ATTACHMENT 2

Letter from C.R. Steinhardt (WPSC)

To

Document Control Desk (NRC)

Dated

May 31, 1996

Page TS B4.2-4

The pressure boundary for HEJ sleeves is shown on Figure TS 4.2-1. The pressure boundary used to disposition parent tube indications (PTIs) detected in the upper joint of HEJ sleeved tubes is discussed in WCAP-14641⁽⁵⁾. The pressure boundary will allow PTIs located such that there is a minimum diameter change of 0.003 inch (not including an allowance for measurement uncertainty) between the peak diameter of the sleeve hardroll, and the diameter at the peak amplitude of the PTI, to remain in service. The 0.003 inch interference lip is derived from structural and leakage testing. When inspecting and dispositioning the PTIs, the acceptance criteria will be adjusted to account for measurement uncertainties associated with the technique used to measure the relative change in ID sleeve diameters. Application of the pressure boundary for HEJ sleeved tubes provides allowance for leakage in a faulted loop during a postulated steam line break (SLB) event. A SLB leakage of 0.025 qpm is assumed for each applicable indication. Steam line break leakage from all sources must be calculated to be 34 gpm in the faulted loop. Maintenance of the 34 gpm limit ensures off-site doses will remain within a small fraction of the 10 CFR Part 100 guidelines for a SLB.

There are three types of Combustion Engineering leak tight sleeves. The first type, the straight tubesheet sleeve, spans the degraded area of the parent tube in the tubesheet crevice region. The sleeve is welded to the parent tube near each end. The second type of sleeve is the peripheral tubesheet sleeve. The sleeve is initially curved as part of the manufacturing process and straightened as part of the installation process. The third type of sleeve, the tube support plate sleeve, spans the degraded area of the tube support plate and is installed up to the sixth support plate. This sleeve is welded to the parent tube near each end of the sleeve.

The hydraulic equivalency ratios for the application of normal operating, upset, and accident condition bounding analyses have been evaluated. Design, installation, testing, and inspection of steam generator tube sleeves requires substantially more engineering than plugging, as the tube remains in service. Because of this, the NRC has defined steam generator tube repair to be an Unreviewed Safety Question as described in 10 CFR 50.59(a)(2). As such, other tube repair methods will be submitted under 10 CFR 50.90; and in accordance with 10 CFR 50.91 and 92, the Commission will review the method, issue a significant hazards determination, and amend the facility license accordingly. A 90-day time frame for NRC review and approval is expected.

⁽⁵⁾WCAP-14641, "HEJ Sleeved Tube Structural Integrity Criteria: Diameter Interference at PTIs," April 1996.