,5			
46300	1,2,3,4,5			
18765A	1,2,3,4,5			
54087	1,2,3,4,5			
21838B	1,2,3,4,5,6,7			
21837	1,2,3,4,5,6,7			
21838C	1,2,3,4,5,6			
50099	1,2,3,4,5			
40487J	1,2,3,4,5,6,7			
40487C	1,2,3,4,5,6,7			
40487M	1,2,3,4,5,6			
40487E	1,2,3,4,5			
40487F	1,2,3,4,5			
40487P	1,2,3,4,5			
40487L	1,2,3,4,5			
39064B	1,2,3,4,5			
40487H	1,2,3,4,5			
404871	1,2,3,4,5			
40487Q	1,2,3,4,5			
39064A	1,2,3,4,5			
40487B	1,2,3,4,5			
40487N	1,2,3,4,5			
40487R	1,2,3,4,5			
404870	1,2,3,4,5			

Notes:

- 1. These containers shall be sampled for TCLP constituents as listed in Section 2.3.1.
- 2. These containers shall be sampled for the total constituent parameters listed in Section 2.3.2.
- 3. These containers shall be sampled for the physical parameters listed in Section 2.3.3.
- 4. These containers shall be sampled for the uranium and transuranic parameters listed in Section 2.3.4 A.

- 5. These containers shall be sampled for the other radiological parameters listed in Section 2.3.4 B.
- 6. These containers shall be sampled for polychlorinated biphenyls as stated in Section 2.3.5.
- 7. This container shall be sampled in duplicate.

	FENDIX E-SAMPLING		1				
Characterization of the XT-847 Sampling and Analysis Schedule							
		Total Sample	Total per				
Waste Stream	Sampling beginning week of	Number	week				
Alumina	1/3/2011	28	28				
Blasting media	1/10/2011	20	23				
Welding slag	1/10/2011	3					
Grease/rags	1/24/2011	4	26				
Microsludge	1/24/2011	22					
	4/24/2044						
Spent carbon	1/31/2011	1	22				
Coal from Bio D	1/31/2011	1	<u> </u>				
Dirt/soap filters	1/31/2011	20					
Misc. rags, floor							
sweepings	2/7/2011	13	24				
Concrete	2/7/2011	11					
			e <u>wee gede die staar</u> T				
Ion Exchange resin	2/14/2011	12	28				
Varnish chunks	2/14/2011	16	a waar in talaan maaalii ka ka				
Spent resin	2/21/2011	18	- 21				
PG, dirt, plastic	2/21/2011	3					
			가 같다. 그는 것 같은 다 가 가 가 가 다. 2 시작 - 전 - 이가 가 가 가 있습니다. 				
Oil and Grease sludge	2/28/2011	18	18				
Used oil	3/7/2011	25	25				

APPENDIX E-SAMPLING SCHEDULE

87

USEC AND DOE RESOLUTION OF SHARED SITE ISSUES AT THE GASEOUS DIFFUSION PLANTS

Department of Energy

Oak Ridge Office P.O. Box 2001 Oak Ridge, Tennessee 37831

February 20, 2009

Mr. R. B. Starkey, Jr. Vice President, American Centrifuge USEC Inc. American Centrifuge Plant P. O. Box 628 Piketon, Ohio 45661

Dear Mr. Starkey:

REVISION OF "USEC AND DOE RESOLUTION OF SHARED SITE ISSUES AT THE GASEOUS DIFFUSION PLANTS" (REVISION 2)

This letter is in response to your letter of February 13, 2009, requesting execution of a revision to the United States Enrichment Corporation (USEC) and Department of Energy (DOE) Resolution of Shared Site Issues document. The proposed revision implements a corrective action from the Paducah fork lift incident of July 12, 2007, and will necessitate a revision to the Shared Site Procedure USEC-100 to ensure consistency in language and intent. The effect of the changes to the Shared Site Issues document and USEC-100 is to provide for the timely sharing of safety documentation between DOE and USEC when it has the potential to affect the other party. The existing language requires transmittal of "all" safety documentation, which includes documentation that has no impact or affect on the other party.

Please note that after discussions with various members of your staff, we have replaced those pages denoting "Revision 3" with "Revision 2" pages as this is the next revision of the document.

Please call me at (865) 576-2678 or Randy DeVault of my staff at (865) 241-8277, if you have any questions.

