Appendix G
 Projected Conditions During Construction

LOS Analysis Worksheets

This appendix contains the following:
Page- Derivation of volumes for No-Build (2016)G-5

- September 7, 2010 meeting summary G-20
- December 8,2010 meeting summary G-23
- Trip Distribution as provided by SHA G-26
- Gate Queuing analysis G-27
- Design concept for CC3 Access Road G-31
- Synchro LOS reports for CC3 Access Road G-32
- CLV Worksheets G-34
- Queue calculations using SHA methodology G-42

The CLV calculations are summarized in Table G-1. Figure G-1 presents the traffic volumes and turning movements at the study intersections during the AM and PM peak hours. Figure G-2 shows added construction traffic only.

Table G-1 - Intersection LOS: Construction Peak (2016) Conditions

Intersection	CLV		LOS	
	AM	$\boldsymbol{P M}$	$\boldsymbol{A M}$	$\boldsymbol{P M}$
MD 2/MD 4 diverge	$\mathbf{1 8 7 9}$	$\mathbf{1 9 4 6}$	F	F
MD 231 \& MD 2/MD 4	1331	$\mathbf{1 6 4 0}$	D	F
Calvert Beach/Ball Road \& MD 2/MD 4	$\mathbf{1 7 6 4}$	$\mathbf{1 7 5 7}$	F	F
Calvert Cliffs Parkway \& MD 2/MD 4	888	$\mathbf{1 5 9 2}$	A	E
White Sands Drive \& MD 2/MD 4	782	1400	A	D
Nursery Road \& MD 2/MD 4	1008	1268	B	C
Pardoe Road \& MD 2/MD 4	1162	1261	C	C
Cove Point Road \& MD 2/MD 4	997	1329	A	D

[^0]

Balanced grown volumes
Adjusted thrus only

Higher values rule

AM Peak Hour

White Sands Drive MD $2 P$

Grow thru volumes at 2% annual to 2015

MEMORANDUM

TO:	Ed Miller, PE Principal Environmental Engineer Constellation Energy CPG - Environmental Services
FROM:	Tim Ryan, PE, PTOE Senior Traffic Engineer URS Corporation
DATE:	September 21, 2010
RE:	Meeting Summary UniStar CC3 Traffic Issues Meeting September 7, 2010

A meeting for the topic referenced above was held in the offices of the Maryland State Highway Administration (SHA) on September 7, 2010, starting at 11:00 AM. The following individuals attended:

Frank Coxon	SHA Engineering and Access Permits Division (EAPD)
Steven Foster	SHA EAPD
Jim Holls	SHA EAPD (WBCM)
Mike Milbradt	UniStar
Ed Miller	UniStar
Dimitri Lutchenkov	UniStar
Wayne McFall	URS
Rebecca Myrick	URS
Tim Ryan	URS

On the phone, from SHA District 5, were the following individuals:

Kim Tran	SHA
Greg Phillips	SHA
Michelle Vrikkis	SHA

The following points were discussed:

MEMORANDUM

Meeting Summary
September 21, 2010
Page 2

1. SHA's letter, responding to the July 30, 2010 Technical Memorandum for the Calvert Cliffs Nuclear Power Plant, was the first topic of discussion. UniStar expressed concern over one of the comments (discussed further below). There were no concerns with the other SHA comments; they will be incorporated into future traffic analyses.
2. One of SHA's comments was that 10% trucks should be assumed to enter the site from southbound MD $2 / 4$ during the AM peak hour. Given UniStar's ability to control access to the site by any vehicle, at any time, UniStar feels that the 2% value (used in the July 30, 2010 Technical Memorandum) is more realistic. SHA expressed concern about the impacts on intersection operations and queuing on southbound MD2/4, if more trucks than anticipated arrive at the site during the peak hour. SHA also expressed concern that queuing of vehicles at UniStar's gate could extend back into MD $2 / 4$, particularly if some vehicles are denied entry.

It was agreed that URS would perform additional Synchro/SimTraffic analyses, to determine the sensitivity of the assumed truck percentage to intersection operations, queuing on southbound MD $2 / 4$ and queuing at the UniStar gate. The proposed gate layout and operation will be designed to minimize queues and avoid any impacts to MD $2 / 4$. The proposed gate location will be over 4,000 feet from the White Sands/ MD $2 / 4$ intersection. Potential mitigation strategies to accommodate unforeseen queuing will be developed. These strategies could include a truck "holding area" on the CC3 Access Road between MD $2 / 4$ and the UniStar gate as well as "squared off" left turn lanes on southbound MD 2/4.
3. With regard to other parameters to be used in the Traffic Study:
a. At the intersection of MD $2 / 4$ and White Sands Drive, SHA is open to either two or three southbound left turn lanes, provided that the queuing/delay criteria agreed upon at the June 11, 2010 meeting are met.
b. The intersection of MD $2 / 4$ and MD 263 does not need to be addressed.
c. If widening to provide an additional thru lane is needed at an intersection, that additional thru lane should be carried downstream of the intersection in accordance with Figure 2C-6a of the Maryland Manual on Uniform Traffic Control Devices. The length of the additional through lane on the upstream side of the intersection should be long enough to handle the 95th percentile queue. Beyond this, additional mainline widening of MD $2 / 4$ does not need to be considered.
d. SHA is still considering the trip distribution to be used north of the project site. SHA's final recommendations about this topic will be provided in about a week.
e. Critical lane analyis should be used for all intersections, with the exception of the intersection of MD $2 / 4$ and White Sands Drive, where Synchro/SimTraffic can be used.
f. The Traffic Study should identify improvements necessary to provide level of service (LOS) D at all study area intersections for " 2015 Build" conditions. If it appears that the extent of those improvements is unrealistic, the Traffic Study should also identify improvements that provide as close to LOS D as possible. For those intersections which are forecast to operate at LOS E or F under "2015 No Build" conditions, the Traffic Study should also identify improvements which would mitigate "Build" traffic such that the " 2015 No Build" critical lane volume is maintained.
4. For "half signals" (such as the signal currently in operation at the MD 2 junction with MD 4), if a second left turn lane is proposed from the minor approach, the currently unsignalized thru movement should be signalized.
5. URS will provide plots of the vehicle turning templates for the proposed White Sands Road/ MD 2/4 intersection to the SHA.
6. In terms of formal agreements, SHA would strongly prefer a Letter of Intent between SHA and UniStar, rather than a Memorandum of Agreement (MOA).

URS believes that this is an accurate summary of our meeting. However, we understand that others in attendance may have different recollections. We would appreciate receiving any comments you might have within 10 calendar days of your receipt of this document. If we receive no comments within that period, we will move ahead based on the premise that this summary is completely accurate.

MEMORANDUM

TO: Ed Miller, PE
Principal Environmental Engineer
Constellation Energy
CPG - Environmental Services

FROM: Wayne McFall, PE
Project Manager
URS Corporation
DATE: December 10, 2010

RE: \quad| Draft Meeting Summary | |
| :--- | :--- |
| | UniStar CC3 Traffic Issues Meeting |
| | December 8, 2010 |

A meeting for the topic referenced above was held in the offices of the Maryland State Highway Administration (SHA) on December 8, 2010, starting at 10:00 AM. The following individuals attended:

Frank Coxon	SHA Engineering and Access Permits Division (EAPD)
Steven Foster	SHA EAPD
Jim Holls	SHA EAPD (WBCM)
Mike Milbradt	UniStar
Ed Miller	UniStar
Dimitri Lutchenkov	UniStar
Tim Ryan	URS
Wayne McFall	URS

The following points were discussed:

1. UniStar explained that the project is still moving forward, despite the changes in corporate management of the project. The owner-applicant identified in previous submissions to various agencies has not changed.
2. SHA has reservations about the triple left turn lane proposed at White Sands Drive, because it is, in effect, a U-turn movement. SHA's research indicates that the efficiency of the movement could be decreased by as much as 55 percent, with resulting negative impacts on operations on MD $2 / 4$. In addition, SHA is concerned about the possibility of sideswipe collisions due to the geometric constraints. As a result, the SHA developed a concept for a temporary at-grade intersection relocated to a point where the left turn does not result in a U-turn. The SHA provided a concept plan for this option to UniStar on December 3, 2010.

Ed Miller, PE
MEMORANDUM
December 10, 2010
Page 2
3. The SHA requested that UniStar consider a flyover ramp/bridge to provide the southbound left turn movement as an alternative to the temporary at-grade intersection. URS presented very preliminary results of analyses of a flyover, which revealed a number of complications such as potential right-of-way impacts, impacts to buildings on the east side of MD $2 / 4$, utility impacts and the close proximity of the ramp terminus to the Saw Mill Road intersection. In addition, the construction and long term maintenance costs of providing a flyover are expected to be significantly higher than those related to providing a temporary at-grade intersection. The SHA requested a concept study of the flyover option, including an evaluation of the impacts and costs of this option versus the at-grade intersection option.
4. With specific regard to the relocated temporary at-grade intersection, the following points were discussed:
a. A break on the controlled-access line is acceptable for this location, provided the intersection will be closed after construction of CC3 is completed. An SHA administrative approval is all that is required for this temporary break.
b. SHA District 5, the Office of Traffic and Safety, and the SHA Administrator have agreed that this concept is feasible.
c. The existing left turn movement from Calvert Cliffs Parkway onto southbound MD $2 / 4$ would need to be accommodated during the life of the temporary access intersections in one of the following ways:
i. Full signalization of the MD $2 / 4$ at Calvert Cliffs Parkway intersection
ii. Requiring southbound left turners from Calvert Cliffs Parkway to actually turn right, and make a U-turn in the median of MD $2 / 4$
iii. Internal connections on the Calvert Cliffs site, to allow those vehicles to use the temporary at-grade intersection to turn left onto southbound MD 2/4.
d. Any one of these three approaches would be acceptable. Unistar will investigate the corporate feasibility of the third approach.
5. Submission of both a Traffic Impact Study (TIS) and "Design Concepts" is now required. The Design Concepts should reflect the changes in intersection configurations proposed in the TIS. The Design Concepts for construction conditions should include a flyover, including an evaluation of the impacts and costs of this option versus the at-grade intersection option. The fly-over concept can be evaluated in two dimensions for the purposes of this study.

Ed Miller, PE
MEMORANDUM
December 10, 2010
Page 3
6. It was agreed that the TIS will be reviewed and approved in two parts. The first would deal only with construction conditions, and will be submitted first. The second, which will deal only with post-construction conditions, will be submitted at a later date.
7. Under "post-construction" conditions, it will be necessary for the relocated temporary at-grade intersection to be closed. As a result, access/egress for the CC3 site after construction is complete will need to be provided at White Sands Drive (with a full traffic signal), or at Nursery Road (perhaps with a partial signal), or at Calvert Cliffs Parkway (if shared access from MD 2/4 is a corporate possibility between the owners of $\mathrm{CCl} / \mathrm{CC} 2$ and CC 3).
8. The Letter of Intent (LOI) was then discussed. The SHA requested that UniStar prepare a draft LOI that will be the basis of the final Memorandum of Agreement (MOA) The SHA will prepare the final Memorandum of Agreement. Some of the issues that will be addressed in the MOA include:

- Liability - use standard language in sample MOA's
- Roles and Responsibilities of SHA and UniStar
- Schedule - when do MD $2 / 4$ improvements have to be complete?
- Design submittal requirements - \# of review submittals?
- SHA review response times
- Permits
- Construction cost responsibility (including utility relocations)
- SHA inspection cost reimbursement (requires a surety for 15% of construction cost)
- Right-of-way acquisition

9. Since the proposed MD $2 / 4$ Split intersection improvements will require right-of-way acquisition, UniStar requested that the MD $2 / 4$ Split intersection improvements be an SHA project in which UniStar would contribute their share of the construction cost.

URS believes that this is an accurate summary of our meeting. However, we understand that others in attendance may have different recollections. We would appreciate receiving any comments you might have within 10 calendar days of your receipt of this document. If we receive no comments within that period, we will move ahead based on the premise that this summary is completely accurate.

PEAK HOUR VOLUMES
 $A=284215$
 $B=169 / 326$
 $C=507 / 562$
 $D=1568 / 733$ $2528 / 1836$

PEAK HOUR DISTRIBUTIONS

$$
\begin{aligned}
& A=11 \% / 12 \% \\
& B=7 \% / 18 \% \\
& C=20 \% / 30 \% \\
& D=62 \% / 40 \%
\end{aligned}
$$

AVERAGE DISTRIBUTION FOR DESIGN
$A=12 \%$
$B=12 \%$
$C=25 \%$
D $=51 \%$

CALVERT CLIFFS NUCLEAR POWER PLANT NB DISTRIBUTION AT
MD 231, MD 263, MD 2 AND MD 4

Satya Muthuswamy

rom:	Wayne_McFall@URSCorp.com
ent:	Tuesday, October 26, 2010 3:31 PM
o:	Satya Muthuswamy
Cc:	'Bill_McShane' <bmcshane@kIdcompanies.com/O=, Rebecca_Myrick@URSCorp.com,
	'PEPTOETimothyA.Ryan' <timothy_ryan
Subject:	Fw: Calvert Cliffs CC3-gate queue analysis

fyi

Thanks,
Wayne
<<<<<<<<<<<<<<>>>>>>>>>>>>
M. Wayne McFall, P.E.

URS
4 North Park Drive, Suite 300
Hunt Valley, MD 21030
Office Phone: (410) 891-9205
Cell Phone: (443) 326-1192
Fax: (410) 785-6818
email: wayne mcfall@urscorp.com

scc

This e-mail and any attachments contain URS Corporation confidential information that may be proprietary or privileged. If you receive this message in error or are t the intended recipient, you should not retain, distribute, disclose or use any of this information and you should destroy the e-mail and any attachments or pies.
.---. Forwarded by Wayne McFall/HuntValley/URSCorp on 10/26/2010 03:28 PM .--
Wayne McFall/HuntValley/URSCorp

10/07/2010 03:02 PM

To Frank Coxon FCoxon@sha.state.md.us
cc JHOLLS@WBCM.com, 'Greg Phillips' GPhillips@sha.state.md.us, Kimberly Tran ktran@sha.state.md.us,
"'Timothy_Ryan@URSCorp.com'" <Timothy Ryan@URSCorp.com>, Rebecca Myrick/HuntValley/URSCorp@URSCorp, "Miller, Edward A" Edward.Miller@constellation.com, Stephanie Huck/HuntValley/URSCorp@URSCORP.sfoster1@sha.state.md.us
Subject Calvert Cliffs CC3 - gate queue analysis

Frank,
As discussed in our meeting with the SHA on 9-7-10, URS has performed a Gate Queue Analysis, using SimTraffic, for the proposed gate for the Calvert Cliffs construction site. The SimTraffic files are too big to email. See instructions below for downloading these files.

UniStar plans to construct a gate that provides 3 lanes for entering traffic at the CC3 Gate, with a provision for widening to provide additional capacity, if required. Only workers with a permit on their vehicle will be allowed to enter the site during the AM peak period. Delivery and construction trucks and visitors will not be allowed to pass through the gate during the M peak period. A pull-off parking area will be provided upstream of the gate, to provide waiting trucks and visitors with a parate holding area. After the AM peak period, trucks and visitors will utilize the gates.

The gate will be located approximately 3,100 feet from the proposed White Sands/ MD $2 / 4$ intersection. One of the key
parameters is the processing time for each vehicle. Unistar's proposed gate operation for workers with permits on their vehicles will involve a quick check of the permit on the vehicle as they pass through the gate without stopping. This is expected to be less than a 7 second delay per vehicle. Even though there will be no trucks allowed through the gate 'uring the AM peak period, the analyses includes 2% trucks, which provides a higher factor of safety for determining the ueue length. Using these parameters, the analysis shows that the queue will not backup to MD 2/4.

Please use the following FTP site information for downloading the SimTraffic files.
address: https://moveitdmz102.urscorp.com/
username: ursftp@gmail.com
password: huntvalley01

Thanks,
Wayne
<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>
M. Wayne McFall, P.E.

URS
4 North Park Drive, Suite 300
Hunt Valley, MD 21030
Office Phone: (410) 891-9205
Cell Phone: (443) 326-1192
Fax: (410) 785-6818
email: wayne mcfall@urscorp.com
<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>
SCC

This e-mail and any attachments contain URS Corporation confidential information that may be proprietary or privileged. If you receive this message in error or are not the intended recipient, you should not retain, distribute, disclose or use any of this information and you should destroy the e-mail and any attachments or -opies.
'rom:
ent:
Subject:
Flag Status:

Satya Muthuswamy [satya@kldcompanies.com]
Friday, December 17, 2010 1:50 PM
Brian Damiani
Fw: Direction from UniStar to KLD
Flagged

Fyi
Satya Muthuswamy, PE (OH), PTOE
Senior Traffic Engineer
KLD
(631) 617-5650 x 216

From: Rebecca_Myrick@URSCorp.com
Date: Fri, 17 Dec 2010 13:05:39-0500
To: satya@kldcompanies.com
Cc: 'Bill McShane'bmcshane@kldcompanies.com; 'Miller, Edward A'Edward.Miller@constellation.com; Timothy_Ryan@URSCorp.com; Wayne_McFall@URSCorp.com
Subject: RE: Direction from UniStar to KLD
ve did the gate queue analysis for the relocated entrance. The gate needs 4 lanes, if we assume 7 second service mes.

Thanks.
Rebecca L. Myrick, PE, PTOE (formerly Rebecca L. Thomas)
URS Corporation
4 North Park Drive, Suite 300 * Hunt Valley, Maryland 21030
Office Tel: 410-785-7220 * Fax: 410-785-6818
Direct Tel: 410-891-9527 * Cell: 443-275-8083

This e-mail and any attachments contain URS Corporation confidential information that may be proprietary or privileged. If you receive this message in error or are not the intended recipient, you should not retain, distribute, disclose or use any of this information and you should destroy the e-mail and any attachments or copies.

Satya Muthuswamy satya@kidcompanies.com

12/17/2010 12:58 PM

Please respond to atya@kldcompanies.com

To Wayne_McFall@URSCorp.com

cc 'Bill McShane' bmcshane@kldcompanies.com, "'Miller, Edward A"" Edward.Miller@constellation.com, Timothy_Ryan@URSCorp.com, Rebecca_Myrick@URSCorp.com
Subject RE: Direction from UniStar to KLD

Intersection: 9: CC3 Access Road \& Gate

Movement	EB	EB	EB	EB
Directions Served	T	T	T	T
Maximum Queue (ft)	436	408	372	362
Average Queue (ft)	286	264	259	269
95th Queue (ft)	415	386	358	356
Link Distance (ft)	1200	1200	1200	
Upstream BIk Time (\%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)				500
Storage Blk Time (\%)				

HCM Signalized Intersection Capacity Analysis

HCM Signalized Intersection Capacity Analysis

Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	2	2	2	1	3	2
Volume (vph)	417	1458	1392	213	851	1909
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	6.0	7.0	7.0	6.0	7.0
Lane Util. Factor	0.97	0.88	0.95	1.00	0.94	0.95
Ft	1.00	0.85	1.00	0.85	1.00	1.00
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00
Satd. Flow (prot)	3183	2584	3539	1468	4627	3539
Flt Permitted	0.95	1.00	1.00	1.00	0.95	1.00
Satd. Flow (perm)	3183	2584	3539	1468	4627	3539
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	453	1585	1513	232	925	2075
RTOR Reduction (vph)	0	0	0	57	0	0
Lane Group Flow (vph)	453	1585	1513	175	925	2075
Heavy Vehicles (\%)	10%	10%	2%	10%	10%	2%
Turn Type		pm+ov		Perm	Prot	
Protected Phases	8	1	2		1	6
Permitted Phases		8		2		
Actuated Green, G (s)	38.0	66.0	69.0	69.0	28.0	103.0
Effective Green, g (s)	38.0	66.0	69.0	69.0	28.0	103.0
Actuated g/C Ratio	0.25	0.43	0.45	0.45	0.18	0.67
Clearance Time (s)	5.0	6.0	7.0	7.0	6.0	7.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	791	1115	1596	662	847	2382
vis Ratio Prot	0.14	$c 0.26$	$c 0.43$		0.20	0.59
v/s Ratio Perm		0.35		0.12		
v/c Ratio	0.57	1.42	0.95	0.26	1.09	0.87
Uniform Delay, d1	50.4	43.5	40.3	26.2	62.5	19.8
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	1.0	195.0	12.2	0.2	59.1	3.8
Delay (s)	51.4	238.5	52.5	26.4	121.6	23.6
Level of Service	D	F	D	C	F	C
Approch Delay (s)	196.9		49.0			53.8
Approach LOS	F		D			D

Intersection Summary			
HCM Average Control Delay	95.6	HCM Level of Service	F
HCM Volume to Capacity ratio	1.19		
Actuated Cycle Length (s)	153.0	Sum of lost time (s)	19.0
Intersection Capacity Utilization	101.3%	ICU Level of Service	G
Analysis Period (min)	15		

Location: MD 2/MD 4 Diverge

Scenario	Year	Peak Hour	Level of Service	Number of Phases per Cycle	Cycle Length (sec)	Volume	Lane Use Factor	Critical Lane Volume	Average Vehicles per Cycle per Lane	Maximum Vehicles per Cycle per Lane	Max Queue Length per Cycle per Lane (ft)
Construction, 2016, No Mitigation											
SBL	2016	AM	F	3	165	79	1.00	79	3.6	5.1	126
SBL	2016	PM	F	3	165	176	1.00	176	8.1	11.3	282
(1)											
WBL	2016	AM	F	3	165	829	1.00	829	38.0	53.2	1329
WBL	2016	PM	F	3	165	908	1.00	908	41.6	58.2	1456
450 feet of storage available (approximately)											
NBT	2016	AM	F	3	165	1766	0.55	971	44.5	62.3	1558
NBT	2016	PM	F	3	165	1569	0.55	863	39.6	55.4	1385
Queue length exceeds available storage											

Maryland SHA Queuing Analysis
Location: MD 2/MD 4 and MD 231

Maryland SHA Queuing Analysis

Location: MD 2/MD 4 and Calvert Beach Road

Maryland SHA Queuing Analysis

Location: MD 2/MD 4 and Calvert Cliffs Parkway

Maryland SHA Queuing Analysis
Location: MD 2/MD 4 and White Sands Drive

Scenario	Year	Peak Hour	Level of Service	Number of Phases per Cycle	Cycle Length (sec)	Volume	Lane Use Factor	Critical Lane Volume	Average Vehicles per Cycle per Lane	Maximum Vehicles per Cycle per Lane	Max Queue Length per Cycle per Lane (ft)
Construction, 2016, No Mitigation											
NBL	2016	AM	A	3	100	17	1.00	17	0.5	0.7	17
NBL	2016	PM	D	3	135	86	1.00	86	3.2	4.5	113
550 feet of storage available (approximately)											
			A								
EBTL	2016	PM	D	3	135	82	1.00	82	3.1	4.3	108
80 feet of storage available (approximately)											
SBT	2016	AM	A	3	100	1141	0.55	628	17.4	24.4	610
SBT	2016	PM	D	3	135	2240	0.55	1232	46.2	64.7	1617
500 feet of storage available (approximately) before SBT blocks SBR bypass lane											
	Queue length exceeds available storage										

Location: MD 2/MD 4 and Nursery Road

Scenario	Year	Peak Hour	Level of Service	Number of Phases per Cycle	Cycle Length (sec)	Volume	Lane Use Factor	Critical Lane Volume	Average Vehicles per Cycle per Lane	Maximum Vehicles per Cycle per Lane	Max Queue Length per Cycle per Lane (ft)
Construction, 2016, No Mitigation											
SBL	2016	AM	B	3	100	7	1.00	7	0.2	0.3	7
SBL	2016	PM	C	3	120	0	1.00	0	0.0	0.0	0
570 feet of storage available (approximately)											
	eue length exceeds available storage										

Maryland SHA Queuing Analysis
Location: MD 2/MD 4 and Pardoe Road

Maryland SHA Queuing Analysis
Location: MD 2/MD 4 and Cove Point Road

Scenario	Year	Peak Hour	Level of Service	Number of Phases per Cycle	Cycle Length (sec)	Volume	Lane Use Factor	Critical Lane Volume	Average Vehicles per Cycle per Lane	Maximum Vehicles per Cycle per Lane	Max Queue Length per Cycle per Lane (ft)
Construction, 2016, No Mitigation											
SBL	2016	AM	A	3	100	96	1.00	96	2.7	3.7	93
SBL	2016	PM	D	3	135	410	1.00	410	15.4	21.5	538
550 feet of storage available (approximately)											
WBL	2016	AM	A	3	100	171	1.00	171	4.8	6.7	166
WBL	2016	PM	D	3	135	149	1.00	149	5.6	7.8	196
300 feet of storage available (approximately)											
	Queue length exceeds available storage										

[^0]: Grow thru volumes at 2% annual to 2010

