Client: Wisconsin Public Service Company
Calculation No. C-020
Title: Fragility Analysis of the Circulating Water Intake and Discharge Piping

Project: Kewaunee USI A-46 / IPEEE

Method: Hand Calculation

Acceptance Criteria: AISC 8th Edition, ACI 318-89, and EPRI NP-6041

Remarks:

REVISIONS

No.	Description	By	Date	Chk.	Date	App.	Date
0	Original Issue	MSLi	$5120 / 94$	TMT	5/25/9y	W ${ }^{\text {d }}$	5/6/94
			;				
		$\begin{array}{r} \text { CALCU } \\ \text { CO } \\ \text { SHE } \\ \text { FIGUF } \end{array}$	ATION ER T 1.3		CON	$\begin{aligned} & \text { RACT } \\ & \text { C2683 } \end{aligned}$	

 (CDFM) valus of the tequmper ciraboting uter. Plping (Discharge andintase) for the IDEEE arivity

Th the absence of dicest fant distacenent or lizuefoction, ony the following two effets of eothaete glound mition efteds on thfurfetures are con siderod.
A. Akiag thitin Compersion and bending stranc inducet by fhe maveling - Silmic wave.

Concluston: The CDFN value of He circultrig water piping syteim is 0418 and it is ontrilled by tho concrete dischorge pipins at penetretim under shair

References:
II Kewlanee Drawings
\# $\$ 613-$ G Circulating water Intake Dischorge Man"
*S614-B "Craletiong water Intate plan \& Prsfie".
-M33-x, circalating Water Fiping

- xk500-96. "Spifir itin 120 Eenforced Coucrete lop with Eubler

- XK-200-102," Retrgored Concrete Pipe W/"s" stimips":

2. ASSE Fandord $4-86$, Seism Analysis of safty platit Nu for Stucturis ond commentary fi fandard for sismil Anst, is of Sofeforeloted Nuctear sindertes.
3. Topa and Goling Pismic Desin or Burreditaing spand AsCE:

Spataly Confetance on Srua cural Rosipn of Nudear plan Frilifies,: Nas ordens,Lovisiana, Devenber 8 - 710 , 912

6. Borei, Sidebotho Seding \& Swith Atvanod Mechoniss of natross, $3^{2 d}$ edtern
7 Grinde pongring feel Instite, Manuol of stovdert poofics. 32 raterton, 100 .
8. GEI Ripant , RaNavive IpEE March 994
9. Bowes; Foundotion Anotys and Dosign zo edtion
10. Newmark and Hail, Dowelonent of Critro for Senmic Rvies of Selectep Nucteor power PCut:' NUREG/CR-0098, May 1978.
11. Kewaune, Muclear power PIAn USAR"

1. Roarte Koung, Eorumer for Stres and ftain, 5 trotign

Assamitions
General
Genfrack devetoad in the concete piping is not oundored to be faflure
frace me that leakege is alowed during ar affor the sfismic enont.
 inthe folkowing colrostion.

Dsonarge piping
compresive strmath of Concrete -3000 psi

 1-...covera

 of a fterup is $d-0.38^{\circ}$ (Bf fof foge $2-5$).

Stevenson and Associates
A Structural-Mechanical
Consulting Engineering Firm
\qquad Joano. 9102683 StuIT \qquad 3 of 13 sumect Kevounir AFS/IPEEE Erajility Analysis of the Cirauloting water Ppping c-20

Intare Piping

1. rield Etrength of thu sted materiol is 36 ksi

In the absence of disect fauly drapacumat or liqufor tron, the following effects of ene thquace graand motion aro pon sidened.
a. Axial fengon <compression and bending due to traveling seismic wave.
b. Strain caused by transient horiznntal dizplacements at caunecions.

Paranoters:
Soil: (ompactod bactfil, कs $=130$ pet, Us $=0,3$ (Rof. B)
 max around updeth (Rof. O)

Companstaned wav velogefy, $C=3000$ fpp
with $\mathrm{V}_{3}=0.3$ for compasted badter
Ragleigh onave velarity $C_{R}=0.5 C_{P}=1500$ fpes
Shear wave uplosty, $C_{S}=C_{B} / 0,9 \beta=1613$ tps
Cefficient of subgrade rrafion, ko
From equation9-14 in pect.6, wh have

where

$$
\begin{aligned}
& D=\text { diamper of } 40 \text { pipe } \\
& 8=\text { shil demity }=130 p
\end{aligned}
$$

$$
\begin{aligned}
& h=\text { anerge dopth of pibe bebw arade } \\
& h=\text { orficent of frecton }=\tan (-6 \phi)=\tan
\end{aligned}
$$

$$
\begin{aligned}
& h=\text { avernge deth of pipo bolew grade } \\
& M=\text { cosficent of fremon }=\tan (5 \phi)=\tan \phi=0.58
\end{aligned}
$$

$$
f=237 D h(p e x)
$$

$$
\begin{aligned}
& =216 \text { Ret }
\end{aligned}
$$

\square 4 of 3 sumect Kendrubas AS/PEEE
Frofiliky Anolyris of the Grruloting Water Piping C-0.20

Peak Trantent Htor gondoQ Istacement (Rof O)
Flowing Consenvative assumpton have ben made:

1. The poof tranfent displacmen of tesal doper due to au eathaute uréralns arediby utequing with ropet to dopth Ae poak voluss of the sf mircole induced shoor sfrain in the soi This is giomutive, as the peat stoor gitrins at deffert dopthr do not orcur simifaneonsly.
-Th drferentia dsoa owna bewan a building ano the surrounding
 drane of about 25 ferfrou the fundeton.
 Tade I Pf EEI fest (see page 13)
grawnd serfoce 1,2 inches serepu house ob indes

Msing the ascamplon abov, ths trancent displi sef sen house for feaross +1siliprefe is $0.53 \times 0.42=0.23$ ushos.
 noupe quet ths romal?

$$
f=\sqrt{0.5^{2}+0.23}=0.58 \text { intes }
$$

 for vert sfif soil profie dse nuil swaller Hon these for sfef saif prate. Therefre the dis phonnent for set soilmofee is used.

	CAL. NO. 91C2683 C-020 SUBJECT: Kewaunee A-46/IPEEE	SHEET \# 5 of 13 Revision 0
Stevenson \& Associates a structurarmechanical consulting engineering fim	Fragility Analysis of the Circulating Water Intake and Discharge Piping	By MSL 5/20/94 Chk. TMT 5/25/94

Monent and Shear Capacities of Discharge Pipe

In accordance with Ref. 4 (page 486) the use of gross moment of inertia (i.e. neglecting reinforcement and concrete cracking) underestimates deflections. Hence using it for the purpose of this calculation is conservative.
$I_{g}=\frac{\pi\left(140^{4}-120^{4}\right)}{64}=8.7 \times 10^{8} \mathrm{in}^{4} \quad E_{\mathrm{c}}=57000 \sqrt{3000}=3.1 \times 10^{6} \mathrm{psi}$
$A_{g}=\frac{\pi\left(140^{2}-120^{2}\right)}{4}=4080 \mathrm{in}^{2}$
$A_{s h}=\frac{A_{g}}{k}=\frac{4080}{2}=2040 \mathrm{in}^{2} \quad(k=2$ for a ring from page 173 of Ref. 6$)$
$\mathrm{G}_{\mathrm{c}}=\frac{3.4 \times 10^{6}}{2(1+0.2)}=1.29 \times 10^{6} \mathrm{psi} \quad$ (Poisson ratio $=0.2$)
where inside dlameter $=10 \mathrm{ft}$ and thickness $=10 \mathrm{in}$.
Mornent capacity of the discharge pipe is calculated similarly to page 410 of Ref. 4:

$\xi_{y}=\frac{f_{y}}{E_{s}}=\frac{40000}{29 \times 10^{6}}=0.0014$
So $\alpha_{s}=70.22^{\circ}=123 \mathrm{rad} . \quad \alpha_{c}=96.56^{\circ}=169 \mathrm{rad}$.
$R=65$ in
$\cup A B=65 \times 1.23 \times 2=160 \mathrm{in}$
$\cup C D=70 \times 1.69 \times 2=237$ in
$C D=70 \times \operatorname{Cos} 6.56^{\circ} \times 2=139$ in
$O E=\frac{2}{3} \times \frac{70^{3}-60^{3}}{70^{2}-60^{2}} \times \frac{139}{237}=38$ in
Moment due to compression in concrete:
$A_{\mathrm{c}}=\frac{\pi\left(140^{2}-120^{2}\right) \times 2 \times 96.56}{4 \times 360}=2190 \mathrm{in}^{2}$
$M_{f}=0.9 \times 2550 \times 2190 \times 38=191 \times 10^{6} \mathrm{in}-\mathrm{lb}$

	CAL. NO. 91C2683 C-020 SUB.JECT: Kewaunee A-46/IPEEE	SHEET \# 5 of 13 Revision 0
Stovenson \& Associates a stucturar mectanical consulting engineering firm	Fragility Analysis of the Circulating Water Intake and Discharge Piping	By MSL 5/20/94 Chk. TMT 5/25/94

Mornent due to compression in steel which yields:
$\alpha=\frac{\pi}{2}-\tan ^{-1}\left(\frac{21}{65}\right)=1.242 \mathrm{rad}$
$A_{s}=\frac{3.37}{12} \times 2 \alpha R=\frac{3.37}{12} \times 2 \times 1242 \times 65=45.34 i^{2}$
C.O.G. of yielded steel in compression in respect to the cross-section center line (page 69 in Ref. 12):
$\operatorname{cog} g=\frac{2 R \sin \alpha}{3 \alpha}\left(1-\frac{t}{R}+\frac{1}{2-t / R}\right)=\frac{2 \times 70 \times \sin (1.242)}{3 \times 1.242}\left(1-\frac{10}{70} \div \frac{1}{2-10 / 70}\right)=49.63 \mathrm{in}$
$M_{T}=(22+49.63) \times A_{s} f_{y}=71.63 \times 45.34 \times 40000=130 . \times 10^{5}$ in -10
Moment due to compression in steel which does not yield:
$A_{s}=2 \times(22+21) \times \frac{3.37}{12}=24.15 \mathrm{in}^{2}$
$M_{t} \approx \frac{2}{3}(22+21) \times A_{s} f_{y}=\frac{2}{3} \times 43 \times 24.15 \times 40000=27.7 \times 10^{8}$ in $-1 b$
Moment due to tension in steel:
$d A_{s}=\frac{A_{s}}{U A B} R(d \alpha) \quad f_{\alpha}=\frac{f_{y}}{43}(65 \cos \alpha-22)$
Total $A_{B}=3.37 \times(\cup A B)=\frac{3.37 \times 160}{12}=45 \mathrm{in}^{2}$
$d T=f_{a} \times\left(d A_{b}\right)=\frac{f_{y}}{43}(65 \cos \alpha-22) \times \frac{A_{s}}{\forall A B} R(d \alpha)=\bar{T} \times(65 \cos \alpha-22) \times(d \alpha)$ where \bar{T} is defined as $\bar{T}=\frac{f_{y}}{43} \times \frac{A_{s}}{U A B} \times R=\frac{40000 \times 45 \times 65}{43 \times 160}=17000 \mathrm{lb} / \mathrm{in}$
$d M_{T}=d T \times 65 \operatorname{Cos} \alpha=\bar{T}\left(65^{2} \operatorname{Cos}^{2} \alpha-1430 \times \operatorname{Cos} \alpha\right) \times d \alpha$

$$
\begin{aligned}
M_{T} & =0.9 \times 2 \int_{0}^{\alpha \mathrm{d}} \mathrm{~d} M_{T}=0.9 \times 2 \overline{\mathrm{~T}}\left\{65^{2} \frac{\alpha}{2}+\left.\frac{1}{4} \operatorname{Sin} 2 \alpha\right|_{0} ^{\alpha_{\mathrm{s}}}-1430|\operatorname{Sin} \alpha|_{0}^{\alpha s}\right\} \\
& =0.9 \times 2 \frac{\bar{T}\left[65^{2}\left(\frac{123}{2}+\frac{0.637}{4}\right)-1430 \times 0.941\right]=58.9 \times 10^{5} \mathrm{in}-1 \mathrm{~b}}{}
\end{aligned}
$$

Total moment capacity $\mathrm{M}=\frac{(191+130+27.7+58.9) \times 10^{6}}{10^{3} \times 12}=33,967 \mathrm{k}$-ft

	CAL. NO. 91C2683 C-020 SUBJECT: Kewaunee A-46/IPEEE	SHEET \# 7 of 13 Revision 0
Stevenson \& Associates a structural-mechanical consulting englneering firm	Fragility Analysis of the Circulating Water Intake and Discharge Piping	By MSL 5/20/94 Chk. TMT 5/25/94

Shear strength capacity is calculated as for 'shear and flexure only' in a bearn with a thin-wall circular cross-section with shear reinforcement.
C.O.G. of steel A_{s} in respect to the cross-section center line:
c.o.g. $=\frac{2 \int_{0}^{\alpha_{s}} d A_{s}(R \operatorname{Cos} \alpha)}{A_{s}}=$
$\frac{2 \int_{0}^{a s} \frac{A_{s}}{U A B} R(d \alpha) R \operatorname{Cos} \alpha}{A_{s}}$ $=\frac{2 R^{2} \operatorname{Sin} \alpha_{s}}{U A B}=\frac{2 \times 65^{2} \operatorname{Sin} 70.22^{\circ}}{160}=49.7 \mathrm{in}$
$d=49.7+70=119.7$ in

Circumferential reinforcement (two cages with two bar cross-sections):
outside cage $\frac{A_{v}}{s}=2 \times 1.92=3.84 \mathrm{in}^{2} / \mathrm{ft}$
inside cage $\quad \frac{A_{v}}{s}=2 \times 1.44=2.88 \mathrm{in}^{2} / \mathrm{ft}$

$$
\text { total } \frac{A v}{s}=6.72 \mathrm{in}^{2} / \mathrm{ft}
$$

From Ref. 9: $\quad V_{s}=\frac{A_{v} f_{y} d}{s}=\frac{6.67 \times 40000 \times 119.7}{12 \times 10^{3}}=2680 \mathrm{kip}$
The flexure-shear cracking load concept has been used similarly to that for rectangular beams (page 121 of Ref. 4 and Section 11.3.2.1 of Ref. 5).
$\frac{V_{u d}}{M_{u}}=\frac{1250 \times d}{13950}=\frac{1250 \times 119.7}{13950 \times 12}=0.89$
Total $A_{s}=3.37 \times \frac{130 \pi}{12}+\frac{\pi \times 0.288^{2}}{4} 60=118.6{i n^{2}}^{2}$
where 0.288 in is stirrup diameter and 60 is total number of stirrups (Drwg. No. XK-200-102).
$A_{e}=\frac{\pi\left(140^{2}-120^{2}\right)}{4}=4080 \mathrm{in}^{2}$
$\rho=\frac{118.6}{4080}=0.029$
$v_{t}=19 \sqrt{\mathrm{fe}^{\prime}}+2500 \rho \frac{V_{u d}}{M_{u}} \leq 3.5 \sqrt{\mathrm{fe}^{\prime}}$
$v_{t}=1.9 \sqrt{3000}+2500 \times 0.029 \times 0.89=168 \mathrm{psi}<3.5 \sqrt{3000}=190 \mathrm{psi}$
Factor $k=1.5$ for the ratio of the maximum shear stress to the average shear stress V / A_{c} (page 173 of Ref. 6) is likely to have been taken into consideration in the formula for v_{c} above. To adjust this formula for a thin-wall circular cross-section the factor $k=2$ should be used. The ratio of $2 / 1.5$ probably would do the adjustment but since the formula for v_{c} is based primarily on the experimental information the factor of $k=2$ is used here for conservatism.

Shear capacity $V_{c}=\frac{V_{c} A c}{2}=\frac{168 \times 4080}{2 \times 10^{3}}=343 \mathrm{kip}$
Total shear capacity $V=0.85(2680+343)=2570 \mathrm{kip}$

	CAL. NO. 91C2683 C-020 SUBJECT: Kewaunee A-46/IPEEE	SHEET \# 8 of 13 Revision 0
Stevenson \& Associates a structural-mechanical consulting engineering firm	Fragility Analysis of the Circulating Water Intake and Discharge Piping	By MSL 5/20/94 Chk TMT 5/25/94

Moment and Shear Capacities of Intake Plpe

Steel pipe with thickness of $7 / 8^{n}$
Moment capacity:
$S=\pi(60+0.5 \times 7 / 8)^{2} \times 7 / 8=10040 \mathrm{in}^{3}$
Assume $F_{y} \geq 36 \mathrm{ksi}$ Then the allowable stress $\geq 1.7 \times 0.6 F_{y} \approx F_{y}=36 \mathrm{ksi}$
Moment capacity is evaluated as $M=36 \times 10040=361 \times 10^{3} \mathrm{kip}$-in $=30000 \mathrm{kip}-\mathrm{ft}$
Shear capacity:
$A=2 \pi(60+0.5 \times 7 / 8) \times 7 / 8=332.3 \mathrm{in}^{2}$
Assume $F_{y} \geq 36 \mathrm{ksi}$ Then the allowable stress $\geq 1.7 \times 0.4 F_{y}=24.5 \mathrm{ksi}$
Shear capacity with shear shape factor of 2 is evaluated as $V=24.5 \times 332.3 / 2=4070 \mathrm{kip}$
Steel pipe with thickness of 5/8"

Moment capacity:
$S=\pi(60+0.5 \times 5 / 8)^{2} \times 5 / 8=7142 \mathrm{in}^{3}$
Assume $F_{y} \geq 36 \mathrm{ksi}$ Then the allowable stress $\geq 1.7 \times 0.6 F_{y} \approx F_{y}=36 \mathrm{ksi}$
Moment capacity is evaluated as $\mathrm{M}=36 \times 7142=257 \times 10^{3} \mathrm{kip}$-in $=21400 \mathrm{kip}-\mathrm{ft}$
Shear capacity:
$A=2 \pi(60+0.5 \times 5 / 8) \times 5 / 8=237 \mathrm{in}^{2}$
Assume $F_{y} \geq 36 \mathrm{ksi}$ Then the allowable stress $\geq 1.7 \times 0.4 F_{y}=24.5 \mathrm{ksi}$
Shear capacity with shear shape factor of 2 is evaluated as $V=24.5 \times 237 / 2=2900 \mathrm{kip}$

Sres a alcuaton Due To Traveling Seisnic Wave
(1) Axial srain due to traveling sfismic Wove

Shear $E_{\text {max }}-\frac{V_{\text {max }}}{2 C_{5}}-\frac{147 / 12}{2 \times 1615}=3.8 \times 10^{-4}$
Camprossional

$$
\epsilon_{\text {maxp }} V_{\text {伿 }}-\frac{4 T 12}{300}=408 \times 10^{-4}
$$

Bayeigh

$$
G_{\text {mpx }} R=\frac{V_{\max }}{C_{R}} \frac{147 / 12}{1500}=8.16 \times 10^{-4}
$$

(a) Bendring Jran (cunnture) due fo fravelung sesmic wave Shear + maxa $^{=} \frac{a_{\text {max }}}{5 s^{2}}=\frac{0,306 \times 32}{1613^{2}}-37.6 \times 10^{-6} \frac{1}{f}$
Compressional

Byleigh

$$
K_{n * R}=\frac{a_{\max }}{S_{R}^{2}}=\frac{0,36632}{1500^{2}}-4,55 * 0^{-6} \frac{1}{4}
$$

(3) Maximum Axial Strain/stress and Eending Mament

Pischarge piping
Axioe fension $/$ comprestion strain
$\epsilon_{\text {max }}=\operatorname{rax}\left\{\epsilon_{\text {max } s,} \epsilon_{\text {max, }, ~} \epsilon_{\text {max, }}\right\}=8,16 \times 10^{-4}<$ ancrete rupture strin 0.003
Benting Moment

Intrke fleing
Axial tenion 1 compression stress.

Bending_Monent.

J.
\qquad Job No. \qquad SHET 10 of 13 suaEc TPNlaume A96/REEE Froyitity Anralycis of the Ciraboting waffer Piping
Stevenson and Associates C.030

Stress Cakalatton Due to seisminoll induced Trangient Horigntal Displaemnत्nt at Pevertations
(i) Axial Movement

Discharge pipe
Tevion/ ampprccion

$$
\begin{aligned}
& \sigma_{c}=\frac{P}{A} \text { whine } P=\sqrt{2 E C A C f \delta} \quad(\text { Equatran } 44 \text { in Rof } 3 \text {) } \\
& f=237 D h=237 \cdot\left(10^{\circ}+20 / 12\right) \times 15^{\prime} \\
& =41.5 \times 10^{3} / \mathrm{b} / \mathrm{A}=3.5 \mathrm{kps} / \mathrm{in} \\
& A_{C}=4084 \mathrm{in}^{2} \\
& \delta=0.58 \text { inder for } P G A=0.45 \mathrm{~g} \\
& E=3 i 1 \times 10^{3} \mathrm{ksi} \\
& \Gamma_{C}=\frac{\sqrt{2 \times 3.1 \times 10^{3} 408943.5 \times 0.58}}{4084}=76 \mathrm{ksi}
\end{aligned}
$$

and $P f=170 \mathrm{ft}<$ Perth of pipe $=276 \mathrm{ft}$.
Intake Pipe $\left(t=7 / 8^{\circ}\right)$

$$
\begin{aligned}
& \text { Tenion } 1 \text { compression } \\
& A_{s}=2 K R t=27 \cdot 5 \times 12=78=330 \cdot \mathrm{in}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =1.98 \mathrm{f} \rho / \mathrm{in} \\
& F_{C}=\frac{\sqrt{2 \times 30110^{3} \times 330 \times 1.98 \times 0.58}}{330}=14.45 \mathrm{k9} \\
& \text { and } P / f=220 \text { f } / \text { luthof } \rho \text { ipe }=1000 \mathrm{f}
\end{aligned}
$$

(1) Laffral mavevent

Pischarge Plpe
$M_{d}=\frac{k \delta}{2 n^{2}}$ and $V_{d}=\frac{k}{\lambda} f_{x} \quad\left(\frac{\text { astrons }}{} 45 \& 4 \hat{c}\right.$ in efo 3$)$
whene $k=\beta D=216 \mathrm{kef} \cdot\left(10^{\prime}+30 \% / 12\right)=2520$ kt

$$
\begin{aligned}
& A^{4} \sqrt{\frac{R}{4 E I}}=\sqrt{\frac{2520 \mathrm{kif} / 11^{2}}{4 \times 3,1 \times 0^{3} \sin 87 \times 1 s^{5} i^{4} 1}}=00036 \frac{1}{\text { in }} \\
& g=0.58 \text { nater for } 86 A=0.45 \mathrm{~g}
\end{aligned}
$$

$$
\begin{aligned}
& y_{d}=\frac{2520 \mathrm{kst/ra4} \times 0.58}{0.0036}=2819 \mathrm{kps}
\end{aligned}
$$

\qquad of 13 swect Remaunce AAS/REEE Frocifity Anahris of the Girasotino Water Piping

$$
5-020
$$

Inter Pree (thidnos = T/8) \qquad
$M d=\frac{R^{\prime} f}{21^{2}}$ and $V_{A}=\frac{R}{x}$

$$
\begin{aligned}
& \text { Whir } k=\frac{k_{0} D=76 \times 10=160 k s t}{k} \\
& A=\sqrt[4]{\frac{k}{4 E T}}=\sqrt{\frac{3160 / 10 a}{4 \times 30 \times 1.3004060}}=0-0038 \frac{1}{14} . \\
& M_{d} \frac{2160 / 144 \times 058}{2160038)^{2}}=301250 \mathrm{kp-14}=25100 \mathrm{kp}-+ \\
& y_{d}=\frac{2160 / 109 \times 0.58}{00036}=2290 \mathrm{kps} .
\end{aligned}
$$