Sincerely,

an a Clat Larry W. Clark

Larry W. Clark Assistant Manager for Nuclear Fuel Supply

cc:

R. DeVault, NS-52, ORO M. Heiskell, NS-51, ORO K. Walling, CC-10, ORO W. Murphie, PPPO, LEX W. Jordan, USEC, Portsmouth S. Penrod, USEC, Paducah

R. B. Starkey, Jr. Vice President, American Centrifuge Dir: (740)-897-3272 Fax: (740)-897-3240

February 13, 2009 DOE 09-0008

Mr. Larry W. Clark Assistant Manager for Nuclear Fuel Supply U.S. Department of Energy Post Office Box 2001 Oak Ridge, Tennessee 37831

REVISION OF "USEC AND DOE RESOLUTION OF SHARED SITE ISSUES AT THE GASEOUS DIFFUSION PLANTS" (REVISION 3)

Dear Mr. Clark:

USEC and DOE, in attempting to resolve all outstanding issues concerning the Paducah fork lift incident of July 12, 2007, agreed to revise the shared site procedure USEC-100. In addition, USEC agreed to make one change in the USEC and DOE Resolution of Shared Site Issues document. Please find attached for your execution the revised Shared Site Issues document. The language in the proposed change will establish consistency with the new language in the proposed USEC 100 document.

The effect of the changes to both USEC-100 and the Shared Site Issues document is to provide for the timely sharing of safety documentation between DOE and USEC when it has the potential to affect the other party. The existing language requires transmittal of "all" safety documentation, which includes documentation that has no impact or affect on the other party

USEC appreciates your consideration and execution of the document. If you have any questions or need additional information, please contact Charlie Martin at (270) 441-5802.

Sincerely.

Enclosure: As Stated.

USEC Inc. American Centrifuge Plant 3930 U.S. Route 23 South - P.O. Box 628, Piketon, OH 45661 http://www.usec.com Mr. Larry W. Clark February 13, 2009 DOE 09-0009, Page 2

cc:

Rachel Blumenfeld, DOE-LEX Tullus Crawford, USEC Randy DeVault, DOE-ORO Dave Dollins, PPPO-PAD Marianne Heiskell, DOE-ORO J.T. Howell, DOE-ORO Wray Jordan, USEC Reinhard Knerr, PPPO-PAD Charles Martin, USEC William Murphie, DOE-LEX Steve Penrod, USEC Vijay Sazawal, USEC Dennis Scott, USEC Mark Smith, USEC Paul Sullivan, USEC Joe Taratino, PRS Dean Terry, USEC Allen Williams, USEC

USEC AND DOE RESOLUTION OF

SHARED SITE ISSUES

AT THE

GASEOUS DIFFUSION PLANTS

(Revision 2)

USEC AND DOE RESOLUTION OF

SHARED SITE ISSUES

AT THE

GASEOUS DIFFUSION PLANTS

(Revision 2)

Background

Once the NRC assumes nuclear regulatory oversight for USEC activities at the GDPs, there will be a need to coordinate DOE and USEC activities at the GDPs to ensure that:

- 1. USEC and DOE activities at the GDPs do not adversely affect the operations of the other party in terms of health and safety, environmental protection, safeguards and security, and nuclear regulatory compliance.
- 2. Situations with the potential to affect both DOE and USEC operations and personnel, such as emergencies and threats directed toward site activities, are managed in a coordinated manner that protects the safety and health of DOE and USEC personnel, including their respective contractors/subcontractors, and the public.
- Premises

The following premises support the proposed resolution of shared site issues:

- 1. This joint USEC and DOE approach to shared site issues does not modify, amend, or alter in any way the lease¹ between USEC and DOE for the GDP's or any memoranda of agreement, or any other agreements between USEC and DOE.
- 2. The site can be divided into three types of areas: (1) DOE areas (generally non-leased) in which DOE managed or overseen activities, which are exempt from NRC regulation under Section 110.a of the Atomic Energy Act of 1954, as amended, are conducted; (2) USEC leased areas in which USEC activities subject to NRC regulation are conducted; and (3) common areas (e.g., site roads) which are used for USEC and DOE activities.

¹The term "lease" refers to the Lease Agreement between the United States Department of Energy and the United States Enrichment Corporation dated as of July 1, 1993.

- 3. DOE will self-regulate DOE activities conducted in DOE areas and common areas in accordance with applicable DOE requirements. This includes DOE personnel and their contractors/subcontractors. DOE assumes full responsibility for the safety, safeguards, and security of DOE activities.
- 4. USEC activities conducted in USEC areas and common areas are subject to NRC regulation under terms of the certification application. This includes USEC personnel, their contractors, and subcontractors. USEC assumes full responsibility for the safety, safeguards and security of USEC activities.

Shared Site Issues

1. Shared Systems and Continuity of Essential Services

USEC provides certain services and utilities (e.g., lighting, heat) to DOE that are necessary for the safety, safeguards or conduct of DOE activities. Similarly, USEC and DOE activities are protected or supported by shared systems (e.g., nuclear criticality and security alarm systems, fire protection sprinklers) that are important to the safety and safeguards of USEC and DOE activities.

USEC and DOE will work together to ensure that interruptions to services necessary for the safety, safeguards and security of the GDPs are minimized and that shared systems remain operable. Additionally, USEC will apply configuration management controls to these systems, in a manner commensurate with that applied to equivalent USEC systems, to ensure that safety, safeguards and security systems and conduct of USEC and DOE activities are not adversely affected. Similarly, USEC and DOE will work together to establish a process for controlling the scheduling of interruptions to essential services to ensure that the safety, safeguards, and security of the GDPs are not adversely affected.

2. Control of Work Activities

DOE and USEC agree that activities in leased spaces must be conducted in accordance with USEC commitments to NRC. Accordingly, DOE (including their contractors/subcontractors) will obtain USEC's approval prior to conducting work in leased spaces. Similarly, prior to conducting work in non-leased spaces, USEC (including their contractors/subcontractors) will obtain DOE's approval. Both parties will strive to ensure that such approvals do not impede the schedule for the work activities of either party. Additionally, both parties will ensure that work activities that affect either party are conducted in accordance with the appropriate procedures.

3. Plant Changes

DOE and USEC agree to establish procedural controls to ensure that each party is promptly notified, and appropriate approvals obtained, prior to conducting activities that affect the design, construction, operation or maintenance of facilities and systems on their respective portions of the GDP sites. This process will allow the other party to evaluate the potential safety impact of such a change on its own facilities, systems, and activities at the site.

USEC shall provide copies of revised or new safety analyses to DOE contractors when changes to the leased premises or operation of the leased premises have the potential to impact these contractors. Similarly, DOE contractors will provide copies of revised or new USQDs/Safety Analyses when changes to DOE retained facilities, systems, or operations have the potential to impact USEC. This will include any USQD evaluation that concludes a proposed change does involve an unreviewed safety question. In the event that either party has a concern about the potential impact of any plant changes by the other party on the safety of its own operations and activities at either GDP site, the appropriate USEC and DOE representatives for that site shall jointly review the change and take appropriate action to resolve the concern (including any required plant modifications) in a prompt manner.

4. Emergency Management Coordination

In accordance with Exhibit F of the lease, USEC will provide emergency response training to DOE personnel, DOE contractors, and personnel of third party tenants of DOE at each of the GDPs. In accordance with the lease, DOE will reimburse USEC for the cost of this service. DOE will make necessary arrangements to assure that these personnel attend such training and be responsible for tracking their participation to assure they receive the required initial and periodic training.

The Emergency Plan for both GDPs describes the roles and responsibilities of USEC and DOE in the event of an emergency. For a declared emergency, USEC has the lead in responding to the emergency and DOE serves as an onsite member of the Emergency Operations Center. This relationship will continue to be maintained when NRC assumes regulatory oversight of the GDPs.

In the event of an emergency, in coordination with the USEC emergency management team, DOE will take the appropriate actions to control activities in the reservation area surrounding each of the GDP sites, as defined in the current Emergency Plan for each GDP. This includes the exclusion or evacuation of personnel from such area during an emergency. Additionally, USEC has ample authority to restrict access to the controlled area of the GDPs² for the purposes of plant protection, security, emergency preparedness, and radiation protection.³

5. Third Party Activities on GDP Sites

DOE and USEC agree to promptly provide each other with pertinent information concerning any operations or activities being conducted on their respective portions of each of the GDP sites, and the surrounding DOE-owned reservation on which that site is located, by or on behalf of third parties (e.g., The National Guard and other DOE tenants or lessees) that could have a potential impact on the operations or activities of the other part at that site. Specifically, DOE will provide USEC (and vice versa) with a written description of each existing third party lease agreement for each GDP site, including a detailed description of (a) any hazardous materials used or stored on site in connection with such lease (b) any operations or activities being conducted under such lease that cold pose a hazard to USEC's operations on the leased premises or act as an initiating event for an accident on the leased premises, and (c) any transportation or other access requirements on the leased premises or common areas of the site associated with such lease, particularly with respect to the transportation or storage of hazardous materials or equipment. Such descriptions shall be updated promptly to reflect changes in third party activities. In the event that either party has a concern about the potential impact that third party activities could have on the safe operation of either GDP site, the appropriate USEC and DOE representatives for that site shall jointly review the issue and take appropriate action to resolve the concern in a prompt and cost-effective manner.

6. Physical Protection Coordination

Effective access control and response to threats against site activities and facilities requires integrated access control for USEC and DOE activities and coordinated command and control in responding to threats against site facilities and activities. USEC will continue to maintain a physical security protection plan for the GDPs which defines the roles and responsibilities of the site security organizations. In the event of a security threat at the GDPs (including both leased and non-leased areas),

²The controlled area is defined as an area outside the restricted area but inside the site (reservation) boundary.

³See USEC letter to NRC dated December 13, 1995, in response to Question 2.0Q5 of the application for PGDP and PORTS.

-4-

USEC's security force has the responsibility to initially respond to the threat and determine the appropriate course of action. Depending on the significance of the security threat, the Emergency Operations Center at the affected site will be activated and, as discussed in Item 4 of this enclosure, USEC and DOE will respond accordingly. This relationship will continue to be maintained when NRC assumes regulatory oversight of the GDPs.

7. Event Notification

USEC will promptly notify DOE of any reportable events required by 10 CFR 76 or other applicable NRC regulations. This notification will normally be made by the Plant Shift Superintendent's (PSS) office. However, this notification will not take precedence over the prompt notification of the NRC as required by NRC regulations. Similarly, DOE will promptly inform USEC of any reportable events, under DOE's occurrence reporting system, for which DOE is responsible. Such notification will normally be made to the PSS's office.

8. Helipad

· · · · · ·

3.137

- e (e

USEC will establish written controls for helicopter access to the GDP sites and the air space over the sites for use by USEC, DOE or other DOE tenant organizations at the sites and to assist state or local law enforcement or emergency response personnel. Once established, DOE agrees to abide by these controls. As part of these controls, DOE will obtain USEC's concurrence from the PSS prior to utilizing the site helipad.

9. Communication of Incident Information and Media Coordination

DOE and USEC will coordinate information releases to the media in the following manner:

- a. DOE has the lead role in providing information relating to DOE activities and USEC will refer the media to DOE in such cases; and
- b. USEC has the lead role in providing information relating to USEC activities and DOE will refer the media to USEC in such cases unless there is a need for DOE to provide information in its role as site landlord.
- c. DOE and USEC will promptly provide each other with information copies of news releases of events that occur at the GDPs.

10. Radiation Protection

 $\sum_{i=1}^{n-1} (1-i)$

Radiation Protection (e.g., exposure monitoring) of employees is the responsibility of the employer (USEC or DOE) and is independent of the activities upon which they are working. That is, radiation protection for DOE personnel and their contractors/subcontractors is performed under the DOE radiation protection program. radiation Similarly. protection for USEC personnel and their contractors/subcontractors is performed under the USEC radiation program. In addition:

- a. Radiation exposure information for individuals who work on both DOE and USEC activities will be shared to permit DOE and USEC to satisfy their radiation exposure reporting requirements; and
- b. DOE will provide NRC with the radiation exposure information for DOE employees and their contractors/subcontractors, as requested, in order to meet NRC's reporting requirements.

In accordance with Exhibit F of the lease, USEC will provide radiation protection training to DOE personnel, DOE contractors, and personnel of third party tenants of DOE at each of the GDPs. In accordance with the lease, DOE will reimburse USEC for the cost of this service. DOE will make the necessary arrangements to assure that these personnel attend such training and be responsible for tracking their participation to assure they receive the required initial and periodic training.

11: International Atomic Energy Agency (IAEA) Safeguards Agreement Implementation

DOE and USEC will cooperate with the NRC in development, review, and revision of Subsidiary Arrangements and Facility Attachments for DOE and USEC activities at the sites which are applicable to the safeguards requirements of the IAEA.

12. Unclassified Controlled Nuclear Information (UCNI)

DOE is developing guidelines with consultation and technical support from USEC for the identification of UCNI at the GDPs and will provide these guidelines to NRC.

13. Access to Deleased Outside Areas

All activities in non-leased areas will be executed consistent with DOE requirements. USEC procedures which comply with NRC requirements may be utilized provided they meet or exceed equivalent DOE requirements. Subject to DOE approval, USEC may be permitted to run additional or new utilities over and/or under these outside areas to serve additional needs of USEC and DOE. USEC will contact DOE prior to work in these areas and will not violate any requirements imposed on the DOE by other regulatory agencies (e.g., EPA, OSHA). In cases where prior notification would deter USEC's ability to respond to an exigent situation (e.g., emergency response situations, water main breaks, etc.), notification will occur as soon as practical.

-7-

CONCURRED BY:

Clark

Lease Administrator U.S. Department of Energy Oak Ridge, TN

R. B. Starkey, Jr.) Lease Administrator United States Enrichment Corporation Bethesda, MD