# REGULATORY INFORMATION DISTRIBUTION SYSTEM (RIDS)

CATEGORY 1

| FACIL:5<br>AUTH.N<br>GROB,B. | 0-305 Kewaunee Nu<br>AME AUTHOR<br>Teledyn<br>M.L. Wiscons | clear Power P<br>AFFILIATION | -                          | olic Servio | DOCKET #<br>05000305<br>Environmental<br>Reports |
|------------------------------|------------------------------------------------------------|------------------------------|----------------------------|-------------|--------------------------------------------------|
| SUBJECT                      | : "Annual Environ<br>Kewaunee NPP."                        |                              | ept for Jan-Dec 199<br>tr. | 8 for       | С                                                |
|                              |                                                            |                              | 1 1                        |             | 200 A                                            |
| DISTRIB                      | UTION CODE: IE25D                                          | COPIES RECE                  | IVED:LTR / ENCL /          | SIZE:       |                                                  |
| TTTFR:                       | Environmental Mon                                          | itoring Rept                 | (per Tech Specs)           |             | -                                                |
| NOTES:                       |                                                            |                              |                            |             | E                                                |
|                              |                                                            |                              |                            |             | ·                                                |
|                              | RECIPIENT                                                  | COPIES                       | RECIPIENT                  | COPIES      | G                                                |
|                              | ID CODE/NAME                                               | LTTR ENCL                    | ID CODE/NAME               | LTTR ENG    |                                                  |
|                              | LPD3-1 LA                                                  | 1 1                          | LPD3-1 PD                  | 1 1         | 0                                                |
|                              | LONG,W                                                     | 1 1                          |                            |             | · <b>P</b>                                       |
|                              |                                                            |                              | Service                    |             | R                                                |
| INTERNAL:                    |                                                            | 1 1 <                        | FILE CENTER 01             | ) 1 1       | Y                                                |
|                              | NRR/DIPM/TOLB                                              | 1 1                          | ם <u>היא</u> ס בידו בי     | 1 1         | Ŷ                                                |

RGN3

FILE

1

l

1

1

EXTERNAL: NRC PDR

NRR/DIPM/IOLB

1

1

Ε N

т

1

D

0

C

U

Μ

NOTE TO ALL "RIDS" RECIPIENTS: PLEASE HELP US TO REDUCE WASTE. TO HAVE YOUR NAME OR ORGANIZATION REMOVED FROM DISTRIBUTION LISTS OR REDUCE THE NUMBER OF COPIES RECEIVED BY YOU OR YOUR ORGANIZATION, CONTACT THE DOCUMENT CONTROL DESK (DCD) ON EXTENSION 415-2083

TOTAL NUMBER OF COPIES REQUIRED: LTTR 8 ENCL



# NRC-99-033

Wisconsin Public Service Corporation (a subsidiary of WPS Resources Corporation) 600 North Adams Street P.O. Box 19002 Green Bay, WI 54307-9002 1-920-433-5544 fax

April 29, 1999

Public/Servic

U.S. Nuclear Regulatory Commission Attention: Document Control Desk Washington, D.C. 20555

Ladies/Gentlemen:

Docket 50-305 Operating License DPR-43 Kewaunee Nuclear Power Plant <u>Annual Environmental Monitoring Report January-December 1998</u>

Attached is the 1998 Annual Environmental Monitoring Report for the Kewaunee Nuclear Power Plant (KNPP). This report was prepared by Teledyne lsotopes and satisfies the requirements of KNPP Technical Specification 6.9.b.1.

The results of the 1998 Land Use Census, submitted in accordance with KNPP's Offsite Dose Calculation Manual, Section 3/4.7.1, are included in this report.

-10113

Sincerely,

monules

Mark L. Marchi Vice President-Nuclear

BRG/jmf

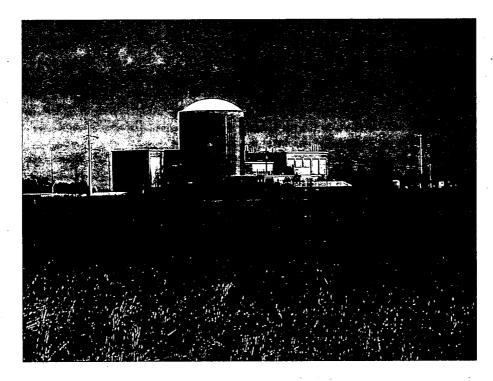
Attach.

Joz5 /1

cc - US NRC, Region III US NRC Senior Resident Inspector

9905050126 9812 0305

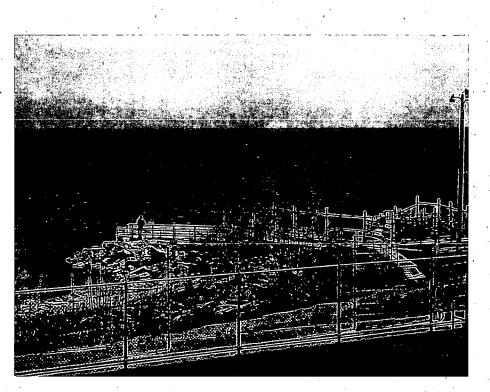
\\GBNUC1\VOL1\GROUP\NUCLEAR\WPF1LES\LIC\NRC\ENVMONTR.DOC


50-305 **KEWAUNEE** ANNUAL ENVIRONMENTAL MONITORING REPORT (1998) Rec'd w/ ltr dtd 4/29/99.....9905050126 -NOTICE-THE ATTACHED FILES ARE OFFICAL RECORDS OF THE **OCIO/INFORMATION** MANAGEMENT DIVISION. THEY HAVE BEEN CHARGED TO YOU FOR A LIMITED TIME PERIOD AND MUST BE RETURNED TO THE **RECORDS AND ARCHIVES** SERVICES SECTION, T-5C3. PLEASE DO NOT SEND DOCUMENTS CHARGED OUT THROUGH THE MAIL. REMOVAL OF ANY PAGE(S) FROM DOCUMENTS FOR **REPRODUCTION MUST BE REFERRED TO FILE PERSONNEL.** 

-NOTICE-

WPS




# ANNUAL ENVIRONMENTAL MONITORING REPORT JAN-DEC 1998



WISCONSIN PUBLIC SERVICE CORPORATION ALLIANT ENERGY MADISON GAS & ELECTRIC COMPANY

# **ANNUAL REPORT PART I**

# PROGRAMATIC REVIEW OF SAMPLING RESULTS



Kewaunee's discharge and fishing pier



# MIDWEST LABORATORY

700 LANDWEHR ROAD NORTHBROOK, ILLINOIS 60062-2310 (847) 564-0700 • FAX (847) 564-4517

**REPORT TO** 

# WISCONSIN PUBLIC SERVICE CORPORATION WISCONSIN POWER AND LIGHT COMPANY MADISON GAS AND ELECTRIC COMPANY

# RADIOLOGICAL MONITORING PROGRAM FOR THE KEWAUNEE NUCLEAR POWER PLANT KEWAUNEE, WISCONSIN

# ANNUAL REPORT - PART I SUMMARY AND INTERPRETATION January - December 1998

# PREPARED AND SUBMITTED BY TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES MIDWEST LABORATORY

# PROJECT NO. 8002

Approved by: \_ Bronia Grob, M.S. Technical Lead

31 March 1999

# PREFACE

The staff of the Teledyne Brown Engineering Environmental Services, Midwest Laboratory (TBEESML) were responsible for the acquisition of data presented in this report. Assistance in sample collection was provided by Wisconsin Public Service Corporation personnel. The report was prepared by staff members of Teledyne Brown Engineering Environmental Services, Midwest Laboratory.

# TABLE OF CONTENTS

|            |        | Page                                                                                                                      |
|------------|--------|---------------------------------------------------------------------------------------------------------------------------|
|            | Prefa  | ceü                                                                                                                       |
|            | List o | of Figuresiv                                                                                                              |
|            | List c | of Tablesv                                                                                                                |
| 1.0        | INTR   | ODUCTION1                                                                                                                 |
| 2.0        | SUM    | MARY                                                                                                                      |
| 3.0        | RAD    | OLOGICAL SURVEILLANCE PROGRAM                                                                                             |
|            | 3.1    | Methodology3                                                                                                              |
|            |        | 3.1.1The Air Program                                                                                                      |
|            | 3.2    | Results and Discussion                                                                                                    |
|            |        | 3.2.1Atmospheric Nuclear Detonations and Nuclear Accidents                                                                |
|            | 3.3    | 1998 Land Use Census13                                                                                                    |
| 4.0<br>5.0 |        | RES AND TABLES                                                                                                            |
| APP        | endici | <u>3S</u>                                                                                                                 |
|            | А      | Interlaboratory Comparison Program Results                                                                                |
|            | В      | Data Reporting ConventionsB-1                                                                                             |
|            | С      | Maximum Permissible Concentrations of Radioactivity in Air and<br>Water above Natural Background in Unrestricted AreasC-1 |

# LIST OF FIGURES

| <u>No.</u> | <u>Caption</u>                                   | <u>Page</u> |
|------------|--------------------------------------------------|-------------|
| 4-1        | Sampling locations, Kewaunee Nuclear Power Plant | 15          |

# LIST OF TABLES

| <u>No.</u>        | Title                                                                                        | <u>Page</u>  |
|-------------------|----------------------------------------------------------------------------------------------|--------------|
| 4.1               | Sampling locations, Kewaunee Nuclear Power Plant                                             | 16           |
| 4.2               | Type and frequency of collection                                                             | 17           |
| 4.3               | Sample codes used in Table 4.2                                                               | 18           |
| 4.4               | Sampling summary, January - December, 1998                                                   | 19           |
| 4.5               | Environmental Radiological Monitoring Program Summary                                        | 20           |
| 4.6               | Land Use Census                                                                              | 25           |
| In addition, th   | e following tables are in the Appendices:                                                    |              |
| <u>Appendix A</u> |                                                                                              |              |
| A-1               | Interlaboratory Comparison Program Results                                                   | 41-1         |
| A-2               | Interlaboratory Comparison Program Results, thermoluminescent<br>dosimeters (TLDs)           | <b>\2-1</b>  |
| A-3               | In-house Spiked Samples                                                                      | <b>\</b> 3-1 |
| A-4               | In-house "Blank" Samples                                                                     | \4-1         |
| A-5               | In-house "Duplicate" Samples                                                                 | <b>\</b> 5-1 |
| A-6               | Department of Energy MAPEP comparison results                                                | 46-1         |
| A-7               | Environmental Measurements Laboratory Quality (EML) Assessment<br>Program comparison results | <b>\7-1</b>  |
|                   | Attachment A: Acceptance criteria for spiked samplesA                                        | <b>\-</b> 2  |
| <u>Appendix C</u> |                                                                                              |              |

C-1 Maximum Permissible Concentrations of Radioactivity in Air and Water Above Natural Background in Unrestricted Areas......C-2

## 1.0 INTRODUCTION

The Kewaunee Nuclear Power Plant is a 535 megawatt pressurized water reactor located on the Wisconsin shore of Lake Michigan in Kewaunee County. The Kewaunee Nuclear Power Plant became critical on March 7, 1974. Initial Power generation was achieved on April 8, 1974, and the Plant was declared commercial on June 16, 1974. This report summarizes the environmental operation data collected during the period January - December 1998.

Wisconsin Public Service Corporation, an operating company for the Kewaunee Nuclear Power Plant, assumes the responsibility for the environmental program at the Plant and any questions relating to this subject should be directed to Mr. Mark Reinhart, Superintendent of Plant Radiation Protection at (920) 388-8369.

# 2.0 SUMMARY

Results of sample analyses during the period January - December 1998 are summarized in Table 4.5. Radionuclide concentrations measured at indicator locations are compared with levels measured at control locations and in preoperational studies. The comparisons indicate background-level radioactivities in all samples collected.

# 3.0 RADIOLOGICAL SURVEILLANCE PROGRAM

Following is a description of the Radiological Surveillance Program and its execution.

## 3.1 <u>Methodology</u>

The sampling locations are shown in Figure 4-1. Table 4.1 describes the locations, lists for each direction and distance from the reactor, and indicates which are indicators and which are control locations.

The sampling program monitors the air, terrestrial, and aquatic environments. The types of samples collected at each location and the frequency of collections are presented in Table 4.2, using sample codes defined in Table 4.3. The collections and analyses that comprise the program are described below. Finally, the execution of the program in the current reporting year is discussed.

## 3.1.1 <u>The Air Program</u>

#### Airborne Particulates

The airborne particulate samples are collected on 47 mm diameter glass fiber filters at a volumetric rate of approximately one cubic foot per minute. The filters are collected weekly from six locations (K-1f, K-2, K-7, K-8, K-31 and K-16), and dispatched by mail to Teledyne for radiometric analysis. The inaterial on the filter is counted for gross beta activity approximately 72 hours or later after collection to allow for decay of naturally-occurring short-lived radionuclides.

Quarterly composites from each sampling location are analyzed for gamma-emitting isotopes by germanium detector.

#### Airborne Iodine

Charcoal filters are located at locations K-1f, K-2, K-7, K-8, K-31 and K-16. The filters are changed bi-weekly and analyzed for iodine-131 immediately after arrival at the laboratory.

# Ambient Gamma Radiation - TLDs

The integrated gamma-ray background is measured at six sampling locations (K-1f, K-2, K-7, K-8, K-15 and K-16), at four milk sampling locations (K-3, K-4, K-5 and K-6), and four additional sites (K-17, located 4.25 miles west of the plant; K-27, located 1.5 miles northwest of the plant; K-30, located 1.0 miles north of the plant and K-31, located 6.25 miles north-northwest of the plant) by thermoluminescent dosimetry (TLDs). Two TLD cards, each having four main readout areas containing CaSO4:Dy phosphor, are placed at each location (eight TLDs at each location). One card is exchanged quarterly, the other card is exchanged annually and read only on an emergency basis.

## **Precipitation**

Monthly composites of precipitation samples collected at K-11 are analyzed for tritium activity and counted using a liquid scintillation method.

# 3.1.2 <u>The Terrestrial Program</u>

#### <u>Milk</u>

Milk samples are collected semimonthly (one gallon from each location) from May through October, and monthly (two gallons from each location) during the rest of the year from four herds that graze within four miles of the reactor site (K-4, K-5, K-12 and K-19), from two herds that graze between four and ten miles from the reactor site (K-3 and K-6), and from a dairy in Green Bay (K-28). The milk samples are analyzed for iodine-131, strontium-89 and-90, cesium-137, barium-lanthanum-140, potassium-40, calcium and stable potassium.

#### <u>Well Water</u>

One gallon of water is collected quarterly from four off-site wells located at K-10, K-11, K-12 and K-13 and from two on-site wells located at K-1g and K-1h.

Gamma spectroscopic analyses and gross beta on the total residue are performed for each water sample. The concentration of potassium-40 is calculated from total potassium, which is determined by flame photometry on all samples.

Additionally, samples of water from two on-site wells (K-1g and K-1h) are analyzed for gross alpha. Water from the on-site well (K-1g) is also analyzed for tritium, strontium-89 and strontium-90.

#### **Domestic Meat**

Domestic meat samples (chickens) are obtained annually (in the third quarter) at locations K-24, K-27 (if available), K-29 and K-32. The flesh is separated from the bones and analyzed for gross alpha, gross beta and gamma emitting isotopes.

#### Eggs

4

Eggs are collected quarterly from locations K-24 and K-32. The samples are analyzed for gross beta, strontium-89, strontium-90 and gamma emitting isotopes.

#### <u>Vegetables</u>

Vegetable samples (6 varieties) are collected at locations K-17 and K-26, and two varieties of grain, if available, at location K-23. The samples are analyzed for gross beta, strontium-89, strontium-90 and gamma emitting isotopes.

#### Grass and Cattle Feed

Grass samples are collected during the second, third and fourth quarters from two onsite locations (K-1b and K-1f) and from six dairy farms (K-3, K-4, K-5, K-6, K-12 and K-19). The samples are analyzed for gross beta, strontium-89, strontium-90 and gamma emitting isotopes. During the first quarter, cattle feed is collected from the same six dairy farms and the same analyses are performed.

#### <u>Soil</u>

Soil samples are collected twice a year on-site at K-1f and from the six dairy farms (K-3, K-4, K-5, K-6, K-12 and K-19). The samples are analyzed for gross alpha, gross beta, strontium-89, strontium-90 and gamma emitting isotopes.

# 3.1.3 <u>The Aquatic Program</u>

## Surface Water

One-gallon water samples are taken monthly from three locations on Lake Michigan: 1) at the point where the condenser water is discharged into Lake Michigan (K-1d); 2) Two Creeks Park (K-14) located 2.5 miles south of the reactor site; and 3) at the main pumping station located approximately equidistant from Kewaunee and Green Bay, which pumps water from the Rostok water intake (K-9) located 11.5 miles north of the reactor site. Both raw and tap water are collected at K-9. One-gallon water samples are taken monthly from three creeks that pass through the site (K-1a, K-1b, and K-1e). Samples from North and Middle Creeks (K-1a, K-1b) are collected near the mouth of each creek. Samples from the South Creek (K-1e) are collected about ten feet downstream from the point where the outflow from the two drain pipes meet. Additionally, the drainage pond (K-1k), located approximately 0.6 miles southwest of the plant, is included in the sampling program. Water samples at K-14 are collected and analyzed in duplicate.

The water samples are analyzed for gamma emitting isotopes, gross beta activity in total residue, dissolved solids and suspended solids, and potassium-40. The concentration of potassium-40 is calculated from total potassium, which is determined by flame photometry. In addition, quarterly composites of the monthly grab samples are analyzed for tritium, strontium-89 and strontium-90.

#### <u>Fish</u>

Fish samples are collected during the second, third and fourth quarters at location K-1d. The flesh is separated from the bones, gamma scanned and analyzed for gross beta activity. Ashed bone samples are analyzed for gross beta, strontium-89 and strontium-90 activities.

#### <u>Slime</u>

Slime samples are collected during the second and third quarters from three Lake Michigan locations (K-1d, K-9 and K-14), from three creek locations (K-1a, K-1b and K-1e) and from the drainage pond (K-1k), if available. The samples are analyzed for gross beta activity. If the quantity is sufficient, they are also gamma scanned and analyzed for strontium-89 and strontium-90 activities.

# **Bottom Sediments**

Bottom sediments are collected in May and November from five locations (K-1c, K-1d, K-1j, K-9 and K-14). The samples are analyzed for gross beta, strontium-89, strontium-90 and gamma emitting isotopes. It is known that the measured radioactivity per unit mass of sediment increases with decreasing particle size, and the sampling procedure is designed to assure collection of very fine particles.

# 3.1.4 Program Execution

Program execution is summarized in Table 4.4. The program was executed as described in the preceding sections, with the following exceptions:

No TLD data was available for the first quarter, 1998 from location K-6. The dosimeter cards were lost due to power line pole replacement.

A surface water sample was not available for the month of February, 1998 at location K-1k. The pond was frozen.

No domestic meat sample was available at location K-27 during 1998.

## 3.1.5 <u>Program Modifications</u>

There were no program modifications made during 1998.

## 3.2 <u>Results and Discussion</u>

The results for the reporting period January to December 1998 are presented in summary form in Table 4.5. For each type of analysis of each sampled medium, this table shows the annual mean and range for all indicator locations and for all control locations. The location with the highest annual mean and the results for this location are also given.

The discussion of the results has been divided into three broad categories: the air, terrestrial, and aquatic environments. Within each category, samples will be discussed in the order listed in Table 4.4. Any discussion of previous environmental data for the Kewaunee Nuclear Power Plant refers to data collected by Teledyne Brown Engineering Environmental Services, Midwest Laboratory or its predecessor, Hazleton Environmental Sciences.

The tabulated results of all measurements made in 1998 are not included in this section, although references to these results will be made in the discussion. The complete tabulation of the 1998 results is contained in Part II of the 1998 annual report on the Radiological Monitoring Program for the Kewaunee Nuclear Power Plant.

# 3.2.1 Atmospheric Nuclear Detonations and Nuclear Accidents

There were no reported atmospheric nuclear tests in 1998. The last reported test was conducted by the People's Republic of China on October 16, 1980.

There were no reported accidents at nuclear facilities in 1998.

### 3.2.2 <u>The Air Environment</u>

### Airborne Particulates

In air particulates, the annual gross beta concentration at both indicator and control locations measured  $0.019 \text{ pCi/m}^3$ . These averages were similar to or slightly lower than the average means observed from 1988 (and prior to) through 1997. The average results are tabulated below.

| Year | Average of<br>Indicators | Average of<br><u>Controls</u> |
|------|--------------------------|-------------------------------|
|      | <u>Concentrati</u>       | <u>on (pCi/m<sup>3</sup>)</u> |
| 1988 | 0.025                    | 0.023                         |
| 1989 | 0.025                    | 0.024                         |
| 1990 | 0.024                    | 0.024                         |
| 1991 | 0.018                    | 0.019                         |
| 1992 | 0.018                    | 0.019                         |
| 1993 | 0.020                    | 0.020                         |
| 1994 | 0.016                    | 0.018                         |
| 1995 | 0.019                    | 0.018                         |
| 1996 | 0.020                    | 0.019                         |
| 1997 | 0.019                    | 0.019                         |
| 1998 | 0.019                    | 0.019                         |

Average annual gross beta concentrations in airborne particulates.

## Airborne Particulates (continued)

Gamma spectroscopic analyses of quarterly composites of air particulate filters yielded similar results for indicator and control locations. Beryllium-7, which is produced continuously in the upper atmosphere by cosmic radiation (Arnold and Al-Salih, 1955), was detected in all samples. All other gamma-emitting isotopes were below their respective LLD limits.

# Airborne Iodine

Bi-monthly levels of airborne iodine-131 were below the lower limit of detection (LLD) of  $0.03 \text{ pCi/m}^3$  at all locations. There is no indication of an effect of the plant operation on the local air environment.

### Ambient Gamma Radiation - TLDs

Ambient gamma radiation was monitored by TLDs at fourteen locations: seven indicator and seven control.

The quarterly TLDs at the indicator locations measured a mean dose equivalent of (16.1 mR/91 days), in agreement with the mean at the control locations of (15.5 mR/91 days), and were similar to the means obtained in 1988 (and prior to) through 1997. The results are tabulated below. No plant effect on ambient gamma radiation was indicated These values are slightly lower than the United States average value of 19.5 mR/91 days due to natural background radiation (National Council on Radiation Protection and Measurements, 1975). The highest annual mean was 18.6 mR/91 days, measured at the indicator location K-7.

| <u>Year</u> | Average<br>(Indicators <u>)</u> | Average<br>(Controls) |
|-------------|---------------------------------|-----------------------|
|             | Dose rate (                     | mR/91 days)           |
| 1988        | 18.0                            | 17.4                  |
| 1989        | 17.5                            | 16.9                  |
| 1990        | 14.4                            | 14.4                  |
| 1991        | 13.7                            | 12.5                  |
| 1992        | 15.0                            | 13.8                  |
| 1993        | 15.0                            | 13.8                  |
| 1994        | 14.8                            | 13.8                  |
| 1995        | 16.7                            | 15.6                  |
| 1996        | 15.9                            | 14.9                  |
| 1997        | 16.0                            | 15.1                  |
| 1998        | 16.1                            | 15.5                  |

Ambient gamma radiation as measured by thermoluminescent dosimetry. Average quarterly dose rates.

#### **Precipitation**

Precipitation was monitored at one indicator location, K-11. The tritium concentration was below the LLD level of 330 pCi/L in all samples.

# 3.2.3 The Terrestrial Environment

#### <u>Milk</u>

Of the 126 analyses for iodine-131 in milk, all were below the LLD level of 0.5 pCi/L.

Strontium-89 concentrations were below the LLD level of 1.4 pCi/L in all samples. Low levels of Strontium-90 were found in seventy-nine out of eighty-four samples tested. The mean values were similar for indicator and control locations (1.3 and 1.4 pCi/L, respectively) and are similar to or less than averages seen from 1978 through 1997.

Barium-lanthanum-140 concentrations were below the LLD of 15 pCi/L and Cesium-137 concentrations were below the LLD of 10 pCi/L in all samples. Potassium-40 results are similar at both the indicator and control locations (1390 and 1350 pCi/L, respectively), and are essentially identical to the levels observed from 1978 through 1997.

Due to the chemical similarities between strontium and calcium, and cesium and potassium, organisms tend to deposit cesium-137 in the soft tissue and muscle and strontium-89 and strontium-90 in the bones. Consequently, the ratios of strontium-90 activity to the weight of calcium in milk and cesium-137 activity to the weight of potassium in milk were monitored in order to detect potential environmental accumulation of these radionuclides. No statistically significant variations in the ratios were observed. The measured concentrations of stable potassium and calcium are in agreement with previously determined values of  $1.50 \pm 0.21$  g/L and  $1.16 \pm 0.08$  g/L, respectively (National Center for Radiological Health, 1968).

#### Well Water

Gross alpha concentration was measured at the two on-site wells, (K-1g and K-1h) and averaged 5.0 pCi/L. Gross beta concentrations in well water averaged 1.3 pCi/L in samples from the control location. The mean value for all indicator locations was 3.1 pCi/L, essentially the same values observed from 1978 through 1997 (3.4, 3.0, 3.0, 3.6, 3.2, 2.9, 2.3, 2.6, 2.5, 2.1, 3.3, 2.5, 2.0, 2.2, 2.6, 2.2, 2.0, 2.6, 3.6 and 3.3 pCi/L, respectively). The differences between mean gross beta concentrations are not statistically significant because the counting uncertainties of the individual measurements are typically 0.3 to 1.3 pCi/L in all samples.

Tritium concentration in the on-site well (K-1g) was below the LLD of 330 pCi/L in all samples.

All gamma-emitting isotopes were below their respective LLDs in all samples.

Concentrations of strontium-89 and strontium-90 in well water were below the detection limits of 2.2 and 0.5 pCi/L, respectively, for all samples.

Potassium-40 averages are generally in proportion to gross beta measurements and were in agreement with previously measured values.

#### Domestic Meat

In meat (chickens), gross alpha concentration measured 0.1 pCi/g wet weight at one indicator location and 0.05 pCi/g wet weight for the control location. Gross beta concentration averaged 2.1 pCi/g wet weight for indicator locations and 3.0 pCi/g wet weight for the control location. The differences are not significant. Gamma-

#### Domestic Meat (continued)

spectroscopic analyses showed that almost all of the beta activity was due to naturally occurring potassium-40. All other gamma-emitting isotopes were below their respective LLD limits.

#### <u>Eggs</u>

In egg samples, gross beta concentration averaged 1.33 pCi/g wet weight, similar to the concentration of the naturally-occurring potassium-40 observed in the samples (1.31 pCi/g). All other gamma-emitting isotopes were below their respective LLDs. The level of strontium-89 was below the LLD of 0.010 pCi/g wet weight in all samples. Strontium-90 was below the LLD level of 0.003 pCi/g wet weight in all samples.

#### <u>Vegetables and Grain</u>

In vegetables, gross beta concentrations were similar at both the indicator and control locations (2.25 and 2.52 pCi/g wet weight, respectively) and was due primarily to potassium-40 activity. Strontium-89 was below the LLD level of 0.043 pCi/g wet weight in all samples. Strontium-90 was detected in samples of oats and clover at an average concentration of 0.022 pCi/g wet weight.

All other gamma-emitting isotopes were below their respective LLD levels.

In addition to potassium-40, naturally-occurring beryllium-7 was detected in both oats and clover samples. These samples are of similar radioisotopic composition to vegetables, but the concentration of radionuclides was slightly higher due to the lower water content.

#### Grass and Cattle Feed

In grass, mean gross beta concentrations were similar at both indicator and control locations (6.55 and 7.28 pCi/g wet weight, respectively) and in both cases was predominantly due to naturally occurring potassium-40 and beryllium-7. All other gamma-emitting isotopes were below their respective LLDs. Strontium-89 was below the LLD of 0.016 pCi/g wet weight in all samples. Strontium-90 activity was below the LLD of 0.008 pCi/g wet weight in all samples.

In cattlefeed, the mean gross beta concentration was lower at the control locations (9.16 pCi/g wet weight) than at indicator locations (12.49 pCi/g wet weight). The highest average gross beta levels were in samples from the indicator locations K-4 and K-5 (14.65 pCi/g wet weight), and reflected the high combined beryllium-7 and potassium-40 levels observed in the samples. This pattern was similar to that observed since 1978. Strontium-89 levels were below the LLD level of 0.027 pCi/g wet weight in all samples. Strontium-90 activity measured 0.022 pCi/g wet at the indicator locations and 0.041 pCi/g wet weight at the control locations, similar or lower than levels observed in 1995, 1996, and 1997. The presence of the radiostrontium is attributable to fallout from previous nuclear testing. All other gamma-emitting isotopes were below their respective LLD levels.

<u>Soil</u>

Gross alpha concentrations in soil samples measured 11.14 pCi/g dry weight at the indicator locations averaged and 8.24 pCi/g dry weight at the control locations. Mean gross beta levels measured at the indicator and control locations averaged 22.94 and

#### Soil (continued)

26.33 pCi/g dry weight, respectively, and is primarily due to the potassium-40 activity. Strontium-89 was below the LLD level of 0.072 pCi/g dry weight in all samples. Strontium-90 was detected in nine of fourteen samples and levels were similar at both indicator and control locations (0.067 and 0.059 pCi/g dry weight, respectively).

Low levels of Cesium-137 were detected in eleven of fourteen samples and were nearly identical at indicator and control locations (0.16 and 0.17 pCi/g dry weight, respectively). Beryllium-7 was detected above the LLD level of 0.30 pCi/g dry weight in one sample collected at location K-12 and measured 0.47 pCi/g dry weight. Potassium-40 was detected in all samples and averaged 18.20 and 20.97 pCi/g dry weight at indicator and control locations, respectively. All other gamma-emitting isotopes were below their respective LLD's. These levels of detected activities are similar to those observed from 1979 through 1997.

# 3.2.4 <u>The Aquatic Environment</u>

#### Surface Water

In surface water, mean gross beta activity in suspended solids was below the LLD level of 1.5 pCi/L in all samples. Mean gross beta concentration in dissolved solids was higher at indicator locations (5.9 pCi/L) as compared to the control locations (2.1 pCi/L) and was slightly higher than activities observed in 1978 (5.4 and 2.7 pCi/L), 1979 (5.7 and 2.7 pCi/L), 1980 (5.1 and 2.7 pCi/L), 1981 (4.3 and 2.7 pCi/L), 1982 (4.9 and 2.4 pCi/L), 1983 (5.1 and 2.6 pCi/L), 1984 (5.0 and 2.7 pCi/L), 1985 (5.6 and 2.7 pCi/L), 1986 (4.1 and 2.5 pCi/L), 1987 (5.3 and 2.5 pCi/L) in 1988 (4.8 and 3.6 pCi/L), in 1989 (5.7 and 3.0 pCi/L), in 1990 (4.1 and 2.6 pCi/L), in 1991 (5.1 and 2.2 pCi/L), in 1992 (4.5 and 2.2 pCi/L), in 1993 and 1994 (5.0 and 2.3 pCi/L) and in 1995 and 1996 (4.3 and 2.2 pCi/L) and 1997 (6.3 and 2.4 pCi/L). The increase in levels are due in part to the addition of a new indicator location (K-1k), a pond formed by drainage of surrounding fields to the southwest. The control sample is Lake Michigan water, which varies very little in gross beta concentration during the year, while indicator samples include two creek locations (K-1a and K-1e) which are much higher in gross beta concentration and exhibit large month-to-month variations. The K-1a creek draws its water from the surrounding fields which are heavily fertilized; and the K-1e creek draws its water mainly from the Sewage Treatment Plant. In general, gross beta concentration levels were high when potassium-40 levels were high and low when potassium-40 levels were low, indicating that the fluctuations in beta concentration were due to variations in potassium-40 concentrations and not to plant operations. The fact that similar fluctuations at these locations were observed in the pre-operational studies conducted prior to 1974 supports this assessment.

Tritium was detected in two composite samples for the first quarter, 1998, collected from location K-14, at an average concentration of 725 pCi/L. All other samples tested were below the LLD level of 330 pCi/L.

Strontium-89 concentrations were below the LLD of 1.5 pCi/L in all samples. Strontium-90 concentrations were below the LLD of 0.7 pCi/L in all samples.

Gamma-emitting isotopes were below their respective LLDs in all samples.

#### <u>Fish</u>

In fish samples, the gross beta concentration averaged 2.76 pCi/g wet weight in muscles and 1.97 pCi/g wet weight in bone fractions. In muscle, the gross beta concentration was primarily due to potassium-40 activity. The average beta concentration of 2.12 pCi/g wet weight was lower than the average of the 1973 range of 3.34 to 3.62 pCi/g wet weight. Cesium-137 concentration in muscle averaged 0.075 pCi/g wet weight, lower than levels observed between 1979 and 1991 (average of 0.12 pCi/g wet weight), and similar to levels seen in 1992 (0.066 pCi/g wet weight), in 1993 (0.068 pCi/g wet weight), in 1994 (0.067 pCi/g wet weight), in 1995 (0.056 pCi/g wet weight), in 1996 (0.055 pCi/g wet weight) and in 1997 (0.053 pCi/g wet weight). The strontium-89 concentration was below the LLD of 0.18 pCi/g wet weight in all samples. Strontium-90 was detected in all bone samples and averaged 0.14 pCi/g wet weight.

#### Periphyton (Slime)

In periphyton (slime) samples, mean gross beta concentrations were lower at the indicator locations than at the control (4.08 and 2.23 pCi/g wet weight, respectively) Strontium-89 concentrations were below the LLD level of 0.13 pCi/g wet weight in all samples. Strontium-90 concentrations were below the LLD level of 0.08 pCi/g wet weight. Co-58 was detected in one sample from location K-1e at a concentration of 0.048 pCi/g wet weight. Cs-137 was detected in samples from locations K-1d and K-1e at concentrations of 0.033 pCi/g wet, compared with observations in 1995 (0.079 pCi/g wet weight), in 1996 (0.063 pCi/g wet weight) and <0.041 pCi/g wet weight in 1997. All other gamma-emitting isotopes, except naturally-occurring beryllium-7 and potassium-40, were below their respective LLDs.

#### Bottom Sediments

In bottom sediment samples, the mean gross beta concentration was similar at both indicator and control locations, (7.3 pCi/g dry weight) and (6.4 pCi/g dry weight), respectively, and due primarily to potassium-40.

Low levels of cesium-137 were detected in three of ten samples and averaged 0.032 pCi/g dry weight at indicator locations and less than 0.025 pCi/g dry weight at control locations. Cs-134 was below the LLD level of 0.038 pCi/g dry weight in all samples. The cesium-137 level was lower than the levels observed from 1979 through 1997.

Levels of Strontium-89 were below the detection limit of 0.038 pCi/g dry weight in all samples. Strontium-90 concentrations were below the detection limit of 0.021 pCi/g dry weight in all samples.

#### 3.3 Land Use Census

The 1998 Land Use Census satisfies the requirements of the KNPP Radiological Environmental Monitoring Manual. Section 2.2.2 states:

"A land use census shall be conducted and shall identify within a distance of 8 km (5 miles) the location, in each of the 10 meteorological sectors, of the nearest milk animal, the nearest residence and the nearest garden of greater than  $50m^2$  (500 ft<sup>2</sup>) producing broad leaf vegetation."

The 1998 Land Use Census was an annual census conducted in the years between the complete five year census. This census is used to verify that no changes have occurred with the locations of the nearest residence, milk animal or garden. "Drive-bys" were conducted to verify that no changes have occurred over the previous census.

The Land Use Census was completed on June 30, 1998. This census is conducted annually during the growing season per Health Physics Procedure HP 1.14.

Table 4.6.1 lists the results of the 1998 census. There were no changes identified from the 1997 census.

Table 4.6.2 describes the changes from 1997 to 1998.

# 4.0 FIGURES AND TABLES

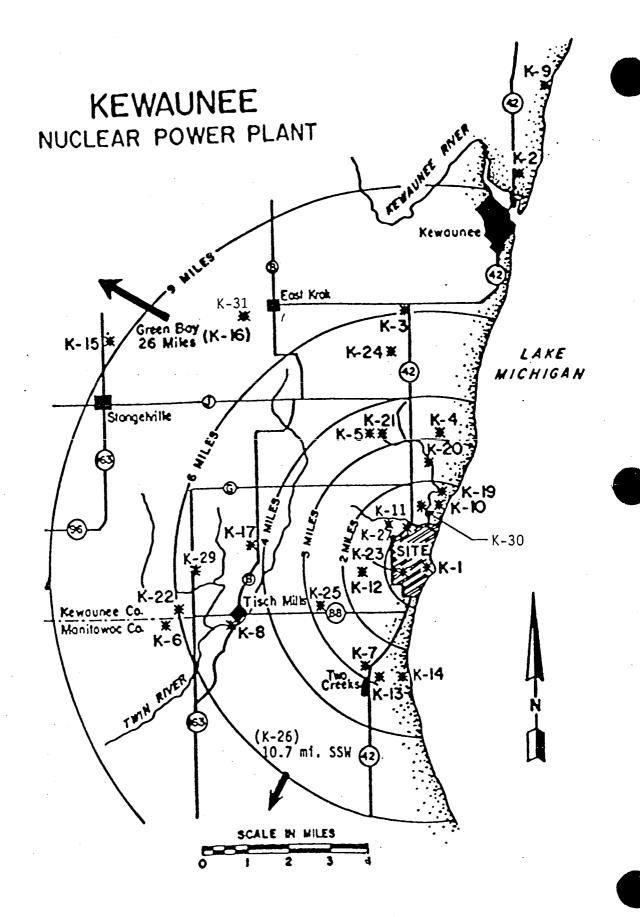



Figure 4-1. Sampling locations, Kewaunee Nuclear Power Plant

|              |                   | Distance<br>(miles) <sup>b</sup><br>and |                                                   |
|--------------|-------------------|-----------------------------------------|---------------------------------------------------|
| Code         | Type <sup>a</sup> | Sector                                  | Location                                          |
| K-1          |                   |                                         | Onsite                                            |
| K-1a         | Ι                 | 0.62 N                                  | North Creek                                       |
| K-1b         | I                 | 0.12 N                                  | Middle Creek                                      |
| K-1c         | Ι                 | 0.10 N                                  | 500' north of condenser discharge                 |
| K-1d         | Ī                 | 0.10 E                                  | Condenser discharge                               |
| K-1e         | Ī                 | 0.12 S                                  | South Creek                                       |
| K-1f         | Ī                 | 0.12 S                                  | Meteorological Tower                              |
| K-1g         | Ī                 | 0.06 W                                  | South Well                                        |
| K-1h         | I                 | 0.12 NW                                 | North Well                                        |
| K-1j         | Ī                 | 0.10 S                                  | 500' south of condenser discharge                 |
| K-1k         | Ī                 | 0.60 SW                                 | Drainage Pond                                     |
| K-2          | Ċ                 | 9.5 NNE                                 | WPS Operations Building in Kewaunee               |
| K-3          | Č                 | 6.0 N                                   | Lyle and John Siegmund Farm, Route 1, Kewaunee    |
| K-4          | Ī                 | 3.0 N                                   | Tom Stangel Farm, Route 1, Kewaunee               |
| K-5          | Ī                 | 3.5 NNW                                 | Ed Paplham Farm, Route 1, Kewaunee                |
| K-6          | Ĉ                 | 6.7 WSW                                 | Novitsky Farm                                     |
| K-7          | Ĩ                 | 2.75 SSW                                | Ron Zimmerman Farm, Route 3, Two Rivers           |
| K-8          | Ĉ                 | 5.0 WSW                                 | Saint Mary's Church, Tisch Mills                  |
| K-9          | č                 | 11.5 NNE                                | Rostok Water Intake for Green Bay, Wisconsin, two |
| ,            | e                 | 11.0 11112                              | miles north of Kewaunee                           |
| K-10         | I                 | 1.5 NNE                                 | Turner Farm, Kewaunee site                        |
| K-11         | Î                 | 1.0 NW                                  | Harlan Ihlenfeld Farm                             |
| K-12         | Î                 | 1.5 WSW                                 | Lecaptain Farm, one mile west of site             |
| K-13         | Ĉ                 | 3.0 SSW                                 | Rand's General Store                              |
| K-14         | Ĩ                 | 2.5 S                                   | Two Creeks Park, 2.5 miles south of site          |
| K-15         | Ĉ                 | 9.25 NW                                 | Gas Substation, 1.5 miles north of Stangelville   |
| K-16         | Č                 | 26 NW                                   | WPS Division Office Building, Green Bay,          |
|              | •                 | -01111                                  | Wisconsin                                         |
| K-17         | Ι                 | 4.25 W                                  | Jansky's Farm, Route 1, Kewaunee                  |
| K-19         | Î                 | 1.75 NNE                                | Wayne Paral Farm, Route 1, Kewaunee               |
| K-20         | Î                 | 2.5 N                                   | Carl Struck Farm, Route 1, Kewaunee               |
| K-23         | Î                 | 0.5 W                                   | 0.5 miles west of plant, Kewaunee site            |
| K-24         |                   | 5.45 N                                  | Fectum Farm, Route 1, Kewaunee                    |
| K-25         | C                 | 2.75 WSW                                | Wotachek Farm, Route 1, Denmark                   |
| K-26         | C<br>C<br>C       | 10.7 SSW                                | Bertler's Fruit Stand (8.0 miles south of "BB")   |
| K-20<br>K-27 | I                 | 1.5 NW                                  | Schlies Farm, 0.5 miles west of K-11              |
| K-28         | Ċ                 | 26 NW                                   | Hansen Dairy, Green Bay, Wisconsin                |
| K-20<br>K-29 | I                 | 5.75 W                                  | Kunesh Farm, Route 1, Kewaunee                    |
| K-29<br>K-30 | I                 | 1.00 N                                  | End of site boundary                              |
| K-30<br>K-31 | Ċ                 | 6.25 NNW                                | E. Krok Substation                                |
|              |                   |                                         |                                                   |
| K-32         | С                 | 11.5 N                                  | Piggly Wiggly Foods, 931 Marquette Dr., Kewaun    |

Table 4.1. Sampling locations, Kewaunee Nuclear Power Plant.

<sup>a</sup> I= indicator; C = control. <sup>b</sup> Distances are measured from reactor stack.

|                   |        |           | ·····   | Frequency                              | ···                  |          |
|-------------------|--------|-----------|---------|----------------------------------------|----------------------|----------|
| Location          | Weekly | Biweekly  | Monthly | Quarterly                              | Semiannually         | Annually |
| K-1a              |        |           | SW      |                                        | SL                   |          |
| K-1b              |        |           | SW      | GR <sup>a</sup>                        | SL                   |          |
| K-1c              |        |           |         |                                        | BSb                  |          |
| K-1d              |        |           | SW      | FI                                     | BS <sup>b</sup> , SL |          |
| K-1e              |        |           | SW      |                                        | SL                   |          |
| K-1f              | AP     | AI        |         | GR <sup>a</sup> , TLD                  | SO                   |          |
| K-1g              |        |           |         | WW                                     |                      |          |
| K-1h              |        |           |         | WW                                     |                      |          |
| K-1j              |        |           |         |                                        | BSb                  |          |
| K-1k              |        |           | SW      |                                        | SL                   |          |
| K-2               | AP     | AI        |         | TLD                                    |                      |          |
| K-3               |        |           | MIc     | GR <sup>a</sup> , TLD, CF <sup>d</sup> | SO                   |          |
| K-4               |        |           | MIc     | GR <sup>a</sup> , TLD, CF <sup>d</sup> | SO                   |          |
| K-5               |        |           | MIc     | GR <sup>a</sup> , TLD, CF <sup>d</sup> | SO                   |          |
| K-6               |        |           | MIC     | GR <sup>a</sup> , TLD, CF <sup>d</sup> | SO                   |          |
| K-7               | AP     | AI        |         | TLD                                    |                      |          |
| K-8               | AP     | AI        |         | TLD                                    |                      |          |
| K-9               |        |           | SW      |                                        | BS <sup>b</sup> , SL |          |
| K-10              |        |           |         | WW                                     |                      |          |
| K-11              |        |           | PR      | WW                                     |                      |          |
| K-12              |        |           | MIc     | GR <sup>a</sup> , CF <sup>d</sup> , WW | SO                   |          |
| K-13              |        |           |         | WW                                     |                      |          |
| K-14              |        | · · · · · | SW      | · 1.81.2.800.00                        | BS <sup>b</sup> , SL |          |
| K-15 <sup>e</sup> |        |           |         | TLD                                    |                      |          |
| K-16              | AP     | AI        |         | TLD                                    |                      |          |
| K-17              |        |           |         | TLD                                    |                      | VE       |
| K-19              |        |           | MIc     | GR <sup>a</sup> , CF <sup>d</sup>      | SO                   |          |
| K-20              |        |           |         |                                        |                      | DM       |
| K-23              |        |           |         |                                        |                      | GRN      |
| K-23<br>K-24      |        |           |         | EG                                     |                      | DM       |
| K-24<br>K-26      |        |           |         |                                        |                      | VE       |
| K-20<br>K-27      |        |           | +       | TLD, EG                                |                      | DM       |
| K-27<br>K-28      |        |           | MIc     |                                        | · · · ·              |          |
| K-28<br>K-29      |        | ·         |         |                                        | · · · · ·            | DM       |
| K-30              |        |           |         | TLD                                    |                      |          |
| K-30<br>K-31      | AP     | AI        |         | TLD                                    |                      |          |
| K-31<br>K-32      |        |           |         |                                        |                      | DM       |
| IX-32             |        | <u> </u>  | L       | 1                                      |                      |          |

Table 4.2. Type and frequency of collection.

<sup>a</sup> Three times a year, second (April, May, June), third (July, August, September), and fourth (October, November, December) quarters.

<sup>b</sup> To be collected in May and November.

<sup>c</sup> Monthly from November through April; semimonthly May through October.

<sup>d</sup> First quarter (January, February, March) only.

<sup>e</sup> Air sampler moved to K-31, September, 1997.

| Code | Description                           |
|------|---------------------------------------|
| AP   | Airborne Particulate                  |
| AI   | Airborne Iodine                       |
| TLD  | Thermoluminescent Dosimeter           |
| PR   | Precipitation                         |
| MI   | Milk                                  |
| WW   | Well Water                            |
| DM   | Domestic Meat                         |
| EG   | Eggs                                  |
| VE   | Vegetables                            |
| GRN  | Grain                                 |
| GR   | Grass                                 |
| CF   | Cattlefeed                            |
| SO   | Soil                                  |
| SW   | Surface Water                         |
| FI   | Fish                                  |
| SL   | Slime                                 |
| BS   | Bottom Sediments                      |
|      | · · · · · · · · · · · · · · · · · · · |

Table 4.3. Sample codes used in Table 4.2.

| Sample<br>Type                                                                                                                                             | Collection<br>Type and<br>Frequency <sup>a</sup>                            | Number of<br>Locations                         | Number of<br>Samples<br>Collected                              | Number of<br>Samples<br>Missed                      |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|--|
| Air Environment                                                                                                                                            | · · · · · ·                                                                 |                                                |                                                                |                                                     |  |
| Airborne particulates<br>Airborne Iodine<br>TLD's<br>Precipitation                                                                                         | C/W<br>C/BW<br>C/Q<br>C/M                                                   | 6<br>6<br>14<br>1                              | 312<br>156<br>55<br>12                                         | 0<br>0<br>1<br>0                                    |  |
| Terrestrial Environment                                                                                                                                    |                                                                             |                                                |                                                                |                                                     |  |
| Milk (May-Oct)<br>(Nov-Apr)<br>Well water<br>Domestic meat<br>Eggs<br>Vegetables - 5 varieties<br>Grain - oats<br>- clover<br>Grass<br>Cattle feed<br>Soil | G/SM<br>G/M<br>G/Q<br>G/A<br>G/A<br>G/A<br>G/A<br>G/A<br>G/A<br>G/A<br>G/SA | 7<br>6<br>4<br>2<br>2<br>1<br>1<br>8<br>6<br>7 | 84<br>42<br>24<br>3<br>7<br>7<br>1<br>1<br>1<br>24<br>12<br>14 | 0<br>0<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |  |
| <u>Aquatic Environment</u><br>Surface water<br>Fish<br>Slime<br>Bottom sediments                                                                           | G/M<br>G/TA<br>G/SA<br>G/SA                                                 | 8<br>1<br>7<br>5                               | 107<br>5<br>14<br>10                                           | 1<br>0<br>0<br>0                                    |  |

Table 4.4. Sampling Summary, January - December 1998.

<sup>a</sup> Type of collection is coded as follows: C = continuous; G = grab.
 Frequency is coded as follows: W = weekly; SM = semimonthly; M = monthly; Q=quarterly;
 SA = semiannually; TA = three times per year; FA = four times per year; A = annually; BW = bi-weekly.

 Table 4.5
 Environmental Radiological Monitoring Program Summary.

|                                             | ne of Facility                                                                |                        |                                                                             | clear Power Plant                                                                                                    | Docket                                                                                                                    | No. 50-305                                                                                          |                                                                                                             |                                           |
|---------------------------------------------|-------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Loca                                        | ation of Facility                                                             | / Kew                  |                                                                             | unty, Wisconsin                                                                                                      | Reporti                                                                                                                   | ng Period Januar                                                                                    | y - December 1998                                                                                           | 3                                         |
|                                             |                                                                               |                        | (C                                                                          | ounty, State)                                                                                                        |                                                                                                                           |                                                                                                     |                                                                                                             |                                           |
| Sample                                      | Type and                                                                      |                        |                                                                             | Indicator<br>Locations                                                                                               | Location with Highest<br>Annual Mean                                                                                      |                                                                                                     | Control<br>Locations                                                                                        | Number<br>Non-                            |
| Туре                                        | Number                                                                        |                        | LLD <sup>b</sup>                                                            | Mean (F) <sup>C</sup>                                                                                                |                                                                                                                           | Mean (F) <sup>C</sup>                                                                               | Mean (F) <sup>C</sup>                                                                                       | Routine                                   |
| (Units)                                     | Analyses                                                                      | sa                     |                                                                             | Range <sup>C</sup>                                                                                                   | Location <sup>d</sup>                                                                                                     | Range <sup>C</sup>                                                                                  | Range                                                                                                       | Results <sup>e</sup>                      |
| Airborne<br>particulates                    | GB                                                                            | 312                    | 0.003                                                                       | 0.019 (104/104)<br>(0.004-0.037)                                                                                     | K-1f, K-2, K-7, K-8,<br>K-31, K-16, All<br>locations identical<br>annual means                                            | 0.019 (311/312)<br>(0.004-0.0038)                                                                   | 0.019 (207/208)<br>(0.005-0.038)                                                                            | 0                                         |
| (pCi/m <sup>3</sup> )                       | GS<br>Be-7                                                                    | 24                     | 0.020                                                                       | 0.069 (8/8)<br>(0.054-0.089)                                                                                         | K-8, St. Mary's,<br>5.0 mi. WSW /<br>K-16, WPS Div.<br>Office, 26 mi. NW;                                                 | 0.073 (8/8)<br>(0.047-0.085)                                                                        | 0.072 (16/16)<br>(0.047-0.091)                                                                              | 0                                         |
|                                             | Nb-95<br>Zr-95<br>Ru-103<br>Ru-106<br>Cs-134<br>Cs-137<br>Ce-141<br>Ce-144    |                        | 0.0023<br>0.0036<br>0.0016<br>0.012<br>0.0017<br>0.0013<br>0.0030<br>0.0089 | < LLD<br>< LLD<br>< LLD<br>< LLD<br>< LLD<br>< LLD<br>< LLD<br>< LLD                                                 |                                                                                                                           | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                | < LLD<br>< LLD<br>< LLD<br>< LLD<br>< LLD<br>< LLD<br>< LLD<br>< LLD                                        | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| Airborne<br>Iodine<br>(pCi/m <sup>3</sup> ) | 1-131                                                                         | 156                    | 0.03                                                                        | < LLD                                                                                                                | -                                                                                                                         | -                                                                                                   | < LLD                                                                                                       | 0                                         |
| TLD-<br>Quarterly<br>(mR/91 days)           | Gamma                                                                         | 55                     | 1                                                                           | 16.1 (28/28)<br>(12.3-20.4)                                                                                          | K-7, Zimmerman<br>Farm, 2.75 mi. SSW                                                                                      | 18.6 (4/4)<br>(17.1-20.4)                                                                           | 15.5 (27/28)<br>(13.5-18.8)                                                                                 | 0                                         |
| Precipitation<br>(pCi/L)                    | Н-3                                                                           | 12                     | 330                                                                         | <lld< td=""><td>-</td><td>-</td><td>None</td><td>0</td></lld<>                                                       | -                                                                                                                         | -                                                                                                   | None                                                                                                        | 0                                         |
| Milk                                        | I-131<br>Sr-89<br>Sr-90<br>CS                                                 | 126<br>84<br>84<br>126 | 0.5<br>1.4<br>0.5                                                           | < LLD<br>< LLD<br>1.3 (48/48)<br>(0.7-2.7)                                                                           | K-12, Lecaptain<br>Farm 1.5 mi. WSW                                                                                       | 1.6 (12/12)<br>(1.0-2.4)                                                                            | < LLD<br>< LLD<br>1.4 (36/36)<br>(0.8-3.3)                                                                  | 0<br>0<br>0                               |
|                                             | K-40<br>Cs-134<br>Cs-137<br>Ba-La-140<br>K-stable<br>Ca                       | 84<br>84               | 50<br>10<br>15<br>1.0<br>0.4                                                | 1390 (72/72)<br>(1080-1730)<br>< LLD<br>< LLD<br>< LLD<br>1.60 (48/48)<br>(1.39-1.90)<br>0.86 (48/48)<br>(0.70-1.03) | K-12, Lecaptain<br>Farm 1.5 mi. WSW<br>-<br>-<br>K-12, Lecaptain<br>Farm 1.5 mi. WSW<br>K-6, Novitsky Farm<br>6.7 mi. WSW | 1460 (18/18)<br>(1260-1680)<br>-<br>-<br>1.71 (12/12)<br>(1.55-1.90)<br>0.98 (12/12)<br>(0.87-1.07) | 1350 (54/54)<br>(1070-1650)<br>< LLD<br>< LLD<br>1.60 (36/36)<br>(1.30-1.91)<br>0.91 (36/36)<br>(0.75-1.10) | 0<br>0<br>0<br>0<br>0                     |
| Well Water                                  | GA                                                                            | 8                      | 2.7                                                                         | 5.0(2/8)                                                                                                             | K-1h, North Well                                                                                                          | 6.1 (1/4)                                                                                           | None                                                                                                        | 0                                         |
| (pCi/L)                                     | GB                                                                            | 24                     | 1.1 <sup>f</sup>                                                            | 3.1 (14/20)<br>(1.2-5.7)                                                                                             | Onsite, 0.12 mi. NW<br>K-1g, South Well<br>Onsite, 0.06 mi. W                                                             | 4.6 (3/4)<br>(3.6-5.7)                                                                              | 1.3 (2/4)<br>(1.2-1.4)                                                                                      | 0                                         |
|                                             | H-3<br>K-40 (flame)                                                           | 24                     | 330<br>0.87                                                                 | <lld<br>1.84 (15/20)<br/>(0.91-2.77)</lld<br>                                                                        | K-1g, South Well<br>Onsite, 0.06 mi. W                                                                                    | -<br>2.58 (4/4)<br>(2.25-2.77)                                                                      | None<br>0.97 (4/4)<br>(0.95-1.04)                                                                           | 0<br>0                                    |
|                                             | Sr-89<br>Sr-90<br>GS                                                          | 4<br>4<br>24           | 2.2<br>0.5                                                                  | < LLD<br>< LLD                                                                                                       | -                                                                                                                         | -                                                                                                   | None<br>None                                                                                                | 0<br>0<br>0                               |
|                                             | Mn-54<br>Fe-59<br>Co-58<br>Co-60<br>Zr-Nb-95<br>Cs-134<br>Cs-137<br>Ba-La-140 |                        | 15<br>30<br>15<br>15<br>15<br>10<br>10<br>15                                | < LLD<br>< LLD<br>< LLD<br>< LLD<br>< LLD<br>< LLD<br>< LLD<br>< LLD                                                 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                      | -<br>-<br>-<br>-<br>-<br>-                                                                          | < LLD<br>< LLD<br>< LLD<br>< LLD<br>< LLD<br>< LLD<br>< LLD<br>< LLD                                        | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |

 Table 4.5
 Environmental Radiological Monitoring Program Summary.

|                           | ne of Facility<br>ation of Facility | y Kewaunee County, Wisconsin Re |                                                                                                              |                                        | ocket No.<br>porting Period                 | 50-305<br>January - December 19           | 50-305<br>January - December 1998 |  |
|---------------------------|-------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------|-------------------------------------------|-----------------------------------|--|
|                           | . •                                 |                                 | (County, State                                                                                               | )                                      |                                             |                                           |                                   |  |
| Sample Type and           |                                     |                                 | Indicator<br>Locations                                                                                       | Location with Highest<br>Annual Mean   |                                             | Control<br>Locations                      | Number<br>Non-                    |  |
| Type<br>(Units)           | Number of<br>Analyses <sup>a</sup>  | LLD <sup>b</sup>                | Mean (F) <sup>C</sup><br>Range <sup>C</sup>                                                                  | Location <sup>d</sup>                  | Mean (F) <sup>C</sup><br>Range <sup>C</sup> | Mean (F) <sup>C</sup><br>Range            | Routine<br>Results <sup>e</sup>   |  |
| Domestic                  | GA 3                                | 0.04                            | <lld< td=""><td>K-24, Fectum Farm<br/>5.45 mi. N</td><td>0.10 (1/1)</td><td>0.05 (1/1)</td><td>0</td></lld<> | K-24, Fectum Farm<br>5.45 mi. N        | 0.10 (1/1)                                  | 0.05 (1/1)                                | 0                                 |  |
| Meat<br>(Chickens)        | GB 3                                |                                 | 2.14 (2/2)<br>(1.76-2.52)                                                                                    | K-32, Grocery Store,<br>11.5 mi. N     | 3.00 (1/1)                                  | 3.00 (1/1)                                |                                   |  |
| (pCi/g wet)               | GS 3<br>Be-7<br>K-40                | 0.41<br>0.5                     | < LLD<br>2.91 (2/2)<br>(2.76-3.06)                                                                           | -<br>K-24, Fectum Farm<br>5.45 mi. N   | 3.06 (1/1)                                  | < LLD<br>2.19 (1/1)                       | 0<br>0<br>0                       |  |
|                           | Nb-95<br>Zr-95<br>Ru-103<br>Ru-106  | 0.083<br>0.060<br>0.032<br>0.23 | < LLD<br>< LLD<br>< LLD<br>< LLD                                                                             | - *                                    | -                                           | < LLD<br>< LLD<br>< LLD<br>< LLD          | 0<br>0<br>0                       |  |
|                           | Cs-134<br>Cs-137<br>Ce-141          | 0.021<br>0.021<br>0.063         | < LLD<br>< LLD<br>< LLD                                                                                      |                                        | -                                           | < LLD<br>< LLD<br>< LLD                   | 0<br>0<br>0                       |  |
|                           | Ce-144                              | 0.13                            | < LLD                                                                                                        | -                                      | -                                           | < LLD                                     | 0                                 |  |
| Eggs<br>(pCi/g wet)       | GB 4<br>Sr-89 4                     |                                 | 1.19 (4/4)<br>(1.15-1.23)<br>< LLD                                                                           | K-32, Grocery Store,<br>11.5 mi. N     | 1.51 (3/3)<br>(1.16-2.07)                   | 1.51 (3/3)<br>(1.16-2.07)<br>< LLD        | 0                                 |  |
|                           | Sr-90 4                             |                                 | 0.004 (1/4)                                                                                                  | K-24, Fectum Farm<br>5.45 mi. N        | 0.004 (1/4)                                 | < LLD                                     | 0                                 |  |
|                           | Be-7<br>K-40                        | 0.092<br>0.10                   | < LLD<br>1.25 (4/4)<br>(1.11-1.32)                                                                           | K-32, Grocery Store,<br>11.5 mi. N     | -<br>1.38 (3/3)<br>(1.20-1.48)              | < LLD<br>1.38 (3/3)<br>(1.20-1.48)        | 0<br>0                            |  |
|                           | Nb-95<br>Zr-95<br>Ru-103            | 0.020<br>0.022<br>0.013         | < LLD<br>< LLD<br>< LLD                                                                                      | -<br>-                                 | -                                           | < LLD<br>< LLD<br>< LLD                   | 0<br>0<br>0                       |  |
|                           | Ru-106<br>Cs-134<br>Cs-137          | 0.099<br>0.009<br>0.011         | < LLD<br>< LLD<br>< LLD                                                                                      | -                                      | -<br>-<br>-                                 | < LLD<br>< LLD<br>< LLD                   | 0<br>0<br>0                       |  |
|                           | Ce-141<br>Ce-144                    | 0.023<br>0.063                  | < LLD<br>< LLD                                                                                               | -<br>-                                 | -                                           | < LLD<br>< LLD                            | 0<br>0                            |  |
| Vegetables<br>(pCi/g wet) | GB 6                                |                                 | 2.25 (3/3)<br>(1.17-3.48)                                                                                    | K-26, Bertler's ,<br>10.7 mi. SSW      | 2.52 (4/4)<br>(1.93-3.75)                   | 2.52 (4/4)<br>(1.93-3.75)                 | 0                                 |  |
| - * '                     | Sr-89 6<br>Sr-90 6<br>GS 6          | 0.006                           | < LLD<br>< LLD                                                                                               | -                                      | -                                           | < LLD<br>< LLD                            | 0                                 |  |
|                           | Be-7<br>K-40                        | 0.16<br>0.75                    | < LLD<br>1.95 (3/3)<br>(1.05-2.77)                                                                           | -<br>K-26, Bertler's ,<br>10.7 mi. SSW | -<br>2.18 (4/4)<br>(1.94-2.58)              | < LLD<br>2.18 (4/4)<br>(1.94-2.58)        | 0<br>0                            |  |
|                           | Nb-95<br>Zr-95<br>Ru-103            | 0.019<br>0.025<br>0.012         | < LLD<br>< LLD<br>< LLD                                                                                      | -                                      | -                                           | < LLD<br>< LLD<br>< LLD                   | 0<br>0<br>0                       |  |
|                           | Ru-106<br>Cs-134<br>Cs-137          | 0.067<br>0.013<br>0.018         | < LLD<br>< LLD<br>< LLD                                                                                      | -                                      | -                                           | < LLD<br>< LLD<br>< LLD<br>< LLD<br>< LLD | 0<br>0<br>0                       |  |
|                           | Ce-141<br>Ce-144                    | 0.019<br>0.069                  | < LLD<br>< LLD                                                                                               | -                                      | -                                           | < LLD<br>< LLD                            | 0                                 |  |

 $Table \ 4.5 \ Environmental \ Radiological \ Monitoring \ Program \ Summary.$ 

|                           | ne of Facility   |          |                | e Nuclear Power                    |                                                      |                                          | 0-305                                          |                      |
|---------------------------|------------------|----------|----------------|------------------------------------|------------------------------------------------------|------------------------------------------|------------------------------------------------|----------------------|
| Excation of Facility      |                  | hty      | Kewaune        | e County, Wiscor<br>(County, State |                                                      |                                          | nuary - December 1998                          |                      |
|                           |                  |          |                | (county, blate                     | ,                                                    |                                          |                                                |                      |
| Sample                    | Type an          | d        |                | Indicator<br>Locations             |                                                      | ith Highest<br>1 Mean                    | Control<br>Locations                           | Number<br>Non-       |
| Type                      | Number           |          | LLDb           | Mean (F) <sup>C</sup>              |                                                      | Mean (F) <sup>C</sup>                    | Mean (F) <sup>C</sup>                          | Routine              |
| (Units)                   | Analyses         | sa       |                | Range <sup>C</sup>                 | Location <sup>d</sup>                                | Range <sup>C</sup>                       | Range                                          | Results <sup>e</sup> |
| Grain -                   | GB               | 2        | 0.10           | 6.69 (2/2)                         | K-23, Kewaunee                                       | 6.69 (2/2)                               | None                                           | 0                    |
| Oats & Clover             |                  | 2        | 0.043          | (4.92-8.46)<br>< LLD               | Site 0.5 mi. W                                       | (4.92-8.46)                              | None                                           | 0                    |
| (per/g wet)               | Sr-90<br>GS      | 22       | 0.022          | < LLD                              |                                                      | -                                        | None                                           | ŏ                    |
|                           | Be-7             | ~        | 0.27           | 0.92 (2/2) (0.86-0.97)             | K-23, Kewaunee<br>Site 0.5 mi. W                     | 0.92 (2/2)<br>(0.86-0.97)                | None                                           | 0                    |
|                           | K-40             |          | 0.10           | 5.09 (2/2)<br>(4.08-6.10)          | K-23, Kewaunee<br>Site 0.5 mi. W                     | 5.09 (2/2)<br>(4.08-6.10)                | None                                           | 0                    |
|                           | Nb-95            |          | 0.031          | < LLD                              | -                                                    | -                                        | None                                           | 0                    |
| 1                         | Zr-95            |          | 0.078          | < LLD                              | 1                                                    | - 1                                      | None                                           | ŏ                    |
|                           | Ru-103           |          | 0.037          | < LLD                              | -                                                    | -                                        | None                                           | 0                    |
|                           | Ru-106           |          | 0.26           | < LLD                              |                                                      |                                          | None                                           | 0                    |
|                           | Cs-134           |          | 0.021          | < LLD                              | -                                                    | -                                        | None                                           | 0                    |
|                           | Cs-137           |          | 0.028          | < LLD                              | 1                                                    | -                                        | None                                           | 0                    |
|                           | Ce-141           |          | 0.060          | < LLD                              | -                                                    | -                                        | None                                           | 0                    |
|                           | Ce-144           |          | 0.18           | < LLD                              | · ·                                                  | -                                        | None                                           | 0                    |
| Cattlefeed<br>(pCi/g wet) | GB               | 12       | 0.1            | 12.49 (8/8)<br>(2.07-23.62)        | K-4 Stangel Farm<br>3.0 mi. N /<br>K-5, Paplham Farm | 14.65 (4/4)<br>(5.68-23.62)              | 9.16 (4/4)<br>(3.79-11.94)                     | 0                    |
|                           | Sr-89            | 12       | 0.027          | < LLD                              | 3.5 mi. NNW                                          |                                          | < LLD                                          | 0                    |
|                           |                  | 12       | 0.005          | 0.022 (7/8)<br>(0.007-0.035)       | K-6, Novitsky Farm<br>6.7 mi. WSW                    | 0.055 (2/2)<br>(0.050-0.060)             | 0.041 (3/4) (0.013-0.060)                      | 0<br>0               |
|                           | GS<br>Be-7       | 12       | 0.20           | 0.47 (8/8)                         | K-6, Novitsky Farin                                  | , , ,                                    |                                                |                      |
|                           | K-40             |          |                | (0.22-0.67)                        | 6.7 mi. WSW                                          | (0.93-1.23)                              | 0.87 (3/4)<br>(0.44-1.23)                      | 0                    |
|                           |                  |          | 1.0            | 13.57 (8/8)<br>(1.97-26.79)        | K-5, Paplham Farm<br>3.5 mi. NNW                     | 15.96 (2/2)<br>(9.66-22.26)              | 8.70 (4/4)<br>(4.66-10.38)                     | 0                    |
|                           | NЪ-95<br>Zr-95   |          | 0.043<br>0.070 | < LLD<br>< LLD                     | -                                                    | -                                        | <lld<br><lld< td=""><td>0</td></lld<></lld<br> | 0                    |
|                           | Ru-103           |          | 0.070          | < LLD                              |                                                      | -                                        | < LLD                                          | 0                    |
|                           | Ru-105           |          | 0.25           | < LLD                              | _                                                    | _                                        | < LLD                                          | o l                  |
|                           | Cs-134           |          | 0.033          | < LLD                              | -                                                    | -                                        | < LLD                                          | ŏ                    |
|                           | Cs-137           |          | 0.033          | < LLD                              | -                                                    | -                                        | < LLD                                          | 0                    |
|                           | Ce-141           |          | 0.067          | < LLD                              | -                                                    | -                                        | < LLD                                          | 0                    |
|                           | Ce-144           |          | 0.20           | < LLD                              | -                                                    | -                                        | < LLD                                          | 0                    |
|                           | GB               | 24       | 0.1            | 6.55 (18/18)                       | K-3, Siegmund                                        | 8.42 (3/3)                               | 7.28 (6/6)                                     | 0                    |
| (pCi/g wet)               | C- 00            | 24       | 0.016          | (4.86-11.83)                       | Farm, 6.0 mi. N                                      | (6.63-11.98)                             | (5.29-11.98)                                   |                      |
|                           |                  | 24<br>24 | 0.018          | < LLD<br>0.010 (1/18)              | K-12, Lecaptain<br>Farm 1.5 mi. WSW                  | 0.010 (1/3)                              | < LLD<br>< LLD                                 | 0<br>0               |
|                           | GS<br>Be-7       | 24       | 0.29           | 2.18 (18/18)                       | K-1f, Met. Tower,                                    | 0 76 (0 (0)                              | 1 69 16 10                                     |                      |
|                           |                  |          |                | (0.34-3.94)                        | 0.12 mi. S                                           | 2.76 (3/3)<br>(1.45-3.94)<br>7 50 (2 (2) | 1.68 (6/6)<br>(0.70-2.92)                      | 0                    |
|                           | K-40             |          | 0.1            | 6.26 (18/18)<br>(4.31-8.11)        | K-5, Paplham Farm<br>3.5 mi. NNW                     | 7.50 (3/3)<br>(7.17-8.11)                | 6.70 (6/6)<br>(6.08-8.19)                      | 0                    |
|                           | Nb-95            |          | 0.056<br>0.082 | < LLD<br>< LLD                     | -                                                    | -                                        | < LLD                                          | 0                    |
|                           | Zr-95<br>Ru-103  |          | 0.082          | < LLD<br>< LLD                     |                                                      |                                          | < LLD<br>< LLD                                 | 0                    |
|                           | Ru-103<br>Ru-106 |          | 0.043          | < LLD<br>< LLD                     |                                                      |                                          | < LLD<br>< LLD                                 | 0                    |
|                           | Cs-134           |          | 0.051          | < LLD<br>< LLD                     | -                                                    | -                                        | < LLD<br>< LLD                                 | 0                    |
|                           | Cs-137           |          | 0.044          | < LLD                              | -                                                    | -                                        | < LLD                                          | 0                    |
|                           | Ce-141           |          | 0.084          | < LLD                              | -                                                    | -                                        | < LLD                                          | 0                    |
|                           | Ce-144           |          | 0.38           | < LLD                              | -                                                    | -                                        | < LLD                                          | 0                    |

 Table 4.5
 Environmental Radiological Monitoring Program Summary.

|                              | ne of Facility<br>ition of Facility |                  | e Nuclear Power<br>e County, Wiscon                              |                                                | _                                          | 0-305<br>anuary - December 1             | 1998                 |
|------------------------------|-------------------------------------|------------------|------------------------------------------------------------------|------------------------------------------------|--------------------------------------------|------------------------------------------|----------------------|
|                              | ······                              |                  | (County, State)                                                  |                                                | 0 1                                        |                                          |                      |
| Sample                       | Type and                            |                  | Indicator<br>Locations                                           | Location with<br>Annual M                      |                                            | Control<br>Locations                     | Number<br>Non-       |
| Туре                         | Number of                           | LLD <sup>b</sup> | Mean (F) <sup>C</sup>                                            |                                                | Mean (F) <sup>C</sup>                      | Mean (F) <sup>C</sup>                    | Routine              |
| (Units)                      | Analyses <sup>a</sup>               |                  | Range <sup>C</sup>                                               | Location <sup>d</sup>                          | Range <sup>C</sup>                         | Range                                    | Results <sup>e</sup> |
| Soil<br>(pCi/g dry)          | GA 14                               | 7.0              | 11.14 (3/10)<br>(9.28-14.41)                                     | K-5, Paplham Farm<br>3.5 mi. NNW               | 11.84 (2/2)<br>(9.28-14.41)                | 8.24 (4/4)<br>(7.01-10.05)               | 0                    |
| (per/gary)                   | GB 14                               |                  | 22.94 (10/10)<br>(14.84-35.57)                                   | K-5, Paplham Farm<br>3.5 mi. NNW               | 33.12 (2/2)<br>(30.66-35.57)               | 26.33 (4/4)<br>(25.00-29.35)             | 0                    |
|                              | Sr-89 14<br>Sr-90 14                | 0.023            | < LLD<br>0.067 (5/10)<br>(0.024-0.094)                           | -<br>K-5, Paplham Farm<br>3.5 mi. NNW          | 0.094 (1/2)                                | < LLD<br>0.059 (4/4)<br>(0.041-0.079)    | 0<br>0               |
|                              | GS 14<br>Be-7                       | 0.30             | 0.47 (1/10)                                                      | K-12, LeCaptain<br>Farm 1.5 mi. WSW            | 0.47 (1/2)                                 | < LLD                                    | 0                    |
|                              | K-40                                | 1.4              | 18.20 (10/10)<br>(12.78-26.28)                                   | K-5, Paplham Farm<br>3.5 mi. NNW               | 22.82 (2/2)<br>(19.36-26.28)               | 20.97 (4/4)<br>(18.88-22.37)             | 0                    |
|                              | Nb-95                               | 0.051            | < LLD                                                            | -                                              | -                                          | < LLD<br>< LLD                           | . 0<br>. 0           |
|                              | Zr-95<br>Ru-103                     | 0.12             | < LLD<br>< LLD                                                   | -                                              | -                                          | < LLD<br>< LLD                           | 0                    |
|                              | Ru-106                              | 0.27             | < LLD                                                            | -                                              | -                                          | < LLD                                    | 0                    |
|                              | Cs-134<br>Cs-137                    | 0.058            | < LLD<br>0.16 (7/10)                                             | -<br>K-12, LeCaptain                           | 0.27 (1/2)                                 | < LLD<br>0.17 (4/4)                      | 0                    |
|                              | CS-13/                              | 0.021            | (0.047-0.28)                                                     | Farm 1.5 mi. WSW                               | 0.27 (172)                                 | (0.14-0.19)                              | Ŭ                    |
|                              | Ce-141                              | 0.067            | < LLD                                                            | -                                              | -                                          | < LLD                                    | 0                    |
|                              | Ce-144                              | 0.26             | < LLD                                                            | -                                              | -                                          | < LLD                                    | 0                    |
| Surface Water<br>(pCi/L)     | GB (SS) 107                         | 1.5              | < LLD                                                            | -                                              | -                                          | < LLD                                    | 0                    |
|                              | GB (DS) 107                         | 1.0              | 5.9 (83/83)                                                      | K-1a, North Creek,<br>0.62 mi. N               | 13.9 (12/12)                               | 2.1(24/24)                               | 0                    |
|                              | GB (TR) 107                         | 1.0              | (1.7-25.8)<br>5.9 (83/83)                                        | K-1a, North Creek,                             | (8.1-25.8)<br>13.9 (12/12)                 | (1.4-2.7)<br>2.1 (24/24)                 | 0                    |
|                              |                                     |                  | (1.7-25.8)                                                       | 0.62 mi. N                                     | (8.1-25.8)                                 | (1.4-2.7)                                |                      |
|                              | GS 107<br>Mn-54                     | 15               | < LLD                                                            |                                                | -                                          | < LLD                                    | 0                    |
|                              | Fe-59                               | 30               | < LLD                                                            | -                                              | -                                          | < LLD                                    | 0                    |
|                              | Co-58                               | 15               | < LLD                                                            | -                                              | -                                          | < LLD                                    | 0                    |
|                              | Co-60<br>Zr-Nb-<br>95               | 15<br>15         | < LLD<br>< LLD                                                   | -                                              | -                                          | < LLD<br>< LLD                           | 0<br>0               |
|                              | Cs-134                              | 10               | < LLD                                                            | -                                              | -                                          | < LLD                                    | 0                    |
|                              | Cs-137                              | 10               | < LLD                                                            | -                                              |                                            | < LLD                                    | 0                    |
|                              | Ba-La-                              | 15               | < LLD                                                            | -                                              | -                                          | < LLD                                    | 0                    |
|                              | н-з з6                              | 330              | 725 (2/28)<br>(694-755)                                          | K-14, Two Creeks<br>Park, 2.5 mi. S            | 725 (2/8)<br>(694-755)                     | <lld< td=""><td>0</td></lld<>            | 0                    |
|                              | Sr-89 36<br>Sr-90 36                |                  | < LLD<br>0.8 (3/28)<br>(0.8-0.9)                                 | -<br>K-9, Rostok Water<br>Intake, 11.5 mi. NNE | 1.0 (2/8)<br>(0.9-1.0)                     | < LLD<br>1.0 (2/8)<br>(0.9-1.0)          | 0<br>0               |
|                              | K-40 103<br>(flame)                 | 0.87             | (0.9-0.2)<br>4.05 (82/83)<br>(0.95-22.49)                        | K-1a, North Creek<br>Onsite 0.62 mi. N         | (0.9-1.0)<br>11.38 (12/12)<br>(5.97-22.49) | (0.9-1.0)<br>1.10 (24/24)<br>(0.95-1.38) | 0                    |
| Fish - Muscle<br>(pCi/g wet) |                                     |                  | 2.76 (5/5)<br>(2.10-4.49)                                        | K-1d, Condenser<br>Discharge, 0.10 mi. E       | 2.76 (5/5)<br>(2.10-4.49)                  | None                                     | 0                    |
|                              | GS 5<br>K-40                        | 0.1              | 2.59 (5/5)<br>(2.15-3.50)                                        | K-1d, Condenser<br>Discharge, 0.10 mi. E       | 2.59 (5/5)<br>(2.15-3.50)                  | None                                     | 0                    |
|                              | Mn-54                               | 0.023            | ` <lld< td=""><td>-</td><td>-</td><td>None</td><td>0</td></lld<> | -                                              | -                                          | None                                     | 0                    |
|                              | Fe-59                               | 0.081            | < LLD<br>< LLD                                                   |                                                | · -                                        | None<br>None                             | 0                    |
|                              | Co-58<br>Co-60                      | 0.025            | < LLD<br>< LLD                                                   | -                                              | -                                          | None                                     | 0                    |
|                              | Cs-134                              | 0.020            | < LLD                                                            | -                                              | -                                          | None                                     | 0                    |
|                              | Cs-137                              | 0.015            | 0.075 (5/5)<br>(0.029-0.15)                                      | K-1d, Condenser<br>Discharge, 0.10 mi. E       | 0.075 (5/5)<br>(0.029-0.15)                | None                                     | 0                    |
| _                            | <u> </u>                            | <u> </u>         |                                                                  | I                                              |                                            | L                                        | L                    |

## Table 4.5 Environmental Radiological Monitoring Program Summary.

|                                      | ne of Facilit<br>ation of Faci                                                                                              |                      | Kewaunee Nuclear Power PlantDocket No.50-305Kewaunee County, Wisconsin<br>(County, State)Reporting PeriodJanuary - December 1998 |                                                                        |                                                                                                                                                                                   |                                                                                                                                                       |                                                                                                                                                     |                                                                                   |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Sample<br>Type<br>(Units)            | Type an<br>Number<br>Analyse                                                                                                | of                   | LLD <sup>b</sup>                                                                                                                 | Indicator<br>Locations<br>Mean (F) <sup>C</sup><br>Range <sup>C</sup>  | Location wit<br>Annual<br>Location <sup>d</sup>                                                                                                                                   | th Highest<br>Mean<br>Mean (F) <sup>C</sup><br>Range <sup>C</sup>                                                                                     | Control<br>Locations<br>Mean (F) <sup>C</sup><br>Range                                                                                              | Number<br>Non-<br>Routine<br>Results <sup>e</sup>                                 |
| Fish - Bones<br>(pCi/g wet)          | GB<br>Sr-89<br>Sr-90                                                                                                        | 5<br>5<br>5          | 0.1<br>0.18<br>0.026                                                                                                             | 1.97 (5/5)<br>(0.85-2.88)<br>< LLD<br>0.14 (5/5)<br>(0.050-0.28)       | K-1d, Condenser<br>Discharge, 0.10 mi. E<br>-<br>K-1d, Condenser<br>Discharge, 0.10 mi. E                                                                                         | 1.97 (5/5)<br>(0.85-2.88)<br>-<br>0.14 (5/5)<br>(0.050-0.28)                                                                                          | None<br>None<br>None                                                                                                                                | 0<br>0<br>0                                                                       |
| Periphyton<br>(Slime)<br>(pCi/g wet) | GB<br>Sr-89<br>Sr-90                                                                                                        | 14<br>14<br>14       | 0.1<br>0.13<br>0.08                                                                                                              | 4.08 (12/12)<br>(3.09-5.47)<br>< LLD<br>< LLD                          | K-1b, Middle Creek,<br>0.12 mi. N<br>-                                                                                                                                            | 5.17 (2/2)<br>(4.87-5.47)<br>-                                                                                                                        | 2.23 (2/2)<br>(1.81-2.64)<br>< LLD<br>< LLD                                                                                                         | 0                                                                                 |
|                                      | GS<br>Be-7<br>K-40<br>Mn-54<br>Co-58<br>Co-60<br>Nb-95<br>Zr-95<br>Ru-103<br>Ru-106<br>Cs-134<br>Cs-137<br>Ce-141<br>Ce-144 | 14                   | 0.08<br>0.26<br>0.50<br>0.027<br>0.026<br>0.037<br>0.035<br>0.054<br>0.033<br>0.054<br>0.032<br>0.028                            | <pre></pre>                                                            | K-1e, South Creek,<br>0.12 mi. S<br>K-1b, Middle Creek,<br>0.12 mi. N<br>K-1e, South Creek,<br>0.12 mi. S<br>K-1d, Discharge, 0.10<br>mi. E /<br>K-1e, South Creek,<br>0.12 mi. S | 1.22 (1/2)<br>4.94 (2/2)<br>(4.57-5.31)<br>0.048 (1/2)<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | < LLD<br>0.35 (1/2)<br>2.32 (2/2)<br>(2.06-2.57)<br>< LLD<br>< LLD | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| Bottom<br>Sediments<br>(pCi/g dry)   | Sr-89<br>Sr-90                                                                                                              | 10<br>10<br>10<br>10 | 1.0<br>0.038<br>0.021<br>1.0                                                                                                     | 7.25 (8/8)<br>(4.18-8.84)<br>< LLD<br>< LLD<br>6.46 (8/8)              | K-1d, Condenser<br>Discharge, 0.10 mi. E<br>-<br>K-14, Two Creeks                                                                                                                 | 8.12 (2/2)<br>(7.73-8.50)<br>-<br>7.66 (2/2)                                                                                                          | 6.40 (2/2)<br>(5.15-7.64)<br>< LLD<br>< LLD<br>5.98 (2/2)                                                                                           | 0 0 0 0 0 0                                                                       |
|                                      | Co-58<br>Co-60<br>Cs-134<br>Cs-137                                                                                          |                      | 0.031<br>0.031<br>0.038<br>0.025                                                                                                 | (4.87-8.22)<br>< LLD<br>< LLD<br>< LLD<br>0.032 (3/8)<br>(0.036 0.037) | Park, 2.5 mi. S<br>-<br>K-1d, Condenser                                                                                                                                           | (7.09-8.22)<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                 | (5.71-6.24)<br>< LLD<br>< LLD<br>< LLD<br>< LLD                                                                                                     | 0<br>0<br>0<br>0                                                                  |

а GA = gross alpha, GB = gross beta, GS = gamma spectroscopy, SS = suspended solids, DS = dissolved solids, TR = total residue.

Discharge, 0.10 mi. E

(0.033 - 0.037)

ь LLD = nominal lower limit of detection based on 4.66 sigma counting error for background sample.

(0.026 - 0.037)

¢ Mean based upon detectable measurements only. Fraction of detectable measurements at specified locations is indicated in parentheses (F).

d Locations are specified by station code (Table 4.1), distance (miles) and direction relative to reactor site.

e Non-routine results are those which exceed ten times the control station value. If no control station value is available, the result is considered non-routine if it exceeds ten times the pre-operational value for the location.

f One result for gross alpha (< 3.6 pCi/L) was eliminated from the calculation for LLD. A lower sample volume had to be used for analysis due to high solids content of the water.

# Table 4.6.1 Land Use Census

The following table lists an inventory of residence, gardens 500 ft<sup>2</sup> and milk animals found nearest to the plant in each of the 10 meteorological sectors within a five mile radius of the Kewaunee Nuclear Power Plant.

| Sector | Township<br>No. | Residence | Garden   | Milk<br>Animals                       | Distance<br>From Plant<br>(miles) | Sample<br>ID |
|--------|-----------------|-----------|----------|---------------------------------------|-----------------------------------|--------------|
|        |                 |           |          | ······                                | (                                 |              |
| А      | 24              | X         | X        | <u></u>                               | 1.95                              |              |
| A      | 13              |           |          | X                                     | 2.66                              |              |
|        |                 |           |          |                                       |                                   |              |
| В      | 24              | Х         |          |                                       | 1.20                              |              |
| В      | 24              |           |          | X                                     | 1.16                              | K-19         |
| В      | 24              |           | X        |                                       | 1.27                              | K-19         |
|        |                 |           |          |                                       |                                   |              |
| R      | 23              |           |          | X                                     | 2.05                              |              |
| R      | 26              | X         | X        |                                       | 1.00                              | K-11         |
|        |                 |           |          |                                       |                                   |              |
| Q      | 23              | X         |          |                                       | 1.31                              |              |
| Q      | 23              |           |          | X                                     | 1.39                              |              |
| Q      | 23              |           | Χ        |                                       | 1.33                              | K-27         |
|        |                 |           |          |                                       |                                   |              |
| Р      | 26              | X         |          |                                       | 1.33                              |              |
| Р      | 26              |           | Х        |                                       | 1.37                              |              |
| Р      | 22              |           |          | Х                                     | 1.97                              |              |
|        |                 |           |          |                                       |                                   |              |
| N      | 35              | X         |          |                                       | 0.95                              |              |
| N      | 26              |           | Х        |                                       | 1.04                              | · · · ·      |
| N      | 34              |           |          | Х                                     | 1.44                              | K-12         |
|        |                 |           |          | ······                                |                                   |              |
| М      | 35              | Х         | Х        |                                       | 1.33                              |              |
| М      | 34              |           |          | Х                                     | 1.49                              |              |
|        |                 |           |          | · · · · · · · · · · · · · · · · · · · |                                   |              |
| L      | 35              | Х         |          |                                       | 0.85                              |              |
| L      | 35              |           | X        | Х                                     | 1.28                              | <u></u>      |
|        |                 | V         |          |                                       | 0.00                              |              |
| K      | 35              | X         | Х        | V                                     | 0.80                              |              |
| K      | 10              |           |          | Х                                     | 1.80                              |              |
|        | 11              | v         | (NI-1-1) | (NTata 1)                             |                                   |              |
| J      | 11              | X         | (Note 1) | (Note 1)                              | 2.68                              |              |

Note 1.: There were no milk animals or gardens 500 ft<sup>2</sup> located in Sector J within five miles of the Kewaunee Nuclear Power Plant.

# Table 4.6.2 Land Use Census

The following is a sector by sector listing of those changes between the 1997 and 1998 census.

