ArevaEPRDCPEm Resource

From: WILLIFORD Dennis (AREVA) [Dennis.Williford@areva.com]

Sent: Wednesday, July 06, 2011 5:26 PM

To: Tesfaye, Getachew

Cc: BENNETT Kathy (AREVA); DELANO Karen (AREVA); ROMINE Judy (AREVA); RYAN Tom

(AREVA); KOWALSKI David (AREVA)

Subject: Response to U.S. EPR Design Certification Application RAI No. 492 (5815), FSAR Ch. 9

Attachments: RAI 492 Response US EPR DC.pdf

Getachew,

Attached please find AREVA NP Inc.'s response to the subject request for additional information (RAI). The attached file, "RAI 492 Response US EPR DC," provides a schedule since technically correct and complete responses to the six questions cannot be provided at this time.

The following table indicates the respective pages in the response document, "RAI 492 Response US EPR DC.pdf," that contain AREVA NP's response to the subject questions.

Question #	Start Page	End Page
RAI 492 — 09.03.04-21	2	2
RAI 492 — 09.03.04-22	3	3
RAI 492 — 09.03.04-23	4	4
RAI 492 — 09.03.04-24	5	5
RAI 492 — 09.03.04-25	6	6
RAI 492 — 09.03.04-26	7	7

The schedule for technically correct and complete responses to these questions is provided below.

Question #	Response Date	
RAI 492 — 09.03.04-21	November 11, 2011	
RAI 492 — 09.03.04-22	November 11, 2011	
RAI 492 — 09.03.04-23	November 11, 2011	
RAI 492 — 09.03.04-24	November 11, 2011	
RAI 492 — 09.03.04-25	November 11, 2011	
RAI 492 — 09.03.04-26	November 11, 2011	

Sincerely,

Dennis Williford, P.E.
U.S. EPR Design Certification Licensing Manager
AREVA NP Inc.

7207 IBM Drive, Mail Code CLT 2B

Charlotte, NC 28262 Phone: 704-805-2223

Email: Dennis.Williford@areva.com

From: Tesfaye, Getachew [mailto:Getachew.Tesfaye@nrc.gov]

Sent: Friday, June 03, 2011 7:22 PM

To: ZZ-DL-A-USEPR-DL

Cc: Sastre, Eduardo; Terao, David; Hearn, Peter; Clark, Phyllis; Colaccino, Joseph; ArevaEPRDCPEm Resource

Subject: U.S. EPR Design Certification Application RAI No. 492 (5815), FSAR Ch. 9

Attached please find the subject requests for additional information (RAI). A draft of the RAI was provided to you on May 21, 2011, and on June 1, 2011, you informed us that the RAI is clear and no further clarification is needed. As a result, no change is made to the draft RAI. The schedule we have established for review of your application assumes technically correct and complete responses within 30 days of receipt of RAIs. For any RAIs that cannot be answered within 30 days, it is expected that a date for receipt of this information will be provided to the staff within the 30 day period so that the staff can assess how this information will impact the published schedule.

Thanks, Getachew Tesfaye Sr. Project Manager NRO/DNRL/NARP (301) 415-3361 Hearing Identifier: AREVA_EPR_DC_RAIs

Email Number: 3222

Mail Envelope Properties (2FBE1051AEB2E748A0F98DF9EEE5A5D47AF782)

Subject: Response to U.S. EPR Design Certification Application RAI No. 492 (5815),

FSAR Ch. 9

Sent Date: 7/6/2011 5:26:27 PM **Received Date:** 7/6/2011 5:26:29 PM

From: WILLIFORD Dennis (AREVA)

Created By: Dennis.Williford@areva.com

Recipients:

"BENNETT Kathy (AREVA)" < Kathy.Bennett@areva.com>

Tracking Status: None

"DELANO Karen (AREVA)" <Karen.Delano@areva.com>

Tracking Status: None

"ROMINE Judy (AREVA)" < Judy.Romine@areva.com>

Tracking Status: None

"RYAN Tom (AREVA)" <Tom.Ryan@areva.com>

Tracking Status: None

"KOWALSKI David (AREVA)" < David. Kowalski@areva.com>

Tracking Status: None

"Tesfaye, Getachew" < Getachew. Tesfaye@nrc.gov>

Tracking Status: None

Post Office: auscharmx02.adom.ad.corp

Files Size Date & Time

MESSAGE 2536 7/6/2011 5:26:29 PM

RAI 492 Response US EPR DC.pdf 78873

Options

Priority:StandardReturn Notification:NoReply Requested:NoSensitivity:Normal

Expiration Date: Recipients Received:

Response to

Request for Additional Information No. 492(5815), Revision 0

6/03/2011

U.S. EPR Standard Design Certification
AREVA NP Inc.
Docket No. 52-020

SRP Section: 09.03.04 - Chemical and Volume Control System (PWR) (Including Boron Recovery System)

Application Section: 9.3.4

QUESTIONS for Component Integrity, Performance, and Testing Branch 2 (ESBWR/ABWR Projects) (CIB2)

Question 09.03.04-21:

The response to RAI 125, Questions 9.03.04-18 identified the EPRI Primary Water Chemistry Guidelines as the reference document for parameters and frequency of sampling for the US EPR designs. The applicant further responded in RAI 125, Question No. 09.03.04-18 that recent research indicates that although there are advantages to higher hydrogen concentrations in the RCS, the disadvantages are more important.