SDFM Analois
Capretij of Bisctarge Pre
Compresion:/tension: As indicated in Drawing it $x k-200-101$, the concrele pye is frea to stide sever al nenes at each expansin joint.
Miment 33 ä 7 Reff:
SNor : P5 70 Ka
Coparity of Intake pipe
compracsonltension ${ }^{2}=74: 36 \mathrm{ks}$
\qquad $+1$

Momtrt 330000 fof
Shar 4070 Éps.
The contriling sedian is the dischage concref plpe ot finefration:
\qquad
ThU $X D F A=F A \frac{\sigma_{U}}{\text { JGES }}$ STAE

 SEEE-Mac Giour Acrel of IREE RLE
MonAT $C H=1.0 \times \frac{3967}{32632} \times 0.45 \mathrm{~g}=0.97 \mathrm{~g}$

$$
\begin{array}{r}
91 c 2683-\operatorname{co2} 0 \\
\text { shat } 12 \text { of } 13
\end{array}
$$

Stevenson \& Associates Woburn, Massachusetts

Soil Foilure Analysis Kewounee IPEEE Carlton, Wisconsin

TABLE 3 - SINGLE-AMPLITUDE AND DIFFERENTIAL TRANSIENT DISPLACEMENTS (INCHES) FOR PEAK GROUND SURFACE ACCELERATION OF 0.7 g , STIFF SOIL PROFILE" Kewaunee IPEEE Carlton, Wisconsin

	Differential Displacements (inches)				
Single-Amplitude Displacement (inches)	Ground Surface	Screenhause Structure	Turbine and Auxiliary Buildings	Reactor Building	

	1.2	0	1.7	2.2	2.1
Ground Surface	0.5	1.7	0	1.5	1.4
Screenhouse Structure	1.0	2.2	1.5	0	1.9
Turbine and Auxiliary Buildings	0.9	2.1	1.4	1.9	0
Reactor Building					

Note:

1) Results for very stiff soil profile are much smaller.

SCREENING EVALUATION WORK SHEET (SEWS)		GIP Rev 2, Corrected, 2/14/92 Status: Yes Sheet 1 of 2
ID: 153-021 (Rev. 0)	Class : 21 - Tanks and Heat Exchangers	
Description : TANK-REFUELING WATER STORAGE TANK		
Building: AUX	Floor El. :586.00	Room, Row/Col : 5.0/H.0
Manufacturer, Model, Etc. :		

BASIS : External analysis

1. The buckling capacity of the shell of a large, flat-bottom, vertical tank is equal to or greater than the demand.	Yes
2. The capacity of the anchor bolts and their embedments is equal to or greater than the demand.	Yes
3. The capacity of connections between the anchor bolts and the tank shell is equal to or greater than the demand.	Yes
4. Attached piping has adequate flexibility to accommodate the motion of a large, flat-bottom, vertical tank.	Yes
5. A ring-type foundation is not used to support a large, flat-bottom, vertical tank.	Yes

IS EQUIPMENT SEISMICALLY ADEQUATE?

COMMENTS

Tank is braced with 16 lateral braces, 1 per quadrant on approx 20 ft increments.
Anchorage: is 8 approx. $7 / 8^{\prime \prime}$ diameter. Bolt chairs are flat plate welded to gussets on both sides. Some minute cracking noted in base pad.

No hazards for tank and no cracked concrete.
It is a well braced tank. No overturn moment and base shear are created under seismic loading. Thus, base anchorage, bolt chairs and tank shell buckling do not need to be reviewed.

Two items which needed to be reviewed were the integrity of brace strucure under seismic loads and the freeboard clearance vs. slosh height. For tank analysis, see S\&A calculation \# C-018 Appendix G.

Evaluated by:
Date:

Attachment: Pictures

SCREENING EVALUATION WORK SHEET (SEWS)		GIP Rev 2, Corrected, 2/14/92 Status: Yes Sheet 2 of 2
ID : 153-021 (Rev. 0)	Class : 21 - Tanks and Heat Exchangers	
Description : TANK-REFUELING WATER STORAGE TANK		
Building : AUX	Floor El. : 586.00	Room, Row/Col : 5.0/H. 0
Manufacturer, Model, Etc.		

PICTURES

Figure 1: 153-021

Figure 2 : Anchor for 153-021

Figure 3 : 153-021