No changes Sector A No changes Sector B Sector R No changes Sector Q No changes Sector P No changes Sector N No changes Sector M No changes No changes Sector L Sector K No changes Sector J No changes

#### 5.0 REFERENCES

- Arnold. J. R. and H. A. Al-Salih. 1955. Beryllium-7 Produced by Cosmic Rays. Science 121: 451-453.
- Eisenbud, M. 1963. Environmental Radioactivity, McGraw-Hill, New York, New York, pp. 213, 275, and 276.
- Gold, S., H. W. Barkhau, B. Shlein, and B. Kahn, 1964 Measurement of Naturally Occurring Radionuclides in Air, in the Natural Radiation Environment, University of Chicago Press, Chicago, Illinois, 369-382.
- Hazelton Environmental Sciences, 1979 through 1983. Annual Reports. Radiological Monitoring for the Kewaunee Nuclear Power Plant, Kewaunee, Wisconsin, Final Report -Part II, Data Tabulations and Analysis, January - December, 1978 through 1982.
- Industrial BIO-TEST Laboratories, Inc. 1974. Annual Report. Pre-operational Radiological Monitoring Program for the Kewaunee Nuclear Power Plant. Kewaunee, Wisconsin. January - December 1973,
- Industrial BIO-TEST Laboratories, Inc. 1975 Semi-annual Report. Radiological Monitoring Program for the Kewaunee Nuclear Power Plant, Kewaunee, Wisconsin. Jan. - June, 1975.
- NALCO Environmental Sciences. 1977. Annual Reports. Radiological Monitoring Program for the Kewaunee Nuclear Power Plant, Kewaunee, Wisconsin, January - December 1976.
- NALCO Environmental Sciences. 1978. Annual Report. Radiological Monitoring Program for the Kewaunee Nuclear Power Plant, Kewaunee, Wisconsin, Final Report - Part II, Data Tabulations and Analysis, January - December 1977.
- National Center for Radiological Health. 1968. Section 1. Milk Surveillance. Radiological Health Data Rep., December 9: 730-746.
- National Council on Radiation Protection and Measurements. 1975. Natural Radiation Background in the United States. NCRP Report No. 45.
- Solon, L. R., W. M. Lowder, A. Shambron, and H. Blatz. 1960. Investigations of Natural Environmental Radiation. Science. 131: 903-906.
- Teledyne Isotopes Midwest Laboratory. 1984 through 1999. Annual Reports. Radiological Monitoring Program for the Kewaunee Nuclear Power Plant, Kewaunee, Wisconsin, Final Report, Part II, Data Tabulations and Analysis, January - December 1983 through January - December 1998.

Wilson, D.W., G. M. Ward, and J. E. Johnson, 1969. In Environmental Contamination by Radioactive Materials. International Atomic Energy Agency, p. 125

#### APPENDIX A

#### INTERLABORATORY COMPARISON PROGRAM RESULTS

NOTE: Teledyne's Midwest Laboratory participates in intercomparison studies administered by U.S. EPA Environmental Monitoring Systems Laboratory, Las Vegas, Nevada. The results are reported in Appendix A. Also reported are results of International Intercomparison and Teledyne testing of TLD's, as well as, in-house spikes, blanks, duplicates and mixed analyte performance evaluation program results. Appendix A is updated four times a year; the complete Appendix is included in March, June, September and December monthly progress reports only.

January, 1998 through December, 1998

#### Appendix A

#### Interlaboratory Comparison Program Results

Teledyne Brown Engineering Environmental Services Midwest Laboratory (formerly Hazleton Environmental Sciences) has participated in interlaboratory comparison (crosscheck) programs since the formulation of it's quality control program in December 1971. These programs are operated by agencies which supply environmental type samples (e.g., milk or water) containing concentrations of radionuclides known to the issuing agency but not to participant laboratories. The purpose of such a program is to provide an independent check on the laboratory's analytical procedures and to alert it to any possible problems.

Participant laboratories measure the concentration of specified radionuclides and report them to the issuing agency. Several months later, the agency reports the known values to the participant laboratories and specifies control limits. Results consistently higher or lower than the known values or outside the control limits indicate a need to check the instruments or procedures used.

The results in Table A-1 were obtained through participation in the environmental sample crosscheck program for milk, water and air filters during the past twelve months. Data for previous years is available upon request.

This program is conducted by the U.S. Environmental Protection Agency Office of Research and Development National Exposure Research Laboratory Characterization Research Division-Las Vegas, Nevada.

The results in Table A-2 were obtained for Thermoluminescent Dosimeters (TLDs), via various International Intercomparisons of Environmental Dosimeters under the sponsorships listed in Table A-2. Also Teledyne testing results are listed.

Table A-3 lists results of the analyses on in-house "spiked" samples for the past twelve months. All samples are prepared using NIST traceable sources. Data for previous years available upon request.

Table A-4 lists results of the analyses on in-house "blank" samples for the past twelve months. Data for previous years available upon request.

Table A-5 list results of the in-house "duplicate" program for the past twelve months. Acceptance is based on the difference of the results being less than the sum of the errors. Data for previous years available upon request.

The results in Table A-6 were obtained through participation in the mixed analyte performance evaluation program.

The results in Table A-7 were obtained through participation in the Environmental Measurement Laboratory Quality Assessment Program.

Attachment A lists acceptance criteria for "spiked" samples.

Out-of-limit results are explained directly below the result.

#### 12-31-98

# ATTACHMENT A

### ACCEPTANCE CRITERIA FOR "SPIKED" SAMPLES

### LABORATORY PRECISION: ONE STANDARD DEVIATION VALUES FOR VARIOUS ANALYSES<sup>a</sup>

| Analysis                                                             | Level                                            | One Standard Deviation for single determinations         |
|----------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------|
| Gamma Emitters                                                       | 5 to 100 pCi/liter or kg<br>>100 pCi/liter or kg | 5.0 pCi/liter<br>5% of known value                       |
| Strontium-89 <sup>b</sup>                                            | 5 to 50 pCi/liter or kg<br>>50 pCi/liter or kg   | 5.0 pCi/liter<br>10% of known value                      |
| Strontium-90 <sup>b</sup>                                            | 2 to 30 pCi/liter or kg<br>>30 pCi/liter or kg   | 5.0 pCi/liter<br>10% of known value                      |
| Potassium-40                                                         | >0.1 g/liter or kg                               | 5% of known value                                        |
| Gross alpha                                                          | ≤20 pCi/liter<br>>20 pCi/liter                   | 5.0 pCi/liter<br>25% of known value                      |
| Gross beta                                                           | ≤100 pCi/liter<br>>100 pCi/liter                 | 5.0 pCi/liter<br>5% of known value                       |
| Tritium                                                              | ≤4,000 pCi/liter                                 | 1s = (pCi/liter) =                                       |
|                                                                      | >4,000 pCi/liter                                 | 169.85 x (known) <sup>0.0933</sup><br>10% of known value |
| Radium-226,-228                                                      | <0.1 pCi/liter                                   | 15% of known value                                       |
| Plutonium                                                            | 0.1 pCi/liter, gram, or sample                   | 10% of known value                                       |
| Iodine-131,<br>Iodine-129 <sup>b</sup>                               | ≤55 pCi/liter<br>>55 pCi/liter                   | 6.0 pCi/liter<br>10% of known value                      |
| Uranium-238,<br>Nickel-63 <sup>b</sup><br>Technetium-99 <sup>b</sup> | ≤35 pCi/liter<br>>35 pCi/liter                   | 6.0 pCi/liter<br>15% of known value                      |
| Iron-55 <sup>b</sup>                                                 | 50 to 100 pCi/liter<br>>100 pCi/liter            | 10 pCi/liter<br>10% of known value                       |
| Others <sup>b</sup>                                                  | -                                                | 20% of known value                                       |

\* From EPA publication, "Environmental Radioactivity Laboratory Intercomparison Studies Program, Fiscal Year, 1981-1982, EPA-600/4-81-004.

<sup>b</sup> Teledyne limit.

|                      |                |                        |                 | Concentration in pCi/L <sup>b</sup>       |                                    |                      |
|----------------------|----------------|------------------------|-----------------|-------------------------------------------|------------------------------------|----------------------|
| Lab<br>Code          | Sample<br>Type | Date<br>Collected      | Analysis        | Teledyne Results<br>±2 Sigma <sup>c</sup> | EPA Result <sup>d</sup><br>1s, N=1 | Control<br>Limits    |
| STW-815              | WATER          | Jan, 1998              | Sr-89           | $6.0 \pm 1.0$                             | $8.0 \pm 5.0$                      | 2.2 - 13.8           |
| STW-815              | WATER          | Jan, 1998              | Sr-90           | $27.3 \pm 1.2$                            | $32.0 \pm 5.0$                     | 26.2 - 37.8          |
| STW-816              | WATER          | Jan, 1998              | Gr. Alpha       | $31.2 \pm 2.3$                            | $30.5 \pm 7.6$                     | 21.7 - 39.3          |
| STW-816              | WATER          | Jan, 1998              | Gr. Beta        | $6.6 \pm 0.6$                             | $3.9 \pm 5.0$                      | 0.0 - 9.7            |
| STW-817              | WATER          | Feb, 1998              | I-131           | $111.1 \pm 0.9$                           | $104.9 \pm 10.5$                   | 86.7 - <b>123</b> .1 |
| STW-818              | WATER          | Feb, 1998              | Ra-226          | $14.9 \pm 1.3$                            | $16.0 \pm 2.4$                     | 11.8 - 20.2          |
| STW-818              | WATER          | Feb, 1998              | Ra-228          | $30.9 \pm 1.9$                            | $33.3 \pm 8.3$                     | 18.9 - 47.7          |
| STW-818              | WATER          | Feb, 1998              | U               | $25.8 \pm 1.1$                            | $32.0 \pm 3.0$                     | 26.8 - 37.2          |
| The pres<br>28.2±1.2 |                | 2 in the san           | nple interfere  | ed with the recovery                      | calculation. Result                |                      |
| STW-823              | WATER          | Mar, 1998              | H-3             | $2,151.0 \pm 75.2$                        | $2,155.0 \pm 348.0$                | 1,551.2 - 2,758.8    |
| STW-824              | WATER          | Apr, 1998              | Gr. Alpha       | $48.3 \pm 1.5$                            | $54.4 \pm 13.6$                    | 30.8 - 70.8          |
| STW <b>-8</b> 24     | WATER          | Apr, 1998              | Ra-226          | $15.3 \pm 0.9$                            | $15.0 \pm 2.3$                     | 11.0 <b>- 19</b> .0  |
| STW-824              | WATER          | Apr, 1998              | Ra-228          | $7.8 \pm 1.0$                             | $9.3 \pm 2.3$                      | 5.3 - 13.3           |
| STW-824              | WATER          | Apr, 1998              | Uranium         | $5.1 \pm 0.1$                             | $5.0 \pm 3.0$                      | 0.0 - 10.2           |
| STW-825              | WATER          | Apr, 1998              | Co-60           | $50.0 \pm 1.7$                            | $50.0 \pm 5.0$                     | 41.3 - 58.7          |
| STW-825              | WATER          | Apr, 1998              | Cs-134          | $20.7 \pm 1.2$                            | $22.0 \pm 5.0$                     | 13.3 - 30.7          |
| STW-825              | WATER          | Apr, 1998              | Cs-137          | $9.0 \pm 1.0$                             | $10.0 \pm 5.0$                     | 1.3 - 18.7           |
| STW-825              | WATER          | Apr, 1998              | Gr. Beta        | $92.1 \pm 3.2$                            | $94.7 \pm 10.0$                    | 77.4 - 112.0         |
| STW-825              | WATER          | Apr, 1998              | Sr-89           | $5.3 \pm 1.5$                             | $6.0 \pm 5.0$                      | 0.0 - 14.7           |
| STW-825              | WATER          | Apr, 1998              | Sr-90           | $17.3 \pm 1.5$                            | $18.0 \pm 5.0$                     | 9.3 - 26.7           |
| STW-826              | WATER          | Jun, 1998              | Ba-1 <b>3</b> 3 | $36.0 \pm 1.0$                            | $40.0 \pm 5.0$                     | 31.3 - 48.7          |
| STW-826              | WATER          | Jun, 1998              | Co-60           | $14.0 \pm 1.0$                            | $12.0 \pm 5.0$                     | 3.3 - 20.7           |
| STW-826              | WATER          | Jun, 1998              | Cs-134          | $26.7 \pm 1.2$                            | $31.0 \pm 5.0$                     | 22.3 - 39.7          |
| STW-826              | WATER          | Jun, 1998              | Cs-137          | $32.7 \pm 3.8$                            | $35.0 \pm 5.0$                     | 26.3 - 43.7          |
| STW-826              | WATER          | Jun, 1998              | Zn-65           | 99.0 ± 11.8                               | $104.0 \pm 10.0$                   | 86.7 - 121.3         |
| STW-827              | WATER          | Jun, 1998              | Ra-226          | $4.7 \pm 0.4$                             | $4.9 \pm 0.7$                      | 3.7 - 6.1            |
| STW-827              | WATER          | Jun, 1998              | Ra-228          | $2.6 \pm 0.7$                             | $2.1 \pm 0.5$                      | 1.2 - 3.0            |
| STW-827              | WATER          | Jun, 1998              | Uranium         | $3.0 \pm 0.1$                             | $3.0 \pm 3.0$                      | 0.0 - 8.2            |
| STW-831              | WATER          | Jul, 1998              | Sr-89           | $19.0 \pm 3.0$                            | $21.0 \pm 5.0$                     | 12.3 - 29.7          |
| STW-831              | WATER          | Jul, 1998              | Sr-90           | $7.0 \pm 0.0$                             | $7.0 \pm 5.0$                      | 0.0 - 15.7           |
| STW-831              | WATER          | Jul, 1998              | Gr. Alpha       | $5.8 \pm 0.4$                             | $7.2 \pm 5.0$                      | 0.0 - 15.9           |
| STW-832              | WATER          | Jul, 1998              | Gr. Beta        | $12.4 \pm 0.4$                            | $12.8 \pm 5.0$                     | 4.1 - 21.5           |
| STW-832              | WATER          | Aug, 1998              | H-3             | 17,732.0 ± 31.0                           |                                    | 14,873.0 - 21,119.0  |
| STW-833              | WATER          | Sep, 1998              | I-131           | $5.9 \pm 0.1$                             | $6.1 \pm 2.0$                      | 2.6 - 9.6            |
| STW-840<br>STW-841   | WATER          | Sep, 1998              | Ra-226          | $1.7 \pm 0.1$                             | $1.7 \pm 0.3$                      | 1.2 - 2.2            |
|                      |                | Sep, 1998              | Ra-228          | $6.1 \pm 0.6$                             | $5.7 \pm 1.4$                      | 3.3 - 8.1            |
| STW-841<br>STW-841   | WATER<br>WATER | Sep, 1998<br>Sep, 1998 | Uranium         | $8.2 \pm 0.5$                             | $9.1 \pm 3.0$                      | 3.9 - 14.3           |

 Table A-1.
 U.S. Environmental Protection Agency's crosscheck program, comparison of EPA and Teledyne's Midwest Laboratory results<sup>a</sup>.

A1-1

# Table A-1.U.S. Environmental Protection Agency's crosscheck program, comparison of EPA and Teledyne'sMidwest Laboratory results<sup>a</sup>.

|                                  |                |                                  |                                  | C                                                 | oncentration in pCi                       | L <sub>p</sub>                               |
|----------------------------------|----------------|----------------------------------|----------------------------------|---------------------------------------------------|-------------------------------------------|----------------------------------------------|
| Lab<br>Code                      | Sample<br>Type | Date<br>Collected                | Analysis                         | Teledyne Results<br>±2 Sigma <sup>c</sup>         | EPA Result <sup>d</sup><br>1s, N=1        | Control<br>Limits                            |
| STW-844                          | WATER          | Nov, 1998                        | Ba-133                           | 54.7 ± 0.6                                        | $56.0 \pm 6.0$                            | 45.6 - 66.4                                  |
| STW-844                          | WATER          | Nov, 1998                        | Co-60                            | $38.3 \pm 1.5$                                    | $38.0 \pm 5.0$                            | 29.3 - 46.7                                  |
| STW-844                          | WATER          | Nov, 1998                        | Cs-134                           | $91.0 \pm 6.0$                                    | $105.0 \pm 5.0$                           | 96.3 - 113.7                                 |
| The ave<br>sample v<br>is planne | vere well with | 4 from all pai<br>in the control | rticipating lab<br>limits. Value | poratories was 97.11 pt<br>s for Cs-134 were chec | Ci/L. Other isotope<br>cked and confirmed | es tested for in this<br>. No further action |
| STW-844                          | WATER          | Nov, 1998                        | Cs-137                           | $109.7 \pm 5.8$                                   | $111.0 \pm 6.0$                           | 100.6 - 121.4                                |
| STW-844                          | WATER          | Nov, 1998                        | Zn-65                            | $121.0 \pm 7.8$                                   | $131.0 \pm 13.0$                          | 108.4 - 153.6                                |

\* Results obtained by Teledyne Brown Engineering Environmental Services Midwest Laboratory as a participant in the environmental sample crosscheck program operated by the Intercomparison and Calibration Section, Quality Assurance Branch, Environmental Monitoring and Support Laboratory, U.S. Environmental Protection Agency (EPA), Las Vegas, Nevada.

<sup>b</sup> All results are in pCi/L, except for elemental potassium (K) data in milk, which are in mg/L; air filter samples, which are in pCi/Filter.

<sup>c</sup> Unless otherwise indicated, the TBEESML results are given as the mean ± 2 standard deviations for three determinations.

<sup>d</sup> USEPA results are presented as the known values and expected laboratory precision (1s, 1 determination) and control limits as defined by the EPA.

|                                     |                                           |                              |                                   |                                                                    | mF                                    | ۲                            |
|-------------------------------------|-------------------------------------------|------------------------------|-----------------------------------|--------------------------------------------------------------------|---------------------------------------|------------------------------|
| Lab<br>Code TLD Type                | Date M                                    | Measurement                  | Teledyne Results<br>± 2 Sigma     | Known<br>Value                                                     | Average ±2Sigma<br>(All Participants) |                              |
| 11th Interr                         | national Intercomp                        | arison                       |                                   | ·                                                                  |                                       |                              |
| 15-11A                              | LiF-100 Chips                             | Apr, 1997                    | Field                             | $13.2 \pm 1.0$                                                     | 19.0                                  | $17.8\pm8.4$                 |
| 15-11A                              | LiF-100 Chips                             | Apr, 1997                    | Lab, Cs                           | $32.1 \pm 2.0$                                                     | 58.1                                  | $55.2 \pm 9.9$               |
| The read<br>calculatio<br>satisfact | ons, however the r                        | were low in<br>eader settin  | both field and g is suspect. In   | Lab Cs tests. No erro<br>terlaboratory test co                     | rs found in eff<br>mparisons for      | ficiency or test<br>LiF were |
| <u>11th Interr</u>                  | national Intercomp                        | arison                       | ,                                 |                                                                    |                                       |                              |
| 115-11B                             | CaSO₄: Dy<br>Cards                        | Apr, 1997                    | Field                             | $19.1 \pm 1.4$                                                     | 19.1                                  | $18.9\pm8.7$                 |
| 15-11B                              | CaSO₄: Dy<br>Cards                        | Apr, 1997                    | Lab, Cs                           | $55.7 \pm 4.1$                                                     | 58.3                                  | $55.2 \pm 14.9$              |
| organize<br>Brookha                 | d by the Departme<br>ven National Labo    | nt of Energ                  | y's Environmen                    | mental Dosimeters v<br>tal Measurements La<br>stitute of Standards | boratory in co                        | ollaboration with            |
| <u>Teledyne I</u>                   | •                                         | Man 1006                     | Lab, 1                            | 15.9±0.3                                                           | 15.4                                  |                              |
| 6-1<br>6-1                          | LiF-100 Chips                             |                              | Lab, 1                            | $29.4 \pm 0.3$                                                     | 30.8                                  |                              |
| 6-1<br>6-1                          | LiF-100 Chips<br>LiF-100 Chips            |                              | Lab, 2<br>Lab, 3                  | $62.5 \pm 1.3$                                                     | 62.5                                  |                              |
| 6-1                                 | CaSO₄: Dy<br>Cards                        | Mar, 1996<br>Mar, 1996       | Reader 1, #1                      | $14.4 \pm 0.1$                                                     | 15.4                                  | ND                           |
| 6-1                                 | CaSO₄: Dy<br>Cards                        | Mar, 1996                    | Reader 1, #2                      | $31.8\pm0.1$                                                       | 30.8                                  | ND                           |
| 6-1                                 | CaSO₄: Dy<br>Cards                        | Mar, 1996                    | Reader 1, #3                      | $64.7 \pm 0.4$                                                     | 62.5                                  | ND                           |
| <u> Teledyne </u> ]                 | <u>Cesting</u>                            |                              |                                   |                                                                    |                                       |                              |
| 6-2                                 | CaSO₄: Dy<br>Cards                        | Mar, 1996                    | Reader 2, #1                      | $14.3\pm0.4$                                                       | 15.4                                  | ND                           |
| 96-2                                | CaSO₄: Dy<br>Cards                        | Mar, 1996                    | Reader 2, #2                      | $31.8 \pm 0.1$                                                     | 30.8                                  | ND                           |
| 6-2                                 | CaSO₄: Dy<br>Cards                        | Mar, 1996                    | Reader 2, #3                      | $68.6 \pm 0.1$                                                     | 62.5                                  | ND                           |
| ND = No<br>Chips an                 | o Data; Teledyne To<br>d Cards were irrad | esting was o<br>diated by Te | only performed<br>eledyne Isotope | by Teledyne.<br>s, Inc., Westwood, N                               | ew Jersey, in I                       | March, 1996.                 |
| Teledyne 🛛                          | Testing                                   |                              |                                   |                                                                    |                                       |                              |
| 97-1                                | LiF-100 Chips                             | Mar, 1997                    | Lab, 1                            | $13.4 \pm 1.4$                                                     | 15.0                                  |                              |
|                                     |                                           |                              | T.h. 0                            | 20 8 + 0 6                                                         | 20.1                                  |                              |

Table A-2. Crosscheck program results; Thermoluminescent Dosimeters. (TLDs).

A2-1

 $29.8\pm0.6$ 

 $63.4\pm0.9$ 

Lab, 2

Lab, 3

30.1

60.2

LiF-100 Chips Mar, 1997

LiF-100 Chips Mar, 1997

97-1

97-1

|                     |                                        |                              |                                   |                                       | mF              | ۲.                                    |
|---------------------|----------------------------------------|------------------------------|-----------------------------------|---------------------------------------|-----------------|---------------------------------------|
| Lab<br>Code         | TLD Type                               | Date                         | Measurement                       | Teledyne Results<br>± 2 Sigma         | Known<br>Value  | Average ±2Sigma<br>(All Participants) |
| 97-1                | CaSO₄: Dy<br>Cards                     | Mar, 1997                    | Reader 1, #1                      | $15.5 \pm 0.1$                        | 15.0            | ND                                    |
| 97-1                | CaSO₄: Dy<br>Cards                     | Mar, 1997                    | Reader 1, #2                      | $34.0 \pm 0.1$                        | 30.1            | ND                                    |
| 97-1                | CaSO₄: Dy<br>Cards                     | Mar, 1997                    | Reader 1, #3                      | 68.3±2.1                              | 60.2            | ND                                    |
| <u>Teledyne 1</u>   | festing                                |                              |                                   |                                       |                 |                                       |
| 97-2                | CaSO₄: Dy<br>Cards                     | Mar, 1997                    | Reader 2, #1                      | $16.8 \pm 0.3$                        | 15.0            | ND                                    |
| 97-2                | ⁻ CaSO₄: Dy<br>Cards                   | Mar, 1997                    | Reader 2, #2                      | 36.2±0.2                              | 30.1            | ND                                    |
| 97-2                | CaSO₄: Dy<br>Cards                     | Mar, 1997                    | Reader 2, #3                      | 69.6±0.2                              | 60.2            | ND                                    |
| ND = No<br>Chips an | Data; Teledyne T<br>d Cards were irrae | esting was o<br>diated by Te | only performed<br>eledyne Isotope | by Teledyne.<br>5, Inc., Westwood, Ne | ew Jersey, in 1 | March, 1997.                          |
| Teledyne 7          | Testing                                |                              |                                   |                                       |                 |                                       |
| 98-1                | LiF-100 Chips                          | May, 1998                    | Lab, 1                            | $15.5 \pm 1.3$                        | 16.7            |                                       |
| 98-1                | LiF-100 Chips                          | May, 1998                    | Lab, 2                            | $23.9 \pm 0.9$                        | 32.4            |                                       |
| 98-1                | LiF-100 Chips                          | May, 1998                    | Lab, 3                            | $59.8 \pm 1.9$                        | 60.2            |                                       |
| 98-1                | CaSO₄: Dy<br>Cards                     | May, 1998                    | Reader 1, #1                      | $18.5\pm0.8$                          | 16.7            | ND                                    |
| 98-1                | CaSO₄: Dy<br>Cards                     | May, 1998                    | Reader 1, #2                      | 27.3±1.7                              | 32.4            | ND                                    |
| 98-1                | CaSO₄: Dy<br>Cards                     | May, 1998                    | Reader 1, #3                      | $70.0 \pm 4.7$                        | 60.2            | ND                                    |

Table A-2. Crosscheck program results; Thermoluminescent Dosimeters. (TLDs).

ND = No Data; Teledyne Testing was only performed by Teledyne.

Chips and Cards were irradiated by Teledyne Isotopes, Inc., Westwood, New Jersey, in May, 1998.

Table A-3. In-house "spike" samples.

|           |                      |           |           | Co                    | ncentration | on in pCi/L <sup>ª</sup> |  |  |
|-----------|----------------------|-----------|-----------|-----------------------|-------------|--------------------------|--|--|
| Lab       | Sample               | Date      |           | Teledyne Results      | Known       | Control <sup>c</sup>     |  |  |
| Code      | Туре                 | Collected | Analysis  | 2s, n=1 <sup>b</sup>  | Activity    | Limits                   |  |  |
| SPW-77    | WATER                | Jan, 1998 | Cs-137    | $78.64 \pm 7.76$      | 77.23       | 67.23 - 87.23            |  |  |
| SPW-129   | WATER                | Jan, 1998 | Am-241    | $16.96 \pm 1.24$      | 20.64       | 12.38 - 28.90            |  |  |
| SPW-130   | WATER                | Jan, 1998 | Ra-226    | $9.39 \pm 0.14$       | 10.35       | 7.25 - 13.46             |  |  |
| SPW-130   | WATER                | Jan, 1998 | Ra-226    | 12.74 ± 3.05          | 14.03       | 9.82 - 18.24             |  |  |
| SPMI-498  | MILK                 | Jan, 1998 | Co-60     | $41.40 \pm 3.61$      | 36.92       | 26.92 - 46.92            |  |  |
| SPMI-498  | MILK                 | Jan, 1998 | Cs-134    | $31.78 \pm 3.15$      | 32.52       | 22.52 - 42.52            |  |  |
| SPMI-498  | MILK                 | Jan, 1998 | Cs-137    | $37.03 \pm 4.57$      | 38.56       | 28.56 - 48.56            |  |  |
| SPW-499   | WATER                | Jan, 1998 | Co-60     | $44.38 \pm 7.85$      | 36.92       | 26.92 - 46.92            |  |  |
| SPW-499   | WATER                | Jan, 1998 | Cs-134    | $34.97 \pm 7.78$      | 32.52       | 22.52 - 42.52            |  |  |
| SPW-499   | WATER                | Jan, 1998 | Cs-137    | $39.15 \pm 10.40$     | 38.56       | 28.56 - 48.56            |  |  |
| SPW-594   | WATER                | Jan, 1998 | H-3       | $45125.00 \pm 568.00$ | 45598.00    | 36478.40 - 54717.60      |  |  |
| SPAP-5330 | AIR FILTER           | Jan, 1998 | Cs-137    | $1.68 \pm 0.02$       | 1.90        | 1.14 - 2.66              |  |  |
| SPW-664   | WATER                | Feb, 1998 | U-234     | $2.63 \pm 0.40$       | 3.00        | 1.80 - 4.20              |  |  |
| SPW-664   | WATER                | Feb, 1998 | U-238     | $3.26 \pm 0.49$       | 3.00        | 0.00 - 15.00             |  |  |
| SPCH-746  | CHARCOAL<br>CANISTER | Feb, 1998 | I-131(g)  | $1.73 \pm 0.06$       | 2.03        | 1.22 - 2.84              |  |  |
| SPVE-750  | VEGETATION           | Feb, 1998 | I-131(g)  | $6.16 \pm 0.14$       | 5.43        | 0.00 - 15.43             |  |  |
| SPW-790   | WATER                | Feb, 1998 | I-131     | $136.35 \pm 1.33$     | 137.03      | 109.62 - 164.44          |  |  |
| SPMI-791  | MILK                 | Feb, 1998 | I-131     | $132.63 \pm 1.63$     | 137.03      | 109.62 - 164.44          |  |  |
| SPW-497   | WATER                | Feb, 1998 | Gr. Alpha | $43.73 \pm 7.61$      | 41.27       | 20.64 - 61.91            |  |  |
| SPW-497   | WATER                | Feb, 1998 | Gr. Beta  | $59.45 \pm 2.90$      | 61.70       | 51.70 - 71.70            |  |  |
| SPW-9854  | WATER                | Feb, 1998 | Gr. Alpha | $62.60 \pm 5.10$      | 53.88       | 26.94 - 80.82            |  |  |
| SPAP-748  | AIR FILTER           | Feb, 1998 | Gr. Beta  | $1.72 \pm 0.02$       | 1.66        | 0.00 - 11.66             |  |  |
| SPW-1663  | WATER                | Feb, 1998 | Ra-226    | $14.44 \pm 0.50$      | 13.80       | 9.66 - 17.94             |  |  |
| SPW-1663  | WATER                | Feb, 1998 | Ra-228    | $18.79 \pm 1.58$      | 18.29       | 12.80 - 23.78            |  |  |
| SPW-1665  | WATER                | Mar, 1998 | Ra-226    | $14.16 \pm 0.29$      | 13.80       | 9.66 - 17.94             |  |  |
| SPW-1665  | WATER                | Mar, 1998 | Ra-228    | $18.06 \pm 1.70$      | 18.29       | 12.80 - 23.78            |  |  |
| SPW-1666  | WATER                | Mar, 1998 | Sr-89     | $65.40 \pm 2.70$      | 75.94       | 60.75 - 91.13            |  |  |
| SPW-1666  | WATER                | Mar, 1998 | Sr-90     | $28.04 \pm 1.22$      | 32.65       | 26.12 - 39.18            |  |  |
| SPAP-1728 | AIR FILTER           | Mar, 1998 | Gr. Beta  | $8.15 \pm 0.03$       | 7.98        | 0.00 - 17.98             |  |  |
| SPW-1998  | WATER                | Apr, 1998 | Ra-226    | $13.70 \pm 0.33$      | 13.80       | 9.66 - 17.94             |  |  |
| SPW-1998  | WATER                | Apr, 1998 | Ra-228    | $14.65 \pm 1.38$      | 18.20       | 12.74 - 23.66            |  |  |
| SPW-792   | WATER                | Apr, 1998 | Th-230    | $18.62 \pm 2.85$      | 17.39       | 10.43 - 24.35            |  |  |
| SPW-2278  | WATER                | Apr, 1998 | H-3       | $41641.00 \pm 552.00$ | 43287.00    | 34629.60 - 51944.40      |  |  |
| SPW-2284  | WATER                | Apr, 1998 | Gr. Alpha | $41.09 \pm 1.83$      | 41.26       | 20.63 - 61.89            |  |  |
| SPW-2284  | WATER                | Apr, 1998 |           | $32.01 \pm 1.10$      | 30.72       | 20.72 - 40.72            |  |  |
| SPMI-5451 | MILK                 | Apr, 1998 |           | $80.78 \pm 6.60$      | 76.68       | 66.68 - 86.68            |  |  |
| SPW-5459  | WATER                | Apr, 1998 |           | $48.50 \pm 3.74$      | 44.65       | 34.65 - 54.65            |  |  |
| SPW-5459  | WATER                | Apr, 1998 |           | $42.31 \pm 4.32$      | 38.34       | 28.34 - 48.34            |  |  |
| SPW-2977  | WATER                | May, 1998 |           | $11.91 \pm 0.27$      | 13.80       | 9.66 - 17.94             |  |  |
| SPW-2977  | WATER                | May, 1998 |           | $16.26 \pm 1.67$      | 18.00       | 12.60 - 23.40            |  |  |

A3-1

Table A-3. In-house "spike" samples.

|             |                      |                   |                  | Co                                       | ncentration       | in pCi/L <sup>*</sup>          |
|-------------|----------------------|-------------------|------------------|------------------------------------------|-------------------|--------------------------------|
| Lab<br>Code | Sample<br>Type       | Date<br>Collected | Analysis         | Teledyne Results<br>2s, n=1 <sup>b</sup> | Known<br>Activity | Control <sup>c</sup><br>Limits |
| SPAP-3041   | AIR FILTER           | May, 1998         | Cs-137           | $2.00 \pm 0.02$                          | 1.89              | 1.13 - 2.65                    |
| SPW-3043    | WATER                | May, 1998         | Gr. Alpha        | $40.49 \pm 2.57$                         | 41.25             | 20.63 - 61.88                  |
| SPW-3043    | WATER                | May, 1998         | Gr. Beta         | 35.79 ± 1.52                             | 30.66             | 20.66 - 40.66                  |
| SPSO-3898   | SOIL                 | May, 1998         | Cs-134           | $0.11 \pm 0.01$                          | 0.10              | 0.06 - 0.14                    |
| SPSO-3898   | SOIL                 | May, 1998         | Cs-137           | $0.48 \pm 0.02$                          | 0.43              | 0.26 - 0.61                    |
| SPF-3900    | FISH                 | May, 1998         | Cs-134           | $0.36 \pm 0.03$                          | 0.38              | 0.23 - 0.53                    |
| SPF-3900    | FISH                 | May, 1998         | Cs-137           | $0.29 \pm 0.03$                          | 0.31              | 0.18 - 0.43                    |
| SPW-4162    | WATER                | Jun, 1998         | Ra-226           | $12.98 \pm 0.18$                         | 13.80             | 9.66 - 17.94                   |
| SPW-4162    | WATER                | Jun, 1998         | Ra-228           | $16.73 \pm 1.62$                         | 17.80             | 12.46 - 23.14                  |
| SPW-5340    | . WATER              | Jun, 1998         | Gr. Alpha        | $41.38 \pm 1.87$                         | 41.25             | 20.62 - 61.87                  |
| SPW-5340    | WATER                | Jun, 1998         | Gr. Beta         | $61.92 \pm 1.51$                         | 64.92             | 54.92 - 74.92                  |
| SPW-4718    | WATER                | Jul, 1998         | Ra-226           | $12.93 \pm 0.12$                         | 13.80             | 9.66 - 17.94                   |
| SPW-4718    | WATER                | Jul, 1998         | Ra-228           | $13.13 \pm 1.59$                         | 17.67             | 12.37 - 22.97                  |
| SPCH-5129   | CHARCOAL<br>CANISTER | Jul, 1998         | I-131(g)         | $0.61 \pm 0.05$                          | 0.57              | 0.34 - 0.80                    |
| SPMI-5131   | MILK                 | Jul, 1998         | Cs-137           | $83.87 \pm 9.09$                         | 76.36             | 66.36 - 86.36                  |
| SPMI-5131   | MILK                 | Jul, 1998         | I-131            | 63.98 ± 0.77                             | 61.03             | 48.82 - 73.24                  |
| SPMI-5131   | MILK                 | Jul <i>,</i> 1998 | I-131(g)         | $62.05 \pm 11.00$                        | 61.03             | 36.62 - 71.03                  |
| SPMI-5131   | MILK                 | Jul, 1998         | Sr-89            | $52.66 \pm 2.13$                         | 62.05             | 49.64 - 74.46                  |
| SPM1-5131   | MILK                 | Jul, 1998         | Sr-90            | $29.78 \pm 1.39$                         | 32.41             | 25.93 - 38.89                  |
| SPW-5134    | WATER                | Jul, 1998         | H-3              | $20918.00 \pm 396.00$                    | 21666.00          | 17332.80 - 25999.2             |
| SPW-5137    | WATER                | Jul, 1998         | Co-60            | $44.96 \pm 4.00$                         | 43.56             | 33.56 - 53.56                  |
| SPW-5137    | WATER                | Jul, 1998         | Cs-137           | $72.05 \pm 5.84$                         | 76.36             | <b>6</b> 6.36 - 86.36          |
| SPW-5137    | WATER                | Jul, 1998         | I-131            | $52.07 \pm 0.69$                         | 61.03             | 48.82 - 73.24                  |
| SPW-5137    | WATER                | Jul, 1998         | I-131(g)         | 58.78 ± 7.69                             | 61.03             | 36.62 - 71.03                  |
| SPW-5136    | WATER                | Jul <i>,</i> 1998 | Gr. Alpha        | $50.02 \pm 2.28$                         | 41.24             | 20.62 - 61.86                  |
| SPW-5136    | WATER                | Jul, 1998         | Gr. Beta         | $70.19 \pm 1.88$                         | 64.80             | 54.80 - 74.80                  |
| SPAP-5611   | AIR FILTER           | Jul, 1998         | Cs-137           | $1.68 \pm 0.02$                          | 1.86              | 1.12 - 2.60                    |
| SPF-5453    | FISH                 | Jul, 1998         | Cs-137           | $0.33 \pm 0.03$                          | 0.31              | 0.18 - 0.43                    |
| SPAP-5611   | AIR FILTER           | Jul, 1998         | Cs-137           | $1.96 \pm 0.02$                          | 1.86              | 1.12 - 2.60                    |
| SPW-6091    | WATER                | +                 | Gr. Alpha        | $30.59 \pm 1.69$                         | 41.23             | 20.62 - 61.85                  |
| SPW-6091    | WATER                | Aug, 1998         | -                | $30.28 \pm 1.17$                         | 30.48             | 20.48 - 40.48                  |
| SPW-6092    | WATER                | Aug, 1998         |                  | $6.29 \pm 0.19$                          | 6.90              | 4.83 - 8.97                    |
| SPW-6092    | WATER                | Aug, 1998         |                  | $7.85 \pm 1.28$                          | 8.72              | 6.10 - 11.34                   |
| SPW-7143    | WATER                | Sep, 1998         |                  | $12.31 \pm 0.48$                         | 13.79             | 9.65 - 17.93                   |
| SPW-7143    | WATER                | Sep, 1998         |                  | $15.70 \pm 1.68$                         | 17.25             | 12.08 - 22.43                  |
| SPW-7144    | WATER                | -                 | Gr. Alpha        | $35.48 \pm 1.65$                         | 33.97             | 16.99 - 50.96                  |
| SPW-7144    | WATER                | Sep, 1998         | -                | $33.06 \pm 1.11$                         | 30.41             | 20.41 - 40.41                  |
| SPAP-7394   | AIR FILTER           | -                 | Gr. Beta<br>(ss) | $6.71 \pm 0.03$                          | 6.77              | 4.06 - 9.48                    |
| SPMI-7592   | MILK                 | Sep, 1998         | (ss)<br>Cs-137   | $34.40 \pm 7.11$                         | 37.99             | 27.99 - 47.99                  |

| Table A-3. | In-house | "spike" | samples. |
|------------|----------|---------|----------|
|------------|----------|---------|----------|

|             |                      |                   |           | Concentration in pCi/L <sup>a</sup>      |                   |                                |  |
|-------------|----------------------|-------------------|-----------|------------------------------------------|-------------------|--------------------------------|--|
| Lab<br>Code | Sample<br>Type       | Date<br>Collected | Analysis  | Teledyne Results<br>2s, n=1 <sup>b</sup> | Known<br>Activity | Control <sup>c</sup><br>Limits |  |
| SPMI-7592   | MILK                 | Sep, 1998         | I-131     | $58.15 \pm 0.90$                         | 61.55             | 49.24 - 73.86                  |  |
| SPW-7594    | WATER                | Sep, 1998         | Co-60     | $46.15 \pm 8.78$                         | 42.34             | 32.34 - 52.34                  |  |
| SPW-7594    | WATER                | Sep, 1998         | I-131     | $77.97 \pm 0.81$                         | 82.07             | 65.66 - 98.48                  |  |
| SPW-7594    | WATER                | Sep, 1998         | I-131(g)  | $80.62 \pm 13.90$                        | 82.07             | 49.24 - 92.07                  |  |
| SPVE-7596   | VEGETATION           | Sep, 1998         | I-131(g)  | $2.61 \pm 0.08$                          | 2.46              | 1.48 - 3.44                    |  |
| SPCH-7615   | CHARCOAL<br>CANISTER | Sep, 1998         | I-131(g)  | $1.41 \pm 0.06$                          | 1.28              | 0.77 - 1.79                    |  |
| SPF-1602    | FISH                 | Oct, 1998         | Cs-137    | $0.56 \pm 0.04$                          | 0.61              | 0.37 - 0.85                    |  |
| SPW-8178    | WATER                | Oct, 1998         | Gr. Alpha | $25.22 \pm 1.90$                         | 33.96             | 16.98 - 50.94                  |  |
| SPW-8178    | WATER                | Oct, 1998         | Gr. Beta  | $30.20 \pm 1.31$                         | 30.36             | 20.36 - 40.36                  |  |
| SPW-8179    | · WATER              | Oct, 1998         | Ra-226    | $11.12 \pm 0.16$                         | 13.80             | 9.66 - 17.94                   |  |
| SPW-8179    | WATER                | Oct, 1998         | Ra-228    | $17.83 \pm 1.87$                         | 17.09             | 11.96 - 22.22                  |  |
| SPAP-8457   | AIR FILTER           | Oct, 1998         | Cs-137    | $1.78 \pm 0.02$                          | 1.84              | 1.10 - 2.58                    |  |
| SPAP-8567   | AIR FILTER           | Oct, 1998         | Gr. Beta  | $6.54 \pm 0.10$                          | 6.47              | 0.00 - 16.47                   |  |
| SPSO-9953   | SOIL                 | Oct, 1998         | Cs-134    | $0.08 \pm 0.01$                          | 0.09              | 0.05 - 0.12                    |  |
| SPSO-9953   | SOIL                 | Oct, 1998         | Cs-137    | $0.45 \pm 0.01$                          | 0.43              | 0.26 - 0.60                    |  |
| SPW-9386    | WATER                | Nov, 1998         | Ra-226    | $14.75\pm0.47$                           | 13.80             | 9.66 - 17.94                   |  |
| SPW-9386    | WATER                | Nov, 1998         | Ra-228    | $15.67 \pm 1.59$                         | 16.95             | 11.87 - 22.04                  |  |
| SPW-9387    | WATER                | Nov, 1998         | Gr. Alpha | $27.49 \pm 2.38$                         | 33.97             | 16.99 - 50.96                  |  |
| SPW-9387    | WATER                | Nov, 1998         | Gr. Beta  | $36.04 \pm 2.14$                         | 30.31             | 20.31 - 40.31                  |  |
| SPW-10347   | WATER                | Nov, 1998         | Sr-90     | $4.30 \pm 1.10$                          | 3.20              | 0.00 - 13.20                   |  |
| SPW-10345   | WATER                | Nov, 1998         | H-3       | $38980.00 \pm 548.00$                    | 38848.00          | 31078.40 - 46617.60            |  |
| SPW-10340   | WATER                | Dec, 1998         | Ra-226    | $6.73 \pm 0.25$                          | 6.89              | 4.82 - 8.96                    |  |
| SPW-10340   | WATER                | Dec, 1998         | Ra-228    | $7.44 \pm 1.77$                          | 8.40              | 5.88 - 10.92                   |  |
| SPW-10341   | WATER                | Dec, 1998         | Gr. Alpha | 49.30 ± 3.35                             | 33.97             | 16.99 - 50.96                  |  |
| SPW-10341   | WATER                | Dec, 1998         | Gr. Beta  | $33.63 \pm 1.70$                         | 30.25             | 20.25 - 40.25                  |  |
| SPW-10389   | WATER                | Dec, 1998         | U         | $4.10\pm0.25$                            | 4.17              | 2.50 - 5.84                    |  |
| SPW-10390   | WATER                | Dec, 1998         | U         | 4.29 ± 0.25                              | 4.17              | 2.50 - 5.84                    |  |

<sup>a</sup> All results are in pCi/L, except for elemental potassium (K) in milk, which are in mg/L.; air filter samples, which are in pCi/Filter; and food products, which are in mg/kg.

<sup>b</sup>All samples are the results of single determinations.

<sup>c</sup> Control limits are based on Attachment A, page A2 of this report.

NOTE: For fish, Jello is used for the spike matrix. For vegetation, Sawdust is used for the spike matrix.

Table A-4. In-house "blank" samples.

|           |                   | Sample Sample _ |                    |              | Concentration pCi/L <sup>a</sup> . |                        |  |
|-----------|-------------------|-----------------|--------------------|--------------|------------------------------------|------------------------|--|
| Lab       | Sample            |                 |                    |              | edyne Results<br>4.66 Sigma)       | Acceptance<br>Criteria |  |
| Code      | Туре              | Date            | Analysis           | LLD          | Activity <sup>b</sup>              | (4.66 Sigma)           |  |
| RA-1      | WATER             | Jan 1998        | Ra-226             | <0.015       | $0.018 \pm 0.011$                  | < 1.00                 |  |
| RA-1      | WATER             | Jan 1998        | Ra-228             | <0.8745      | 0.657 ± 0.486                      | < 1.00                 |  |
| SPW-333   | WATER             | Jan 1998        | Am-241             | <0.0934      | $0.015 \pm 0.068$                  | < 1.00                 |  |
| SPW-495   | WATER             | Jan 1998        | Gr. Alpha          | <0.3138      | $0.004 \pm 0.206$                  | < 1.00                 |  |
| SPW-495   | WATER             | Jan 1998        | Gr. Beta           | <0.8107      | $1.475 \pm 0.612$                  | < 3.20                 |  |
| SPW-495   | WATER             | Jan 1998        | Sr-90              | <0.8595      | $0.552 \pm 0.461$                  | < 1.00                 |  |
| SPMI-496  | MILK              | Jan 1998        | Sr-89              | <0.9576      | $0.595 \pm 0.864$                  | < 5.00                 |  |
| SPMI-496  | MILK              | Jan 1998        | Sr-90              | N/A          | $0.813 \pm 0.300$                  | < 1.00                 |  |
| Low level | of Sr-90 concentr | ation in mil    | k (1-5 pCi/L) is 1 | not unusual. |                                    |                        |  |
| SPW-593   | WATER             | Jan 1998        | H-3                | <156.02      | 10.408 ± 77.815                    | < 200.00               |  |
| SPAP-5331 | AIR FILTER        | Jan 1998        | Cs-137             | <0.0009      | $0.000 \pm 0.001$                  | < 10.00                |  |
| SPW-1662  | WATER             | Feb 1998        | Ra-226             | <0.0134      | $0.041 \pm 0.010$                  | < 1.00                 |  |
| SPW-1662  | WATER             | Feb 1998        | Ra-228             | <0.889       | $0.386 \pm 0.548$                  | < 1.00                 |  |
| SPW-793   | WATER             | Feb 1998        | I-131              | <0.3448      | $-0.351 \pm 0.140$                 | < 0.50                 |  |
| SPMI-794  | MILK              | Feb 1998        | I-131              | <0.3849      | $-0.005 \pm 0.190$                 | < 0.50                 |  |
| SPAP-749  | AIR FILTER        | Feb 1998        | Gr. Beta           | <0.6         | $0.109 \pm 0.381$                  | < 3.20                 |  |
| SPW-1664  | WATER             | Mar 1998        | Ra-226             | <0.0197      | $0.029 \pm 0.013$                  | < 1.00                 |  |
| SPAP-1729 | AIR FILTER        | Mar 1998        | Gr. Beta           | < 0.0014     | $0.000 \pm 0.001$                  | < 3.20                 |  |
| SPW-1997  | WATER             | Apr 1998        | Ra-226             | <0.0139      | $0.006 \pm 0.011$                  | < 1.00                 |  |
| SPW-2279  | WATER             | Apr 1998        | H-3                | <156.87      | $54.220 \pm 80.200$                | < 200.00               |  |
| SPW-2285  | WATER             | Apr 1998        | Gr. Alpha          | <0.3124      | -0.056 ± 0.199                     | < 1.00                 |  |
| SPW-2285  | WATER             | Apr 1998        | Gr. Beta           | <0.8822      | -0.356 ±0.569                      | < 3.20                 |  |
| PM1-5450  | MILK              | Apr 1998        | Cs-137             | <5.27        | 0.529 ± 2.640                      | < 10.00                |  |
| SPW-5458  | WATER             | Apr 1998        | Co-60              | <1.63        | -1.930 ± 15.900                    | < 10.00                |  |
| SPW-5458  | WATER             | Apr 1998        | Cs-137             | <4.01        | 0.464 ± 3.070                      | < 10.00                |  |
| PW-2976   | WATER             | May 1998        |                    | <0.0115      | $0.015 \pm 0.010$                  | < 1.00                 |  |
| SPW-2976  | WATER             | May 1998        |                    | <0.865       | $0.152 \pm 0.420$                  | < 1.00                 |  |
| PAP-3042  | AIR FILTER        | ,<br>May 1998   |                    | <0.0010      | $0.000 \pm 0.001$                  | < 10.00                |  |
| SPW-3044  | WATER             | •               | Gr. Alpha          | <0.5036      | -0.184 ±0.251                      | < 1.00                 |  |
| 5PW-3044  | WATER             | May 1998        | -                  | <1.1494      | $0.140 \pm 0.643$                  | < 3.20                 |  |
| PW-4161   | WATER             | Jun 1998        | Ra-226             | <0.0203      | $0.049 \pm 0.014$                  | < 1.00                 |  |
| 5PW-4161  | WATER             | Jun 1998        | Ra-228             | <0.802       | $0.221 \pm 0.400$                  | < 1.00                 |  |
| 5PW-5339  | WATER             | Jun 1998        | Gr. Alpha          | <0.4785      | $0.098 \pm 0.322$                  | < 1.00                 |  |
| PW-5339   | WATER             | Jun 1998        | Gr. Beta           | <1.0833      | $1.037 \pm 0.735$                  | < 3.20                 |  |
| 9W-4719   | WATER             | Jul 1998        | Ra-226             | <0.0117      | $0.047 \pm 0.010$                  | < 1.00                 |  |

| <u></u>     |                      |                       |                    |          | Concentration p                      | Ci/Lª.                   |
|-------------|----------------------|-----------------------|--------------------|----------|--------------------------------------|--------------------------|
|             |                      |                       |                    |          | edyne Results                        | Acceptance               |
| Lab<br>Code | Sample<br>Type       | Sample<br>Date        | Analysis           |          | 4.66 Sigma)<br>Activity <sup>b</sup> | Criteria<br>(4.66 Sigma) |
| SPW-4719    | WATER                | Jul 1998              | Ra-228             | <0.435   | $0.389 \pm 0.251$                    | < 1.00                   |
| SPCH-5128   | CHARCOAL<br>CANISTER | Jul 1998              | I-131(g)           | <0.0088  | $-0.001 \pm 0.007$                   | < 9.60                   |
| SPMI-5130   | MILK                 | Jul 1998              | Co-60              | <2.60    | $-1.090 \pm 25.300$                  | < 10.00                  |
| SPMI-5130   | MILK                 | Jul 1998              | Cs-137             | <4.43    | -1.510 ± 2.690                       | < 10.00                  |
| SPMI-5130   | MILK                 | Jul 1998              | I-131              | <0.444   | $-0.141 \pm 0.239$                   | < 0.50                   |
| SPMI-5130   | MILK                 | Jul 1998              | I-131(g)           | <6.94    | $-1.710 \pm 7.030$                   | < 20.00                  |
| SPMI-5130   | MILK                 | Jul 1998              | Sr-90              | N/A      | $1.320 \pm 0.370$                    | < 1.00                   |
| Low level   | of Sr-90 concentra   | ation in mil          | k (1-5 pCi/L) is : |          |                                      |                          |
| SPW-5132    | WATER                | Jul 1998              | H-3                | <157     | -81.700 ± 74.150                     | < 200.00                 |
| SPW-5135    | WATER                | Jul 1998              | I-131              | <0.2796  | $-0.059 \pm 0.152$                   | < 0.50                   |
| SPW-5135    | WATER                | Jul 1998              | Co-60              | <1.90    | $3.260 \pm 3.920$                    | < 10.00                  |
| SPW-5135    | WATER                | Jul 1998              | Cs-137             | <3.29    | $1.110 \pm 2.930$                    | < 10.00                  |
| SPW-5135    | WATER                | Jul 1998              | l-131(g)           | <8.41    | $2.660 \pm 7.660$                    | < 20.00                  |
| SPW-5135    | WATER                | Jul 1998              | Gr. Alpha          | <0.3589  | $0.486 \pm 0.274$                    | < 1.00                   |
| SPW-5135    | WATER                | Jul 1998              | Gr. Beta           | <0.8127  | $0.791 \pm 0.552$                    | < 3.20                   |
| SPW-6093    | WATER                | Aug 1998              | Gr. Alpha          | <0.3766  | $0.104 \pm 0.317$                    | < 1.00                   |
| SPW-6093    | WATER                | Aug 1998              | Gr. Beta           | <1.741   | $-0.339 \pm 0.839$                   | < 3.20                   |
| SPW-6093    | WATER                | Aug 1998              | Ra-226             | <0.0166  | $0.053 \pm 0.012$                    | < 1.00                   |
| SPW-6093    | WATER                | Aug 1998              | Ra-228             | <0.670   | $-0.050 \pm 0.304$                   | < 1.00                   |
| SPW-7145    | WATER                | Sep 1998              | Gr. Alpha          | <0.2485  | $0.192 \pm 0.191$                    | < 1.00                   |
| SPW-7145    | WATER                | Sep 1998 <sup>.</sup> | Gr. Beta           | <0.7483  | $0.391 \pm 0.533$                    | < 3.20                   |
| SPW-7145    | WATER                | Sep 1998              | Ra-226             | <0.0192  | $0.020 \pm 0.012$                    | < 1.00                   |
| SPW-7145    | WATER                | Sep 1998              | Ra-228             | <0.997   | $0.033 \pm 0.562$                    | < 1.00                   |
| SPAP-7395   | AIR FILTER           | -<br>Sep 1998         | Gr. Beta           | <0.002   | $-0.001 \pm 0.001$                   | < 3.20                   |
| SPMI-7593   | MILK                 | Sep 1998              | Cs-137             | <5.41    | $1.470 \pm 3.560$                    | < 10.00                  |
| SPM1-7593   | MILK                 | Sep 1998              | I-131              | <0.4127  | -0.257 ± 0.215                       | < 0.50                   |
| SPMI-7593   | MILK                 | -<br>Sep 1998         | I-131(g)           | <9.60    | $4.120 \pm 24.900$                   | < 20.00                  |
| SPW-7595    | WATER                | -<br>Sep 1998         | Co-60              | <4.60    | $2.320 \pm 1.340$                    | < 10.00                  |
| SPW-7595    | WATER                | Sep 1998              |                    | <0.2981  | -0.223 ±0.153                        | < 0.50                   |
| SPW-7595    | WATER                |                       | I-131(g)           | <8.71    | 2.820 ± 6.660                        | < 20.00                  |
| SPVE-7597   | VEGETATION           | -                     | _                  | <0.0166  | $-0.001 \pm 0.001$                   | < 20.00                  |
| SPW-8180    | WATER                | Oct 1998              | Ra-226             | N/A      | $0.049 \pm 0.015$                    | < 1.00                   |
| SPW-8180    | WATER                | Oct 1998              | Ra-226             | < 0.0209 | $0.049 \pm 0.015$                    | < 1.00                   |
| SPW-8180    | WATER                | Oct 1998              | Ra-228             | < 0.840  | $0.666 \pm 0.465$                    | < 1.00                   |
| JI W-010U   | AA WI DIV            | 0001000               |                    |          |                                      |                          |

.

Table A-4. In-house "blank" samples.

Table A-4. In-house "blank" samples.

|             |        |          |           |          | Concentration pCi/Lª.        |                        |  |
|-------------|--------|----------|-----------|----------|------------------------------|------------------------|--|
| Lab         | Sample | Sample   |           |          | edyne Results<br>1.66 Sigma) | Acceptance<br>Criteria |  |
| Code        | Type   | Date     | Analysis  | LLD      | Activity <sup>▶</sup>        | (4.66 Sigma)           |  |
| SPW-9388    | WATER  | Nov 1998 | Gr. Alpha | <0.74    | $0.270 \pm 0.480$            | < 1.00                 |  |
| SPW-9388    | WATER  | Nov 1998 | Gr. Beta  | <1.99    | $1.036 \pm 1.244$            | < 3.20                 |  |
| SPW-9388    | WATER  | Nov 1998 | Ra-226    | < 0.0203 | $0.039 \pm 0.013$            | < 1.00                 |  |
| SPW-9388    | WATER  | Nov 1998 | Ra-228    | <0.932   | $0.317 \pm 0.561$            | < 1.00                 |  |
| SPW-10344   | WATER  | Nov 1998 | H-3       | <175     | -8.130 ± 86.410              | < 200.00               |  |
| SPW-10339   | WATER  | Dec 1998 | Gr. Alpha | <0.95    | $-0.650 \pm 0.570$           | < 1.00                 |  |
| SPW-10339   | WATER  | Dec 1998 | Gr. Beta  | <1.80    | $-0.280 \pm 1.180$           | < 3.20                 |  |
| SPW-10339   | WATER  | Dec 1998 | Ra-226    | <0.0261  | $0.020 \pm 0.015$            | < 1.00                 |  |
| SPW-10339 · | WATER  | Dec 1998 | Ra-228    | <0.83    | $0.244 \pm 0.418$            | < 1.00                 |  |

Liquid sample results are reported in pCi/Liter, air filter sample results are in pCi/filter, charcoal sample results are in pCi/charcoal, and solid sample results are in pCi/kilogram.
The activity reported is the net activity result.

| Table A-5. | In-house | "duplicate" | samples. |
|------------|----------|-------------|----------|
|------------|----------|-------------|----------|

| Codes <sup>b</sup> I           WW-10052, 10053         Jar           CF-20, 21         Jar           CW-195, 196         Jar           SW-298, 299         Jar           SW-349, 350         Jar           SW-349, 350         Jar           CW-737, 738         Jar           PW-607, 608         Jar           SWU-531, 532         Jar           LW-653, 654         Jar           SW-587, 588         Feb           WW-897, 898         Feb           WW-897, 898         Feb           CW-920, 921         Feb           CW-1378, 1379         Ma           CW-1378, 1379         Ma           MI-1552, 1553         Ma           WW-1406, 1407         Ma           LW-1921, 1922         Ma | ample<br>Date<br>Date<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998<br>1998 | Analysis<br>Gr. Beta<br>Gr. Beta<br>K-40<br>Sr-90<br>Gr. Beta<br>H-3<br>Co-60<br>Cs-137<br>H-3<br>Co-60<br>Cs-137<br>Gr. Beta<br>Gr. Beta<br>Gr. Beta<br>Co-60<br>Cs-137<br>H-3 | First<br>Result<br>$1.1720 \pm 0.6030$<br>$17.5458 \pm 0.5866$<br>$21.1870 \pm 0.6570$<br>$0.0302 \pm 0.0085$<br>$2.9349 \pm 0.6584$<br>$144.2200 \pm 93.5400$<br>$1.1100 \pm 9.1700$<br>$-2.4900 \pm 3.2300$<br>$559.2800 \pm 100.4400$<br>$0.3400 \pm 0.0340$<br>$1.1700 \pm 1.8100$<br>$3.4928 \pm 0.6902$<br>$2.3404 \pm 0.5778$<br>$3.2097 \pm 0.7915$<br>$0.2600 \pm 0.4800$<br>$0.2800 \pm 1.8700$<br>$4.582.7400 \pm 197.9300$ | Second<br>Result<br>2.1820 $\pm$ 0.6630<br>17.6346 $\pm$ 0.5614<br>20.8610 $\pm$ 0.7520<br>0.0298 $\pm$ 0.0071<br>2.9020 $\pm$ 0.6291<br>92.1100 $\pm$ 91.4500<br>1.7900 $\pm$ 2.4700<br>-0.6700 $\pm$ 1.9400<br>524.8100 $\pm$ 99.1900<br>0.7200 $\pm$ 4.6200<br>-0.0400 $\pm$ 1.8700<br>3.9923 $\pm$ 0.7129<br>1.6742 $\pm$ 0.5968<br>2.1021 $\pm$ 0.7800<br>0.4700 $\pm$ 4.5900<br>0.3200 $\pm$ 2.5200 | $21.0240 \pm 0.4993$ $0.0300 \pm 0.0055$ $2.9185 \pm 0.4553$ $118.1650 \pm 65.408$ $1.4500 \pm 4.7484$ $-1.5800 \pm 1.8839$ $542.0450 \pm 70.581$ $0.5300 \pm 2.3101$ $0.5650 \pm 1.3012$ $3.7426 \pm 0.4961$ $2.0073 \pm 0.4153$ $2.6559 \pm 0.5556$ $0.3650 \pm 2.3075$ $0.3000 \pm 1.5690$                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CF-20, 21       Jar         CF-20, 21       Jar         CF-20, 21       Jar         CF-20, 21       Jar         WW-195, 196       Jar         SW-298, 299       Jar         SW-349, 350       Jar         SW-349, 350       Jar         CW-737, 738       Jar         PW-607, 608       Jar         SWU-531, 532       Jar         SW-587, 588       Feb         WW-897, 898       Feb         WW-897, 898       Feb         CW-920, 921       Feb         CW-1378, 1379       Ma         CW-1378, 1379       Ma         MI-1552, 1553       Ma         WW-1406, 1407       Ma         LW-1921, 1922       Ma                                                                                                                                                                                                                                                                                                                                                                                      | n, 1998<br>n, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Gr. Beta<br>K-40<br>Sr-90<br>Gr. Beta<br>H-3<br>Co-60<br>Cs-137<br>H-3<br>Co-60<br>Cs-137<br>Gr. Beta<br>Gr. Beta<br>Gr. Beta<br>Co-60<br>Cs-137                                | $17.5458 \pm 0.5866$<br>$21.1870 \pm 0.6570$<br>$0.0302 \pm 0.0085$<br>$2.9349 \pm 0.6584$<br>$144.2200 \pm 93.5400$<br>$1.1100 \pm 9.1700$<br>$-2.4900 \pm 3.2300$<br>$559.2800 \pm 100.4400$<br>$0.3400 \pm 0.0340$<br>$1.1700 \pm 1.8100$<br>$3.4928 \pm 0.6902$<br>$2.3404 \pm 0.5778$<br>$3.2097 \pm 0.7915$<br>$0.2600 \pm 0.4800$<br>$0.2800 \pm 1.8700$                                                                        | $17.6346 \pm 0.5614$ $20.8610 \pm 0.7520$ $0.0298 \pm 0.0071$ $2.9020 \pm 0.6291$ $92.1100 \pm 91.4500$ $1.7900 \pm 2.4700$ $-0.6700 \pm 1.9400$ $524.8100 \pm 99.1900$ $0.7200 \pm 4.6200$ $-0.0400 \pm 1.8700$ $3.9923 \pm 0.7129$ $1.6742 \pm 0.5968$ $2.1021 \pm 0.7800$ $0.4700 \pm 4.5900$ $0.3200 \pm 2.5200$                                                                                      | $17.5902 \pm 0.4060$ $21.0240 \pm 0.4993$ $0.0300 \pm 0.0055$ $2.9185 \pm 0.4553$ $118.1650 \pm 65.408$ $1.4500 \pm 4.7484$ $-1.5800 \pm 1.8839$ $542.0450 \pm 70.581$ $0.5300 \pm 2.3101$ $0.5650 \pm 1.3012$ $3.7426 \pm 0.4961$ $2.0073 \pm 0.4153$ $2.6559 \pm 0.5556$ $0.3650 \pm 2.3075$ $0.3000 \pm 1.5690$ |
| CF-20, 21       Jar         CF-20, 21       Jar         WW-195, 196       Jar         SW-298, 299       Jar         SW-349, 350       Jar         SW-349, 350       Jar         CW-737, 738       Jar         PW-607, 608       Jar         SWU-531, 532       Jar         SW-897, 898       Feb         WW-897, 898       Feb         WW-897, 898       Feb         CW-920, 921       Feb         CW-1378, 1379       Ma         MI-1552, 1553       Ma         WW-1406, 1407       Ma         LW-1921, 1922       Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>a, 1998</li> <li>b, 1998</li> <li>b, 1998</li> <li>c, 1998</li> <li>c, 1998</li> <li>c), 1998</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | K-40<br>Sr-90<br>Gr. Beta<br>H-3<br>Co-60<br>Cs-137<br>H-3<br>Co-60<br>Cs-137<br>Gr. Beta<br>Gr. Beta<br>Gr. Beta<br>Co-60<br>Cs-137                                            | $21.1870 \pm 0.6570$ $0.0302 \pm 0.0085$ $2.9349 \pm 0.6584$ $144.2200 \pm 93.5400$ $1.1100 \pm 9.1700$ $-2.4900 \pm 3.2300$ $559.2800 \pm 100.4400$ $0.3400 \pm 0.0340$ $1.1700 \pm 1.8100$ $3.4928 \pm 0.6902$ $2.3404 \pm 0.5778$ $3.2097 \pm 0.7915$ $0.2600 \pm 0.4800$ $0.2800 \pm 1.8700$                                                                                                                                       | $20.8610 \pm 0.7520$ $0.0298 \pm 0.0071$ $2.9020 \pm 0.6291$ $92.1100 \pm 91.4500$ $1.7900 \pm 2.4700$ $-0.6700 \pm 1.9400$ $524.8100 \pm 99.1900$ $0.7200 \pm 4.6200$ $-0.0400 \pm 1.8700$ $3.9923 \pm 0.7129$ $1.6742 \pm 0.5968$ $2.1021 \pm 0.7800$ $0.4700 \pm 4.5900$ $0.3200 \pm 2.5200$                                                                                                           | $0.0300 \pm 0.0055$<br>$2.9185 \pm 0.4553$<br>$118.1650 \pm 65.408$<br>$1.4500 \pm 4.7484$<br>$-1.5800 \pm 1.8839$<br>$542.0450 \pm 70.581$<br>$0.5300 \pm 2.3101$<br>$0.5650 \pm 1.3012$<br>$3.7426 \pm 0.4961$<br>$2.0073 \pm 0.4153$<br>$2.6559 \pm 0.5556$<br>$0.3650 \pm 2.3075$<br>$0.3000 \pm 1.5690$       |
| CF-20, 21       Jar         WW-195, 196       Jar         SW-298, 299       Jar         SW-349, 350       Jar         SW-349, 350       Jar         CW-737, 738       Jar         PW-607, 608       Jar         SWU-531, 532       Jar         SW-587, 588       Feb         WW-897, 898       Feb         WW-897, 898       Feb         CW-920, 921       Feb         CW-1378, 1379       Ma         CW-1378, 1379       Ma         MI-1552, 1553       Ma         WW-1406, 1407       Ma         LW-1921, 1922       Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n, 1998<br>n, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sr-90<br>Gr. Beta<br>H-3<br>Co-60<br>Cs-137<br>H-3<br>Co-60<br>Cs-137<br>Gr. Beta<br>Gr. Beta<br>Gr. Beta<br>Co-60<br>Cs-137                                                    | $0.0302 \pm 0.0085$<br>$2.9349 \pm 0.6584$<br>$144.2200 \pm 93.5400$<br>$1.1100 \pm 9.1700$<br>$-2.4900 \pm 3.2300$<br>$559.2800 \pm 100.4400$<br>$0.3400 \pm 0.0340$<br>$1.1700 \pm 1.8100$<br>$3.4928 \pm 0.6902$<br>$2.3404 \pm 0.5778$<br>$3.2097 \pm 0.7915$<br>$0.2600 \pm 0.4800$<br>$0.2800 \pm 1.8700$                                                                                                                        | $\begin{array}{c} 0.0298 \pm 0.0071 \\ 2.9020 \pm 0.6291 \\ 92.1100 \pm 91.4500 \\ 1.7900 \pm 2.4700 \\ -0.6700 \pm 1.9400 \\ 524.8100 \pm 99.1900 \\ 0.7200 \pm 4.6200 \\ -0.0400 \pm 1.8700 \\ 3.9923 \pm 0.7129 \\ 1.6742 \pm 0.5968 \\ 2.1021 \pm 0.7800 \\ 0.4700 \pm 4.5900 \\ 0.3200 \pm 2.5200 \end{array}$                                                                                       | $2.9185 \pm 0.4553$ $118.1650 \pm 65.408$ $1.4500 \pm 4.7484$ $-1.5800 \pm 1.8839$ $542.0450 \pm 70.581$ $0.5300 \pm 2.3101$ $0.5650 \pm 1.3012$ $3.7426 \pm 0.4961$ $2.0073 \pm 0.4153$ $2.6559 \pm 0.5556$ $0.3650 \pm 2.3075$ $0.3000 \pm 1.5690$                                                               |
| WW-195, 196       Jar         SW-298, 299       Jar         SW-349, 350       Jar         SW-349, 350       Jar         CW-737, 738       Jar         PW-607, 608       Jar         SWU-531, 532       Jar         SW-897, 898       Feb         WW-897, 898       Feb         WW-897, 898       Feb         CW-920, 921       Feb         CW-1378, 1379       Ma         MI-1552, 1553       Ma         WW-1406, 1407       Ma         LW-1921, 1922       Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n, 1998<br>n, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gr. Beta<br>H-3<br>Co-60<br>Cs-137<br>H-3<br>Co-60<br>Cs-137<br>Gr. Beta<br>Gr. Beta<br>Gr. Beta<br>Co-60<br>Cs-137                                                             | $2.9349 \pm 0.6584$<br>$144.2200 \pm 93.5400$<br>$1.1100 \pm 9.1700$<br>$-2.4900 \pm 3.2300$<br>$559.2800 \pm 100.4400$<br>$0.3400 \pm 0.0340$<br>$1.1700 \pm 1.8100$<br>$3.4928 \pm 0.6902$<br>$2.3404 \pm 0.5778$<br>$3.2097 \pm 0.7915$<br>$0.2600 \pm 0.4800$<br>$0.2800 \pm 1.8700$                                                                                                                                               | $\begin{array}{c} 2.9020 \pm 0.6291 \\ 92.1100 \pm 91.4500 \\ 1.7900 \pm 2.4700 \\ -0.6700 \pm 1.9400 \\ 524.8100 \pm 99.1900 \\ 0.7200 \pm 4.6200 \\ -0.0400 \pm 1.8700 \\ 3.9923 \pm 0.7129 \\ 1.6742 \pm 0.5968 \\ 2.1021 \pm 0.7800 \\ 0.4700 \pm 4.5900 \\ 0.3200 \pm 2.5200 \end{array}$                                                                                                            | $1.4500 \pm 4.7484$ $-1.5800 \pm 1.8839$ $542.0450 \pm 70.5812$ $0.5300 \pm 2.3101$ $0.5650 \pm 1.3012$ $3.7426 \pm 0.4961$ $2.0073 \pm 0.4153$ $2.6559 \pm 0.5556$ $0.3650 \pm 2.3075$ $0.3000 \pm 1.5690$                                                                                                        |
| SW-298, 299       Jar         SW-349, 350       Jar         SW-349, 350       Jar         SW-349, 350       Jar         CW-737, 738       Jar         PW-607, 608       Jar         PW-607, 608       Jar         SWU-531, 532       Jar         LW-653, 654       Jar         SW-897, 898       Feb         WW-897, 898       Feb         CW-920, 921       Feb         CW-1378, 1379       Ma         CW-1378, 1379       Ma         MI-1552, 1553       Ma         WW-1406, 1407       Ma         LW-1921, 1922       Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n, 1998<br>n, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H-3<br>Co-60<br>Cs-137<br>H-3<br>Co-60<br>Cs-137<br>Gr. Beta<br>Gr. Beta<br>Gr. Beta<br>Co-60<br>Cs-137                                                                         | $144.2200 \pm 93.5400$ $1.1100 \pm 9.1700$ $-2.4900 \pm 3.2300$ $559.2800 \pm 100.4400$ $0.3400 \pm 0.0340$ $1.1700 \pm 1.8100$ $3.4928 \pm 0.6902$ $2.3404 \pm 0.5778$ $3.2097 \pm 0.7915$ $0.2600 \pm 0.4800$ $0.2800 \pm 1.8700$                                                                                                                                                                                                    | $92.1100 \pm 91.4500$ $1.7900 \pm 2.4700$ $-0.6700 \pm 1.9400$ $524.8100 \pm 99.1900$ $0.7200 \pm 4.6200$ $-0.0400 \pm 1.8700$ $3.9923 \pm 0.7129$ $1.6742 \pm 0.5968$ $2.1021 \pm 0.7800$ $0.4700 \pm 4.5900$ $0.3200 \pm 2.5200$                                                                                                                                                                        | $118.1650 \pm 65.4080$ $1.4500 \pm 4.7484$ $-1.5800 \pm 1.8839$ $542.0450 \pm 70.5812$ $0.5300 \pm 2.3101$ $0.5650 \pm 1.3012$ $3.7426 \pm 0.4961$ $2.0073 \pm 0.4153$ $2.6559 \pm 0.5556$ $0.3650 \pm 2.3075$ $0.3000 \pm 1.5690$                                                                                 |
| SW-349, 350       Jar         SW-349, 350       Jar         SW-349, 350       Jar         CW-737, 738       Jar         PW-607, 608       Jar         PW-607, 608       Jar         SWU-531, 532       Jar         LW-653, 654       Jar         SW-897, 898       Feb         WW-897, 898       Feb         CW-920, 921       Feb         CW-1378, 1379       Ma         CW-1378, 1379       Ma         MI-1552, 1553       Ma         WW-1406, 1407       Ma         LW-1921, 1922       Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n, 1998<br>n, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Co-60<br>Cs-137<br>H-3<br>Co-60<br>Cs-137<br>Gr. Beta<br>Gr. Beta<br>Gr. Beta<br>Co-60<br>Cs-137                                                                                | $\begin{array}{c} 1.1100 \pm 9.1700 \\ -2.4900 \pm 3.2300 \\ 559.2800 \pm 100.4400 \\ 0.3400 \pm 0.0340 \\ 1.1700 \pm 1.8100 \\ 3.4928 \pm 0.6902 \\ 2.3404 \pm 0.5778 \\ 3.2097 \pm 0.7915 \\ 0.2600 \pm 0.4800 \\ 0.2800 \pm 1.8700 \end{array}$                                                                                                                                                                                     | $\begin{array}{c} 1.7900 \pm 2.4700 \\ -0.6700 \pm 1.9400 \\ 524.8100 \pm 99.1900 \\ 0.7200 \pm 4.6200 \\ -0.0400 \pm 1.8700 \\ 3.9923 \pm 0.7129 \\ 1.6742 \pm 0.5968 \\ 2.1021 \pm 0.7800 \\ 0.4700 \pm 4.5900 \\ 0.3200 \pm 2.5200 \end{array}$                                                                                                                                                        | $542.0450 \pm 70.5812$ $0.5300 \pm 2.3101$ $0.5650 \pm 1.3012$ $3.7426 \pm 0.4961$ $2.0073 \pm 0.4153$ $2.6559 \pm 0.5556$ $0.3650 \pm 2.3075$ $0.3000 \pm 1.5690$                                                                                                                                                 |
| SW-349, 350       Jar         CW-737, 738       Jar         PW-607, 608       Jar         PW-607, 608       Jar         SWU-531, 532       Jar         LW-653, 654       Jar         SW-897, 898       Feb         WW-897, 898       Feb         CW-920, 921       Feb         CW-1378, 1379       Ma         CW-1378, 1379       Ma         MI-1552, 1553       Ma         WW-1406, 1407       Ma         LW-1921, 1922       Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n, 1998<br>n, 1998<br>n, 1998<br>n, 1998<br>n, 1998<br>n, 1998<br>n, 1998<br>n, 1998<br>n, 1998<br>n, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cs-137<br>H-3<br>Co-60<br>Cs-137<br>Gr. Beta<br>Gr. Beta<br>Gr. Beta<br>Co-60<br>Cs-137                                                                                         | $\begin{array}{c} -2.4900 \pm 3.2300 \\ 559.2800 \pm 100.4400 \\ 0.3400 \pm 0.0340 \\ 1.1700 \pm 1.8100 \\ 3.4928 \pm 0.6902 \\ 2.3404 \pm 0.5778 \\ 3.2097 \pm 0.7915 \\ 0.2600 \pm 0.4800 \\ 0.2800 \pm 1.8700 \end{array}$                                                                                                                                                                                                          | $\begin{array}{c} -0.6700 \pm 1.9400 \\ 524.8100 \pm 99.1900 \\ 0.7200 \pm 4.6200 \\ -0.0400 \pm 1.8700 \\ 3.9923 \pm 0.7129 \\ 1.6742 \pm 0.5968 \\ 2.1021 \pm 0.7800 \\ 0.4700 \pm 4.5900 \\ 0.3200 \pm 2.5200 \end{array}$                                                                                                                                                                             | $-1.5800 \pm 1.8839$ $542.0450 \pm 70.5812$ $0.5300 \pm 2.3101$ $0.5650 \pm 1.3012$ $3.7426 \pm 0.4961$ $2.0073 \pm 0.4153$ $2.6559 \pm 0.5556$ $0.3650 \pm 2.3075$ $0.3000 \pm 1.5690$                                                                                                                            |
| CW-737, 738       Jar         PW-607, 608       Jar         PW-607, 608       Jar         SWU-531, 532       Jar         LW-653, 654       Jar         SW-587, 588       Feb         WW-897, 898       Feb         WW-897, 898       Feb         CW-920, 921       Feb         CW-1378, 1379       Ma         CW-1378, 1379       Ma         MI-1552, 1553       Ma         WW-1406, 1407       Ma         LW-1921, 1922       Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n, 1998<br>n, 1998<br>n, 1998<br>n, 1998<br>n, 1998<br>n, 1998<br>n, 1998<br>n, 1998<br>n, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H-3<br>Co-60<br>Cs-137<br>Gr. Beta<br>Gr. Beta<br>Gr. Beta<br>Co-60<br>Cs-137                                                                                                   | $559.2800 \pm 100.4400$ $0.3400 \pm 0.0340$ $1.1700 \pm 1.8100$ $3.4928 \pm 0.6902$ $2.3404 \pm 0.5778$ $3.2097 \pm 0.7915$ $0.2600 \pm 0.4800$ $0.2800 \pm 1.8700$                                                                                                                                                                                                                                                                    | $524.8100 \pm 99.1900$ $0.7200 \pm 4.6200$ $-0.0400 \pm 1.8700$ $3.9923 \pm 0.7129$ $1.6742 \pm 0.5968$ $2.1021 \pm 0.7800$ $0.4700 \pm 4.5900$ $0.3200 \pm 2.5200$                                                                                                                                                                                                                                       | $542.0450 \pm 70.5812$ $0.5300 \pm 2.3101$ $0.5650 \pm 1.3012$ $3.7426 \pm 0.4961$ $2.0073 \pm 0.4153$ $2.6559 \pm 0.5556$ $0.3650 \pm 2.3075$ $0.3000 \pm 1.5690$                                                                                                                                                 |
| PW-607, 608       Jar         PW-607, 608       Jar         SWU-531, 532       Jar         LW-653, 654       Jar         SW-587, 588       Feb         WW-897, 898       Feb         WW-897, 898       Feb         CW-920, 921       Feb         CW-1378, 1379       Ma         CW-1378, 1379       Ma         MI-1552, 1553       Ma         WW-1406, 1407       Ma         LW-1921, 1922       Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n, 1998<br>n, 1998<br>n, 1998<br>n, 1998<br>n, 1998<br>n, 1998<br>n, 1998<br>n, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Co-60<br>Cs-137<br>Gr. Beta<br>Gr. Beta<br>Gr. Beta<br>Co-60<br>Cs-137                                                                                                          | $0.3400 \pm 0.0340$<br>$1.1700 \pm 1.8100$<br>$3.4928 \pm 0.6902$<br>$2.3404 \pm 0.5778$<br>$3.2097 \pm 0.7915$<br>$0.2600 \pm 0.4800$<br>$0.2800 \pm 1.8700$                                                                                                                                                                                                                                                                          | $0.7200 \pm 4.6200$<br>- $0.0400 \pm 1.8700$<br>$3.9923 \pm 0.7129$<br>$1.6742 \pm 0.5968$<br>$2.1021 \pm 0.7800$<br>$0.4700 \pm 4.5900$<br>$0.3200 \pm 2.5200$                                                                                                                                                                                                                                           | $0.5650 \pm 1.3012$<br>$3.7426 \pm 0.4961$<br>$2.0073 \pm 0.4153$<br>$2.6559 \pm 0.5556$<br>$0.3650 \pm 2.3075$<br>$0.3000 \pm 1.5690$                                                                                                                                                                             |
| PW-607, 608       Jar         SWU-531, 532       Jar         LW-653, 654       Jar         SW-587, 588       Feb         WW-897, 898       Feb         WW-897, 898       Feb         WW-897, 898       Feb         CW-920, 921       Feb         CW-1378, 1379       Ma         CW-1378, 1379       Ma         MI-1552, 1553       Ma         WW-1406, 1407       Ma         LW-1921, 1922       Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n, 1998<br>n, 1998<br>n, 1998<br>n, 1998<br>n, 1998<br>n, 1998<br>n, 1998<br>n, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cs-137<br>Gr. Beta<br>Gr. Beta<br>Gr. Beta<br>Co-60<br>Cs-137                                                                                                                   | $1.1700 \pm 1.8100$ $3.4928 \pm 0.6902$ $2.3404 \pm 0.5778$ $3.2097 \pm 0.7915$ $0.2600 \pm 0.4800$ $0.2800 \pm 1.8700$                                                                                                                                                                                                                                                                                                                | $-0.0400 \pm 1.8700$ $3.9923 \pm 0.7129$ $1.6742 \pm 0.5968$ $2.1021 \pm 0.7800$ $0.4700 \pm 4.5900$ $0.3200 \pm 2.5200$                                                                                                                                                                                                                                                                                  | $0.5650 \pm 1.3012$<br>$3.7426 \pm 0.4961$<br>$2.0073 \pm 0.4153$<br>$2.6559 \pm 0.5556$<br>$0.3650 \pm 2.3075$<br>$0.3000 \pm 1.5690$                                                                                                                                                                             |
| SWU-531, 532       Jar         LW-653, 654       Jar         SW-587, 588       Feb         WW-897, 898       Feb         WW-897, 898       Feb         WW-897, 898       Feb         CW-920, 921       Feb         CW-1378, 1379       Ma         CW-1378, 1379       Ma         WW-1406, 1407       Ma         LW-1921, 1922       Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n, 1998<br>n, 1998<br>o, 1998<br>o, 1998<br>o, 1998<br>o, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gr. Beta<br>Gr. Beta<br>Gr. Beta<br>Co-60<br>Cs-137                                                                                                                             | $3.4928 \pm 0.6902$<br>$2.3404 \pm 0.5778$<br>$3.2097 \pm 0.7915$<br>$0.2600 \pm 0.4800$<br>$0.2800 \pm 1.8700$                                                                                                                                                                                                                                                                                                                        | $3.9923 \pm 0.7129$<br>$1.6742 \pm 0.5968$<br>$2.1021 \pm 0.7800$<br>$0.4700 \pm 4.5900$<br>$0.3200 \pm 2.5200$                                                                                                                                                                                                                                                                                           | $3.7426 \pm 0.4961$<br>2.0073 ± 0.4153<br>2.6559 ± 0.5556<br>0.3650 ± 2.3075<br>0.3000 ± 1.5690                                                                                                                                                                                                                    |
| LW-653, 654 Jar<br>SW-587, 588 Feb<br>WW-897, 898 Feb<br>WW-897, 898 Feb<br>WW-897, 898 Feb<br>CW-920, 921 Feb<br>CW-920, 921 Feb<br>CW-1378, 1379 Ma<br>CW-1378, 1379 Ma<br>Ml-1552, 1553 Ma<br>WW-1406, 1407 Ma<br>LW-1921, 1922 Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n, 1998<br>o, 1998<br>o, 1998<br>o, 1998<br>o, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Gr. Beta<br>Gr. Beta<br>Co-60<br>Cs-137                                                                                                                                         | $2.3404 \pm 0.5778$<br>$3.2097 \pm 0.7915$<br>$0.2600 \pm 0.4800$<br>$0.2800 \pm 1.8700$                                                                                                                                                                                                                                                                                                                                               | $1.6742 \pm 0.5968$<br>$2.1021 \pm 0.7800$<br>$0.4700 \pm 4.5900$<br>$0.3200 \pm 2.5200$                                                                                                                                                                                                                                                                                                                  | $2.0073 \pm 0.4153$<br>$2.6559 \pm 0.5556$<br>$0.3650 \pm 2.3075$<br>$0.3000 \pm 1.5690$                                                                                                                                                                                                                           |
| SW-587, 588       Feb         WW-897, 898       Feb         WW-897, 898       Feb         WW-897, 898       Feb         CW-920, 921       Feb         CW-920, 921       Feb         CW-1378, 1379       Ma         CW-1378, 1379       Ma         MI-1552, 1553       Ma         WW-1406, 1407       Ma         LW-1921, 1922       Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | o, 1998<br>o, 1998<br>o, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gr. Beta<br>Co-60<br>Cs-137                                                                                                                                                     | $3.2097 \pm 0.7915$<br>$0.2600 \pm 0.4800$<br>$0.2800 \pm 1.8700$                                                                                                                                                                                                                                                                                                                                                                      | $2.1021 \pm 0.7800$<br>$0.4700 \pm 4.5900$<br>$0.3200 \pm 2.5200$                                                                                                                                                                                                                                                                                                                                         | 2.6559 ± 0.5556<br>0.3650 ± 2.3075<br>0.3000 ± 1.5690                                                                                                                                                                                                                                                              |
| WW-897, 898       Feb         WW-897, 898       Feb         WW-897, 898       Feb         CW-920, 921       Feb         CW-920, 921       Feb         CW-1378, 1379       Ma         CW-1378, 1379       Ma         MI-1552, 1553       Ma         WW-1406, 1407       Ma         LW-1921, 1922       Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | o, 1998<br>o, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Co-60<br>Cs-137                                                                                                                                                                 | $0.2600 \pm 0.4800$<br>$0.2800 \pm 1.8700$                                                                                                                                                                                                                                                                                                                                                                                             | $0.4700 \pm 4.5900$<br>$0.3200 \pm 2.5200$                                                                                                                                                                                                                                                                                                                                                                | 0.3650 ± 2.3075<br>0.3000 ± 1.5690                                                                                                                                                                                                                                                                                 |
| WW-897, 898       Feb         WW-897, 898       Feb         CW-920, 921       Feb         CW-920, 921       Feb         CW-1378, 1379       Ma         CW-1378, 1379       Ma         MI-1552, 1553       Ma         WW-1406, 1407       Ma         LW-1921, 1922       Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cs-137                                                                                                                                                                          | $0.2800 \pm 1.8700$                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.3200 \pm 2.5200$                                                                                                                                                                                                                                                                                                                                                                                       | $0.3000 \pm 1.5690$                                                                                                                                                                                                                                                                                                |
| WW-897, 898       Feb         CW-920, 921       Feb         CW-920, 921       Feb         CW-1378, 1379       Ma         CW-1378, 1379       Ma         MI-1552, 1553       Ma         WW-1406, 1407       Ma         LW-1921, 1922       Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                    |
| CW-920, 921       Feb         CW-920, 921       Feb         CW-1378, 1379       Ma         CW-1378, 1379       Ma         MI-1552, 1553       Ma         WW-1406, 1407       Ma         LW-1921, 1922       Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H-3                                                                                                                                                                             | 4,582.7400 ± 197.9300                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                    |
| CW-920, 921       Feb         CW-1378, 1379       Ma         CW-1378, 1379       Ma         MI-1552, 1553       Ma         WW-1406, 1407       Ma         LW-1921, 1922       Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                 | • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                  | $5,013.4400 \pm 205.6500$                                                                                                                                                                                                                                                                                                                                                                                 | $4,798.0900 \pm 142.713$                                                                                                                                                                                                                                                                                           |
| CW-1378, 1379 Ma<br>CW-1378, 1379 Ma<br>Ml-1552, 1553 Ma<br>WW-1406, 1407 Ma<br>LW-1921, 1922 Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | o, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Gr. Beta                                                                                                                                                                        | $8.1600 \pm 1.3000$                                                                                                                                                                                                                                                                                                                                                                                                                    | $8.5200 \pm 1.3000$                                                                                                                                                                                                                                                                                                                                                                                       | $8.3400 \pm 0.9192$                                                                                                                                                                                                                                                                                                |
| CW-1378, 1379 Ma<br>Ml-1552, 1553 Ma<br>WW-1406, 1407 Ma<br>LW-1921, 1922 Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | o, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Gr. Beta                                                                                                                                                                        | $0.2500 \pm 1.2100$                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.0000 \pm 1.2000$                                                                                                                                                                                                                                                                                                                                                                                       | $0.1250 \pm 0.8521$                                                                                                                                                                                                                                                                                                |
| Ml-1552, 1553 Ma<br>WW-1406, 1407 Ma<br>LW-1921, 1922 Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ır, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gr. Beta                                                                                                                                                                        | $2.6100 \pm 1.3700$                                                                                                                                                                                                                                                                                                                                                                                                                    | $4.1400 \pm 1.5800$                                                                                                                                                                                                                                                                                                                                                                                       | $3.3750 \pm 1.0456$                                                                                                                                                                                                                                                                                                |
| WW-1406, 1407 Ma<br>LW-1921, 1922 Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ır, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gr. Beta                                                                                                                                                                        | $-0.1000 \pm 1.1000$                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.0000 \pm 1.2000$                                                                                                                                                                                                                                                                                                                                                                                       | $-0.0500 \pm 0.8139$                                                                                                                                                                                                                                                                                               |
| LW-1921, 1922 Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ır, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K-40                                                                                                                                                                            | 1,392.5000 ± 133.0000                                                                                                                                                                                                                                                                                                                                                                                                                  | $1,280.8000 \pm 204.0000$                                                                                                                                                                                                                                                                                                                                                                                 | $1,336.6500 \pm 121.763$                                                                                                                                                                                                                                                                                           |
| LW-1921, 1922 Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ır, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gr. Beta                                                                                                                                                                        | $7.0991 \pm 0.8467$                                                                                                                                                                                                                                                                                                                                                                                                                    | $7.0712 \pm 0.5658$                                                                                                                                                                                                                                                                                                                                                                                       | $7.0852 \pm 0.5092$                                                                                                                                                                                                                                                                                                |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ır, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gr. Beta                                                                                                                                                                        | $2.9722 \pm 0.6466$                                                                                                                                                                                                                                                                                                                                                                                                                    | $2.5972 \pm 0.6466$                                                                                                                                                                                                                                                                                                                                                                                       | $2.7847 \pm 0.4572$                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ır, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Co-60                                                                                                                                                                           | $-0.0003 \pm 0.0004$                                                                                                                                                                                                                                                                                                                                                                                                                   | $-0.0003 \pm 0.0002$                                                                                                                                                                                                                                                                                                                                                                                      | $-0.0003 \pm 0.0002$                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ur, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cs-137                                                                                                                                                                          | $-0.0001 \pm 0.0004$                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.0001 \pm 0.0005$                                                                                                                                                                                                                                                                                                                                                                                       | $0.0000 \pm 0.0003$                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H-3                                                                                                                                                                             | $6,004.3600 \pm 224.0000$                                                                                                                                                                                                                                                                                                                                                                                                              | 6,322.4700 ± 229.1400                                                                                                                                                                                                                                                                                                                                                                                     | 6,163.4150 ± 160.21                                                                                                                                                                                                                                                                                                |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ur, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H-3                                                                                                                                                                             | 6,322.4678 ± 229.1356                                                                                                                                                                                                                                                                                                                                                                                                                  | 6,004.3639 ± 224.0020                                                                                                                                                                                                                                                                                                                                                                                     | 6,163.4158 ± 160.21                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ur, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Co-60                                                                                                                                                                           | $0.0005 \pm 0.0004$                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.0009 \pm 0.0027$                                                                                                                                                                                                                                                                                                                                                                                       | $0.0007 \pm 0.0013$                                                                                                                                                                                                                                                                                                |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ur, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cs-137                                                                                                                                                                          | $0.0005 \pm 0.0005$                                                                                                                                                                                                                                                                                                                                                                                                                    | $-0.0000 \pm 0.0006$                                                                                                                                                                                                                                                                                                                                                                                      | $0.0002 \pm 0.0004$                                                                                                                                                                                                                                                                                                |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ar, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gr. Beta                                                                                                                                                                        | $1.9075 \pm 0.7042$                                                                                                                                                                                                                                                                                                                                                                                                                    | $2.1691 \pm 0.7478$                                                                                                                                                                                                                                                                                                                                                                                       | $2.0383 \pm 0.5136$                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ar, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Be-7                                                                                                                                                                            | $0.0569 \pm 0.0071$                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.0601 \pm 0.0008$                                                                                                                                                                                                                                                                                                                                                                                       | $0.0585 \pm 0.0035$                                                                                                                                                                                                                                                                                                |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | or, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gr. Beta                                                                                                                                                                        | $1.1740 \pm 0.0530$                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.1530 \pm 0.0530$                                                                                                                                                                                                                                                                                                                                                                                       | $1.1635 \pm 0.0375$                                                                                                                                                                                                                                                                                                |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | or, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K-40                                                                                                                                                                            | $1.3900 \pm 0.1300$                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.2422 \pm 0.1700$                                                                                                                                                                                                                                                                                                                                                                                       | $1.3161 \pm 0.1070$                                                                                                                                                                                                                                                                                                |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | or, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Be-7                                                                                                                                                                            | $0.0693 \pm 0.0158$                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.0605 \pm 0.0113$                                                                                                                                                                                                                                                                                                                                                                                       | 0.0649 ± 0.0097                                                                                                                                                                                                                                                                                                    |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | or, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Co-60                                                                                                                                                                           | $0.6300 \pm 0.6200$                                                                                                                                                                                                                                                                                                                                                                                                                    | $2.6700 \pm 2.3500$                                                                                                                                                                                                                                                                                                                                                                                       | $1.6500 \pm 1.2152$                                                                                                                                                                                                                                                                                                |

.

|                           |                |           |                           | Concentration in p        | Ci/L <sup>a</sup>        |
|---------------------------|----------------|-----------|---------------------------|---------------------------|--------------------------|
| Lab<br>Codes <sup>b</sup> | Sample<br>Date | Analysis  | First<br>Result           | Second<br>Result          | Averaged<br>Result       |
| WW-2012, 2013             | Apr, 1998      | Cs-137    | $0.5800 \pm 1.5600$       | 1.2800 ± 2.2800           | 0.9300 ± 1.3813          |
| WW-2012, 2013             | Apr, 1998      | H-3       | $616.5800 \pm 100.3800$   | $646.9400 \pm 101.4600$   | 631.7600 ± 71.3622       |
| MI-2112, 2113             | Apr, 1998      | I-131     | $-0.0500 \pm 0.1600$      | $-0.0500 \pm 0.1700$      | $-0.0500 \pm 0.1167$     |
| CW-2225, 2226             | Apr, 1998      | Gr. Beta  | $1.8900 \pm 1.4200$       | $2.6400 \pm 1.4100$       | $2.2650 \pm 1.0006$      |
| CW-2225, 2226             | Apr, 1998      | Gr. Beta  | $-1.2600 \pm 1.0300$      | $0.1500 \pm 1.2500$       | -0.5550 ± 0.8098         |
| SWU-2302, 2303            | Apr, 1998      | Gr. Beta  | $3.4606 \pm 0.6485$       | $3.2027 \pm 0.6811$       | $3.3317 \pm 0.4702$      |
| SWU-2302, 2303            | Apr, 1998      | H-3       | $435.3500 \pm 96.3410$    | $593.3260 \pm 102.1870$   | 514.3380 ± 70.2207       |
| CW-2325, 2326             | Apr, 1998      | Gr. Beta  | $16.1700 \pm 2.4300$      | $14.3400 \pm 2.1600$      | $15.2550 \pm 1.6256$     |
| CW-2325, 2326             | Apr, 1998      | Gr. Beta  | $5.0100 \pm 1.5900$       | $5.9000 \pm 1.7300$       | $5.4550 \pm 1.1748$      |
| BS-2508, 2509             | Apr, 1998      | Cs-137    | $0.3186 \pm 0.0538$       | $0.2849 \pm 0.0601$       | $0.3018 \pm 0.0403$      |
| BS-2508, 2509             | Apr, 1998      | Gr. Alpha | $15.5814 \pm 2.8742$      | $15.4353 \pm 5.7607$      | 15.5084 ± 3.2190         |
| BS-2508, 2509             | Apr, 1998      | Gr. Beta  | $26.4292 \pm 2.2859$      | $30.1462 \pm 4.3906$      | 28.2877 ± 2.4750         |
| BS-2508, 2509             | Apr, 1998      | K-40      | $18.6870 \pm 1.2400$      | $17.6740 \pm 0.9500$      | 18.1805 ± 0.7810         |
| BS-2508, 2509             | Apr, 1998      | Sr-90     | $0.0490 \pm 0.0150$       | $0.0280 \pm 0.0130$       | 0.0385 ± 0.0099          |
| G-2531, 2532              | Apr, 1998      | Cs-137    | $0.2387 \pm 0.0353$       | $0.2089 \pm 0.0182$       | 0.2238 ± 0.0199          |
| G <b>-2531</b> , 2532     | Apr, 1998      | K-40      | $10.2470 \pm 0.5750$      | $9.3951 \pm 0.3670$       | $9.8211 \pm 0.3411$      |
| DW-2790, 2791             | Apr, 1998      | Gr. Alpha | $0.3001 \pm 0.2051$       | $0.1634 \pm 0.2668$       | $0.2318 \pm 0.1683$      |
| DW-2790, 2791             | Apr, 1998      | Gr. Beta  | $0.5947 \pm 0.2942$       | $0.7350 \pm 0.3478$       | 0.6649 ± 0.2278          |
| MI-2368, 2369             | Apr, 1998      | K-40      | $1,176.4000 \pm 162.0000$ | $1,374.6000 \pm 108.0000$ | 1,275.5000 ± 97.3499     |
| MI-2368, 2369             | Apr, 1998      | Sr-89     | $0.2160 \pm 1.0300$       | $-0.3060 \pm 1.2300$      | $-0.0450 \pm 0.8022$     |
| M1-2368, 2369             | Apr, 1998      | Sr-90     | $1.5430 \pm 0.4910$       | $1.1744 \pm 0.4060$       | $1.3587 \pm 0.3186$      |
| CW-2411, 2412             | Apr, 1998      | Gr. Beta  | $2.2800 \pm 1.0500$       | $3.0100 \pm 1.5100$       | $2.6450 \pm 0.9196$      |
| SWU-2067, 2068            | Apr, 1998      | Gr. Beta  | $2.4865 \pm 0.7089$       | $3.3197 \pm 0.6627$       | $2.9031 \pm 0.4852$      |
| SS-2666, 2667             | Apr, 1998      | Cs-137    | $0.0395 \pm 0.0194$       | $0.0299 \pm 0.0133$       | 0.0347 ± 0.0118          |
| SS-2666, 2667             | Apr, 1998      | Gr. Beta  | $9.0977 \pm 2.0893$       | $6.7058 \pm 1.9219$       | $7.9018 \pm 1.4194$      |
| SS-2666, 2667             | Apr, 1998      | K-40      | $5.3384 \pm 0.2820$       | $5.9439 \pm 0.4020$       | $5.6412 \pm 0.2455$      |
| WW-2701, 2702             | Apr, 1998      | H-3       | $184.5500 \pm 86.5200$    | $223.1700 \pm 88.1500$    | 203.8600 ± 61.7579       |
| WW-2850, 2851             | Apr, 1998      | Co-60     | $-0.1700 \pm 1.6000$      | $-0.3400 \pm 6.3800$      | -0.2550 ± 3.2888         |
| WW-2850, 2851             | Apr, 1998      | Cs-137    | $0.2900 \pm 2.4800$       | $2.1600 \pm 2.0300$       | $1.2250 \pm 1.6024$      |
| WW-2850, 2851             | Apr, 1998      | H-3       | 5,665.6200 ± 217.4400     | 5,770.5600 ± 219.2100     | 5,718.0900 ± 154.380     |
| SS-3004, 3005             | Apr, 1998      | Gr. Alpha | $6.6840 \pm 4.0000$       | $6.9820 \pm 4.4020$       | $6.8330 \pm 2.9740$      |
| SS-3004, 3005             | Apr, 1998      | Gr. Beta  | 19.9460 ± 3.1700          | 20.7720 ± 3.1970          | $20.3590 \pm 2.2511$     |
| SS-3004, 3005             | Apr, 1998      | K-40      | $15.1560 \pm 0.9910$      | $13.9010 \pm 0.5860$      | $14.5285 \pm 0.5756$     |
| BS-3240, 3241             | Apr, 1998      | Gr. Beta  | $7.5126 \pm 1.9277$       | 8.4047 ± 1.9386           | 7.9587 ± 1.3669          |
| BS-3240, 3241             | Apr, 1998      | K-40      | $10.2890 \pm 0.5380$      | $10.1520 \pm 0.3430$      | $10.2205 \pm 0.3190$     |
| M1-2941, 2942             | May, 1998      | K-40      | $1,209.3000 \pm 152.0000$ | $1,422.5000 \pm 193.0000$ | $1,315.9000 \pm 122.834$ |

|                 |                                              |                             | Concentration in pCi/L <sup>a</sup> |                        |  |
|-----------------|----------------------------------------------|-----------------------------|-------------------------------------|------------------------|--|
| Lab<br>Codes⁵   | Sample<br>Date Ana                           | First<br>Alysis Result      | Second<br>Result                    | Averaged<br>Result     |  |
| SO-2962, 2963   | May, 1998 Cs                                 | $-137$ $0.1835 \pm 0.0463$  | $0.1531 \pm 0.0261$                 | $0.1683 \pm 0.0266$    |  |
| SO-2962, 2963   | May, 1998 Gr.                                | Alpha 9.7590 ± 3.4730       | $10.3360 \pm 3.5720$                | $10.0475 \pm 2.4910$   |  |
| SO-2962, 2963   | May, 1998 Gr.                                | Beta 27.2230 ± 2.8430       | $31.4690 \pm 3.0280$                | $29.3460 \pm 2.0767$   |  |
| SO-2962, 2963   | May, 1998 K                                  | -40 23.0890 ± 1.1600        | $21.6540 \pm 0.8142$                | $22.3715 \pm 0.7086$   |  |
| SO-2962, 2963   | May, 1998 S                                  | $0.0421 \pm 0.0117$         | $0.0396 \pm 0.0146$                 | $0.0408 \pm 0.0094$    |  |
| LW-3048, 3049   | May, 1998 Gr.                                | Beta 1.9020 ± 0.6920        | $2.0920 \pm 0.7010$                 | $1.9970 \pm 0.4925$    |  |
| WW-3097, 3098   | May, 1998 Gr.                                | Beta 4.6000 ± 0.6640        | $4.4740 \pm 0.6600$                 | $4.5370 \pm 0.4681$    |  |
| WW - 3173, 3174 | May, 1998 I                                  | I-3 155.2485 ± 83.408       | 6 153.4076 ± 83.3273                | $154.3280 \pm 58.9500$ |  |
| F-3305, 3306    | May, 1998 Gr.                                | Beta 2.9966 ± 0.1303        | $2.8744 \pm 0.1364$                 | $2.9355 \pm 0.0943$    |  |
| F-3305, 3306    | •                                            | 2.5354 ± 0.3690             | $2.5317 \pm 0.4260$                 | $2.5336 \pm 0.2818$    |  |
| SS-3463, 3464   | •                                            | -40 13.2060 ± 0.6940        | $12.1740 \pm 0.5670$                | $12.6900 \pm 0.4481$   |  |
| F - 3284, 3285  | •                                            | o-60 0.0073 ± 0.0286        | -0.0054 ± 0.0097                    | $0.0009 \pm 0.0151$    |  |
| F - 3284, 3285  | May, 1998 Cs                                 | $-0.0001 \pm 0.0047$        | 0.0080 ± 0.0095                     | $0.0039 \pm 0.0053$    |  |
| CW - 3439, 3440 | •                                            | Beta 2.1268 ± 1.3641        | 2.0093 ± 1.1263                     | $2.0681 \pm 0.8845$    |  |
| G-3546, 3547    | •                                            | e-7 0.7130 ± 0.2340         | $0.6940 \pm 0.1850$                 | $0.7035 \pm 0.1491$    |  |
| G-3546, 3547    | -                                            | Beta 10.7190 ± 0.3340       | $10.9340 \pm 0.3370$                | $10.8265 \pm 0.2372$   |  |
| G-3546, 3547    | •                                            | -40 7.5468 ± 0.5310         | 7.8713 ± 0.6930                     | $7.7091 \pm 0.4365$    |  |
| BS-3669, 3670   | •                                            | -137 0.2010 ± 0.0535        | 0.2022 ± 0.0215                     | $0.2016 \pm 0.0288$    |  |
| BS-3669, 3670   | -                                            | -40 14.9080 ± 0.4820        | $16.1580 \pm 1.0800$                | $15.5330 \pm 0.5913$   |  |
| F-3694, 3695    | •                                            | -40 1.7695 ± 0.2850         | $1.6797 \pm 0.3440$                 | $1.7246 \pm 0.2234$    |  |
| PW - 3572, 3573 | •                                            | H-3 49.8073 ± 97.682        | 83.0122 ± 98.9291                   | 66.4098 ± 69.5142      |  |
| WW - 3763, 3764 |                                              | o-60 0.0478 ± 0.0234        | 0.0551 ± 0.0311                     | $0.0515 \pm 0.0195$    |  |
| WW - 3790, 3791 | •                                            | o-60 -0.0847 ± 0.6250       | $0.5220 \pm 10.9000$                | $0.2187 \pm 5.4590$    |  |
| WW - 3790, 3791 | •                                            | s-137 0.9210 ± 1.9700       | $1.1200 \pm 1.5000$                 | $1.0205 \pm 1.2380$    |  |
| WW - 3790, 3791 | -                                            | H-3 723.8914 ± 114.08       | 705.2824 ± 113.4795                 | 714.5869 ± 80.4576     |  |
| F - 3715, 3716  | •                                            | o-60 -0.0048 ± 0.0567       | $0.0077 \pm 0.0214$                 | $0.0015 \pm 0.0303$    |  |
| F - 3715, 3716  |                                              | s-137 0.0015 ± 0.0090       | $0.0127 \pm 0.0137$                 | $0.0071 \pm 0.0082$    |  |
| BS - 3763, 3764 | <i>.</i>                                     | s-137 0.0884 ± 0.0206       | 6 0.0754 ± 0.0257                   | $0.0819 \pm 0.0165$    |  |
| SWU-3882, 3883  |                                              | . Beta 2.9052 ± 0.6786      | 3.7390 ± 0.6595                     | $3.3221 \pm 0.4731$    |  |
| SWU-3882, 3883  | <i>.</i>                                     | H-3 43.3000 ± 79.959        | 90 34.1540 ± 79.5400                | 38.7270 ± 56.3910      |  |
| CW - 4314, 4315 | <b>,</b> , , , , , , , , , , , , , , , , , , | H-3 441.3905 ± 96.670       | )3 424.7922 ± 96.0349               | 433.0913 ± 68.1319     |  |
| F-3861, 3862    |                                              | (-40 3.2973 ± 0.5280        | $3.6404 \pm 0.3530$                 | $3.4689 \pm 0.3176$    |  |
| CW - 4044, 4045 | );                                           | . Beta $4.6775 \pm 1.6138$  | $4.8186 \pm 1.6342$                 | $4.7481 \pm 1.1484$    |  |
| CW - 4044, 4045 | );                                           | . Beta $-0.7495 \pm 1.2072$ |                                     | -0.7164 ± 0.8067       |  |
| SW-4020, 4021   | );                                           | 0 (FP) 1.0380               | 1.0380                              | 1.0380                 |  |
| AP-4111, 4112   | , ,                                          | Be-7 0.1860 ± 0.0833        |                                     | 0.2255 ± 0.0698        |  |
| ,               | J                                            |                             |                                     |                        |  |

# Table A-5. In-house "duplicate" samples.

| Table A-5. | In-house | "duplicate" | samples. |
|------------|----------|-------------|----------|
|------------|----------|-------------|----------|

i

|                           |                |           |                           | Concentration in p      | Ci/L <sup>ª</sup>    |
|---------------------------|----------------|-----------|---------------------------|-------------------------|----------------------|
| Lab<br>Codes <sup>b</sup> | Sample<br>Date | Analysis  | First<br>Result           | Second<br>Result        | Averaged<br>Result   |
| P-4183, 4184              | Jun, 1998      | H-3       | 22.7850 ± 81.0520         | 44.7120 ± 81.6170       | 33.7485 ± 57.512     |
| CW - 4195, 4196           | Jun, 1998      | Gr. Beta  | $2.9189 \pm 1.4811$       | $2.8922 \pm 1.4740$     | 2.9055 ± 1.0448      |
| CW - 4195, 4196           | Jun, 1998      | Gr. Beta  | $-0.4892 \pm 1.0638$      | $-0.4909 \pm 1.1091$    | -0.4900 ± 0.7684     |
| WW-4410, 4411             | Jun, 1998      | Gr. Beta  | $4.9907 \pm 0.7658$       | $5.7601 \pm 0.8338$     | 5.3754 ± 0.5661      |
| WW-4410, 4411             | Jun, 1998      | H-3       | <b>-5</b> .3910 ± 77.2770 | $66.4880 \pm 80.5500$   | 30.5485 ± 55.812     |
| MI - 4389, 4390           | Jun, 1998      | Co-60     | $0.1420 \pm 0.2080$       | $1.4200 \pm 13.6000$    | $0.7810 \pm 6.8008$  |
| MI - 4389, 4390           | Jun, 1998      | Cs-137    | $0.1810 \pm 2.7600$       | $0.6020 \pm 4.0700$     | 0.3915 ± 2.4588      |
| MI - 4389, 4390           | Jun, 1998      | I-131     | $-0.0469 \pm 0.2433$      | $-0.1152 \pm 0.2559$    | $-0.0811 \pm 0.1765$ |
| AP-4664, 4665             | Jun, 1998      | Be-7      | $0.1539 \pm 0.0750$       | $0.2627 \pm 0.1220$     | 0.2083 ± 0.0716      |
| MI - 4685, 4686           | Jun, 1998      | I-131     | $-0.1010 \pm 0.1620$      | $-0.0221 \pm 0.1728$    | $-0.0616 \pm 0.1184$ |
| SW - 4901, 4902           | Jun, 1998      | H-3       | 2,541.2239 ± 156.4571     | 2,510.5125 ± 155.7462   | 2,525.8682 ± 110.38  |
| AP-5188, 5189             | Jun, 1998      | Be-7      | $0.0844 \pm 0.0163$       | $0.0733 \pm 0.0117$     | $0.0789 \pm 0.0100$  |
| SWU-4798, 4799            | Jun, 1998      | Gr. Beta  | $1.9402 \pm 0.5398$       | $1.8412 \pm 0.5411$     | 1.8907 ± 0.3822      |
| LW-4993, 4994             | Jun, 1998      | Gr. Beta  | $3.1224 \pm 0.6129$       | $2.0740 \pm 0.5328$     | $2.5982 \pm 0.4061$  |
| LW-4993, 4994             | Jun, 1998      | H-3       | 3,543.4600 ± 184.5020     | 3,482.0770 ± 183.2600   | 3,512.7685 ± 130.02  |
| WW-4819, 4820             | Jul, 1998      | Gr. Beta  | $1.2760 \pm 0.6431$       | $0.7313 \pm 0.6161$     | $1.0037 \pm 0.4453$  |
| WW-4819, 4820             | Jul, 1998      | K-40      | $0.8650 \pm 0.0865$       | $0.9515 \pm 0.0950$     | 0.9083 ± 0.0642      |
| AP-5209, 5210             | Jul, 1998      | Be-7      | $0.1079 \pm 0.0180$       | $0.0901 \pm 0.0107$     | 0.0990 ± 0.0105      |
| AP-5392, 5393             | Jul, 1998      | Be-7      | $0.0782 \pm 0.0143$       | $0.0885 \pm 0.0144$     | $0.0833 \pm 0.0101$  |
| AP-5413, <b>541</b> 4     | Jul, 1998      | Be-7      | $0.0625 \pm 0.0072$       | $0.0718 \pm 0.0091$     | $0.0671 \pm 0.0058$  |
| WW-4848, 4849             | Jul, 1998      | Co-60     | $0.2220 \pm 0.1290$       | $0.5080 \pm 0.8150$     | $0.3650 \pm 0.4126$  |
| WW-4848, 4849             | Jul, 1998      | Cs-134    | $0.9310 \pm 2.0500$       | $0.8130 \pm 0.8130$     | $0.8720 \pm 1.1027$  |
| WW-4848, 4849             | Jul, 1998      | Cs-137    | $0.7040 \pm 1.8700$       | $-0.1190 \pm 1.8300$    | $0.2925 \pm 1.3082$  |
| WW-4848, 4849             | Jul, 1998      | H-3       | 37.2000 ± 89.2000         | $-13.0000 \pm 87.0000$  | 12.1000 ± 62.301     |
| CW-4947, 4948             | Jul, 1998      | Gr. Beta  | $5.2400 \pm 1.5700$       | $5.1900 \pm 1.5700$     | $5.2150 \pm 1.1102$  |
| SW-7804, 7805             | Jul, 1998      | Gr. Alpha | 0.3147 ± 0.6025           | $1.7030 \pm 0.5568$     | $1.0089 \pm 0.4102$  |
| SW-7804, 7805             | Jul, 1998      | Gr. Beta  | 2.0032 ± 0.7183           | $2.5489 \pm 0.6474$     | $2.2761 \pm 0.4835$  |
| WW-4880, 4881             | Jul, 1998      | Co-60     | 0.2540 ± 0.6210           | $-0.4430 \pm 0.8250$    | -0.0945 ± 0.5163     |
| WW-4880, 4881             | Jul, 1998      | Cs-137    | $1.4600 \pm 1.2800$       | $1.1400 \pm 2.0000$     | 1.3000 ± 1.1873      |
| WW-4880, 4881             | Jul, 1998      | H-3       | $308.5000 \pm 102.7000$   | $328.9000 \pm 103.5000$ | 318.7000 ± 72.903    |
| G-5090, 5091              | Jul, 1998      | Be-7      | $1.5334 \pm 0.2310$       | $1.5696 \pm 0.2550$     | $1.5515 \pm 0.1720$  |
| G-5090, 5091              | Jul, 1998      | K-40      | $6.2521 \pm 0.4900$       | $6.0430 \pm 0.4800$     | $6.1476 \pm 0.3430$  |
| SW-5281, 5282             | Jul, 1998      | Gr. Alpha | 5.7564 ± 1.0355           | 5.4517 ± 0.9702         | $5.6041 \pm 0.7095$  |
| SW-5281, 5282             | Jul, 1998      | Gr. Beta  | 8.8798 ± 0.7835           | 9.9157 ± 0.8418         | 9.3978 ± 0.5750      |
| SW-5281, 5282             | Jul, 1998      | H-3       | $12.9950 \pm 87.9900$     | 46.4090 ± 89.3890       | 29.7020 ± 62.714     |
| VE-5323, 5324             | Jul, 1998      | K-40      | $9.4179 \pm 0.7440$       | 8.3494 ± 0.4700         | $8.8837 \pm 0.4400$  |

| Table A-5.                     | In-house "du                        | plicate" sam | iples.                 |                           |                                    |  |
|--------------------------------|-------------------------------------|--------------|------------------------|---------------------------|------------------------------------|--|
|                                | Concentration in pCi/L <sup>*</sup> |              |                        |                           |                                    |  |
| Lab<br>Codes <sup>b</sup>      | Sample<br>Date                      | Analysis     | First<br>Result        | Second<br>Result          | Averaged<br>Result                 |  |
| SWU-5744, 5745                 | Jul, 1998                           | Gr. Beta     | 2.0648 ± 0.5650        | 2.4432 ± 0.6352           | $2.2540 \pm 0.4251$                |  |
| VE-5302, 5303                  | •                                   | Gr. Alpha    | $0.1233 \pm 0.0458$    | $0.0816 \pm 0.0381$       | $0.1025 \pm 0.0298$                |  |
| VE-5302, 5303                  | Jul, 1998                           | Gr. Beta     | $3.8738 \pm 0.1201$    | $3.4382 \pm 0.1081$       | $3.6560 \pm 0.0808$                |  |
| VE-5302, 5303                  | Jul, 1998                           | K-40         | 3,845.0000 ± 384.0000  | $3,561.0000 \pm 419.0000$ | $3,703.0000 \pm 284.1729$          |  |
| G-5346, 5347                   | Jul, 1998                           | Be-7         | $1.0649 \pm 0.3460$    | $1.1877 \pm 0.2220$       | $1.1263 \pm 0.2055$                |  |
| G-5346, 5347                   | Jul, 1998                           | Gr. Beta     | $5.5890 \pm 0.2200$    | $5.4932 \pm 0.1571$       | $5.5411 \pm 0.1352$                |  |
| G-5346, 5347                   | Jul <i>,</i> 1998                   | K-40         | $5.8497 \pm 0.7760$    | $6.4013 \pm 0.5600$       | $6.1255 \pm 0.4785$                |  |
| AP-5371, 5372                  | Jul, 1998                           | Be-7         | $0.2899 \pm 0.0987$    | $0.2565 \pm 0.0949$       | $0.2732 \pm 0.0685$                |  |
| AP-5530, 5531                  | Jul, 1998                           | Be-7         | $0.2559 \pm 0.0941$    | $0.3365 \pm 0.0984$       | $0.2962 \pm 0.0681$                |  |
| SO-5556, 5557                  | Jul, 1998                           | Gr. Beta     | $17.8997 \pm 2.6057$   | $15.8321 \pm 2.3577$      | $16.8659 \pm 1.7570$               |  |
| CW-6134, 6135                  | Jul, 1998                           | Gr. Beta     | $4.8400 \pm 1.2300$    | $4.0700 \pm 1.0900$       | $4.4550 \pm 0.8217$                |  |
| AP-5721, 5722                  | Jul, 1998                           | Be-7         | $0.2175 \pm 0.0616$    | $0.2461 \pm 0.1180$       | $0.2318 \pm 0.0666$                |  |
| SWU-5744, 5745                 | Jul, 1998                           | H-3          | 223.9760 ± 86.8830     | $209.4480 \pm 86.2730$    | $216.7120 \pm 61.2203$             |  |
| WW-5836, 5837                  | Jul, 1998                           | H-3          | 80.4980 ± 80.6500      | 65.9720 ± 79.9940         | <b>7</b> 3.2350 ± 56.7967          |  |
| WW-6176, 6177                  | Jul, 1998                           | H-3          | $31.0590 \pm 81.2420$  | $1.8270 \pm 79.9170$      | $16.4430 \pm 56.9802$              |  |
| WW-6176, 6177                  | Jul, 1998                           | Gr. Beta     | $0.6954 \pm 0.5544$    | $1.3234 \pm 0.5462$       | $1.0094 \pm 0.3891$                |  |
| LW-5965, 5966                  | Aug, 1998                           | Gr. Beta     | 3.1093 ± 0.6160        | $2.2762 \pm 0.6288$       | $2.6928 \pm 0.4401$                |  |
| LW-5965, 5966                  | Aug, 1998                           | H-3          | 80.4580 ± 82.3350      | <b>36</b> .9020 ± 80.3920 | 58. <b>6</b> 800 ± <b>5</b> 7.5368 |  |
| G-5986, 5987                   | Aug, 1998                           | Be-7         | $2.2321 \pm 0.3670$    | $1.9885 \pm 0.3010$       | $2.1103 \pm 0.2373$                |  |
| G-5986, 5987                   | Aug, 1998                           | K-40         | 5.4909 ± 0.6280        | $6.3514 \pm 0.7550$       | $5.9212 \pm 0.4910$                |  |
| CW-6013, 6014                  | Aug, 1998                           | Gr. Beta     | $0.5400 \pm 1.2300$    | $0.9900 \pm 1.2500$       | $0.7650 \pm 0.8768$                |  |
| CW-6134, 6135                  | Aug, 1998                           | Gr. Beta     | $3.2200 \pm 1.5200$    | $4.1200 \pm 1.1600$       | $3.6700 \pm 0.9560$                |  |
| F-6447, 6448                   | Aug, 1998                           | Gr. Beta     | $2.1416 \pm 0.0774$    | $1.9173 \pm 0.0791$       | 2.0295 ± 0.0553                    |  |
| F-6447, 6448                   | Aug, 1998                           | K-40         | $2.1309 \pm 0.2570$    | $1.8657 \pm 0.1280$       | $1.9983 \pm 0.1436$                |  |
| AP-6467, 6468                  | Aug, 1998                           | Be-7         | $0.1612 \pm 0.0873$    | $0.1293 \pm 0.1260$       | $0.1453 \pm 0.0766$                |  |
| VE-6489, 6490                  | Aug, 1998                           | Cs-134       | $1.0300 \pm 1.8700$    | $0.1500 \pm 0.1000$       | 0.5900 ± 0.9363                    |  |
| VE-6489, 6490                  | Aug, 1998                           | Cs-137       | $0.9500 \pm 1.4300$    | $0.6800 \pm 2.0400$       | $0.8150 \pm 1.2456$                |  |
| AP-6722, 6723                  | Aug, 1998                           | Be-7         | $0.3063 \pm 0.1590$    | $0.3100 \pm 0.0937$       | 0.3082 ± 0.0923                    |  |
| VE-6774, 6775                  | Aug, 1998                           | Be-7         | 0.5894 ± 0.2720        | $0.4208 \pm 0.1520$       | $0.5051 \pm 0.1558$                |  |
| VE-6774, 6775                  | Aug, 1998                           | Gr. Beta     | 5.9406 ± 0.1789        | 5.6841 ± 0.1706           | $5.8124 \pm 0.1236$                |  |
| CW-6800, 6801                  | Aug, 1998                           | Gr. Beta     | $2.2300 \pm 1.4400$    | 2.1300 ± 1.3100           | $2.1800 \pm 0.9734$                |  |
| LW-7129, 7130                  | -                                   | Gr. Alpha    | $0.6433 \pm 0.3557$    | $0.5551 \pm 0.3614$       | 0.5992 ± 0.2535                    |  |
| LW-7129, 7130                  | Aug, 1998                           | Gr. Beta     | $2.4016 \pm 0.4281$    | $2.3041 \pm 0.4447$       | $2.3529 \pm 0.3086$                |  |
| LW-7129, 7130<br>LW-7129, 7130 | Aug, 1998<br>Aug, 1998              | H-3          | $170.2100 \pm 87.3900$ | 37.4100 ± 81.5000         | 103.8100 ± 59.7479                 |  |
|                                |                                     | H-3          | $154.7950 \pm 94.8090$ | $104.6950 \pm 92.7500$    | <b>129.7450 ± 66.31</b> 61         |  |
| LW-7129, 7130                  | Aug, 1998                           |              | $0.1466 \pm 0.0399$    | $0.1452 \pm 0.0303$       | $0.1459 \pm 0.0251$                |  |
| SO-6943, 6944                  | Sep, 1998                           | Co-60        | 0.1400 2 0.0000        | 0.1102 - 0.0000           |                                    |  |

# Table A-5. In-house "duplicate" samples.

|                         |                |          | <u> </u>              | Concentration in pC    | Ci/Lª                   |
|-------------------------|----------------|----------|-----------------------|------------------------|-------------------------|
| Lab<br>Codes⁵           | Sample<br>Date | Analysis | First<br>Result       | Second<br>Result       | Averaged<br>Result      |
| SO-6943, 6944           | Sep, 1998      | Cs-137   | 15.1000 ± 0.2000      | $15.7000 \pm 0.3000$   | 15.4000 ± 0.1803        |
| SO-6943, 6944           | Sep, 1998      | K-40     | $16.5680 \pm 0.7660$  | $17.3780 \pm 1.1000$   | $16.9730 \pm 0.6702$    |
| CW-7043, 7044           | Sep, 1998      | Gr. Beta | $4.5000 \pm 1.6000$   | $4.9000 \pm 1.5000$    | $4.7000 \pm 1.0960$     |
| VE-7250, 7251           | Sep, 1998      | Cs-134   | $0.0800 \pm 1.1800$   | $0.4600 \pm 0.5100$    | $0.2700 \pm 0.6422$     |
| VE-7250, 7251           | Sep, 1998      | Cs-137   | $0.1300 \pm 0.7200$   | $0.0100 \pm 0.3400$    | 0.0700 ± 0.398          |
| VE-7064, 7065           | Sep, 1998      | Cs-134   | $-0.1100 \pm 0.0800$  | $0.1200 \pm 1.4900$    | $0.0050 \pm 0.746$      |
| VE-7064, 7065           | Sep, 1998      | Cs-137   | $-0.3600 \pm 0.7600$  | $0.0200 \pm 0.8200$    | $-0.1700 \pm 0.559$     |
| VE-7171, 7172           | Sep, 1998      | Cs-134   | $0.0600 \pm 0.5200$   | $-0.1300 \pm 13.1000$  | $-0.0350 \pm 6.555$     |
| VE-7171, 7172           | Sep, 1998      | Cs-137   | $0.6300 \pm 0.5200$   | $0.6800 \pm 0.8000$    | $0.6550 \pm 0.477$      |
| CW-7204, 7205           | Sep, 1998      | Gr. Beta | $2.6900 \pm 1.4300$   | $1.5600 \pm 1.3000$    | $2.1250 \pm 0.966$      |
| SW-6363, 6364           | Sep, 1998      | Gr. Beta | $4.3450 \pm 0.7618$   | $4.1456 \pm 0.7464$    | 4.2453 ± 0.533          |
| SW-6363, 6364           | Sep, 1998      | H-3      | 133.9370 ± 82.9580    | $148.6820 \pm 83.6110$ | 141.3095 ± 58.89        |
| VE-7279, <b>72</b> 80   | Sep, 1998      | K-40     | $2.1575 \pm 0.2580$   | $2.3167 \pm 0.3420$    | $2.2371 \pm 0.214$      |
| SWU- <b>7</b> 452, 7453 | Sep, 1998      | Gr. Beta | $4.1567 \pm 0.6600$   | $4.1515 \pm 0.7395$    | 4. <b>15</b> 41 ± 0.495 |
| F-7819, 7820            | Sep, 1998      | K-40     | $3.0166 \pm 0.3920$   | $2.7430 \pm 0.5190$    | $2.8798 \pm 0.325$      |
| W-7375, 7376            | Sep, 1998      | Gr. Beta | $1.7100 \pm 1.1500$   | $2.2000 \pm 1.1900$    | $1.9550 \pm 0.827$      |
| ,<br>BS-7598, 7599      | Sep, 1998      | K-40     | $9.5919 \pm 0.7430$   | $8.9290 \pm 0.4590$    | $9.2605 \pm 0.436$      |
| AP-7598, 7599           | Sep, 1998      | Be-7     | $0.0639 \pm 0.0188$   | $0.0815 \pm 0.0156$    | $0.0727 \pm 0.012$      |
| VE-7397, 7398           | Sep, 1998      | Cs-134   | $0.1900 \pm 2.6800$   | $0.6300 \pm 1.3500$    | $0.4100 \pm 1.500$      |
| VE-7397, 7398           | Sep, 1998      | Cs-137   | $-0.0900 \pm 0.9400$  | $0.5200 \pm 0.9500$    | $0.2150 \pm 0.668$      |
| SWU-7452, 7453          | Sep, 1998      | H-3      | $23.7170 \pm 81.6810$ | $-19.3480 \pm 79.6820$ | 2.1845 ± 57.05          |
| SWT-7765, 7766          | Sep, 1998      | Gr. Beta | $3.2443 \pm 0.6638$   | $2.9078 \pm 0.6593$    | $3.0761 \pm 0.467$      |
| WW - 7831, 7832         | Oct, 1998      | Co-60    | $0.6760 \pm 2.3800$   | $1.2100 \pm 1.4300$    | $0.9430 \pm 1.388$      |
| WW - 7831, 7832         | Oct, 1998      | Cs-137   | $0.2340 \pm 1.3900$   | $1.5900 \pm 2.1200$    | $0.9120 \pm 1.267$      |
| WW - 7831, 7832         | Oct, 1998      | H-3      | $11.8861 \pm 81.2490$ | $21.2699 \pm 81.6813$  | <b>16.5780 ± 57.60</b>  |
| SW-7857, 7858           | Oct, 1998      | Gr. Beta | $2.3410 \pm 0.7265$   | $2.1443 \pm 0.7591$    | 2.2427 ± 0.525          |
| SO-7878, 7879           | Oct, 1998      | Gr. Beta | $19.3527 \pm 4.1969$  | $23.2850 \pm 4.0731$   | 21.3189 ± 2.924         |
| SO-7878, 7879           | Oct, 1998      | Sr-90    | $0.0034 \pm 0.0110$   | $0.0080 \pm 0.0130$    | $0.0057 \pm 0.008$      |
| AP-,                    | Oct, 1998      | Be-7     | $0.0680 \pm 0.0527$   | $0.0931 \pm 0.0702$    | 0.080 <b>6 ±</b> 0.043  |
| WW-8073, 8074           | Oct, 1998      | Gr. Beta | 2.4196 ± 0.5973       | $3.1890 \pm 0.6509$    | $2.8043 \pm 0.441$      |
| WW-8073, 8074           | Oct, 1998      | H-3      | 90.5270 ± 84.1470     | 113.3172 ± 85.1690     | 101.9221 ± 59.86        |
| SS-8202, 8203           | Oct, 1998      | Cs-137   | 0.0509 ± 0.0284       | $0.0222 \pm 0.0102$    | $0.0365 \pm 0.015$      |
| SS-8202, 8203           | Oct, 1998      | Gr. Beta | $4.5670 \pm 1.9890$   | 6.3930 ± 2.0860        | $5.4800 \pm 1.441$      |
| SS-8202, 8203           | Oct, 1998      | K-40     | $7.2289 \pm 0.6170$   | $7.1271 \pm 0.4380$    | $7.1780 \pm 0.378$      |
| 55-8202, 8203           | Oct, 1998      | K-40     | $6.9700 \pm 0.5400$   | 7.1800 ± 0.3800        | $7.0750 \pm 0.330$      |
| WW-8358, 8359           | Oct, 1998      | Gr. Beta | $1.0464 \pm 0.5347$   | $1.4246 \pm 0.5276$    | 1.2355 ± 0.375          |

| Table A-5.       In-house "duplicate" samples. |                        |               |                           |                                     |                                   |  |  |
|------------------------------------------------|------------------------|---------------|---------------------------|-------------------------------------|-----------------------------------|--|--|
|                                                |                        |               |                           | Concentration in pCi/L <sup>a</sup> |                                   |  |  |
| Lab<br>Codes⁵                                  | Sample<br>Date         | Analysis      | First<br>Result           | Second<br>Result                    | Averaged<br>Result                |  |  |
| VW-8358, 8359                                  | Oct, 1998              | H-3           | $16.2810 \pm 81.9530$     | 53.8530 ± 83.6580                   | <b>35.067</b> 0 ± <b>58</b> .5554 |  |  |
| 3S - 8270, 8271                                | Oct, 1998              | Co-60         | $0.0151 \pm 0.0090$       | $0.0072 \pm 0.0884$                 | $0.0111 \pm 0.0444$               |  |  |
| 3 <b>S -</b> 8270, 8271                        | Oct, 1998              | Cs-137        | $0.0732 \pm 0.0186$       | $0.0913 \pm 0.0451$                 | $0.0823 \pm 0.0244$               |  |  |
| AP-,                                           | Oct, 1998              | Be-7          | $0.1094 \pm 0.0878$       | $0.1708 \pm 0.0934$                 | $0.1401 \pm 0.0641$               |  |  |
| O-7878 <i>,</i> <b>7</b> 879                   | Oct, 1998              | K-40          | $16.3430 \pm 0.9100$      | $18.2150 \pm 1.1000$                | $17.2790 \pm 0.7138$              |  |  |
| L-8624, 8625                                   | Oct, 1998              | K-40          | $2.0091 \pm 0.4260$       | $1.9401 \pm 0.3310$                 | $1.9746 \pm 0.2697$               |  |  |
| S-86 <b>89, 86</b> 90                          | Oct, 1998              | K-40          | $14.8820 \pm 0.8900$      | $16.8160 \pm 1.2200$                | $15.8490 \pm 0.7551$              |  |  |
| S-8864, 8865                                   | Oct, 1998              | Co-60         | $0.1424 \pm 0.0225$       | $0.1313 \pm 0.0199$                 | $0.1368 \pm 0.0150$               |  |  |
| S-8864, 8865                                   | Oct, 1998              | Cs-137        | $0.0972 \pm 0.0204$       | $0.1081 \pm 0.0207$                 | $0.1026 \pm 0.0145$               |  |  |
| S-8864, 8865                                   | Oct, 1998              | K-40          | $9.5076 \pm 0.4940$       | $10.4040 \pm 0.5000$                | $9.9558 \pm 0.3514$               |  |  |
| O-10497, 10498                                 | Oct, 1998              | <b>K-</b> 40  | $19.0930 \pm 1.0800$      | $19.7410 \pm 0.9100$                | $19.4170 \pm 0.7061$              |  |  |
| O-9098, 9099                                   | Oct, 1998              | Cs-137        | $0.5240 \pm 0.0580$       | $0.5300 \pm 0.0390$                 | $0.5270 \pm 0.0349$               |  |  |
| O-9098, 9099                                   | Oct, 1998              | K-40          | $17.7200 \pm 1.0700$      | $18.4100 \pm 0.8000$                | 18.0650 ± 0.6680                  |  |  |
| S-11122, <b>11123</b>                          | Oct, 1998              | Be-7          | $0.4800 \pm 0.2700$       | $0.3700 \pm 0.2200$                 | $0.4250 \pm 0.1741$               |  |  |
| <b>S-11122</b> , 11 <b>12</b> 3                | Oct, 1998              | Co-60         | $0.0263 \pm 0.0084$       | $0.0291 \pm 0.0090$                 | $0.0277 \pm 0.0062$               |  |  |
| 3S-11122, 11123                                | Oct, 1998              | Cs-137        | $0.2714 \pm 0.0179$       | $0.2747 \pm 0.0167$                 | $0.2730 \pm 0.0122$               |  |  |
| 3S-11122, 1 <b>11</b> 23                       | Oct, 1998              | K-40          | $9.0446 \pm 0.2600$       | 8.9737 ± 0.2760                     | $9.0092 \pm 0.1896$               |  |  |
| /E-9182, 9183                                  | Oct, 1998              | Be-7          | $2.1684 \pm 0.4480$       | $1.8643 \pm 0.4300$                 | $2.0164 \pm 0.3105$               |  |  |
| /E-9182, 9183                                  | Oct, 1998              | K-40          | $4.9628 \pm 0.6160$       | $5.4867 \pm 0.6600$                 | $5.2248 \pm 0.4514$               |  |  |
| /E-9203, 9204                                  | Oct, 1998              | Be-7          | $1.9163 \pm 0.6090$       | $1.9606 \pm 0.3870$                 | $1.9385 \pm 0.3608$               |  |  |
| /E-9203, 9204                                  | Oct, 1998              | Cs-137        | $0.2744 \pm 0.0568$       | $0.2623 \pm 0.0361$                 | $0.2684 \pm 0.0337$               |  |  |
| /E-9203, 9204                                  | Oct, 1998              | <b>K-4</b> 0  | 3.9727 ± 0.6770           | $4.0116 \pm 0.4430$                 | $3.9922 \pm 0.4045$               |  |  |
| - 877 <b>3, 877</b> 4                          | Oct, 1998              | <b>Co-6</b> 0 | $0.0013 \pm 0.0008$       | $0.0024 \pm 0.0037$                 | $0.0019 \pm 0.0019$               |  |  |
| F - 8773, 8 <b>77</b> 4                        | Oct, 1998              | Cs-137        | $0.0040 \pm 0.0055$       | $0.0027 \pm 0.0088$                 | $0.0034 \pm 0.0052$               |  |  |
| - 8794, 8795                                   | Oct, 1998              | <b>Co-</b> 60 | $-0.0062 \pm 0.0213$      | $0.0011 \pm 0.0065$                 | $-0.0026 \pm 0.0111$              |  |  |
| F - 8794, 8795                                 | Oct, 1998              | Cs-137        | $0.0008 \pm 0.0076$       | $0.0011 \pm 0.0056$                 | $0.0010 \pm 0.0047$               |  |  |
| 6 <b>O</b> -9119, 9120                         | Oct, 1998              | Cs-137        | $0.5500 \pm 0.0397$       | $0.5500 \pm 0.0480$                 | $0.5500 \pm 0.0311$               |  |  |
| O-9119, 9120                                   | Oct, 1998              | K-40          | 20.2600 ± 1.0200          | 20.5090 ± 0.8050                    | 20.3845 ± 0.6497                  |  |  |
| 5 <b>O</b> -9161, 9162                         | Oct, 1998              | Cs-137        | $0.7715 \pm 0.0584$       | $0.7532 \pm 0.0525$                 | 0. <b>7624</b> ± 0.0393           |  |  |
| 60-9161, 9162                                  | Oct, 1998              | K-40          | $18.1200 \pm 1.1200$      | $20.0600 \pm 1.2000$                | <b>19.0900 ± 0.8207</b>           |  |  |
| WW - 9277, 9278                                | Oct, 1998              | H-3           | 97.6157 ± 83.0917         | 64.2534 ± 81.5898                   | 80.9345 ± 58.226                  |  |  |
| WU-9014, 9015                                  | Oct, 1998              | Gr. Beta      | $2.7210 \pm 0.6386$       | 3.3308 ± 0.6187                     | $3.0259 \pm 0.4446$               |  |  |
| SWU-9014, 9015                                 | Oct, 1998              | H-3           | $161.5360 \pm 85.8760$    | 157.8370 ± 85.7160                  | $159.6865 \pm 60.667$             |  |  |
| vil-9035, 9036                                 | Oct, 1998              | K-40          | $1,531.4000 \pm 129.0000$ | $1,426.0000 \pm 188.0000$           | 1,478.7000 ± 114.00               |  |  |
|                                                |                        | Co-60         | $-0.0127 \pm 0.0489$      | $0.0018 \pm 0.0111$                 | $-0.0055 \pm 0.0251$              |  |  |
| F - 8972, 8973<br>F - 8972, 8973               | Oct, 1998<br>Oct, 1998 | Cs-137        | $0.0070 \pm 0.0120$       | $-0.0022 \pm 0.0070$                | $0.0024 \pm 0.0069$               |  |  |

# Table A-5. In-house "duplicate" samples.

|                           |                    | <u></u>                             | Concentration in pCi/L <sup>*</sup> |                          |  |  |
|---------------------------|--------------------|-------------------------------------|-------------------------------------|--------------------------|--|--|
| Lab<br>Codes <sup>b</sup> | Sample<br>Date Ana | First<br>Iysis Result               | Second<br>Result                    | Averaged<br>Result       |  |  |
| CW - 9414, 9415           | Oct, 1998 Gr.      | Beta 2.6433 ± 1.5016                | 3.4161 ± 1.5235                     | 3.0297 ± 1.0696          |  |  |
| CW - 9414, 9415           | Oct, 1998 Gr.      | Beta 0.3371 ± 1.2445                | $-1.2723 \pm 1.1437$                | $-0.4676 \pm 0.8451$     |  |  |
| WW - 9256, 9257           | Oct, 1998 Co       | $-60 -1.2600 \pm 0.9300$            | $-1.5100 \pm 4.3900$                | $-1.3850 \pm 2.2437$     |  |  |
| WW - 9256, 9257           | Oct, 1998 Cs       | -137 0.6770 ± 3.4400                | $1.8800 \pm 3.6200$                 | $1.2785 \pm 2.4969$      |  |  |
| WW - 9256, 9257           | Oct, 1998 H        | I-3 4,953.1843 ± 206.9523           | 5,147.0443 ± 210.3507               | 5,050.1143 ± 147.543     |  |  |
| LW-9479, 9480             | Oct, 1998 Gr.      | Beta 2.0720 ± 0.5550                | $1.9860 \pm 0.5500$                 | $2.0290 \pm 0.3907$      |  |  |
| BS-9349, 9350             | Nov, 1998 Cs       | -137 $0.0239 \pm 0.0156$            | $0.0277 \pm 0.0151$                 | $0.0258 \pm 0.0109$      |  |  |
| BS-9349, 9350             | Nov, 1998 Gr.      | Beta 8.4550 ± 2.1970                | $6.4700 \pm 2.0840$                 | $7.4625 \pm 1.5141$      |  |  |
| BS-9349, 9350             | Nov, 1998 K        | -40 6.9294 ± 0.4400                 | $6.4650 \pm 0.4290$                 | $6.6972 \pm 0.3073$      |  |  |
| MI-9437, 9438             | Nov, 1998 I-       | -0.1516 ± 0.2458                    | $-0.0769 \pm 0.2776$                | $-0.1143 \pm 0.1854$     |  |  |
| MI-9437, 9438             | Nov, 1998 K        | -40 681.2300 ± 128.0000             | $714.6700 \pm 122.0000$             | $697.9500 \pm 88.4138$   |  |  |
| MI - 9526, 9527           | Nov, 1998 Co       | -60 2.7000 ± 5.7200                 | $-1.9500 \pm 7.4300$                | $0.3750 \pm 4.6884$      |  |  |
| Ml - 9526, 9527           | Nov, 1998 Cs       | -137 -2.2200 ± 2.8500               | $0.7490 \pm 2.1600$                 | $-0.7355 \pm 1.7880$     |  |  |
| MI - 9526, 9527           | Nov, 1998 I-:      | -0.0873 ± 0.2233                    | $-0.0122 \pm 0.2343$                | $-0.0497 \pm 0.1618$     |  |  |
| VE-9667, 9668             | Nov, 1998 Gr.      | Beta 4.4810 ± 0.1970                | $4.3670 \pm 0.1940$                 | $4.4240 \pm 0.1382$      |  |  |
| E-9667, 9668              | Nov, 1998 K        | -40 4.2338 ± 0.2840                 | $3.7245 \pm 0.4880$                 | $3.9792 \pm 0.2823$      |  |  |
| CW - 9761, 9762           | Nov, 1998 Gr.      | Beta 2.3323 ± 1.4667                | $2.6450 \pm 1.4133$                 | $2.4887 \pm 1.0184$      |  |  |
| CW - 9761, 9762           | Nov, 1998 Gr.      | Beta -0.2608 ± 1.2213               | $0.9390 \pm 1.2890$                 | $0.3391 \pm 0.8878$      |  |  |
| SWT-10167, 10168          | Nov, 1998 Gr.      | Beta 2.1779 ± 0.5699                | $1.9517 \pm 0.5841$                 | $2.0648 \pm 0.4080$      |  |  |
| CW - 10123, 10124         | Nov, 1998 Gr.      | Beta 0.7677 ± 1.2537                | $1.4828 \pm 1.3165$                 | $1.1252 \pm 0.9090$      |  |  |
| CW - 10123, 10124         | Nov, 1998 Gr.      | Beta 0.4380 ± 1.2388                | $-0.3370 \pm 1.1818$                | $0.0505 \pm 0.8560$      |  |  |
| SW - 10263, 10264         | Nov, 1998 Co       | $-60 -0.9560 \pm 1.1500$            | $0.0517 \pm 0.1100$                 | $-0.4522 \pm 0.5776$     |  |  |
| SW - 10263, 10264         | Nov, 1998 Cs       | $-137$ $0.3210 \pm 2.0200$          | $-0.2150 \pm 3.3100$                | $0.0530 \pm 1.9388$      |  |  |
| SW - 10263, 10264         | Nov, 1998 Gr.      | Beta 7.9278 ± 1.9497                | 6.7850 ± 1.9373                     | 7.3564 ± 1.3743          |  |  |
| WW-9667, 9668             | Nov, 1998 Gr.      | Beta 2.2847 ± 0.6184                | $1.7189 \pm 0.5495$                 | $2.0018 \pm 0.4136$      |  |  |
| SW-10069, 10070           | Nov, 1998 Gr. A    | Alpha 1.6469 ± 0.5301               | $1.5758 \pm 0.5574$                 | $1.6114 \pm 0.3846$      |  |  |
| SW-10069, 10070           | Nov, 1998 Gr.      | Beta $3.4363 \pm 0.4683$            | $3.5768 \pm 0.4928$                 | 3.5066 ± 0.3399          |  |  |
| MI-10146, 10147           | Dec, 1998 Cal      | $0.7600 \pm 0.0800$                 | $0.8000 \pm 0.0800$                 | $0.7800 \pm 0.0566$      |  |  |
| MI-10146, 10147           |                    | $-40 		1,403.6000 \pm 178.0000$     | 1,372.9000 ± 149.0000               | 1,388.2500 ± 116.065     |  |  |
| CW - 10527, 10528         |                    | (-3 749.0265 ± 108.8588             | $822.9436 \pm 111.3401$             | 785.9851 ± 77.8570       |  |  |
| SO-10573, 10574           |                    | -137 367.0300 ± 80.5000             | $337.1100 \pm 32.8000$              | 352.0700 ± 43.4629       |  |  |
| SO-10573, 10574           | ,                  | Alpha 12.1661 ± 4.0570              | $9.1124 \pm 3.5682$                 | $10.6393 \pm 2.7014$     |  |  |
| SO-10573, 10574           |                    | Beta 24.7427 ± 3.0098               | $26.7558 \pm 3.1255$                | $25.7493 \pm 2.1695$     |  |  |
| SO-10573, 10574           | •                  | $-40 		 17,459.0000 \pm 1,260.0000$ |                                     | 16,731.5000 ± 724.613    |  |  |
| AP-11164, 11165           |                    | $2.7 		 0.0598 \pm 0.0077$          | $0.0610 \pm 0.0061$                 | $0.0604 \pm 0.0049$      |  |  |
| MI-10686, 10687           | Dec, 1998 K        |                                     | $1,350.3000 \pm 166.0000$           | $1,335.3000 \pm 115.277$ |  |  |

|                   |                |              |                        | Concentration in pCi/L <sup>*</sup> |                       |  |  |
|-------------------|----------------|--------------|------------------------|-------------------------------------|-----------------------|--|--|
| Lab<br>Codes⁵     | Sample<br>Date | Analysis     | First<br>Result        | Second<br>Result                    | Averaged<br>Result    |  |  |
| WW - 10997, 10998 | Dec, 1998      | H-3          | 803.9290 ± 109.1145    | $771.1156 \pm 108.0125$             | 787.5223 ± 76.7670    |  |  |
| CW - 10793, 10794 | Dec, 1998      | Gr. Beta     | $2.6622 \pm 1.4937$    | $3.4664 \pm 1.5461$                 | $3.0643 \pm 1.0749$   |  |  |
| CW - 10793, 10794 | Dec, 1998      | Gr. Beta     | $-0.5610 \pm 1.8946$   | $-0.1869 \pm 1.9184$                | $-0.3740 \pm 1.3481$  |  |  |
| AP-9119, 9120     | Dec, 1998      | Be-7         | $0.1386 \pm 0.0876$    | $0.1016 \pm 0.0396$                 | $0.1201 \pm 0.0481$   |  |  |
| WW - 10997, 10998 | Dec, 1998      | Co-60        | $-0.5400 \pm 1.2300$   | $0.1850 \pm 0.5010$                 | $-0.1775 \pm 0.6641$  |  |  |
| WW - 10997, 10998 | Dec, 1998      | Cs-137       | $-0.0998 \pm 1.8800$   | $-1.5000 \pm 2.7400$                | -0.7999 ± 1.6615      |  |  |
| AP - 11267, 11268 | Dec, 1998      | <b>Co-60</b> | $0.0006 \pm 0.0005$    | $0.0002 \pm 0.0002$                 | $0.0004 \pm 0.0003$   |  |  |
| AP - 11267, 11268 | Dec, 1998      | Cs-137       | $0.0003 \pm 0.0006$    | $-0.0000 \pm 0.0004$                | $0.0001 \pm 0.0004$   |  |  |
| SWU-10920, 10921  | Dec, 1998      | Gr. Beta     | $2.6300 \pm 0.7110$    | $2.2760 \pm 0.6910$                 | $2.4530 \pm 0.4957$   |  |  |
| SW-10969, 10970   | Dec, 1998      | Gr. Beta     | $2.5524 \pm 0.7559$    | $1.7077 \pm 0.7056$                 | $2.1301 \pm 0.5170$   |  |  |
| WW - 11018, 11019 | Dec, 1998      | H-3          | $72.8851 \pm 81.0523$  | $56.4860 \pm 80.3116$               | $64.6855 \pm 57.051$  |  |  |
| AP-11225, 11226   | Dec, 1998      | Be-7         | $0.0643 \pm 0.0133$    | $0.0674 \pm 0.0087$                 | $0.0658 \pm 0.0080$   |  |  |
| AP - 11246, 11247 | Dec, 1998      | Co-60        | $-0.0001 \pm 0.0001$   | $0.0002 \pm 0.0003$                 | $0.0001 \pm 0.0002$   |  |  |
| AP - 11246, 11247 | Dec, 1998      | Cs-137       | $-0.0002 \pm 0.0004$   | $-0.0001 \pm 0.0004$                | $-0.0001 \pm 0.0003$  |  |  |
| AP-10948, 10949   | Dec, 1998      | Be-7         | $0.1379 \pm 0.0647$    | $0.2164 \pm 0.0753$                 | $0.1772 \pm 0.0496$   |  |  |
| SWU-10920, 10921  | Dec, 1998      | H-3          | $364.3700 \pm 93.2290$ | <b>36</b> 4.3700 ± <b>93.229</b> 0  | 364.3700 ± 65.922     |  |  |
| AP-11079, 11080   | Dec, 1998      | Be-7         | $0.0680 \pm 0.0120$    | $0.0680 \pm 0.0120$                 | $0.0680 \pm 0.0085$   |  |  |
| WW-11101, 11102   | Dec, 1998      | Gr. Beta     | $2.2867 \pm 0.6521$    | $2.2342 \pm 0.6525$                 | $2.2605 \pm 0.4612$   |  |  |
| WW-11101, 11102   | Dec, 1998      | H-3          | $178.9370 \pm 99.8660$ | $165.4690 \pm 99.3450$              | $172.2030 \pm 70.432$ |  |  |
| BS-11222, 11223   | Dec, 1998      | Gr. Beta     | $7.4244 \pm 1.8665$    | $6.5452 \pm 1.8652$                 | $6.9848 \pm 1.3194$   |  |  |
| AP-11222, 11223   | Dec, 1998      | Be-7         | $0.1195 \pm 0.0713$    | $0.1350 \pm 0.0766$                 | 0.1272 ± 0.0523       |  |  |

A5-9

|             |                |                   |               | Concentration <sup>b</sup>              |                                      |                     |
|-------------|----------------|-------------------|---------------|-----------------------------------------|--------------------------------------|---------------------|
| Lab<br>Code | Sample<br>Type | Date<br>Collected | Analysis      | Teledyne Results<br>±Standard Deviation | MAPEP Result <sup>d</sup><br>1s, N=1 | Control<br>Limits   |
| SPSO-828    | SOIL           | Jan, 1998         | Co-57         | 862.20±86.22                            | 1,190.00                             | 833.00 - 1,547.00   |
| SPSO-828    | SOIL           | Jan, 1998         | Co-60         | 886.60±88.66                            | 1,110.00                             | 777.00 - 1,443.00   |
| SPSO-828    | SOIL           | Jan, 1998         | Cs-137        | $442.80 \pm 44.28$                      | 552.00                               | 386.40 - 717.60     |
| SPSO-828    | SOIL           | Jan, 1998         | K-40          | $540.30 \pm 54.03$                      | 652.00                               | 456.40 - 847.60     |
| SPSO-828    | SOIL           | Jan, 1998         | Mn-54         | $867.40 \pm 86.74$                      | 1,090.00                             | 763.00 - 1,417.00   |
| SPSO-828    | SOIL           | Jan, 1998         | Ni-63         | $326.10 \pm 32.61$                      | 405.00                               | 283.50 - 526.50     |
| SPSO-828    | SOIL           | Jan, 1998         | Pu-238        | $52.30 \pm 5.23$                        | <b>50.6</b> 0                        | 35.42 - 65.78       |
| SPSO-828    | . SOIL         | Jan, 1998         | <b>Sr-9</b> 0 | $587.60 \pm 58.76$                      | 624.00                               | 436.80 - 811.20     |
| SPSO-828    | SOIL           | Jan, 1998         | U-234/233     | $38.20 \pm 3.82$                        | 51.40                                | 35.98 - 66.82       |
| SPSO-828    | SOIL           | Jan, 1998         | U-238         | $105.40 \pm 10.54$                      | 120.00                               | 84.00 - 156.00      |
| SPSO-828    | SOIL           | Jan, 1998         | Zn-65         | 2,256.80 ± 225.70                       | 2,780.00                             | 1,946.00 - 3,614.00 |
| STW-814     | WATER          | Jan, 1998         | Am-241        | $2.05 \pm 0.21$                         | 2.13                                 | 1.49 - 2.77         |
| STW-814     | WATER          | Jan, 1998         | Co-57         | $253.00 \pm 25.30$                      | 277.50                               | 194.25 - 360.75     |
| STW-814     | WATER          | Jan, 1998         | Co-60         | $133.00 \pm 13.30$                      | 132.46                               | 92.72 - 172.20      |
| STW-814     | WATER          | Jan, 1998         | Cs-137        | $218.00 \pm 2.18$                       | 213.12                               | 149.18 - 277.06     |
| STW-814     | WATER          | Jan, 1998         | Fe-55         | 397.80 ± 39.80                          | 492.10                               | 344.47 - 639.73     |
| STW-814     | WATER          | Jan, 1998         | Mn-54         | $221.00 \pm 22.10$                      | 221.63                               | 155.14 - 288.12     |
| STW-814     | WATER          | Jan, 1998         | Ni-63         | $265.50 \pm 26.50$                      | 358.90                               | 251.23 - 466.57     |
| STW-814     | WATER          | Jan, 1998         | Pu-238        | $1.27 \pm 0.13$                         | 1.40                                 | 0.98 - 1.82         |
| STW-814     | WATER          | Jan, 1998         | Pu-239/240    | $3.16 \pm 0.32$                         | 3.44                                 | 2.41 - 4.47         |
| STW-814     | WATER          | Jan, 1998         | Sr-90         | $33.40 \pm 3.34$                        | 32.12                                | 22.48 - 41.76       |
| STW-814     | WATER          | Jan, 1998         | U-234/233     | $3.24 \pm 0.32$                         | 3.60                                 | 2.52 - 4.68         |
| STW-814     | WATER          | Jan, 1998         | U-238         | $0.09 \pm 0.01$                         | 0.00                                 | 0.00 - 0.10         |
| STW-814     | WATER          | Jan, 1998         | Zn-65         | 612.00 ± 61.20                          | 588.30                               | 411.81 - 764.79     |

Table A-6.Department of Energy's Mixed Analyte Performance Evaluation Program (MAPEP),<br/>comparison of MAPEP and Teledyne's Midwest Laboratory results for various sample<br/>media<sup>a</sup>.

<sup>a</sup> Results obtained by Teledyne Brown Engineering Environmental Services Midwest Laboratory as a participant in the Department of Energy's Mixed Analyte Performance Evaluation Program, Idaho Operations office, Idaho Falls, Idaho.

<sup>b</sup> All results are in Bq/kg or Bq/L as requested by the Department of Energy.

<sup>c</sup> Unless otherwise indicated, the TBEESML results are given as the mean ± 1 standard deviations for three determinations.

<sup>d</sup> MAPEP results are presented as the known values and expected laboratory precision (1 sigma, 1 determination) and control limits as defined by the MAPEP.

| mediaª.                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Concentration in Bq/L <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sample<br>Type                          | Date<br>Collected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Teledyne Result <sup>c</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EML Result <sup>d</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Control<br>Limits <sup>e</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| WATER                                   | Mar, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Co-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $14.80 \pm 0.60$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13.60 ± 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.92 - 1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| WATER                                   | Mar, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cs-137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 51.20 ± 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $46.00 \pm 1.70$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.90 - 1.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| WATER                                   | Mar, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Fe-55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $243.00 \pm 29.40$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $257.00\pm2.50$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.31 - <b>1</b> .54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| WATER                                   | Mar, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Gr. Alpha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1,592.90 \pm 63.80$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1,421.00 \pm 100.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.50 - 1.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| WATER                                   | Mar, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Gr. Beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2,509.00 \pm 67.10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $2,200.00 \pm 100.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.60 - 1.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| WATER                                   | Mar, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $399.70 \pm 32.50$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $218.30 \pm 6.51$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.65 - 1.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| nple was acidic, (<br>nd reanalyzed, Re | causing a b<br>esult of rear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | oreakdown of<br>alysis: 178.3±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | resin in the tritium c<br>15.5 Bg/L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | olumn. The sample wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s neutralized to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mn-54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 61.70 ± 1.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 57.00 ± 1.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.87 - 1.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pu-238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $2.61 \pm 0.27$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $2.53 \pm 0.06$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.78 - 1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pu-239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $1.79 \pm 0.21$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.65 \pm 0.06$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.78 - 1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1.70 \pm 0.40$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $4.36 \pm 0.19$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.72 - 1.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.50 \pm 0.20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.40 \pm 0.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.77 - 1.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1.67 \pm 1.11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.68 ± 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.52 - 2.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 329.50 ± 9.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.80 - 1.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $322.10 \pm 24.32$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 313.50 ± 10.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.73 - 1.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $4.65 \pm 1.66$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $5.31 \pm 0.25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.66 - 1.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $9.89 \pm 3.83$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $13.09 \pm 0.28$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.46 - 2.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.35 - 1.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ± 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.68 - 2.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $2.17 \pm 0.07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.49 - 1.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.62 - 1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $181.50 \pm 7.14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.81 - 1.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.79 - 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 359.01 ± 6.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.48 - 1.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.07 \pm 0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.07 \pm 0.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.68 - 2.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $7.77 \pm 0.62$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $8.21 \pm 0.80$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.60 - 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.62 - 1.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.74 - 1.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.72 - 1.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.72 - 1.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.75 - 1.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.62 - 1.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.62 - 1.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.62 - 1.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| AIR FILTER                              | Mar, 1998<br>Mar, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sr-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $1.82 \pm 0.21$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.76 \pm 0.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.66 - 2.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         | Sample<br>Type<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>WATER<br>AIL<br>SOIL<br>SOIL<br>SOIL<br>SOIL<br>SOIL<br>SOIL<br>SOIL<br>SO | Sample<br>TypeDate<br>CollectedWATERMar, 1998WATERMar, 1998SOILMar, 1998VEGETATIONMar, 1998VEGETATIONMar, 1998VEGETATIONMar, 1998VEGETATIONMar, 1998VEGETATIONMar, 1998AIR FILTERMar, 1998 </td <td>Sample<br/>TypeDate<br/>CollectedAnalysisWATERMar, 1998Co-60WATERMar, 1998Cs-137WATERMar, 1998Cs-137WATERMar, 1998Fe-55WATERMar, 1998Gr. AlphaWATERMar, 1998Gr. BetaWATERMar, 1998Gr. BetaWATERMar, 1998H-3mple was acidic, causing a breakdown ofnd reanalyzed.Result of reanalysis: 178.3±WATERMar, 1998Mn-54WATERMar, 1998Pu-238WATERMar, 1998Fu-239WATERMar, 1998Sr-90WATERMar, 1998Sr-90WATERMar, 1998K-40SOILMar, 1998K-40SOILMar, 1998Sr-90SOILMar, 1998Sr-90SOILMar, 1998Cm-244VEGETATIONMar, 1998Cm-244VEGETATIONMar, 1998Cm-244VEGETATIONMar, 1998Sr-90AIR FILTERMar, 1998Sr-90AIR FILTERMar, 1998Co-57AIR FILTERMar, 1998Co-57AIR FILTERMar, 1998Cs-137AIR FILTERMar, 1998Cs-137AIR FILTERMar, 1998Cs-137AIR FILTERMar, 1998Cn-244VEGETATIONMar, 1998Cn-57AIR FILTERMar, 1998Co-57AIR FILTERMar, 1998Cs-137AIR FILTERMar, 1998Cs-137</td> <td>Sample         Date           Type         Collected         Analysis         Teledyne Result<sup>6</sup>           WATER         Mar, 1998         Co-60         14.80 <math>\pm</math> 0.60           WATER         Mar, 1998         Cs-137         51.20 <math>\pm</math> 1.20           WATER         Mar, 1998         Gr. Alpha         1,592.90 <math>\pm</math> 63.80           WATER         Mar, 1998         Gr. Beta         2,509.00 <math>\pm</math> 67.10           WATER         Mar, 1998         Mr.54         61.70 <math>\pm</math> 1.30           mode reanalyzed.         Result of reanalysis: 178.3<math>\pm</math>15.5 Bq/L.         WATER           WATER         Mar, 1998         Pu-238         2.61 <math>\pm</math> 0.27           WATER         Mar, 1998         Pu-239         1.70 <math>\pm</math> 0.40           WATER         Mar, 1998         Sr-90         1.70 <math>\pm</math> 0.40           WATER         Mar, 1998         Sr-137         322.59 <math>\pm</math> 4.57           SOIL         Mar, 1998         Sr-90         9.89 <math>\pm</math> 3.83           SOIL         Mar, 1998</td> <td>Concentration in Bq/L<sup>b</sup>           Sample<br/>Type         Date<br/>Collected         Analysis         Teledyne Result<sup>e</sup>         EML Result<sup>d</sup>           WATER         Mar, 1998         Co-60         14.80±0.60         13.60±1.20           WATER         Mar, 1998         Cs-137         51.20±1.20         46.00±1.70           WATER         Mar, 1998         Cs-137         51.20±1.20         46.00±1.70           WATER         Mar, 1998         Gr. Alpha         1.592.90±6.380         1.421.00±100.00           WATER         Mar, 1998         Gr. Beta         2.509.00±67.10         2.200.00±100.00           WATER         Mar, 1998         Gr. Beta         2.509.00±67.10         2.200.00±100.00           WATER         Mar, 1998         H-3         399.70±32.50         218.30±6.51           mple was acidic, causing a breakdown of resin in the tritum column. The sample was dreanalyzed. Result of reanalysis: 178.3±15.5         Bq/L         WATER         Mar, 1998         Pu-238         2.61±0.27         2.53±0.06           WATER         Mar, 1998         Pu-238         2.61±0.27         2.53±0.06         WATER         Mar, 1998         Sute 1.79±0.21         1.65±0.02         0.40±0.04         3.01           SOIL         Mar, 1998         Cu-238         0.50±0.20</td> | Sample<br>TypeDate<br>CollectedAnalysisWATERMar, 1998Co-60WATERMar, 1998Cs-137WATERMar, 1998Cs-137WATERMar, 1998Fe-55WATERMar, 1998Gr. AlphaWATERMar, 1998Gr. BetaWATERMar, 1998Gr. BetaWATERMar, 1998H-3mple was acidic, causing a breakdown ofnd reanalyzed.Result of reanalysis: 178.3±WATERMar, 1998Mn-54WATERMar, 1998Pu-238WATERMar, 1998Fu-239WATERMar, 1998Sr-90WATERMar, 1998Sr-90WATERMar, 1998K-40SOILMar, 1998K-40SOILMar, 1998Sr-90SOILMar, 1998Sr-90SOILMar, 1998Cm-244VEGETATIONMar, 1998Cm-244VEGETATIONMar, 1998Cm-244VEGETATIONMar, 1998Sr-90AIR FILTERMar, 1998Sr-90AIR FILTERMar, 1998Co-57AIR FILTERMar, 1998Co-57AIR FILTERMar, 1998Cs-137AIR FILTERMar, 1998Cs-137AIR FILTERMar, 1998Cs-137AIR FILTERMar, 1998Cn-244VEGETATIONMar, 1998Cn-57AIR FILTERMar, 1998Co-57AIR FILTERMar, 1998Cs-137AIR FILTERMar, 1998Cs-137 | Sample         Date           Type         Collected         Analysis         Teledyne Result <sup>6</sup> WATER         Mar, 1998         Co-60         14.80 $\pm$ 0.60           WATER         Mar, 1998         Cs-137         51.20 $\pm$ 1.20           WATER         Mar, 1998         Gr. Alpha         1,592.90 $\pm$ 63.80           WATER         Mar, 1998         Gr. Beta         2,509.00 $\pm$ 67.10           WATER         Mar, 1998         Mr.54         61.70 $\pm$ 1.30           mode reanalyzed.         Result of reanalysis: 178.3 $\pm$ 15.5 Bq/L.         WATER           WATER         Mar, 1998         Pu-238         2.61 $\pm$ 0.27           WATER         Mar, 1998         Pu-239         1.70 $\pm$ 0.40           WATER         Mar, 1998         Sr-90         1.70 $\pm$ 0.40           WATER         Mar, 1998         Sr-137         322.59 $\pm$ 4.57           SOIL         Mar, 1998         Sr-90         9.89 $\pm$ 3.83           SOIL         Mar, 1998 | Concentration in Bq/L <sup>b</sup> Sample<br>Type         Date<br>Collected         Analysis         Teledyne Result <sup>e</sup> EML Result <sup>d</sup> WATER         Mar, 1998         Co-60         14.80±0.60         13.60±1.20           WATER         Mar, 1998         Cs-137         51.20±1.20         46.00±1.70           WATER         Mar, 1998         Cs-137         51.20±1.20         46.00±1.70           WATER         Mar, 1998         Gr. Alpha         1.592.90±6.380         1.421.00±100.00           WATER         Mar, 1998         Gr. Beta         2.509.00±67.10         2.200.00±100.00           WATER         Mar, 1998         Gr. Beta         2.509.00±67.10         2.200.00±100.00           WATER         Mar, 1998         H-3         399.70±32.50         218.30±6.51           mple was acidic, causing a breakdown of resin in the tritum column. The sample was dreanalyzed. Result of reanalysis: 178.3±15.5         Bq/L         WATER         Mar, 1998         Pu-238         2.61±0.27         2.53±0.06           WATER         Mar, 1998         Pu-238         2.61±0.27         2.53±0.06         WATER         Mar, 1998         Sute 1.79±0.21         1.65±0.02         0.40±0.04         3.01           SOIL         Mar, 1998         Cu-238         0.50±0.20 |

Table A-7. Environmental Measurements Laboratory Quality Assessment Program (EML), comparison of EML and Teledyne's Midwest Laboratory results for various sample media<sup>a</sup>.

A7-1

|             |                      |                   | -         | (                            | Concentration in Bq/L <sup>b</sup> |                                |
|-------------|----------------------|-------------------|-----------|------------------------------|------------------------------------|--------------------------------|
| Lab<br>Code | Sample<br>Type       | Date<br>Collected | Analysis  | Teledyne Result <sup>c</sup> | EML Result <sup>d</sup>            | Control<br>Limits <sup>e</sup> |
| STAF-822    | AIR FILTER           | Mar, 1998         | U-238     | $0.39 \pm 0.08$              | $0.03 \pm 0.00$                    | 0.78 - 3.00                    |
|             |                      |                   |           |                              | proximately ten times th           | ne known valu                  |
|             | lculations were re   |                   |           |                              |                                    |                                |
| STSO-834    | SOIL                 | Sep, 1998         | Ac-228    | $54.10 \pm 3.30$             | $52.60 \pm 2.90$                   | 0.50 - 1.50                    |
| STSO-834    | SOIL                 | Sep, 1998         | Bi-212    | $55.40 \pm 10.30$            | $58.30 \pm 5.90$                   | 0.50 - 1.50                    |
| STSO-834    | SOIL                 | Sep, 1998         | Bi-214    | $28.50 \pm 6.50$             | $28.80 \pm 0.50$                   | 0.50 - 1.50                    |
| STSO-834    | SOIL                 | Sep, 1998         | Cs-137    | $915.70 \pm 8.20$            | $954.00 \pm 38.00$                 | 0.80 - 1.34                    |
| STSO-834    | SOIL                 | Sep, 1998         | K-40      | 296.20 ± 39.90               | $314.00 \pm 13.00$                 | 0.73 - 1.67                    |
| STSO-834    | SOIL                 | Sep, 1998         | Pb-212    | $53.60 \pm 1.50$             | $52.80 \pm 3.70$                   | 0.50 - 1.50                    |
| STSO-834    | SOIL                 | Sep, 1998         | Pb-214    | $31.00 \pm 5.90$             | $29.10 \pm 1.20$                   | 0.50 - 1.50                    |
| STSO-834    | SOIL                 | Sep, 1998         | Ra-226    | $115.30 \pm 2.20$            | $29.00 \pm 1.00$                   | 0.00 - 3.00                    |
| •           | table results accord | •                 |           |                              |                                    |                                |
| STSO-834    | SOIL                 | Sep, 1998         | Sr-90     | $37.40 \pm 1.90$             | $39.63 \pm 0.00$                   | 0.46 - 2.84                    |
| STSO-834    | SOIL                 | Sep, 1998         | T1-208    | $20.10 \pm 3.10$             | $18.30 \pm 1.10$                   | 0.50 - 1.50                    |
| STW-835     | WATER                | Sep, 1998         | Co-60     | $49.30 \pm 2.80$             | $49.40 \pm 1.20$                   | 0.92 - 1.18                    |
| STW-835     | WATER                | Sep, 1998         | Cs-137    | $50.10 \pm 3.20$             | $50.00 \pm 1.70$                   | 0.90 - 1.28                    |
| STW-835     | WATER                | Sep, 1998         | Fe-55     | $140.60 \pm 9.20$            | $139.00 \pm 2.00$                  | 0.31 - 1.54                    |
| STW-835     | WATER                | Sep, 1998         | Gr. Alpha | $1,178.30 \pm 47.20$         | $1,080.00 \pm 60.00$               | 0.50 - 1.29                    |
| STW-835     | WATER                | Sep, 1998         | Gr. Beta  | 1,613.60 ± 171.80            | $1,420.00 \pm 60.00$               | 0.60 - 1.64                    |
| STW-835     | WATER                | Sep, 1998         | H-3       | $102.20 \pm 4.50$            | $76.20 \pm 2.90$                   | 0.65 - 1.91                    |
| STW-835     | WATER                | Sep, 1998         | Mn-54     | $35.90 \pm 3.40$             | $32.40 \pm 1.40$                   | 0.87 - 1.22                    |
| STW-835     | WATER                | Sep, 1998         | Sr-90     | $3.00 \pm 0.90$              | $2.11 \pm 0.18$                    | 0.72 - 1.66                    |
| STAF-837    | AIR FILTER           | Sep, 1998         | Co-60     | $9.30\pm0.30$                | $9.16 \pm 0.58$                    | 0.74 - 1.24                    |
| STAF-837    | AIR FILTER           | Sep, 1998         | Cs-137    | $22.40 \pm 0.50$             | $22.47 \pm 1.03$                   | 0.72 - 1.32                    |
| STAF-837    | AIR FILTER           | Sep, 1998         | Mn-54     | $5.30 \pm 0.30$              | $4.92 \pm 0.40$                    | 0.75 - 1.27                    |
| STAF-837    | AIR FILTER           | Sep, 1998         | Sb-125    | $10.00\pm0.80$               | 8.89 ± 0.55                        | 0.60 - 1.39                    |
| STAF-838    | AIR FILTER           | Sep, 1998         | Gr. Alpha | $2.20\pm0.10$                | $1.65 \pm 0.16$                    | 0.83 - 1.55                    |
| STAF-838    | AIR FILTER           | -                 | Gr. Beta  | $2.80\pm0.10$                | $2.16 \pm 0.07$                    | 0.73 - 1.84                    |
| STAF-838    | AIR FILTER           |                   | Sr-90     | $1.10 \pm 0.10$              | $1.12 \pm 0.05$                    | 0.66 - 2.65                    |
| STVE-839    | VEGETATION           | -                 | Co-60     | $18.10 \pm 1.50$             | $20.00 \pm 1.00$                   | 0.62 - 1.42                    |
| STVE-839    | VEGETATION           | -                 | Cs-137    | $340.40 \pm 4.80$            | 390.00 ± 20.00                     | 0.81 - 1.45                    |
| 5TVE-839    | VEGETATION           | -                 | K-40      | $417.50 \pm 28.20$           | $460.00 \pm 20.00$                 | 0.79 - 1.50                    |
| STVE-839    | VEGETATION           | -                 | Sr-90     | $672.50 \pm 32.50$           | $606.00 \pm 40.00$                 | 0.48 - 1.29                    |

# Table A-7.Environmental Measurements Laboratory Quality Assessment Program (EML),<br/>comparison of EML and Teledyne's Midwest Laboratory results for various sample<br/>media\*.

A7-2

| Table A-7   |                | onmental Measurements Laboratory Quality Assessment Program (EML),<br>arison of EML and Teledyne's Midwest Laboratory results for various sample<br>a*. |          |                              |                         |                                |  |
|-------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------|-------------------------|--------------------------------|--|
|             |                |                                                                                                                                                         | _        | Co                           | oncentration in Bq/L    | b · ·                          |  |
| Lab<br>Code | Sample<br>Type | Date<br>Collected                                                                                                                                       | Analysis | Teledyne Result <sup>c</sup> | EML Result <sup>d</sup> | Control<br>Limits <sup>e</sup> |  |

<sup>a</sup> The Environmental Measurements Laboratory provides the following nuclear species : Air Filters, Soil, Tissue, Vegetation and Water. Teledyne does not participate in the Tissue program.

<sup>b</sup> Results are reported in  $Bq/L^{-1}$  with the following exceptions: Air Filter results are reported in  $Bq/Filter^{-1}$ , Soil results are reported in  $Bq/Kg^{-1}$ . Vegetation results are reported in  $Bq/Kg^{-1}$ . The results of elemental Uranium are reported in ug/filter<sup>-1</sup>, g, or ml.

Teledyne results are reported as the mean of three determinations±standard deviation.

<sup>d</sup> The EML result listed is the mean of replicate determinations for each nuclide±the standard error of the mean. <sup>e</sup> The control limits are reported by EML and are established from percentiles of historic data distributions (1982-1992). The evaluation of this historic data and the development of the control limits is presented in DOE report EML-564.

# APPENDIX B

# DATA REPORTING CONVENTIONS

1.0. All activities except gross alpha and gross beta are decay corrected to collection time or the end of the collection period.

2.0. Single Measurements

Each single measurement is reported as follows:

x ± s

where x = value of the measurement;

s = 20 counting uncertainty (corresponding to the 95% confidence level).

In cases where the activity is found to be below the lower limit of detection L it is reported as

<L

where L = the lower limit of detection based on 4.660 uncertainty for a background sample.

3.0. <u>Duplicate analyses</u>

| 3.1 | <u>Individual results:</u> | $\begin{array}{c} x_1 \pm s_1 \\ x_2 \pm s_2 \end{array}$ |
|-----|----------------------------|-----------------------------------------------------------|
|     | Reported result:           | x±s                                                       |

where  $x = (1/2)(x_1 + x_2)$ 

$$s = (1/2) \sqrt{s_1^2 + s_2^2}$$

3.2. <u>Individual results:</u> <L<sub>1</sub>

<L2

Reported result: <L

where  $L = lower of L_1 and L_2$ 

3.3. Individual results:  $x \pm s$ 

Reported result:

 $x \pm s$  if  $x \ge L$ ;

<L otherwise

# 4.0. Computation of Averages and Standard Deviations

4.1 Averages and standard deviations listed in the tables are computed from all of the individual measurements over the period averaged; for example, an annual standard deviation would not be the average of quarterly standard deviations. The average  $\bar{x}$  and standard deviation s of a set of n numbers  $x_1, x_2 \dots x_n$  are defined as follows:

$$\overline{x} = \frac{1}{n} \sum x$$
$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$$

- 4.2 Values below the highest lower limit of detection are not included in the average.
- 4.3 If all of the values in the averaging group are less than the highest LLD, the highest LLD is reported.
- 4.4 If all but one of the values are less than the highest LLD, the single value x and associated two sigma error is reported.
- 4.5 In rounding off, the following rules are followed:
  - 4.5.1. If the figure following those to be retained is less than 5, the figure is dropped, and the retained figures are kept unchanged. As an example, 11.443 is rounded off to 11.44.
  - 4.5.2. If the figure following those to be retained is equal to or greater than 5, the figure is dropped and the last retained figure is raised by 1. As an example, 11.445 is rounded off to 11.45.

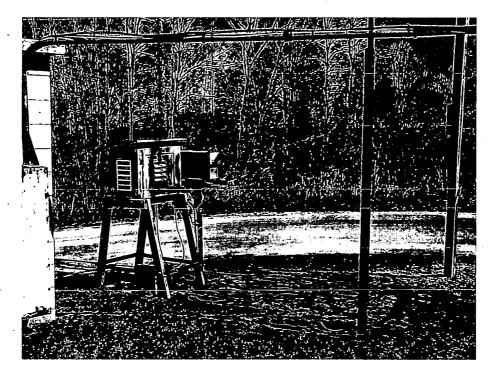
# APPENDIX C

Maximum Permissible Concentrations of Radioactivity in Air and Water Above Background in Unrestricted Areas

| Air                                             | Water                                 |  |  |
|-------------------------------------------------|---------------------------------------|--|--|
| Gross alpha 3 pCi/m <sup>3</sup>                | Strontium-89 3,000 pCi/L              |  |  |
| Gross beta 100 pCi/m <sup>3</sup>               | Strontium-90 300 pCi/L                |  |  |
| Iodine-131 <sup>b</sup> 0.14 pCi/m <sup>3</sup> | Cesium-137 20,000 pCi/L               |  |  |
|                                                 | Barium-140 20,000 pCi/L               |  |  |
|                                                 | Iodine-131 300 pCi/L                  |  |  |
|                                                 | Potassium-40 <sup>c</sup> 3,000 pCi/L |  |  |
|                                                 | Gross alpha 30 pCi/L                  |  |  |
|                                                 | Gross beta 100 pCi/L                  |  |  |
|                                                 | Tritium $3 \times 10^6$ pCi/L         |  |  |

Table C-1.Maximum permissible concentrations of radioactivity in air and water above<br/>natural background in unrestricted areas<sup>a</sup>.

<sup>a</sup> Taken from Table II of Appendix B to Code of Federal Regulations Title 10, Part 20.1-20.601, and appropriate footnotes. Concentrations may be averaged over a period not greater than one year.


<sup>b</sup> From 10 CFR 20.1-20.601 but adjusted by a factor of 700 to reduce the dose resulting from the air-grass-cow-milk-child pathway.

<sup>c</sup> A natural radionuclide.

C-2

# **ANNUAL REPORT PART II**

# DATA TABULATIONS GRAPHS AND ANALYSES



Air sampler located at K-1k

# TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES MIDWEST LABORATORY

700 LANDWEHR ROAD NORTHBROOK, ILLINOIS 60062-2310 (847) 564-0700 • FAX (847) 564-4517

#### REPORT TO

#### WISCONSIN PUBLIC SERVICE CORPORATION WISCONSIN POWER AND LIGHT COMPANY MADISON GAS AND ELECTRIC COMPANY

## RADIOLOGICAL MONITORING PROGRAM FOR THE KEWAUNEE NUCLEAR POWER PLANT KEWAUNEE, WISCONSIN

### ANNUAL REPORT - PART II DATA TABULATIONS AND ANALYSES January - December 1998

#### PREPARED AND SUBMITTED BY TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES MIDWEST LABORATORY

### PROJECT NO. 8002

Approved by: \_ Brbnia Grob, M.S. Technical Lead

19 April 1999

# **PREFACE**

The staff members of the Teledyne Brown Engineering Environmental Services, Midwest Laboratory (TBEESML) were responsible for the acquisition of data presented in this report. Samples were collected by the personnel of TBEESML and Wisconsin Public Service Corporation.

# TABLE OF CONTENTS

| <u>SECTION</u> |                       | <u>Page</u> |
|----------------|-----------------------|-------------|
|                | Preface               | ii          |
|                | List of Figures       | iv          |
|                | List of Tables        | vii         |
| 1.0            | INTRODUCTION          | 1           |
| 2.0            | GRAPHS OF DATA TRENDS | 7           |
| 3.0            | DATA TABULATIONS      |             |
| 4.0            | STATISTICAL ANALYSES  |             |
|                |                       |             |

# **APPENDICES**

P

| А | Radiochemical Analytical ProceduresA-1 |
|---|----------------------------------------|
|---|----------------------------------------|

#### LIST OF FIGURES

| <u>No.</u> | Caption                                                                              | <u>Page</u> |
|------------|--------------------------------------------------------------------------------------|-------------|
| 1          | Sampling locations, Kewaunee Nuclear Power Plant                                     | 3           |
| 2          | Airborne particulate samples, weekly averages; gross beta activity,<br>Location K-1f | 8           |
| 3          | Airborne particuIate samples, weekly averages; gross beta activity,<br>Location K-2  | 9           |
| 4          | Airborne particulate samples, weekly averages; gross beta activity,<br>Location K-7  | 10          |
| 5          | Airborne particulate samples, weekly averages; gross beta activity,<br>Location K-8  | 11          |
| 6          | Airborne particulate samples, weekly averages; gross beta activity,<br>Location K-31 | 12          |
| 7          | Airborne particulate samples, weekly averages; gross beta activity,<br>Location K-16 | 13          |
| 8          | Airborne particulate samples, Location K-1f, gross beta activity, monthly averages   | 14          |
| 9          | Airborne particulate samples, Location K-2, gross beta activity, monthly averages    | 15          |
| 10         | Airborne particulate samples, Location K-7 gross beta activity, monthly averages     | 16          |
| 11         | Airborne particulate samples, Location K-8, gross beta activity, monthly averages    | 17          |
| 12         | Airborne particulate samples, Location K-31 gross beta activity, monthly averages    | 18          |
| 13         | Airborne particulate samples, Location K-16, gross beta activity, monthly averages   | 19          |
| 14         | Well water samples, Location K-1g, gross alpha activity in total residue             | 20          |
| 15         | Well water samples, Location K-1h, gross alpha activity in total residue             | 21          |
| 16         | Well water samples, Location K-1g, gross beta activity in total residue              | 22          |
| 17         | Well water samples, Location K-1h, gross beta activity in total residue              | 23          |
| 18         | Well water samples, Location K-10 gross beta activity in total residue               | 24          |
| 19         | Well water samples, Location K-11, gross beta activity in total residue              | 25          |

# LIST OF FIGURES (continued)

Ì

Ŀ

| <u>No.</u> | Caption                                                                                      | <u>Page</u> |
|------------|----------------------------------------------------------------------------------------------|-------------|
| 20         | Well water samples, Location K-12, gross beta activity in total residue                      | 26          |
| 21         | Well water samples, Location K-13, gross beta activity in total residue                      | 27          |
| 22         | Milk samples, Location K-3, strontium-90 activity                                            | 28          |
| 23         | Milk samples, Location K-4 strontium-90 activity                                             | 29          |
| 24         | Milk samples, Location K-5, strontium-90 activity                                            | 30          |
| 25         | Milk samples, Location K-6, strontium-90 activity                                            | 31          |
| 26         | Milk samples, Location K-12 strontium-90 activity                                            | 32          |
| 27         | Milk samples, Location K-19, strontium-90 activity                                           | 33          |
| 28         | Milk samples, Location K-28, strontium-90 activity                                           | 34          |
| 29         | Surface water samples, gross beta activity in suspended and dissolved solids, Location K-1a  | 35          |
| 30         | Surface water samples, gross beta activity in total residue, Location K-1a                   | 36          |
| 31         | Surface water samples, gross beta activity in suspended and dissolved solids, Location K-1b  | 37          |
| 32         | Surface water samples, gross beta activity in total residue, Location K-1b                   | 38          |
| 33         | Surface water samples, gross beta activity in suspended and dissolved solids, Location K-1d  | 39          |
| 34         | Surface water samples, gross beta activity in total residue, Location K-1d                   | 40          |
| 35         | Surface water samples, gross beta activity in suspended and dissolved solids, Location K-1e  | 41          |
| 36         | Surface water samples, gross beta activity in total residue, Location K-1e                   | 42          |
| 37         | Surface water samples, gross beta activity in suspended and dissolved solids, Location K-9   | 43          |
| 38         | Surface water samples, gross beta activity in total residue, Location K-9                    | 44          |
| 39         | Surface water samples, gross beta activity in suspended and dissolved solids, Location K-14a | 45          |
| 40         | Surface water samples, gross beta activity in total residue, Location K-14a                  | 46          |

# LIST OF FIGURES (continued)

| <u>No.</u> | Caption                                                | <u>Page</u> |
|------------|--------------------------------------------------------|-------------|
| 41         | Surface water samples, Location K-1d, tritium activity | 47          |
| 42         | Surface water samples, Location K-14a tritium activity | 47a         |
| . 43       | Surface water samples, Location K-9 tritium activity   | 48          |

### LIST OF TABLES

ŀ

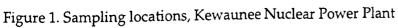
·

| <u>No.</u> | Title                                                                                                                                         | <u>Page</u> |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1          | Sampling locations, Kewaunee Nuclear Power Plant                                                                                              | 4           |
| 2          | Type and frequency of collection                                                                                                              | 5           |
| 3          | Sample codes used in Table 2                                                                                                                  | 6           |
| 4          | Airborne particulates and iodine collected at Location K-1f, analysis for gross beta and iodine-131                                           | 50          |
| 5          | Airborne particulates and iodine collected at Location K-2 analysis for gross beta and iodine-131                                             | . 51        |
| 6          | Airborne particulates and iodine collected at Location K-7 analysis for gross beta and iodine-131                                             | . 52        |
| 7          | Airborne particulates and iodine collected at Location K-8 analysis for gross beta and iodine-131                                             | . 53        |
| 8          | Airborne particulates and iodine collected at Location K-15 analysis for gross beta and iodine-131                                            | . 54        |
| 9          | Airborne particulates and iodine collected at Location K-16 analysis for gross beta and iodine-131                                            | . 55        |
| 10         | Airborne particulate data, gross beta, monthly averages, minima and maxima                                                                    | . 56        |
| 11         | Airborne particulate samples, quarterly composites of weekly samples, analysis for gamma-emitting isotopes                                    | . 58        |
| 12         | Ambient gamma radiation (TLD), quarterly exposure, January - December                                                                         | . 61        |
| 13         | Precipitation samples collected at Location K-11, analysis for tritium                                                                        | . 62        |
| 14         | Milk samples, analysis for iodine-131 and gamma emitting isotopes                                                                             | . 63        |
| 15         | Milk samples, analysis for strontium-89, strontium-90 calcium, potassium,<br>and ratios of strontium-90/g calcium, and cesium-137/g potassium | . 67        |
| 16         | Well water samples, analysis for gross alpha, gross beta, potassium-40, and gamma-emitting isotopes                                           | 71          |
| 17         | Well water samples collected at K-1g, analysis for tritium, strontium-89, and strontium-90                                                    | 74          |
| 18         | Domestic meat samples, analysis of flesh for gross alpha, gross beta, and gamma-emitting isotopes                                             | 75          |

# KEWAUNEE

# LIST OF TABLES (continued)

| <u>No.</u> | <u>Title</u>                                                                                                                                | <u>Page</u> |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 19         | Egg samples collected from Fectum Farm (K-24), analysis for gross beta, strontium-89, strontium-90, and gamma-emitting isotopes             | 76          |
| 20         | Vegetable samples, analysis for gross beta, strontium-89, strontium-90, and gamma-emitting isotopes                                         | 77          |
| 21         | Cattlefeed samples, analysis for gross beta, strontium-89, strontium-90, and gamma-emitting isotopes                                        | 79          |
| 22         | Grass samples, analysis for gross beta, strontium-89, strontium-90, and gamma-emitting isotopes                                             | 81          |
| 23         | Soil samples, analysis for gross alpha, gross beta, strontium-89, strontium-90, and gamma-emitting isotopes                                 | 84          |
| 24         | Surface water samples, analysis for gross beta, potassium-40, and gamma-<br>emitting isotopes                                               | 87          |
| 25         | Surface water samples, analysis for tritium, strontium-89, and strontium-90                                                                 | 101         |
| 26         | Fish, analysis for gross beta, strontium-89, strontium-90, and gamma-<br>emitting isotopes                                                  | 103         |
| 27         | Slime samples, analysis for gross beta, strontium-89, strontium-90 and gamma emitting isotopes                                              | 104         |
| 28         | Bottom sediment samples, analysis for gross beta, strontium-89, strontium-90, and gamma-emitting isotopes                                   | 106         |
| 29         | Air particulates, gross beta, quarterly and annual means and standard deviations, January - December, 1998                                  | 108         |
| 30         | Milk, strontium-90, quarterly and annual means and standard deviations,<br>January - December, 1998                                         | 109         |
| 31         | Milk, potassium-40, quarterly and annual means and standard deviations,<br>January - December, 1998                                         | 110         |
| 32         | Grass, gross beta, potassium-40, and strontium-90, annual means and standard deviations, January-December, 1998                             | 111         |
| 33         | Soil, gross alpha, gross beta, potassium-40, strontium-90 and cesium-137,<br>annual means and standard deviations, January - December, 1998 | 112         |
| 34         | Surface water, total residue, gross beta, quarterly and annual means and standard deviations, January - December, 1998                      | 113         |
| 35         | Bottom sediments, gross beta, potassium-40, and cesium-137, annual mean<br>and standard deviations, January - December, 1998                | s<br>114    |


·

#### 1.0 INTRODUCTION

The following constitutes Part II of the final report for the 1998 Radiological Monitoring Program conducted at the Kewaunee Nuclear Power Plant (KNPP), Kewaunee, Wisconsin. Included are tabulations of data for all samples collected in 1998, statistical analyses of the data, graphs of data trends, and descriptions of radiochemical procedures. A summary and interpretation of the data presented here are published in Part I of the 1998 Annual Report on the Radiological Monitoring Program for the Kewaunee Nuclear Power Plant.

NOTE: Page 2 is intentionally left out.





|      |                   | Distance<br>(miles) <sup>b</sup><br>and |                                                       |
|------|-------------------|-----------------------------------------|-------------------------------------------------------|
| Code | Type <sup>a</sup> | Sector                                  | Location                                              |
| K-1  |                   |                                         | Onsite                                                |
| K-1a | I                 | 0.62 N                                  | North Creek                                           |
| K-1b | I                 | 0.12 N                                  | Middle Creek                                          |
| K-1c | Ι                 | 0.10 N                                  | 500' north of condenser discharge                     |
| K-1d | I                 | 0.10 E                                  | Condenser discharge                                   |
| K-1e | I                 | 0.12 S                                  | South Creek                                           |
| K-1f | I                 | 0.12 S                                  | Meteorological Tower                                  |
| K-1g | Ι                 | 0.06 W                                  | South Well                                            |
| K-1ĥ | I                 | 0.12 NW                                 | North Well                                            |
| K-1j | I                 | 0.10 S                                  | 500' south of condenser discharge                     |
| K-1k | I                 | 0.60 SW                                 | Drainage Pond                                         |
| K-2  | С                 | 9.5 NNE                                 | WPS Operations Building in Kewaunee                   |
| K-3  | C                 | 6.0 N                                   | Lyle and John Siegmund Farm, Route 1, Kewaunee        |
| K-4  | I                 | 3.0 N                                   | Tom Stangel Farm, Route 1, Kewaunee                   |
| K-5  | I                 | 3.5 NNW                                 | Ed Paplham Farm, Route 1, Kewaunee                    |
| K-6  | С                 | 6.7 WSW                                 | Novitsky Farm                                         |
| K-7  | I                 | 2.75 SSW                                | Ron Zimmerman Farm, Route 3, Two Rivers               |
| K-8  | C                 | 5.0 WSW                                 | Saint Mary's Church, Tisch Mills                      |
| K-9  | С                 | 11.5 NNE                                | Rostok Water Intake for Green Bay, Wisconsin, two     |
|      | _                 |                                         | miles north of Kewaunee                               |
| K-10 | I                 | 1.5 NNE                                 | Turner Farm, Kewaunee site                            |
| K-11 | I                 | 1.0 NW                                  | Harlan Ihlenfeld Farm                                 |
| K-12 | I                 | 1.5 WSW                                 | Lecaptain Farm, one mile west of site                 |
| K-13 | C<br>I            | 3.0 SSW                                 | Rand's General Store                                  |
| K-14 |                   | 2.5 S                                   | Two Creeks Park, 2.5 miles south of site              |
| K-15 | C                 | 9.25 NW                                 | Gas Substation, 1.5 miles north of Stangelville       |
| K-16 | С                 | 26 NW                                   | WPS Division Office Building, Green Bay,<br>Wisconsin |
| K-17 | I                 | 4.25 W                                  | Jansky's Farm, Route 1, Kewaunee                      |
| K-19 | Î                 | 1.75 NNE                                | Wayne Paral Farm, Route 1, Kewaunee                   |
| K-20 | Î                 | 2.5 N                                   | Carl Struck Farm, Route 1, Kewaunee                   |
| K-23 | Ī                 | 0.5 W                                   | 0.5 miles west of plant, Kewaunee site                |
| K-24 | Ĉ                 | 5.45 N                                  | Fectum Farm, Route 1, Kewaunee                        |
| K-25 | č                 | 2.75 WSW                                | Wotachek Farm, Route 1, Denmark                       |
| K-26 | Č                 | 10.7 SSW                                | Bertler's Fruit Stand (8.0 miles south of "BB")       |
| K-27 | C<br>I            | 1.5 NW                                  | Schlies Farm, 0.5 miles west of K-11                  |
| K-28 | Ĉ                 | 26 NW                                   | Hansen Dairy, Green Bay, Wisconsin                    |
| K-29 | Ĩ                 | 5.75 W                                  | Kunesh Farm, Route 1, Kewaunee                        |
| K-30 | Ī                 | 1.00 N                                  | End of site boundary                                  |
| K-31 | Ĉ                 | 6.25 NNW                                | E. Krok Substation                                    |
| K-32 | Č                 | 11.5 mi. N                              | Piggly Wiggly Foods, 931 Marquette Dr., Kewaunee      |

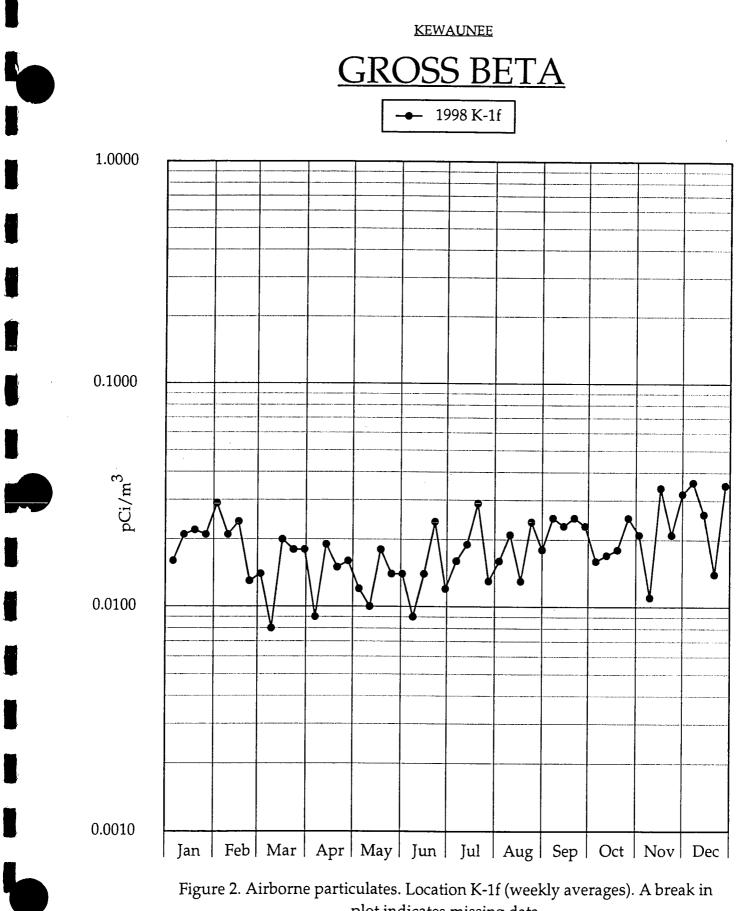
Table 1. Sampling locations, Kewaunee Nuclear Power Plant.

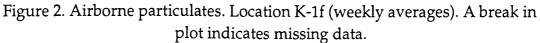
<sup>a</sup> I= indicator; C = control.

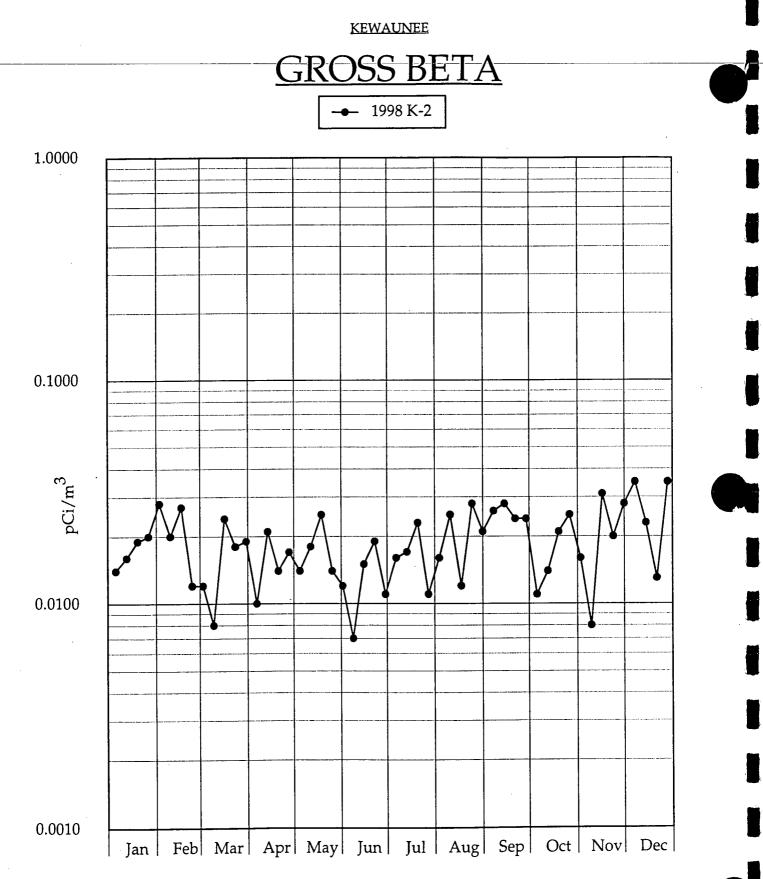
<sup>b</sup> Distances are measured from reactor stack.

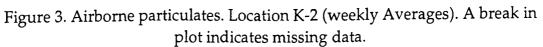
Table 2. Type and frequency of collection.

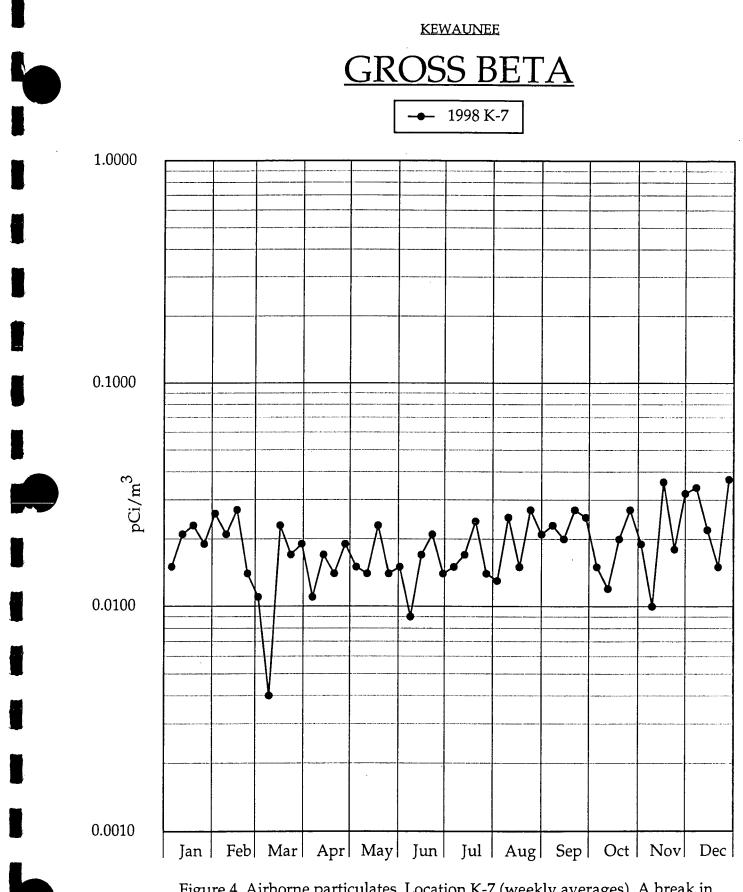
|                   |          |          |          | Frequency                              |                      |                                       |
|-------------------|----------|----------|----------|----------------------------------------|----------------------|---------------------------------------|
| Location          | Weekly   | Biweekly | Monthly  | Quarterly                              | Semiannually         | Annually                              |
| K-1a              |          |          | SW       |                                        | SL                   |                                       |
| K-1b              |          |          | SW       | GRa                                    | SL                   |                                       |
| K-1c              |          |          |          | ·                                      | BSb                  |                                       |
| K-1d              |          |          | SW       | FI                                     | BS <sup>b</sup> , SL |                                       |
| K-1e              |          |          | SW       |                                        | SL                   |                                       |
| K-1f              | AP       | AI       |          | GRª, TLD                               | SO                   |                                       |
| K-1g              |          |          |          | WW                                     |                      |                                       |
| K-1h              |          |          |          | WW                                     |                      |                                       |
| K-1j              |          |          |          |                                        | BS <sup>b</sup>      |                                       |
| K-1k              |          |          | SW       |                                        | SL                   |                                       |
| K-2               | AP       | AI       |          | TLD                                    |                      |                                       |
| K-3               |          |          | MIc      | GR <sup>a</sup> , TLD, CF <sup>d</sup> | SO                   |                                       |
| K-4               |          |          | MIc      | GR <sup>a</sup> , TLD, CF <sup>d</sup> | SO                   |                                       |
| K-5               |          |          | MIc      | GR <sup>a</sup> , TLD, CF <sup>d</sup> | SO                   |                                       |
| K-6               |          |          | MIc      | GR <sup>a</sup> , TLD, CF <sup>d</sup> | SÖ                   |                                       |
| K-7               | AP       | AI       |          | TLD                                    |                      |                                       |
| K-8               | AP       | AI       |          | TLD                                    |                      |                                       |
| K-9               |          |          | SW       |                                        | BS <sup>b</sup> , SL |                                       |
| K-10              |          |          |          | WW                                     |                      |                                       |
| K-11              |          |          | PR       | WW                                     |                      |                                       |
| K-12              |          |          | MIc      | GR <sup>a</sup> , CF <sup>d</sup> , WW | SO                   |                                       |
| K-13              |          |          |          | WW                                     |                      |                                       |
| K-14              |          |          | SW       | -                                      | BS <sup>b</sup> , SL |                                       |
| K-15 <sup>e</sup> |          |          |          | TLD                                    |                      |                                       |
| K-16              | AP       | AI       |          | TLD                                    |                      | · · · · · · · · · · · · · · · · · · · |
| K-17              |          |          | 1        | TLD                                    |                      | VE                                    |
| K-19              |          |          | MIc      | GR <sup>a</sup> , CF <sup>d</sup>      | SO                   |                                       |
| K-20              |          | 1        |          |                                        |                      | DM                                    |
| K-23              |          |          |          | ·                                      |                      | GRN                                   |
| K-24              |          |          |          | EG                                     |                      | DM                                    |
| K-24<br>K-26      |          |          | 1        |                                        |                      | VE                                    |
| K-27              |          |          | 1        | TLD, EG                                |                      | DM                                    |
| K-27<br>K-28      | <u> </u> |          | MIc      |                                        |                      |                                       |
| K-20<br>K-29      |          |          |          |                                        |                      | DM                                    |
| K-29<br>K-30      |          |          | +        | TLD                                    |                      |                                       |
| K-30<br>K-31      | AP       | AI       | <u> </u> | TLD                                    |                      |                                       |
|                   |          |          | +        |                                        |                      | DM                                    |
| K-32              |          |          | <u> </u> | <u> </u>                               |                      |                                       |

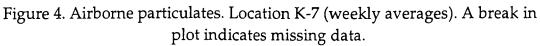

<sup>a</sup> Three times a year, second (April, May, June), third (July, August, September), and fourth (October, November, December) quarters. <sup>b</sup> To be collected in May and November.

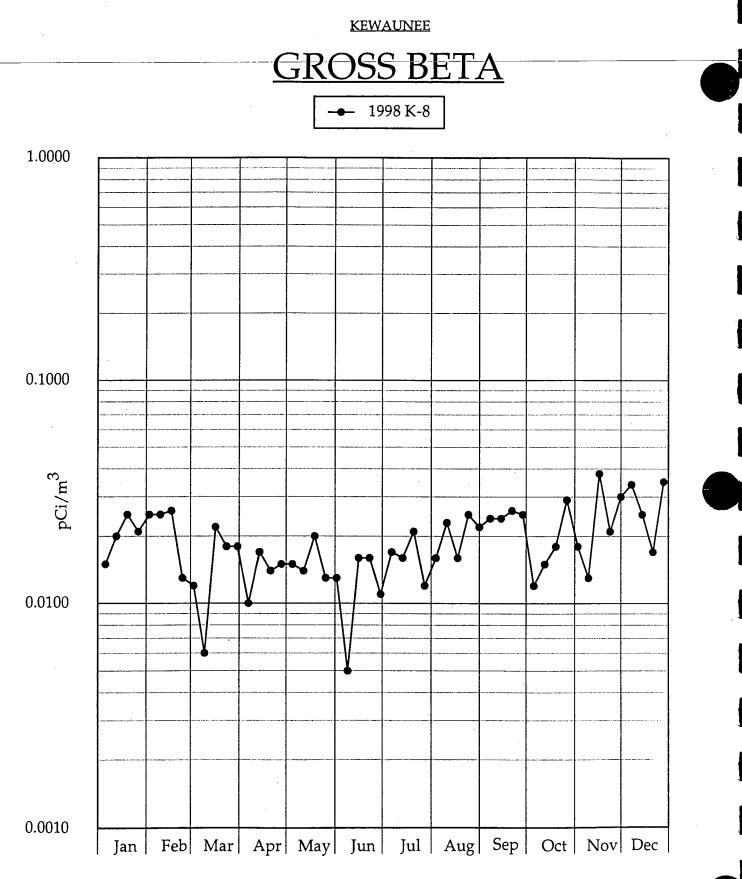

<sup>c</sup> Monthly from November through April; semimonthly May through October. <sup>d</sup> First quarter (January, February, March) only. <sup>e</sup> Air sampler moved to K-31, September, 1997.

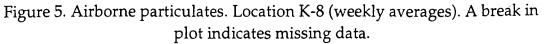

Table 3. Sample codes used in Table 2.

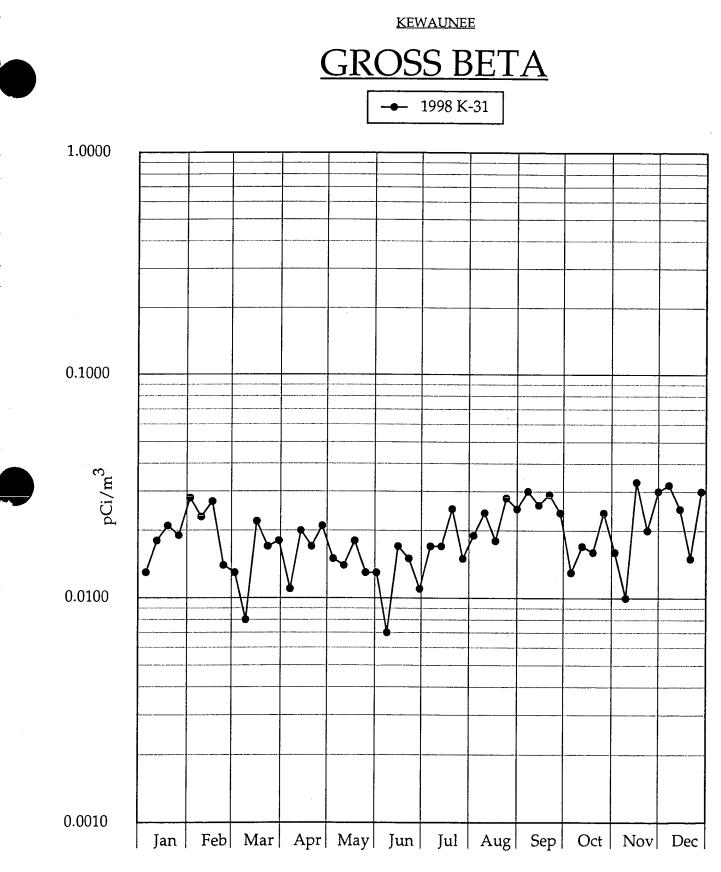

·

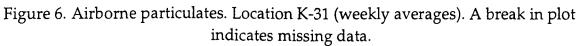

| Code | Description                 |  |  |
|------|-----------------------------|--|--|
| AP   | Airborne Particulate        |  |  |
| AI   | Airborne Iodine             |  |  |
| TLD  | Thermoluminescent Dosimeter |  |  |
| PR   | Precipitation               |  |  |
| MI   | Milk                        |  |  |
| WW   | Well Water                  |  |  |
| DM   | Domestic Meat               |  |  |
| EG   | Eggs                        |  |  |
| VE   | Vegetables                  |  |  |
| GRN  | Grain                       |  |  |
| GR   | Grass                       |  |  |
| CF   | Cattlefeed                  |  |  |
| SO   | Soil                        |  |  |
| SW   | Surface Water               |  |  |
| FI   | Fish                        |  |  |
| SL   | Slime                       |  |  |
| BS   | Bottom Sediments            |  |  |

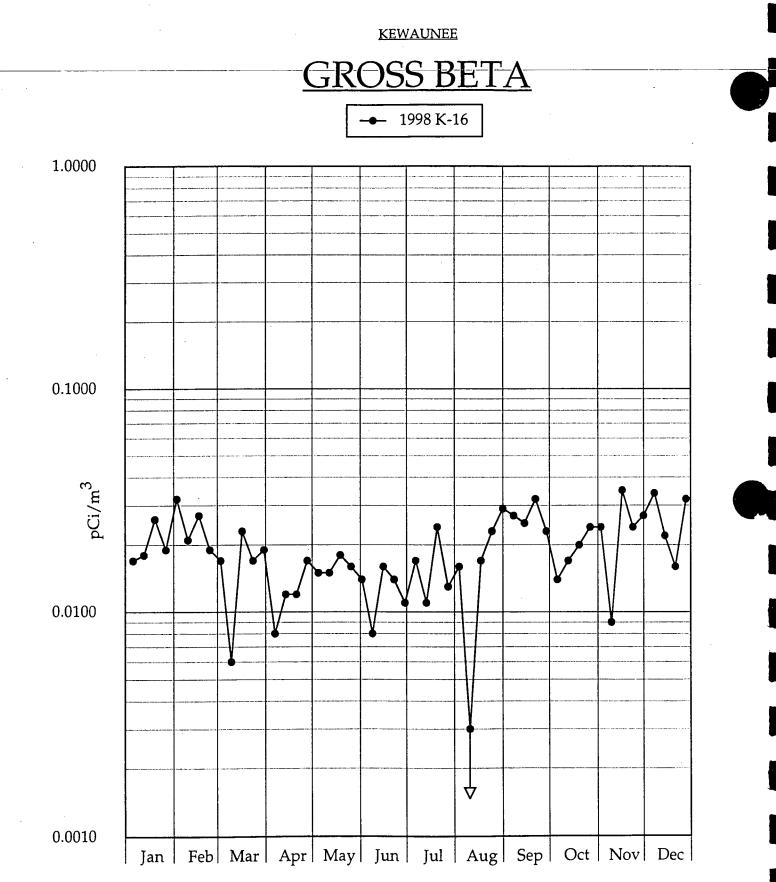


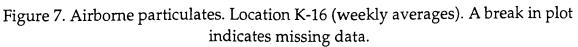













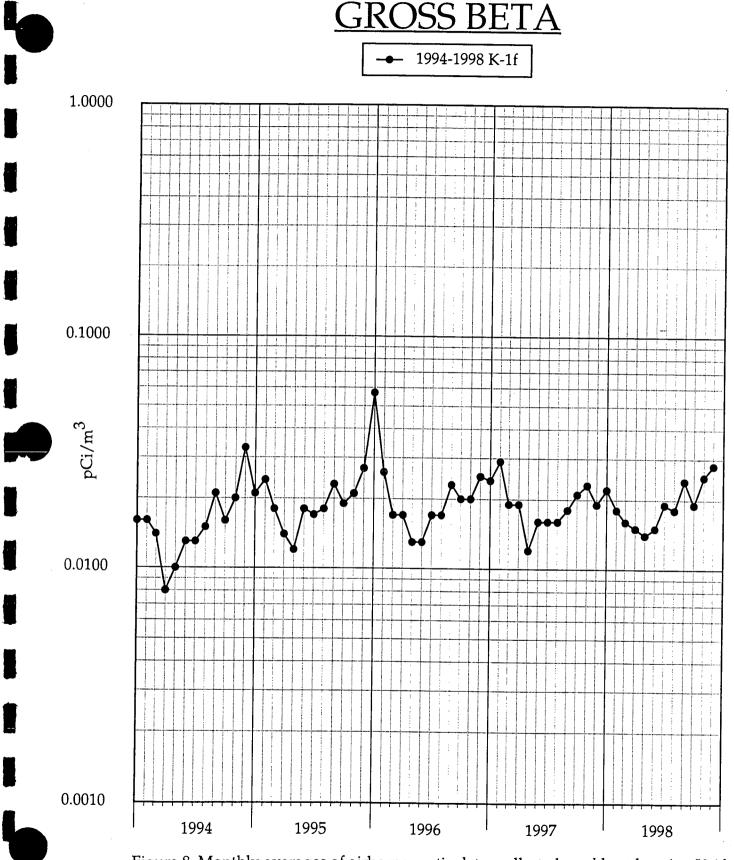




Figure 8. Monthly averages of airborne particulates collected weekly at location K-1f. A break in plot indicates missing data.

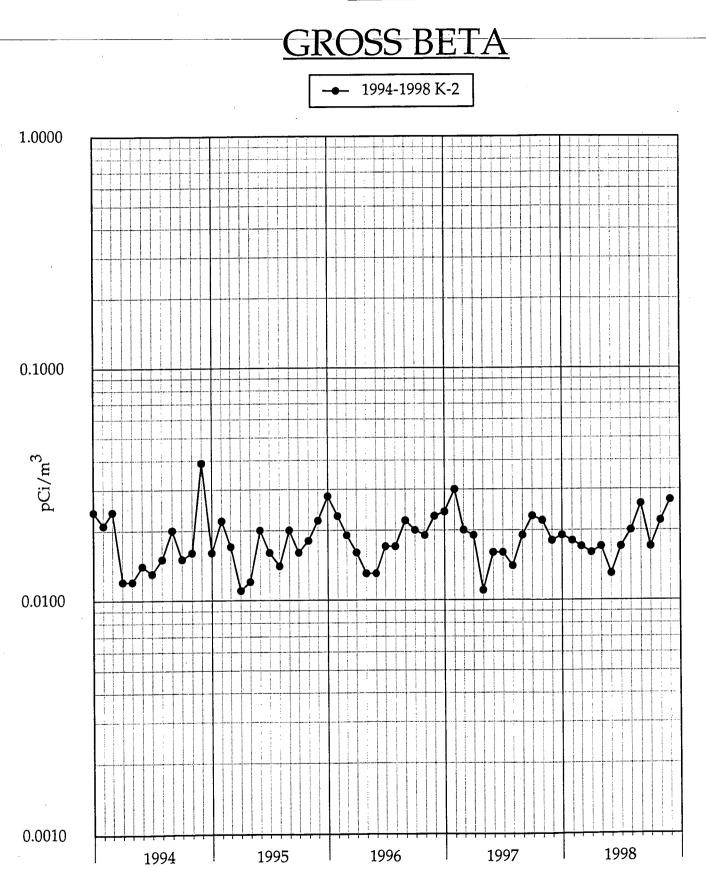
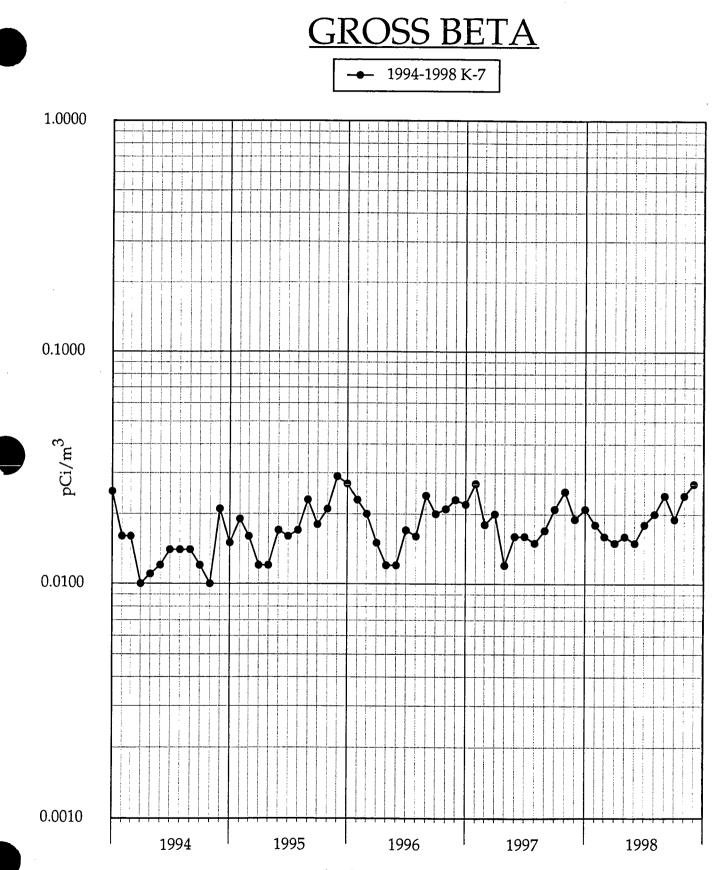
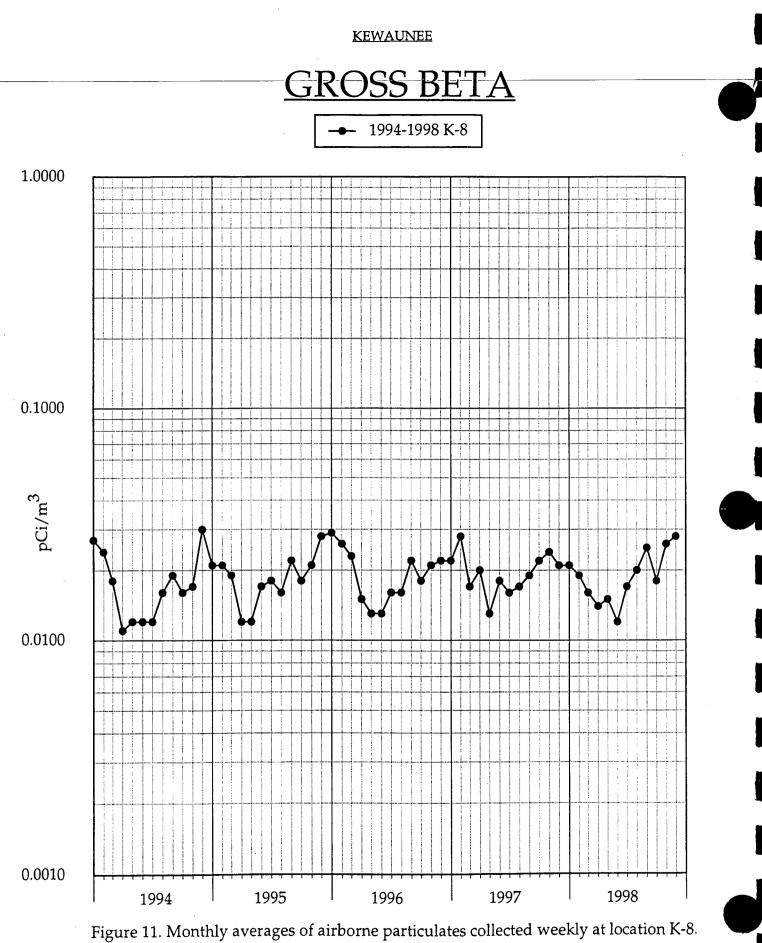
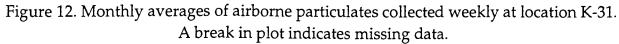





Figure 9. Monthly averages of airborne particulates collected weekly at location K-2. A break in plot indicates missing data.

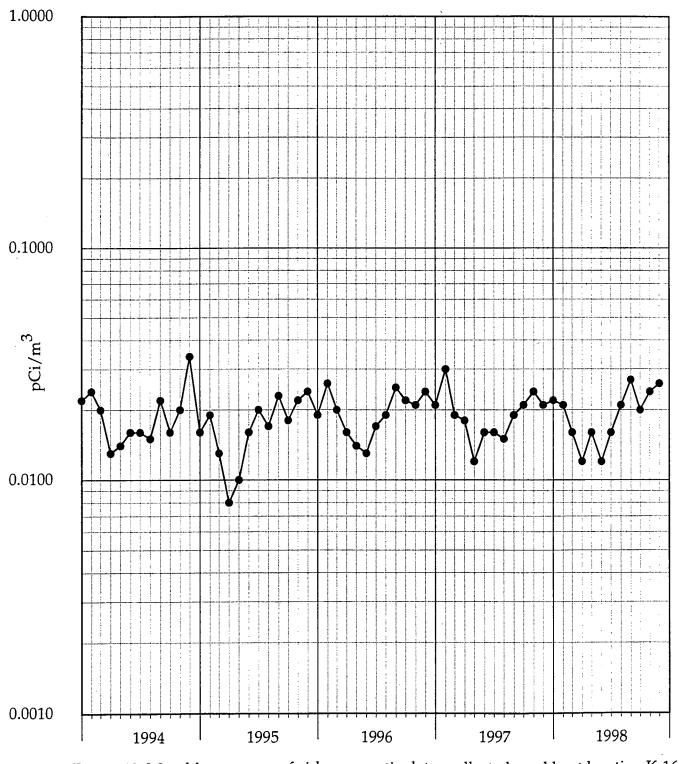


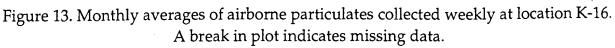
**KEWAUNEE** 

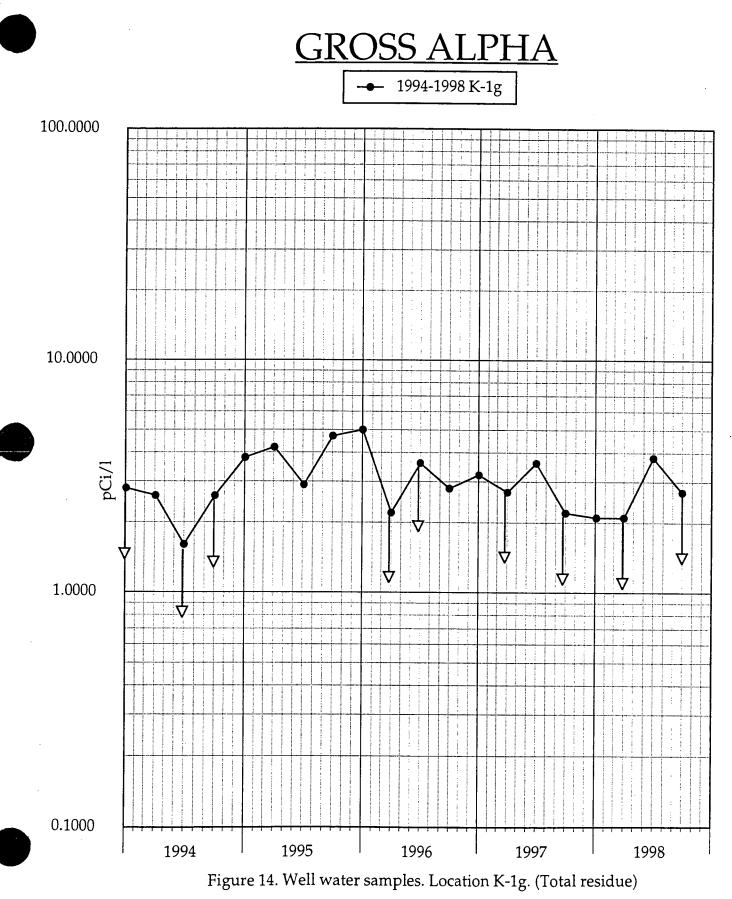

Figure 10. Monthly averages of airborne particulates collected weekly at location K-7. A break in plot indicates missing data.

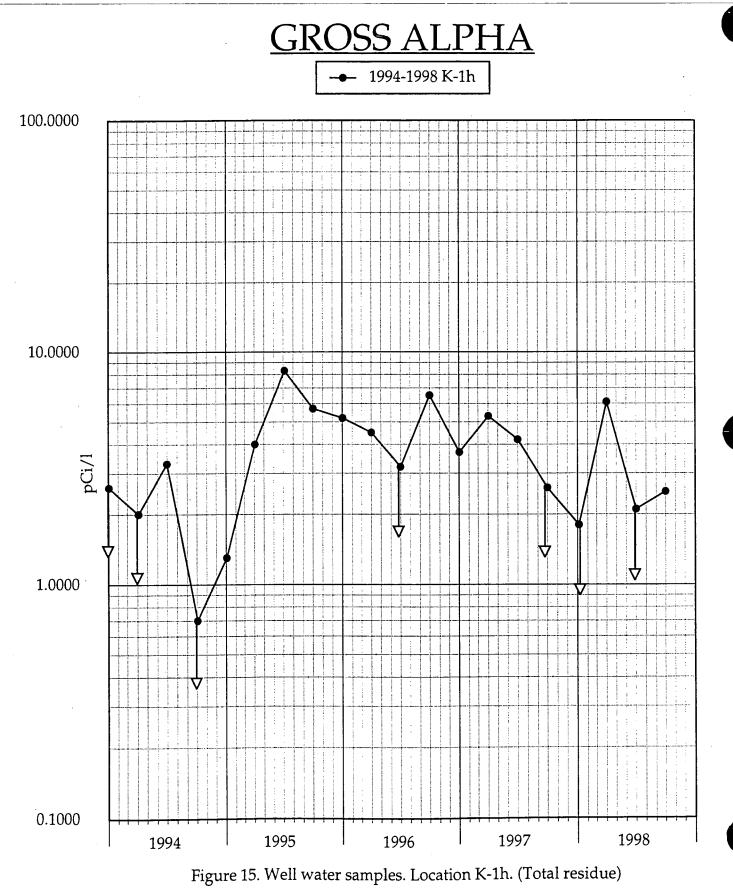


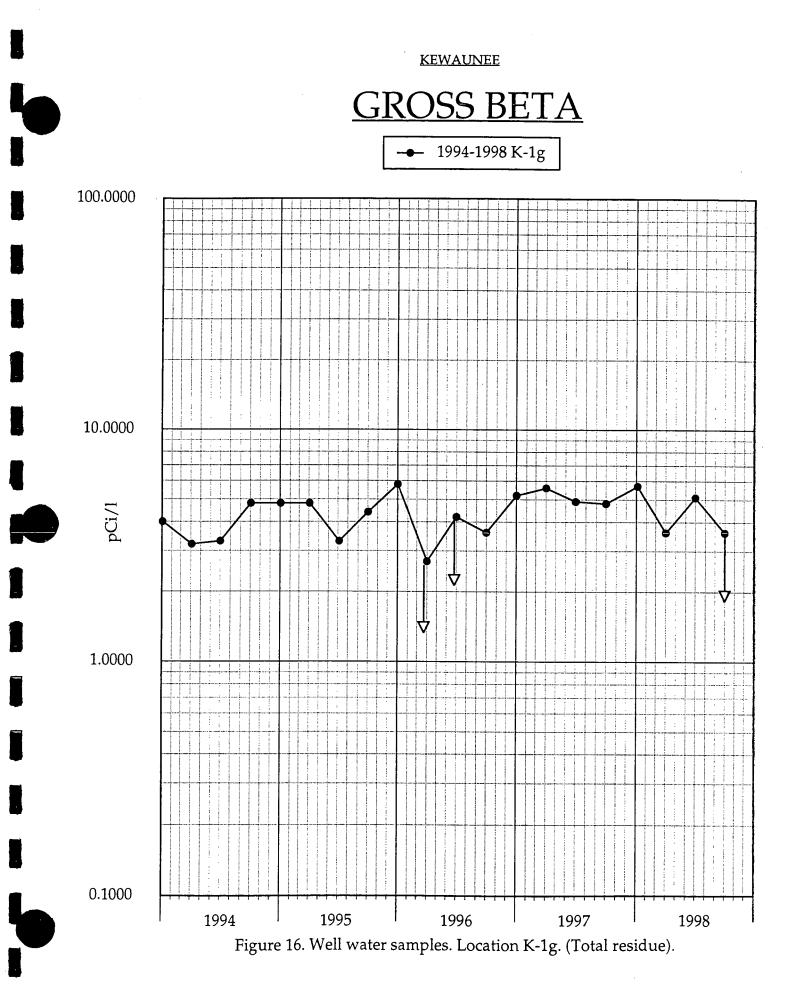
A break in plot indicates missing data.


ROSS BETA Т 1994-1998 K-15/K-31 Note: K-15 air sampler moved to K-31, 9/97. 1.0000 0.1000 pCi/m<sup>3</sup> 0.0100 0.0010 1994 1995 1996 1997 1998


**KEWAUNEE** 





---- 1994-1998 K-16











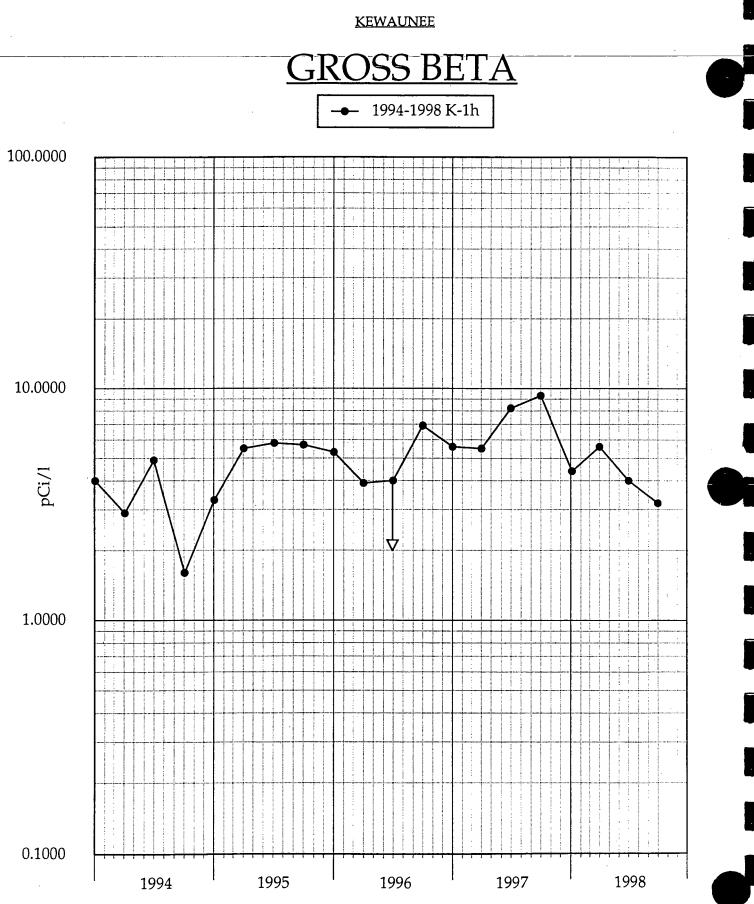



Figure 17. Well water samples. Location K-1h. (Total residue)

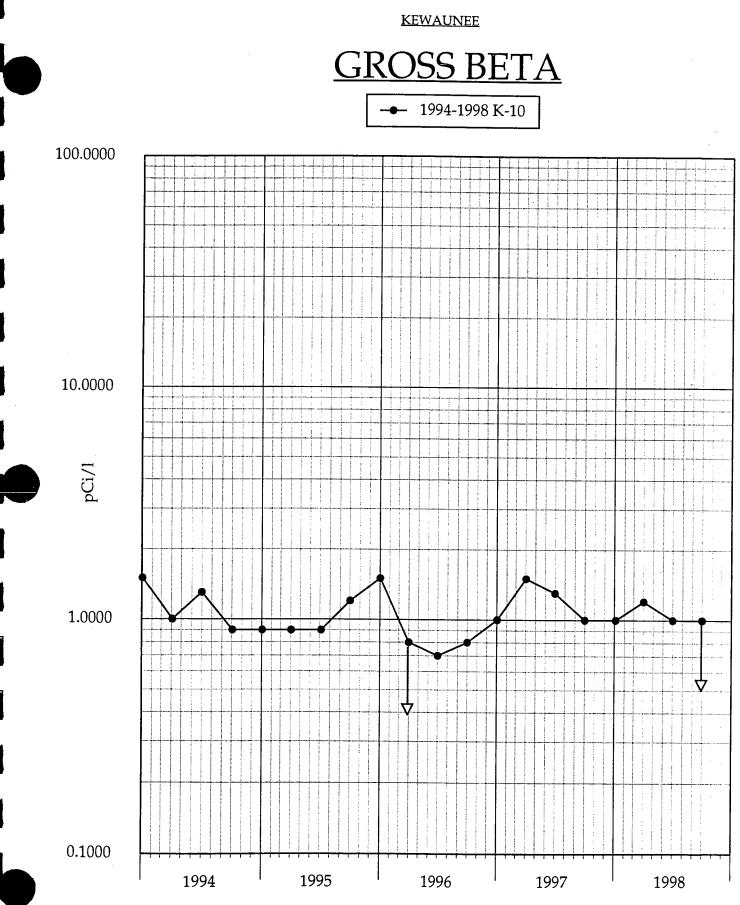
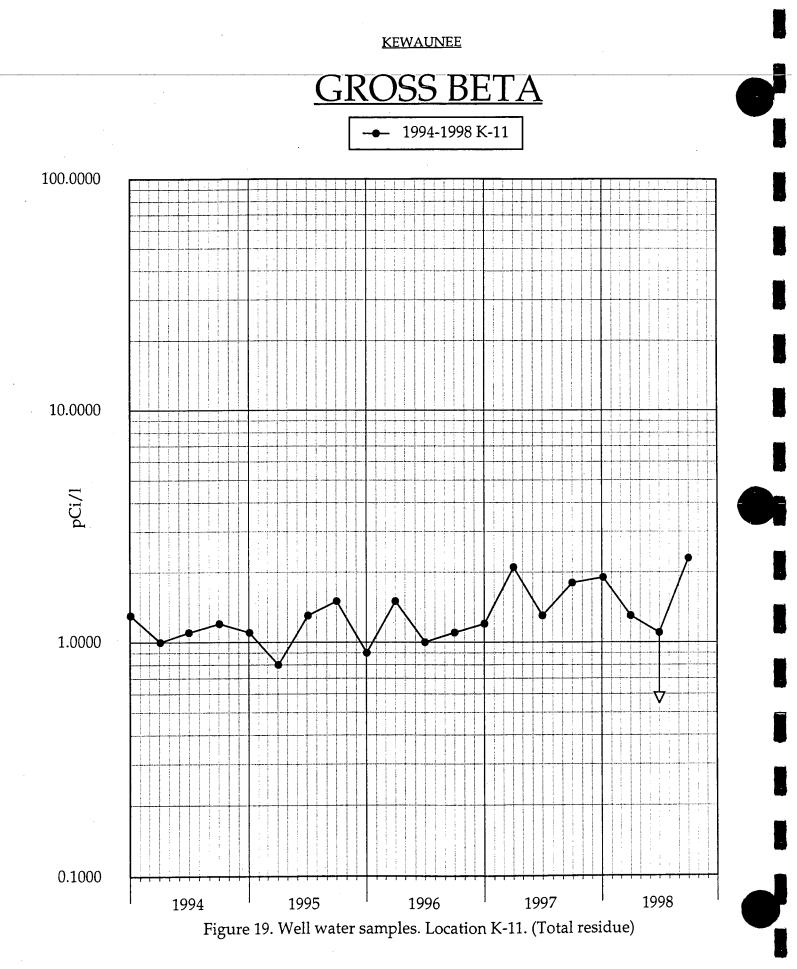
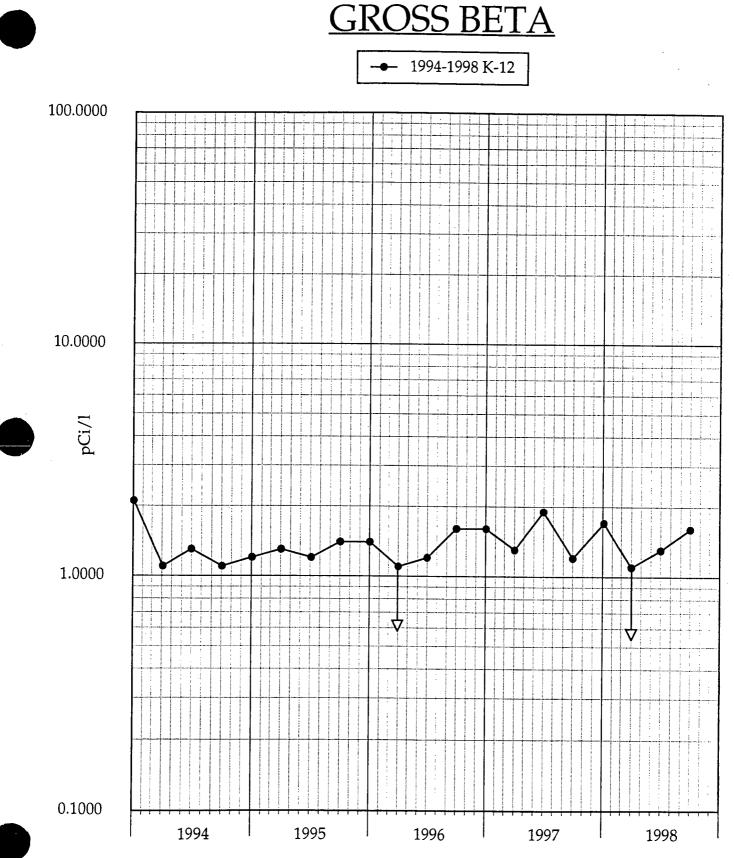
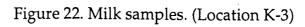




Figure 18. Well water samples. Location K-10. (Total residue)



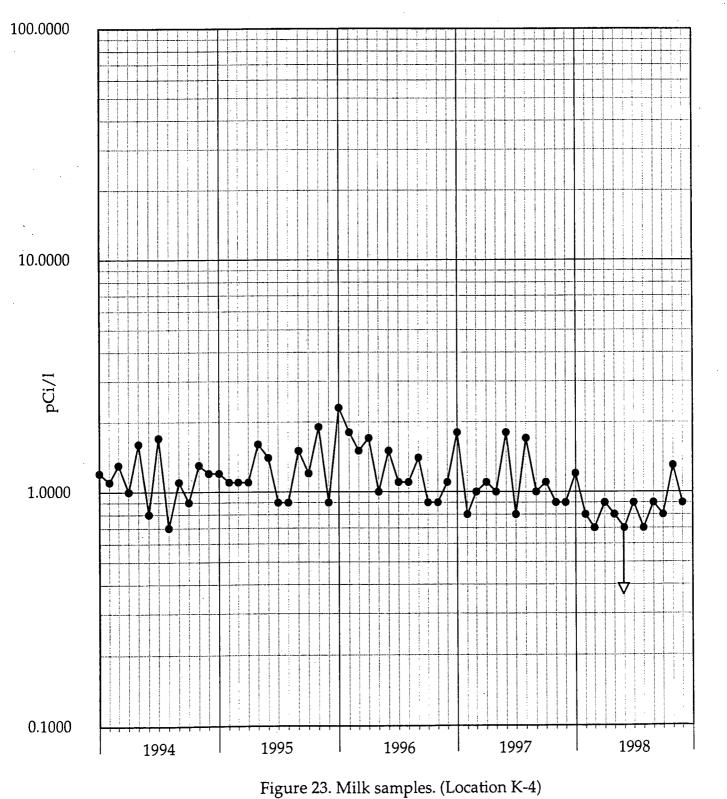




Figure 20. Well water samples. Location K-12. (Total residue)

<u>KEWAUNEE</u> 1994-1998 K-13 100.0000 10.0000 I 1 pCi/l 1.0000 0.1000 1996 1994 1998 1995 1997

Figure 21. Well water samples. Location K-13. (Total residue)

**TIUM-90** <u>STRON</u> 1994-1998 K-3 100.0000 10.0000 pCi/l 1.0000 1 0.1000 1994 1995 1996 1997 1998


<u>KEWAUNEE</u>



**KEWAUNEE** 

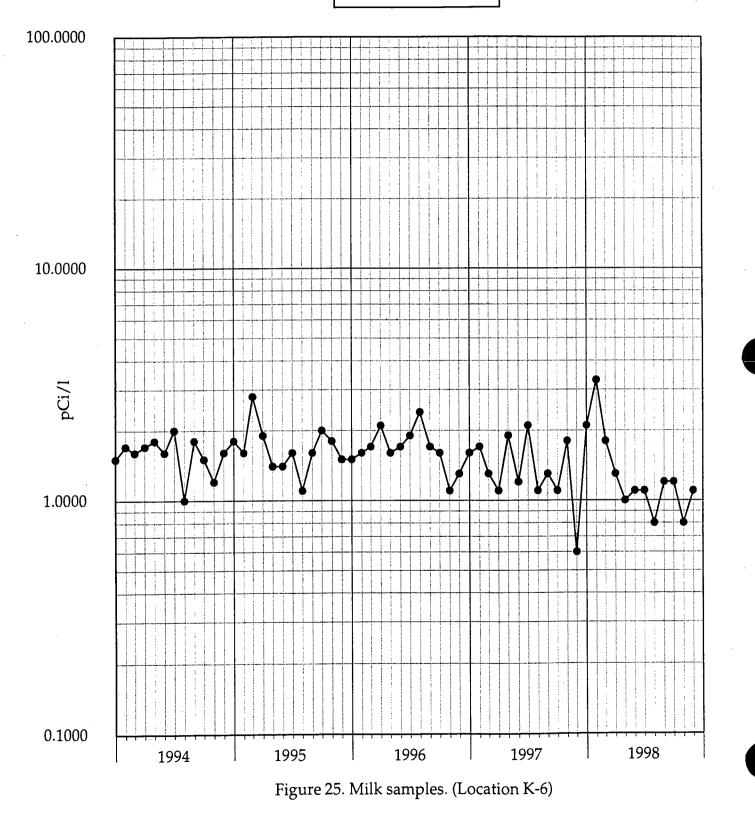
#### R <u>JM-90</u> S

1994-1998 K-4



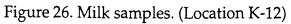
4

100.0000


<u>KEWAUNEE</u>

10.0000 pCi/l 1.0000 0.1000 1995 1994 1996 1997 1998 I

Figure 24. Milk samples. (Location K-5)


STRONTIUM-90

→ 1994-1998 K-6



STRONTIUM-90 - 1994-1998 K-12 100.0000 10.0000 pCi/l 1.0000 0.1000 1994 1995 1996 1997 1998

<u>KEWAUNEE</u>



# STRONTIUM-90

→ 1994-1998 K-19

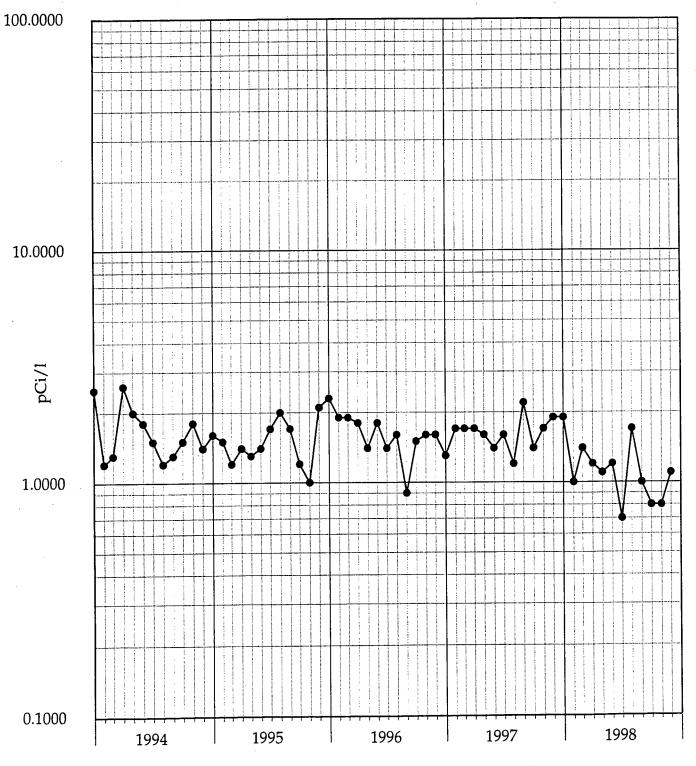
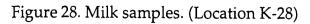



Figure 27. Milk samples. (Location K-19)


1994-1998 K-28 100.0000 . 1 10.0000 pCi/l 1.0000 į 0.1000 1994 1995 1996 1997 1998 ſ

<u>KEWAUNEE</u>

S

'R(

<u>ONTIUM-90</u>



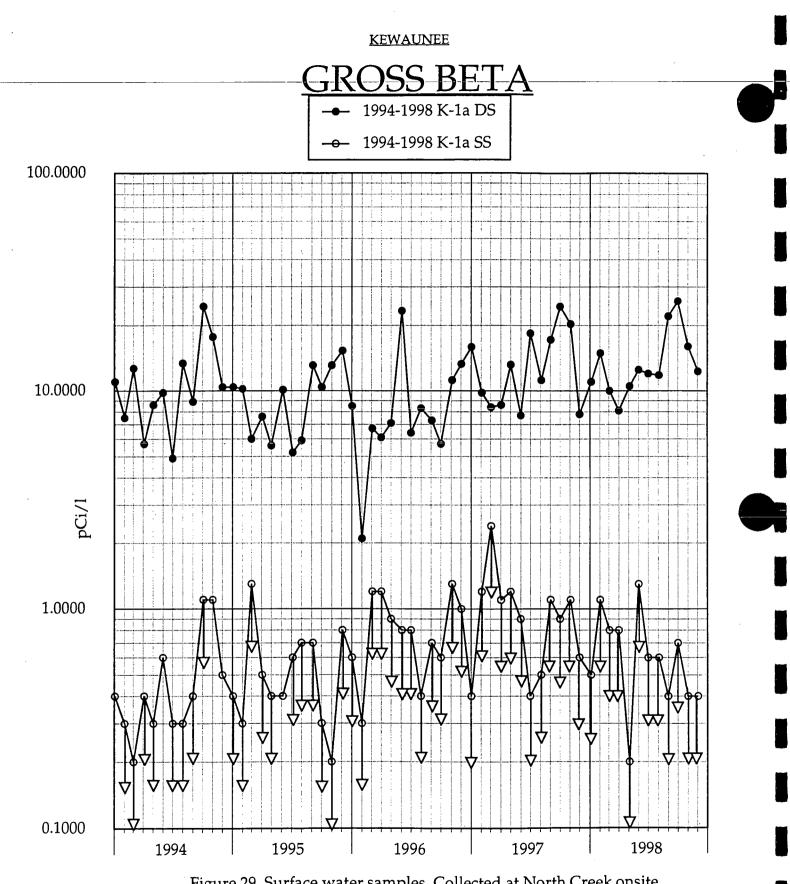
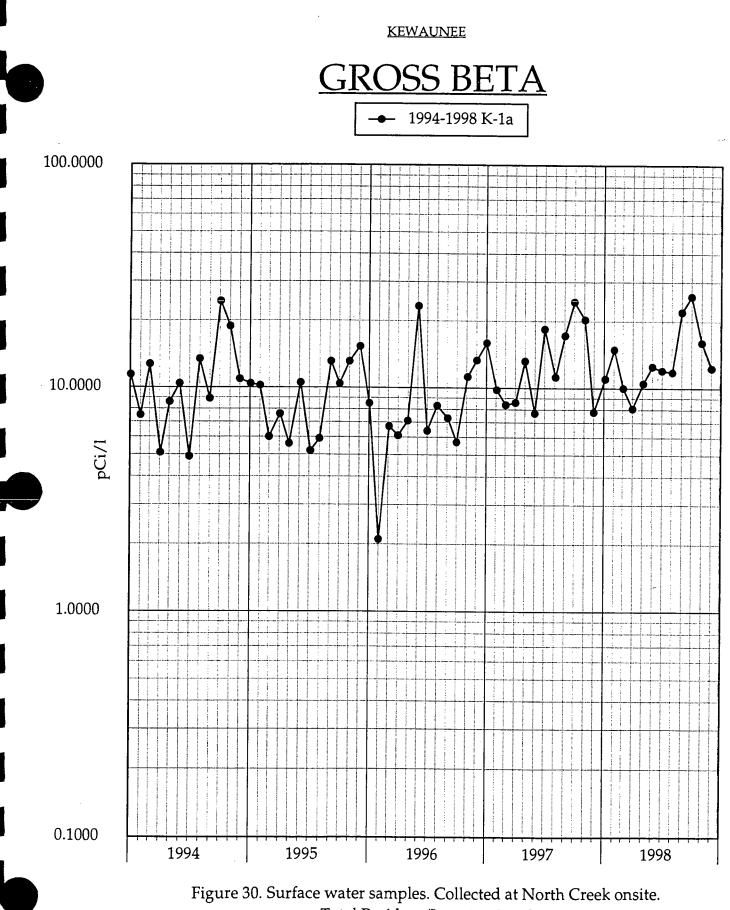




Figure 29. Surface water samples. Collected at North Creek onsite. (Location K-1a)



Total Residue. (Location K-1a)

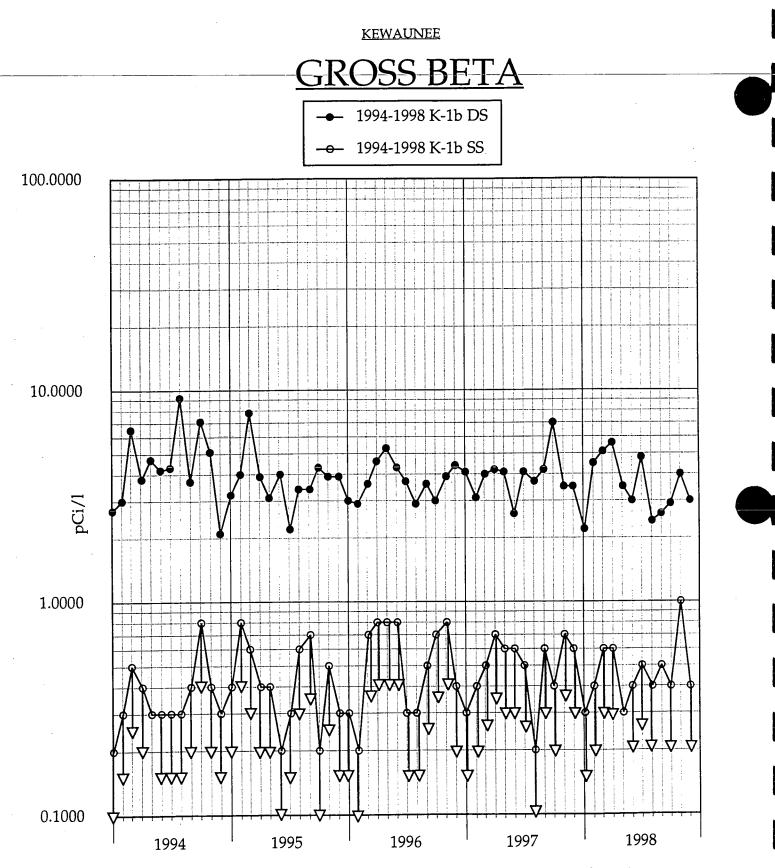



Figure 31. Surface water samples. Collected at Middle Creek onsite. (Location K-1b).

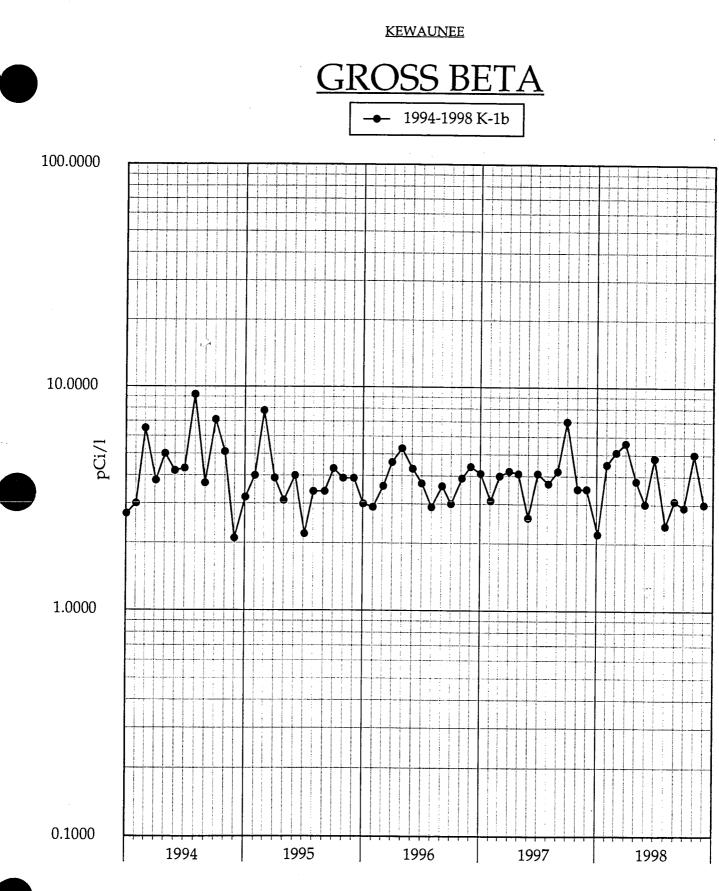
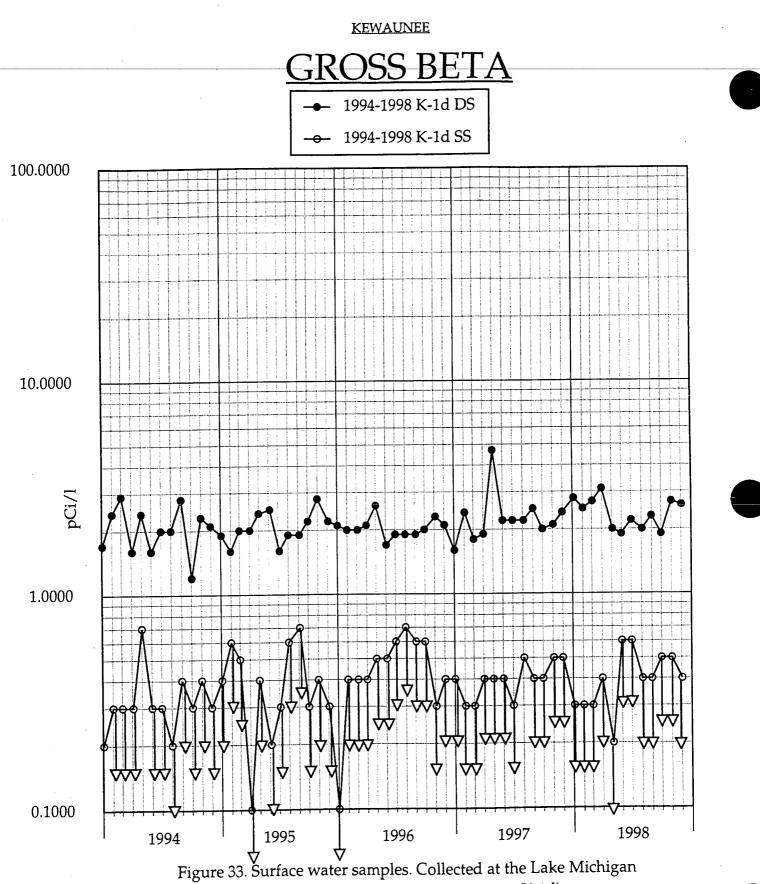
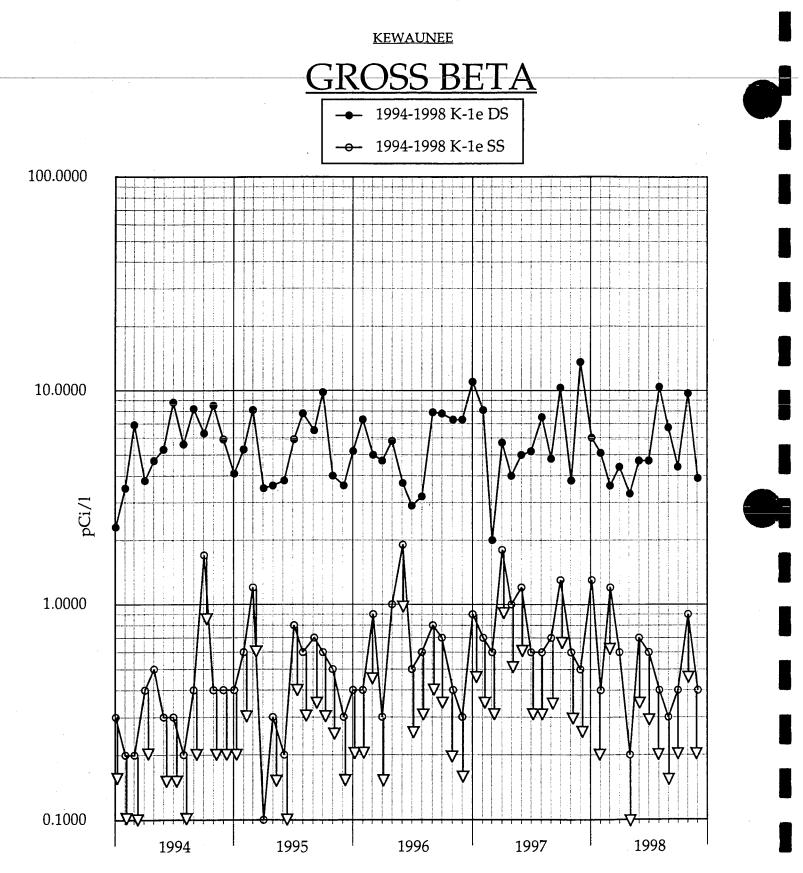
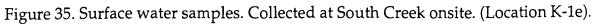




Figure 32. Surface water samples. Collected at Middle Creek onsite. Total residue. (Location K-1b)




condenser discharge onsite. (Location K-1d)


SS BETA 1994-1998 K-1d θ 100.0000 10.0000 pCi/l 1.0000 0.1000 1995 1994 1996 1997 1998

**KEWAUNEE** 

JR

Figure 34. Surface water samples. Collected at the Lake Michigan condenser discharge onsight. Total residue (Location K-1d).





GROSS BETA → 1994-1998 K-1e

**KEWAUNEE** 

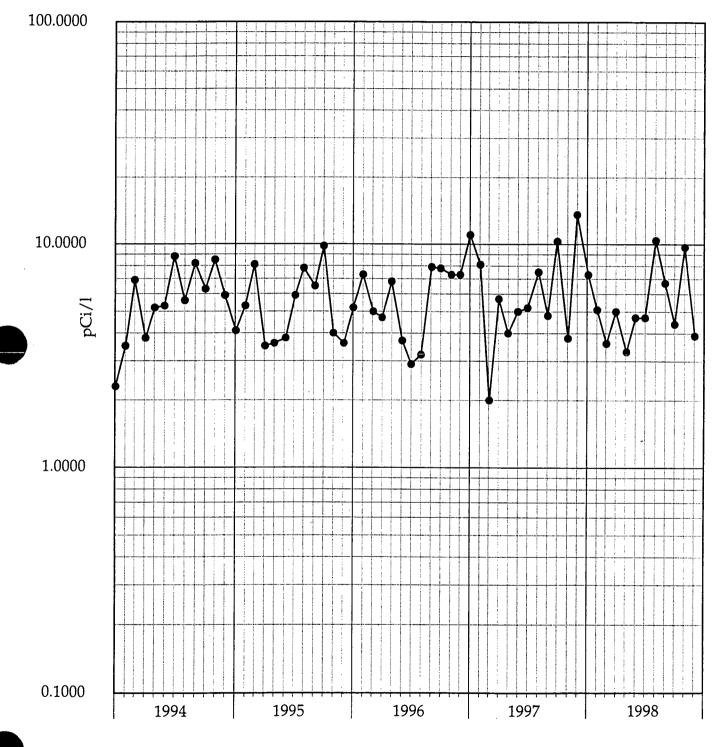



Figure 36. Surface water samples. Collected at South Creek onsite. Total residue (Location K-1e).

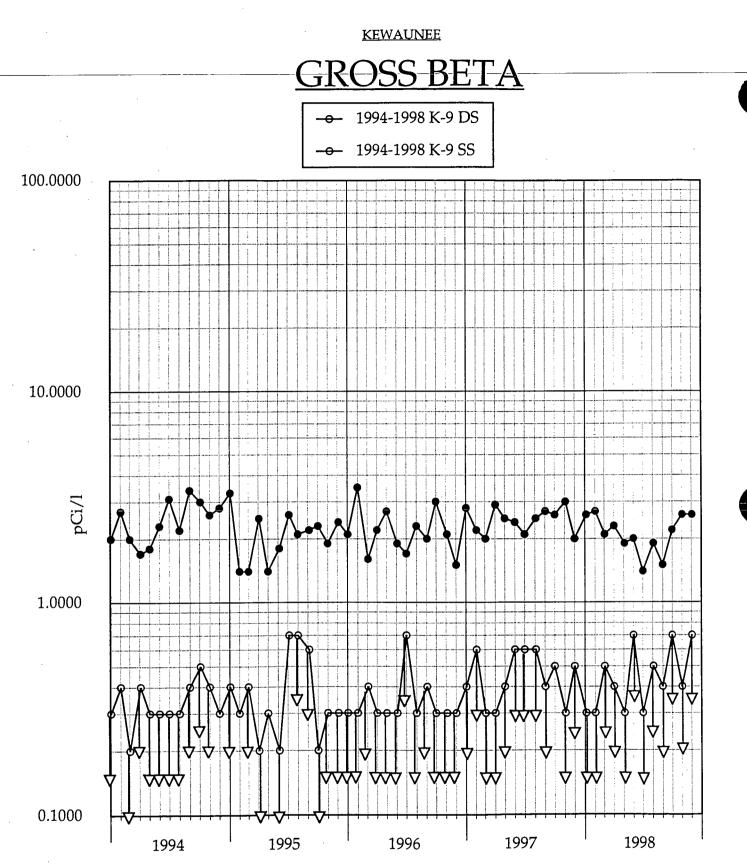
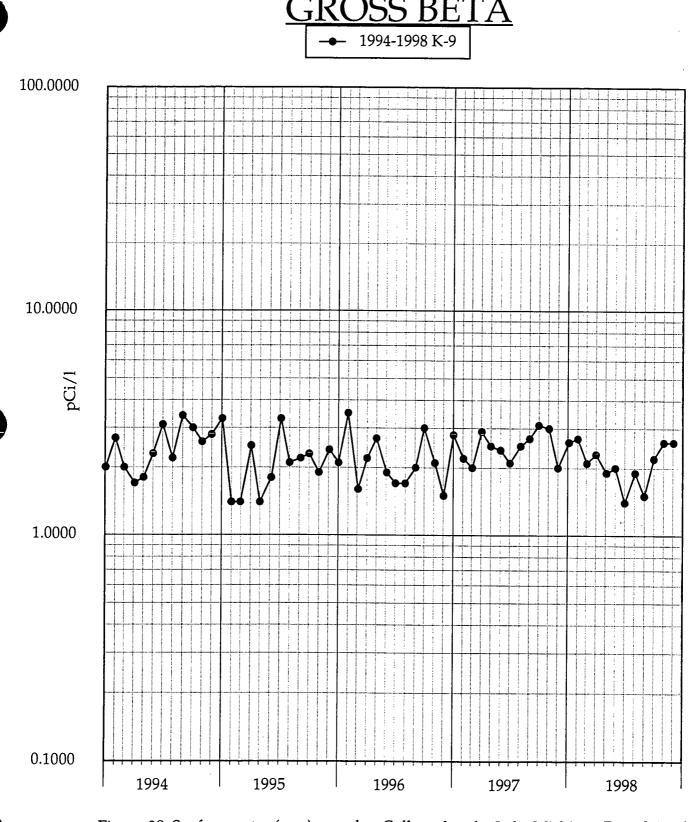




Figure 37. Surface water (raw) samples. Collected at Lake Michigan Rostok intake. (Location K-9)



**KEWAUNEE** 

Figure 38. Surface water (raw) samples. Collected at the Lake Michigan Rostok intake. Total residue (Location K-9).

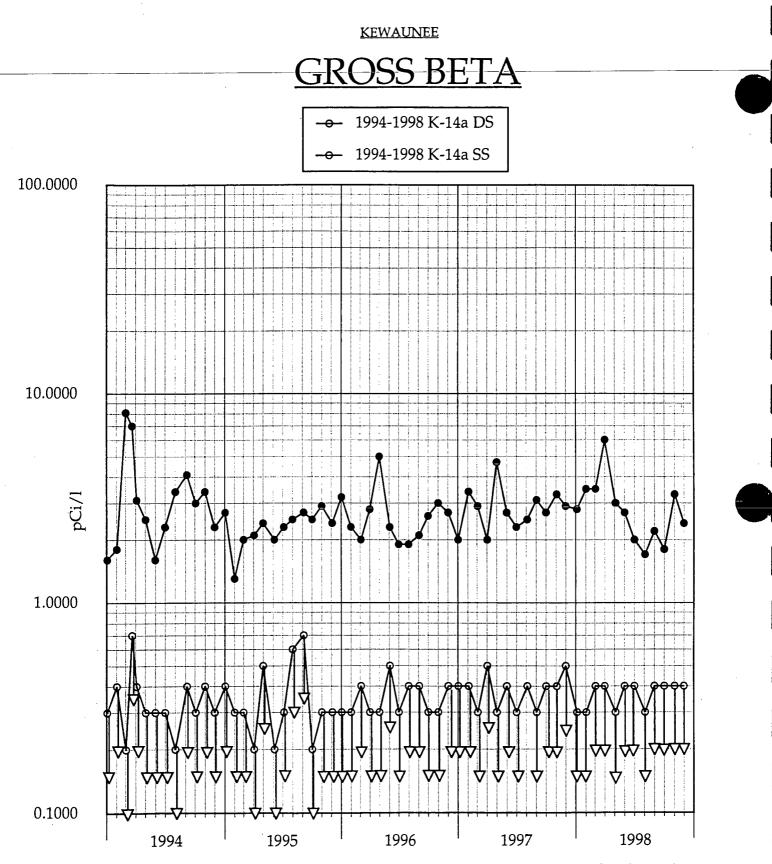
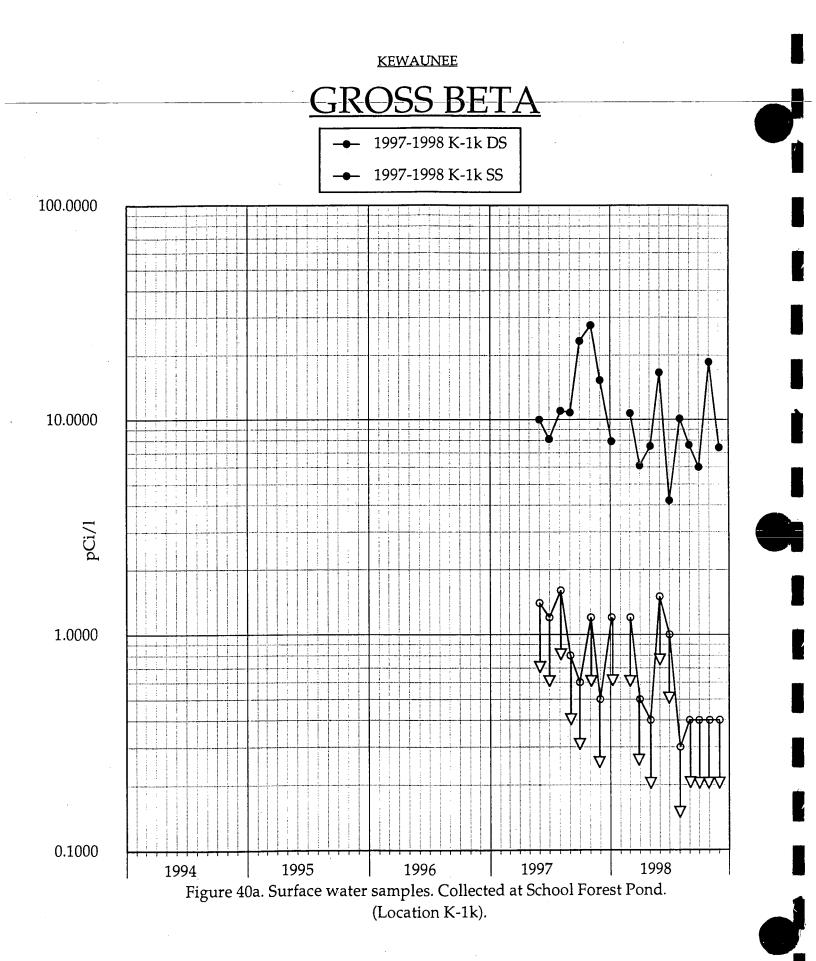
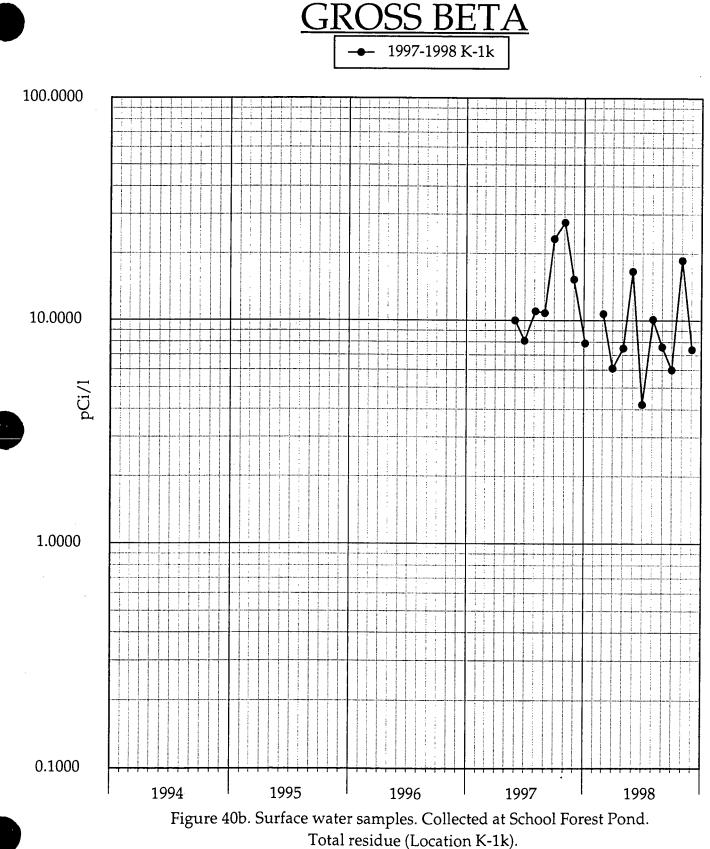



Figure 39. Surface water samples. Collected at Lake Michigan Two Creeks Park. (Location K-14a).

1994-1998 K-14a 100.0000 10.0000 pCi/l 1.0000 0.1000 1995 1997 1996 1994 1998


Z


**KEWAUNEE** 

BET

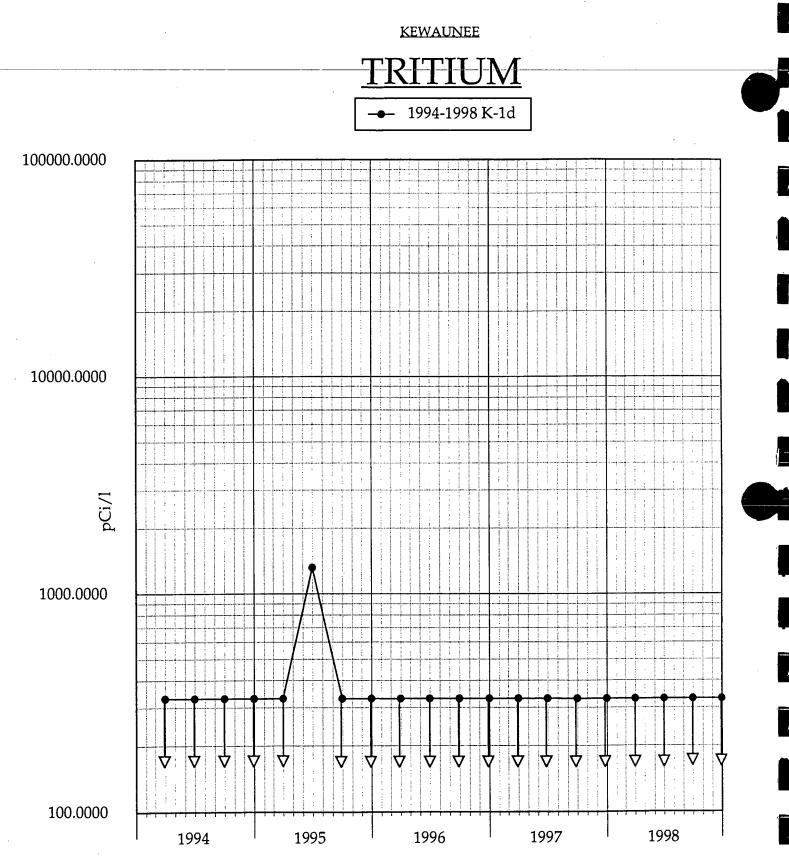
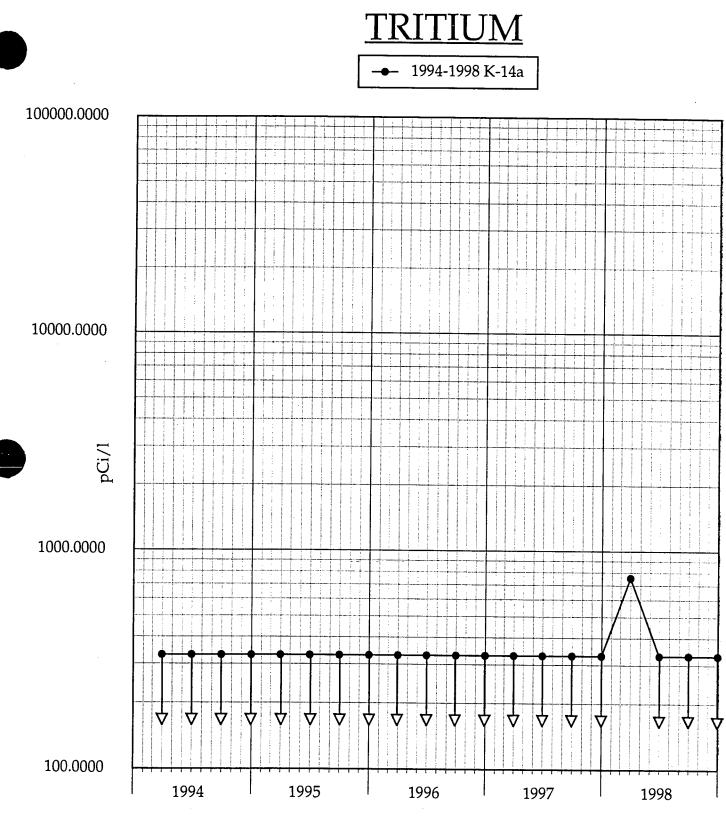
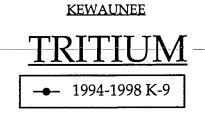
GR

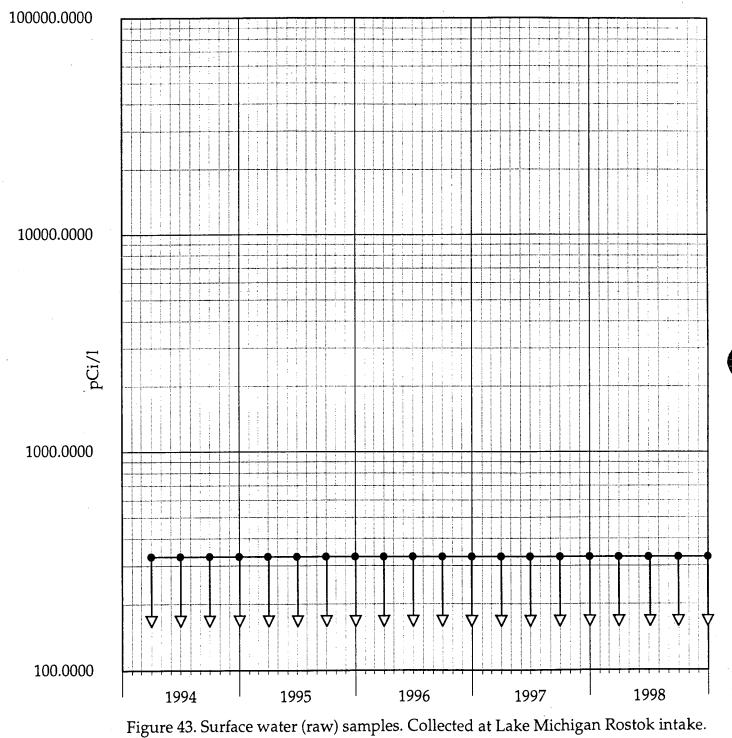
Figure 40. Surface water samples. Collected at the Lake Michigan Two Creeks Park. Total residue (Location K-14a).





.....



Figure 41. Surface water samples. Collected at the Lake Michigan condenser discharge onsite. (Location K-1d).



**KEWAUNEE** 

Figure 42. Surface water samples. Collected at Lake Michigan Two Creeks Park. (Location K-14a).





(Location K-9).

## 6.0 DATA TABULATIONS

#### **KEWAUNEE**

Table 4. Airborne particulates and charcoal canisters, analyses for gross beta and iodine-131<sup>a</sup>. Location: K-1f Units: pCi/m<sup>3</sup> Collection: Continuous, weekly exchange.

| Date          | Volume            |                   | Date          | Volume            |                   |
|---------------|-------------------|-------------------|---------------|-------------------|-------------------|
| Collected     | (m <sup>3</sup> ) | Gross Beta        | Collected     | (m <sup>3</sup> ) | Gross Beta        |
| Required LL   | <u>D</u>          | 0.010             |               |                   | <u>0.010</u>      |
| 01-06-98      | 284               | $0.016 \pm 0.003$ | 07-07-98      | 255               | $0.016 \pm 0.003$ |
| 01-13-98      | 283               | $0.021 \pm 0.003$ | 07-14-98      | 252               | $0.019 \pm 0.004$ |
| 01-20-98      | 284               | $0.022 \pm 0.003$ | 07-21-98      | 274               | $0.029 \pm 0.004$ |
| 01-27-98      | 283               | $0.021 \pm 0.003$ | 07-28-98      | 278               | $0.013 \pm 0.003$ |
| 02-03-98      | 284               | $0.029 \pm 0.004$ |               |                   |                   |
|               |                   |                   | 08-04-98      | 284               | $0.016 \pm 0.003$ |
| 02-10-98      | 285               | $0.021 \pm 0.004$ | 08-11-98      | 294               | $0.021 \pm 0.003$ |
| 02-17-98      | 283               | $0.024 \pm 0.003$ | 08-18-98      | 302               | $0.013 \pm 0.003$ |
| 02-24-98      | 292               | $0.013 \pm 0.003$ | 08-25-98      | 305               | $0.024 \pm 0.003$ |
| 03-03-98      | 306               | $0.014 \pm 0.003$ | 09-01-98      | 294               | $0.018 \pm 0.003$ |
| 03-10-98      | 292               | $0.008 \pm 0.002$ | 09-08-98      | 280               | $0.025 \pm 0.003$ |
| 03-17-98      | 350               | $0.020 \pm 0.003$ | 09-15-98      | 251               | $0.023 \pm 0.004$ |
| 03-24-98      | 335               | $0.018 \pm 0.003$ | 09-22-98      | 256               | $0.025 \pm 0.004$ |
| 03-31-98      | 360               | $0.018 \pm 0.003$ | 09-29-98      | 263               | $0.023 \pm 0.004$ |
| 1st Quarter 1 | –<br>Mean ± s.d.  | 0.019 ± 0.005     | 3rd Quarter 1 | _<br>Mean ± s.d.  | 0.020 ± 0.005     |
| 04-07-98      | 278               | 0.009 ±0.003      | 10-06-98      | 274               | $0.016 \pm 0.003$ |
| 04-14-98      | 273               | $0.019 \pm 0.004$ | 10-13-98      | 287               | $0.017 \pm 0.003$ |
| 04-21-98      | 274               | $0.015 \pm 0.003$ | 10-20-98      | 295               | $0.018 \pm 0.003$ |
| 04-28-98      | 268               | 0.016 ±0.003      | 10-27-98      | 285               | $0.025 \pm 0.004$ |
|               |                   |                   | 11-03-98      | 284               | $0.021 \pm 0.004$ |
| 05-05-98      | 285               | $0.012 \pm 0.003$ |               |                   |                   |
| 05-12-98      | 304               | $0.010 \pm 0.002$ | 11-10-98      | 284               | $0.011 \pm 0.003$ |
| 05-19-98      | 303               | $0.018 \pm 0.003$ | 11-17-98      | 282               | $0.034 \pm 0.004$ |
| 05-26-98      | 295               | $0.014 \pm 0.003$ | 11-24-98      | 273               | $0.021 \pm 0.004$ |
| 06-02-98      | 267               | $0.014 \pm 0.003$ | 12-01-98      | 273               | $0.032 \pm 0.004$ |
| 06-09-98      | 255               | 0.009 ±0.003      | 12-08-98      | 274               | $0.036 \pm 0.004$ |
| 06-16-98      | 281               | $0.014 \pm 0.003$ | 12-15-98      | 273               | $0.026 \pm 0.004$ |
| 06-23-98      | 267               | $0.024 \pm 0.004$ | 12-22-98      | 275               | $0.014 \pm 0.003$ |
| 06-30-98      | 252               | $0.012 \pm 0.003$ | 12-29-98      | 272               | $0.035 \pm 0.004$ |
|               |                   |                   |               | _                 |                   |

Cumulative Average0.019Previous Annual Average0.019

Table 5. Airborne particulates and charcoal canisters, analyses for gross beta and iodine-131<sup>a</sup>. Location: K-2 Units: pCi/m<sup>3</sup> Collection: Continuous, weekly exchange.

Date Volume Date Volume  $(m^3)$ Collected Gross Beta Collected (m<sup>3</sup>) Gross Beta Required LLD <u>0.010</u> 0.010 01-06-98 304  $0.014 \pm 0.003$ 07-07-98 306  $0.016 \pm 0.003$ 01-13-98 304  $0.016 \pm 0.003$ 07-14-98 301  $0.017 \pm 0.003$ 01-20-98 304  $0.019 \pm 0.003$ 07-21-98 312  $0.023 \pm 0.003$ 01-27-98 303  $0.020 \pm 0.003$ 07-28-98 298  $0.011 \pm 0.002$ 02-03-98 304  $0.028 \pm 0.004$ 08-04-98 306  $0.016 \pm 0.003$ 02-10-98 306  $0.020 \pm 0.003$ 302 08-11-98  $0.025 \pm 0.003$ 02-17-98 303  $0.027 \pm 0.003$ 08-18-98 300  $0.012 \pm 0.003$ 02-24-98 302  $0.012 \pm 0.003$ 08-25-98 310  $0.028 \pm 0.003$ 03-03-98 308  $0.012 \pm 0.003$ 09-01-98 301  $0.021 \pm 0.003$ 03-10-98 305  $0.008 \pm 0.003$ 09-08-98 280  $0.026 \pm 0.004$ 03-17-98 302  $0.024 \pm 0.003$ 09-15-98 261  $0.028 \pm 0.004$ 03-24-98 304  $0.018 \pm 0.003$ 09-22-98 310  $0.024 \pm 0.004$ 03-31-98 306  $0.019 \pm 0.003$ 09-29-98 302  $0.024 \pm 0.003$ 1st Quarter Mean  $\pm$  s.d.  $0.018 \pm 0.006$ 3rd Quarter Mean ± s.d.  $0.021 \pm 0.006$ 04-07-98 303  $0.010 \pm 0.002$ 10-06-98 304  $0.011 \pm 0.003$ 04-14-98 302  $0.021 \pm 0.003$ 10-13-98 300  $0.014 \pm 0.003$ 304 04-21-98  $0.014 \pm 0.003$ 10-20-98 307  $0.021 \pm 0.003$ 04-28-98 305 0.017 ±0.003 10-27-98 306  $0.025 \pm 0.003$ 11-03-98 304  $0.016 \pm 0.003$ 05-05-98 305 0.014 ±0.003 05-12-98 252  $0.018 \pm 0.003$ 11-10-98 305  $0.009 \pm 0.003$ 250 05-19-98  $0.025 \pm 0.004$ 11-17-98 305  $0.031 \pm 0.003$ 282 05-26-98  $0.014 \pm 0.003$ 11-24-98 303  $0.020 \pm 0.003$ 06-02-98 302  $0.012 \pm 0.003$ 12-01-98 304  $0.028 \pm 0.003$  $0.007 \pm 0.002$ 06-09-98 307 12-08-98 274  $0.035 \pm 0.004$ 06-16-98 297  $0.015 \pm 0.003$ 12-15-98 304  $0.023 \pm 0.004$ 06-23-98 308  $0.019 \pm 0.003$ 12-22-98 306  $0.013 \pm 0.003$ 06-30-98 301  $0.011 \pm 0.003$ 12-29-98 302  $0.035 \pm 0.004$ 2nd Quarter Mean ± s.d.  $0.015 \pm 0.005$ 4th Quarter Mean  $\pm$  s.d.  $0.022 \pm 0.009$ 

Cumulative Average0.019Previous Annual Average0.019

Table 6. Airborne particulates and charcoal canisters, analyses for gross beta and iodine-131<sup>a</sup>.
 Location: K-7
 Units: pCi/m<sup>3</sup>
 Collection: Continuous, weekly exchange.

Volume Date Volume Date  $(m^3)$ Collected  $(m^3)$ Collected Gross Beta Gross Beta 0.010 0.010 Required LLD  $0.015 \pm 0.003$ 304 07-07-98 255  $0.015 \pm 0.003$ 01-06-98 01-13-98 303  $0.021 \pm 0.003$ 07-14-98 252  $0.017 \pm 0.004$  $0.023 \pm 0.003$ 01-20-98 305 07-21-98 259  $0.024 \pm 0.004$ 303  $0.019 \pm 0.003$ 07-28-98 248  $0.014 \pm 0.004$ 01-27-98 02-03-98 305  $0.026 \pm 0.004$ 08-04-98 253  $0.013 \pm 0.003$ 306  $0.021 \pm 0.003$ 08-11-98 255  $0.025 \pm 0.004$ 02-10-98 250 02-17-98 303  $0.027 \pm 0.003$ 08-18-98  $0.015 \pm 0.004$  $0.014 \pm 0.003$ 08-25-98 283  $0.027 \pm 0.004$ 02-24-98 305 03-03-98 302  $0.011 \pm 0.003$ 09-01-98 278  $0.021 \pm 0.004$  $0.004 \pm 0.002$ 270 03-10-98 300 09-08-98  $0.023 \pm 0.003$ 256  $0.023 \pm 0.004$ 09-15-98 251  $0.020 \pm 0.004$ 03-17-98 306  $0.017 \pm 0.003$ 09-22-98 280  $0.027 \pm 0.004$ 03-24-98 279  $0.019 \pm 0.003$ 09-29-98 320  $0.025 \pm 0.003$ 03-31-98 1st Quarter Mean ± s.d.  $0.018 \pm 0.006$ 3rd Quarter Mean ± s.d.  $0.020 \pm 0.005$ 04-07-98 258  $0.011 \pm 0.003$ 10-06-98 334  $0.015 \pm 0.003$ 04-14-98 267  $0.017 \pm 0.003$ 10-13-98 330  $0.012 \pm 0.003$ 253 338  $0.020 \pm 0.003$ 04-21-98  $0.014 \pm 0.003$ 10-20-98  $0.019 \pm 0.004$ 334 04-28-98 251 10-27-98  $0.027 \pm 0.003$ 11-03-98 330  $0.019 \pm 0.003$ 0.015 ±0.003 05-05-98 255 254  $0.014 \pm 0.003$ 11-10-98 316  $0.010 \pm 0.003$ 05-12-98 315  $0.036 \pm 0.004$ 05-19-98 250  $0.023 \pm 0.004$ 11-17-98 05-26-98 256  $0.014 \pm 0.003$ 11-24-98 323  $0.018 \pm 0.003$ 328  $0.031 \pm 0.003$  $0.015 \pm 0.003$ 12-01-98 252 06-02-98 254 0.009 ±0.003 12-08-98 337  $0.034 \pm 0.003$ 06-09-98  $0.017 \pm 0.003$ 12-15-98 354  $0.022 \pm 0.003$ 06-16-98 256  $0.021 \pm 0.004$ 12-22-98 357  $0.015 \pm 0.003$ 06-23-98 252 12-29-98 340  $0.037 \pm 0.004$ 06-30-98 253  $0.014 \pm 0.003$ 4th Quarter Mean  $\pm$  s.d.  $0.023 \pm 0.009$ 2nd Quarter Mean  $\pm$  s.d.  $0.016 \pm 0.004$ 

Cumulative Average0.019Previous Annual Average0.019

Table 7. Airborne particulates and charcoal canisters, analyses for gross beta and iodine-131<sup>a</sup>. Location: K-8 Units: pCi/m<sup>3</sup> Collection: Continuous, weekly exchange.

| Date          | Volume            |                   | Date              | Volume            |                   |
|---------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Collected     | (m <sup>3</sup> ) | Gross Beta        | Collected         | (m <sup>3</sup> ) | Gross Beta        |
| Required LL   | D                 | <u>0.010</u>      |                   |                   | <u>0.010</u>      |
| 01-06-98      | 294               | $0.015 \pm 0.003$ | 07-07-98          | 285               | $0.017 \pm 0.003$ |
| 01-13-98      | 284               | $0.020 \pm 0.003$ | 07-14-98          | 292               | $0.016 \pm 0.003$ |
| 01-20-98      | 284               | $0.025 \pm 0.003$ | 07-21-98          | 311               | $0.021 \pm 0.003$ |
| 01-27-98      | 282               | $0.021 \pm 0.003$ | 07-28-98          | 298               | $0.012 \pm 0.002$ |
| 02-03-98      | 284               | $0.025 \pm 0.004$ |                   |                   |                   |
|               |                   |                   | 08-04-98          | 294               | 0.016 ± 0.003     |
| 02-10-98      | 295               | $0.025 \pm 0.004$ | 08-11-98          | 294               | $0.023 \pm 0.003$ |
| 02-17-98      | 303               | $0.026 \pm 0.003$ | 08-18-98          | 300               | $0.016 \pm 0.003$ |
| 02-24-98      | 305               | $0.013 \pm 0.003$ | 08-25-98          | 308               | $0.025 \pm 0.003$ |
| 03-03-98      | 303               | $0.012 \pm 0.003$ | 09-01-98          | 304               | $0.022 \pm 0.003$ |
| 03-10-98      | 294               | $0.006 \pm 0.002$ | 09-08-98          | 305               | 0.024 ± 0.003     |
| 03-17-98      | 256               | $0.022 \pm 0.003$ | 09-15-98          | 301               | $0.024 \pm 0.003$ |
| 03-24-98      | 305               | $0.018 \pm 0.003$ | 09-22-98          | 306               | $0.026 \pm 0.004$ |
| 03-31-98      | 303               | $0.018 \pm 0.003$ | 09-29-98          | 305               | $0.025 \pm 0.003$ |
| 1st Quarter N | _<br>/lean ± s.d. | 0.019 ± 0.006     | 3rd Quarter N     | /lean ± s.d.      | $0.021 \pm 0.005$ |
| 04-07-98      | 303               | 0.010 ±0.002      | 10-06-98          | 304               | $0.012 \pm 0.003$ |
| 04-14-98      | 303               | 0.017 ±0.003      | 10-13-98          | 300               | $0.012 \pm 0.003$ |
| 04-21-98      | 305               | $0.014 \pm 0.003$ | 10-20-98          | 302               | $0.018 \pm 0.003$ |
| 04-28-98      | 302               | 0.015 ±0.003      | 10-27-98          | 304               | $0.029 \pm 0.004$ |
|               |                   |                   | 11-03-98          | 306               | $0.018 \pm 0.003$ |
| 05-05-98      | 305               | $0.015 \pm 0.003$ |                   |                   |                   |
| 05-12-98      | 305               | $0.014 \pm 0.003$ | 11-10-98          | 305               | $0.013 \pm 0.003$ |
| 05-19-98      | 301               | $0.020 \pm 0.003$ | 11-17-98          | 305               | $0.038 \pm 0.004$ |
| 05-26-98      | 307               | 0.013 ±0.003      | 11 <b>-24</b> -98 | 303               | $0.021 \pm 0.003$ |
| 06-02-98      | 302               | 0.013 ±0.003      | 12-01-98          | 307               | $0.030 \pm 0.003$ |
| 06-09-98      | 304               | 0.005 ±0.002      | 12-08-98          | 302               | $0.034 \pm 0.004$ |
| 06-16-98      | 307               | $0.016 \pm 0.003$ | 12-15-98          | 313               | $0.025 \pm 0.004$ |
| 06-23-98      | 303               | 0.016 ±0.003      | 12-22-98          | 326               | $0.017 \pm 0.003$ |
| 06-30-98      | <b>29</b> 3       | 0.011 ±0.003      | 12-29-98          | 322               | $0.035 \pm 0.004$ |
| 2nd Quarter N | <br>Aean ± s.d.   | 0.014 ±0.004      | 4th Quarter M     | fean + s d        | $0.023 \pm 0.009$ |

Previous Annual Average0.020\* Iodine-131 is sampled biweekly. Concentrations are <0.03 pCi/m³ unless otherwise noted.</td>

Cumulative Average

0.019

#### **KEWAUNEE**

Table 8. Airborne particulates and charcoal canisters, analyses for gross beta and iodine-131<sup>a</sup>. Location: K-31 Units: pCi/m<sup>3</sup>

Collection: Continuous, weekly exchange.

| Date          | Volume            |                   | Date          | Volume            |                   |
|---------------|-------------------|-------------------|---------------|-------------------|-------------------|
| Collected     | (m <sup>3</sup> ) | Gross Beta        | Collected     | (m <sup>3</sup> ) | Gross Beta        |
| Required LL   | <u>D</u>          | <u>0.010</u>      |               |                   | <u>0.010</u>      |
| 01-06-98      | 365               | $0.013 \pm 0.002$ | 07-07-98      | 276               | 0.017 ± 0.003     |
| 01-13-98      | 398               | $0.018 \pm 0.003$ | 07-14-98      | 270               | $0.017 \pm 0.003$ |
| 01-20-98      | 397               | $0.021 \pm 0.003$ | 07-21-98      | 282               | $0.025 \pm 0.003$ |
| 01-27-98      | 403               | $0.019 \pm 0.003$ | 07-28-98      | 268               | $0.015 \pm 0.004$ |
| 02-03-98      | 407               | $0.028 \pm 0.003$ |               |                   |                   |
|               |                   |                   | 08-04-98      | 275               | $0.019 \pm 0.003$ |
| 02-10-98      | 407               | $0.023 \pm 0.003$ | 08-11-98      | 273               | $0.024 \pm 0.004$ |
| 02-17-98      | 405               | $0.027 \pm 0.003$ | 08-18-98      | 285               | $0.018 \pm 0.003$ |
| 02-24-98      | 404               | $0.014 \pm 0.002$ | 08-25-98      | 283               | $0.028 \pm 0.004$ |
| 03-03-98      | 335               | $0.013 \pm 0.002$ | 09-01-98      | 252               | $0.025 \pm 0.004$ |
| 03-10-98      | 402               | $0.008 \pm 0.002$ | 09-08-98      | 255               | $0.030 \pm 0.004$ |
| 03-17-98      | 408               | $0.022 \pm 0.003$ | 09-15-98      | 249               | $0.026 \pm 0.004$ |
| 03-24-98      | 405               | $0.017 \pm 0.002$ | 09-22-98      | 284               | $0.029 \pm 0.004$ |
| 03-31-98      | 403               | $0.018 \pm 0.002$ | 09-29-98      | 318               | $0.024 \pm 0.003$ |
| 1st Quarter 1 | –<br>Mean ± s.d.  | $0.019 \pm 0.006$ | 3rd Quarter N | <br>lean ± s.d.   | 0.023 ± 0.005     |
| 04-07-98      | 341               | 0.011 ±0.002      | 10-06-98      | 333               | 0.013 ± 0.003     |
| 04-14-98      | 273               | $0.020 \pm 0.004$ | 10-13-98      | 282               | $0.017 \pm 0.003$ |
| 04-21-98      | 274               | 0.017 ±0.003      | 10-20-98      | 338               | $0.016 \pm 0.003$ |
| 04-28-98      | 274               | $0.021 \pm 0.004$ | 10-27-98      | 331               | $0.024 \pm 0.003$ |
|               | •                 |                   | 11-03-98      | 324               | $0.016 \pm 0.003$ |
| 05-05-98      | 289               | 0.015 ±0.003      |               |                   |                   |
| 05-12-98      | 303               | $0.014 \pm 0.003$ | 11-10-98      | 325               | $0.010 \pm 0.002$ |
| 05-19-98      | 300               | $0.018 \pm 0.003$ | 11-17-98      | 314               | $0.033 \pm 0.003$ |
| 05-26-98      | 308               | 0.013 ±0.003      | 11-24-98      | 303               | $0.020 \pm 0.003$ |
| 06-02-98      | 302               | 0.013 ±0.003      | 12-01-98      | 304               | $0.030 \pm 0.003$ |
| 06-09-98      | 306               | 0.007 ±0.002      | 12-08-98      | 306               | $0.032 \pm 0.004$ |
| 06-16-98      | 276               | $0.017 \pm 0.003$ | 12-15-98      | 314               | $0.025 \pm 0.004$ |
| 06-23-98      | 298               | $0.015 \pm 0.003$ | 12-22-98      | 326               | $0.015 \pm 0.003$ |
| 06-30-98      | 281               | 0.011 ±0.003      | 12-29-98      | 320               | $0.030 \pm 0.004$ |
|               | _<br>Mean ± s.d.  | 0.015 ±0.004      | 4th Quarter N |                   | 0.022 ± 0.008     |

Cumulative Average0.019Previous Annual Average0.019

Table 9. Airborne particulates and charcoal canisters, analyses for gross beta and iodine-131<sup>a</sup>. Location: K-16 Units: pCi/m<sup>3</sup> Collection: Continuous, weekly exchange.

| Date          | Volume            | Course P. 1                            | Date          | Volume            | o -                                    |
|---------------|-------------------|----------------------------------------|---------------|-------------------|----------------------------------------|
| Collected     | (m <sup>3</sup> ) | Gross Beta                             | Collected     | (m <sup>3</sup> ) | Gross Beta                             |
| Required LL   | D                 | <u>0.010</u>                           |               |                   | <u>0.010</u>                           |
|               |                   |                                        |               |                   |                                        |
| 01-05-98      | 304               | $0.017 \pm 0.003$                      | 07-06-98      | 254               | $0.017 \pm 0.003$                      |
| 01-12-98      | 304               | $0.018 \pm 0.003$                      | 07-13-98      | 253               | $0.011 \pm 0.003$                      |
| 01-19-98      | 305               | $0.026 \pm 0.003$                      | 07-20-98      | 254               | $0.024 \pm 0.004$                      |
| 01-26-98      | 304               | $0.019 \pm 0.003$                      | 07-27-98      | 259               | $0.013 \pm 0.004$                      |
| 02-02-98      | 303               | $0.032 \pm 0.004$                      |               |                   |                                        |
|               |                   |                                        | 08-03-98      | 259               | $0.016 \pm 0.003$                      |
| 02-10-98      | 304               | $0.021 \pm 0.003$                      | 08-10-98      | 258               | < 0.003 <sup>b</sup>                   |
| 02-16-98      | 305               | $0.027 \pm 0.003$                      | 08-17-98      | 278               | $0.017 \pm 0.003$                      |
| 02-23-98      | 303               | $0.019 \pm 0.003$                      | 08-24-98      | 280               | $0.023 \pm 0.003$                      |
| 03-02-98      | 304               | $0.017 \pm 0.003$                      | 08-31-98      | 254               | $0.029 \pm 0.003$                      |
| 03-09-98      | 304               | $0.006 \pm 0.002$                      | 09-08-98      | 289               | $0.027 \pm 0.003$                      |
| 03-16-98      | 304               | $0.023 \pm 0.003$                      | 09-14-98      | 218               | $0.025 \pm 0.003$                      |
| 03-23-98      | 304               | $0.017 \pm 0.003$                      | 09-21-98      | 278               | $0.032 \pm 0.004$                      |
| 03-30-98      | 304               | $0.019 \pm 0.003$                      | 09-28-98      | 304               | $0.023 \pm 0.003$                      |
|               |                   |                                        |               |                   | 0.010 1 0.000                          |
| 1st Quarter N | /lean ± s.d.      | $0.020 \pm 0.006$                      | 3rd Quarter N | Mean ± s.d.       | $0.021 \pm 0.007$                      |
| 04-06-98      | 302               | 0.008 ±0.002                           | 10-05-98      | 304               | $0.014 \pm 0.003$                      |
| 04-13-98      | 278               | $0.012 \pm 0.003$                      | 10-12-98      | 304<br>304        | $0.014 \pm 0.003$<br>$0.017 \pm 0.003$ |
| 04-20-98      | 254               | $0.012 \pm 0.003$                      | 10-20-98      | 304<br>304        | $0.017 \pm 0.003$<br>$0.020 \pm 0.003$ |
| 04-27-98      | 254               | $0.012 \pm 0.003$<br>$0.017 \pm 0.004$ | 10-26-98      | 304<br>306        | $0.020 \pm 0.003$<br>$0.024 \pm 0.003$ |
| 012, 00       | 204               | 0.017 10.004                           | 11-02-98      | 300<br>304        | $0.024 \pm 0.003$<br>$0.024 \pm 0.004$ |
| 05-04-98      | 252               | 0.015 ±0.003                           | 11-02-70      | 504               | $0.024 \pm 0.004$                      |
| 05-11-98      | 252               | $0.015 \pm 0.003$                      | 11-09-98      | 303               | $0.009 \pm 0.003$                      |
| 05-18-98      | 254               | $0.018 \pm 0.003$                      | 11-16-98      | 303<br>304        | $0.009 \pm 0.003$<br>$0.035 \pm 0.004$ |
| 05-26-98      | 289               | $0.016 \pm 0.003$                      | 11-23-98      | 304<br>304        | $0.033 \pm 0.004$<br>$0.024 \pm 0.004$ |
| 06-01-98      | 217               | $0.014 \pm 0.004$                      | 11-30-98      | 304<br>305        | $0.024 \pm 0.004$<br>$0.027 \pm 0.003$ |
| 00-01-70      | 217               | 0.014 10.004                           | 11-50-98      | 305               | $0.027 \pm 0.003$                      |
| 06-08-98      | 254               | 0.008 ±0.003                           | 12-07-98      | 302               | $0.034 \pm 0.004$                      |
| 06-15-98      | 253               | $0.016 \pm 0.003$                      | 12-14-98      | 305               | $0.022 \pm 0.004$                      |
| 06-22-98      | 254               | $0.014 \pm 0.003$                      | 12-21-98      | 304               | $0.016 \pm 0.003$                      |
| 06-29-98      | 253               | $0.011 \pm 0.003$                      | 12-28-98      | 304               | $0.032 \pm 0.004$                      |
|               |                   | 0.014 +0.002                           |               | · –               |                                        |
| 2nd Quarter M | viean ± s.d.      | 0.014 ±0.003                           | 4th Quarter N | 1ean ± s.d.       | $0.023 \pm 0.008$                      |

Cumulative Average 0.019 Previous Annual Average 0.019

<sup>&</sup>lt;sup>b</sup> Filter light.

|            |                  |        |        |      |              |         |           | -      |
|------------|------------------|--------|--------|------|--------------|---------|-----------|--------|
|            | Janu             | ary    |        |      |              | Ap      | ril       |        |
| Location   | Average          | Minima | Maxima | Loca | ation        | Average | Minima    | Maxima |
| Indicators | 0.021            | 0.015  | 0.029  | Indi | icators      | 0.015   | 0.009     | 0.019  |
| K-1f       | 0.022            | 0.016  | 0.029  | ]    | K-1f         | 0.015   | 0.009     | 0.019  |
| K-7        | 0.021            | 0.015  | 0.026  | ]    | K-7          | 0.015   | 0.011     | 0.019  |
| Controls   | 0.021            | 0.013  | 0.032  | Con  | atrols       | 0.015   | 0.008     | 0.021  |
| K-2        | 0.019            | 0.014  | 0.028  | ]    | K-2          | 0.016   | 0.010     | 0.021  |
| K-8        | 0.021            | 0.015  | 0.025  | ]    | K-8          | 0.014   | 0.010     | 0.017  |
| K-31       | 0.020            | 0.013  | 0.028  | ]    | <b>K-</b> 31 | 0.017   | 0.011     | 0.021  |
| K-16       | 0.022            | 0.017  | 0.032  | ]    | K-16         | 0.012   | 0.008     | 0.017  |
|            | Falser           |        |        |      |              | Ma      |           |        |
| Location   | Febri<br>Average | Minima | Maxima |      | ation        | Average | Minima    | Maxima |
|            | 0.018            | 0.011  | 0.027  |      | icators      | 0.015   | 0.010     | 0.023  |
| Indicators |                  | ····   | 0.027  |      |              |         | 0.010     | 0.018  |
| K-1f       | 0.018            | 0.013  | 0.024  |      | K-1f<br>K-7  | 0.014   | 0.010     | 0.023  |
| <u>K-7</u> | 0.018            |        |        |      |              |         | · · · · · |        |
| Controls   | 0.019            | 0.012  | 0.027  |      | ntrols       | 0.015   | 0.012     | 0.025  |
| K-2        | 0.018            | 0.012  | 0.027  |      | K-2          | 0.017   | 0.012     | 0.025  |
| K-8        | 0.019            | 0.012  | 0.026  |      | K-8          | 0.015   | 0.013     | 0.020  |
| K-31       | 0.019            | 0.013  | 0.027  |      | K-31         | 0.015   | 0.013     | 0.018  |
| K-16       | 0.021            | 0.017  | 0.027  |      | K-16         | 0.016   | 0.014     | 0.018  |
|            | Ma               | rch    |        |      |              | Jur     | ne        |        |
| Location   | Average          | Minima | Maxima | Loc  | ation        | Average | Minima    | Maxima |
| Indicators | 0.016            | 0.004  | 0.023  | Ind  | icators      | 0.015   | 0.009     | 0.024  |
| K-1f       | 0.016            | 0.008  | 0.020  |      | K-1f         | 0.015   | 0.009     | 0.024  |
| K-7        | 0.016            | 0.004  | 0.023  | ]    | K-7          | 0.015   | 0.009     | 0.021  |
| Controls   | 0.016            | 0.006  | 0.024  | Cor  | ntrols       | 0.012   | 0.005     | 0.019  |
| <br>K-2    | 0.017            | 0.008  | 0.024  |      | K-2          | 0.013   | 0.007     | 0.019  |
| K-8        | 0.016            | 0.006  | 0.022  | ]    | K-8          | 0.012   | 0.005     | 0.016  |
| K-31       | 0.016            | 0.008  | 0.022  | :    | K-31         | 0.013   | 0.007     | 0.017  |
| K-16       | 0.016            | 0.006  | 0.023  |      | K-16         | 0.012   | 0.008     | 0.016  |

Table 7. Airborne particulate data, gross beta analyses, monthly averages, minima and maxima.

Note: unless otherwise specified, samples collected on the first, second or third day of the month are grouped with data of the previous month.

#### **KEWAUNEE**

|            | Ju      | ly     |        |   |            | Octo             | ober    |        |
|------------|---------|--------|--------|---|------------|------------------|---------|--------|
| Location   | Average | Minima | Maxima | - | Location   | Average          | Minima  | Maxima |
| Indicators | 0.018   | 0.013  | 0.029  |   | Indicators | 0.019            | 0.012   | 0.027  |
| K-1f       | 0.019   | 0.013  | 0.029  |   | K-1f       | 0.019            | 0.016   | 0.025  |
| K-7        | 0.018   | 0.014  | 0.024  | _ | K-7        | 0.019            | 0.012   | 0.027  |
| Controls   | 0.017   | 0.011  | 0.025  |   | Controls   | 0.018            | 0.011   | 0.029  |
| K-2        | 0.017   | 0.011  | 0.023  | • | K-2        | 0.017            | 0.011   | 0.025  |
| K-8        | 0.017   | 0.012  | 0.021  |   | K-8        | 0.018            | 0.012   | 0.029  |
| K-31       | 0.019   | 0.015  | 0.025  |   | K-31       | 0.017            | 0.013   | 0.024  |
| K-16       | 0.016   | 0.011  | 0.024  |   | K-16       | 0.020            | 0.014   | 0.024  |
|            | Aug     | rust   |        |   |            | Nove             | mber    |        |
| Location   | Average | Minima | Maxima |   | Location   | Average          | Minima  | Maxima |
| Indicators | 0.019   | 0.013  | 0.027  |   | Indicators | 0.024            | 0.010   | 0.036  |
| K-1f       | 0.018   | 0.013  | 0.024  |   | K-1f       | 0.025            | 0.011   | 0.034  |
| K-7        | 0.020   | 0.013  | 0.027  |   | K-7        | 0.024            | 0.010   | 0.036  |
| Controls   | 0.021   | 0.012  | 0.029  |   | Controls   | 0.024            | 0.009   | 0.038  |
| K-2        | 0.020   | 0.012  | 0.028  |   | K-2        | 0.022            | 0.009   | 0.031  |
| K-8        | 0.020   | 0.016  | 0.025  |   | K-8        | 0.026            | 0.013   | 0.038  |
| K-31       | 0.023   | 0.018  | 0.028  |   | K-31       | 0.023            | 0.010   | 0.033  |
| K-16       | 0.021   | 0.016  | 0.029  |   | K-16       | 0.024            | 0.009   | 0.035  |
|            | Septer  | mbar   |        |   |            | D                | · · · · |        |
| Location   | Average | Minima | Maxima |   | Location   | Decer<br>Average | Minima  | Maxima |
| ndicators  | 0.024   | 0.020  | 0.027  |   | Indicators | 0.027            | 0.014   | 0.037  |
| K-1f       | 0.024   | 0.023  | 0.025  |   | K-1f       | 0.028            | 0.014   | 0.036  |
| K-7        | 0.024   | 0.020  | 0.027  |   | <br>K-7    | 0.027            | 0.014   | 0.037  |
| Controls   | 0.026   | 0.023  | 0.032  |   | Controls   | 0.026            | 0.013   | 0.035  |
| K-2        | 0.026   | 0.024  | 0.028  |   | K-2        | 0.027            | 0.013   | 0.035  |
| K-8        | 0.025   | 0.024  | 0.026  |   | K-8        | 0.028            | 0.017   | 0.035  |
| K-31       | 0.027   | 0.024  | 0.030  |   | K-31       | 0.026            | 0.017   | 0.032  |
|            |         |        |        |   |            |                  |         | J. UUM |

Note: unless otherwise specified, samples collected on the first, second or third day of the month are grouped with data of the previous month.

0.032

0.023

K-16

0.027

K-16

0.026

0.016

0.034

Table 11. Airborne particulate samples, quarterly composites of weekly samples, analysis forgamma-emitting isotopes.

|                         | Sam               | ple Description and | Concentration (pCi/ | m <sup>3</sup> )  |
|-------------------------|-------------------|---------------------|---------------------|-------------------|
|                         | 1st Quarter       | 2nd Quarter         | 3rd Quarter         | 4th Quarter       |
| Indicator               |                   |                     |                     |                   |
| <u>K-1f</u>             |                   |                     |                     |                   |
| Lab Code<br>Volume (m³) | KAP-2187<br>3921  | KAP-5187<br>3602    | KAP-8117<br>3588    | KAP-11170<br>3631 |
| Be-7                    | $0.072 \pm 0.012$ | $0.079 \pm 0.015$   | $0.067 \pm 0.018$   | $0.055 \pm 0.014$ |
| Nb-95                   | < 0.0011          | < 0.0005            | < 0.0020            | < 0.0015          |
| Zr-95                   | < 0.0019          | < 0.0016            | < 0.0025            | < 0.0028          |
| Ru-103                  | < 0.0011          | < 0.0007            | < 0.0010            | < 0.0009          |
| Ru-106                  | < 0.0056          | < 0.0048            | < 0.010             | < 0.0072          |
| Cs-134                  | < 0.0006          | < 0.0014            | < 0.0007            | < 0.0009          |
| Cs-137                  | < 0.0007          | < 0.0008            | < 0.0012            | < 0.0008          |
| Ce-141                  | < 0.0008          | < 0.0018            | < 0.0029            | < 0.0015          |
| Ce-144                  | < 0.0046          | < 0.0033            | < 0.0082            | < 0.0053          |
| <u>K-7</u>              |                   |                     |                     |                   |
| Lab Code                | KAP-2189          | KAP-5190            | KAP-8120            | KAP-11172         |
| Volume (m³)             | 3877              | 3311                | 3454                | 4336              |
| Be-7                    | $0.066 \pm 0.014$ | $0.089 \pm 0.019$   | $0.072 \pm 0.016$   | $0.054 \pm 0.012$ |
| Nb-95                   | < 0.0017          | < 0.0006            | < 0.0020            | < 0.0010          |
| Zr-95                   | < 0.0013          | < 0.0025            | < 0.0036            | < 0.0011          |
| Ru-103                  | < 0.0013          | < 0.0003            | < 0.0010            | < 0.0004          |
| Ru-106                  | < 0.0089          | < 0.0057            | < 0.012             | < 0.0029          |
| Cs-134                  | < 0.0008          | < 0.0005            | < 0.0008            | < 0.0006          |
| Cs-137                  | < 0.0011          | < 0.0007            | < 0.0011            | < 0.0005          |
| Ce-141                  | < 0.0020          | < 0.0024            | < 0.0030            | < 0.0012          |
| Ce-144                  | < 0.0057          | < 0.0044            | < 0.0074            | < 0.0017          |

58

Table 11. Airborne particulate samples, quarterly composites of weekly samples, analysis for gamma-emitting isotopes, (continued).

|             |                   | Sample Description and Concentration (pCi/m <sup>3</sup> ) |                   |                   |  |  |  |  |
|-------------|-------------------|------------------------------------------------------------|-------------------|-------------------|--|--|--|--|
|             | 1st Quarter       | 2nd Quarter                                                | 3rd Quarter       | 4th Quarter       |  |  |  |  |
| Control     |                   |                                                            |                   |                   |  |  |  |  |
| <u>K-2</u>  |                   |                                                            |                   |                   |  |  |  |  |
| Lab Code    | KAP-2188          | KAP-5188,89                                                | KAP-8118,9        | KAP-11171         |  |  |  |  |
| Volume (m³) | 3955              | 3818                                                       | 3889              | 3924              |  |  |  |  |
| Be-7        | $0.064 \pm 0.009$ | $0.079 \pm 0.010$                                          | $0.073 \pm 0.012$ | $0.057 \pm 0.011$ |  |  |  |  |
| Nb-95       | < 0.0007          | < 0.0009                                                   | < 0.0003          | < 0.000           |  |  |  |  |
| Zr-95       | < 0.0010          | < 0.0009                                                   | < 0.0015          | < 0.002           |  |  |  |  |
| Ru-103      | < 0.0003          | < 0.0004                                                   | < 0.0008          | < 0.000           |  |  |  |  |
| Ru-106      | < 0.0064          | < 0.0052                                                   | < 0.0060          | < 0.009           |  |  |  |  |
| Cs-134      | < 0.0005          | < 0.0004                                                   | < 0.0009          | < 0.000           |  |  |  |  |
| Cs-137      | < 0.0005          | < 0.0005                                                   | < 0.0006          | < 0.000           |  |  |  |  |
| Ce-141      | < 0.0007          | < 0.0009                                                   | < 0.0009          | < 0.001           |  |  |  |  |
| Ce-144      | < 0.0029          | < 0.0045                                                   | < 0.0025          | < 0.005           |  |  |  |  |
| <u>K-8</u>  |                   |                                                            |                   |                   |  |  |  |  |
| Lab Code    | KAP-2190          | KAP-5191                                                   | KAP-8121          | KAP-11173         |  |  |  |  |
| Volume (m³) | 3792              | 3940                                                       | 3903              | 3999              |  |  |  |  |
| Be-7        | $0.071 \pm 0.010$ | $0.083 \pm 0.013$                                          | $0.083 \pm 0.014$ | $0.054 \pm 0.013$ |  |  |  |  |
| Nb-95       | < 0.0006          | < 0.0004                                                   | < 0.0014          | < 0.0010          |  |  |  |  |
| Zr-95       | < 0.0009          | < 0.0012                                                   | < 0.0014          | < 0.0010          |  |  |  |  |
| Ru-103      | < 0.0007          | < 0.0009                                                   | < 0.0006          | < 0.0008          |  |  |  |  |
| Ru-106      | < 0.0063          | < 0.0027                                                   | < 0.0025          | < 0.0080          |  |  |  |  |
| Cs-134      | < 0.0007          | < 0.0014                                                   | < 0.0003          | < 0.0008          |  |  |  |  |
| Cs-137      | < 0.0004          | < 0.0008                                                   | < 0.0007          | < 0.0005          |  |  |  |  |
| Ce-141      | < 0.0006          | < 0.0019                                                   | < 0.0007          | < 0.0012          |  |  |  |  |
| Ce-144      | < 0.0029          | < 0.0044                                                   | < 0.0025          | < 0.0042          |  |  |  |  |

59

|                                                                                    | -emitting isotopes, (co                                                   |                                                                                                                             | so of weekly sumples                                                      |                                                                           |  |  |  |  |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|--|--|
|                                                                                    | Sample Description and Concentration (pCi/m³)                             |                                                                                                                             |                                                                           |                                                                           |  |  |  |  |
|                                                                                    | 1st Quarter                                                               | 2nd Quarter                                                                                                                 | 3rd Quarter                                                               | 4th Quarter                                                               |  |  |  |  |
| <u>Control</u>                                                                     |                                                                           |                                                                                                                             |                                                                           |                                                                           |  |  |  |  |
| <u>K-31</u>                                                                        |                                                                           |                                                                                                                             |                                                                           |                                                                           |  |  |  |  |
| Lab Code<br>Volume (m³)                                                            | KAP-2191<br>5139                                                          | KAP-5192<br>3825                                                                                                            | KAP-8122<br>3570                                                          | KAP-11174<br>4120                                                         |  |  |  |  |
| Be-7<br>Nb-95<br>Zr-95<br>Ru-103<br>Ru-106<br>Cs-134<br>Cs-137<br>Ce-141<br>Ce-144 | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                      | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                        | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                      | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                      |  |  |  |  |
| Lab Code<br>Volume (m³)                                                            | KAP-2192<br>3952                                                          | KAP-5193<br>3367                                                                                                            | KAP-8123<br>3438                                                          | KAP-11175<br>3953                                                         |  |  |  |  |
| Be-7<br>Nb-95<br>Zr-95<br>Ru-103<br>Ru-106<br>Cs-134                               | 0.079 ± 0.015<br>< 0.0016<br>< 0.0021<br>< 0.0009<br>< 0.0081<br>< 0.0009 | $\begin{array}{rrrr} 0.082 \ \pm \ 0.015 \\ < \ 0.0009 \\ < \ 0.0024 \\ < \ 0.0004 \\ < \ 0.0045 \\ < \ 0.0017 \end{array}$ | 0.085 ± 0.020<br>< 0.0023<br>< 0.0014<br>< 0.0016<br>< 0.0088<br>< 0.0015 | 0.047 ± 0.011<br>< 0.0008<br>< 0.0016<br>< 0.0010<br>< 0.0064<br>< 0.0008 |  |  |  |  |

Table 11. Airborne particulate samples, quarterly composites of weekly samples, analysis for

< 0.0017 < 0.0012

< 0.0014

< 0.0033

< 0.0013 < 0.0014

< 0.0064

Cs-137

Ce-141

Ce-144

< 0.0008

< 0.0014

< 0.0089

< 0.0004

< 0.0013

< 0.0026

#### **KEWAUNEE**

|                 | 0               |                        |                   |                 |                  |
|-----------------|-----------------|------------------------|-------------------|-----------------|------------------|
|                 | <u>1st Qtr.</u> | 2nd Otr.               | <u>3rd Qtr.</u>   | <u>4th Qtr.</u> |                  |
| Date Placed     | 01-05-98        | 04-01-98               | 07 <b>-</b> 01-98 | 10-01-98        |                  |
| Date Removed    | 04-01-98        | 07-01-98               | 10-01-98          | 01-06-99        |                  |
| -               |                 |                        | mR/91 daysª       |                 |                  |
| Indicator       |                 |                        |                   |                 | <u>Mean±s.d.</u> |
| K-1f            | $14.2 \pm 0.2$  | $12.3 \pm 0.2$         | $14.5 \pm 0.1$    | 12.7 ± 0.1      | $13.4 \pm 1.1$   |
| K-4             | 15.6 ± 0.1      | $14.0 \pm 0.1$         | 15.0 ± 0.2        | $14.4 \pm 0.1$  | $14.8 \pm 0.7$   |
| K-5             | $14.2 \pm 0.2$  | $15.3 \pm 0.1$         | $16.1 \pm 0.3$    | $15.6 \pm 0.2$  | $15.3 \pm 0.8$   |
| K-7             | $17.1 \pm 0.1$  | $18.3 \pm 0.1$         | $20.4 \pm 0.1$    | $18.7 \pm 0.3$  | $18.6 \pm 1.4$   |
| K-17            | $19.1 \pm 0.3$  | $16.9 \pm 0.3$         | $20.3 \pm 0.2$    | $17.1 \pm 0.1$  | $18.4 \pm 1.6$   |
| K-27            | $15.8 \pm 0.1$  | $13.6 \pm 0.1$         | $15.4 \pm 0.1$    | $13.9 \pm 0.1$  | $14.7 \pm 1.1$   |
| K-30 _          | $17.4 \pm 0.3$  | $16.4 \pm 0.2$         | $18.2 \pm 0.1$    | 17.2 ± 0.1      | $17.3 \pm 0.7$   |
| Mean ± s.d.     | $16.2 \pm 1.8$  | 15.3 ± 2.1             | $17.1 \pm 2.5$    | 15.7 ± 2.1      | $16.1 \pm 0.8$   |
| <u>Control</u>  |                 |                        |                   |                 |                  |
| K-2             | 13.8 ± 0.2      | $13.6 \pm 0.1$         | $14.1 \pm 0.2$    | $13.6 \pm 0.1$  | $13.8 \pm 0.2$   |
| K-3             | $17.1 \pm 0.1$  | 17.9 ± 0.1             | $18.8 \pm 0.1$    | $17.9 \pm 0.1$  | $17.9 \pm 0.7$   |
| K-6             | NS⁵             | $13.8 \pm 0.1^{\circ}$ | $14.2 \pm 0.1$    | $13.6 \pm 0.1$  | 13.9 ± 0.3       |
| K-8             | $16.7 \pm 0.2$  | $16.5 \pm 0.2$         | $17.7 \pm 0.2$    | $16.7 \pm 0.1$  | $16.9 \pm 0.5$   |
| K-15            | $16.1 \pm 0.1$  | $15.7 \pm 0.2$         | 17.6 ± 0.3        | $16.3 \pm 0.1$  | $16.4 \pm 0.8$   |
| K-16            | $15.8 \pm 0.1$  | $13.5 \pm 0.1$         | $16.1 \pm 0.1$    | $13.9 \pm 0.1$  | 14.8 ± 1.3       |
| K-31 _          | 15.1 ± 0.1      | 13.5 ± 0.6             | $15.2 \pm 0.3$    | 13.5 ± 0.3      | $14.3 \pm 1.0$   |
| Mean $\pm$ s.d. | 15.8 ± 1.2      | $14.9 \pm 1.8$         | $16.2 \pm 1.8$    | $15.1 \pm 1.8$  | $15.5 \pm 0.6$   |
|                 |                 |                        |                   |                 |                  |

Table 12. Ambient gamma radiation (TLD), quarterly exposure.

<sup>a</sup> The uncertainty for each location corresponds to the two-standard deviation error of the average dose of eight dosimeters placed at this location.

<sup>b</sup>NS=No sample; TLD lost due to power line pole replacement.

<sup>c</sup> Removed 8-3-98.

|           |           | · · · · · · · · · · · · · · · · · · · |                             |
|-----------|-----------|---------------------------------------|-----------------------------|
| Month     | Lab       |                                       | H-3                         |
| Collected | Code      | pCi/L                                 | T.U. (100 T.U. = 320 pCi/L) |
|           | · ·       |                                       |                             |
| January   | KP -10041 | < 330                                 | < 103                       |
| February  | -683      | < 330                                 | < 103                       |
| March     | -1411     | < 330                                 | < 103                       |
| April     | -2144     | < 330                                 | < 103                       |
| May       | -3000     | < 330                                 | < 103                       |
| June      | -4183,4   | < 330                                 | < 103                       |
| July      | -4876     | < 330                                 | < 103                       |
| August    | -6150     | < 330                                 | < 103                       |
| September | -6995     | < 330                                 | < 103                       |
| October   | -7887     | < 330                                 | < 103                       |
| November  | -9469     | < 330                                 | < 103                       |
| December  | -10299    | < 330                                 | < 103                       |

<u>Kewaunee</u>

Table 13.

December, 1998.

Precipitation samples collected at Location K-11; analysis for tritium, January through

Table 14.Milk, analyses for iodine-131 and gamma-emitting isotopes.Collection: Semimonthly during grazing season, monthly at other times.

| Collection | Lab     |       | Concentration (pCi/L) |        |           |                |  |
|------------|---------|-------|-----------------------|--------|-----------|----------------|--|
| Date       | Code    | l-131 | Cs-134                | Cs-137 | Ba-La-140 | K-40           |  |
| Indicators |         |       |                       |        |           |                |  |
| <u>K-4</u> |         |       |                       |        |           |                |  |
| 01-06-98   | KMI - 6 | < 0.5 | < 10                  | < 10   | < 15      | 1490 ± 160     |  |
| 02-02-98   | - 578   | < 0.5 | < 10                  | < 10   | < 15      | $1240 \pm 150$ |  |
| 03-03-98   | - 1280  | < 0.5 | < 10                  | < 10   | < 15      | $1490 \pm 130$ |  |
| 04-02-98   | - 1960  | < 0.5 | < 10                  | < 10   | < 15      | $1290 \pm 130$ |  |
| 05-05-98   | - 2937  | < 0.5 | < 10                  | < 10   | < 15      | $1360 \pm 100$ |  |
| 05-19-98   | - 3607  | < 0.5 | < 10                  | < 10   | < 15      | $1400 \pm 180$ |  |
| 06-02-98   | - 4002  | < 0.5 | < 10                  | < 10   | < 15      | $1240 \pm 180$ |  |
| 06-16-98   | - 4373  | < 0.5 | < 10                  | < 10   | < 15      | $1280 \pm 140$ |  |
| 07-01-98   | - 4802  | < 0.5 | < 10                  | < 10   | < 15      | $1410 \pm 120$ |  |
| 07-14-98   | - 5288  | < 0.5 | < 10                  | < 10   | < 15      | 1390 ± 110     |  |
| 08-04-98   | - 5915  | < 0.5 | < 10                  | < 10   | < 15      | $1080 \pm 140$ |  |
| 08-18-98   | - 6429  | < 0.5 | < 10                  | < 10   | < 15      | $1330 \pm 160$ |  |
| 09-02-98   | - 6839  | < 0.5 | < 10                  | < 10   | < 15      | $1410 \pm 120$ |  |
| 09-15-98   | - 7528  | < 0.5 | < 10                  | < 10   | < 15      | $1400 \pm 190$ |  |
| 10-02-98   | - 7821  | < 0.5 | < 10                  | < 10   | < 15      | $1240 \pm 160$ |  |
| 10-13-98   | - 8330  | < 0.5 | < 10                  | < 10   | < 15      | $1200 \pm 150$ |  |
| 11-03-98   | - 9332  | < 0.5 | < 10                  | < 10   | < 15      | $1370 \pm 160$ |  |
| 12-02-98   | - 10148 | < 0.5 | < 10                  | < 10   | < 15      | $1540 \pm 170$ |  |
| <u>K-5</u> |         |       |                       |        |           |                |  |
| 01-06-98   | KMI - 7 | < 0.5 | < 10                  | < 10   | < 15      | $1460 \pm 180$ |  |
| 02-02-98   | - 579   | < 0.5 | < 10                  | < 10   | < 15      | $1540 \pm 160$ |  |
| 03-03-98   | - 1281  | < 0.5 | < 10                  | < 10   | < 15      | $1430 \pm 120$ |  |
| 04-02-98   | - 1961  | < 0.5 | < 10                  | < 10   | < 15      | $1210 \pm 180$ |  |
| 05-05-98   | - 2938  | < 0.5 | < 10                  | < 10   | < 15      | $1370 \pm 170$ |  |
| 05-19-98   | - 3608  | < 0.5 | < 10                  | < 10   | < 15      | $1400 \pm 130$ |  |
| 06-02-98   | - 4003  | < 0.5 | < 10                  | < 10   | < 15      | $1320 \pm 100$ |  |
| 06-16-98   | ~ 4374  | < 0.5 | < 10                  | < 10   | < 15      | $1470 \pm 180$ |  |
| 07-01-98   | - 4803  | < 0.5 | < 10                  | < 10   | < 15      | $1400 \pm 180$ |  |
| 07-14-98   | - 5289  | < 0.5 | < 10                  | < 10   | < 15      | $1470 \pm 170$ |  |
| 08-04-98   | - 5916  | < 0.5 | < 10                  | < 10   | < 15      | $1340 \pm 150$ |  |
| 08-18-98   | - 6430  | < 0.5 | < 10                  | < 10   | < 15      | 1330 ± 170     |  |
| 09-02-98   | - 6840  | < 0.5 | < 10                  | < 10   | < 15      | $1270 \pm 110$ |  |
| 09-15-98   | - 7529  | < 0.5 | < 10                  | < 10   | < 15      | $1730 \pm 200$ |  |
| 10-02-98   | - 7822  | < 0.5 | < 10                  | < 10   | < 15      | $1350 \pm 160$ |  |
| 10-13-98   | - 8331  | < 0.5 | < 10                  | < 10   | < 15      | $1380 \pm 170$ |  |
| 11-03-98   | - 9333  | < 0.5 | < 10                  | < 10   | < 15      | $1340 \pm 160$ |  |
|            |         |       |                       |        |           |                |  |

63

.--

| Collection<br>Date | Lab      | Concentration (pCi/L) |        |        |           |                |  |
|--------------------|----------|-----------------------|--------|--------|-----------|----------------|--|
|                    | Code     | l-131                 | Cs-134 | Cs-137 | Ba-La-140 | K-40           |  |
| Indicators         |          |                       |        |        |           |                |  |
| <u>K-12</u>        |          |                       |        |        |           |                |  |
| 01-05-98           | KMI - 9  | < 0.5                 | < 10   | < 10   | < 15      | $1440 \pm 170$ |  |
| 02-02-98           | - 581    | < 0.5                 | < 10   | < 10   | < 15      | 1500 ± 120     |  |
| 03-0 <b>3-</b> 98  | - 1283   | < 0.5                 | < 10   | < 10   | < 15      | $1640 \pm 180$ |  |
| 04-01-98           | - 1963   | < 0.5                 | < 10   | < 10   | < 15      | 1530 ± 130     |  |
| 05-04-98           | - 2940   | < 0.5                 | < 10   | < 10   | < 15      | $1420 \pm 180$ |  |
| 05-19-98           | - 3610   | < 0.5                 | < 10   | < 10   | < 15      | 1340 ± 110     |  |
| 06-02-98           | - 4005   | < 0.5                 | < 10   | < 10   | < 15      | $1340 \pm 160$ |  |
| 06-16-98           | - 4376   | < 0.5                 | < 10   | < 10   | < 15      | $1490 \pm 160$ |  |
| 07-01-98           | - 4805   | < 0.5                 | < 10   | < 10   | < 15      | 1680 ± 190     |  |
| 07-14-98           | - 5291   | < 0.5                 | < 10   | < 10   | < 15      | $1410 \pm 100$ |  |
| 08-04-98           | - 5918   | < 0.5                 | < 10   | < 10   | < 15      | $1320 \pm 170$ |  |
| 08-18-98           | - 6432   | < 0.5                 | < 10   | < 10   | < 15      | 1370 ± 120     |  |
| 09-01-98           | - 6842   | < 0.5                 | < 10   | < 10   | < 15      | $1260 \pm 150$ |  |
| )9-15-98           | - 7531   | < 0.5                 | < 10   | < 10   | < 15      | $1600 \pm 150$ |  |
| 10-01-98           | - 7824   | < 0.5                 | < 10   | < 10   | < 15      | 1530 ± 200     |  |
| 10-13-98           | - 8333   | < 0.5                 | < 10   | < 10   | < 15      | 1390 ± 120     |  |
| 11-02-98           | - 9335   | < 0.5                 | < 10   | < 10   | < 15      | 1500 ± 190     |  |
| 12-02-98           | - 10151  | < 0.5                 | < 10   | < 10   | < 15      | $1580 \pm 180$ |  |
| <u>K-19</u>        |          |                       |        |        |           |                |  |
| 01-06-98           | KMI - 10 | < 0.5                 | < 10   | < 10   | < 15      | $1240 \pm 160$ |  |
| 02-02-98           | - 582    | < 0.5                 | < 10   | < 10   | < 15      | 1270 ± 150     |  |
| )3-03-98           | - 1284   | < 0.5                 | < 10   | < 10   | < 15      | $1420 \pm 150$ |  |
| 04-02-98           | - 1964   | < 0.5                 | < 10   | < 10   | < 15      | 1390 ± 130     |  |
| )5-04-98           | - 2940,1 | < 0.5                 | < 10   | < 10   | < 15      | $1320 \pm 120$ |  |
| )5-19-98           | - 3611   | < 0.5                 | < 10   | < 10   | < 15      | $1160 \pm 140$ |  |
| 06-02-98           | - 4006   | < 0.5                 | < 10   | < 10   | < 15      | $1430 \pm 170$ |  |
| )6-16-98           | - 4377   | < 0.5                 | < 10   | < 10   | < 15      | $1290 \pm 150$ |  |
| 07-01-98           | - 4806   | < 0.5                 | < 10   | < 10   | < 15      | $1600 \pm 170$ |  |
| 07-14-98           | - 5292   | < 0.5                 | < 10   | < 10   | < 15      | $1310 \pm 160$ |  |
| )8-04-98           | - 5919   | < 0.5                 | < 10   | < 10   | < 15      | 1380 ± 170     |  |
| )8-18-98           | - 6433   | < 0.5                 | < 10   | < 10   | < 15      | $1310 \pm 160$ |  |
| )9-01-98           | - 6843   | < 0.5                 | < 10   | < 10   | < 15      | $1420 \pm 120$ |  |
| )9-15-98           | - 7532   | < 0.5                 | < 10   | < 10   | < 15      | $1550 \pm 170$ |  |
| 10-01-98           | - 7825   | < 0.5                 | < 10   | < 10   | < 15      | $1390 \pm 160$ |  |
| 10-13-98           | - 8334   | < 0.5                 | < 10   | < 10   | < 15      | $1390 \pm 100$ |  |
| 11-02-98           | - 9336   | < 0.5                 | < 10   | < 10   | < 15      | $1400 \pm 150$ |  |
| 12-02-98           | - 10152  | < 0.5                 | < 10   | < 10   | < 15      | $1440 \pm 160$ |  |

Table 14. Milk, analyses for iodine-131 and gamma-emitting isotopes (continued).

| Table 14. | Milk, analyses for iodine-131 and gamma-emitting isotopes (continu | ied). |
|-----------|--------------------------------------------------------------------|-------|
|-----------|--------------------------------------------------------------------|-------|

Â

| Collection<br>Date | Lab<br>Code |       |        | tion (pCi/L) |           |                              |
|--------------------|-------------|-------|--------|--------------|-----------|------------------------------|
|                    |             | I-131 | Cs-134 | 4 Cs-137     | Ba-La-140 | K-40                         |
| Control            |             |       |        |              |           |                              |
| <u>K-3</u>         |             |       |        |              |           |                              |
| 01-06-98           | KMI - 5     | < 0.5 | < 10   | < 10         | < 15      | $1580 \pm 160$               |
| 02-02-98           | - 577       | < 0.5 | < 10   | < 10         | < 15      | $1510 \pm 110$               |
| 03-03-98           | - 1279      | < 0.5 | < 10   | < 10         | < 15      | 1650 ± 210                   |
| 04-02-98           | - 1959      | < 0.5 | < 10   | < 10         | < 15      | $1480 \pm 160$               |
| 05-05-98           | - 2936      | < 0.5 | < 10   | < 10         | < 15      | 1330 ± 120                   |
| 05-19-98           | - 3606      | < 0.5 | < 10   | < 10         | < 15      | $1420 \pm 120$               |
| 06-02-98           | - 4001      | < 0.5 | < 10   | < 10         | < 15      | $1410 \pm 180$               |
| 06-16-98           | - 4372      | < 0.5 | < 10   | < 10         | < 15      | $1410 \pm 150$               |
| 07-01-98           | - 4801      | < 0.5 | < 10   | < 10         | < 15      | $1450 \pm 190$               |
| 07-14-98           | - 5287      | < 0.5 | < 10   | < 10         | < 15      | $1400 \pm 140$               |
| 08-04-98           | - 5914      | < 0.5 | < 10   | < 10         | < 15      | $1390 \pm 150$               |
| 08-18-98           | - 6428      | < 0.5 | < 10   | < 10         | < 15      | $1340 \pm 170$               |
| 09-02-98           | - 6838      | < 0.5 | < 10   | < 10         | < 15      | $1260 \pm 160$               |
| 09-15-98           | - 7527      | < 0.5 | < 10   | < 10         | < 15      | $1560 \pm 150$               |
| 10-02-98           | - 7820      | < 0.5 | < 10   | < 10         | < 15      | $1410 \pm 160$               |
| 10-13-98           | - 8329      | < 0.5 | < 10   | < 10         | < 15      | $1390 \pm 130$               |
| 11-03-98           | - 9331      | < 0.5 | < 10   | < 10         | < 15      | $1310 \pm 190$               |
| 12-02-98           | -10146,7    | < 0.5 | < 10   | < 10         | < 15      | $1390 \pm 120$               |
| <u>K-6</u>         |             |       |        |              |           |                              |
| )1-05-98           | KMI - 8     | < 0.5 | < 10   | < 10         | < 15      | $1360 \pm 100$               |
| 02-02-98           | - 580       | < 0.5 | < 10   | < 10         | < 15      | $1470 \pm 170$               |
| )3-03-98           | - 1282      | < 0.5 | < 10   | < 10         | < 15      | $1300 \pm 160$               |
| )4-02-98           | - 1962      | < 0.5 | < 10   | < 10         | < 15      | $1130 \pm 120$               |
| )5-04-98           | - 2939      | < 0.5 | < 10   | < 10         | < 15      | $1200 \pm 160$               |
| )5-19-98           | - 3609      | < 0.5 | < 10   | < 10         | < 15      | $1180 \pm 150$               |
| )6-02-98           | - 4004      | < 0.5 | < 10   | < 10         | < 15      | $1260 \pm 110$               |
| )6-16-98           | - 4375      | < 0.5 | < 10   | < 10         | < 15      | $1180 \pm 110$               |
| 07-01-98           | - 4804      | < 0.5 | < 10   | < 10         | < 15      | $1100 \pm 150$               |
| )7-14-98           | - 5290      | < 0.5 | < 10   | < 10         | < 15      | $1170 \pm 180$               |
| 8-04-98            | - 5917      | < 0.5 | < 10   | < 10         | < 15      | $1070 \pm 160$               |
| 8-18-98            | - 6431      | < 0.5 | < 10   | < 10         | < 15      | $1180 \pm 120$               |
| 9-01-98            | - 6841      | < 0.5 | < 10   | < 10         | < 15      | $1330 \pm 130$               |
| 9-15-98            | - 7530      | < 0.5 | < 10   | < 10         | < 15      | $1410 \pm 170$               |
| 0-01-98            | - 7823      | < 0.5 | < 10   | < 10         | < 15      | $1340 \pm 120$               |
| 0-13-98            | - 8332      | < 0.5 | < 10   | < 10         | < 15      | $1340 \pm 120$<br>1340 ± 160 |
| 1-02-98            | - 9334      | < 0.5 | < 10   | < 10         | < 15      | $1340 \pm 160$<br>1310 ± 160 |
| 2-01-98            | - 10150     | < 0.5 | < 10   | < 10         | < 15      | $1290 \pm 160$               |

| Collection     | Lab      | Concentration (pCi/L) |        |        |           |                |  |
|----------------|----------|-----------------------|--------|--------|-----------|----------------|--|
| Date           | Code     | I-131                 | Cs-134 | Cs-137 | Ba-La-140 | K-40           |  |
| <u>Control</u> |          |                       |        |        |           |                |  |
| <u>K-28</u>    |          |                       |        |        |           |                |  |
| 01-06-98       | KMI - 11 | < 0.5                 | < 10   | < 10   | < 15      | 1470 ± 180     |  |
| 02-02-98       | - 583    | < 0.5                 | < 10   | < 10   | < 15      | $1380 \pm 170$ |  |
| 03-03-98       | - 1285   | < 0.5                 | < 10   | < 10   | < 15      | $1490 \pm 160$ |  |
| 04-02-98       | - 1965   | < 0.5                 | < 10   | < 10   | < 15      | $1130 \pm 160$ |  |
| 05-04-98       | - 2943   | < 0.5                 | < 10   | < 10   | < 15      | $1270 \pm 140$ |  |
| 05-19-98       | - 3612   | < 0.5                 | < 10   | < 10   | < 15      | $1390 \pm 180$ |  |
| 06-02-98       | - 4007   | < 0.5                 | < 10   | < 10   | < 15      | $1480 \pm 170$ |  |
| 06-16-98       | - 4378   | < 0.5                 | < 10   | < 10   | < 15      | $1240 \pm 170$ |  |
| 07-01-98       | - 4807   | < 0.5                 | < 10   | < 10   | < 15      | $1260 \pm 150$ |  |
| 07-14-98       | - 5293   | < 0.5                 | < 10   | < 10   | < 15      | $1300 \pm 180$ |  |
| 08-04-98       | - 5920   | < 0.5                 | < 10   | < 10   | < 15      | $1440 \pm 170$ |  |
| 08-18-98       | - 6434   | < 0.5                 | < 10   | < 10   | < 15      | 1290 ± 160     |  |
| 09-02-98       | - 6844   | < 0.5                 | < 10   | < 10   | < 15      | $1470 \pm 180$ |  |
| 09-15-98       | - 7533   | < 0.5                 | < 10   | < 10   | < 15      | $1560 \pm 150$ |  |
| 10-01-98       | - 7826   | < 0.5                 | < 10   | < 10   | < 15      | $1300 \pm 140$ |  |
| 10-13-98       | - 8335   | < 0.5                 | < 10   | < 10   | < 15      | 1300 ± 130     |  |
| 11-03-98       | - 9337   | < 0.5                 | < 10   | < 10   | < 15      | $1200 \pm 170$ |  |
| 12-02-98       | - 10153  | < 0.5                 | < 10   | < 10   | < 15      | $1440 \pm 180$ |  |

1

A

Ń

# Table 14.Milk, analyses for iodine-131 and gamma-emitting isotopes (continued).

|                   |        |         |               |                 |       | Ra      | tios    |
|-------------------|--------|---------|---------------|-----------------|-------|---------|---------|
|                   |        |         |               |                 |       | Sr-90   | Cs-137  |
|                   |        |         |               |                 |       | (pCi/L) | (pCi/L) |
|                   |        |         | Concentrat    |                 |       | per     | per     |
| Collection        | Lab    | Sr-89   | Sr-90         | K               | Ca    | gram    | gram    |
| Period            | Code   | (pCi/L) | (pCi/L)       | (g/L)           | (g/L) | Ca      | K       |
| <b>Indicators</b> |        |         |               |                 |       |         |         |
| _                 |        |         | ŀ             | <-4             | ····· |         |         |
| January           | KMI -6 | < 0.9   | $1.2 \pm 0.6$ | $1.72 \pm 0.18$ | 0.85  | 1.41    | <5.81   |
| February          | -578   | < 0.7   | $0.8 \pm 0.4$ | $1.43 \pm 0.17$ | 0.91  | 0.88    | <6.98   |
| March             | -1280  | < 0.8   | $0.7 \pm 0.3$ | $1.72 \pm 0.15$ | 0.99  | 0.71    | <5.81   |
| April             | -1960  | < 0.7   | $0.9 \pm 0.4$ | $1.49 \pm 0.15$ | 0.78  | 1.15    | <6.71   |
| May               | -3614  | < 1.1   | $0.8 \pm 0.3$ | $1.60 \pm 0.12$ | 0.88  | 0.91    | <6.27   |
| June              | -4380  | < 1.0   | < 0.7         | $1.46 \pm 0.13$ | 0.86  | <0.81   | <6.87   |
| July              | -5316  | < 1.2   | $0.9 \pm 0.4$ | $1.62 \pm 0.06$ | 0.80  | 1.13    | <6.18   |
| August            | -6436  | < 1.1   | $0.7 \pm 0.3$ | $1.39 \pm 0.12$ | 0.77  | 0.91    | <7.18   |
| September         | -7535  | < 0.9   | $0.9 \pm 0.4$ | $1.62 \pm 0.13$ | 0.80  | 1.13    | <6.16   |
| October           | -8339  | < 1.0   | $0.8 \pm 0.4$ | $1.43 \pm 0.18$ | 0.87  | 0.92    | <6.98   |
| November          | -9332  | < 1.0   | $1.3 \pm 0.4$ | $1.58 \pm 0.18$ | 0.89  | 1.46    | <6.31   |
| December          | -10148 | < 1.1   | 0.9 ± 0.5     | $1.78 \pm 0.20$ | 0.89  | 1.01    | <5.62   |
| _                 |        |         | k             | (-5             |       |         |         |
| January           | KMI -7 | < 0.8   | 2.7 ± 0.7     | $1.69 \pm 0.21$ | 0.84  | 3.21    | <5.92   |
| February          | -579   | < 0.7   | $1.5 \pm 0.5$ | $1.78 \pm 0.18$ | 0.89  | 1.69    | <5.62   |
| March             | -1281  | < 0.9   | $1.3 \pm 0.4$ | $1.65 \pm 0.14$ | 1.03  | 1.26    | <6.05   |
| April             | -1961  | < 0.8   | $1.1 \pm 0.4$ | $1.40 \pm 0.21$ | 0.71  | 1.55    | <7.15   |
| May               | -3615  | < 0.6   | $1.1 \pm 0.3$ | $1.60 \pm 0.14$ | 0.83  | 1.33    | <6.25   |
| June              | -4381  | < 0.9   | $1.0 \pm 0.4$ | $1.61 \pm 0.12$ | 0.96  | 1.04    | <6.20   |
| July              | -5317  | < 1.1   | $1.2 \pm 0.4$ | $1.66 \pm 0.14$ | 0.88  | 1.36    | <6.03   |
| August            | -6437  | < 0.9   | $1.5 \pm 0.4$ | $1.54 \pm 0.13$ | 0.98  | 1.53    | <6.48   |
| September         | -7536  | < 1.0   | $1.8 \pm 0.5$ | $1.73 \pm 0.13$ | 0.85  | 2.12    | <5.77   |
| October           | -8340  | < 0.8   | $1.4 \pm 0.4$ | $1.58 \pm 0.13$ | 0.89  | 1.57    | <6.34   |
| November          | -9333  | < 0.9   | $0.7 \pm 0.3$ | $1.55 \pm 0.18$ | 0.86  | 0.81    | <6.46   |
| December          | -10149 | < 1.1   | $0.8 \pm 0.4$ | $1.56 \pm 0.18$ | 0.70  | 1.14    | <6.41   |

1

#### <u>KEWAUNEE</u>

Table 15. Milk, analyses for strontium-89, strontium-90, stable potassium, stable calcium, and ratios of strontium-90 per gram of calcium and cesium-137 per gram of potassium.

|            |            |         |               |                 |              | Sr-90 | tios<br>Cs-137 |
|------------|------------|---------|---------------|-----------------|--------------|-------|----------------|
|            |            |         |               |                 |              | -     | (pCi/L         |
| <b>.</b>   | <b>~</b> 1 |         | Concentrati   |                 | 6            | per   | per            |
| Collection | Lab        | Sr-89   | Sr-90         | K               | Ca           | gram  | gram           |
| Period     | Code       | (pCi/L) | (pCi/L)       | (g/L)           | (g/L)        | Ca    | K              |
| Indicators |            |         |               |                 |              |       |                |
| _          |            |         | K             | -12             |              |       |                |
| January    | KMI -9     | < 0.7   | $1.8 \pm 0.6$ | $1.66 \pm 0.20$ | 0.80         | 2.25  | <6.01          |
| February   | -581       | < 0.7   | $1.8 \pm 0.5$ | $1.73 \pm 0.14$ | 0.90         | 2.00  | <5.77          |
| March      | -1283      | < 0.7   | $1.7 \pm 0.5$ | $1.90 \pm 0.21$ | 1.00         | 1.70  | <5.27          |
| April      | -1963      | < 0.8   | $2.4 \pm 0.5$ | $1.77 \pm 0.15$ | 0.87         | 2.76  | <5.65          |
| May        | -3617      | < 0.6   | $1.2 \pm 0.4$ | $1.60 \pm 0.12$ | 0.93         | 1.29  | <6.27          |
| June       | -4383      | < 0.7   | $1.7 \pm 0.4$ | $1.64 \pm 0.13$ | 0.96         | 1.77  | <6.11          |
| ſuly       | -5319      | < 1.0   | $1.8 \pm 0.4$ | $1.79 \pm 0.06$ | 0.80         | 2.25  | <5.60          |
| August     | -6439      | < 1.1   | $2.0 \pm 0.4$ | $1.55 \pm 0.12$ | 0.82         | 2.44  | <6.43          |
| September  | -7538      | < 1.0   | $1.0 \pm 0.4$ | $1.65 \pm 0.12$ | 0.85         | 1.18  | <6.05          |
| October    | -8342      | < 0.8   | $1.5 \pm 0.4$ | $1.69 \pm 0.13$ | 0.78         | 1.92  | <5.92          |
| November   | -9335      | < 1.0   | $1.4 \pm 0.4$ | $1.73 \pm 0.22$ | 0.75         | 1.87  | <5.77          |
| December   | -10151     | < 1.0   | $1.2 \pm 0.5$ | $1.83 \pm 0.21$ | 0.90         | 1.33  | <5.47          |
|            |            |         |               |                 |              |       |                |
| _          |            |         | K             | -19             |              |       |                |
| January    | KMI -10    | < 0.8   | $1.9 \pm 0.5$ | $1.43 \pm 0.18$ | 0.80         | 2.38  | <6.98          |
| February   | -582       | < 0.7   | $1.0 \pm 0.4$ | $1.47 \pm 0.17$ | 0.89         | 1.12  | <6.81          |
| March      | -1284      | < 0.7   | $1.4 \pm 0.4$ | $1.64 \pm 0.17$ | 0. <b>90</b> | 1.56  | <6.09          |
| April      | -1964      | < 0.7   | $1.2 \pm 0.3$ | $1.61 \pm 0.15$ | 0.89         | 1.35  | <6.22          |
| May        | -3618      | < 0.5   | $1.1 \pm 0.3$ | $1.43 \pm 0.10$ | 0.87         | 1.26  | <6.98          |
| June       | -4384      | < 1.0   | $1.2 \pm 0.5$ | $1.57 \pm 0.13$ | 0.82         | 1.46  | <6.36          |
| July       | -5320      | < 1.1   | $0.7 \pm 0.3$ | $1.68 \pm 0.13$ | 0.94         | 0.74  | <5.95          |
| August     | -6440      | < 1.2   | $1.7 \pm 0.4$ | $1.55 \pm 0.13$ | 0.84         | 2.02  | <6.43          |
| September  | -7539      | < 0.8   | $1.0 \pm 0.3$ | $1.72 \pm 0.12$ | 0.88         | 1.14  | <5.82          |
| October    | -8343      | < 0.8   | $0.8 \pm 0.4$ | $1.61 \pm 0.11$ | 0.76         | 1.05  | <6.22          |
| November   | -9336      | < 1.0   | $0.8 \pm 0.4$ | $1.62 \pm 0.17$ | 0.78         | 1.03  | <6.18          |
| December   | -10152     | < 0.9   | $1.1 \pm 0.4$ | $1.66 \pm 0.18$ | 0.80         | 1.38  | <6.01          |

#### <u>KEWAUNEE</u>

#### **KEWAUNEE**

|                |          |         |               |                 | Ra    | itios   |        |
|----------------|----------|---------|---------------|-----------------|-------|---------|--------|
|                |          |         |               |                 |       | Sr-90   | Cs-137 |
|                |          |         | _             |                 |       | (pCi/L) | (pCi/L |
| <b>.</b>       |          |         | Concentrat    |                 |       | per     | per    |
| Collection     | Lab      | Sr-89   | Sr-90         | K               | Ca    | gram    | grain  |
| Period         | Code     | (pCi/L) | (pCi/L)       | (g/L)           | (g/L) | Ca      | K      |
| <u>Control</u> |          |         |               |                 |       |         |        |
|                |          |         | ŀ             | (-3             |       |         |        |
| January        | KMI -5   | < 0.8   | $1.6 \pm 0.6$ | $1.83 \pm 0.18$ | 1.08  | 1.48    | <5.47  |
| February       | -577     | < 0.8   | $1.3 \pm 0.5$ | $1.75 \pm 0.13$ | 0.87  | 1.49    | <5.73  |
| March          | -1279    | < 0.8   | $0.9 \pm 0.4$ | $1.91 \pm 0.24$ | 0.95  | 0.95    | <5.24  |
| April          | -1959    | < 0.8   | 1.4 ± 0.5     | $1.71 \pm 0.18$ | 0.87  | 1.61    | <5.84  |
| May            | -3613    | < 0.7   | $1.5 \pm 0.4$ | $1.59 \pm 0.10$ | 0.93  | 1.61    | <6.29  |
| June           | -4379    | < 1.4   | $1.3 \pm 0.5$ | $1.63 \pm 0.14$ | 0.96  | 1.35    | <6.13  |
| July           | -5315    | < 1.2   | $1.2 \pm 0.4$ | $1.65 \pm 0.14$ | 0.82  | 1.46    | <6.07  |
| August         | -6435    | < 1.1   | $1.2 \pm 0.4$ | $1.58 \pm 0.13$ | 0.90  | 1.33    | <6.34  |
| September      | -7534    | < 0.9   | $1.1 \pm 0.4$ | $1.63 \pm 0.13$ | 0.86  | 1.28    | <6.13  |
| October        | -8338    | < 0.9   | $1.2 \pm 0.4$ | $1.62 \pm 0.12$ | 0.89  | 1.35    | <6.18  |
| November       | -9331    | < 1.1   | $1.2 \pm 0.4$ | $1.51 \pm 0.22$ | 0.75  | 1.60    | <6.60  |
| December       | -10146,7 | < 1.1   | $1.1 \pm 0.5$ | $1.61 \pm 0.14$ | 0.78  | 1.41    | <6.22  |
|                |          |         |               |                 |       |         |        |
|                |          |         | k             | (-6             |       |         |        |
| January        | KMI -8   | < 0.8   | 2.1 ± 0.6     | $1.57 \pm 0.12$ | 0.98  | 2.14    | <6.36  |
| February       | -580     | < 0.7   | $3.3 \pm 0.6$ | $1.70 \pm 0.20$ | 1.02  | 3.24    | <5.88  |
| March          | -1282    | < 0.8   | $1.8 \pm 0.4$ | $1.50 \pm 0.18$ | 1.03  | 1.75    | <6.65  |
| April          | -1962    | < 0.7   | $1.3 \pm 0.4$ | $1.31 \pm 0.14$ | 1.00  | 1.30    | <7.65  |
| May            | -3616    | < 0.7   | $1.0 \pm 0.4$ | $1.38 \pm 0.13$ | 0.97  | 1.03    | <7.27  |
| June           | -4382    | < 0.8   | $1.1 \pm 0.4$ | $1.41 \pm 0.09$ | 0.90  | 1.22    | <7.09  |
| July           | -5318    | < 1.1   | $1.1 \pm 0.4$ | $1.31 \pm 0.14$ | 1.07  | 1.03    | <7.62  |
| August         | -6438    | < 1.2   | $0.8 \pm 0.4$ | $1.30 \pm 0.14$ | 0.99  | 0.81    | <7.69  |
| September      | -7537    | < 0.9   | $1.2 \pm 0.4$ | $1.58 \pm 0.12$ | 0.92  | 1.30    | <6.31  |
| October        | -8341    | < 0.9   | $1.2 \pm 0.4$ | $1.55 \pm 0.12$ | 1.05  | 1.14    | <6.46  |
| November       | -9334    | < 0.9   | $0.8 \pm 0.3$ | $1.51 \pm 0.18$ | 0.87  | 0.92    | <6.60  |
| December       | -10150   | < 1.1   | $1.1 \pm 0.4$ | $1.49 \pm 0.18$ | 0.90  | 1.22    | <6.71  |

Table 15. Milk, analyses for strontium-89, strontium-90, stable potassium, stable calcium, and ratios of strontium-90 per gram of calcium and cesium-137 per gram of potassium (continued).

69

•

|                |         |         |               |                 |       | Ra      | tios    |
|----------------|---------|---------|---------------|-----------------|-------|---------|---------|
|                |         |         |               |                 |       | Sr-90   | Cs-137  |
|                |         |         |               |                 |       | (pCi/L) | (pCi/L) |
|                |         |         | Concentrat    | ion             |       | per     | - per   |
| Collection     | Lab     | Sr-89   | Sr-90         | K               | Ca    | gram    | gram    |
| Period         | Code    | (pCi/L) | (pCi/L)       | (g/L)           | (g/L) | Ca      | K       |
| <u>Control</u> |         |         |               |                 |       |         |         |
|                |         |         |               |                 |       |         |         |
| _              |         |         | K             | -28             |       |         |         |
| January        | KMI -11 | < 0.8   | $1.6 \pm 0.5$ | $1.70 \pm 0.21$ | 0.89  | 1.80    | <5.88   |
| February       | -583    | < 0.8   | $2.1 \pm 0.5$ | $1.60 \pm 0.20$ | 0.88  | 2.39    | <6.27   |
| March          | -1285   | < 0.7   | $1.9 \pm 0.6$ | $1.72 \pm 0.18$ | 0.90  | 2.11    | <5.81   |
| April          | -1965   | < 0.7   | $1.9 \pm 0.4$ | $1.31 \pm 0.18$ | 0.85  | 2.24    | <7.65   |
| May            | -3619   | < 0.7   | $2.2 \pm 0.5$ | $1.54 \pm 0.13$ | 1.10  | 2.00    | <6.50   |
| June           | -4385   | < 1.0   | $1.0 \pm 0.5$ | $1.57 \pm 0.14$ | 0.80  | 1.25    | <6.36   |
| July           | -5321   | < 1.1   | $1.1 \pm 0.4$ | $1.48 \pm 0.14$ | 0.81  | 1.36    | <6.76   |
| August         | -6441   | < 1.0   | $1.7 \pm 0.4$ | $1.58 \pm 0.13$ | 0.89  | 1.91    | <6.34   |
| September      | -7540   | < 0.8   | $1.3 \pm 0.4$ | $1.75 \pm 0.14$ | 0.82  | 1.59    | <5.71   |
| October        | -8344   | < 0.9   | $1.1 \pm 0.4$ | $1.50 \pm 0.11$ | 0.88  | 1.25    | <6.65   |
| November       | -9337   | < 1.1   | $1.4 \pm 0.5$ | $1.39 \pm 0.20$ | 0.84  | 1.67    | <7.21   |
| December       | -10153  | < 1.0   | $0.8 \pm 0.3$ | $1.66 \pm 0.21$ | 0.76  | 1.05    | <6.01   |

| Table 16. Well wate<br>emitting i<br>Collection                               | sotopes.                                             | ses for gross alpha <sup>*</sup> ,                   | gross beta, potassi                                  | um-40, and gamm                                      |  |  |
|-------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|--|--|
| Sample Description and Concentration (pCi/L)                                  |                                                      |                                                      |                                                      |                                                      |  |  |
| Indicator                                                                     |                                                      | н                                                    | - <u></u>                                            |                                                      |  |  |
| <u>K-1g</u>                                                                   |                                                      |                                                      |                                                      |                                                      |  |  |
| Date Collected<br>Lab Code                                                    | 01-05-98<br>KWW-35                                   | 04-01-98<br>KWW-1977                                 | 07-01-98<br>KWW-4817                                 | 10-01-98<br>KWW-7862                                 |  |  |
| Gross alpha<br>Gross beta                                                     | $2.1 \pm 1.7$<br>$5.7 \pm 1.4$                       | < 2.1<br>3.6 ± 2.8                                   | $3.8 \pm 2.1$<br>5.1 ± 2.6                           | < 2.7<br>< 3.6                                       |  |  |
| K-40 (flame photometry)                                                       | 2.68                                                 | 2.25                                                 | 2.77                                                 | 2.60                                                 |  |  |
| Mn-54<br>Fe-59<br>Co-58<br>Co-60<br>Zr-Nb-95<br>Cs-134<br>Cs-137<br>Ba-La-140 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 |  |  |
| <u>K-1h</u>                                                                   |                                                      |                                                      |                                                      |                                                      |  |  |
| Date Collected<br>Lab Code                                                    | 01-05-98<br>KWW-36                                   | 04-01-98<br>KWW-1978                                 | 07-01-98<br>KWW-4818                                 | 10-01-98<br>KWW-7863                                 |  |  |
| Gross alpha<br>Gross beta                                                     | < 1.8<br>4.4 ± 1.2                                   | $6.1 \pm 1.6$<br>$5.6 \pm 1.4$                       | < 2.1<br>4.0 ± 1.6                                   | $2.5 \pm 1.7$<br>$3.2 \pm 1.6$                       |  |  |
| K-40 (flame photometry)                                                       | 2.60                                                 | 2.25                                                 | 2.68                                                 | 2.60                                                 |  |  |
| Mn-54<br>Fe-59<br>Co-58<br>Co-60<br>Zr-Nb-95<br>Cs-134<br>Cs-137              | <15<br><30<br><15<br><15<br><15<br><10<br><10        | <15<br><30<br><15<br><15<br><15<br><10<br><10        | <15<br><30<br><15<br><15<br><15<br><10<br><10        | <15<br><30<br><15<br><15<br><15<br><10<br><10        |  |  |

<sup>a</sup> Gross Alpha analyses required on samples from K-1g and K-1h only.

Table 16.Well water samples, analyses for gross alpha, gross beta, potassium-40, and gamma-<br/>emitting isotopes (continued).

|                                                                               | Sample Description and Concentration (pCi/L)         |                                                      |                                                      |                                                      |  |  |  |
|-------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|--|--|--|
| Indicator                                                                     |                                                      |                                                      |                                                      |                                                      |  |  |  |
| <u>K-10</u>                                                                   |                                                      |                                                      |                                                      |                                                      |  |  |  |
| Date Collected<br>Lab Code                                                    | 01-05-98<br>KWW-37                                   | 04-01-98<br>KWW-1979                                 | 07-01-98<br>KWW-4819,20                              | 10-01-98<br>KWW-7864                                 |  |  |  |
| Gross beta                                                                    | $1.0 \pm 0.4$                                        | $1.2 \pm 0.3$                                        | $1.0 \pm 0.4$                                        | < 1.0                                                |  |  |  |
| K-40 (flame photometry)                                                       | <0.87                                                | <0.87                                                | 0.91                                                 | 0.87                                                 |  |  |  |
| Mn-54<br>Fe-59<br>Co-58<br>Co-60<br>Zr-Nb-95<br>Cs-134<br>Cs-137<br>Ba-La-140 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 |  |  |  |
| <u>K-11</u>                                                                   |                                                      |                                                      |                                                      |                                                      |  |  |  |
| Date Collected<br>Lab Code                                                    | 01-05-98<br>KWW-38                                   | 04-01-98<br>KWW-1980                                 | 07-01-98<br>KWW-4821                                 | 10-01-98<br>KWW-7865                                 |  |  |  |
| Gross beta                                                                    | $1.9 \pm 0.6$                                        | $1.3 \pm 0.3$                                        | < 1.1                                                | $2.3 \pm 0.3$                                        |  |  |  |
| K-40 (flame photometry)                                                       | 0.87                                                 | <0.87                                                | 1.04                                                 | 0.95                                                 |  |  |  |
| Mn-54<br>Fe-59<br>Co-58<br>Co-60<br>Zr-Nb-95<br>Cs-134<br>Cs-137<br>Ba-La-140 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><10 |  |  |  |

Table 16.Well water samples, analyses for gross alpha, gross beta, potassium-40, and gamma-<br/>emitting isotopes (continued).

|                                                                                                                | Sample Descrip                                       | otion and Concentra                                  | tion (pCi/L)                                         |                                                      |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| Indicator (continued)                                                                                          |                                                      |                                                      |                                                      |                                                      |
| <u>K-12</u>                                                                                                    |                                                      |                                                      |                                                      |                                                      |
| Date Collected<br>Lab Code                                                                                     | 01-05-98<br>KWW-39                                   | 04-01-98<br>KWW-1981                                 | 07-01-98<br>KWW-4822                                 | 10-01-98<br>KWW-7866                                 |
| Gross beta                                                                                                     | $1.7 \pm 0.6$                                        | < 1.1                                                | $1.3 \pm 0.7$                                        | $1.6 \pm 0.3$                                        |
| K-40 (flame photometry)                                                                                        | 1.04                                                 | 0.95                                                 | 1.12                                                 | 1.21                                                 |
| Mn-54<br>Fe-59<br>Co-58<br>Co-60<br>Zr-Nb-95<br>Cs-134<br>Cs-137<br>Ba-La-140<br><u>Control</u><br><u>K-13</u> | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 |
| Date Collected<br>Lab Code                                                                                     | 01-05-98<br>KWW-40                                   | 04-01-98<br>KWW-1982                                 | 07-01-98<br>KWW-4823                                 | 10-01-98<br>KWW-7867                                 |
| Gross beta                                                                                                     | $1.0 \pm 0.4$                                        | $1.1 \pm 0.4$                                        | $1.4 \pm 0.5$                                        | $1.2 \pm 0.2$                                        |
| K-40 (flame photometry)                                                                                        | 0.95                                                 | 0.95                                                 | 1.04                                                 | 0.95                                                 |
| Mn-54<br>Fe-59<br>Co-58<br>Co-60<br>Zr-Nb-95<br>Cs-134<br>Cs-137<br>Ba-La-140                                  | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 |

|                |          | Concentration (pCi/L) |       |               |  |
|----------------|----------|-----------------------|-------|---------------|--|
| Date Collected | Lab Code | H-3                   | Sr-89 | Sr-90         |  |
| 01-05-98       | KWW -35  | < 330                 | < 0.7 | < 0.4         |  |
| 04-01-98       | -1977    | < 330                 | < 0.7 | $0.5 \pm 0.2$ |  |
| 07-01-98       | -4817    | < 330                 | < 2.2 | < 0.5         |  |
| 10-01-98       | -7862    | < 330                 | < 0.8 | < 0.5         |  |

| Table 17. | Well water samples from K-1g , analyses for tritium, strontium-89, and strontium-90. |
|-----------|--------------------------------------------------------------------------------------|
|           | Collection: Quarterly.                                                               |

#### Table 18. Domestic meat samples (chickens), analyses of flesh for gross alpha, gross beta, and gamma-emitting isotopes. Collection: Annually.

|                |                 | Control |                 |                 |
|----------------|-----------------|---------|-----------------|-----------------|
| Location       | K-24            | K-27    | K-29            | K-32            |
| Date Collected | 09-01-98        | NSª     | 09-01-98        | 09-01-98        |
| Lab Code       | KME-6864        | -       | KME-6865        | KME-6866        |
| Gross Alpha    | $0.10 \pm 0.06$ | -       | < 0.04          | $0.05 \pm 0.03$ |
| Gross beta     | $2.52 \pm 0.13$ | -       | $1.76 \pm 0.09$ | 3.00 ± 0.09     |
| Be-7           | < 0.41          | -       | < 0.31          | < 0.094         |
| K-40           | $3.06 \pm 0.42$ | -       | $2.76 \pm 0.30$ | $2.19 \pm 0.16$ |
| Nb-95          | < 0.083         | -       | < 0.039         | < 0.013         |
| Zr-95          | < 0.042         | -       | < 0.060         | < 0.011         |
| Ru-103         | < 0.032         | -       | < 0.022         | < 0.012         |
| Ru-106         | < 0.23          | -       | < 0.16          | < 0.057         |
| Cs-134         | < 0.021         | -       | < 0.020         | < 0.006         |
| Cs-137         | < 0.021         | -       | < 0.018         | < 0.006         |
| Ce-141         | < 0.063         | -       | < 0.057         | < 0.018         |
| Ce-144         | < 0.11          | -       | < 0.13          | < 0.032         |

<sup>a</sup> NS = No sample; sample not available from this location.

### Table 19. Eggs, analyses for gross beta, strontium-89, strontium-90 and gamma emitting isotopes.

| 0.11 |          |  |
|------|----------|--|
| Col  | lection: |  |
| COL  | lecuon.  |  |

| S                                                                                          | Sample Description and                                                                                                        | l Concentration (p                                                                                                              | Ci/g wet)                                                                                                            |                                                                                                                                  |  |  |  |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Location                                                                                   | K-24                                                                                                                          |                                                                                                                                 |                                                                                                                      |                                                                                                                                  |  |  |  |
| Date Collected<br>Lab Code                                                                 | 01-05-98<br>KE-12                                                                                                             | 04-01-98<br>KE-1966, 7                                                                                                          | 08-04-98<br>KE-5921                                                                                                  | 10-01-98<br>KE-7876                                                                                                              |  |  |  |
| Gross beta                                                                                 | $1.15 \pm 0.04$                                                                                                               | $1.16 \pm 0.04$                                                                                                                 | $1.22 \pm 0.06$                                                                                                      | 1.23 ± 0.06                                                                                                                      |  |  |  |
| Sr-89<br>Sr-90                                                                             | < 0.004<br>< 0.003                                                                                                            | < 0.010<br>< 0.003                                                                                                              | < 0.006<br>0.004 ± 0.001                                                                                             | < 0.006<br>0.002 ± 0.001                                                                                                         |  |  |  |
| Be-7<br>K-40<br>Nb-95<br>Zr-95<br>Ru-103<br>Ru-106<br>Cs-134<br>Cs-137<br>Ce-141<br>Ce-144 | $< 0.036$ $1.25 \pm 0.13$ $< 0.008$ $< 0.007$ $< 0.005$ $< 0.048$ $< 0.005$ $< 0.005$ $< 0.005$ $< 0.003$ $< 0.013$ $< 0.040$ | $ < 0.038  1.32 \pm 0.11  < 0.004  < 0.015  < 0.004  < 0.057  < 0.003  < 0.006  < 0.008  < 0.042 $                              | $ < 0.088 \\ 1.11 \pm 0.21 \\ < 0.009 \\ < 0.022 \\ < 0.006 \\ < 0.041 \\ < 0.006 \\ < 0.009 \\ < 0.012 \\ < 0.039 $ | $< 0.092 \\ 1.31 \pm 0.21 \\ < 0.013 \\ < 0.011 \\ < 0.006 \\ < 0.045 \\ < 0.007 \\ < 0.006 \\ < 0.023 \\ < 0.059 \\ $           |  |  |  |
| Location                                                                                   |                                                                                                                               |                                                                                                                                 | K-32                                                                                                                 |                                                                                                                                  |  |  |  |
| Date Collected<br>Lab Code                                                                 |                                                                                                                               | 05-04-98<br>KE-2953                                                                                                             | 07-02-98<br>KE-4824                                                                                                  | 10-01-98<br>KE-7877                                                                                                              |  |  |  |
| Gross beta                                                                                 | •                                                                                                                             | $1.16 \pm 0.04$                                                                                                                 | $2.07 \pm 0.09$                                                                                                      | $1.31 \pm 0.06$                                                                                                                  |  |  |  |
| Sr-89<br>Sr-90                                                                             |                                                                                                                               | < 0.007<br>< 0.003                                                                                                              | < 0.004<br>< 0.002                                                                                                   | < 0.002<br>< 0.001                                                                                                               |  |  |  |
| Be-7<br>K-40<br>Nb-95<br>Zr-95<br>Ru-103<br>Ru-106<br>Cs-134<br>Cs-137<br>Ce-141<br>Ce-144 |                                                                                                                               | $ < 0.058 \\ 1.48 \pm 0.20 \\ < 0.014 \\ < 0.020 \\ < 0.011 \\ < 0.099 \\ < 0.009 \\ < 0.009 \\ < 0.011 \\ < 0.021 \\ < 0.039 $ | $ < 0.091 \\ \pm 0.21 \\ < 0.009 \\ < 0.014 \\ < 0.011 \\ < 0.055 \\ < 0.008 \\ < 0.006 \\ < 0.022 \\ < 0.047 $      | $< 0.082 \\ 1.20 \pm 0.22 \\ < 0.020 \\ < 0.017 \\ < 0.013 \\ < 0.040 \\ < 0.009 \\ < 0.011 \\ < 0.022 \\ < 0.063 \end{aligned}$ |  |  |  |

# Table 20.Vegetable and grain samples, analyses for gross beta, strontium-89, strontium-90,<br/>and gamma-emitting isotopes.<br/>Collection: Annually

|                                                                                            | Sample Descriptio                                                                                                                           | n and Concentration                                                                                                                       | n (pCi/g wet)                                                                                                       |                                         |
|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| - <u>-</u>                                                                                 |                                                                                                                                             | India                                                                                                                                     | cator                                                                                                               |                                         |
| Location<br>Date Collected<br>Lab Code<br>Type                                             | K-17<br>09-01-98<br>KVE-6867<br>Tomatoes                                                                                                    | K-17<br>09-01-98<br>KVE-6868<br>Squash                                                                                                    | K-17<br>09-01-98<br>KVE-6869<br>Cucumbers                                                                           |                                         |
| Gross beta                                                                                 | $2.11 \pm 0.07$                                                                                                                             | $3.48 \pm 0.13$                                                                                                                           | $1.17 \pm 0.04$                                                                                                     |                                         |
| Sr-89<br>Sr-90                                                                             | < 0.004<br>< 0.002                                                                                                                          | < 0.004<br>< 0.002                                                                                                                        | < 0.001<br>< 0.001                                                                                                  |                                         |
| Be-7<br>K-40<br>Nb-95<br>Zr-95<br>Ru-103<br>Ru-106<br>Cs-134<br>Cs-137<br>Ce-141<br>Ce-144 | $< 0.065 \\ 2.02 \pm 0.24 \\ < 0.009 \\ < 0.016 \\ < 0.008 \\ < 0.067 \\ < 0.008 \\ < 0.009 \\ < 0.009 \\ < 0.019 \\ < 0.067 \end{aligned}$ | $< 0.096 \\ 2.77 \pm 0.30 \\ < 0.015 \\ < 0.015 \\ < 0.012 \\ < 0.056 \\ < 0.013 \\ < 0.008 \\ < 0.013 \\ < 0.008 \\ < 0.013 \\ < 0.069 $ | $< 0.034 \\ 1.05 \pm 0.17 \\ < 0.004 \\ < 0.009 \\ < 0.007 \\ < 0.050 \\ < 0.010 \\ < 0.007 \\ < 0.014 \\ < 0.032 $ |                                         |
|                                                                                            |                                                                                                                                             | Con                                                                                                                                       | trol                                                                                                                |                                         |
| Location<br>Date Collected<br>Lab Code<br>Type                                             | K-26<br>09-01-98<br>KVE-6870<br>Corn                                                                                                        | K-26<br>09-01-98<br>KVE-6871<br>Cauliflower                                                                                               | K-26<br>09-01-98<br>KVE-6872<br>Cabbage                                                                             | K-26<br>10-01-98<br>KVE-7886<br>Pumpkin |
| Gross beta                                                                                 | $3.75 \pm 0.11$                                                                                                                             | $2.23 \pm 0.07$                                                                                                                           | $2.16 \pm 0.08$                                                                                                     | $1.93 \pm 0.05$                         |
| Sr-89<br>Sr-90                                                                             | 0.014<br>0.006                                                                                                                              | < 0.002<br>< 0.001                                                                                                                        | < 0.003<br>< 0.002                                                                                                  | < 0.001<br>< 0.001                      |
| Be-7<br>K-40<br>Nb-95<br>Zr-95<br>Ru-103<br>Ru-106<br>Cs-134<br>Cs-137<br>Ce-141<br>Ce-144 | < 0.16<br>$2.58 \pm 0.37$<br>< 0.019<br>< 0.016<br>< 0.012<br>< 0.055<br>< 0.010<br>< 0.018<br>< 0.017<br>< 0.066                           | < 0.037<br>2.09 ± 0.18<br>< 0.007<br>< 0.017<br>< 0.004<br>< 0.065<br>< 0.007<br>< 0.007<br>< 0.009<br>< 0.040                            | $< 0.077$ $2.12 \pm 0.27$ $< 0.012$ $< 0.024$ $< 0.011$ $< 0.051$ $< 0.010$ $< 0.008$ $< 0.012$ $< 0.046$           |                                         |

|                                                                                                     | Sample Description and Cor                                                                                                                          | ncentration (pCi/g wet)                                                                                                                                                     |  |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <u> </u>                                                                                            | India                                                                                                                                               | cator                                                                                                                                                                       |  |
| Location<br>Date Collected<br>Lab Code<br>Type                                                      | K-23<br>08-04-98<br>KVE-5926 A<br>Oats                                                                                                              | K-23<br>08-04-98<br>KVE-5926 B<br>Clover                                                                                                                                    |  |
| Gross beta                                                                                          | 8.46 ± 0.35                                                                                                                                         | $4.92 \pm 0.19$                                                                                                                                                             |  |
| Sr-89<br>Sr-90                                                                                      | < 0.043<br>< 0.022                                                                                                                                  | < 0.021<br>0.016 ± 0.007                                                                                                                                                    |  |
| Be-7<br>K-40<br>Nb-95<br>Zr-95<br>Ru-103<br>Ru-106<br>Cs-134<br>Cs-137<br>Ce-141<br>Ce-144          | $\begin{array}{l} 0.86 \pm 0.32 \\ 9.23 \pm 0.79 \\ < 0.031 \\ < 0.078 \\ < 0.037 \\ < 0.26 \\ < 0.021 \\ < 0.028 \\ < 0.060 \\ < 0.10 \end{array}$ | $\begin{array}{r} 0.97 \ \pm \ 0.32 \\ 4.55 \ \pm \ 0.52 \\ < \ 0.011 \\ < \ 0.029 \\ < \ 0.022 \\ < \ 0.17 \\ < \ 0.016 \\ < \ 0.021 \\ < \ 0.042 \\ < \ 0.18 \end{array}$ |  |
| Location<br>Date Collected<br>Lab Code<br>Type                                                      | · · · · · · · · · · · · · · · · · · ·                                                                                                               |                                                                                                                                                                             |  |
| Gross beta<br>Sr-89                                                                                 |                                                                                                                                                     |                                                                                                                                                                             |  |
| Sr-90<br>Be-7<br>K-40<br>Nb-95<br>Zr-95<br>Ru-103<br>Ru-106<br>Cs-134<br>Cs-137<br>Ce-141<br>Ce-144 | · ·                                                                                                                                                 |                                                                                                                                                                             |  |

Table 20.

Vegetable and grain samples, analyses for gross beta, strontium-89, strontium-90, and gamma-emitting isotopes (continued).

|                                                                                            | ction: First Quarter.<br>Sample Description and Co                                                                                                   | ncentration (nCi/g wet)                                                                                                                               |  |  |  |
|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                                            |                                                                                                                                                      |                                                                                                                                                       |  |  |  |
|                                                                                            |                                                                                                                                                      | Control                                                                                                                                               |  |  |  |
| Location<br>Date Collected<br>Lab Code<br>Type                                             | K-3<br>01-06-98<br>KCF-13<br>Hay                                                                                                                     | K-3<br>01-06-98<br>KCF-14<br>Silage                                                                                                                   |  |  |  |
| Gross beta                                                                                 | 11.94 ± 0.37                                                                                                                                         | $3.79 \pm 0.13$                                                                                                                                       |  |  |  |
| Sr-89<br>Sr-90                                                                             | <0.005<br>0.013±0.003                                                                                                                                | <0.005<br>0.003±0.002                                                                                                                                 |  |  |  |
| Be-7<br>K-40<br>Nb-95<br>Zr-95<br>Ru-103<br>Ru-106<br>Cs-134<br>Cs-137<br>Ce-141<br>Ce-144 | $< 0.20  10.03 \pm 0.76  < 0.027  < 0.056  < 0.011  < 0.19  < 0.020  < 0.009  < 0.041  < 0.14 $                                                      | $\begin{array}{r} 0.44 \pm 0.20 \\ 4.66 \pm 0.50 \\ < 0.024 \\ < 0.048 \\ < 0.015 \\ < 0.15 \\ < 0.021 \\ < 0.016 \\ < 0.041 \\ < 0.12 \end{array}$   |  |  |  |
| Location<br>Date Collected<br>Lab Code<br>Type                                             | K-6<br>01-06-98<br>KCF-19<br>Hay                                                                                                                     | K-6<br>01-06-98<br>KCF-20<br>Silage                                                                                                                   |  |  |  |
| Gross beta                                                                                 | 10.39 ± 0.38                                                                                                                                         | 10.50 ± 0.36                                                                                                                                          |  |  |  |
| Sr-89<br>Sr-90                                                                             | <0.013<br>0.060±0.010                                                                                                                                | <0.009<br>0.050±0.008                                                                                                                                 |  |  |  |
| Be-7<br>K-40<br>Nb-95<br>Zr-95<br>Ru-103<br>Ru-106<br>Cs-134<br>Cs-137<br>Ce-141<br>Ce-144 | $\begin{array}{r} 1.23 \pm 0.16 \\ 9.73 \pm 0.38 \\ < 0.011 \\ < 0.020 \\ < 0.014 \\ < 0.10 \\ < 0.015 \\ < 0.017 \\ < 0.033 \\ < 0.093 \end{array}$ | $\begin{array}{r} 0.93 \pm 0.29 \\ 10.38 \pm 0.77 \\ < 0.022 \\ < 0.047 \\ < 0.013 \\ < 0.18 \\ < 0.028 \\ < 0.022 \\ < 0.031 \\ < 0.089 \end{array}$ |  |  |  |

Table 21. Cattlefeed samples, analyses for gross beta, strontium-89, strontium-90, and gammaemitting isotopes. Collection: First Quarter.

Table 21.

Cattlefeed samples, analyses for gross beta, strontium-89, strontium-90, and gammaemitting isotopes (continued).

Sample Description and Concentration (pCi/g wet)

|                                                                                            |                                                                                                                                                                              | Indic                                                                                                                                                     | ator                                                                                                                                                      |                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location<br>Date Collected<br>Lab Code<br>Type                                             | K-4<br>01-06-98<br>KCF-15<br>Hay                                                                                                                                             | K-4<br>01-06-98<br>KCF-16<br>Silage                                                                                                                       | K-5<br>01-06-98<br>KCF-17<br>Hay                                                                                                                          | K-5<br>01-06-98<br>KCF-18<br>Silage                                                                                                                                          |
| Gross beta                                                                                 | $23.62 \pm 0.77$                                                                                                                                                             | $5.68 \pm 0.14$                                                                                                                                           | $20.07 \pm 0.49$                                                                                                                                          | 9.23 ± 0.29                                                                                                                                                                  |
| Sr-89<br>Sr-90                                                                             | < 0.012<br>0.029 ± 0.006                                                                                                                                                     | < 0.004<br>0.007 ± 0.002                                                                                                                                  | < 0.018<br>0.035 ± 0.010                                                                                                                                  | < 0.010<br>0.017 ± 0.006                                                                                                                                                     |
| Be-7<br>K-40<br>Nb-95<br>Zr-95<br>Ru-103<br>Ru-106<br>Cs-134<br>Cs-137<br>Ce-141<br>Ce-144 | $\begin{array}{r} 0.65 \pm 0.30 \\ 26.79 \pm 0.99 \\ < 0.043 \\ < 0.044 \\ < 0.018 \\ < 0.23 \\ < 0.033 \\ < 0.033 \\ < 0.047 \\ < 0.20 \end{array}$                         | $< 0.10  5.07 \pm 0.29  < 0.013  < 0.023  < 0.007  < 0.069  < 0.008  < 0.009  < 0.023  < 0.023  < 0.052$                                                  | < 0.17<br>22.26 ± 0.84<br>< 0.042<br>< 0.070<br>< 0.029<br>< 0.25<br>< 0.029<br>< 0.025<br>< 0.025<br>< 0.067<br>< 0.19                                   | $\begin{array}{r} 0.38 \pm 0.13 \\ 9.66 \pm 0.44 \\ < 0.012 \\ < 0.018 \\ < 0.010 \\ < 0.11 \\ < 0.012 \\ < 0.013 \\ < 0.015 \\ < 0.073 \end{array}$                         |
| Location<br>Date Collected<br>Lab Code<br>Type                                             | K-12<br>01-06-98<br>KCF-21,22<br>Hay                                                                                                                                         | K-12<br>01-06-98<br>KCF-23<br>Silage                                                                                                                      | K-19<br>01-06-98<br>KCF-24<br>Hay                                                                                                                         | K-19<br>01-06-98<br>KCF-25<br>Silage                                                                                                                                         |
| Gross beta                                                                                 | $17.59 \pm 0.41$                                                                                                                                                             | $2.07 \pm 0.08$                                                                                                                                           | $14.72 \pm 0.49$                                                                                                                                          | $6.90 \pm 0.23$                                                                                                                                                              |
| Sr-89<br>Sr-90                                                                             | < 0.016<br>0.030 ± 0.006                                                                                                                                                     | < 0.003<br>0.003 ± 0.001                                                                                                                                  | < 0.027<br>0.027 ± 0.010                                                                                                                                  | < 0.007<br>0.007 ± 0.003                                                                                                                                                     |
| Be-7<br>K-40<br>Nb-95<br>Zr-95<br>Ru-103<br>Ru-106<br>Cs-134<br>Cs-137<br>Ce-141<br>Ce-144 | $\begin{array}{r} 0.40 \ \pm \ 0.13 \\ 21.02 \ \pm \ 0.50 \\ < \ 0.027 \\ < \ 0.058 \\ < \ 0.015 \\ < \ 0.14 \\ < \ 0.015 \\ < \ 0.017 \\ < \ 0.035 \\ < \ 0.13 \end{array}$ | $\begin{array}{r} 0.22 \ \pm 0.12 \\ 1.97 \ \pm 0.28 \\ < 0.010 \\ < 0.021 \\ < 0.008 \\ < 0.051 \\ < 0.016 \\ < 0.011 \\ < 0.026 \\ < 0.051 \end{array}$ | $\begin{array}{r} 0.67 \ \pm 0.24 \\ 14.83 \ \pm 0.65 \\ < 0.024 \\ < 0.062 \\ < 0.015 \\ < 0.21 \\ < 0.022 \\ < 0.023 \\ < 0.037 \\ < 0.075 \end{array}$ | $\begin{array}{l} 0.49 \ \pm \ 0.19 \\ 6.97 \ \pm \ 0.64 \\ < \ 0.022 \\ < \ 0.037 \\ < \ 0.014 \\ < \ 0.076 \\ < \ 0.021 \\ < \ 0.019 \\ < \ 0.041 \\ < \ 0.11 \end{array}$ |

Table 22.Grass, analyses for gross beta, strontium-89, strontium-90, and gamma-emitting isotopes.<br/>Collection: Quarterly, April through December<br/>Units: pCi/g wet

|                                                                                                                       |                                                                                                                                                                                                                     | e Description and C                                                                                                                                                                               |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                       |                                                                                                                                                                                                                     | Indicator                                                                                                                                                                                         |                                                                                                                                                                                                                                                           | Control                                                                                                                                                                                         |
| Location<br>Date Collected<br>Lab Code                                                                                | K-1b<br>05-04-98<br>KG-2955                                                                                                                                                                                         | K-1f<br>05-04-98<br>KG-2954                                                                                                                                                                       | K-4<br>05-04-98<br>KG-2957                                                                                                                                                                                                                                | K-3<br>05-04-98<br>KG-2956                                                                                                                                                                      |
| G <b>ro</b> ss beta                                                                                                   | $11.83 \pm 0.41$                                                                                                                                                                                                    | 7.30 ± 0.39                                                                                                                                                                                       | 6.72 ± 0.21                                                                                                                                                                                                                                               | 11.98 ± 0.39                                                                                                                                                                                    |
| Sr-89<br>Sr-90                                                                                                        | < 0.008<br>< 0.004                                                                                                                                                                                                  | < 0.016<br>< 0.008                                                                                                                                                                                | < 0.009<br>< 0.005                                                                                                                                                                                                                                        | < 0.007<br>< 0.004                                                                                                                                                                              |
| Be-7<br>K-40<br>Mn-54<br>Co-58<br>Co-60<br>Nb-95<br>Zr-95<br>Ru-103<br>Ru-106<br>Cs-134<br>Cs-137<br>Ce-141<br>Ce-144 | $\begin{array}{r} 1.94 \ \pm \ 0.19 \\ 7.71 \ \pm \ 0.42 \\ < \ 0.007 \\ < \ 0.011 \\ < \ 0.019 \\ < \ 0.015 \\ < \ 0.033 \\ < \ 0.012 \\ < \ 0.092 \\ < \ 0.013 \\ < \ 0.017 \\ < \ 0.026 \\ < \ 0.13 \end{array}$ | $\begin{array}{l} 2.89 \pm 0.13 \\ 6.33 \pm 0.26 \\ < 0.007 \\ < 0.011 \\ < 0.013 \\ < 0.013 \\ < 0.015 \\ < 0.007 \\ < 0.092 \\ < 0.009 \\ < 0.010 \\ < 0.015 \\ < 0.015 \\ < 0.035 \end{array}$ | $\begin{array}{r} 1.65 \ \pm \ 0.23 \\ 7.27 \ \pm \ 0.52 \\ < \ 0.020 \\ < \ 0.016 \\ < \ 0.021 \\ < \ 0.020 \\ < \ 0.020 \\ < \ 0.035 \\ < \ 0.019 \\ < \ 0.20 \\ < \ 0.024 \\ < \ 0.020 \\ < \ 0.021 \\ < \ 0.021 \\ < \ 0.021 \\ < \ 0.12 \end{array}$ | $\begin{array}{r} 0.88 \pm 0.18 \\ 6.89 \pm 0.47 \\ < 0.009 \\ < 0.013 \\ < 0.018 \\ < 0.025 \\ < 0.008 \\ < 0.025 \\ < 0.008 \\ < 0.12 \\ < 0.013 \\ < 0.016 \\ < 0.017 \\ < 0.11 \end{array}$ |
| Location<br>Date Collected<br>Lab Code                                                                                | K-5<br>05-04-98<br>KG-2958                                                                                                                                                                                          | K-12<br>05-04-98<br>KG-2959                                                                                                                                                                       | K-19<br>05-04-98<br>KG-2960                                                                                                                                                                                                                               | K-6<br>06-01-98<br>KG-4029                                                                                                                                                                      |
| Gross beta                                                                                                            | $7.02 \pm 0.24$                                                                                                                                                                                                     | $5.51 \pm 0.18$                                                                                                                                                                                   | 6.42 ± 0.21                                                                                                                                                                                                                                               | $6.84 \pm 0.24$                                                                                                                                                                                 |
| 5r-89<br>5r-90                                                                                                        | < 0.011<br>< 0.004                                                                                                                                                                                                  | < 0.016<br>0.010 ± 0.004                                                                                                                                                                          | < 0.009<br>< 0.004                                                                                                                                                                                                                                        | < 0.014<br>< 0.008                                                                                                                                                                              |
| Be-7<br>K-40<br>Mn-54<br>Co-58<br>Co-60<br>Nb-95<br>Zr-95<br>Ru-103<br>Ru-106<br>Cs-134<br>Cs-137<br>Ce-141           | $\begin{array}{r} 0.70 \ \pm \ 0.20 \\ 8.11 \ \pm \ 0.50 \\ < \ 0.009 \\ < \ 0.017 \\ < \ 0.016 \\ < \ 0.017 \\ < \ 0.033 \\ < \ 0.007 \\ < \ 0.10 \\ < \ 0.015 \\ < \ 0.029 \end{array}$                           | $\begin{array}{r} 0.34 \pm 0.13 \\ 6.16 \pm 0.41 \\ < 0.009 \\ < 0.006 \\ < 0.013 \\ < 0.008 \\ < 0.023 \\ < 0.012 \\ < 0.012 \\ < 0.092 \\ < 0.015 \\ < 0.015 \\ < 0.022 \end{array}$            | $\begin{array}{r} 1.65 \pm 0.23 \\ 6.46 \pm 0.43 \\ < 0.019 \\ < 0.018 \\ < 0.021 \\ < 0.019 \\ < 0.019 \\ < 0.040 \\ < 0.016 \\ < 0.13 \\ < 0.019 \\ < 0.017 \\ < 0.028 \end{array}$                                                                     | $\begin{array}{r} 0.70 \pm 0.19 \\ 8.19 \pm 0.44 \\ < 0.019 \\ < 0.020 \\ < 0.018 \\ < 0.022 \\ < 0.043 \\ < 0.009 \\ < 0.075 \\ < 0.018 \\ < 0.018 \\ < 0.031 \end{array}$                     |

| · · · · · · · · · · · · · · · · · · ·                                                                                                               | Cumpic                                                                                                                                                                                                             | e Description and C                                                                                                                                                                                                 |                                                                                                                                                                                                          |                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                     |                                                                                                                                                                                                                    | Indicator                                                                                                                                                                                                           |                                                                                                                                                                                                          | Control                                                                                                                                                                                                                 |
| Location<br>Date Collected<br>Lab Code                                                                                                              | K-1b<br>07-01-98<br>KG-4825                                                                                                                                                                                        | K-1f<br>07-01-98<br>KG-4826                                                                                                                                                                                         | K-4<br>07-01-98<br>KG-4828                                                                                                                                                                               | K-3<br>07-01-98<br>KG-4827                                                                                                                                                                                              |
| Gross beta                                                                                                                                          | 5.63 ± 0.22                                                                                                                                                                                                        | $7.09 \pm 0.21$                                                                                                                                                                                                     | $6.41 \pm 0.22$                                                                                                                                                                                          | 6.63 ± 0.21                                                                                                                                                                                                             |
| Sr-89<br>Sr-90                                                                                                                                      | < 0.009<br>0.005 ± 0.002                                                                                                                                                                                           | < 0.013<br>< 0.006                                                                                                                                                                                                  | < 0.006<br>0.005 ± 0.002                                                                                                                                                                                 | < 0.007<br>0.005 ± 0.002                                                                                                                                                                                                |
| Be-7<br>K-40<br>Mn-54<br>Co-58<br>Co-60<br>Nb-95<br>Zr-95<br>Ru-103<br>Ru-106<br>Cs-134<br>Cs-137<br>Ce-141<br>Ce-144<br>Location<br>Date Collected | $\begin{array}{r} 1.31 \ \pm \ 0.42 \\ 5.30 \ \pm \ 0.71 \\ < \ 0.025 \\ < \ 0.014 \\ < \ 0.033 \\ < \ 0.047 \\ < \ 0.075 \\ < \ 0.031 \\ < \ 0.28 \\ < \ 0.018 \\ < \ 0.031 \\ < \ 0.066 \\ < \ 0.23 \end{array}$ | $\begin{array}{r} 1.45 \pm 0.38 \\ 5.22 \pm 0.88 \\ < 0.025 \\ < 0.020 \\ < 0.027 \\ < 0.042 \\ < 0.049 \\ < 0.035 \\ < 0.15 \\ < 0.038 \\ < 0.017 \\ < 0.042 \\ < 0.11 \end{array}$<br>K-12 07-01-98               | $\begin{array}{r} 2.57 \pm 0.37 \\ 5.65 \pm 0.73 \\ < 0.020 \\ < 0.011 \\ < 0.038 \\ < 0.039 \\ < 0.029 \\ < 0.031 \\ < 0.10 \\ < 0.014 \\ < 0.022 \\ < 0.052 \\ < 0.22 \end{array}$<br>K-19<br>07-01-98 | $\begin{array}{r} 2.41 \pm 0.40 \\ 6.34 \pm 0.78 \\ < 0.030 \\ < 0.012 \\ < 0.031 \\ < 0.033 \\ < 0.025 \\ < 0.025 \\ < 0.18 \\ < 0.014 \\ < 0.027 \\ < 0.046 \\ < 0.097 \\ \end{array}$                                |
| Lab Code                                                                                                                                            | KG-4829                                                                                                                                                                                                            | KG-4831                                                                                                                                                                                                             | KG-4832                                                                                                                                                                                                  | KG-4830                                                                                                                                                                                                                 |
| Gross beta                                                                                                                                          | $7.65 \pm 0.26$                                                                                                                                                                                                    | 6.15 ± 0.21                                                                                                                                                                                                         | 5.49 ± 0.21                                                                                                                                                                                              | 6.26 ± 0.23                                                                                                                                                                                                             |
| Sr-89<br>Sr-90                                                                                                                                      | < 0.008<br>< 0.004                                                                                                                                                                                                 | < 0.008<br>< 0.004                                                                                                                                                                                                  | < 0.014<br>0.008 ± 0.004                                                                                                                                                                                 | < 0.013<br>< 0.007                                                                                                                                                                                                      |
| Be-7<br>K-40<br>Mn-54<br>Co-58<br>Co-60<br>Nb-95<br>Zr-95<br>Ru-103<br>Ru-106<br>Cs-134<br>Cs-137<br>Ce-141<br>Ce-144                               | $\begin{array}{r} 2.47 \pm 0.38 \\ 7.17 \pm 0.54 \\ < 0.011 \\ < 0.008 \\ < 0.021 \\ < 0.015 \\ < 0.030 \\ < 0.013 \\ < 0.16 \\ < 0.030 \\ < 0.018 \\ < 0.042 \\ < 0.14 \end{array}$                               | $\begin{array}{r} 1.22 \ \pm \ 0.22 \\ 5.86 \ \pm \ 0.45 \\ < \ 0.010 \\ < \ 0.015 \\ < \ 0.014 \\ < \ 0.020 \\ < \ 0.030 \\ < \ 0.022 \\ < \ 0.12 \\ < \ 0.028 \\ < \ 0.014 \\ < \ 0.016 \\ < \ 0.074 \end{array}$ | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                     | $\begin{array}{r} 1.92 \pm 0.24 \\ 6.21 \pm 0.44 \\ < 0.014 \\ < 0.012 \\ < 0.020 \\ < 0.011 \\ < 0.020 \\ < 0.011 \\ < 0.020 \\ < 0.011 \\ < 0.013 \\ < 0.019 \\ < 0.011 \\ < 0.013 \\ < 0.019 \\ < 0.017 \end{array}$ |

# Table 22.Grass samples, analyses for gross beta, strontium-89, strontium-90, and<br/>gamma-emitting isotopes (continued).

Table 22.

2. Grass samples, analyses for gross beta, strontium-89, strontium-90, and gamma-emitting isotopes (continued).

|                                                                                                                       | Sample Desc                                                                                                                                                                                                                                  | ription and Concer                                                                                                                                                                   | ntration (pCi/g wet)                                                                                                                                                                                               |                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                       |                                                                                                                                                                                                                                              | Indicator                                                                                                                                                                            |                                                                                                                                                                                                                    | Control                                                                                                                                                                                                            |
| Location<br>Date Collected<br>Lab Code                                                                                | K-1b<br>10-01-98<br>KG-7868                                                                                                                                                                                                                  | K-1f<br>10-01-98<br>KG-7869                                                                                                                                                          | K-4<br>10-01-98<br>KG-7871                                                                                                                                                                                         | K-3<br>10-01-98<br>KG-7870                                                                                                                                                                                         |
| Gross beta                                                                                                            | 4.99 ± 0.24                                                                                                                                                                                                                                  | 5.88 ± 0.28                                                                                                                                                                          | 5.48 ± 0.22                                                                                                                                                                                                        | $6.65 \pm 0.24$                                                                                                                                                                                                    |
| Sr- <b>89</b><br>Sr-90                                                                                                | < 0.004<br>0.004 ± 0.001                                                                                                                                                                                                                     | < 0.004<br>0.005 ± 0.001                                                                                                                                                             | < 0.002<br>0.001 ± 0.001                                                                                                                                                                                           | < 0.005<br>0.002 ± 0.001                                                                                                                                                                                           |
| Be-7<br>K-40<br>Mn-54<br>Co-58<br>Co-60<br>Nb-95<br>Zr-95<br>Ru-103<br>Ru-106<br>Cs-134<br>Cs-137<br>Ce-141<br>Ce-144 | $\begin{array}{r} 3.46 \ \pm \ 0.52 \\ 4.31 \ \pm \ 0.68 \\ < \ 0.026 \\ < \ 0.016 \\ < \ 0.045 \\ < \ 0.042 \\ < \ 0.059 \\ < \ 0.024 \\ < \ 0.29 \\ < \ 0.024 \\ < \ 0.029 \\ < \ 0.028 \\ < \ 0.029 \\ < \ 0.068 \\ < \ 0.23 \end{array}$ | $\begin{array}{r} 3.94 \pm 0.53 \\ 4.44 \pm 0.70 \\ < 0.013 \\ < 0.031 \\ < 0.037 \\ < 0.041 \\ < 0.022 \\ < 0.25 \\ < 0.043 \\ < 0.027 \\ < 0.053 \\ < 0.17 \end{array}$            | $\begin{array}{r} 3.69 \ \pm \ 0.50 \\ 5.79 \ \pm \ 0.73 \\ < \ 0.017 \\ < \ 0.020 \\ < \ 0.040 \\ < \ 0.039 \\ < \ 0.082 \\ < \ 0.017 \\ < \ 0.33 \\ < \ 0.031 \\ < \ 0.036 \\ < \ 0.070 \\ < \ 0.17 \end{array}$ | $\begin{array}{r} 2.92 \ \pm \ 0.44 \\ 6.45 \ \pm \ 0.77 \\ < \ 0.011 \\ < \ 0.031 \\ < \ 0.023 \\ < \ 0.044 \\ < \ 0.053 \\ < \ 0.039 \\ < \ 0.17 \\ < \ 0.035 \\ < \ 0.027 \\ < \ 0.039 \\ < \ 0.18 \end{array}$ |
| Location<br>Date Collected<br>Lab Code                                                                                | K-5<br>10-01-98<br>KG-7872                                                                                                                                                                                                                   | K-12<br>10-01-98<br>KG-7874                                                                                                                                                          | K-19<br>10-01-98<br>KG-7875                                                                                                                                                                                        | K-6<br>10-01-98<br>KG-7873                                                                                                                                                                                         |
| Gross beta                                                                                                            | 6.36 ± 0.20                                                                                                                                                                                                                                  | $7.17 \pm 0.24$                                                                                                                                                                      | 4.86 ± 0.21                                                                                                                                                                                                        | 5.29 ± 0.18                                                                                                                                                                                                        |
| 5r-89<br>5r-90                                                                                                        | < 0.002<br>0.002 ± 0.001                                                                                                                                                                                                                     | < 0.003<br>< 0.001                                                                                                                                                                   | < 0.004<br>0.006 ± 0.001                                                                                                                                                                                           | < 0.002<br>< 0.001                                                                                                                                                                                                 |
| Be-7<br>K-40<br>Mn-54<br>Co-58<br>Co-60<br>Nb-95<br>Zr-95<br>Ru-103<br>Ru-106<br>Cs-134<br>Cs-137<br>Ce-141<br>Ce-144 | $\begin{array}{r} 1.94 \ \pm \ 0.41 \\ 7.21 \ \pm \ 0.75 \\ < \ 0.018 \\ < \ 0.026 \\ < \ 0.020 \\ < \ 0.053 \\ < \ 0.034 \\ < \ 0.028 \\ < \ 0.28 \\ < \ 0.016 \\ < \ 0.074 \\ < \ 0.21 \end{array}$                                        | $\begin{array}{r} 1.63 \pm 0.34 \\ 7.37 \pm 0.75 \\ < 0.019 \\ < 0.028 \\ < 0.034 \\ < 0.029 \\ < 0.046 \\ < 0.019 \\ < 0.16 \\ < 0.033 \\ < 0.030 \\ < 0.037 \\ < 0.11 \end{array}$ | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                               | $\begin{array}{r} 1.23 \pm 0.29 \\ 6.08 \pm 0.62 \\ < 0.023 \\ < 0.019 \\ < 0.020 \\ < 0.027 \\ < 0.029 \\ < 0.032 \\ < 0.089 \\ < 0.021 \\ < 0.029 \\ < 0.029 \\ < 0.049 \\ < 0.17 \end{array}$                   |

83

.

| Sample Description and Concentration (pCi/g dry)                                           |                                                                                                         |                                                                                                                  |                                                                                                                               |  |  |
|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                            |                                                                                                         | Indicator                                                                                                        |                                                                                                                               |  |  |
| Location                                                                                   | K-1f                                                                                                    | K-4                                                                                                              | K-5                                                                                                                           |  |  |
| Date Collected                                                                             | 05-04-98                                                                                                | 05-04-98                                                                                                         | 05-04-98                                                                                                                      |  |  |
| Lab Code                                                                                   | KSO-2961                                                                                                | KSO-2964                                                                                                         | KSO-2965                                                                                                                      |  |  |
| Gross alpha                                                                                | 4.92 ± 2.73                                                                                             | $9.73 \pm 3.46$                                                                                                  | $14.41 \pm 4.12$                                                                                                              |  |  |
| Gross beta                                                                                 | 22.42 ± 2.69                                                                                            | 27.68 $\pm 2.85$                                                                                                 | $35.57 \pm 3.21$                                                                                                              |  |  |
| Sr-89                                                                                      | < 0.032                                                                                                 | < 0.030                                                                                                          | < 0.034                                                                                                                       |  |  |
| Sr-90                                                                                      | < 0.016                                                                                                 | 0.016 ± 0.008                                                                                                    | 0.094 ± 0.016                                                                                                                 |  |  |
| Be-7<br>K-40<br>Nb-95<br>Zr-95<br>Ru-103<br>Ru-106<br>Cs-134<br>Cs-137<br>Ce-141<br>Ce-144 | $< 0.22$ $18.93 \pm 0.74$ $< 0.041$ $< 0.047$ $< 0.029$ $< 0.19$ $< 0.048$ $< 0.020$ $< 0.050$ $< 0.14$ | $< 0.19  18.85 \pm 0.75  < 0.015  < 0.044  < 0.023  < 0.19  < 0.046  0.067 \pm 0.027  < 0.043  < 0.093 $         | $< 0.27$ $26.28 \pm 0.93$ $< 0.016$ $< 0.054$ $< 0.021$ $< 0.26$ $< 0.040$ $0.28 \pm 0.041$ $< 0.040$ $< 0.12$                |  |  |
| Location                                                                                   | K-1f                                                                                                    | K-4                                                                                                              | K-5                                                                                                                           |  |  |
| Date Collected                                                                             | 10-01-98                                                                                                | 10-01-98                                                                                                         | 10-01-98                                                                                                                      |  |  |
| Lab Code                                                                                   | KSO-7878,9                                                                                              | KSO-7881                                                                                                         | KSO-7882                                                                                                                      |  |  |
| Gross alpha                                                                                | < 5.80                                                                                                  | < 6.95                                                                                                           | $9.28 \pm 4.98$                                                                                                               |  |  |
| Gross beta                                                                                 | 21.32 ± 2.92                                                                                            | 24.65 ± 4.36                                                                                                     | $30.66 \pm 4.56$                                                                                                              |  |  |
| Sr-89                                                                                      | < 0.072                                                                                                 | < 0.065                                                                                                          | < 0.062                                                                                                                       |  |  |
| Sr-90                                                                                      | < 0.023                                                                                                 | < 0.019                                                                                                          | < 0.018                                                                                                                       |  |  |
| Be-7<br>K-40<br>Nb-95<br>Zr-95<br>Ru-103<br>Ru-106<br>Cs-134<br>Cs-137<br>Ce-141<br>Ce-144 | $< 0.15  17.28 \pm 0.71  < 0.015  < 0.025  < 0.015  < 0.071  < 0.042  < 0.021  < 0.019  < 0.10$         | $< 0.22$ $17.68 \pm 0.83$ $< 0.024$ $< 0.048$ $< 0.020$ $< 0.082$ $< 0.051$ $0.10 \pm 0.029$ $< 0.056$ $< 0.093$ | $< 0.24 \\ 19.36 \pm 0.75 \\ < 0.025 \\ < 0.015 \\ < 0.026 \\ < 0.17 \\ < 0.046 \\ 0.047 \pm 0.019 \\ < 0.038 \\ < 0.075 \\ $ |  |  |

Table 23.

Soil samples, analyses for gross alpha, gross beta, strontium-89, strontium-90, and gamma-emitting isotopes. Collection: Semiannually

Table 23.

Soil samples, analyses for gross alpha, gross beta, strontium-89, strontium-90, and gamma-emitting isotopes (continued).

| Sample Description and Concentration (pCi/g dry)                                           |                                                      |                                                                                                                  |  |  |
|--------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                            | Indi                                                 | cator                                                                                                            |  |  |
| Location                                                                                   | K-12                                                 | K-19                                                                                                             |  |  |
| Date Collected                                                                             | 05-04-98                                             | 05-04-98                                                                                                         |  |  |
| Lab Code                                                                                   | KSO-2967                                             | KSO-2968                                                                                                         |  |  |
| Gross alpha                                                                                | $4.86 \pm 1.69$                                      | $4.49 \pm 1.82$                                                                                                  |  |  |
| Gross beta                                                                                 | 20.04 $\pm 1.86$                                     | 17.30 ± 1.69                                                                                                     |  |  |
| Sr-89                                                                                      | < 0.027                                              | < 0.038                                                                                                          |  |  |
| Sr-90                                                                                      | 0.088 ± 0.017                                        | 0.080 ± 0.017                                                                                                    |  |  |
| Be-7<br>K-40<br>Nb-95<br>Zr-95<br>Ru-103<br>Ru-106<br>Cs-134<br>Cs-137<br>Ce-141<br>Ce-144 |                                                      | $ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                            |  |  |
| Location                                                                                   | K-12                                                 | K-19                                                                                                             |  |  |
| Date Collected                                                                             | 10-01-98                                             | 10-01-98                                                                                                         |  |  |
| Lab Code                                                                                   | KSO-7884                                             | KSO-7885                                                                                                         |  |  |
| Gross alpha                                                                                | < 6.93                                               | < 6.57                                                                                                           |  |  |
| Gross beta                                                                                 | 14.84 ± 3.54                                         | 14.98 ± 4.57                                                                                                     |  |  |
| Sr-89                                                                                      | < 0.069                                              | < 0.060                                                                                                          |  |  |
| Sr-90                                                                                      | 0.024 ± 0.012                                        | 0.051 ± 0.014                                                                                                    |  |  |
| Be-7<br>K-40<br>Nb-95<br>Zr-95<br>Ru-103<br>Ru-106<br>Cs-134<br>Cs-137<br>Ce-141<br>Ce-144 | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | $< 0.18$ $14.86 \pm 0.64$ $< 0.022$ $< 0.030$ $< 0.017$ $< 0.078$ $< 0.042$ $0.10 \pm 0.025$ $< 0.024$ $< 0.072$ |  |  |

Table 23.

Soil samples, analyses for gross alpha, gross beta, strontium-89, strontium-90, and gamma-emitting isotopes (continued).

|                                                                                            | Sample Description and Concer                                                                                   | ntration (pCi/g dry)                                                                                             |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
|                                                                                            | Con                                                                                                             | trol                                                                                                             |
| Location                                                                                   | K-3                                                                                                             | K-6                                                                                                              |
| Date Collected                                                                             | 05-04-98                                                                                                        | 05-04-98                                                                                                         |
| Lab Code                                                                                   | KSO-2962,3                                                                                                      | KSO-2966                                                                                                         |
| Gross alpha                                                                                | $10.05 \pm 2.49$                                                                                                | $8.83 \pm 3.35$                                                                                                  |
| Gross beta                                                                                 | 29.35 $\pm 2.08$                                                                                                | 25.65 ± 2.80                                                                                                     |
| Sr-89                                                                                      | < 0.034                                                                                                         | < 0.055                                                                                                          |
| Sr-90                                                                                      | 0.041 ± 0.009                                                                                                   | 0.079 ± 0.021                                                                                                    |
| Be-7<br>K-40<br>Nb-95<br>Zr-95<br>Ru-103<br>Ru-106<br>Cs-134<br>Cs-137<br>Ce-141<br>Ce-144 | $< 0.21$ $22.37 \pm 0.71$ $< 0.021$ $< 0.046$ $< 0.017$ $< 0.13$ $< 0.050$ $0.15 \pm 0.026$ $< 0.053$ $< 0.087$ | $< 0.28$ $21.43 \pm 0.98$ $< 0.024$ $< 0.032$ $< 0.032$ $< 0.24$ $< 0.040$ $0.18 \pm 0.037$ $< 0.065$ $< 0.24$   |
| Location                                                                                   | K-3                                                                                                             | K-6                                                                                                              |
| Date Collected                                                                             | 10-01-98                                                                                                        | 10-01-98                                                                                                         |
| Lab Code                                                                                   | KSO-7880                                                                                                        | KSO-7883                                                                                                         |
| Gross alpha                                                                                | $7.01 \pm 4.50$                                                                                                 | $7.06 \pm 4.44$                                                                                                  |
| Gross beta                                                                                 | 25.00 ± 4.10                                                                                                    | 25.31 ± 4.35                                                                                                     |
| Sr-89                                                                                      | < 0.049                                                                                                         | < 0.052                                                                                                          |
| Sr-90                                                                                      | 0.042 ± 0.011                                                                                                   | 0.075 ± 0.014                                                                                                    |
| Be-7<br>K-40<br>Nb-95<br>Zr-95<br>Ru-103<br>Ru-106<br>Cs-134<br>Cs-137<br>Ce-141<br>Ce-144 | $< 0.21  21.19 \pm 0.76  < 0.012  < 0.017  < 0.024  < 0.15  < 0.049  0.19 \pm 0.032  < 0.044  < 0.11$           | $< 0.18  18.88 \pm 0.72  < 0.027  < 0.028  < 0.028  < 0.093  < 0.053  0.14 \pm 0.027  < 0.028  < 0.028  < 0.14 $ |

Sample Description and Concentration (pCi/g dry)

| San                               | nple Description and C           | Concentration (pCi/L) |                                |
|-----------------------------------|----------------------------------|-----------------------|--------------------------------|
| Indicator                         | <u></u>                          |                       |                                |
| <u>K-1a</u>                       |                                  |                       |                                |
| Date Collected<br>Lab Code        | 01-05-98<br>KSW-26               | 02-02-98<br>KSW-584   | 03-03-98<br>KSW-1286,7         |
| Gross beta                        |                                  |                       |                                |
| Suspended Solids                  | < 0.5                            | < 1.1                 | < 0.8                          |
| Dissolved Solids<br>Total Residue | $11.0 \pm 0.9$<br>$11.0 \pm 0.9$ | $14.9 \pm 1.4$        | $10.0 \pm 0.8$                 |
|                                   |                                  | 14.9 ± 1.4            | $10.0 \pm 0.8$                 |
| K-40 (flame photometry)           | 8.65                             | 9.52                  | 7.05                           |
| Mn-54                             | <15                              | <15                   | <15                            |
| Fe-59                             | <30                              | <30                   | <30                            |
| Co-58                             | <15                              | <15                   | <15                            |
| Co-60                             | <15                              | <15                   | <15                            |
| Zr-Nb-95                          | <15                              | <15                   | <15                            |
| Cs-134<br>Cs-137                  | <10<br><10                       | <10                   | <10                            |
| Ba-La-140                         | <10                              | <10                   | <10                            |
| Da-La-140                         | <15                              | <15                   | <15                            |
| <u>K-1b</u>                       |                                  |                       |                                |
| Date Collected                    | 01-05-98                         | 02-02-98              | 03-03-98                       |
| Lab Code                          | KSW-27                           | KSW-585               | KSW-1288                       |
| Gross beta                        |                                  |                       |                                |
| Suspended Solids                  | < 0.3                            | < 0.4                 | < 0.6                          |
| Dissolved Solids                  | $2.2 \pm 0.4$                    | $4.5 \pm 0.7$         | $5.1 \pm 0.7$                  |
| Total Residue                     | $2.2 \pm 0.4$                    | $4.5 \pm 0.7$         | $5.1 \pm 0.7$<br>$5.1 \pm 0.7$ |
| K-40 (flame photometry)           | 0.87                             | 2.08                  | 2.16                           |
| /In-54                            | <15                              | <15                   | <15                            |
| Fe-59                             | <30                              | <30                   | <30                            |
| Co-58                             | <15                              | <15                   | <15                            |
| Co-60                             | <15                              | <15                   | <15                            |
| Zr-Nb-95                          | <15                              | <15                   | <15                            |
| Cs-134                            | <10                              | <10                   | <10                            |
| Cs-137                            | <10                              | <10                   | <10                            |
| 3a-La-140                         | <15                              | <15                   | <15                            |

## Table 24. Surface water samples, analyses for gross beta, potassium-40, and gamma-emitting isotopes (continued).

| Sample Description and Concentration (pCi/L)                                  |                                                      |                                                         |                                                      |     |  |
|-------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|-----|--|
| Indicator                                                                     | · ·                                                  |                                                         |                                                      |     |  |
| <u>K-1a</u>                                                                   |                                                      |                                                         |                                                      |     |  |
| Date Collected<br>Lab Code                                                    | 04-01-98<br>KSW-1968                                 | 05-04-98<br>KSW-2944                                    | 06-01-98<br>KSW-4018                                 |     |  |
| Gross beta<br>Suspended Solids<br>Dissolved Solids<br>Total Residue           | < 0.8<br>8.1 ± 1.1<br>8.1 ± 1.1                      | < 0.2<br>10.5 ± 1.2<br>10.5 ± 1.2                       | <1.3<br>12.5 ± 1.8<br>12.5 ± 1.8                     | , , |  |
| K-40 (flame photometry)                                                       | 5.97                                                 | 8.65                                                    | 9.52                                                 |     |  |
| Mn-54<br>Fe-59<br>Co-58<br>Co-60<br>Zr-Nb-95<br>Cs-134<br>Cs-137<br>Ba-La-140 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15    | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 |     |  |
| <u>K-1b</u>                                                                   |                                                      |                                                         |                                                      |     |  |
| Date Collected<br>Lab Code                                                    | 04-01-98<br>KSW-1969                                 | 05-04-98<br>KSW-2945                                    | 06-01-98<br>KSW-4019                                 |     |  |
| Gross beta<br>Suspended Solids<br>Dissolved Solids<br>Total Residue           | < 0.6<br>5.6 ± 0.7<br>5.6 ± 0.7<br>3.29              | $0.3 \pm 0.2$<br>$3.5 \pm 0.8$<br>$3.8 \pm 0.8$<br>2.42 | <0.4<br>3.0 ± 0.9<br>3.0 ± 0.9<br>1.90               |     |  |
| K-40 (flame photometry)<br>Mn-54<br>Fe-59<br>Co-58<br>Co-60<br>Zr-Nb-95       | <15<br><30<br><15<br><15<br><15                      | <15<br><30<br><15<br><15<br><15                         | <15<br><30<br><15<br><15<br><15                      |     |  |
| Cs-134<br>Cs-137<br>Ba-La-140                                                 | <10<br><10<br><15                                    | <10<br><10<br><15                                       | <10<br><10<br><15                                    |     |  |

Table 24. Surface water samples, analyses for gross beta, potassium-40, and gamma-emitting isotopes (continued).

| Sample Description and Concentration (pCi/L)         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 07-01-98<br>KSW-4808                                 | 08-03-98<br>KSW-5929                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 09-01-98<br>KSW-6852                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| < 0.6<br>12.0 ± 1.3<br>12.0 ± 1.3                    | < 0.6<br>11.8 ± 1.0<br>11.8 ± 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 0.4<br>22.0 ± 1.5<br>22.0 ± 1.5                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 8.48                                                 | 11.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21.63                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 07-01-98<br>KSW-4809                                 | 08-03-98<br>KSW-5928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 09-01-98<br>KSW-6853                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| < 0.5<br>4.8 ± 0.8<br>4.8 ± 0.8                      | < 0.4<br>2.4 ± 0.8<br>2.4 ± 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.5 \pm 0.2$<br>2.6 ± 0.8<br>3.1 ± 0.8                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 2.16                                                 | 2.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.82                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| <15<br><30<br><15<br><15<br><15<br><10<br><10        | <15<br><30<br><15<br><15<br><15<br><10<br><10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <15<br><30<br><15<br><15<br><15<br><10<br><10                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                                      | $07-01-98$ KSW-4808 $<0.6$ 12.0 ± 1.3 12.0 ± 1.3 12.0 ± 1.3 8.48 $<15$ $<30$ $<15$ $<15$ $<15$ $<10$ $<10$ $<10$ $<15$ $07-01-98$ KSW-4809 $<0.5$ $4.8 \pm 0.8$ $4.8 \pm 0.8$ $4.8 \pm 0.8$ $2.16$ $<15$ $<30$ $<15$ $<15$ $<30$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<215$ $<$ | $\begin{array}{c ccccc} 07-01-98 & 08-03-98 \\ \text{KSW-4808} & \text{KSW-5929} \\ \hline & < 0.6 & < 0.6 \\ 12.0 \pm 1.3 & 11.8 \pm 1.0 \\ 12.0 \pm 1.3 & 11.8 \pm 1.0 \\ 12.0 \pm 1.3 & 11.8 \pm 1.0 \\ 8.48 & 11.25 \\ < 15 & < 15 \\ < 30 & < 30 \\ < 15 & < 15 \\ < 15 & < 15 \\ < 15 & < 15 \\ < 15 & < 15 \\ < 10 & < 10 \\ < 10 & < 10 \\ < 10 & < 10 \\ < 15 & < 15 \\ \hline \end{array}$ |  |  |

|                                                                               | Sample Description and Concentration (pCi/L)         |                                                      |                                                      |  |  |
|-------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|--|--|
| Indicator                                                                     |                                                      |                                                      |                                                      |  |  |
| <u>K-1a</u>                                                                   |                                                      |                                                      |                                                      |  |  |
| Date Collected<br>Lab Code                                                    | 10-01-98<br>KSW-7852                                 | 11-02-98<br>KSW-9338                                 | 12-01-98<br>KSW-10154                                |  |  |
| Gross beta<br>Suspended Solids<br>Dissolved Solids<br>Total Residue           | < 0.7<br>25.8 ± 2.4<br>25.8 ± 2.4                    | < 0.4<br>16.0 ± 1.4<br>16.0 ± 1.4                    | < 0.4<br>12.3 ± 1.2<br>12.3 ± 1.2                    |  |  |
| K-40 (flame photometry)                                                       | 22.49                                                | 13.84                                                | 9.52                                                 |  |  |
| Mn-54<br>Fe-59<br>Co-58<br>Co-60<br>Zr-Nb-95<br>Cs-134<br>Cs-137<br>Ba-La-140 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 |  |  |
| <u>K-1b</u>                                                                   |                                                      |                                                      |                                                      |  |  |
| Date Collected<br>Lab Code                                                    | 10-01-98<br>KSW-7853                                 | 11-02-98<br>KSW-9339                                 | 12-01-98<br>KSW-10155                                |  |  |
| Gross beta<br>Suspended Solids<br>Dissolved Solids<br>Total Residue           | < 0.4<br>2.9 ± 0.7<br>2.9 ± 0.7                      | $1.0 \pm 0.3$<br>$4.0 \pm 0.7$<br>$5.0 \pm 0.8$      | < 0.4<br>3.0 ± 0.8<br>3.0 ± 0.8                      |  |  |
| K-40 (flame photometry)                                                       | 2.25                                                 | 1.47                                                 | 1.90                                                 |  |  |
| Mn-54<br>Fe-59<br>Co-58<br>Co-60<br>Zr-Nb-95<br>Cs-134<br>Cs-137<br>Ba-La-140 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 |  |  |

Table 24. Surface water samples, analyses for gross beta, potassium-40, and gamma-emitting isotopes (continued).

| Sample Description and Concentration (pCi/L)                                  |                                                      |                                                      |                                                      |  |
|-------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|--|
| Indicator                                                                     |                                                      | · · · · · · · · · · · · · · · · · · ·                |                                                      |  |
| <u>K-1d</u>                                                                   |                                                      |                                                      |                                                      |  |
| Date Collected<br>Lab Code                                                    | 01-05-98<br>KSW- <b>2</b> 8                          | 02-02-98<br>KSW-586                                  | 03-03-98<br>KSW-1289                                 |  |
| Gross beta<br>Suspended Solids<br>Dissolved Solids<br>Total Residue           | < 0.3<br>2.8 ± 0.4<br>2.8 ± 0.4                      | < 0.3<br>2.5 ± 0.5<br>2.5 ± 0.5                      | < 0.3<br>2.7 ± 0.5<br>2.7 ± 0.5                      |  |
| K-40 (flame photometry)                                                       | 1.21                                                 | 0.95                                                 | 1.04                                                 |  |
| Mn-54<br>Fe-59<br>Co-58<br>Co-60<br>Zr-Nb-95<br>Cs-134<br>Cs-137<br>Ba-La-140 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 |  |
| <u>K-1e</u>                                                                   |                                                      |                                                      |                                                      |  |
| Date Collected<br>Lab Code                                                    | 01-05-98<br>KSW-29                                   | 02-02-98<br>KSW-587                                  | 03-03-98<br>KSW-1290                                 |  |
| Gross beta<br>Suspended Solids<br>Dissolved Solids<br>Total Residue           | $1.3 \pm 0.4$<br>6.0 ± 1.0<br>7.3 ± 1.1              | < 0.4<br>5.1 ± 1.3<br>5.1 ± 1.3                      | < 1.2<br>3.6 ± 1.1<br>3.6 ± 1.1                      |  |
| K-40 (flame photometry)                                                       | 4.67                                                 | 2.60                                                 | 2.16                                                 |  |
| Mn-54<br>Fe-59<br>Co-58<br>Co-60<br>Zr-Nb-95<br>Cs-134<br>Cs-137<br>Ba-La-140 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 |  |

| Sample Description and Concentration (pCi/L)                                  |                                                      |                                                      |                                                      |  |  |
|-------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|--|--|
| Indicator                                                                     | ļ                                                    |                                                      | <u> </u>                                             |  |  |
| <u>K-1d</u>                                                                   |                                                      |                                                      |                                                      |  |  |
| Date Collected<br>Lab Code                                                    | 04-01-98<br>KSW-1970                                 | 05-04-98<br>KSW-2946                                 | 06-01-98<br>KSW-4020,1                               |  |  |
| Gross beta<br>Suspended Solids<br>Dissolved Solids<br>Total Residue           | < 0.4<br>3.1 ± 0.5<br>3.1 ± 0.5                      | < 0.2<br>2.0 ± 0.5<br>2.0 ± 0.5                      | < 0.6<br>1.9 ± 0.4<br>1.9 ± 0.4                      |  |  |
| K-40 (fp)                                                                     | 1.47                                                 | 1.21                                                 | 1.04                                                 |  |  |
| Mn-54<br>Fe-59<br>Co-58<br>Co-60<br>Zr-Nb-95<br>Cs-134<br>Cs-137<br>Ba-La-140 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 |  |  |
| <u>K-1e</u>                                                                   |                                                      |                                                      |                                                      |  |  |
| Date Collected<br>Lab Code                                                    | 04-01-98<br>KSW-1971                                 | 05-04-98<br>KSW-2947                                 | 06-01-98<br>KSW-4022                                 |  |  |
| Gross beta<br>Suspended Solids<br>Dissolved Solids<br>Total Residue           | $0.6 \pm 0.3$<br>$4.4 \pm 1.1$<br>$5.0 \pm 1.1$      | < 0.2<br>3.3 ± 1.2<br>3.3 ± 1.2                      | < 0.7<br>4.7 ± 1.6<br>4.7 ± 1.6                      |  |  |
| K-40 (fp)                                                                     | 2.60                                                 | 2.68                                                 | 2.94                                                 |  |  |
| Mn-54<br>Fe-59<br>Co-58<br>Co-60<br>Zr-Nb-95<br>Cs-134<br>Cs-137<br>Ba-La-140 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 |  |  |

Table 24. Surface water samples, analyses for gross beta, potassium-40, and gamma-emitting isotopes (continued).

| iple Description and Co | incentration (pCr/L)                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                         |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 07-01-98<br>KSW-4810    | 08-03-98<br>KSW-5930                                                                                                                                                                           | 09-01-98<br>KSW-6854                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                         |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| < 0.6<br>2.2 ± 0.4      | < 0.4<br>2.0 ± 0.4                                                                                                                                                                             | < 0.4<br>2.3 ± 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $2.2 \pm 0.4$           | $2.0 \pm 0.4$                                                                                                                                                                                  | $2.3 \pm 0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1.12                    | 1.21                                                                                                                                                                                           | 1.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <15                     | <15                                                                                                                                                                                            | <15                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                         |                                                                                                                                                                                                | <30<br><15                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         |                                                                                                                                                                                                | <15                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                         |                                                                                                                                                                                                | <15                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <10                     |                                                                                                                                                                                                | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <10                     | <10                                                                                                                                                                                            | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>&lt;1</b> 5          | <15                                                                                                                                                                                            | <15                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                         |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 07 <b>-0</b> 1-98       | 08-03-98                                                                                                                                                                                       | 09-01-98                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| KSW-4811                | KSW-5931                                                                                                                                                                                       | KSW-6855                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                         |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| < 0.6                   | < 0.4                                                                                                                                                                                          | < 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $4.7 \pm 1.2$           | $10.4 \pm 1.5$                                                                                                                                                                                 | $6.7 \pm 1.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $4.7 \pm 1.2$           | $10.4 \pm 1.5$                                                                                                                                                                                 | $6.7 \pm 1.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3.72                    | 9.52                                                                                                                                                                                           | 8.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <15                     | <15                                                                                                                                                                                            | <15                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                         |                                                                                                                                                                                                | <30                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                         |                                                                                                                                                                                                | <15                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                         |                                                                                                                                                                                                | <15                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                         |                                                                                                                                                                                                | <15                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                         |                                                                                                                                                                                                | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                         |                                                                                                                                                                                                | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <15                     | <15                                                                                                                                                                                            | <15                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                         |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                         | 07-01-98 KSW-4810<br>< 0.6<br>2.2 ± 0.4<br>2.2 ± 0.4<br>1.12<br><15<br><30<br><15<br><15<br><15<br><10<br><10<br><10<br><15<br>07-01-98<br>KSW-4811<br>< 0.6<br>4.7 ± 1.2<br>4.7 ± 1.2<br>3.72 | KSW-4810KSW-5930 $< 0.6$ $< 0.4$ $2.2 \pm 0.4$ $2.0 \pm 0.4$ $1.12$ $1.21$ $<15$ $<15$ $<30$ $<30$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<10$ $<10$ $<10$ $<10$ $<10$ $<10$ $<10$ $<10$ $<15$ $<15$ $<15$ $<15$ $<30$ $<30$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<15$ $<10$ $<10$ |

| Sample Description and Concentration (pCi/L)                                                 |                                                      |                                                      |                                                             |  |
|----------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|--|
| Indicator                                                                                    |                                                      |                                                      |                                                             |  |
| <u>K-1d</u>                                                                                  |                                                      |                                                      |                                                             |  |
| Date Collected<br>Lab Code                                                                   | 10-01-98<br>KSW-7854                                 | 11-02-98<br>KSW-9 <b>3</b> 40                        | 12-01-98<br>KSW-10156                                       |  |
| Gross beta<br>Suspended Solids<br>Dissolved Solids<br>Total Residue                          | < 0.5<br>1.9 ± 0.4<br>1.9 ± 0.4                      | < 0.5<br>2.7 ± 0.4<br>2.7 ± 0.4                      | < 0.4<br>2.6 ± 0.6<br>2.6 ± 0.6                             |  |
| K-40 (flame photometry)                                                                      | 1.04                                                 | 1.30                                                 | 1.12                                                        |  |
| Mn-54<br>Fe-59<br>Co-58<br>Co-60<br>Zr-Nb-95<br>Cs-134<br>Cs-137<br>Ba-La-140<br><u>K-1e</u> | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15        |  |
| Date Collected<br>Lab Code                                                                   | 10-01-98<br>KSW-7855                                 | 11-02-98<br>KSW-9341                                 | 12-01-98<br>KSW-10157                                       |  |
| Gross beta<br>Suspended Solids<br>Dissolved Solids<br>Total Residue                          | < 0.4<br>4.4 ± 1.3<br>4.4 ± 1.3                      | < 0.9<br>9.7 ± 1.5<br>9.7 ± 1.5                      | < 0.4<br>3.9 ± 1.4<br>3.9 ± 1.4                             |  |
| K-40 (flame photometry)                                                                      | 3.11                                                 | 8.56                                                 | 2.16                                                        |  |
| Mn-54<br>Fe-59<br>Co-58<br>Co-60<br>Zr-Nb-95<br>Cs-134<br>Cs-137<br>Ba-La-140                | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><10<br><15 |  |

Table 24. Surface water samples, analyses for gross beta, potassium-40, and gamma-emitting isotopes (continued).

| Sample Description and Concentration (pCi/L)                                                                                                                  |                                                                                            |                                                                                      |                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Indicator                                                                                                                                                     | * <u></u>                                                                                  |                                                                                      | <u></u>                                                                               |
| <u>K-14a</u>                                                                                                                                                  |                                                                                            |                                                                                      |                                                                                       |
| Date Collected<br>Lab Code                                                                                                                                    | 01-05-98<br>KSW-33                                                                         | 02-02-98<br>KSW-591                                                                  | 03-03-98<br>KSW-1294                                                                  |
| Gross beta<br>Suspended Solids<br>Dissolved Solids<br>Total Residue                                                                                           | < 0.3<br>2.8 ± 0.7<br>2.8 ± 0.7                                                            | < 0.3<br>3.5 ± 0.7<br>3.5 ± 0.7                                                      | < 0.4<br>3.5 ± 0.7<br>3.5 ± 0.7                                                       |
| K-40 (flame photometry)                                                                                                                                       | 1.30                                                                                       | 1.21                                                                                 | 1.73                                                                                  |
| Mn-54<br>Fe-59<br>Co-58<br>Co-60<br>Zr-Nb-95<br>Cs-134<br>Cs-137<br>Ba-La-140<br><u>K-14b</u><br>Date Collected<br>Lab Code<br>Gross beta<br>Suspended Solids | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><10<br><15<br>01-05-98<br>KSW-34<br>< 0.3 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15<br>02-02-98<br>KSW-592<br>< 0.3 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15<br>03-03-98<br>KSW-1295<br>< 0.4 |
| Dissolved Solids                                                                                                                                              | $3.6 \pm 0.7$                                                                              | $3.3 \pm 0.7$                                                                        | $2.9 \pm 0.6$                                                                         |
| Total Residue<br><-40 (flame photometry)                                                                                                                      | 3.6 ± 0.7<br>1.38                                                                          | $3.3 \pm 0.7$<br>1.21                                                                | 2.9 ± 0.6<br>1.73                                                                     |
| Mn-54<br>Fe-59<br>Co-58<br>Co-60<br>Zr-Nb-95                                                                                                                  | <15<br><30<br><15<br><15<br><15<br><15                                                     | <15<br><30<br><15<br><15<br><15<br><15                                               | <15<br><30<br><15<br><15<br><15                                                       |
| Cs-134<br>Cs-137<br>Ba-La-140                                                                                                                                 | <10<br><10<br><10<br><15                                                                   | <10<br><10<br><15                                                                    | <10<br><10<br><15                                                                     |

Sample Description and Concentration (pCi/L) **Indicator** <u>K-14a</u> Date Collected 04-01-98 05-04-98 06-01-98 Lab Code KSW-1975 KSW-2951 KSW-4026 Gross beta Suspended Solids < 0.4 < 0.3 < 0.4  $2.7 \pm 0.6$  $6.0 \pm 0.8$  $3.0 \pm 0.7$ **Dissolved Solids Total Residue**  $6.0 \pm 0.8$  $3.0 \pm 0.7$  $2.7 \pm 0.6$ 2.94 2.16 K-40 (fp) 1.12 Mn-54 <15 <15 <15 <30 <30 <30 Fe-59 Co-58 <15 <15 <15 <15 <15 Co-60 <15 <15 Zr-Nb-95 <15 <15 Cs-134 <10 **<1**0 <10 <10 Cs-137 **<1**0 <10 <15 <15 <15 Ba-La-140 K-14b 04-01-98 05-04-98 06-01-98 Date Collected KSW-1976 KSW-2952 KSW-4027 Lab Code Gross beta < 0.4 < 0.3 < 0.5 Suspended Solids  $5.8 \pm 0.8$ **Dissolved Solids**  $2.2 \pm 0.7$  $3.3 \pm 0.7$  $5.8 \pm 0.8$  $2.2 \pm 0.7$  $3.3 \pm 0.7$ **Total** Residue 2.94 1.12 K-40 (fp) 2.16 <15 <15 <15 Mn-54 **<3**0 **<3**0 <30 Fe-59 <15 <15 <15 Co-58 <15 <15 <15 Co-60 <15 <15 <15 Zr-Nb-95 <10 <10 <10 Cs-134 <10 <10 <10 Cs-137 <15 <15 <15 Ba-La-140