The Staff finds that to date there has been no reports of these disadvantages occurring from any plants using hydrogen concentrations in the range of 35-50 cc/kg. The hydrogen concentration in the RCS is a control parameter associated with Action Level I lower limit of 25 cc/kg. One of the main purposes of maintaining a significant hydrogen 'buffer' over a minimum hydrogen concentration is for mitigation of oxygen intrusion into the RCS. All make-up and borated water sources that provide direct feed to the RCS are saturated with oxygen. Thus the lower limit of 25 cc/kg has been used to ensure that oxygen ingress, especially during intervals of large volume make-up, does not go unabated.

Rev 2 of the EPR FSAR Tier 2, 9.3.4 still references the EPRI PWR Primary water chemistry guidelines Rev 6. Hydrogen control is a "shall" requirement in the EPRI guidelines. In addition, the NEI guidance on this issue is as follows (from a letter dated December 2, 2003 from Lawrence Womack, Chair of the Steam Generator Management Program for EPRI):

Guideline elements designated as shall are important to long-term steam generator reliability but could be subject to legitimate deviations due to plant differences and special situations. Deviations shall be based on careful consideration by the responsible utility and independent review and concurrence of the justification by the NEI Review Board. Concurrence from the review board should be sought prior to implementing a deviation. However, in the event that operational need require immediate implementation of a deviation, utilities may act independently on a one-time basis provided they submit their justification for the deviation to the Review Board within 30 days. Concurrence from the Review Board will permit continued use of the deviation.

The current revision of the FSAR does not address this issue satisfactorily.

For these reasons, the Staff requests the applicant to provide a more rigorous technical evaluation of the hydrogen control range that demonstrates the acceptability of maintaining the RCS hydrogen below the EPRI Guidelines Action Level 1 limit.

Response to Question 09.03.04-21:

Question 09.03.04-22:

RAI 200, Question 09.03.04-19 Parts 1, 2, and 3 and RAI 125, Question 09.03.04-16 Part 3 asked the applicant to describe how nitrogen that is continuously purged through the VCT would prevent build up of ammonia and control hydrogen by this continuous nitrogen feed and bleed process in the RCS. The responses to Question 1, 2a and b of RAI 200, Question 09.03.04-19 are impacted by this description as well. In a subsequent response to the question in RAI 200, Question 09.03.04-19, the applicant stated:

"The hydrogen is collected in the top head of the gas separator and educted by the water jet pump and discharged into the letdown stream. The RCS hydrogen concentration depends on the hydrogen partial pressure in the gas separator and the back pressure applied to the gas by the over pressure maintained in the Volume Control Tank."

This explanation indicates that the measurement of hydrogen concentration will be based on the partial pressure in the gas separator and the VCT back pressure. However, both the VCT and the gas separator will also be saturated with nitrogen gas. The question of how the exact concentration of hydrogen will be determined is not evident in this explanation. The staff finds that the applicant has not fully described the exact mechanism of how nitrogen purging of the VCT maintains hydrogen concentration in the RCS.

For this reason, the Staff requests the applicant provide a description of the mechanism and what equations would be used to determine the theoretical hydrogen concentration in the RCS.

Response to Question 09.03.04-22:

Question 09.03.04-23:

RAI 200, Question 09.03.04-19 Part 3 indicated that the equilibrium concentration of ammonia and its effect on demineralizer performance are to be provided at a future date (later in the design process)

Therefore, the Staff requests the applicant to describe the effect of ammonia build on the RCS demineralizer performance.

Response to Question 09.03.04-23:

Question 09.03.04-24:

The applicant's response to RAI 125, Question 09.03.04-15 Parts 1 and 2 indicated that demineralizer resins will be purchased in the lithiated form. The information provided in Response #1 to this RAI is contrary to the statement in section 9.3.4.2.1 of the licensee submittal:

"Both ion exchangers are initially charged with the same quantity of resin in the form of H⁺ and OH⁻. One ion exchanger is saturated with lithium and boron. After an equilibrium concentration is reached, this ion exchanger serves as the main purification ion exchanger. The other ion exchanger removes cesium and excess lithium produced in the RCS."

The applicant stated in response to the RAI that the FSAR will not need to be changed.

Rev 2 of the EPR FSAR Tier 2, 9.3.4 has not been changed to reflect the fact that the applicant intends to purchase lithiated mixed bed ion exchanger rather than perform the lithiation process *in situ*. The current description in the FSAR would have the plant changing out a mixed bed demineralizer during power operation, and performing an *in situ* equilibration by addition of lithium into the RCS. This process description is not done at *any* PWR.

Therefore, the Staff requests that the applicant change the FSAR Section 9.3.4.2.1 to match the response to RAI Question 09.03.04-14 parts 1 and 2.

Response to Question 09.03.04-24:

Question 09.03.04-25:

RAI 200, Question 09.03.04-20 requested that a pre-operational functional test of the evaporator system demonstrating its capabilities be performed. The applicant responded that such a test, "will be requested as part of the supplier's functional shop testing (or equivalent) prior to owner equipment acceptance and release for shipment (to the site)."

Therefore, the Staff requests that the applicant describe the pre-operation functional test of the evaporator system in the FSAR.

Response to Question 09.03.04-25:

Question 09.03.04-26:

RAI 200, Question 09.03.04-20 the staff requested that a calculation be provided that demonstrates that the ¹⁰B concentration will not be depleted during the 1-year interval between confirmative analytical results while water is being reprocessed. The applicant replied, "frequency for determining the B-10 assay (atom %) will be identified later in the design process."

The Staff requests that the applicant describe the method for determining the ¹⁰B assay frequency in the FSAR.

Response to Question 09.03.04-26: