NRC000197

Eagle Rock Enrichment Facility Mandatory Hearing on Environmental Matters

July 12-14, 2011

NRC Staff Presentation Topic 4 Construction Air Quality Impacts

Presenter:

Ronald Kolpa Environmental Systems Engineer Argonne National Laboratory

Overview of AERMOD Air Dispersion Model

 Developed jointly by American Meteorological Society (AMS) and U.S. Environmental Protection Agency (EPA).

<u>AMS/EPA</u> Regulatory <u>Mod</u>el (NRC000198)

- Preferred model for understanding impacts of released pollutants in Planetary Boundary Layer (PBL).
- Primary model for demonstrating compliance with EPA regulations and for State air quality protection planning.

Overview of AERMOD Air Dispersion Model (cont.)

Model Applicability/Flexibility:

- Rural and urban areas
- Flat and complex terrain
- Surface-level and elevated releases
- Single or multiple sources
- Point, area, line, and volume sources
- One-hour to annual (or period) averaging time

AERMOD Model Architecture

AERMOD consists of one main program, two primary preprocessing programs (AERMET & AERMAP), and other pre-processing programs that can be used when relevant.

- AERMET pre-processes meteorological data inputs to calculate boundary layer parameters.
- AERMAP pre-processes terrain data using digital elevation data from U.S. Geologic Survey (USGS).
- AERSURFACE pre-processes surface characteristics.
- Other capabilities (not applicable to EREF scenario):
 - Modeling for ozone and lead
 - BPIP/PRIME algorithm for modeling downwash from nearby tall structures

AERMOD Inputs

Surface Hourly Meteorological Data:

- Ambient temperature
- Wind speed and direction at one- or multi-levels
- Station pressure (estimate for density of dry air)
- Sky condition (ceiling height and opaque [or total] sky cover)
- Standard deviation of wind direction fluctuations
- Upper sounding data

AERMOD Inputs (cont.)

Surface Characteristics Data (at measurement site):

- Surface roughness length (height of obstacles to the wind flow)
- Albedo (reflection coefficient of solar radiation)
- Bowen Ratio (indicator of surface moisture)

Identifying Sources of Meteorological Data Inputs

Onsite Data:

- National Weather Service (NWS) Station: Materials and Fuels Complex (MFC) at Idaho National Laboratory
- Hourly Surface Data:
 - NWS Station at Idaho Falls Regional Airport (Fanning Field)
- Upper Soundings Data:

– NWS Station in Boise, Idaho

Identifying Sources of Surface Characteristics Data Inputs

- <u>Terrain</u>: USGS Digital Elevation Model Data for MFC
- <u>Land Cover</u>: USGS Land Cover Data for MFC

EREF Major Preconstruction and Construction Air Pollution Sources Source: FEIS, Section 4.2.4.1, Pages 4-12 to 4-22 (NRC000134)

- Internal combustion engines of construction vehicles/equipment and vehicles for workforce commuting and material deliveries
- On-site comfort heating systems
- Ground disturbance and wind erosion on bare soil and stockpiles of soils and materials
- Travel on unpaved roads
- On-site concrete batch plant
- On-site petroleum fuel storage and handling and application of corrosion control coatings
- Welding, brazing, etc.
- Use of explosives for grade alteration

EREF Preconstruction- and Construction- Related Air Pollution Factors

Sources: FEIS, Section 4.2.4.1, Table 4-2, Page 4-14 (NRC000134); ER Rev. 2, Section 4.6.1, Page 4.6-1 and Table 4.6-1 (AES000070)

- Construction schedules/season and duration of activities
- Sizes of active construction zones and scale of activities
- Number, type, and condition of equipment
- Workforce size
- Fuel logistics and consumption
- Soil type and moisture content (with & without mitigation)
- Intended mitigation measures and Best Management Practices (BMPs)

Additional Modeling Assumptions Source: FEIS, Section 4.2.4.1, pages 4-12 to 4-22 (NRC000134)

- Vehicles and equipment maintained in proper condition.
- Low-sulfur diesel fuel used in diesel-powered vehicles/equipment.
- Majority of materials/equipment delivered to site from Idaho Falls.
- Workforce commutes from Idaho Falls; no credit assigned for buses or carpools.
- Best Management Practices are implemented.
- Particle size for surface soils consistent with high-silt content soils.
- Average disturbed area of 89.4 hectares (221 acres).
- Average daily 10-hour workday for 21 days each month.

Estimating Emissions

- EPA Emission factors published in <u>AP-42, Compilation of Air</u> <u>Pollutant Emission Factors</u> were used to estimate emissions from on-site construction vehicles and equipment.
 - Chapter 3.3, Gasoline and Diesel Industrial Engines (NRC000199)
 - Chapter 7.1, Organic Liquid Storage Tanks (NRC000200)
 - Chapter 13.2.2, Unpaved roads (NRC000201)
 - Chapter 13.2.3, Heavy Construction Operations (NRC000202)
 - Chapter 13.2.4, Aggregate Handling and Storage Piles (NRC000203)
- EPA model MOBILE 6.2, Vehicle Emission Modeling Software (NRC000204) and EPA data (NRC000205) were used to estimate engine exhaust emissions from commuting and delivery vehicles.
- EPA model TANKS Emissions Estimation Software (NRC000206) was used to augment the determination of emissions from on-site fuel storage tanks.

Modeling Results Source: FEIS, Table 4-5, Page 4-21 (NRC000134)

Table 4-5 Estimated Air Quality Impacts at the Proposed EREF Property Boundary Associated with Initial Preconstruction and Construction ^a

			Concentration (µg/m ³ , except ppm for CO)				Percent of Standard		
Pollutant	Emission Rate (g/s)	Averaging Time	Background	Modeled Maximum*	Total	NAAQS/ SAAQS⁵	Modeled Maximum	Total	
со	3.55	1-hour	4.3	0.8	5.1	35	2.4	14.6	
	3.55	8-hour	2.1	0.1	2.2	9	1.5	24.9	
NO ₂	1.3	Annual	11.3	1.0	12.3	100	1.0	12.3	
SO ₂	0.1	3-hour	159.7	11.3	171.0	1300	0.9	13.2	
	0.1	24-hour	62.8	1.8	64.6	365	0.5	17.7	
	0.1	Annual	15.7	0.1	15.8	80	0.1	19.7	
PM ₁₀	24.3	24-hour	52.0	355.2	407.2	150	236.8	271.5	
	24.3	Annual	22.0	15.9	37.9	50	31.8	75.8	
PM _{2.5}	2.4	24-hour	21.0	15.9	36.9	35	45.3	105.3	
	2.4	Annual	6.4	1.6	8.0	15	10.5	53.2	

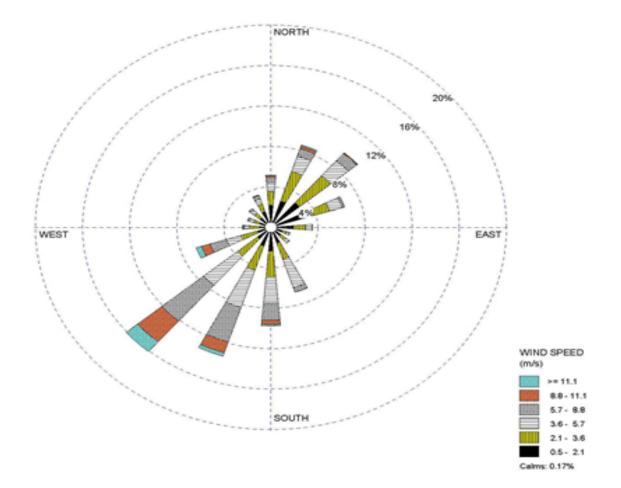
^a AERMOD model uses the following:

- The highest of the second-highest concentrations over 5 years for CO and for 30-hr and 8-hr sulfur dioxide (SO₂).
- The highest of the annual averages over 5 years for nitrogen dioxide (NO₂) and SO₂.
- The high-6th-high concentration over 5 years for 24-hr PM₁₀.
- The highest of multiyear average of high-8th-high at each receptor for 24-hr PM_{2.5}, the highest of the annual averages over 5 years for NO₂ and SO₂, and with a wind speed measurement sensitivity of 0.134 m/s and no default value applied for low wind speed.

^b SAAQS = State Ambient Air Quality Standards.

Interpreting EREF Air Dispersion Modeling Results

- Assumptions regarding modeling inputs were conservative in all instances.
- All NAAQS except for particulate were met at EREF property boundary.
- Particulates exceed the standard at EREF property boundary primarily as a result of fugitive dust.
- Particulate concentrations sensitive to wind speed; low wind speeds result in least amount of dust dispersion and, therefore, higher fugitive dust concentrations.
- EPA has announced that very low wind speeds introduce a positive bias in AERMOD for near field impacts for particulates (70 Fed. Reg. 68245-6).


Near Field Calm-Wind Bias Source: FEIS, Table 4-6, Page 4-23 (NRC000134)

Pollutant	Averaging Time	NAAQS/ SAAQS (<i>u</i> g/m³)	Back Ground (<i>u</i> g/m³)	Modeled Maximum at Calm Wind Speed Value of 0.134 m/sec (<i>u</i> g/m ³)	Total <i>u</i> g/m³	Percent of Standard	Modeled Maximum at Calm Wind Default Value of 1.0 m/sec (<i>u</i> g/m ³)	Total <i>u</i> g/m³	Percent of Standard
PM ₁₀	24-hour	150	52.0	355.2	407.2	271.5	189.9	241.9	161.3
	Annual	50	22.0	15.9	37.9	75.8	13.1	35.1	70.2
PM _{2.5}	24-hour	35	21.0	15.9	36.9	105.3	12.0	33.0	94.1
	Annual	15	6.4	1.6	8.0	53.2	1.3	7.7	51.3

Interpreting EREF Modeling Results: EREF Wind Rose

Sources: FEIS, Section 3.5.2, Page 3-15, and Figure 3-11, Page 3-23 (NRC000134)

Conclusions

- The staff used AERMOD for evaluating the impacts to ambient air quality of EREF preconstruction and construction.
- The results presented in the FEIS were based on the application of adequate and representative inputs and conservative assumptions.
- Modeling demonstrated that particulate concentrations could be greater than the NAAQS standard at the EREF property boundary.
- Successful execution of Best Management Practices and appropriate mitigation will minimize or prevent NAAQS exceedances.