Table 24. Surface water samples, analyses for gross beta, potassium-40, and gamma-emitting isotopes (continued).

| Sample Description and Concentration (pCi/L) |               |               |                |
|----------------------------------------------|---------------|---------------|----------------|
| Indicator                                    |               |               |                |
| <u>K-14a</u>                                 |               |               | ·              |
| Date Collected                               | 07-01-98      | 08-03-98      | 09-01-98       |
| Lab Code                                     | KSW-4815      | KSW-5935      | KSW-6859       |
| Gross beta                                   |               |               |                |
| Suspended Solids                             | < 0.4         | < 0.3         | < 0.4          |
| Dissolved Solids                             | $2.0 \pm 0.6$ | $1.7 \pm 0.6$ | $2.2 \pm 0.6$  |
| Total Residue                                | $2.0 \pm 0.6$ | $1.7 \pm 0.6$ | $2.2 \pm 0.6$  |
| K-40 (flam <b>e p</b> hotometry)             | 1.21          | 1.30          | 1.12           |
| <b>Mn-5</b> 4                                | <15           | <15           | <15            |
| Fe-59                                        | <30           | <30           | <b>&lt;3</b> 0 |
| Co-58                                        | <15           | <15           | <15            |
| Co-60                                        | <15           | <15           | <15            |
| Zr-Nb-95                                     | <15           | <15           | <15            |
| Cs-134                                       | <10           | <10           | <10            |
| Cs-137                                       | <10           | <10           | <10            |
| 3a-La-140                                    | <15           | <15           | <15            |
| <u>K-14b</u>                                 |               |               |                |
| Date Collected                               | 07-01-98      | 08-03-98      | 09-01-98       |
| Lab Code                                     | KSW-4816      | KSW-5936      | KSW-6860       |
| Gross beta                                   |               |               |                |
| Suspended Solids                             | < 0.4         | < 0.4         | < 0.4          |
| Dissolved Solids                             | $2.3 \pm 0.6$ | $2.8 \pm 0.6$ | $1.7 \pm 0.5$  |
| Total Residue                                | $2.3 \pm 0.6$ | $2.8 \pm 0.6$ | $1.7 \pm 0.5$  |
| K-40 (flame photometry)                      | 1.21          | 1.21          | 1.38           |
| Mn-54                                        | <15           | <15           | <15            |
| Fe-59                                        | <30           | <30           | <30            |
| Co-58                                        | <15           | <15           | <15            |
| Co-60                                        | <15           | <15           | <15            |
| Zr-Nb-95                                     | <15           | <15           | <15            |
| Cs-134                                       | <10           | <10           | <10            |
| Cs-137                                       | <10           | <10           | <10            |
| Ba-La-140                                    | <15           | <15           | <15            |

Sample Description and Concentration (pCi/L) Indicator K-14a Date Collected 10-01-98 11-02-98 12-01-98 Lab Code KSW-7860 KSW-9345 KSW-10161 Gross beta < 0.4 Suspended Solids < 0.4 < 0.4 **Dissolved Solids**  $1.8 \pm 0.6$  $3.2 \pm 0.6$  $2.1 \pm 0.7$ **Total Residue**  $1.8 \pm 0.6$  $3.2 \pm 0.6$  $2.1 \pm 0.7$ K-40 (flame photometry) 1.12 1.21 1.04 Mn-54 <15 <15 <15 Fe-59 <30 <30 <30 Co-58 <15 <15 <15 Co-60 <15 <15 <15 Zr-Nb-95 <15 <15 <15 Cs-134 <10 <10 <10 Cs-137 <10 <10 <10 Ba-La-140 <15 <15 <15 K-14b Date Collected 10-01-98 11-02-98 12-01-98 Lab Code KSW-7861 KSW-9346 KSW-10162 Gross beta Suspended Solids < 0.4 < 0.4 < 0.4 **Dissolved Solids**  $1.8 \pm 0.6$  $3.3 \pm 0.6$  $2.4 \pm 0.7$ **Total Residue**  $1.8 \pm 0.6$  $3.3 \pm 0.6$  $2.4 \pm 0.7$ 1.21 K-40 (flame photometry) 1.21 1.12 **Mn-54** <15 <15 <15 <30 Fe-59 <30 <30 <15 Co-58 <15 <15 <15 Co-60 <15 <15 <15 Zr-Nb-95 <15 <15 Cs-134 <10 <10 <10 <10 <10 Cs-137 <10 Ba-La-140 <15 <15 <15

Table 24. Surface water samples, analyses for gross beta, potassium-40, and gamma-emitting isotopes (continued).

|                                                       | Sample De                      | escription and                  | d Concentratio                 | on (pCi/L)                      |                                  |                                 |
|-------------------------------------------------------|--------------------------------|---------------------------------|--------------------------------|---------------------------------|----------------------------------|---------------------------------|
| Control                                               |                                |                                 |                                |                                 |                                  |                                 |
| <u>K-9</u>                                            |                                |                                 |                                |                                 |                                  | ••                              |
| Date Collected                                        | 01-0                           | 5-98                            | 02-0                           | 2-98                            | 03-0                             | 3-98                            |
| Lab Code                                              | KSW-31<br>(Raw)                | KSW-32<br>(Tap)                 | KSW-588, 9<br>(Raw)            | KSW-590<br>(Tap)                | KSW-1292<br>(Raw)                | KSW-1293<br>(Tap)               |
| Gross beta                                            |                                |                                 |                                |                                 |                                  |                                 |
| Suspended Solids<br>Dissolved Solids<br>Total Residue | <0.3<br>2.6 ± 0.8<br>2.6 ± 0.8 | < 0.3<br>2.1 ± 0.4<br>2.1 ± 0.4 | <0.3<br>2.7 ± 0.6<br>2.7 ± 0.6 | < 0.3<br>1.9 ± 0.4<br>1.9 ± 0.4 | <0.5<br>2.1 ± 0.7<br>2.1 ± 0.7   | < 0.3<br>2.2 ± 0.5<br>2.2 ± 0.5 |
| K-40 (fp)                                             | 1.12                           | 1.12                            | 0.99                           | 1.04                            | 1.04                             | 1.04                            |
| Mn-54<br>Fe-59                                        | <15<br><30                     | <15<br><30                      | <b>&lt;1</b> 5<br><30          | <15<br><30                      | <b>&lt;1</b> 5<br><b>&lt;</b> 30 | <15<br><30                      |
| Co-58                                                 | <15                            | <15                             | <15                            | <15                             | <15                              | <15                             |
| Co-60                                                 | <15                            | <15                             | <15                            | <15                             | <15                              | <15                             |
| Zr-Nb-95                                              | <15                            | <15                             | <15                            | <15                             | <15                              | <15                             |
| Cs-134                                                | <10                            | <10                             | <10                            | <10                             | <10                              | <10                             |
| Cs-137                                                | <10                            | <10                             | <10                            | <10                             | <10                              | <10                             |
| Ba-La-140                                             | <15                            | <15                             | <15                            | <15                             | <15                              | <15                             |
|                                                       |                                |                                 |                                |                                 |                                  |                                 |
| Date Collected                                        | 04-0                           | 1-98                            | 05-04                          | 4-98                            | 06-0                             | 1-98                            |
| Lab Code                                              | KSW-1973<br>(Raw)              | KSW-1974<br>(Tap)               | KSW-2949<br>(Raw)              | KSW-2950<br>(Tap)               | KSW-4024<br>(Raw)                | KSW-4025<br>(Tap)               |
| Gross beta                                            |                                |                                 |                                |                                 |                                  |                                 |
| Suspended Solids                                      | < 0.4                          | < 0.4                           | < 0.3                          | < 0.4                           | < 0.7                            | < 0.4                           |
| Dissolved Solids                                      | 2.3 ± 0.8                      | $1.9 \pm 0.4$                   | $1.9 \pm 0.8$                  | $2.4 \pm 0.4$                   | $2.0 \pm 0.7$                    | $2.5 \pm 0.5$                   |
| Total Residue                                         | 2.3 ± 0.8                      | $1.9 \pm 0.4$                   | $1.9 \pm 0.8$                  | $2.4 \pm 0.4$                   | $2.0 \pm 0.7$                    | $2.5 \pm 0.5$                   |
| K-40 (fp)                                             | 0.95                           | 0.95                            | 1.12                           | 1.12                            | 1.04                             | 1.12                            |
| Mn-54                                                 | <15                            | <15                             | <15                            | <15                             | <15                              | <15                             |
| Fe-59                                                 | <30                            | <30                             | <30                            | <30                             | <30                              | <30                             |
| Co-58                                                 | <15                            | <15                             | <15                            | <15                             | <15                              | <15                             |
| Co-60                                                 | <15                            | <15                             | <15                            | <15                             | <15                              | <15                             |
| Zr-Nb-95                                              | <15                            | <15                             | <15                            | <15                             | <15                              | <15                             |
| Cs-134                                                | <10                            | <10                             | <10                            | <10                             | <10                              | <10                             |
| Cs-137                                                | <10                            | <10                             | <10                            | <10                             | <10                              | <10                             |
|                                                       |                                |                                 |                                |                                 |                                  |                                 |

| Sample Description and Concentration (pCi/L) |               |                |               |               |                |               |
|----------------------------------------------|---------------|----------------|---------------|---------------|----------------|---------------|
| <u>Control</u>                               |               |                |               | , ,, ,, ,     |                |               |
| <u>K-9</u>                                   |               |                |               |               |                |               |
| Date Collected                               | 07-02         | 1-98           | 08-0          | 3-98          | 09-0           | )1-98         |
| Lab Code                                     | KSW-4813      | KSW-4814       | KSW-5933      | KSW-5934      | KSW-6857       | KSW-6858      |
|                                              | (Raw)         | (Tap)          | (Raw)         | (Tap)         | (Raw)          | (Tap)         |
| Gross beta                                   |               |                |               |               |                |               |
| Suspended Solids                             | < 0.3         | < 0.4          | <0.5          | <0.4          | <0.4           | <0.3          |
| Dissolved Solids                             | $1.4 \pm 0.7$ | $2.1 \pm 0.4$  | $1.9 \pm 0.7$ | $1.7 \pm 0.4$ | $1.5 \pm 0.8$  | $2.2 \pm 0.5$ |
| <b>Total Residue</b>                         | $1.4 \pm 0.7$ | $2.1 \pm 0.4$  | $1.9 \pm 0.7$ | $1.7 \pm 0.4$ | $1.5 \pm 0.8$  | $2.2 \pm 0.5$ |
| K-40 (fp)                                    | 1.12          | 1.12           | 1.21          | 1.21          | 1. <b>3</b> 8  | 1.12          |
| Mn-54                                        | <15           | <15            | <15           | <15           | <15            | <15           |
| Fe-59                                        | <30           | <30            | <30           | <30           | <30            | <30           |
| Co-58                                        | <15           | <b>&lt;1</b> 5 | <15           | <15           | <15            | <15           |
| Co-60                                        | <15           | <15            | <15           | <15           | <15            | <15           |
| Zr-Nb-95                                     | <15           | <15            | <15           | <15           | <15            | <15           |
| Cs-134                                       | <10           | <10            | <10           | <10           | <10            | <10           |
| Cs-137                                       | <10           | <10            | <10           | <10           | <10            | <10           |
| Ba-La-140                                    | <15           | <15            | <15           | <15           | <15            | <15           |
| <u>K-9</u>                                   |               |                |               |               |                |               |
| Date Collected                               | 10-01         | -98            | 11-0          | 2-98          | 12-0           | 1-98          |
| Lab Code                                     | KSW-7857,8    | KSW-7859       | KSW-9343      | KSW-9344      | KSW-10159      | KSW-10160     |
|                                              | (Raw)         | (Tap)          | (Raw)         | (Tap)         | (Raw)          | (Tap)         |
| Gross beta                                   |               |                |               | -             |                | -             |
| Suspended Solids                             | <0.7          | <0.4           | <0.4          | <0.4          | <0.7           | <0.4          |
| Dissolved Solids                             | $2.2 \pm 0.5$ | $1.7 \pm 0.4$  | $2.6 \pm 0.7$ | $2.3 \pm 0.4$ | $2.6 \pm 0.9$  | $1.6 \pm 0.5$ |
| Total Residue                                | $2.2 \pm 0.5$ | $1.7 \pm 0.4$  | $2.6 \pm 0.7$ | $2.3 \pm 0.4$ | $2.6 \pm 0.9$  | $1.6 \pm 0.5$ |
| K-40 (fp)                                    | 1.04          | 1.12           | 1.12          | 1.12          | 1.04           | 1.04          |
| Mn-54                                        | <15           | <15            | <15           | <15           | <15            | <15           |
| Fe-59                                        | <30           | <30            | <30           | <30           | <30            | <30           |
| Co-58                                        | <15           | <15            | <15           | <15           | <15            | <15           |
| Co-60                                        | <15           | <15            | <15           | <15           | <15            | <15           |
| Zr-Nb-95                                     | <15           | <15            | <15           | <15           | <15            | <15           |
| Cs-134                                       | <10           | <10            | <10           | <10           | <10            | <10           |
| Cs-137                                       | <10           | <10            | <10           | <10           | <b>&lt;1</b> 0 | <10           |
| Ba-La-140                                    | <15           | <15            | <15           | <15           | <15            | <15           |

Table 24. Surface water samples, analyses for gross beta, potassium-40, and gamma-emitting isotopes (continued).

| Sample Description and Concentration (pCi/L) |                    |                             |                      |   |
|----------------------------------------------|--------------------|-----------------------------|----------------------|---|
| Indicator                                    |                    |                             |                      |   |
| <u>K-1k</u>                                  |                    |                             |                      |   |
| Date Collected<br>Lab Code                   | 01-05-98<br>KSW-30 | 02-02-98<br>NS <sup>a</sup> | 03-03-98<br>KSW-1291 |   |
| Gross beta                                   |                    |                             |                      |   |
| Suspended Solids                             | < 1.2              | -                           | < 1.2                |   |
| Dissolved Solids                             | $7.9 \pm 1.4$      | -                           | $10.7 \pm 1.5$       |   |
| Total Residue                                | $7.9 \pm 1.4$      | -                           | $10.7 \pm 1.5$       |   |
| K-40 (fp)                                    | 4.67               | -                           | 6.83                 |   |
| Mn-54                                        | <15                | -                           | <15                  |   |
| Fe-59                                        | <30                | -                           | <30                  |   |
| Co-58                                        | <b>&lt;1</b> 5     | -                           | <15                  |   |
| Co-60                                        | <15                | -                           | <15                  |   |
| Zr-Nb-95                                     | <15                | -                           | <15                  |   |
| Cs-134                                       | <10                | · _                         | <10                  |   |
| Cs-137                                       | <10                | -                           | <10                  |   |
| Ba-La-140                                    | <15                | -                           | <15                  |   |
| <u>K-1k</u>                                  |                    |                             |                      |   |
| Date Collected                               | 04-01-98           | 05-04-98                    | 06-01-98             |   |
| Lab Code                                     | KSW-1972           | KSW-2948                    | KSW-4023             |   |
| Gross beta                                   |                    |                             |                      |   |
| Suspended Solids                             | < 0.5              | < 0.4                       | < 1.5                |   |
| Dissolved Solids                             | $6.1 \pm 1.3$      | $7.5 \pm 1.4$               | $16.6 \pm 1.8$       |   |
| Total Residue                                | $6.1 \pm 1.3$      | $7.5 \pm 1.4$               | $16.6 \pm 1.8$       |   |
| K-40 (fp)                                    | 4.15               | 7.44                        | 7.61                 |   |
| Mn-54                                        | <15                | <15                         | <15                  |   |
| Fe-59                                        | <30                | <30                         | <30                  |   |
| Co-58                                        | <15                | <15                         | <15                  |   |
| Co-60                                        | <15                | <15                         | <15                  |   |
| Zr-Nb-95                                     | <15                | <15                         | <15                  |   |
| Cs-134                                       | <10                | <10                         | <10                  | • |
| Cs-137                                       | <10                | <10                         | <10                  |   |
| Ba-La-140                                    | <15                | <15                         | <15                  |   |

a NS= No sample; sample not available; pond frozen.

|                                                                               | Sample Description and Concentration (pCi/L)         |                                                      |                                                      |  |  |  |
|-------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|--|--|--|
| Indicator                                                                     |                                                      |                                                      |                                                      |  |  |  |
| <u>K-1k</u>                                                                   |                                                      |                                                      |                                                      |  |  |  |
| Date Collected<br>Lab Code                                                    | 07-01-98<br>KSW-4812                                 | 08-03-98<br>KSW-5932                                 | 09-01-98<br>KSW-6856                                 |  |  |  |
| Gross beta<br>Suspended Solids<br>Dissolved Solids<br>Total Residue           | < 1.0<br>4.2 ± 1.2<br>4.2 ± 1.2                      | < 0.3<br>10.1 ± 1.5<br>10.1 ± 1.5                    | < 0.4<br>7.6 ± 1.5<br>7.6 ± 1.5                      |  |  |  |
| K-40 (flame photometry)                                                       | 3.03                                                 | 8.65                                                 | 7.70                                                 |  |  |  |
| Mn-54<br>Fe-59<br>Co-58<br>Co-60<br>Zr-Nb-95<br>Cs-134<br>Cs-137<br>Ba-La-140 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 |  |  |  |
| <u>K-1k</u>                                                                   |                                                      |                                                      |                                                      |  |  |  |
| Date Collected<br>Lab Code                                                    | 10-01-98<br>KSW-7856                                 | 11-02-98<br>KSW-9342                                 | 12-01-98<br>KSW-10158                                |  |  |  |
| Gross beta<br>Suspended Solids<br>Dissolved Solids<br>Total Residue           | < 0.4<br>6.0 ± 1.3<br>6.0 ± 1.3                      | < 0.4<br>18.6 ± 1.7<br>18.6 ± 1.7                    | < 0.4<br>7.4 ± 1.6<br>7.4 ± 1.6                      |  |  |  |
| K-40 (flame photometry)                                                       | 5.36                                                 | 7.18                                                 | 6.49                                                 |  |  |  |
| Mn-54<br>Fe-59<br>Co-58<br>Co-60<br>Zr-Nb-95<br>Cs-134<br>Cs-137<br>Ba-La-140 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 | <15<br><30<br><15<br><15<br><15<br><10<br><10<br><15 |  |  |  |

10**0B** 

Table 25.Surface water, analyses for tritium, strontium-89 and strontium-90.Collection:Quarterly composites of monthly samples.

| Location and       |               | Con   | centration pC | li/L          |
|--------------------|---------------|-------|---------------|---------------|
| Collection Period  | Lab Code      | H-3   | Sr-89         | Sr-90         |
| Indicator          |               |       |               |               |
| <u>K-1a</u>        |               |       |               |               |
| 1st Quarter        | KSW -1901     | < 330 | < 0.9         | $0.7 \pm 0.3$ |
| 2nd Quarter        | -4616         | < 330 | < 0.8         | < 0.5         |
| 3rd Quarter        | -7753         | < 330 | < 1.4         | < 0.5         |
| 4th Quarter        | -11029        | < 330 | < 1.0         | $0.7 \pm 0.3$ |
| Annual mean ± s.d. |               | < 330 | < 1.4         | $0.7 \pm 0.0$ |
| <u>K-1b</u>        |               |       |               |               |
| 1st Quarter        | KSW -1902     | < 330 | < 0.9         | < 0.5         |
| 2nd Quarter        | -4617         | < 330 | < 0.9         | < 0.5         |
| 3rd Quarter        | -7754         | < 330 | < 1.4         | < 0.7         |
| 4th Quarter        | -11030        | < 330 | < 1.0         | $0.7 \pm 0.3$ |
| Annual mean ± s.d. |               | < 330 | < 1.4         | 0.7           |
| <u>K-1d</u>        |               |       |               |               |
| 1st Quarter        | KSW -1903     | < 330 | < 1.0         | $0.6 \pm 0.3$ |
| 2nd Quarter        | -4618         | < 330 | < 0.9         | < 0.5         |
| 3rd Quarter        | -7755         | < 330 | < 1.4         | < 0.6         |
| 4th Quarter        | -11031        | < 330 | < 1.0         | $0.7 \pm 0.3$ |
| Annual mean ± s.d. |               | < 330 | < 1.4         | $0.7 \pm 0.1$ |
| <u>K-1e</u>        |               |       |               |               |
| 1st Quarter        | KSW -1904     | < 330 | < 0.9         | < 0.5         |
| 2nd Quarter        | -4619         | < 330 | < 0.8         | < 0.5         |
| 3rd Quarter        | <b>-7</b> 756 | < 330 | < 1.4         | $0.4 \pm 0.3$ |
| 4th Quarter        | -11032        | < 330 | < 0.9         | < 0.5         |
| Annual mean ± s.d. |               | < 330 | < 1.4         | 0.4           |

| Location and                                             | _                                     | Con                                                        | Concentration pCi/L              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------|---------------------------------------|------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Collection Period                                        |                                       | H-3                                                        | Sr-89                            | Sr-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Indicator                                                |                                       |                                                            |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <u>K-14a</u>                                             |                                       |                                                            |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1st Quarter <sup>a</sup><br>January<br>February          | KSW -1908<br>-33<br>-591              | 755 ± 109 <sup>a</sup><br>< 330<br>547 ± 102               | < 0.9<br>-<br>-                  | 0.9 ± 0.3<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| March                                                    | -1294<br>-4623                        | 1322 ± 126<br>< 330                                        | -<br>< 1.1                       | -<br>< 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2nd Quarter<br>3rd Quarter<br>4th Quarter                | -4623<br>-7760<br>-11036              | < 330<br>< 330<br>< 330                                    | < 1.1<br><1.5<br>< 0.8           | < 0.0<br>< 0.5<br>0.8 ± 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Annual me <b>an ±</b> s.d.                               |                                       | 755                                                        | < 1.4                            | $0.9 \pm 0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u>K-14b</u>                                             |                                       |                                                            |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1st Quarter <sup>ª</sup><br>January<br>February<br>March | KSW -1909<br>-34<br>-592<br>-1295     | 694 ± 107 <sup>a</sup><br>< 330<br>552 ± 101<br>1348 ± 127 | < 0.9<br>-<br>-                  | < 0.0<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2nd Quarter                                              | -4624                                 | 1348 ± 127<br>< 330                                        | - < 1.4                          | -<br>< 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3rd Quarter<br>4th Quarter                               | -7761<br>-11037                       | < 330<br>< 330                                             | < 1.4<br>< 0.8                   | < 0.0<br>< 0.0<br>< 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Annual mean ± s.d.                                       | -                                     | 694                                                        | < 1.4                            | < 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <u>K-1k</u>                                              |                                       |                                                            |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1st Quarter<br>2nd Quarter<br>3rd Quarter<br>4th Quarter | KSW -1905<br>-4620<br>-7757<br>-11033 | < 330<br>< 330<br>< 330<br>< 330<br>< 330                  | < 0.9<br>< 0.8<br>< 1.4<br>< 0.8 | $0.7 \pm 0.3 \\ 0.6 \pm 0.3 \\ 0.6 \pm 0.4 \\ 0.8 \pm 0.3 \\ 0.6 \pm 0.4 \\ 0.8 \pm 0.3 \\ 0.8 $ |
| Annual mean ± s.d.                                       |                                       | < 330                                                      | < 1.4                            | $0.7 \pm 0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u>Control</u>                                           |                                       |                                                            |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <u>K-9</u>                                               |                                       |                                                            |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1st Quarter                                              | KSW -1906 (Raw)<br>-1907 (Tap)        | < <b>3</b> 30<br>< <b>3</b> 30                             | < 1.0<br>< 1.1                   | $0.9 \pm 0.3$<br>$1.0 \pm 0.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2nd Quarter                                              | -4621 (Raw)<br>-4622 (Tap)            | < <b>3</b> 30<br>< 330                                     | < 1.5<br>< 1.3                   | < 0.0<br>0.7 ± 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3rd Quarter                                              | <b>-7</b> 758 (Raw)<br>-7759 (Tap)    | < 330<br>< 330                                             | < 0.9<br>< 1.4                   | 0.5 ><br>0.6 ± 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4th Quarter                                              | -11034 (Raw)<br>-11035(Tap)           | ) < 330<br>< 330                                           | < 1.1<br>< 1.0                   | < 0.0<br>0.7 ± 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Annual mean ± s.d.                                       |                                       | < 330                                                      | < 1.1                            | $0.8 \pm 0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### **KEWAUNEE**

Table 25. Surface water, analyses for tritium, strontium-89 and strontium-90 (continued).

<sup>a</sup> Results of reanalyses; KSW-1908, 665±105 pCi/L, KSW-1909, 600±103 pCi/L. Monthly analyses for tritium by client request.

|                   | Collection: Th         | ree times a year       | ·                      | <u> </u>               |                   |                  |
|-------------------|------------------------|------------------------|------------------------|------------------------|-------------------|------------------|
|                   | Sam                    | ple Description        | and Concentrati        | on (pCi/g wet)         |                   |                  |
| Date<br>Collected | 04.0                   | 2 09                   | 04.0                   |                        |                   |                  |
|                   |                        | 2-98                   |                        | )2-98                  |                   |                  |
| Lab Code          |                        | 3516                   |                        | 3517                   |                   |                  |
| Туре              | Lake                   | Trout                  | Suc                    | ker                    |                   |                  |
| Portion           | <u>Flesh</u>           | <u>Bones</u>           | <u>Flesh</u>           | <u>Bones</u>           |                   |                  |
| Gross beta        | $2.59 \pm 0.11$        | $1.94 \pm 0.58$        | $2.34 \pm 0.11$        | $1.78 \pm 0.45$        |                   |                  |
| Sr-89<br>Sr-90    | NAª<br>NA              | < 0.10<br>0.086 ±0.032 | NAª<br>NAª             | < 0.11<br>0.079 ±0.034 |                   |                  |
| K-40<br>Mn-54     | 2.49 ± 0.49<br>< 0.023 | NAª<br>NA              | 2.28 ± 0.41<br>< 0.011 | NAª<br>NA              |                   |                  |
| Fe-59<br>Co-58    | < 0.074<br>< 0.025     | NA<br>NA               | < 0.068<br>< 0.017     | NA<br>NA               |                   |                  |
| Co-60             | < 0.017                | NA                     | < 0.014                | NA                     |                   |                  |
| Cs-134            | < 0.020                | NA                     | < 0.020                | NA                     |                   |                  |
| Cs-137            | $0.029 \pm 0.018$      | NA                     | $0.085 \pm 0.025$      | NA                     |                   |                  |
| Date              |                        |                        |                        |                        |                   |                  |
| Collected         | 07-04                  | 4-98                   | 10-07-98               |                        | 10-29-98          |                  |
| Lab Code          | KF-5                   | 927                    | KF-10145               |                        | KF-9353           |                  |
| Гуре              | Dog                    | fish                   | Cat                    | fish                   | Salmon            |                  |
| Portion           | <u>Flesh</u>           | <u>Bones</u>           | <u>Flesh</u>           | Bones                  | Flesh             | Bones            |
| Gross beta        | $2.10 \pm 0.05$        | $2.38 \pm 0.40$        | $2.26 \pm 0.11$        | $2.88 \pm 0.74$        | $4.49 \pm 0.17$   | $0.85 \pm 0.27$  |
| Sr-89             | NAª                    | < 0.08                 | NA <sup>a</sup>        | < 0.18                 | NAª               | < 0.0            |
| Sr-90             | NA                     | $0.28 \pm 0.027$       | NA                     | $0.22 \pm 0.045$       | NA                | $0.050 \pm 0.02$ |
| K-40              | 2.52 ± 0.39            | NAª                    | 2.15 ± 0.29            | NAª                    | $3.50 \pm 0.45$   | NAª              |
| Mn-54             | < 0.014                | NA                     | < 0.011                | NA                     | < 0.022           | NA               |
| Fe-59             | < 0.081                | NA                     | < 0.072                | NA                     | < 0.079           | NA               |
| Co-58             | < 0.023                | NA                     | < 0.015                | NA                     | < 0.020           | NA               |
| Co-60             | < 0.013                | NA                     | < 0.014                | NA                     | < 0.028           | NA               |
| Cs-134            | < 0.015                | NA                     | < 0.012                | NA                     | < 0.009           | NA               |
| Cs-137            | $0.15 \pm 0.026$       | NA                     | $0.058 \pm 0.016$      | NA                     | $0.054 \pm 0.021$ | NA               |

Table 26.Fish samples collected at K-1d, analyses for gross beta, strontium-89,<br/>strontium-90, and gamma-emitting isotopes.<br/>Collection: Three times a year

<sup>a</sup> NA = Not analyzed; analyses not required.

|                              |                                                                                                                                                                                                                                                                                         |                                                                                                  | - · · , _, .                                           |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Sample                       | Description and Co                                                                                                                                                                                                                                                                      | oncentration                                                                                     |                                                        |
|                              | Indicators                                                                                                                                                                                                                                                                              |                                                                                                  | Control                                                |
| K-1a<br>06-01-98<br>KSL-4030 | K-1b<br>06-01-98<br>KSL-4031                                                                                                                                                                                                                                                            | K-1d<br>06-01-98<br>KSL-4032                                                                     | K-9<br>06-01-98<br>KSL-4035                            |
| $4.61 \pm 0.15$              | $5.47 \pm 0.19$                                                                                                                                                                                                                                                                         | $3.27 \pm 0.66$                                                                                  | $2.64 \pm 0.10$                                        |
| < 0.010                      | < 0.012                                                                                                                                                                                                                                                                                 | < 0.13                                                                                           | < 0.004                                                |
| < 0.006                      | < 0.007                                                                                                                                                                                                                                                                                 | < 0.08                                                                                           | < 0.002                                                |
| $0.31 \pm 0.14$              | < 0.24                                                                                                                                                                                                                                                                                  | 0.69 ± 0.25                                                                                      | < 0.20                                                 |
| $5.00 \pm 0.39$              | 5.31 ± 0.59                                                                                                                                                                                                                                                                             | $2.67 \pm 0.46$                                                                                  | 2.57 ± 0.44                                            |
| < 0.012                      | < 0.006                                                                                                                                                                                                                                                                                 | < 0.012                                                                                          | < 0.015                                                |
| < 0.007                      | < 0.018                                                                                                                                                                                                                                                                                 | < 0.022                                                                                          | < 0.013                                                |
| < 0.013                      | < 0.016                                                                                                                                                                                                                                                                                 | < 0.018                                                                                          | < 0.014                                                |
| < 0.011                      | < 0.028                                                                                                                                                                                                                                                                                 | < 0.023                                                                                          | < 0.024                                                |
| < 0.014                      | < 0.020                                                                                                                                                                                                                                                                                 | < 0.026                                                                                          | < 0.017                                                |
| < 0.016                      | < 0.021                                                                                                                                                                                                                                                                                 | < 0.022                                                                                          | < 0.012                                                |
| < 0.11                       | < 0.19                                                                                                                                                                                                                                                                                  | < 0.12                                                                                           | < 0.18                                                 |
| < 0.009                      | < 0.021                                                                                                                                                                                                                                                                                 | < 0.022                                                                                          | < 0.021                                                |
| < 0.015                      | < 0.023                                                                                                                                                                                                                                                                                 |                                                                                                  | < 0.021                                                |
| < 0.023                      | < 0.032                                                                                                                                                                                                                                                                                 | < 0.043                                                                                          | < 0.023                                                |
| < 0.10                       | < 0.099                                                                                                                                                                                                                                                                                 | < 0.090                                                                                          | < 0.15                                                 |
| K-1e                         | K-1k                                                                                                                                                                                                                                                                                    | K-14                                                                                             |                                                        |
| 0 <b>6-0</b> 1-98            | 06-01-98                                                                                                                                                                                                                                                                                | 06-01-98                                                                                         |                                                        |
| KSL-4033                     | KSL-4034                                                                                                                                                                                                                                                                                | KSL-4036                                                                                         |                                                        |
| $4.58 \pm 0.15$              | $5.24 \pm 0.17$                                                                                                                                                                                                                                                                         | $3.93 \pm 0.14$                                                                                  |                                                        |
| < 0.004                      | < 0.010                                                                                                                                                                                                                                                                                 | < 0.010                                                                                          |                                                        |
| < 0.003                      | < 0.006                                                                                                                                                                                                                                                                                 | < 0.006                                                                                          |                                                        |
| < 0.20                       | < 0.23                                                                                                                                                                                                                                                                                  | $0.53 \pm 0.17$                                                                                  |                                                        |
|                              |                                                                                                                                                                                                                                                                                         |                                                                                                  |                                                        |
|                              |                                                                                                                                                                                                                                                                                         |                                                                                                  |                                                        |
|                              |                                                                                                                                                                                                                                                                                         |                                                                                                  |                                                        |
|                              |                                                                                                                                                                                                                                                                                         |                                                                                                  |                                                        |
|                              |                                                                                                                                                                                                                                                                                         |                                                                                                  |                                                        |
|                              |                                                                                                                                                                                                                                                                                         |                                                                                                  |                                                        |
|                              |                                                                                                                                                                                                                                                                                         |                                                                                                  |                                                        |
|                              |                                                                                                                                                                                                                                                                                         |                                                                                                  |                                                        |
|                              |                                                                                                                                                                                                                                                                                         |                                                                                                  |                                                        |
|                              |                                                                                                                                                                                                                                                                                         |                                                                                                  |                                                        |
|                              |                                                                                                                                                                                                                                                                                         |                                                                                                  |                                                        |
| < 0.16                       |                                                                                                                                                                                                                                                                                         |                                                                                                  |                                                        |
|                              | $\begin{array}{c} \text{K-1a} \\ 06-01-98 \\ \text{KSL-4030} \\ 4.61 \pm 0.15 \\ < 0.010 \\ < 0.006 \\ 0.31 \pm 0.14 \\ 5.00 \pm 0.39 \\ < 0.012 \\ < 0.007 \\ < 0.013 \\ < 0.011 \\ < 0.014 \\ < 0.016 \\ < 0.11 \\ < 0.009 \\ < 0.015 \\ < 0.023 \\ < 0.023 \\ < 0.10 \\ \end{array}$ | IndicatorsK-1aK-1b $06-01-98$ $06-01-98$ KSL-4030KSL-40314.61 $\pm$ 0.15 $5.47 \pm 0.19$ < 0.010 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |

# Table 27.Slime samples, analyses for gross beta, strontium-89, strontium-90, and<br/>gamma-emitting isotopes.<br/>Collection: Semiannually

104

# Table 27.Slime samples, analyses for gross beta, strontium-89, strontium-90, and<br/>gamma-emitting isotopes.<br/>Collection: Semiannually

| ·              | Sample                                 | e Description and C | oncentration      |                   |
|----------------|----------------------------------------|---------------------|-------------------|-------------------|
|                | •••••••••••••••••••••••••••••••••••••• | Indicators          |                   | Control           |
| Location       | K-1a                                   | K-1b                | K-1d              | <b>K-</b> 9       |
| Date Collected | 08-04-98                               | 08-04-98            | 09-01-98          | 09-01-98          |
| Lab Code       | KSL-5922                               | KSL-5923            | KSL-6861          | KSL-6862          |
| Gross beta     | $3.56 \pm 0.13$                        | $4.87 \pm 0.21$     | $3.55 \pm 0.51$   | 1.81 ± 0.09       |
| Sr-89          | < 0.007                                | < 0.011             | < 0.11            | < 0.003           |
| Sr-90          | $0.007 \pm 0.002$                      | < 0.005             | < 0.046           | < 0.002           |
| Be-7           | < 0.24                                 | $0.88 \pm 0.28$     | $0.87 \pm 0.12$   | 0.35 ± 0.20       |
| K-40           | $3.42 \pm 0.54$                        | $4.57 \pm 0.68$     | $2.32 \pm 0.21$   | $2.06 \pm 0.33$   |
| Mn-54          | < 0.027                                | < 0.023             | < 0.007           | < <b>0</b> .009   |
| Co-58          | < 0.026                                | < 0.006             | $0.022 \pm 0.010$ | < 0.020           |
| Co-60          | < 0.027                                | < 0.037             | < 0.008           | < 0.015           |
| Nb-95          | < 0.018                                | < 0.032             | < 0.008           | < 0.021           |
| Zr-95          | < 0.032                                | < 0.032             | < 0.011           | < 0.041           |
| Ru-103         | < 0.019                                | < 0.025             | < 0.013           | < 0.013           |
| Ru-106         | < 0.16                                 | < 0.19              | < 0.045           | < 0.18            |
| Cs-134         | < 0.032                                | < 0.018             | < 0.017           | < 0.016           |
| Cs-137         | < 0.023                                | < 0.023             | 0.033 ± 0.010     | < 0.021           |
| Ce-141         | < <b>0</b> .054                        | < 0.024             | < 0.023           | < 0.033           |
| Ce-144         | < 0.094                                | < 0.18              | < 0.057           | <b>&lt; 0</b> .16 |
| Location       | K-1e                                   | K-1k                | K-14              | -                 |
| Date Collected | 08-04-98                               | 08-04-98            | 09-01-98          |                   |
| Lab Code       | KSL-5924                               | KSL-5925            | KSL-6863          |                   |
| Gross beta     | 3.09 ± 0.37                            | 3.72 ± 0.13         | 3.09 ± 0.34       |                   |
| Sr-89          | < 0.038                                | < 0.006             | < 0.044           |                   |
| Sr-90          | < 0.017                                | $0.012 \pm 0.003$   | < 0.019           |                   |
| Be-7           | $1.22 \pm 0.15$                        | < 0.26              | $0.92 \pm 0.21$   |                   |
| K-40           | $1.55 \pm 0.21$                        | $2.95 \pm 0.53$     | $0.94 \pm 0.23$   |                   |
| Mn-54          | < 0.005                                | < 0.022             | < 0.011           |                   |
| Co-58          | $0.048 \pm 0.015$                      | < 0.017             | < 0.018           |                   |
| Co-60          | < 0.014                                | < 0.019             | < 0.011           |                   |
| Nb-95          | < 0.006                                | < 0.035             | < 0.020           |                   |
| Zr-95          | < 0.024                                | < 0.054             | < 0.016           |                   |
| Ru-103         | < 0.011                                | < 0.023             | < 0.008           |                   |
| Ru-106         | < 0.090                                | < 0.15              | < 0.038           | ·                 |
| Cs-134         | < 0.012                                | < 0.016             | < 0.024           |                   |
| Cs-137         | $0.033 \pm 0.017$                      | < 0.028             | < 0.016           |                   |
| Ce-141         | < 0.011                                | < 0.040             | < 0.022           |                   |
| Ce-144         | < 0.078                                | < 0.15              | < 0.094           |                   |

| Table 28.                                        | Bottom sediment sa<br>gamma-emitting is<br>Collection: May ar | otopes                                                                                           | or gross beta, stror                                    | ntium-89, strontiur                                     | m-90, and                                                                                |  |  |  |
|--------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|--|
| Sample Description and Concentration (pCi/g dry) |                                                               |                                                                                                  |                                                         |                                                         |                                                                                          |  |  |  |
|                                                  |                                                               | Indi                                                                                             | cator                                                   |                                                         | Control                                                                                  |  |  |  |
| Location<br>Collection Date<br>Lab Code          | K-1c<br>05-04-98<br>KBS-2969                                  | K-1d<br>05-04-98<br>KBS-2970                                                                     | K-1j<br>05-04-98<br>KBS-2971                            | K-14<br>05-04-98<br>KBS-2973                            | K-9<br>05-04-98<br>KBS-2972                                                              |  |  |  |
| Gross beta                                       | $8.84 \pm 2.16$                                               | $7.73 \pm 1.90$                                                                                  | $4.18 \pm 1.75$                                         | 6. <b>42</b> ± 1.86                                     | $5.15 \pm 1.69$                                                                          |  |  |  |
| Sr-89<br>Sr-90                                   | < 0.034<br>< 0.018                                            | < 0.037<br>< 0.019                                                                               | <0.033<br><0.021                                        | < 0.031<br>< 0.019                                      | < 0.031<br>< 0.018                                                                       |  |  |  |
| K-40<br>Co-58<br>Co-60<br>Cs-134<br>Cs-137       | $7.45 \pm 0.41 < 0.015 < 0.018 < 0.025 < 0.014$               | $5.23 \pm 0.35 < 0.014 < 0.013 < 0.027 0.033 \pm 0.014$                                          | 4.87 ± 0.32<br>< 0.016<br>< 0.012<br>< 0.026<br>< 0.012 | 7.09 ± 0.42<br>< 0.013<br>< 0.017<br>< 0.031<br>< 0.015 | 5.71 ± 0.36<br>< 0.016<br>< 0.013<br>< 0.023<br>< 0.012                                  |  |  |  |
| Location<br>Collection Date<br>Lab Code          | K-1c<br>11-02-98<br>KBS-9348                                  | K-1d<br>11-02-98<br>KBS-9347                                                                     | K-1j<br>11-02-98<br>KBS-9349,50                         | K-14<br>11-02-98<br>KBS-9352                            | K-9<br>11-02-98<br>KBS-9351                                                              |  |  |  |
| Gross beta                                       | $6.07 \pm 2.06$                                               | 8.50 ± 2.22                                                                                      | $7.46 \pm 1.51$                                         | 8.77 ± 2.24                                             | $7.64 \pm 2.16$                                                                          |  |  |  |
| Sr-89<br>Sr-90                                   | < 0.038<br>< 0.014                                            | < 0.027<br>< 0.010                                                                               | <0.031<br><0.012                                        | < 0.028<br>< 0.011                                      | < 0.029<br>< 0.010                                                                       |  |  |  |
| K-40<br>Co-58<br>Co-60<br>Cs-134<br>Cs-137       | 5.79 ± 0.58<br>< 0.023<br>< 0.015<br>< 0.038<br>< 0.023       | $\begin{array}{r} 6.30 \pm 0.57 \\ < 0.031 \\ < 0.024 \\ < 0.038 \\ 0.037 \pm 0.019 \end{array}$ | $6.70 \pm 0.31 < 0.019 < 0.018 < 0.029 0.026 \pm 0.011$ | 8.22 ± 0.65<br>< 0.020<br>< 0.031<br>< 0.036<br>< 0.025 | $\begin{array}{r} 6.24 \pm 0.45 \\ < 0.020 \\ < 0.020 \\ < 0.031 \\ < 0.023 \end{array}$ |  |  |  |

# 7.0 STATISTICAL ANALYSES

.

·

| -              |                   |                   | Gross Beta (pC    | i/m <sup>3</sup> ) |                                       |  |
|----------------|-------------------|-------------------|-------------------|--------------------|---------------------------------------|--|
| Location       | 1st Quarter       | 2nd Quarter       | 3rd Quarter       | 4th Quarter        | Annual                                |  |
| Indicator      |                   |                   |                   |                    | · · · · · · · · · · · · · · · · · · · |  |
| K-1f           | 0.019 ± 0.005     | $0.014 \pm 0.004$ | $0.020 \pm 0.005$ | 0.024 ± 0.009      | 0.019 ±0.007                          |  |
| K-7            | 0.018 ± 0.006     | $0.016 \pm 0.004$ | 0.020 ± 0.005     | 0.023 ± 0.009      | 0.019 ±0.007                          |  |
| Mean ± s.d.    | 0.019 ± 0.006     | $0.015 \pm 0.004$ | $0.020 \pm 0.005$ | 0.023 ± 0.009      | 0.019 ±0.007                          |  |
| <u>Control</u> |                   |                   |                   |                    |                                       |  |
| K-2            | $0.018 \pm 0.006$ | $0.015 \pm 0.005$ | $0.021 \pm 0.006$ | $0.022 \pm 0.009$  | 0.019 ±0.007                          |  |
| K-8            | $0.019 \pm 0.006$ | $0.014 \pm 0.004$ | $0.021 \pm 0.005$ | $0.023 \pm 0.009$  | $0.019 \pm 0.007$                     |  |
| K-15           | $0.019 \pm 0.006$ | $0.015 \pm 0.004$ | $0.023 \pm 0.005$ | $0.022 \pm 0.008$  | 0.019 ±0.006                          |  |
| K-16 _         | $0.020 \pm 0.006$ | $0.014 \pm 0.003$ | $0.021 \pm 0.007$ | $0.023 \pm 0.008$  | 0.019 ±0.007                          |  |
| Mean ± s.d.    | $0.019 \pm 0.006$ | $0.014 \pm 0.004$ | 0.021 ± 0.005     | 0.022 ± 0.008      | 0.019 ±0.007                          |  |

Table 29. Air particulate samples, gross beta, quarterly and annual means and standard deviations.

NOTE: All means and standard deviations are calculated by using individual results.

# **KEWAUNEE**

|                  |                     | Strontium-90 (pCi/L) |               |               |                  |  |  |  |
|------------------|---------------------|----------------------|---------------|---------------|------------------|--|--|--|
| Location         | 1st Quarter         | 2nd Quarter          | 3rd Quarter   | 4th Quarter   | Annual           |  |  |  |
|                  |                     |                      |               |               |                  |  |  |  |
| <u>Indicator</u> |                     |                      |               |               |                  |  |  |  |
| K-4              | $0.9 \pm 0.3$       | $0.9 \pm 0.1$        | $0.8 \pm 0.1$ | $1.0 \pm 0.3$ | <b>0.9 ±</b> 0.2 |  |  |  |
| K-5              | $1.8 \pm 0.8$       | $1.1 \pm 0.1$        | $1.5 \pm 0.3$ | $1.0 \pm 0.4$ | $1.3 \pm 0.5$    |  |  |  |
| <b>K-</b> 12     | $1.8 \pm 0.1$       | $1.8 \pm 0.6$        | $1.6 \pm 0.5$ | $1.4 \pm 0.2$ | $1.6 \pm 0.4$    |  |  |  |
| K-19             | $1.4 \pm 0.5$       | $1.2 \pm 0.1$        | $1.1 \pm 0.5$ | 0.9 ± 0.2     | $1.2 \pm 0.4$    |  |  |  |
| Mean ± s.d.      | $1.5 \pm 0.6$       | $1.2 \pm 0.4$        | $1.3 \pm 0.5$ | $1.1 \pm 0.3$ | $1.3 \pm 0.5$    |  |  |  |
| Control          |                     |                      |               |               |                  |  |  |  |
| K-3              | $1.\bar{3} \pm 0.4$ | $1.4 \pm 0.1$        | 1.2 ± 0.1     | 1.2 ± 0.1     | $1.3 \pm 0.2$    |  |  |  |
| K-6              | $2.4 \pm 0.8$       | $1.1 \pm 0.2$        | $1.0 \pm 0.2$ | $1.0 \pm 0.2$ | $1.4 \pm 0.5$    |  |  |  |
| K-28             | $1.9 \pm 0.3$       | $1.7 \pm 0.6$        | $1.4 \pm 0.3$ | $1.1 \pm 0.3$ | $1.5 \pm 0.5$    |  |  |  |
| Mean ± s.d.      | $1.8 \pm 0.7$       | $1.4 \pm 0.4$        | 1.2 ± 0.2     | $1.1 \pm 0.2$ | $1.4 \pm 0.1$    |  |  |  |

Table 30. Milk samples, strontium-90, quarterly and annual means and standard deviations.

NOTE: All means and standard deviations are calculated by using individual results.

Table 31. Milk samples, potassium-40, quarterly and annual means and standard deviations.

|                | K-40 (pCi/L)   |                |                    |                |                |  |  |
|----------------|----------------|----------------|--------------------|----------------|----------------|--|--|
| Location       | 1st Quarter    | 2nd Quarter    | 3rd Quarter        | 4th Quarter    | Annual         |  |  |
| Indicator      |                |                |                    |                |                |  |  |
| K-4            | $1410 \pm 140$ | 1310 ± 60      | 1340 ± 130         | 1340 ± 150     | 1340 ± 120     |  |  |
| K-5            | $1480 \pm 60$  | $1350 \pm 100$ | $1420 \pm 160$     | $1360 \pm 20$  | $1400 \pm 110$ |  |  |
| K-12           | $1530 \pm 100$ | $1420 \pm 90$  | $1440 \pm 160$     | $1500 \pm 80$  | $1460 \pm 120$ |  |  |
| K-19           | $1310 \pm 100$ | 1320 ± 100     | 1430 ± 120         | $1410 \pm 20$  | 1370 ± 110     |  |  |
| Mean ± s.d.    | 1430 ± 120     | 1350 ± 90      | $1410~\pm140$      | $1400 \pm 100$ | 1390 ±120      |  |  |
| <u>Control</u> |                |                |                    |                |                |  |  |
| K-3            | 1580 ± 70      | 1410 ± 50      | $1400 \pm 100$     | $1380 \pm 40$  | 1430 ± 100     |  |  |
| K-6            | $1380 \pm 90$  | 1190 ± 50      | <b>1210 ± 13</b> 0 | $1320 \pm 20$  | $1260 \pm 110$ |  |  |
| K-28           | $1450 \pm 60$  | $1300 \pm 140$ | 1390 ± 120         | 1310 ± 100     | $1360 \pm 120$ |  |  |
| Mean ± s.d.    | 1470 ± 110     | 1300 ± 120     | 1330 ± 140         | 1340 ± 70      | 1350 ± 130     |  |  |

NOTE 1: All means and standard deviations are calculated by using individual results.

|                | Concentration (pCi/L) |                 |                   |  |  |
|----------------|-----------------------|-----------------|-------------------|--|--|
| Location       | Gross Beta            | Potassium-40    | Strontium-90      |  |  |
| Indicator      |                       |                 |                   |  |  |
| K-1b           | 7.48 ± 3.78           | 5.77 ± 1.75     | $0.005 \pm 0.001$ |  |  |
| K-1f           | <b>6</b> .76 ± 0.77   | $5.33 \pm 0.95$ | 0.005             |  |  |
| K-4            | $6.20 \pm 0.65$       | $6.24 \pm 0.90$ | $0.003 \pm 0.003$ |  |  |
| K-5            | $7.01 \pm 0.65$       | $7.50 \pm 0.53$ | <b>0</b> .002     |  |  |
| K-12           | $6.28 \pm 0.84$       | $6.46 \pm 0.80$ | 0.010             |  |  |
| K-19           | 5.59 ± 0.78           | 6.23 ± 0.64     | $0.007 \pm 0.001$ |  |  |
| Mean ± s.d.    | 6.55 ± 1.55           | 6.26 ± 1.09     | $0.005 \pm 0.003$ |  |  |
| <u>Control</u> |                       |                 |                   |  |  |
| K-3            | 8.42 ± 3.08           | $6.56 \pm 0.29$ | $0.004 \pm 0.002$ |  |  |
| K-6            | 6.13 ± 0.78           | 6.83 ± 1.18     |                   |  |  |
| Mean ± s.d.    | 7.28 ± 2.37           | 6.69 ± 0.78     | $0.004 \pm 0.002$ |  |  |

#### **KEWAUNEE**

Table 32. Grass samples, gross beta, potassium-40 and strontium-90, annual means and standard<br/>deviations.

NOTE 1: All means and standard deviations are calculated by using individual results.

|                | Concentration (pCi/L) |                     |                  |                   |                 |  |  |  |
|----------------|-----------------------|---------------------|------------------|-------------------|-----------------|--|--|--|
| Location       | gross alpha           | gross beta          | potassium-40     | strontium-90      | cesium-137      |  |  |  |
| Indicator      |                       |                     |                  |                   |                 |  |  |  |
| K-1f           | 4.92                  | 21.87 ± 0.78        | 18.11 ± 1.17     |                   |                 |  |  |  |
| K-4            | 9.73                  | <b>26.17 ± 2.14</b> | $18.27 \pm 0.83$ | 0.016             | $0.08 \pm 0.02$ |  |  |  |
| <b>K-</b> 5    | $11.85 \pm 3.63$      | $33.12 \pm 3.47$    | $22.82 \pm 4.89$ | 0.094             | $0.16 \pm 0.16$ |  |  |  |
| K-12           | 4.86                  | $17.44 \pm 3.68$    | $16.19 \pm 4.82$ | $0.056 \pm 0.045$ | 0.27            |  |  |  |
| K-19           | 4.49                  | $16.14 \pm 1.64$    | 15.66 ± 1.12     | $0.066 \pm 0.021$ | 0.18 ± 0.11     |  |  |  |
| Mean ± s.d.    | $7.95 \pm 3.93$       | 22.95 ± 6.80        | 18.21 ± 3.56     | 0.059 ± 0.034     | 0.16 ± 0.10     |  |  |  |
| <u>Control</u> |                       |                     |                  |                   |                 |  |  |  |
| K-3            | 8.53 ± 2.15           | 27.18 ± 3.08        | 21.78 ± 0.83     | 0.042 ± 0.001     | $0.17 \pm 0.03$ |  |  |  |
| K-6            | 7.95 ± 1.25           | 25.48 ± 0.24        | 20.16 ± 1.80     | 0.077 ± 0.003     | 0.16 ± 0.03     |  |  |  |
| Mean ± s.d.    | $8.24 \pm 1.48$       | 26.33 ± 2.03        | 20.97 ± 1.48     | 0.059 ± 0.021     | $0.17 \pm 0.02$ |  |  |  |

Table 33. Soil samples, gross alpha, gross beta, potassium-40, strontium-90 and cesium-137, annual means and standard deviations.

NOTE: All means and standard deviations are calculated by using individual results.

ł

#### **KEWAUNEE**

|                | ••• <u>N=n</u> |                |               | - <u></u>      |                   |  |  |
|----------------|----------------|----------------|---------------|----------------|-------------------|--|--|
|                | pCi/L          |                |               |                |                   |  |  |
| Location       | 1st Quarter    | 2nd Quarter    | 3rd Quarter   | 4th Quarter    | Annual            |  |  |
| Indicator      |                |                | <u> </u>      | , <u></u>      | · .               |  |  |
| K1a            | $12.0 \pm 2.6$ | $10.4 \pm 2.2$ | 15.3 ± 5.8    | 18.0 ± 7.0     | 13.9 ± 3.4        |  |  |
| K1b            | $3.9 \pm 1.5$  | $4.1 \pm 1.3$  | $3.4 \pm 1.2$ | $3.6 \pm 1.2$  | $3.8 \pm 0.3$     |  |  |
| K-1d           | $2.7 \pm 0.2$  | $2.3 \pm 0.7$  | $2.2 \pm 0.2$ | $2.4 \pm 0.4$  | $2.4 \pm 0.2$     |  |  |
| K-1e           | 5.3 ± 1.9      | $4.3 \pm 0.9$  | 7.3 ± 2.9     | $6.0 \pm 3.2$  | 5.7 ± 1.2         |  |  |
| K-1k           | 9.3 ± 2.0      | $10.1 \pm 5.7$ | $7.3 \pm 3.0$ | $10.7 \pm 6.9$ | 9.3 ± 1.5         |  |  |
| K-14a          | $3.3 \pm 0.4$  | $3.9 \pm 1.8$  | $2.0 \pm 0.3$ | $2.4 \pm 0.7$  | 2.9 ± 0.9         |  |  |
| K-14b          | 3.3 ± 0.4      | 3.8 ± 1.8      | 2.3 ± 0.6     | 2.5 ± 0.8      | 3.0 ± 0.7         |  |  |
| Mean ± s.d.    | 5.7 ± 3.6      | 5.6 ± 3.2      | 5.7 ± 4.8     | 6.5 ± 5.9      | 5.9 ± 0.4         |  |  |
| <u>Control</u> |                |                |               |                |                   |  |  |
| K-9 (Raw)      | $2.5 \pm 0.3$  | $2.1 \pm 0.2$  | $1.6 \pm 0.3$ | $2.5 \pm 0.2$  | <b>2</b> .2 ± 0.4 |  |  |
| (Tap)          | $2.1 \pm 0.2$  | $2.3 \pm 0.3$  | $2.0 \pm 0.3$ | $1.9 \pm 0.4$  | $2.1 \pm 0.2$     |  |  |

Table 34. Surface water samples, gross beta in total residue, quarterly and annual means and standard deviations.

NOTE 1: All means and standard deviations are calculated by using individual results.

#### **KEWAUNEE**

|              |                                    | pCi/g dry                      |                   |
|--------------|------------------------------------|--------------------------------|-------------------|
| Location     | gross beta                         | potassium-40                   | cesium-137        |
| Indicator    |                                    |                                |                   |
| K-1c         | 7.46 ± 1.96                        | $6.62 \pm 1.17$                |                   |
| K-1d<br>K-1j | $8.12 \pm 0.54$                    | $5.77 \pm 0.76$                | $0.035 \pm 0.003$ |
| K-1j<br>K-14 | $5.82 \pm 2.32$<br>7.60 $\pm 1.66$ | $5.79 \pm 1.29$<br>7.66 ± 0.80 | 0.026             |
| Mean ± s.d.  | 7.25 ± 0.99                        | 6.46 ± 0.89                    | $0.031 \pm 0.006$ |
| Control      |                                    |                                |                   |
| K-9          | $6.40 \pm 1.76$                    | 5.98 ± 0.37                    |                   |

Table 35. Bottom sediment samples, gross beta, potassium-40, and cesium-137, annual means and standard deviations.

NOTE: All means and standard deviations are calculated by using individual results.

# APPENDIX A

# RADIOCHEMICAL ANALYTICAL PROCEDURES

# TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES

#### MIDWEST LABORATORY

700 LANDWEHR ROAD NORTHBROOK, ILLINOIS 60062-2310 (847) 564-0700 • FAX (847) 564-4517

#### ANALYTICAL PROCEDURES MANUAL

### TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES MIDWEST LABORATORY

#### PREPARED FOR

#### WISCONSIN PUBLIC SERVICE CORPORATION

NOTE: Only procedures applicable to the WPS Radiological Environmental Monitoring Program are included in this manual.

Approved by: Bronia Grob, M.S. Technical Lead

Revised 21 July 1998

(This information, or any portion thereof, shall not be reproduced in any manner or distributed to any third party without the written permission of Teledyne Brown Engineering Environmental Services Midwest Laboratory.)

Revised 07-21-98 Page 1 of 2

# <u>WPS</u>

# List of Procedures

| Procedure<br>Number | · · · · · · · · · · · · · · · · · · ·                                                             | Revision<br>Number | Revision<br>Date |
|---------------------|---------------------------------------------------------------------------------------------------|--------------------|------------------|
| SP-01               | Sample Preparation                                                                                | 3                  | 06-03-96         |
| TLD-01              | Preparation and Readout of Teledyne Isotopes<br>TLD Cards                                         | 6                  | 04-24-95         |
| AP-02               | Determination of Gross Alpha and/or Gross<br>Beta in Air Particulate Filters                      | 1                  | 07-15-91         |
| AP-03               | Procedure for Compositing Air Particulate<br>Filters for Gamma Spectroscopic Analysis             | 2                  | 07-21-98         |
| W(DS)-01            | Determination of Gross Alpha and/or Gross<br>Beta in Water (Dissolved Solids or Total<br>Residue) | 4                  | 07-21-98         |
| W(SS)-02            | Determination of Gross Alpha and/or Gross<br>Beta in Water (Suspended Solids)                     | 2                  | 07-21-98         |
| AB-01               | Determination of Gross Alpha and/or Gross<br>Beta in Solid Samples                                | 1                  | 08-14-92         |
| GS-01               | Determination of Gamma Emitters by Gamma<br>Spectroscopy                                          | 2                  | 07-01-98         |
| T-02                | Determination of Tritium in Water                                                                 | 3                  | 07-07-98         |
| I-131-01            | Determination of I-131 in Milk by Anion<br>Exchange (Batch Method)                                | 5                  | 09-24-92         |
| I-131-02            | Determination of I-131 in Charcoal Cartridges<br>by Gamma Spectroscopy                            | 1                  | 08-01-92         |
| SR-02               | Determination of Sr-89 and Sr-90 in Water<br>(Clear or Drinking Water                             | 0                  | 03-21-86         |
| SR-05               | Determination of Sr-89 and Sr-90 in Ashed<br>Samples                                              | 0                  | 07-23-86         |
| SR-06               | Determination of Sr-89 and Sr-90 in Soil and Bottom Sediments                                     | 0                  | 07-23-86         |
| SR-07               | Determination of Sr-89 and Sr-90 in Milk (Ion<br>Exchange Batch Method)                           | 4                  | 08-18-94         |

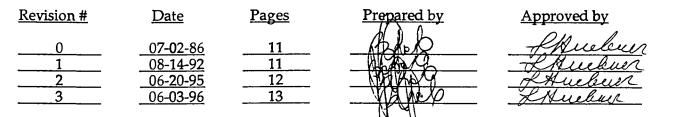
# <u>WPS</u>

# List of Procedures (continued)

| Procedure<br>Number |                                                     | Revision<br>Number | Revision<br>Date |
|---------------------|-----------------------------------------------------|--------------------|------------------|
| COMP-01             | Procedure for Compositing Water and Milk<br>Samples | 0                  | 11-07-88         |
| CA-01               | Determination of Stable Calcium in Milk             | 0                  | 07-08-88         |



dba TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES 700 Landwehr Road • Northbrook, IL 60062-2310 Phone (708) 564-0700 • Fax (708) 564-4517


#### SAMPLE PREPARATION

PROCEDURE NO. TIML-SP-01

#### Prepared by

#### Teledyne Isotopes Midwest Laboratory

Copy No.



(This procedure, or any portion thereof, shall not be reproduced in any manner or distributed to any third party without the written permission of Teledyne Isotopes Midwest Laboratory.)

|       |                                                                      | Page            |
|-------|----------------------------------------------------------------------|-----------------|
| Prine | ciple of Method                                                      | . TIML-SP-01-03 |
| Reag  | gents                                                                | . TIML-SP-01-03 |
|       | aratus                                                               |                 |
|       | edure for Packing Counting Containers                                |                 |
| A.    | Vegetables and Fruits                                                |                 |
| B.    | Grass and Cattle Feed                                                | . TIML-SP-01-05 |
| C.    | Fish                                                                 | . TIML-SP-01-06 |
| D.    | WaterfowI, Meat, and Wildlife                                        | . TIML-SP-01-07 |
| E.    | Eggs                                                                 | . TIML-SP-01-08 |
| F.    | Slime and Aquatic Vegetation                                         |                 |
| G.    | Bottom Sediments and Soil                                            |                 |
| H.    | Milk                                                                 | . TIML-SP-01-11 |
| I.    | Feces                                                                |                 |
| T.    | Bottom Sediments and Soil, Analysis for Ra-226 by Gamma Spectroscopy |                 |

#### SAMPLE PREPARATION

#### Principle of Method

Different classes of samples require different preparations. In general, food products are prepared as for home use, while others are dried and ashed as received.

<u>Reagents</u>

Formaldehyde

#### <u>Apparatus</u>

Balance Ceramic Dishes Counting Containers Cutting Board Drying Oven Drying Pans Grinder High Temperature Marking Pen Knives Muffle Furnace Plastic Bags Pulverizer Scissors Spatulas

#### Procedure for Packing Standard Calibrated Counting Containers

- A. 1.0L, 2.0L, 3.5L: Pour 1.0, 2.0, or 3.5 liters of water into corresponding container. Mark the level and empty the container. Fill with the sample to the mark, except for grass.
- B. 250inL, and 500mL: Fill to the rim on the inside wall, which is 1/4" from the top.
- C. 4 oz.: Fill to the 100mL mark.

Pack the sample tightly. When filling with soil and bottom sediments, make sure it is level.

NOTE 1: For ComEd samples use a <u>NEW</u> counting container for each sample.

NOTE 2: For Illinois Power (Clinton) samples keep a set of counting containers <u>MARKED</u> "Clinton".

A. <u>Vegetables and Fruits</u>

- 1. Wash and prepare vegetables and fruits as for eating.
- 2. Cut up vegetables and hard fruits into small pieces (about 1/4" cubes). Mash soft fruits.
- 3. Transfer the sample to a standard calibrated container. Use the largest size possible for the amount of sample available. <u>DO NOT FILL ABOVE THE MARK</u>. Record the wet weight.
- 4. Add a few cc of formaldehyde to prevent spoilage.
- 5. Seal with cover. Attach paper tape on top of the cover and write sample number, net weight, and date and time collected.
- 6. Submit to the counting room for gamma spectroscopic analysis without delay or store in a cooler until counting (for short period).
  - NOTE: If I-131 analysis is required, it is <u>imperative</u> that the sample be prepared and submitted to the counting room <u>immediately</u>. Mark "I-131" on the tape.
- 7. After gamma scanning is completed, transfer the sample to a drying pan and dry at 110°C.
  - NOTE 1.: If only gamma scan is required, skip drying and ashing (Steps 7 through 11). Transfer the sample to a plastic bag, seal, label, and store in a cooler until disposal.
  - NOTE 2: If there is sufficient quantity, use surplus sample for drying and ashing instead of waiting for gamma scanning to be completed.
- 8. Cool, weigh, and record dry weight. Grind.

9. Weigh out accurately in tared ceramic dish 100-120g of the ground sample. Record the weight. (If sample weight is more than 100g, use two dishes; mark one as "A" and the second one as "B.") Ash in a muffle furnace by gradually increasing the temperature to 600°C. Ash overnight.

- NOTE: If ashing is incomplete (black carbon remains), cool the dish, crush the ash with spatula, and continue ashing overnight at 600°C. At this stage, it is not necessary to increase the temperature gradually. Set the temperature for 600°C and turn on the furnace.
- 10. Cool and weigh the ashed sample and record the ash weight. Grind to pass a 30 mesh screen. Transfer to a 4 oz. container, seal, and write sample number, weight, analysis required, and date and time of collection. The sample is now ready for analysis.
- 11. Store remaining ground sample in a plastic bag for possible future rechecking.

NOTE: USEcology, Inc. samples: Weigh and record the total weight received.

TIML-SP-01

B. Grass, Green Leafy Vegetation and Cattle Feed

- 1. Take enough sample to fill 3.5L or 2.0L Marinelli beaker to the top.
- 2. Cut up grass and green leafy vegetation into approximately 1-2" long stems and pack into a 3.5L or 2.0L container. Pack cattle feed and silage as is. Use larger container if sufficient amount of sample is available. <u>FILL TO THE TOP OF THE CONTAINER</u>. Record the wet weight.
- 3. Add a few cc of formaldehyde to prevent spoilage.
- 4. Seal with cover. Attach paper tape on top of the cover and label with sample number, net weight, and date and time collected.
- 5. Submit to the counting room for gamma spectroscopic analysis or store in a cooler until counting (for a short period) without delay.
  - NOTE: If I-131 analysis is required, it is <u>imperative</u> that the sample be prepared and submitted to the counting room <u>immediately</u>. Mark "I-131" on the tape.
- 6. After gamma scanning is completed, transfer the sample to a drying pan and dry at  $110^{\circ}$ C.
  - NOTE 1: If only gamma scan is required, skip drying and ashing (Steps 6 through 10). Transfer the sample to a plastic bag, seal, label, and store in the cooler until disposal.
  - NOTE 2: If there is sufficient quantity, use surplus sample for drying and ashing instead of waiting for gamma scanning to be completed.
- 7. Cool, weigh, and record dry weight. Grind.
- 8. Weigh out accurately in a tared ceramic dish 100-120g of the ground sample. Record the weight. (If sample weight is more than 100g, use two dishes; mark one as "A" and the second one as "B.") Ash in a muffle furnace by gradually increasing the temperature to 600°C. Ash overnight.
  - NOTE: If ashing is incomplete (black carbon remains), cool the dish, crush the ash with spatula, and continue ashing overnight at 600°C. At this stage, it is not necessary to increase the temperature gradually. Set the temperature at 600°C and turn on the furnace.
- 9. Cool and weigh the ashed sample and record the ash weight. Grind to pass a 30 mesh screen. Transfer to 4 oz. container, seal, and write sample number, weight, analyses required, and date and time of collection. The sample is now ready for analyses.
- 10. Store the remaining ground sample in a plastic bag for possible future rechecking.

| C. | <u>Fish</u> |
|----|-------------|
|    |             |

- 1. Wash the fish.
- 2. Fillet and pack the fish immediately (to prevent moisture loss) in a 250mL, 500 mL, or 4 oz. standard calibrated container. Use 500 mL size if enough sample is available. DO NOT FILL ABOVE THE RIM. Record the wet weight.
- 3. Add a few cc of formaldehyde.
- 4. Seal with cover. Attach paper tape on top of the cover and label with sample number, weight, and date and time of collection.
  - NOTE: If bones are to be analyzed, boil remaining fish in water for about 1 hour. Clean the bones. Air dry, weigh, and record as wet weight. Dry at 110°C. Record dry weight. Ash at 800°C, cool, weigh, and record the ash weight. Grind to a homogeneous sample. The sample is ready for analysis.
- 5. Submit to the counting room for gamma spectroscopic analysis without delay or store in a refrigerator until counting.
  - NOTE: If I-131 analysis is required, it is <u>imperative</u> that the sample be prepared and submitted to the counting room <u>immediately</u>. Mark "I-131" on the tape.
- 6. After gamma spectroscopic analysis is completed, transfer the sample to a drying pan and dry at 110°C.
  - NOTE 1: If only gamma scan is required, skip drying and ashing (Steps 5 through 9). Transfer the sample to a plastic bag, seal, label, and store in the freezer until disposal.
  - NOTE 2: If there is sufficient quantity, use surplus flesh for drying and ashing instead of waiting for gamma scanning to be completed.
- 7. Cool, weigh, and record dry weight.
- 8. Transfer to a tared ceramic dish. Record dry weight for ashing.
- 9. Ash in a muffle furnace by gradually increasing the temperature to 450°C. If considerable amount of carbon remains after overnight ashing, the ash should be crushed with a spatula and placed back in the muffle furnace until ashing is completed.
- 10. Cool and weigh the ashed sample and record the ash weight. Grind to pass a 30 mesh screen. Transfer to a 4 oz. container, seal, and write sample number, weight, analyses required, and date and time of collection. The sample is now ready for analysis.

TIML-SP-01

D. <u>Waterfowl</u>, Meat, and Wildlife

- 1. Skin and clean the animal. Remove a sufficient amount of flesh to fill an appropriate standard calibrated container (500mL, 250mL, or 4 oz). Weigh without delay (to prevent moisture loss). <u>DO NOT FILL ABOVE THE RIM</u>. Record the wet weight.
- 2. Add a few cc of formaldehyde.
  - NOTE: If bones are to be analyzed, boil remaining flesh and bones in water for about 1 hour. Clean the bones. Air dry, weigh, and record as wet weight. Dry at 110°C. Record dry weight. Ash at 800°C, cool, weigh, and record the ash weight. Grind to a homogeneous sample. The sample is ready for analysis.
- 3. Seal with the cover. Attach paper tape on top of the cover and label with sample number, wet weight, and date and time of collection.
- 4. Submit to the counting room for gamma spectroscopic analysis without delay or store in a refrigerator until counting (for short period).
  - NOTE: If I-131 analysis is required, it is <u>IMPERATIVE</u> that the sample be prepared and submitted to the counting room <u>IMMEDIATELY</u>. Mark "I-131" on the tape.
- 5. After the gamma scanning is completed, transfer the sample to a drying pan and dry at 110°C.
- 6. Cool, weigh, and record dry weight.
- 7. Transfer to a tared ceramic dish. Record dry weight for ashing.
- 8. Ash in a muffle furnace by gradually increasing the temperature to 450°C. If considerable amounts of carbon remain after overnight ashing, the sample should be crushed with a spatula and placed back in the muffle furnace until ashing is completed.
- 9. Cool and weigh the ashed sample and record the ash weight. Grind to pass a 30 mesh screen. Transfer to a 4 oz container. Seal and write sample number, weight, analyses required, and date and time of collection. the sample is now ready for analysis.

# E. <u>Eggs</u>

- 1. Remove the egg shells and mix the eggs with a spatula. Use about one (1) dozen eggs.
- 2. Transfer the mixed eggs to a standard calibrated 500 mL container. Record the wet weight. <u>DO NOT FILL ABOVE THE RIM</u>.
- 3. Add a few cc of formaldehyde.
- 4. Seal with cover. Attach paper tape on top of the cover and label with sample number, wet weight, and date and time of collection.
- 5. Submit to the counting room for gamma spectroscopic analysis without delay or store in a refrigerator until counting (for short period).
- 6. After gamma spectroscopic analysis is completed, transfer the sample to a plastic bag, seal, label, and store in a freezer until disposal.

NOTE: If only a gamma scan is required, skip Steps 7 through 11.

- 7. Weigh the rest of the sample, record wet weight, and dry in an oven at 110°C.
- 8. Cool, weigh, and record dry weight.
- 9. Weigh out accurately 100-120g of the sample in a tared ceramic dish. Record the weight. Ash in a muffle furnace by gradually increasing the temperature to 550°C. If a considerable amount of carbon remains after overnight ashing, the sample should be crushed and placed back in the muffle furnace until ashing is completed.
- 10. Cool and weigh the ashed sample and record the weight. Grind to pass a 30 mesh screen. Transfer to a 4 oz container, seal, and write sample number, weight, analyses required, and date and time of collection. The sample is now ready for analysis.
- 11. Store the remaining ground sample in a plastic bag for possible future rechecking.

F. <u>Slime and Aquatic Vegetation</u>

- 1. Remove foreign materials.
- 2. Place the sample in a sieve pan and wash until all sand and dirt is removed (turn the sample over several times).
- 3. Squeeze out the water by hand.
- 4. Place the sample in a standard calibrated 500mL, 250mL, or 4 oz container. Weigh and record wet weight. Use 500mL container if enough sample is available. DO NOT FILL ABOVE THE RIM.
- 5. Add a few cc of formaldehyde.
- 6. Seal with cover. Attach paper tape on top of the cover and label with sample number, weight, and date and time of collection.
- 7. Submit to the counting room without delay. Slime decomposes quickly even with formaldehyde. If gamma scanning must be delayed, freeze.
  - NOTE: If I-131 analysis is required, it is <u>IMPERATIVE</u> that the sample be prepared and analyzed <u>IMMEDIATELY</u>. Mark "I-131" on the tape.
- 8. After gamma scanning is completed, transfer the sample to a drying pan and dry at 110°C.

NOTE: If only gamma scan is required, skip drying and ashing (Steps 8 through 11). Transfer the sample to a plastic bag, seal, label, and store in the freezer until disposal.

- 9. Cool, weigh, and record dry weight.
- 10. Transfer to a tared ceramic dish, and record dry weight for ashing. Ash in a muffle furnace by gradually increasing the temperature to 600°C.
  - NOTE: If ashing is incomplete (black carbon remains), cool the dish, crush the ash with spatula, and continue ashing overnight at 600°C. At this stage, it is not necessary to increase the temperature gradually. Set the temperature at 600°C and turn on the furnace.
- 11. Cool and weigh the ashed sample and record ash weight. Grind to pass a 30 mesh screen. Transfer to a 4 oz container, seal, and label with sample number, weight, analyses required, and date and time of collection. The sample is now ready for analyses.

2

#### G. Bottom Sediments and Soil

- 1. Remove rocks, roots, and any other foreign materials.
- 2. Place approximately 1 kg of sample on the drying pan and dry at 110°C. (See NOTES 1 and 2)
- 3. Seal, label, and save remaining sample.
- 4. Grind or pulverize the dried sample and sieve through a No. 20 mesh screen.
- 5. For gamma spectroscopic analysis, transfer sieved sample to a standard calibrated 500inL, 250mL, or 4 ounce container. <u>DO NOT FILL ABOVE THE RIM</u>. Record dry weight.
- 6. Seal with cover. Attach paper tape on top of the cover and write sample number, weight, and date and time of collection.
- 7. Submit to the counting room for gamma spectroscopic analysis without delay.
- 8. For gross alpha and beta analysis transfer 1-2g of sample to a 4oz container, seal and label with the sample number. For other analysis (eg, radiostrontium, transuranics etc.,) transfer to a ceramic dish and ash in a muffler furnance at 600 °C. Cool and transfer to a 4oz container, seal and label with the sample number.
- 9. Store the remaining sieved sample in a plastic bag for possible future rechecking.
- 10. After the gamma scanning is completed, transfer the sample to a plastic bag, seal, label, and store until disposal.
  - NOTE 1: For tritium analysis transfer approximately 100g of <u>wet</u> sample to a 4oz container, label with the sample number and seal.
  - NOTE 2: USEcology, Inc. samples: Record total weight received, and record wet and dry weights.

H. <u>Milk</u>

- 1. Transfer 25mL of milk for gross alpha and beta analysis or 100-1000mL for other analysis into a glass beaker.
- 2. Dry at 110°C.
- 3. Ash in the muffler furnance by gradually increasing the temperature to 600 °C. If a considerable amount of carbon remains (black) cool the beaker, crush the ash with a spatula and continue ashing until ashing is completed (white or light gray).

4. Cool and weigh the ashed sample and record the ash weight. Grind and transfer to a 40z container, seal and write the sample number. The sample is now ready for analysis.

#### I. <u>Feces</u>

NOTE: Perform Transfer operation in the hood. Wear new plastic gloves and face mask.

- 1. Take 600mL beaker, clean acid etched area and write sample # using HI-Temp marker.
- 2. Cover the beaker with parafilm and weigh. Record the weight.
- 3. Transfer the <u>whole</u> sample to the beaker using a new plastic spoon.
- 4. Cover the beaker with the same parafilm and weigh. Record total weight.
- 5. Transfer the beaker to the drying oven, turn the oven on, remove parafilm and dry the sample overnight at 110°C.
- 6. In the morning, turn the heater off and let the exhaust fan run until the samples is cooled to room temperature.
- 7. Transfer the beaker to the muffler furnace. Set temperature to 175°C. Gradually increase the temperature to 450°C and ash the sample overnight.
  - NOTE: In the morning, carefully open the door and visually inspect the sample. Do not touch or remove the beaker from the furnace. If ashing in incomplete (black carbon remains) continue ashing for another 24 hours or until the ash is grey-white.
- 8. When ashing is complete, turn the temperature dial down. Let the exhaust fan run until beaker is cool.
- 9. Remove the beaker form the furnace and cover with parafilm. The sample is ready for analyses.

NOTE: Digest the whole ash sample in the same beaker before taking aliquot for analysis. Do not weigh the beaker.

J.

## Bottom Sediments and Soil, Analysis for Ra-226 by Gamma Spectroscopy

- 1. Remove rocks, roots and any other foreign materials.
- 2. Place approximately 1 kg of sample on the drying pan and dry at 110°C.
- 3. Seal, label and save remaining sample.
- 4. Grind or pulverize the dried sample and sieve through a No. 20 mesh screen.
- 5. Transfer sieved sample to a standard calibrated 500mL or 250mL container. DO NOT FILL ABOVE THE RIM. Record dry weight.
- 6. Seal with cover and electric tape. Attach paper tape on top of the cover and write sample number, weight, date and time of collection and date and time the container was sealed.
- 7. Store sealed sample for a minimum of 25 days to allow for Pb-214 to come to equilibrium with Ra-226.
- 8. Submit to counting room for gamma spectroscopic analysis. Use Pb-214 peak to calculate Ra-226 concentration.
- 9. Store the remaining sieved sample in a plastic bag for possible future rechecking.
- 10. After the gamma scanning is completed, transfer the sample to a plastic bag, seal, label and store until disposal.

# TELEDYNE ISOTOPES MIDWEST LABORATORY

dba TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES 700 Landwehr Road • Northbrook, IL 60062-2310 Phone (708) 564-0700 • Fax (708) 564-4517

#### PREPARATION AND READOUT of TELEDYNE ISOTOPES TLD CARDS

#### PROCEDURE NO. TIML-TLD-01

#### Prepared by

Teledyne Isotopes Midwest Laboratory

Copy No. \_\_\_\_\_

| <u>Revision #</u> | Date                        | <u>Pages</u> | Prepared by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Approved by  |
|-------------------|-----------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 0                 | 05-08-85                    | 4            | All the second s | 2 A Auler    |
| <u> </u>          | <u>05-15-85</u><br>08-04-86 | 5            | Viena La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19 Aucher    |
| 3                 | <u>04-27-88</u><br>12-27-88 | 5            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lig Hachen   |
|                   | 01-08-90                    | 6            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | fig Auchu    |
| 6                 | 04-24-95                    | 6            | - propos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - Jig Auchan |

(This procedure, or any portion thereof, shall not be reproduced in any manner or distributed to any third party without the written permission of Teledyne Isotopes Midwest Laboratory.)

5

6

#### Preparation and Readout of Teledyne Isotopes TLD Cards

#### Principle of Method

The cards are spread out in a single layer on a perforated metal tray and annealed for two hours at 250-260 °C. After annealing, the cards are packaged and sent to the field.

Once the cards are returned from the field they are read as soon as possible. After reading, several cards are chosen annealed and irradiated with a known dose using Ra-226 source encapsulated in an iridium needle to calculate efficiency. The net exposure is calculated by the computer after in-transit exposure is subtracted.

#### Equipment & Materials:

| TLD Reader: | Teledyne Isotopes Model 8300 |
|-------------|------------------------------|
|-------------|------------------------------|

TLD Cards impregnated with CaSO4:Dy phosphor

TLD Card Holder with copper shielding

Annealing oven

Forceps

Black Plastic bags (pouches)

Transparent plastic bags: 80z and 60z puncture proof Whirl-Pak

Heat sealer

Scotch tape

Labeles

Recording sheet

Ra-226 Needle:

"American Radium" No. 37852

Turntable

I. <u>Receiving Procedure</u>

To avoid accidental exposure of TLDs to radioactive sources in the receiving area follow this receiving procedure:

- 1. If TLDs are delivered to the front office (regular mail), write the date received on the package and deliver them <u>DIRECTLY</u> to the TLD room.
- 2. If TLDs are delivered to the receiving area (UPS, air freight, etc.), write the date received on the package and deliver them <u>IMMEDIATELY</u> to the TLD room.

#### TIML-TLD-01-2

TIML-TLD-01

5

# Preparation and Readout of Teledyne Isotopes TLD Cards

## II. <u>Preparation Procedure</u>

- 1. Fill out readout recording sheet by entering location I.D., dosimeter (card) number, and date annealed.
  - NOTE : Make sure to include at least two (2) cards for in-transit and two (2) cards for spares.
- 2. Spread the cards in single layer on the perforated tray.
- 3. Preheat the annealing oven to 250-260 °C
- 4. Open the oven and quickly insert the tray. Close the door.
- 5. Wait until temperature reaches preset temperature (250-260 °C).
- 6. Set the alarm for two (2) hours.
- 7. After two (2) hours, remove the tray from the oven and let it cool.
- 8. Place each card in a black plastic bag (pouch), seal the flap with scotch tape, and place in the card holder.
- 9. Attach the labels identifying the station, location, and exposure period to the holders.
- 10. Place the holders into the transparent plastic bags and heat seal.
- 11 Ship without delay.

4

NOTE: Make sure to place a <u>"Do Not X-Ray"</u> stickers on the mailing container.

6

Preparation and Readout of Teledyne Isotopes TLD Cards(Continued)

- III. <u>Readout Procedure</u>
  - 1. <u>Reader Calibration</u>
    - 1.1: Adjust the nitrogen flow control to 6 SCF per hour.
    - 1.2: Open the drawer.
    - 1.3: Turn "FUNTION" switch to "CALIBRATE"
    - 1.4: "WAIT" sign will be illuminated and the reading will change every three (3) seconds. The reading should be 1000±10. If it is not, adjust the "CALIBRATE" knob.
    - 1.5: Turn "FUNCTION" switch to "OPERATE".
    - 1.6: Press "START" button. When "READ" sign appears, the reading should be as posted on the reader. If it is not, adjust "Sensitivity" knob. (Turn the knob clockwise if the reading is low and counterclockwise if the reading is high).
    - 1.7: Wait until "START" button lights up.
    - 1.8: Press "START" button again. Continue adjusting "SENSITIVITY" knob and taking reading until the reading is as posted on the reader. Make and record 5 readings.
    - 1.9: Wait until "START" button lights up.
    - 1.10: Push in card drawer to position No. 3.
    - 1.11: Press "START" button. Wait until "READ" sign lights up and record the reading.
    - 1.12: When "START " button lights up, press it again. Repeat this step four
      (4) more times (take a total of five (5) readings) and record the results.
      - NOTE: The reading should be as posted on the reader. If it is not, notify the Lab supervisor.

## TIML-TLD-01-4

4

Preparation and Readout of Teledyne Isotopes TLD Cards Continued)

III. <u>Readout Procedure</u> (Continued)

#### 2. <u>Readout</u>

- 2.1: When "START" button lights up, pull out card drawer. Take the card out of the card holder and insert in the drawer with printed card number facing <u>down</u> and to the back (away from you).
- 2.2: Push drawer into position No. 1. Push "START" button.
- 2.3: When "READ" sign appears, record the reading.
- 2.4: When "START" button lights up, push the drawer to position No. 2. Push "START" button. Repeat steps 2.3 and 2.4 until all positions are read out.
- 2.5: Read out and record the reading for the rest of the cards in the same manner.

TIML-TLD-01-5

# Preparation and Readout of Teledyne Isotopes TLD CardsContinued)

# III. <u>Readout Procedure</u> (Continued)

- 3. Irradiation (Efficiency Determination)
  - NOTE: Perform efficiency calibration after each field cycle. (This means that TLDs from each project are to be calibrated every time they are returned to the lab and after they are read out.).
  - 3.1: After all the cards are read out, select at random two (2) to three (3) cards.
  - 3.2: Anneal and package them as described in Part II, Steps 2 thru 8.
  - 3.3: Mount the holder (with freshly annealed cards) on the irradiation turntable using clips.
  - 3.4: Start rotation. Attach Ra-226 needle to the holder in the middle. Record the time.
  - 3.5: Irradiate overnight.
  - 3.6: Remove the needle, record the time, and read out the cards as in Part III.
  - 3.7: Average all the readings of irradiated cards, and subtract average dark current reading (Part III, Step 1.12).
  - 3.8: Calculate efficiency (light response) as follows:

Efficiency =  $\frac{\text{Net Average Reading (from step 3.7)}}{\text{Hours of exposure x 2.097}}$ 

- 3.9: Submit the field data and efficiency data sheets to data clerk for calculations.
  - NOTE: The computer program will automatically subtract in-transit exposure and prorate exposure to a selected number of days (usually 30 or 91). Occasionally, some TLDs are placed and/or removed at different times resulting in a different number of exposure days in the field. Exposure will be prorated for the selected number of days.

### TIML-TLD-01-6



MIDWEST LABORATORY

700 LANDWEHR ROAD

NORTHBROOK, ILLINOIS 60062-2310

(708) 564-0700 FAX (708) 564-4517

# DETERMINATION OF GROSS ALPHA AND/OR GROSS BETA IN AIR PARTICULATE FILTERS

PROCEDURE NO. TIML-AP-02

Prepared by

Teledyne Isotopes Midwest Laboratory

Copy No.

| Revised<br>Pages | Revision<br>No. | Date     | Pages | Prepared by | Approved by   |
|------------------|-----------------|----------|-------|-------------|---------------|
|                  | 0               | 07-11-86 | 3     | b. Job      | L. J. Huebnee |
| 2                | <u> </u>        | 07-15-91 | 3     | b. Chob     | 29 Herebuer   |
| <del></del>      |                 | <u></u>  |       |             | <i>i</i>      |

(This procedure, or any portion thereof, shall not be reproduced in any manner or distributed to any third party without the written permission of Teledyne Isotopes Midwest Laboratory.)

Revision 1, 07-15-91

# DETERMINATION OF GROSS ALPHA AND/OR GROSS BETA

# IN AIR PARTICULATE FILTERS

# Principle of Method

Air particulate filters are stored for at least 72 hours to allow for the [] decay of short-lived radon and thoron daughters and then counted in the proportional counter.

#### Apparatus.

Forceps Loading Sheet Proportional Counter Stainless Steel Planchets (standard 2" x 1/8")

#### Procedure

- 1. Store the filters for at least 72 hours from the day of collection. | 1
- 2. Place filters on a stainless steel planchet.
- 3. Fill out a sample loading sheet. Fill in the date, counter number, counting time, sample identification number, sample collection date, and initials.
  - NOTES: When loading samples in the holder, load blanks (unexposed filter paper) in positions 1, 12, 23, 34, 45, etc.

If filters from more than one project are loaded, make sure that the appropriate blanks are loaded with each batch. Load the counter blank planchet as a last sample.

- Count in a proporational counter long enough to obtain the required LLDs.
- 5. After counting is completed, return the filters to the original envelopes.
- 6. Submit the counter printout, field collection sheet, and the loading sheet to the data clerk for calculations.

TIML-AP-02-02

# Calculations

Gross alpha (beta) concentration:

$$(pCi/liter) = \frac{A}{B \times C \times 2.22} \pm \frac{2 \sqrt{E_{sb}^2 + E_b^2}}{B \times C \times 2.22}$$

Where:

- A = Net alpha (beta) count (cpm)
- B = Efficiency for counting alpha (beta) activity (cpm/dpm)

C = Volume of sample

 $E_{sb}$  = Counting error of sample plus background

 $E_b$  = Counting error of background



ENVIRONMENTAL SERVICES Midwest Laboratory 700 Landwehr Road, Northbrook, IL 60062-2310 Phone (847) 564-0770 FAX (847) 564-4517

## PROCEDURE FOR COMPOSITING AIR PARTICULATE FILTERS

# FOR GAMMA SPECTROSCOPIC ANALYSIS

### PROCEDURE NO. TIML-AP-03

Prepared by

### Teledyne Brown Engineering Environmental Services Midwest Laboratory

Copy No.

| Revision # | Date            | Pages    | Prepared by     | Approved by |
|------------|-----------------|----------|-----------------|-------------|
| 0          | <u>12-15-89</u> | <u>3</u> | B. Grob         | L. Huebner  |
| 1          | 03-21-95        | <u>3</u> | B. Grob         | L. Huebner  |
| 2          | 07-21-98        | <u>3</u> | A. Far Yma ccin | Alloh       |

(This procedure, or any portion thereof, shall not be reproduced in any manner or distributed to any third party without the written permission of Teledyne Brown Engineering Environmental Services, Midwest Laboratory.)

2

### PROCEDURE FOR COMPOSITING AIR PARTICULATE FILTERS

#### FOR GAMMA SPECTROSCOPIC ANALYSIS

#### Principle of Method

AP filters are placed in a Petri dish in chronological order, labeled and submitted to counting room for analysis.

### <u>Materials</u>

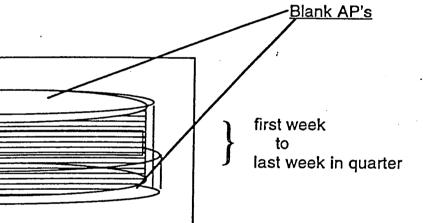
Tweezers (Iong) Blank filter paper Small Petri dish (50 x 9 mm) Scotch Tape

#### <u>Procedure</u>

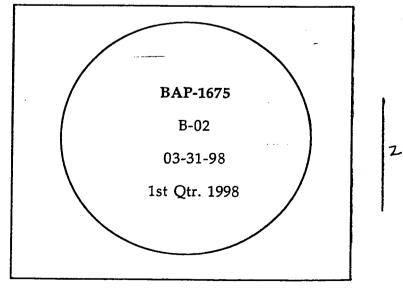
- 1. In the Recording Book enter:
  - Sample ID (project)
  - Sample No.
  - Location
  - Collection period
  - Date composited
- 2. Obtain sample numbers from Recieving Clerk.
- 3. Stack the envelopes with APs from each location in chronological order, starting with the earliest collection date on the bottom. After you are done, flip the stack over.
- 4. Place blank filter paper, "fluffy" side down, in deep half of petri dish.
- 5. Beginning from the top of the stack, remove each AP from its envelope and place in the Petri dish with the deposit facing down.
- 6.. Continue transferring all of the AP's from envelopes into the Petri dish.
- 7. Place blank filter paper, "fluffy" side down, on top of APs.
- 8. Cap the Petri dish using the shallow half (you may use scotch tape to hold cap in place, if needed). Turn the petri dish over.
- 9. On the Petri dish and each stack of glassine envelopes (each location kept together by either paperclips or rubber bands) using a black marker write:
  - Sample ID
  - Sample No.
  - Last date of collection
  - Collection period
- 10. Submit the samples to the counting room.
- 11. After counting, samples are stored in the warehouse, according to client's requirements.

TIML-AP-03-02

TIML-AP-03


2

# PROCEDURE FOR COMPOSITING AIR PARTICULATE FILTERS


# FOR GAMMA SPECTROSCOPIC ANALYSIS

<u>Example</u>

- Sample ID/Project: BAP
- Location: 2
- Sample No.: 1675
- Last Collection Date: Collection period: 03-31-98 1st Qtr. 1998



Side View



**Top View** 

# TIML-AP-03-03



# DETERMINATION OF GROSS ALPHA AND/OR GROSS BETA IN WATER (DISSOLVED SOLIDS OR TOTAL RESIDUE)

## PROCEDURE NO. TIML-W(DS)-01

Prepared by

## Teledyne Brown Engineering Environmental Services Midwest Laboratory

Сору No. \_\_\_\_\_

| Revision # | Date     | Pages | Prepared by | Approved by  |
|------------|----------|-------|-------------|--------------|
| 0          | 11-25-85 | 4     | B. Grob     | L.G. Huebner |
| 1          | 02-28-91 | 4     | B. Grob     | L.G. Huebner |
| 2          | 05-03-91 | 4     | B. Grob     | L.G. Huebner |
| 3          | 08-14-92 | 4     | B. Grob     | L.C. Hughner |
| 4          | 07-21-98 | 4     | D. Rieten   | Adhel        |

(This procedure, or any portion thereof, shall not be reproduced in any manner or distributed to any third party without the written permission of Teledyne Brown Engineering Environmental Services, Midwest Laboratory.)

#### TIML-W(DS)-01

#### (DS)-01 Revision 4, 07-21-98 DETERMINATION OF GROSS ALPHA AND/OR GROSS BETA IN WATER

### (Dissolved Solids or Total Residue)<sup>a</sup>

#### Principle of Method

Water samples containing suspended matter are filtered through a membrane filter and the filtrate is analyzed. The filtered water sample is evaporated and the residue is transferred to a tared planchet for counting gross alpha and gross beta activity.

#### Reagents

All chemicals should be of "reagent-grade" or equivalent whenever they are commercially available.

Lucite: 0.5 mg/ml in acetone Nitric acid, HNO3: 16 <u>N</u> (concentrated), 1 <u>N</u> (62 ml of <u>N</u> HNO3 diluted to 1 liter)

#### Apparatus

Filter, membrane Type AA, 0.08 Filtration equipment Planchets (Standard 2"x1/8" stainless steel , ringed planchet) Electric hotplate Heat lamp Drying oven Muffle furnace Analytical Balance Dessicator Proportional counter

#### Procedure

1. Filter a volume of sample containing not more than 100 mg of dissolved solids for alpha assay, or not more than 200 mg of dissolved solids for beta assay.<sup>a</sup>

NOTE: For gross alpha and gross beta assay in the same sample, limit the amount of solids to 100 mg.

- Filter sample through a membrane filter. Wash the sides of the funnel with deionized (D. I.) water. Discard the filter, unless determining suspended solids also. See procedure TIML-W(SS-)02.
- 3. Evaporate the filtrate to NEAR dryness on a hot plate.
- 4. Add 20 ml of concentrated HNO3 and evaporate to <u>NEAR</u> dryness again.

NOTE: If water samples are known or suspected to contain chloride salts, these chloride salts should be converted to nitrate salts before the sample residue is transferred to a stainless steel planchet. (Chlorides will attack stainless steel and increase the sample solids. No correction can be made for these added solids.) Chloride salts can be converted to nitrate salts by adding concentrated HNO<sup>3</sup> and evaporating to near dryness.

# TIML-W(DS)-01-02

TIML-W(DS)-01

- 5. Transfer quantitatively the residue to a TARED PLANCHET, using an unused plastic disposable pipette for each sample, (not more than 1 or 2 ml at a time) evaporating each portion to dryness under the lamp. Spread residue uniformly on the planchet.
  - NOTE: Non-uniformity of the sample residue in the counting planchet interferes with the accuracy and precision of the method.
- 6. Wash the beaker with DI water several times and combine the washings and the residue in the planchet, using the rubber policeman to wash the walls. Evaporate to dryness.

NOTE: Rinse the rubber policeman with DI water between samples.

7. Bake in muffle furnace at 400 ° C for 45 minutes, cool and weigh.

NOTE: If the sample is very powdery, add a few drops (6-7) of the Lucite solution and dry under the infrared lamp for 10-20 minutes.

- 8. Store the sample in a dessicator until ready to count since vapors from the moist residue can damage the detector and the window and can cause erratic measurements.
- 9. Count the gross alpha and/or the gross beta activity in a low background proportional counter.

NOTE: If the gas-flow internal proportional counter does not discriminate for the higher energy alpha pulses at the beta plateau, the activity must be subtracted from the beta plus alpha activity. This is particularly important for samples with high alpha activity.

Samples may be counted for beta activity immediately after baking; alpha counting should be delayed at least 72 hours (until equilibrium has occurred).

<sup>a</sup> For analysis of total residue (for clear water), proceed as described above but do not filter the water. Measure out the appropriate amount and proceed to Step 3.

TIML-W(DS)-01

Revision 4, 07-16-98

# Calculations

Gross alpha (beta) activity:

$$pCi/L = \frac{A}{B \times C \times D \times 2.22} \pm \frac{2\sqrt{E^2_{sb} + E^2_b}}{B \times C \times D \times 2.22}$$

Where:

A = Net alpha (beta) count (cpm)

B = Efficiency for counting alpha (beta) activity (cpm/dpm)

C =Volume of sample (liters)

- D = Correction factor for self-absorption (See Proc. TIML-AB-02)
- Esb =Counting error of sample plus background
- Eb = Counting error of background

References: Radio assay Procedures for Environmental Samples, US. Department of Health, Education and Welfare. Environmental Health Series, Jan. 1967.

> EPA Prescribed Procedures for Measurement of Radioactivity in Drinking Water. August 1980

## TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES MIDWEST LABORATORY

700 Landwehr Road • Northbrook, IL 60062-2310 Phone (847) 564-0700 • Fax (847 564-4517

# DETERMINATION OF GROSS ALPHA AND/OR GROSS BETA IN WATER

## (SUSPENDED SOLIDS)

# PROCEDURE NO. TIML-W(SS)-02

Prepared by

### Teledyne Brown Engineering Environmental Services Midwest Laboratory

Copy No.

| Revision #  | Date                             | Pages                                                              | Prepared by             | Approved by                  |
|-------------|----------------------------------|--------------------------------------------------------------------|-------------------------|------------------------------|
| 0<br>1<br>2 | 10-21-86<br>08-14-92<br>07-21-98 | $\begin{array}{c} 4 \\ \hline 4 \\ \hline 3 \\ \hline \end{array}$ | L.G. Huebner<br>B. Grob | L.G. Huebner<br>L.G. Hyebner |

(This procedure, or any portion thereof, shall not be reproduced in any manner or distributed to any third party without the written permission of Teledyne Brown Engineering Environmental Services, Midwest Laboratory.)

# DETERMINATION OF GROSS ALPHA AND/OR GROSS BETA IN WATER

### (SUSPENDED SOLIDS)

### Principle of Method

The sample is filtered through a tared membrane filter. The filter containing the solids is placed on a ringless, stainless steel planchet and air dried, then placed in a dessicator until ready for weighing. The gross alpha and gross beta activities are measured in a low background internal proportional counter.

#### Reagent

Acetone

#### Apparatus

Filter, membrane Type AA 0.08 Filtration equipment Planchets (Standard 2"x1/8" stainless steel , ringless planchet) Heat lamp Analytical Balance Dessicator Proportional counter

### Procedure

1. Filter one liter of sample through a TARED membrane filter. Wash the sides of the funnel with deionized water.

NOTE: If the sample contains sand, place it in the separatory funnel, allow the sand to settle for 30 minutes, then drain off the sand at the bottom. Shake the funnel and repeat as above two (2) more times.

- 2. Place the filter on a ringless planchet and air dry for 24 hours.
- 3. Dry under the infrared lamp for 20-30 minutes. Desiccate to constant weight and weigh.
- 4. Count for gross alpha and gross beta activity using a proportional counter.
- 5. Calculate the activity in pCi/L, using the computer program designed for this analysis.

# **Calculations**

Gross alpha (beta) activity:

$$pCi/L = \frac{A}{B \times C \times D \times 2.22} \pm \frac{2\sqrt{E^2_{sb} + E^2_b}}{B \times C \times D \times 2.22}$$

Where:

A = Net alpha (beta) count (cpm)

**B** = Efficiency for counting alpha (beta) activity (cpm/dpm)

C =Volume of sample (liters)

D = Correction factor for self-absorption (See Proc. TIML-AB-02)

E<sub>sb</sub> =Counting error of sample plus background

E<sub>b</sub> = Counting error of background

References: Radio assay Procedures for Environmental Samples, U.S. Department of Health, Education and Welfare. Environmental Health Series, January 1967.



MIDWEST LABORATORY 700 LANDWEHR ROAD NORTHBROOK, ILLINOIS 60062-2310 (312) 564-0700 FAX (312) 564-4517

# DETERMINATION OF GROSS ALPHA AND/OR GROSS BETA

IN SOLID SAMPLES

PROCEDURE NO. TIML-AB-01

Prepared by

Teledyne 1sotopes Midwest Laboratory

Copy No.

| <u>Revision No</u> . | Date     | Pages | Prepared by | Approved by |
|----------------------|----------|-------|-------------|-------------|
| 0                    | 08-04-86 | 5     | B. Grob     | f.J. Huebur |
| 1                    | 08-14-92 | 5     | _1p gob     | Rg Huchur   |
|                      |          |       |             |             |

(This procedure, or any portion thereof, shall not be reproduced in any manner or distributed to any third party without the written permission of Teledyne Isotopes Midwest Laboratory.)

Revision 0, 08-04-86

# OETERMINATION OF GROSS ALPHA AND/OR GROSS BETA

### IN SOLID SAMPLES

# Principle of Method

100 mg to 200 mg of sample is distributed evenly on a 2" ringed planchet, counted in a proportional counter, and concentrations of gross alpha and/or gross beta are calculated.

#### Reagents

Lucite: 0.5 mg/ml in acetone

Appartus

Balance Infrared lamp Planchets (standard 2" x 1/8" ringed planchet) Proportional counter

# A. Gross Alpha and/or Gross Beta in Vegetation

### Procedure

 Weigh out accurately in a planchet no more than 100 mg of ashed or dried and ground sample for gross alpha assay and no more than 200 mg for gross beta assay.

NOTE: If both gross alpha and gross beta analyses are required, do not use more than 100 mg.

- Add a few drops of water and spread uniformly over the area of the planchet. Dry under the infrared lamp.
- 3. Add 2 3 drops of lucite solution in acetone and dry again under the infrared lamp.
- 4. Store the planchets in a desiccator until counting.
- 5. Count the gross alpha and gross beta activity in a low background proportional counter.

### Calculations

Gross alpha (beta) concentration:

$$(pCi/g wet) = \frac{A}{B \times C \times D \times F \times 2.22} \pm \frac{2\sqrt{E_{sb}^2 + E_b^2}}{B \times C \times D \times F \times 2.22}$$

Where:

- A = Net alpha (beta) count (cpm)
- B = Efficiency for counting alpha (beta) activity (cpm/dpm)

C = Weight of sample (grams), ash or dry

- D = Correction factor for self-absorption (See Proc. TIML-AB-02)  $|1\rangle$
- Esb = Counting error of sample plus background
- $E_b$  = Counting error of background
- F = Ratio of wet weight to ashed or dry weight
- REFERENCE: Radioassay Procedures for Environmental Samples, U. S. Department of Health, Education and Welfare. Environmental Health Series, January 1967.

Revision 1, 08-14-92

# B. Gross Alpha and/or Gross Beta in Meat, Fish, and Wildlife

#### Procedure

 Weigh out accurately in a planchet no more than 100 mg of ashed sample for gross alpha assay and no more than 200 mg for gross beta assay.

NOTE: If both gross alpha and gross beta analyses are required, do not use more than 100 mg.

- 2. Add a few drops of water and spread uniformly over the area of the planchet. Dry under the infrared lamp.
- 3. Add 2 3 drops of lucite solution in acetone and dry again under the infrared lamp.
- 4. Store the planchets in a desiccator until counting.
- 5. Count the gross alpha and gross beta activity in a low background proportional counter.

#### Calculations

Gross alpha (beta) concentration:

$$(pCi/g wet) = \frac{A}{B \times C \times D \times F \times 2.22} \pm \frac{2\sqrt{E_{sb}^2 + E_b^2}}{B \times C \times D \times F \times 2.22}$$

#### Where:

- A = Net alpha (beta) count (cpm)
- B = Efficiency for counting alpha (beta) activity (cpm/dpm)
- C = Weight of sample (grams), ash
- D = Correction factor for self-absorption (See Proc. TIML-AB-02)  $|1\rangle$

E<sub>sb</sub> = Counting error of sample plus background

- $E_{b}$  = Counting error of background
- F = Ratio of wet weight to ashed weight
- REFERENCE: Radioassay Procedures for Environmental Samples, U. S. Department of Health, Education and Welfare. Environmental Health Series, January 1967.



# C. Gross Alpha and/or Gross Beta in Soil and Bottom Sediments

### Procedure

1. Weigh out accurately in a planchet no more than 100 mg of a pulverized sample for gross alpha assay and no more than 200 mg for a gross beta assay.

NOTE: If both gross alpha and gross beta analyses are required, do not use more than 100 mg.

- 2. Add a few drops of water and spread uniformly over the area of the planchet. Dry under the infrared lamp.
- 3. Add 2 3 drops of lucite solution in acetone and dry again under the infrared lamp.
- 4. Store the planchets in a desiccator until counting.
- 5. Count the gross alpha and gross beta activity in a low background proportional counter.

### Calculations

Gross alpha (beta) concentration:

$$(pCi/g dry) = \frac{A}{B \times C \times D \times 2.22} \pm \frac{2\sqrt{E_{sb}^{2} + E_{b}^{2}}}{B \times C \times D \times 2.22}$$

Where:

- A = Net alpha (beta) count (cpm)
- B = Efficiency for counting alpha (beta) activity (cpm/dpm)
- C = Weight of sample (grams)
- D = Correction factor for self-absorption (See Proc. TIML-AB-02) 1
- E<sub>sb</sub> = Counting error of sample plus background
- $E_b$  = Counting error of background
- REFERENCE: Radioassay Procedures for Environmental Samples, U. S. Department of Health, Education and Welfare. Environmental Health Series, January 1967.



MIDWEST LABORATORY 700 LANDWEHR ROAD NORTHBROOK, ILLINOIS 60062-2310 (708) 564-0700 FAX (708)564-4517

# DETERMINATION OF GAMMA EMITTERS BY GAMMA SPECTROSCOPY

# (GERMANIUM DETECTORS)

# PROCEDURE NO. TIML-GS-01

Prepared by

# Teledyne Isotopes Midwest Laboratory

| Copy No. |  |
|----------|--|
|----------|--|

| <u>Revision #</u> | <u>Date</u> | <u>Pages</u> | <u>Prepared by</u> | Approved by  |
|-------------------|-------------|--------------|--------------------|--------------|
| 0                 | 07-21-86    | 5            | B. Grob            | L.G. Huebner |
| 1                 | 08-14-92    | 5            | B. Grob            | L.G. Huebner |
| 2                 | 07-01-98    | 5            | Just & Shave       | S. J. M      |

(This procedure, or any portion thereof, shall not be reproduced in any manner or distributed to any third party without the written permission of Teledyne Isotopes Midwest Laboratory.)

Revision 2, 07-01-98

### <u>TIML-GS-01</u>

# DETERMINATION OF GAMMA EMITTERS

# BY GAMMA SPECTROSCOPY

# (GERMANIUM DETECTORS)

# Principle of Method

The sample is placed in a calibrated container and counted for a length of time required to reach the client's technical requirements. The results are decay corrected to the sampling time, where appropriate, using a dedicated computer and software.

# Apparatus

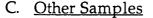
Counting Containers Counting Equipment Cylinders Marking Pens Recording Books

# TIML-GS-01-02

TIML-GS-01

- A. Milk, Water, and other Liquid Samples
  - 1. Measure accurately 500 mL, 1.0 L, 2.0 L or 3.5 L of sample and put it in the calibrated counting container (Marinelli beaker). Always use largest volume if sample is of sufficient quantity.
  - 2. Cover and attach a gummed label to the cover; write the sample number, volume and date and time of collection on the label. Mark "I-131" if analysis for I-131 is required by gamma spectroscopy.
  - 3. Count without delay for estimated time required to meet the client's technical requirements. Record file number, sample identification number, date and time counting started, detector number, geometry, sample size, and date and time of collection.
  - 4. Stop counting; transfer spectrum to the disk and print out the results.
  - 5. Check results before taking the sample off. If the client's technical requirements are not met, continue counting.
  - 6. After counting is completed, record the counting time.
  - 7. Return the sample to the original container and mark with a red marker.

### TIML-GS-01


### B. <u>Airborne Particulates</u>

- 1. Place air filters in a small Petrie dish following Procedure TIML-AP-03.
- Place Petrie dish (with marked side up) on the detector and count long enough to meet the client's technical requirements. Record the file number, sample identification number, date and time counting started, detector number, geometry, sample size, and date and time collected.
- NOTE: When counting an individual filter, place it in the Petrie dish with active (with deposit) side up. Mark the Petrie dish and place it on the detector with the active side up.
- 3. Stop counting and transfer spectrum to the disk. Print out and check the results before taking the sample off. If client's technical requirements are not met, continue counting.
- 4. After counting is completed, record the counting time.
- 5. Replace air filters in the original envelopes for storage or further analyses.

TIML-GS-01

# TIML-GS-01-04

Revision 2, 07-01-98



- NOTE: Sample, e.g. soil, vegetation, fish, etc., are prepared in the prep lab and delivered to the counting room.
- 1. Place the sample on the detector and count long enough to meet the client's technical requirements. Record the file number, sample identification number, date and time counting started, detector number, geometry, sample size, and date and time of collection.
- 2. Stop counting and transfer spectrum to the disk. Print out the results and check the results before taking the sample off. If the client's technical requirements are not met, continue counting.
- 3. After counting is completed, record counting time. Mark the container with a red marker and return to the prep lab for transfer to a plastic bag for storage or further analyses.

### D. <u>Charcoal Cartridges</u>

For counting charcoal cartridges, follow Procedures TIML-I-131-02 or TIML-I-131-04.

### TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES MIDWEST LABORATORY

700 Landwehr Road • Northbrook, IL 60062-2310 Phone (847) 564-0700 • Fax (847 564-4517

## DETERMINATION OF TRITIUM IN WATER

### (DIRECT METHOD)

### PROCEDURE NO. TIML-T-02

### Prepared by

### Teledyne Brown Engineering Environmental Services Midwest Laboratory

Copy No. \_\_\_\_\_

| Revision # | Date                                                | Pages            | Prepared by                   | Approved by                                  |
|------------|-----------------------------------------------------|------------------|-------------------------------|----------------------------------------------|
|            | <u>11-22-85</u><br>09-27-91<br>04-24-95<br>07-07-98 | 5<br>4<br>4<br>4 | B. Grob<br>B. Grob<br>B. Grob | L.G. Huebner<br>L.G. Huebner<br>L.G. Huebner |

(This procedure, or any portion thereof, shall not be reproduced in any manner or distributed to any third party without the written permission of Teledyne Brown Engineering Environmental Services, Midwest Laboratory.)

## TIML-T-02

2

2 3

2

## DETERMINATION OF TRITIUM IN WATER (DIRECT METHOD)

### Principle of Method

The water sample is purified by distillation, a portion of the distillate is transferred to a counting vial and the scintillation fluid added. The contents of the vial are thoroughly mixed and counted in a liquid scintillation counter.

#### Reagents

Scintillation medium: Insta-Gel scintillator, Packard Instrument Company Tritium standard solution "Dead" water Ethyl alcohol Boiling chips Sodium hydroxide: Pellets Potassium, permanganate: Crystals

#### Apparatus

Boiling chips Distillation apparatus Liquid scintillation counter Liquid scintillation counting vials Kimwipes Heating mantel Pipetter Disposable 5-10 ml pipette tips

### Procedure

NOTE: All glassware must be <u>dry</u>. Dry it in the drying oven at 100-125°C.

- Place 60-70 mL of the sample in a 250 mL distillation flask. Add a boiling chip to the flask. Add one NaOH pellet and about 0.02 g KMnO4. Connect a side arm adapter and a condenser to the outlet of the flask. Place a receptacle at the outlet of the condenser. [3] Heat to boiling to distill. Discard the first 5-10 mL of distillate. Collect next 20-25 mL of distillate for analysis. Do not distill to dryness.
- 2. Mark the vial caps with the sample number.
  - NOTE: Use the same type of vial for the whole batch (samples, background, and standard.)
- 3. Mark three (3) vial caps "Bkg 1", "Bkg 2", "Bkg 3", and date.
- 4. Mark three (3) vial caps "ST-1", "ST-2", "ST-3"; standard number, and date.

TIML-T-02

# DETERMINATION OF TRITIUM IN WATER (DIRECT METHOD)

# Procedure (Continued)

- 5. Dispense 13 mL of sample into marked vials and "dead" water into vials marked Bkg-1, 2, and 3.
  - NOTE 1: Pipetter is set (and calibrated) to deliver 6.5 mL, so pipette twice into each vial. Use new tip for each sample and new tip (one) for three background samples .
  - NOTE 2: Make sure the pipetter has not been reset. If it has been reset, or if you are not sure, do not use it; check with your supervisor.

NOTE 3: Make sure the plastic tip is pushed all the way on the pipetter and is tight. If it is not, the air will be drawn in and the volume will be incorrect.

- 6. Dispense 13 mL (see Notes 1, 2, and 3, above) of "dead" water into each vial marked "ST-1", "ST-2", and "ST-3."
- 7. Take a 0.1 mL (100  $\mu$ L) pipetter and withdraw 0.1 mL of water from each of the three standard vials. Discard this 0.1 mL of water.
- 8. Take a new 0.1 mL tip. Dispense 0.1 mL of standard into each of the three vials marked "ST-1," "ST-2," and "ST-3."
- 9. Take all vials containing samples, background, and standard to the counting room.

- 10. Dispense 10 mL of Insta-Gel into each vial (one at a time), cap tightly, and shake VIGOROUSLY for at least 0.5 minutes. Recheck the cap for tightness.
- 11. Wet a Kimwipe with alcohol and wipe off each vial in the following order:
  - Background Samples Standard
- 12. Load the vials in the following order:
  - Bkg-1 ST-1 Samples Bkg-2\* ST-2\* Samples Bkg-3 ST-3

\*Bkg-2 and ST-2 should be placed in approximately the middle of each batch.

NOTE: To avoid spurious counts, scintillator should not be added under fluorescent light.

#### DETERMINATION OF TRITIUM IN WATER (DIRECT METHOD)

### Procedure (Continued)

- 13. Let the vials dark- and temperature-adapt for about one hour.
  - NOTE 1: To check if vials have reached counter temperature, inspect one vial (Bkg). The liquid should be transparent. If the temperature is too high (or too low), the liquid will be white and very viscous.
  - NOTE 2: Temperature inside the counter should be between 10° and 14°C (check thermometer). In this temperature range, the liquid is transparent.
- 14. Fill out the loading sheet, being sure to indicate the date and time counting started, and your initials.
  - NOTE: 1. Do not count prepared background and standard sets with another batch of samples if plastic vials are used. Prepare new backgrounds and standards for each batch.
  - NOTE: 2. If glass vials are used, the prepared background and standard sets can be counted with other batches up to one (1) month after preparation, provided they are not taken out of the counter (not warmed up) and the same vial type from the same manufacturing batch (the same carton) is used. After one month prepare new sets of backgrounds and standards.

#### **Calculations**

pCi/L = 
$$\frac{\frac{A}{t_1} - \frac{B}{t_2}}{2.22 \times E \times V \times e^{-\lambda t_3}} \pm \frac{2\sqrt{\frac{A}{t_1^2} + \frac{B}{t_2^2}}}{2.22 \times E \times V \times e^{-\lambda t_3}}$$

#### Where:

- A = Total counts, sample
- B = Total counts, background
- E = Efficiency, (cpm/dpm)
- V = Volume (liter)
- e = Base of the natural logarithm = 2.71828

$$\lambda = \frac{0.693}{12.26} = 0.5652$$

- $t_1 = Counting time, sample$
- t<sub>2</sub> = Counting time, background
- $t_3$  = Elapsed time from the time of collection to the time of counting (in years)

TIML-T-02-4



MIDWEST LABORATORY 700 LANDWEHR ROAD NORTHEROOK, ILLINOIS 60062-2310 708) 564-0700 FAX (708/564-4517

# DETERMINATION OF I-131 IN MILK BY ANION EXCHANGE (BATCH METHOD)

## PROCEDURE NO. TIML-I-131-01

. . . . . .

Prepared by

Teledyne Isotopes Midwest Laboratory

Copy No. \_\_\_\_\_

| Revised<br><u>Pages</u>      | <u>Revision #</u>                                                                                          | <u>Date</u>                                                                                                    | <u>Pages</u>               | Prepared by                                                  | Approved by                                                                  |
|------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------|
| 5<br>23,45<br>23,5<br>2<br>4 | $     \begin{array}{r}       0 \\       1 \\       2 \\       3 \\       4 \\       5 \\     \end{array} $ | <u>06-12-85</u><br><u>11-25-85</u><br><u>03-24-89</u><br><u>04-10-91</u><br><u>08-14-92</u><br><u>09-24-92</u> | 6<br>6<br>6<br>6<br>6<br>6 | 60.0<br>60.0<br>70.0<br>70.0<br>70.0<br>70.0<br>70.0<br>70.0 | L9 Hullus<br>F9 Hullus<br>L9 Hulbun<br>L9 Hulbun<br>L9 Hulbun<br>L9 Here bur |

(This procedures, or any portion thereof, shall not be reproduced in any manner or distributed to any third party without the written permission of Teledyne Isotopes Midwest Laboratory.)

4

### I-131-01

# Determination of I-131 in Milk by Ion Exchange

### (Batch Method)

# Principle of Method

Iodine, as the iodide, is concentrated by adsorption on an anion resin. Following a NaCl wash, the iodine is eluted with sodium hypochlorite. Iodine in the iodate form is reduced to I2 and the elemental iodine extracted into CHCl3, back-extracted into water then finally precipitated as palladium iodide.

Chemical recovery of the added carrier is determined gravimetrically from the PdI2 precipitate. I-131 is determined by beta counting the PdI2.

#### Reagents

Anion Exchange Resin, Dowex 1-X8 (20-50 mesh) chloride form

Chloroform, CHCl3 - reagent grade

Hydrochloric Acid, HCl, 1N

Hydrochloric Acid, HCl, 3N

Wash Solution: H20 - HNO3 - NH20H HCL, 50 mL H20; 10 mL 1M - NH20H-HC1; 10 mL conc. HNO3

Hydroxylamine Hydrochloride, NH2OH HCl - 1 M

Nitric Acid, HNO3 - concentrated

Palladium Chloride, PdCl<sub>2</sub>, 7.2 mg Pd<sup>++</sup>/mL (1.2 g PdCl<sub>2</sub>/100 mL of 6N HCl)

<u>Sodium Bisulfite</u>, NaHSO3 - 1 <u>M</u>

Sodium Chloride, NaCl - 2M

Sodium Hypochlorite, NaOC1 - 5% (Clorox)

Potassium Iodide, KI, ca 29 mg KI/mL (See Proc. TIML-CAR-O1 for preparation)

# I-131-01

# Special Apparatus

Chromatographic Column, 20 mm x 150 mm (Reliance Glass Cat. #R2725T)

Vacuum Filter Holder, 2.5 cm<sup>2</sup> filter area

Filter Paper, Whatman #42, 21 mm

Mylar

Polyester Gummed Tape, 1 I/2", Scotch #853

Heat Lamp

# Part A

## Ion Exchange Procedure

- Transfer 2 liters (if available) of sample to the beaker. Add 1.00 mL of 3 standardized iodide carrier to each sample.
- 2. Add a clean magnetic stirring bar to each sample beaker. Stir each sample for 5 minutes or longer on a magnetic stirrer. Allow sample to equilibrate at least 1/2 hour. If a milk sample is curdled or lumpy, vacuum filter the sample through a Buchner funnel using a cheesecloth filter. Wash the curd thoroughly with deionized water, collecting the washings with the filtrate. Pour the filtrate back into the original washed and labeled 4 liter beaker and discard the curd.
- 3. Add approximately 45 grams of Dowex 1X8 (20-50 mesh) anion resin to each sample beaker and stir on a magnetic stirrer for at least 1 hour. Turn off the stirrer and allow the resin to settle for 10 minutes.
- 4. Gently decant and discard the milk or water sample taking care to retain as much resin as possible in the beaker. Add approximately 1 liter of deionized water to rinse the resin, allow to settle 2 minutes, and pour off the rinse. Repeat rinsing in the case of milk samples until all traces of milk are removed from the resin.
- 5. Using a deionized water wash bottle, transfer the resin to the column marked with the sample number. Allow resin to settle 2 minutes and drain the standing water. Wash the resin with 100 mL of 2M NaCl.
- 6. Measure 50 mL 5% sodium hypochlorite in a graduated cylinder. Add sodium hypochlorite to column in 10-20 mL increments, stirring resin as needed to eliminate gas bubbles and maintain flow rate of 2 mL/min. Collect eluate in 250 mL beaker and discard the resin.

### <u>Part B</u>

# Iodine Extraction Procedure

CAUTION: Perform following steps in the fume hood.

- Acidify the eluate from Step 6 by adding ca. 15 mL of concentrated HNO<sub>3</sub> to make the sample 2-3 N in HNO<sub>3</sub> and transfer to 250 mL separatory funnel. (Add the acid slowly with stirring until the vigorous reaction subsides).
- Add 50 mL of CHCl3 and 10 mL of 1 M hydroxylamine hydrochloride (freshly prepared). Extract iodine into organic phase (about 2 minutes equilibration). Draw off the organic phase (lower phase) into another separatory funnel.
- 3. Add 25 mL of CHCl3 and 5 mL of 1 <u>M</u> hydroxylamine hydrochloride to the first separatory funnel and again equilibrate for 2 minutes. Combine the organic phases. Discard the aqueous phase (Upper phase).
- 4. Add 20 mL H<sub>2</sub>O-HNO<sub>3</sub>-NH<sub>2</sub>OH HCl wash solution to the separatory funnel containing the CHCl<sub>4</sub>. Equilibrate 2 minutes. Allow phases to separate and transfer CHCl<sub>3</sub> (lower phase) to a clean separatory funnel. Discard the wash solution.
- 5. Add 25 mL H<sub>2</sub>O and 10 drops of 1 <u>M</u> sodium bisulfite (freshly prepared) to the separatory funnel containing the CHCl<sub>3</sub>. Equilibrate for 2 minutes. Discard the organic phase (lower phase). Drain aqueous phase (upper phase) into a 100 mL beaker. Proceed to the Precipitation of PdI<sub>2</sub>.

4

# <u>Part C</u>

Precipitation of Palladium Iodide

# CAUTION: AMMONIUM HYDROXIDE INTERFERES WITH THIS PROCEDURE

- 1. Add 10 mL of 3  $\underline{N}$  HCl to the aqueous phase from the iodine extraction procedure in Step 5.
- Place the beaker on a stirrer-hot plate. Using the magnetic stirrer, boil and stir the sample until it evaporates to 30 mL or begins to turn yellow.
- Turn the heat off. Remove the magnetic stirrer, rinse with deionized water.
- 4. Add, dropwise, to the solution, 2.0 mL of palladium chloride.
- 5. Cool the sample to room temperature. Place the beaker with sample on the stainless steel tray and put in the refrigerator overnight.
- 6. Weigh a clean 21 mm Whatman #42 filter which has been dried under a heat lamp.
- 7. Place the weighed filter in the filter holder. Filter the sample and wash the residue with water and then with absolute alcohol.
- 8. Remove filter from filter holder and place it in the labeled petri dish.
- 9. Dry under the lamp for 5-10 minutes.
- 10. Weigh the filter with the precipitate and calculate carrier recovery.
- 11. Cut a 1-1/2" strip of polyester tape and lay it on a clean surface, gummed side up. Place the filter, precipitate side up, in the center of the tape.
- 12. Cut a 1-1/2" wide piece of mylar. Using a spatula to press it in place, put it directly over the precipitate and seal the edges to the polyester tape. Trim to about 5 mm from the edge of the filter with scissors.
- 13. Mount the sample on the plastic disc and write the sample number on the back side of the disc.
- 14. Count the sample on a proportional beta counter.

#### Calculations

Calculate the sample activity using computer program I131.

TIML-131-01-05

4

4

## <u>Part</u> C

Precipitation of Palladium Iodide (continued)

I-131 concentration:

$$(pCi/1) = \frac{A}{2.22 \times B \times C \times D \times R} \pm \frac{2 \sqrt{E_{sb}^2 + E_b^2}}{2.22 \times B \times C \times D \times R}$$

where:

A = Net cpm, sample

B = Efficiency for counting beta I-131 (cpm/dpm)

C = Volume of sample (liters)

D = Correction for decay to the time of collection =  $e^{-\lambda t}$  =

 $Exp\left(-\frac{0.693 \times t}{8.04}\right) = e^{-0.0862t}$ 

where t = elapsed time from the time of collection to the counting time (in days)

Esb = Counting error of sample plus background

 $E_b$  = Counting error of background

R = Carrier recovery

2.22 = dpm/pCi

Reference: "Determination of 1-131 by Beta-Gamma coincidence Counting of Pd1<sub>2</sub>". Radiological Science Laboratory. Division of Laboratories and Research, New York State Department of Health, March 1975, Revised February 1977.



MIDWEST LABORATORY 700 LANDWEHR ROAD NORTHEROOK, ILLINOIS 60062-2310 (708) 564-0700 FAX (708)564-4517

# DETERMINATION OF AIRBORNE I-131 IN CHARCOAL CARTRIDGES BY GAMMA SPECTROSCOPY (BATCH METHOD)

# PROCEDURE NO. TIML-I-131-02

. . . . . . . . .

Prepared by

Teledyne Isotopes Midwest Laboratory

Copy No.

| Revised<br><u>Pages</u> | <u>Revision #</u>    | <u>Date</u>                 | Pages                | Prepared by      | Approved by              |
|-------------------------|----------------------|-----------------------------|----------------------|------------------|--------------------------|
| 1,2,3,4                 | <u>0</u><br><u>1</u> | <u>07-04-86</u><br>08-01-92 | <u>3</u><br><u>4</u> | b. Job<br>B. Job | LI Huckyur<br>LI Huckyur |
| <u></u>                 | <del></del>          |                             |                      | <u> </u>         | <u> </u>                 |
|                         |                      |                             |                      |                  |                          |

(This procedures, or any portion thereof, shall not be reproduced in any manner or distributed to any third party without the written permission of Teledyne Isotopes Midwest Laboratory.)

TIML-I-131-02-01

### TIML-I-131-02

Revision 1, 08-01-92

# DETERMINATION OF AIRBORNE I-131 IN CHARCOAL CARTRIDGES BY GAMMA SPECTROSCOPY (BATCH METHOD)

# Principle of Method

Five or six cartridges are mounted in a specially designed holder and counted. A peak of 0.36 MeV is used to calculate the concentration at counting time. The concentration at the end of collection is then calculated.

NOTE: This procedure is used for screening only. If I-131 is detected, each cartridge from the batch is analyzed individually.

Materials

Charcoal Cartridges

<u>Apparatus</u>

Counting Container Germanium Detector Rubber Band

### Procedure

- NOTE: Because of the short half-life of I-131, count the samples as soon as possible after receipt, but no later than 8 days after collection.
- 1. Load the charcoal cartridges in a specially designed holder with the rim facing the detector and the arrow (if there is one - not all cartridges have arrows) pointing away from the detector (see Figure 1). Use rubber band to hold side mounted cartridges in place.
- 2. Place the holder on the detector and count for a period of time that will meet the required Lower Limit of Detection (LLD).
- 3. Calculate concentration of I-131 at counting time by inputting sample ID, volume (use 1m3) and date and time (midpoint) of counting. Submit printout to data clerk for final calculations without delay.
- NOTE: If I-131 is detected, (positive result) count each cartridge from the batch individually in accordance with Procedure TIML-I-131-04 and notify supervisor immediately.

TIML-I-131-02

Revision 1, 08-01-92

**Calculations:** 

A<sub>1</sub> = I-131 concentration (pCi/sample) =  $\frac{A}{2.22 \times B}$  (at counting time)

Where:

A = Net count rate of I-131 in the 0.36 MeV peak (cpm)

B = Efficiency for the I-131 in 0.36 MeV peak (cpm/dpm)

2.22 = dpm/pCi

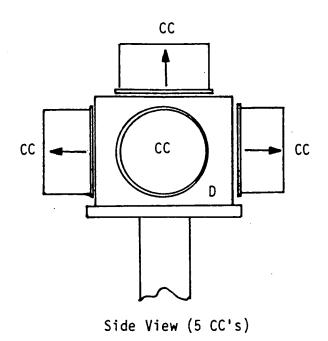
I-131 concentration at the time of collection:

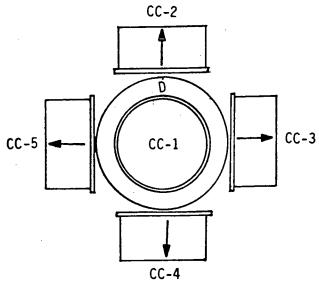
$$(pCi/m^3) = \frac{A_1}{C \times D} \pm \frac{2\sqrt{E_{ab}^2 + E_b^2}}{C \times D}$$

where:

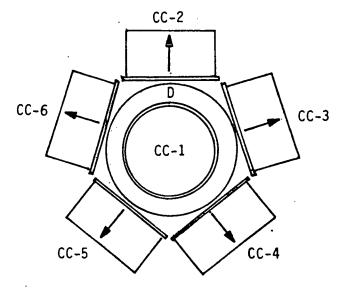
C = Volume of sample (m<sup>3</sup>)

D = Correction for decay to the time of collection =  $e^{-\lambda t} =$ 


$$\exp\left(-\frac{0.693 \times t}{8.04}\right) = e^{-0.0862t}$$


where t = elapsed time from the time of collection to the counting time (in days)

 $E_{sb}$  = Counting error of sample plus background


Eb = Counting error of background











6 CC's

Top View

Charcoal Cartridge: CC Germanium Detector: D

TIML-I-131-02-04



MIDWEST LABORATORY

700 LANOWENR ROAD

NORTHEROOK, KLUNOIS 60082-2316

(312) 564-0700 FAX (312) 564-4617

## DETERMINATION OF SR-89 AND SR-90 IN WATER

## (CLEAR OR DRINKING WATER)

PROCEDURE NO. TIML-SR-02

Prepared by

Teledyne Isotopes Midwest Laboratory

Copy No.

| Revision No. | Date     | Pages | Prepared by | Approved by |
|--------------|----------|-------|-------------|-------------|
| 0            | 03-21-86 | 7     | J. Kattner  | L'I Huchuse |
| <u></u>      |          |       |             |             |
|              | <u></u>  |       | <u></u>     |             |
|              |          |       |             |             |

(This procedure, or any portion thereof, shall not be reproduced in any manner or distributed to any third party without the written permission of Teledyne Isotopes Midwest Laboratory.)

## Determination of Sr-89 and Sr-90 in Water

#### Principle of Method

The acidified sample of clear water with stable strontium, barium, and calcium carriers is treated with oxalic acid at a pH of 3.0 to precipitate insoluble oxalates. The oxalates are dissolved in nitric acid, and strontium nitrate is separated from calcium as a precipitate in 70% nitric acid. The residue is purified by adding iron and rare earth carriers and precipitating them as hydroxides. After a second strontium nitrate precipitation from 70% nitric acid, the nitrates are dissolved in acid with added yttrium carrier and are stored for ingrowth of yttrium-90. The ittrium is again precipitated as hydroxide and separated from strontium with the strontium being in the supernate. Each fraction is precipitated separately as an oxalate (yttrium) and carbonate (strontium) and collected on No. 42 (2.4 cm) Whatman filter for counting.

#### Reagents

Ammonium acetate buffer: pH 5.0 Ammonium hydroxide, NH40H: concentrated (15N), 6 N Ammonium oxalate, (NH4) 2C204. H20: 0.5% w/v Carrier solutions: Ba<sup>+2</sup> as barium nitrate, Ba(NO<sub>3</sub>)2: 20 mgBa<sup>+2</sup> per ml  $Ca^{+2}$  as calcium nitrate,  $Ca(NO_3)_24H_2O$ : 40 mg  $Ca^{+2}$  per ml Sr<sup>+2</sup> as strontium nitrate, Sr(NO<sub>3</sub>)<sub>2</sub>: 20 mg Sr<sup>+2</sup> per ml Y<sup>+3</sup> as yttrium nitrate, Y(NO<sub>3</sub>): 10 mg <sup>+3</sup> per ml Hydrochloric acid, HCl: concentrated (3 N) Nitric acid, HNO3: Fuming (90%), concentrated (16 N), 6 N Oxalic acid, H2C202. 2H20: Saturated at room temperature Scavenger solutions: 20 mg Fe<sup>+3</sup> per ml, 10 mg each Ce<sup>+3</sup> and Zr<sup>+4</sup> per ml Fe<sup>+</sup> as ferric chloride, FeCl<sub>3</sub>.hH<sub>2</sub>O Ce+3 as cerous nitrate, Ce(NO3)3.6H2O Zr4 as zirconyl chloride, Zr0Čl2.8H20 Sodium carbonate, Na<sub>2</sub>CO<sub>3</sub>: <u>3N</u>, 0. <u>1N</u> Sodium chromate, Na<sub>2</sub>CrO<sub>4</sub>:3N

#### Apparatus

Analytical balance Low background beta counter pH meter

## Procedure

- 1. Measure 1 liter of acidified water into a 2 liter beaker.
  - NOTE: If the sample contains foreign mater, such as sand, dirt, etc., filter through a 47 mm glass fiber filter using suction flask.
- 2. To acidified clear water in a 2 liter beaker, add 1 ml of strontium carrier solution, 1 ml barium carrier solution, and if necessary, 1 ml of calcium carrier solution. (Improved precipitation may be obtained by additng calcium to soft waters.) Stir thoroughly, and while stirring add 125 ml of saturated oxalic acid solution.
- 3. Using a pH meter, adjust the pH to 3.0 with 15N NH4OH and allow the precipitate to settle for 5 6 hours or overnight.
- 4. Decant to waste most of the supernate (liquid) and transfer the precipitate to a 250 ml centrifuge bottle using D.I. water. Discard the supernate to waste.
- 5. Dissolve the precipitate with 10 ml of  $6N \ HNO^3$  and transfer to a 250 ml beaker. Then use 20 ml of  $16N \ HNO^3$  to rinse the centrifuge tube and combine it to the solution in the 250 ml beaker.
- 6. Evaporate the solution to dryness. Cool; then add 50 ml 16N HNO3 and repeat the acid addition and evaporation until the residue is colorless.
- 7. Transfer the residue to a 40 ml centrifuge tube, rinsing with a minimum volume of 16N HNO<sub>3</sub>. Cover with parafilm and cool in an ice bath. Centrifuge at 1500 1800 rpm for 10 minutes, and discard the supernate to waste.
- 8. Dissolve the precipitate in 5 ml of 6N HNO<sub>3</sub> and then add 30 ml of fuming nitric acid. Cover with parafilm, cool in the ice bath, centrifuge, and discard the supernate to waste.
- 9. Dissolve the nitrate precipitate in about 10 ml of D.I. water (perform under the hood). Add 1 ml of scavenger solution. Adjust the pH of the mixture to 7 with 6N HN<sub>4</sub>OH. Heat in hot water bath for 10 minutes, stir, and filter through a Whatman No. 541 filter into another 40 ml centrifuge tube. Discard the mixed hydroxide precipitate (filter paper).
- 10. To the filtrate, add 5 ml of ammonium acetate buffer. Adjust the pH with 3N HNO<sub>3</sub> or NH<sub>4</sub>OH to pH 5.5.

NOTE: The pH of the solution at this point is critical.

Add dropwise with stirring 1 ml of  $3N Na_2CrO_4$  solution, stir, and heat in a water bath.

11. Cool and centrifuge. Decant the supernate into another 40 ml centrifuge tube. (Save the precipitate for Ba analysis if needed.)

#### Procedure

- 12. Heat the supernate in a water bath. Adjust the pH to 8 8.5 with NH40H. With continuous stirring, cautiously add 5 ml of 3N Na<sub>2</sub>CO<sub>3</sub> solution. Heat gently for 10 minutes. Cool, centrifuge, and decant the supernate to waste. Wash the precipitate with 0.1N Na<sub>2</sub>CO<sub>3</sub>. Centrifuge again and decant the supernate to waste.
- 13. Dissolve the precipitate in no more than 4 ml of 3N HNO3. Then add 20 - 30 ml of fuming HNO3, cover with parafilm, cool in a water bath, and centrifuge. Decant and discard the supernate.
- 14. Repeat Step 13. Then <u>RECORD THE TIME AND DATE AS THE BEGINNING OF</u> YTTRIUM-90 INTROWTH.
- 15. Dissolve precipitate in 4 ml of 6N HNO3 and add 1 ml of yttrium carrier solution.
- 16. Cover with parafilm and store for 7 14 days.
  - NOTE: At this point, the sample can be transferred to a glass scintillation vial for the ingrowth storage. Use several portions of 6N HNO<sup>3</sup> (a total of not more than 4 ml); then add 1 ml of yttrium carrier to the vial.)

## Separation

- NOTE: If the sample was stored in the scintillation vial, transfer back into 40 ml centrifuge tube using a few drops of 6N HNO<sub>3</sub> as a rinse.
- 1. After storage (ingrowth period), heat the 40 ml centrifuge tube containing the samle in the hot water bath (approximately 90°C) for 10 minutes.
- 2. Adjust pH to 8 with NH40H, stirring continuously.
- 3. Cool in a cold water bath and centrifuge for 5 minutes.
- 4. Decant the supernate into a 40 ml centrifuge tube marked with the sample number and "SR-89." RECORD THE DATE AND TIME OF DECANTATION AS THE END OF Y-90 ingrowth in SR fraction and the beginning of its decay in Y-90 fraction.
- 5. Redissolve the precipitate by adding 3 4 drops of 6N HCl and add 5 10 ml of D.I. water with stirring.
- 6. Repeat Steps 1, 2, and 3.
- 7. Combine supernate with the one in Step 4.

TIML-SR-02-04

## Determination

- A. Strontium-90 (Yttrium-90)
  - 1. Add 3 drops of 6N HCl to dissolve the precipitate; then add 5 10 ml of water. Heat in a water bath at approximately 90°C. Add 1 ml of saturated oxalic acid solution dropwise with vigorous stirring. Adjust to a pH of 2 3 with NH40H. Allow the precipitate to digest for about an hour.

NOTE: Do Part "B" while precipitate is digesting.

- Cool to room temperature in a cold wate bath. Centrifuge for 10 minutes and decant most of the supernate. filter by suction on a weighed 2.5 cm filter paper. Wash the precipitate with water and alcohol.
- 3. Dry the precipitate under the lamp for 30 minutes. Cool and weigh. Mount and count without delay in a proportional counter. (See Part C for mounting.)

## B. Strontium-89 (Total Strontium)

- 1. Heat the solution from Step 7 in water bath.
- 2. Adjust the pH to 8 8.5 using NH<sub>4</sub>OH.
- 3. With continuous stirring, add 5 ml of 3N Na<sub>2</sub>CO<sub>3</sub> solution. Stir until precipitate appears. Heat gently for 10 minutes.
- 4. Cool and filter on a weighed No. 42 (2.4 cm) whatman filter paper.
- 5. Wash thoroughly with water and alcohol.
- 6. Mount and count without delay its beta activity as "total radiostrontium" in a proportional counter.

## C. Filtering and Mounting

- 1. Place filters under heat lamps for 30 minutes before weighing.
- 2. Use Mettler balance (Serial No. 343112) for weighing.
- 3. Label a clean petri dish with the weight of the filter paper. (After samples are filtered, the filter paper will again be dried and weighed to determine weight of precipitate before mounting.)

- C. Filtering and Mounting (continued)
  - 4. Mount weighed filter paper and precipitate on nylon disk using 1" transparent tape to hold filter paper and 2" mylar foil placed over precipitate and held in place with slip-ring. Trim off excess mylar foil and place the mounted sample in a labeled petri dish.
  - 5. Fill out corresponding loading sheets and place samples in counting room.

## Calculations

## Part A

Strontium-90 Concentration (pCi/liter) =  $\frac{A}{8 \times C \times D \times E \times F}$ 

Where:

- A = Net beta count rate of yttrium 90 (cpm)
- B = Recovery of yttrium carrier
- C = Counter efficiency for counting yttrium-90 or yttrium oxalate mounted on a 2.4 cm diameter filter paper (cpm/pCi)
- D = Sample volume (liters)
- $E = Correction factor e^{-\lambda t}$  for yttrium-90 decay, where t is the time from the time of cdecantation (Step 4, Separation) to the time of counting
- F. Correction factor  $1-e^{-\lambda t}$  for the degree of equilibrium attained during the yttrium-90 ingrowth period, where t is the time from collection of the water sample to the time of decantation (Step 4, Separation)

Part B

Strontium-89 Concentration (pCi/liter) =  $\frac{1}{B \times C} = \frac{A}{D \times E} - F (G \times H + I \times J)$ 

Where:

- A = Net beta count rate of "total radiostrontium" (cpm)
- B = Counter efficiency for counting strontium-89 as strontium carbonate mounted on a 2.4 cm diameter filter paper (cpm/pCi)
- $C = Correction factor e^{-\lambda t}$  for strontium-89 decay, where t is the time from sample collection to the time of counting
- D = Recovery of strontium carrier
- E = Volume of water sample (liters)
- F = Strontium-90 concentration (pCi/liter) from Part A
- G = Self-absorption factor for strontium-90 as strontium carbonate mounted on a 2.4 cm diameter filter, obtained from a selfabsorption curve prepared by plotting the fraction of a standard activity absorbed against density thickness of the sample (mg/cm<sup>2</sup>)
- H = Counter efficiency for counting strontium-90 as strontium carbonate mounted on a 2.4 cm diameter filter paper (cpm/pCi)
- $J = Correction factor 1-e^{-\lambda t}$  for yttrium-90 ingrowth, where it is the time from the last decantation of the nitric acid (Step 4, Separation)

REFERENCE: Radioassay Procedures for Environmental Samples, U. S. Department of Health, Education, and Welfare. Environmental Health Series, January 1967.



MIDWEST LABORATORY 700 LANOWEHR ROAD NORTHBROOK, ILLINOIS 60082-2310 (312) 564-0700 FAX (312) 564-6517

# DETERMINATION OF SK-89 AND SR-90 IN ASHED SAMPLES (VEGETATION, FISH, ETC.)

PROCEDURE NO. TIML-SR-05

Prepared by

Teledyne Isotopes Midwest Laboratory

Copy No.

----

| Revision No. | Date      | Pages    | Prepared by | Approved by |
|--------------|-----------|----------|-------------|-------------|
| 00           | 07-23-86  | 7        | p. Grab     | LA/uelur    |
|              | <u>,,</u> | <u>i</u> | <u> </u>    |             |
|              | <u></u>   |          |             |             |

(This procedure, or any portion thereof, shall not be reproduced in any manner or distributed to any third party without the written permission of Teledyne Isotopes Midwest Laboratory.)

## DETERMINATION OF SR-89 AND SR-90 IN

## ASHED SAMPLES (VEGETATION, FISH, ETC.)

#### Principle of Method

The sample with stable strontium and barium carriers added is leached in nitric acid and filtered. After filtration, filtrate is reduced in volume by evaporation. The residue is purified by adding iron and rare earth carriers and precipitating them as hydroxides. After a second strontium nitrate precipitation from 70% nitric acid, the nitrates are dissolved in acid again with added yttrium carrier and are stored for ingrowth of yttrium-90. The yttrium is precipitated as hydroxide and separated from strontium with the strontium being in the supernate. Each fraction is precipitated separately as an oxalate (yttrium) and carbonate (strontium) and collected on No. 42 (2.4 cm) Whatman filter for counting.

## Reagents

<u>Ammonium acetate buffer</u>: pH 5.0 <u>Ammonium hydroxide</u>, NH40H: concentrated (15<u>N</u>), 6 <u>N</u> <u>Carrier solutions</u>: Ba<sup>+2</sup> as barium nitrate, Ba(NO<sub>3</sub>)2: 20 mgBa<sup>+2</sup> per ml Sr<sup>+2</sup> as strontium nitrate, Sr(NO<sub>3</sub>)<sub>2</sub>: 20 mg Sr<sup>+2</sup> per ml Y<sup>+3</sup> as yttrium nitrate, Y(NO<sub>3</sub>): 10 mg <sup>+3</sup> per ml <u>Hydrochloric acid</u>, HCl: 6 <u>N</u> <u>Nitric acid</u>, HNO<sub>3</sub>: Fuming (90%), concentrated (16 <u>N</u>), 6 <u>N</u> <u>Oxalic acid</u>, H<sub>2</sub>C<sub>2</sub>O<sub>2</sub>. 2H<sub>2</sub>O: Saturated at room temperature <u>Scavenger solutions</u>: 20 mg Fe<sup>+3</sup> per ml, 10 mg each Ce<sup>+3</sup> and Zr<sup>+4</sup> per ml Fe<sup>+</sup> as ferric chloride, FeCl<sub>3</sub>.6H<sub>2</sub>O Ce<sup>+3</sup> as cerous nitrate, Ce(NO<sub>3</sub>)<sub>3</sub>.6H<sub>2</sub>O Zr<sup>4</sup> as zirconyl chloride, ZrOCl<sub>2</sub>.8H<sub>2</sub>O <u>Sodium carbonate</u>, Na<sub>2</sub>CO<sub>3</sub>:3<u>N</u>, 0.1<u>N</u> Sodium chromate, Na<sub>2</sub>CrO<sub>4</sub>:3N

#### Apparatus

Analytical balance Low background beta counter pH meter

## Procedure

- 1. Weigh 3 g of ash and transfer to the 250 ml beaker.
- 2. Add 50 ml concentrated nitric acid.
- 3. Add 1 ml strontium and 1 ml barium carrier solutions.
- 4. Place the sample on the moderate hot plate under the hood and cover with the watch glass.
- 5. Allow to leach for 2 hours or longer.
- 6. Remove sample beaker from the hot plate and allow to cool to room temperature.
- 7. Add deionized water, filling to 100 ml; mark on the beaker.
- -8. Filter the sample through Whatman No. 541 filter paper.
- 9. Place the filtrate on the moderate hot plate under the hood and gently evaporate to 5 ml.
- 10. Transfer the sample into 40 ml centrifuge tube. Rinse the beaker with 16N HNO3. Add rinsing to the tube.
- 11. Centrifuge for 10 minutes and discard the supernate to waste.
- 12. Carefully add 30 ml of concentrated HNO3 to the precipitate. Heat in a hot water bath for about 30 minutes, stirring occassionally. Cool the sample in an ice water bath for about 5 minutes. Centrifuge and discard the supernate.
- 13. Repeat Step 12.
- 14. Dissolve the nitrate precipitate in about 10 ml of D.I. water (perform under the hood). Add 1 ml of scavenger solution. Adjust the pH of the mixture to 7 with 6N NH40H. Heat in hot water bath for 10 minutes, stir, and filter through a Whatman No. 541 filter into another 40 ml centrifuge tube. Discard the mixed hydroxide precipitate (filter paper).
- 15. To the filtrate, add 5 ml of ammonium acetate buffer. Adjust the pH with 6N HNO3 or NH4OH to pH 5.5.

NOTE: The pH of the solution at this point is critical.

Add dropwise with stirring 1 ml of  $3N Na_2CrO_4$  solution, stir, and heat in a water bath.

16. Cool and centrifuge. Decant the supernate into another 40 ml centrifuge tube. (Save the precipitate for Ba analysis if needed.)

## TIML-SR-05-03

TIML-SR-05

Revision 0, 07-23-86

Procedure (continued)

- 17. Heat the supernate in a water bath. Adjust the pH to 8 8.5 with NH<sub>4</sub>OH. With continuous stirring, add 5 ml of 3N Na<sub>2</sub>CO<sub>3</sub> solution. Heat gently for 10 minutes. Cool, centrifuge, and decant the supernate to waste. Wash the precipitate with 0.1N Na<sub>2</sub>CO<sub>3</sub>. Centrifuge again and decant the supernate to waste.
- 18. Dissolve the precipitate in no more than 4 ml of 3N HNO3. Then add 20 30 ml of fuming HNO3, cover with parafilm, cool in a water bath, and centrifuge. Decant and discard the supernate.
- 19. Repeat Step 13. Then <u>RECORD THE TIME AND DATE AS THE BEGINNING OF</u> YTTRIUM-90 INTROWTH.
- 20. Dissolve precipitate in 4 ml of 6N HNO<sub>3</sub> and add 1 ml of yttrium carrier solution.
- 21. Cover with parafilm and store for 7 14 days.
  - NOTE: At this point, the sample can be transferred to a glass scintillation vial for the ingrowth storage. Use several portions of 6NHNO<sub>3</sub> (a total of not more than 4 ml); then add 1 ml of yttrium carrier to the vial.)

## Separation

- NOTE: If the sample was stored in the scintillation vial, transfer back into 40 ml centrifuge tube using a few drops of 6N HNO3 as a rinse.
- 1. After storage (ingrowth period), heat the 40 ml centrifuge tube containing the sample in the hot water bath (approximately 90°C) for 10 minutes.
- 2. Adjust pH to 8 with NH4OH, stirring continuously.
- 3. Cool in a cold water bath and centrifuge for 5 minutes.
- 4. Decant the supernate into a 40 ml centrifuge tube marked with the sample number and "SR-89." RECORD THE DATE AND TIME OF DECANTATION AS THE END OF Y-90 INGROWTH in SR fraction and the beginning of its decay in Y-90 fraction.
- 5. Redissolve the precipitate by adding 3 4 drops of 6N HCl and add 5 10 ml of D.I. water with stirring.
- 6. Repeat Steps 1, 2, and 3.
- 7. Combine supernate with the one in Step 4.

#### TIML-SR-05-04

TIML-SR-05

## Determination

- A. Strontium-90 (Yttrium-90)
  - 1. Add 3 drops of 6N HCl to dissolve the precipitate; then add 5 10 ml of water. Heat in a water bath at approximately  $90^{\circ}C$ . Add 1 ml of saturated oxalic acid solution dropwise with vigorous stirring. Adjust to a pH of 2 3 with NH40H. Allow the precipitate to digest for about an hour.

NOTE: Do Part "B" while precipitate is digesting.

- 2. Cool to room temperature in a cold water bath. Centrifuge for 10 minutes and decant most of the supernate. Filter by suction on a weighed 2.5 cm filter paper. Wash the precipitate with <u>water</u> and <u>alcohol</u>.
- 3. Dry the precipitate under the lamp for 30 minutes. Cool and weigh. <u>Mount and count without delay in a proportional counter.</u> (See Part C for mounting.)
- B. Strontium-89 (Total Strontium)
  - 1. Heat the solution from Step 7 in water bath.
  - 2. Adjust the pH to 8 8.5 using NH<sub>4</sub>OH.
  - 3. With continuous stirring, add 5 ml of 3N Na<sub>2</sub>CO<sub>3</sub> solution. Stir until precipitate appears. Heat gently for 10 minutes.
  - 4. Cool and filter on a weighed No. 42 (2.4 cm) Whatman filter paper.
  - 5. Wash thoroughly with water and alcohol.
  - 6. Mount and count without delay its beta activity as "total radiostrontium" in a proportional counter.

## C. Filtering and Mounting

- 1. Place filters under heat lamps for 30 minutes before weighing.
- 2. Use Mettler balance (Serial No. 343112) for weighing.
- 3. Label a clean petri dish with the weight of the filter paper. (After samples are filtered, the filter paper will again be dried and weighed to determine weight of precipitate before mounting.)

- C. Filtering and Mounting (continued)
  - 4. Mount weighed filter paper and precipitate on nylon disk using 1" transparent tape to hold filter paper and 2" mylar foil placed over precipitate and held in place with slip-ring. Trim off excess mylar foil and place the mounted sample in a labeled petri dish.
  - 5. Fill out corresponding loading sheets and place samples in counting room.

## Calculations

#### Part A

Strontium-90 Concentration (pCi/g wet) =

| Α                            | ± | $2\sqrt{E_{sb}^2 + E_b^2}$   |
|------------------------------|---|------------------------------|
| 2.22 x B x C x D x E x F x G |   | 2.22 x B x C x D x E x F x G |

#### Where:

- A = Net beta count rate of yttrium 90 (cpm)
- B = Recovery of yttrium carrier
- C = Counter efficiency for counting yttrium-90 or yttrium oxalate mounted on a 2.4 cm diameter filter paper (cpm/dpm)
- D = Sample size (grams), ash
- $E = Correction factor e^{-\lambda t}$  for yttrium-90 decay, where t is the time from the time of decantation (Step 4, Separation) to the time of counting
- $F = Correction factor 1-e^{\lambda t}$  for the degree of equilibrium attained during the yttrium-90 ingrowth period, where t is the time from collection of the water sample to the time of decantation (Step 4, Separation)
- G = Ratio of wet weight to ashed weight
- $E_{sh}$  = Counting error of sample plus background
- $E_b$  = Counting error of background

TIML-SR-05-06

## <u>Part B</u>

Strontium-89 Concentration (pCi/g wet) =

$$\frac{1}{2.22 \times B \times C} \left[ \frac{A}{D \times E \times K} - F (G \times H + I \times J) \right] \pm \frac{2\sqrt{E_{sb}^2 + E_b^2}}{2.22 \times B \times C \times D \times E \times F \times K}$$
Where:  
A = Net beta count rate of "total radiostrontium" (cpm)  
B = Counter efficiency for counting strontium-89 as strontium carbon-  
ate mounted on a 2.4 cm diameter filter paper (cpm/dpm)  
C = Correction factor  $e^{-\lambda t}$  for strontium-89 decay, where t is the  
time from sample collection to the time of counting  
D.= Recovery of strontium carrier  
E = Sample size (grams), ash  
F = Strontium-90 concentration (pCi/g wet) from Part A  
G = Self-absorption factor for strontium-90 as strontium carbonate  
mounted on a 2.4 cm diameter filter, obtained from a self-  
absorption curve prepared by plotting the fraction of a standard  
activity absorbed against density thickness of the sample  
(mg/cm<sup>2</sup>)  
H = Counter efficiency for counting strontium-90 as strontium carbon-  
ate mounted on a 2.4 cm diameter filter paper (cpm/dor)  
I = Counter efficiency for counting strontium-90 as yttrium oxalate  
mounted on a 2.4 cm diameter filter paper (cpm/dor)  
K = Ratio of a 2.4 cm diameter filter paper.  
K = Ratio of wet weight to ashed weight  
REFERENCE: Radioassay Procedures for Environmental Samples, U. S. Department  
of Health, Education, and Welfare. Environmental Health Series,  
January 1967.



MIDWEST LABORATORY

700 LANOWEHR ROAD

NORTHBROOK, ILLINOIS 69582-2310

(312) 584-0700 FAX (312) 584-4617

# DETERMINATION OF SR-89 AND SR-90 IN

## SOIL AND BOTTOM SEDIMENTS

PROCEDURE NO. TIML-SR-06

- · · · ·

Prepared by

Teledyne Isotopes Midwest Laboratory

Copy No.

| Revision No. | Date     | Pages | Prepared by | Approved by |
|--------------|----------|-------|-------------|-------------|
| 0            | 07-23-86 | 9     | ps. Goob    | LAbrehun    |
|              |          |       | 0           |             |
|              |          |       |             |             |
|              |          |       |             |             |

(This procedure, or any portion thereof, shall not be reproduced in any manner or distributed to any third party without the written permission of Teledyne Isotopes Midwest Laboratory.)

Revision 0, 07-23-86

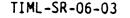
## DETERMINATION OF SR-89 AND SR-90 IN

#### SOIL AND BOTTOM SEDIMENTS

#### Principle of Method

The sample with stable strontium and barium carriers added is leached in hydrochloric acid. After separation from calcium, the residue is purified by adding iron and rare earth carriers and precipitating them as hydroxides. After a second strontium nitrate precipitation from 70% nitric acid, the nitrates are dissolved in acid again with added yttrium carrier and are stored for ingrowth of yttrium-90. The yttrium is precipitated as hydroxide and separated from strontium with the strontium being in the supernate. Each fraction is precipitated separately as an oxalate (yttrium) and carbonate (strontium) and collected on No. 42 (2.4 cm) Whatman filter for counting.

#### Reagents


Ammonium acetate buffer: pH 5.0 Ammonium hydroxide, NH40H: concentrated (15N), 6N Carrier solutions: Ba<sup>+2</sup> as barium nitrate, Ba(NO3)2: 20 mgBa<sup>+2</sup> per ml Sr<sup>+2</sup> as strontium nitrate, Sr(NO3)2: 20 mg Sr<sup>+2</sup> per ml Y<sup>+3</sup> as yttrium nitrate, Y(NO3): 10 mg <sup>+3</sup> per ml Hydrochloric acid, HCl: 6 N Nitric acid, HNO3: Fuming (90%), concentrated (16N), 6N, 1:1 Oxalic acid, H<sub>2</sub>C<sub>2</sub>O<sub>2</sub>. 2H<sub>2</sub>O: Saturated at room temperature Scavenger solutions: 20 mg Fe<sup>+3</sup> per ml, 10 mg each Ce<sup>+3</sup> and Zr<sup>+4</sup> per ml Fe<sup>+</sup> as ferric chloride, FeCl<sub>3</sub>.6H<sub>2</sub>O Ce<sup>+3</sup> as cerous nitrate, Ce(NO3)<sub>3</sub>.6H<sub>2</sub>O Zr<sup>4</sup> as zirconyl chloride, ZrOCl<sub>2</sub>.8H<sub>2</sub>O Sodium carbonate, Na<sub>2</sub>CO<sub>3</sub>:3N, 0.1N Sodium chromate, Na<sub>2</sub>CrO4:3N

#### Apparatus

Analytical balance Centrifuge Hot plate Low background beta counter pH meter Plastic disc and ring Stirrer

#### Procedure

- 1. Weigh out a 100 g sample into a 1 liter beaker. Add 1 ml of strontium carrier and 1 ml of Ba carrier.
- Stir mechanically while slowly adding 200 ml of 6N HCl. (It may be necessary to add a few drops of octyl alcohol to prevent excessive frothing.) Continue stirring for about 30 minutes. Allow a minimum of two hours for the insoluble material to settle.
- 3. Stir the mixture and filter with suction through a 24 cm Whatman No. 42 filter paper using a Buchner funnel. Wash the residue with hot water. Wash with 6N HCl and again with hot water until the yellow color of ferric chloride is removed. Discard the residue.
- 4. Transfer the filtrate to a 1 liter beaker and evaporate to approximately 200 ml. Cool and slowly add 200 ml of concentrated HNO3. (If there is excessive frothing, add a few drops of octyl alcohol.) Evaporate to 100-200 ml.
- 5. Add 500 ml of water and stir.
- 6. Add 25 grams of oxalic acid with magnetic stirring until it is completely dissolved.
- Adjust the pH to 5.5 6.0 with concentrated NH4OH. (If the brown color of ferric hydroxide persists, add more oxalic acid and readjust the pH.) The optimum condition is an excess of oxalic acid in solution without causing crystallization of ammonium oxalate upon cooling.
- 8. Allow precipitate to settle for 5 6 hours or overnight.
- 9. Decant most of the supernate (liquid) and transfer the precipitate to a 250 ml centrifuge tube using deionized water for rinsing. Add rinsing to the tube. Centrifuge and decant supernate.
- 10. Wash the precipitate with 50 100 ml portion of water and centrifuge again.
- 11. Repeat washing as needed until all the yellow color of the solution has been removed.
- 12. Cool the precipitate and dissolve it with 6N HNO3 and transfer it in a 250 ml beaker. Rinse the tube with 6N HNO3, making the total volume to 50 100 ml. Add about 6 drops of  $H_2O_2$  (30%) to facilitate dissolution.
- 13. Cool to room temperature. If insoluble material is present at this point, filter by suction through a glass fiber filter. Discard the filter and residue.



TIML-SR-06

Revision 0, 07-23-86

Procedure (continued)

- 14. Transfer the solution to an appropriate size beaker and evaporate to dryness. The evaporation must be done slowly to avoid spattering.
- 15. Dissolve the salt in water and perform successive fuming nitric acid separations (the first two separations at concentration slightly greater than 75%) until the strontium has been separated from the bulk of the calcium. Samples with a high calcium content will require five or more separations.
- 16. The volumes of 75% HNO<sub>3</sub> vary (fuming solutions may be changed as required by the mass of calcium present, keeping in mind that minimum volumes are always best).
- 17. If calcium content is still thick, evaporate the solution to dryness and bake.
- 18. Dissolve the residue with 50 ml boiling water and filter. Discard residue.
- 19. Evaporate the solution to dryness again.
- 20. Cool and dissolve the residue in a minimum amount of water and add 50 ml of fuming HNO<sub>3</sub>.
- 21. Continue the fuming nitric acid separations until the strontium has been separated from the bulk of calcium.
- 22. Transfer the solution to a 40 ml conical, heavy-duty centrifuge tube, using a minimum of concentrated HNO3 to effect the transfer. Cool the centrifuge tube in an ice bath for about 10 minutes. Centrifuge and discard the supernatant.
  - NOTE: The precipitate consists of calcium, strontium, and barium-radium nitrate.
    - The supernatant contains part of the sample's calcium and phosphate content.
- 23. Add 30 ml of concentrated HNO<sub>3</sub> to the precipitate. Heat in a hot water bath with stirring for about 10 minutes. Cool the solution in an ice bath, stirring for about 5 minutes. Centrifuge and discard the supernatant.
  - NOTE: Additional calcium is removed from the sample.

Nitrate precipitations with 70% HNO<sub>3</sub> will afford a partial decontamination from soluble calcium, while strontium, barium, and radium are completely precipitated.

TIML-SR-06-04

## Procedure (continued)

23. NOTE: (continued)

The separation of calcium is best at 60% HNO<sub>3</sub>; however, at 60% the precipitation of strontium is not complete. Therefore, it is common practice to precipitate Sr(No<sub>3</sub>)<sub>2</sub> with 70% HNO<sub>3</sub>, which is the concentration of commercially available 16N HNO<sub>3</sub>.

Most of the other fission products, induced acitivities, and actinides are soluble in concentrated  $HNO_3$ , affording a good "gross" decontamination step from a wide spectrum of radionuclides. The precipitation is usually repeated several times.

- 24. Repeat Step 23 two (2) more times.
- 25. Dissolve the nitrate precipitate in about 20 ml distilled water. Add 1 ml of scavenger solution. Adjust the pH of the mixture to 7 with -----6N-NH40H.--Heat,-stir, and filter through a Whatman No.-541\_filter... Discard the mixed hydroxide precipitate.
- 26. To the filtrate, add 5 ml of ammonium acetate buffer. Adjust the pH with 6 N HNO<sub>3</sub> or NH<sub>4</sub>OH to pH 5.5.

NOTE: The pH of the solution at this point is critical.

Add dropwise with stirring 1 ml of 3N Na<sub>2</sub>CrO<sub>4</sub> solution, stir, and heat in a water bath.

- 27. Cool and centrifuge. Decant the supernate into another 40 ml centrifuge tube. (Save the precipitate for barium analysis if needed.)
- 28. Heat the supernate in a water bath. Adjust the pH to 8 8.5 with NH40H. With continuous stirring, add 5 ml of 3N Na<sub>2</sub>CO<sub>3</sub> solution. Heat gently for 10 minutes. Cool, centrifuge, and decant the supernate to waste. Wash the precipitate with 0.1N Na<sub>2</sub>CO<sub>3</sub>. Centrifuge again and decant the supernate to waste.
- 29. Dissolve the precipitate in no more than 4 ml of 3N HNO3. Then add 20 30 ml of fuming HNO3, cover with parafilm, cool in a water bath, and centrifuge. Decant and discard the supernate.
- 30. Repeat Step 13. Then <u>RECORD THE TIME AND DATE AS THE BEGINNING OF</u> YTTRIUM-90 INTROWTH.
- 31. Dissolve precipitate in 4 ml of 6N HNO3 and add 1 ml of yttrium carrier solution.

**Procedure** (continued)

32. Cover with parafilm and store for 7 - 14 days.

NOTE: At this point, the sample can be transferred to a glass scintillation vial for the ingrowth storage. Use several portions of 6NHNO<sub>3</sub> (a total of not more than 4 ml); then add 1 ml of yttrium carrier to the vial.)

#### Separation

- NOTE: If the sample was stored in the scintillation vial, transfer back into 40 ml centrifuge tube using a few drops of 6N HNO<sub>3</sub> as a rinse.
- 1. After storage (ingrowth period), heat the 40 ml centrifuge tube containing the sample in the hot water bath (approximately 90°C) for 10 minutes.
- 2. Adjust pH to 8 with concentrated NH<sub>4</sub>OH, stirring continuously.
- 3. Cool in a cold water bath and centrifuge for 5 minutes.
- 4. Decant the supernate into a 40 ml centrifuge tube marked with the sample number and "SR-89." RECORD THE DATE AND TIME OF DECANTATION AS THE END OF Y-90 INGROWTH in SR fraction and the beginning of its decay in Y-90 fraction.
- 5. Redissolve the precipitate by adding 3 4 drops of 6N HCl and add 5 10 ml of D.I. water with stirring.
- 6. Repeat Steps 1, 2, and 3.
- 7. Combine supernate with the one in Step 4.

## Oetermination

- A. Strontium-90 (Yttrium-90)
  - 1. Add 3 drops of 6N HCl to dissolve the precipitate; then add 5 10 ml of water. Heat in a water bath at approximately  $90^{\circ}$ C. Add 1 ml of saturated oxalic acid solution dropwise with vigorous stirring. Adjust to a pH of 2 3 with concentrated NH<sub>4</sub>OH. Allow the precipitate to digest for about an hour.

NOTE: Do Part "B" while precipitate is digesting.



- Determination (continued)
- A. Strontium-90 (Yttrium-90) (continued)
  - 2. Cool to room temperature in a cold water bath. Centrifuge for 10 minutes and decant most of the supernate. Filter by suction on a weighed 2.5 cm filter paper. Wash the precipitate with <u>water</u> and <u>alcohol</u>.
  - 3. Dry the precipitate under the lamp for 30 minutes. Cool and weigh. Mount and count without delay in a proportional counter. (See Part C for mounting.)
- B. Strontium-89 (Total Strontium)
  - 1. Heat the solution from Step 7 in water bath.
  - 2. Adjust the pH to 8 8.5 using concentrated NH4OH.
  - 3. With continuous stirring, add 5 ml of 3N Na<sub>2</sub>CO<sub>3</sub> solution. Stir until precipitate appears. Heat gently for 10 minutes.
  - 4. Cool and filter on a weighed No. 42 (2.4 cm) Whatman filter paper.
  - 5. Wash thoroughly with water and alcohol.
  - 6. Mount and count without delay its beta activity as "total radiostrontium" in a proportional counter.

## C. Filtering and Mounting

- 1. Place filters under heat lamps for 30 minutes before weighing.
- 2. Use Mettler balance (Serial No. 343112) for weighing.
- 3. Label a clean petri dish with the weight of the filter paper. (After samples are filtered, the filter paper will again be dried and weighed to determine weight of precipitate before mounting.)
- 4. Mount weighed filter paper and precipitate on nylon disk using 1" transparent tape to hold filter paper and 2" mylar foil placed over precipitate and held in place with slip-ring. Trim off excess mylar foil and place the mounted sample in a labeled petri dish.
- 5. Fill out corresponding loading sheets and place samples in counting room.

## Calculations

## Part A

Strontium-90 Concentration (pCi/g dry) = ``

| Α                        |   | $2\sqrt{\frac{2}{E_{sb}}+\frac{2}{E_b}}$ |
|--------------------------|---|------------------------------------------|
| 2.22 x B x C x D x E x F | - | 2.22 x B x C x D x E x F                 |

#### Where:

- A = Net beta count rate of yttrium 90 (cpm)
- B = Recovery of yttrium carrier
- C = Counter efficiency for counting yttrium-90 or yttrium oxalate mounted on a 2.4 cm diameter filter paper (cpm/dpm)
- D = Sample weight (grams), dry
- E = Correction factor  $e^{-\lambda t}$  for yttrium-90 decay, where t is the time from the time of decantation (Step 4, Separation) to the time of counting
- $F = Correction factor 1-e^{-\lambda t}$  for the degree of equilibrium attained during the yttrium-90 ingrowth period, where t is the time from collection of the water sample to the time of decantation (Step 4, Separation)
- E<sub>sb</sub> = Counting error of sample plus background
- $E_b$  = Counting error of background

## Part B

Strontium-89 Concentration (pCi/g dry) =

$$\frac{1}{2.22 \times B \times C} \left[ \frac{A}{D \times E} - F (G \times H + I \times J) \right] \pm \frac{2\sqrt{E_{sb}^2 + E_b^2}}{2.22 \times B \times C \times D \times E \times F}$$

Where:

- A = Net beta count rate of "total radiostrontium" (cpm)
- B = Counter efficiency for counting strontium-89 as strontium carbonate mounted on a 2.4 cm diameter filter paper (cpm/dpm)

C = Correction factor  $e^{-\lambda t}$  for strontium-89 decay, where t is the time from sample collection to the time of counting

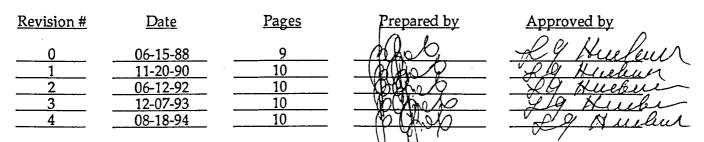
D = Recovery of strontium carrier

E = Sample weight (grams), dry

- F =Strontium-90 concentration (pCi/g dry) from Part A
- G = Self-absorption factor for strontium-90 as strontium carbonate mounted on a 2.4 cm diameter filter, obtained from a selfabsorption curve prepared by plotting the fraction of a standard activity absorbed against density thickness of the sample (mg/cm<sup>2</sup>)
- H = Counter efficiency for counting strontium-90 as strontium carbonate mounted on a 2.4 cm diameter filter paper (cpm/dpm)
- I = Counter efficiency for counting yttrium-90 as yttrium oxalate mounted on a 2.4 cm diameter filter paper (cpm/dpm)
- J = Correction factor  $1-e^{-\lambda t}$  for yttrium-90 ingrowth, where it is the time from the last decantation of the nitric acid (Step 4, Separation)
- REFERENCE: Radioassay Procedures for Environmental Samples, U. S. Department of Health, Education, and Welfare. Environmental Health Series, January 1967.



BROWN ENGINEERING ENVIRONMENTAL SERVICES MIDWEST LABORATORY 700 LANDWEHR ROAD NORTHBROOK, ILLINOIS 60062-2310 708) 564-0700 • FAX 708) 564-4517


## DETERMINATION OF SR-89 AND SR-90 IN MILK

## (ION EXCHANGE BATCH METHOD)

PROCEDURE NO. TIML-SR-07

Prepared by Teledyne Isotopes Midwest Laboratory

Copy No.



(This procedure, or any portion thereof, shall not be reproduced in any manner or distributed to any third party without the written permission of Teledyne Isotopes Midwest Laboratory.)

## DETERMINATION OF SR-89 AND SR-90 IN MILK (ION EXCHANGE BATCH METHOD)

## Principle of Method

A citrate complex of strontium carrier at the pH of milk is added to the milk sample. Strontium, barium, and calcium are absorbed on the cation-exchange resin.

Strontium, barium, and calcium are eluted from the cation-exchange resin with sodium chloride solution. Following dilution of the eluate, the alkaline earths are precipitated as carbonates. The carbonates are then converted to nitrates. Strontium is purified by Argonne method (modified at Teledyne Isotopes Laboratory in Westwood, NJ, and TIML) using three grams of extraction material in a chromatographic column. Yttrium carrier is added and a sample is stored for ingrowth of yttrium-90. The yttrium is again precipitated as hydroxide and separated from strontium with the strontium being in the supernate. Each fraction is precipitated separately as an oxalate (yttrium) and carbonate (strontium) and collected on No. 42 (2.4 cm) Whatman filter for counting.

The concentration of Sr-89 is calculated as the difference between the activity for "total radiostrontium" and the activity due to Sr-90.

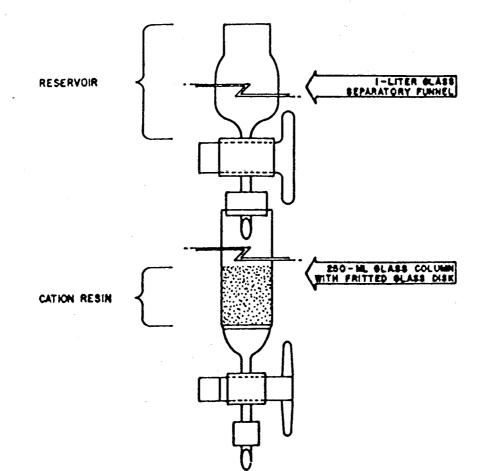
#### <u>Reagents</u>

Ammonium hydroxide, NH4OH: concentrated (15<u>N</u>) <u>Carrier solutions</u>: Sr<sup>+2</sup> as strontium nitrate, Sr(NO3)2: 20mg Sr<sup>+2</sup> per mL Y<sup>+3</sup> as yttrium nitrate, Y(NO3)3: 10 mg Y<sup>+3</sup> per mL <u>Cation-exchange resin</u>: Dowex 50W-X8 (Na<sup>+</sup> form, 50-100 mesh) <u>Citrate solution</u>: pH 6.5 <u>DI water</u> <u>Ethyl alcohol</u>, C2H5OH: 95% <u>Hydrochloric acid</u>, HCI: 6<u>N</u> <u>Nitric acid</u>, HNO3: 3N <u>Oxalic acid</u>, H2C2O2·2H2O: 2<u>N</u> <u>Sodium carbonate</u>, Na2CO3: 3<u>N</u> <u>Sodium chloride</u>, NaCl: 4<u>N</u> <u>Silver nitrate</u>, AgNO3: 1<u>N</u> <u>Strontium Spec Resin</u>

## TIML-SR-07-2



Ion-exchange system: The apparatus for this system is illustrated in Figure Sr-07-1. At the top is a 1-liter glass separatory funnel which serves as the reservoir. Below it is connected a 250 mL glass column, 5 cm in diameter and 25 cm long, which services as the cation column. Column has extra coarse, fritted glass disc at the bottom.


Millipore filtering apparatus (Pyrex Hydrosol Microanalysis Filter Holder)

Chromatographic Column

3

Preparation and regeneration of cation resin:

- 1. Wash 170 mL of Dowex 50W resin to fill the cation column.
- 2. Pass 500 mL of 1<u>N</u> NaOH through the column at a flow rate of 10 mL/minute.
- 3. Rinse with 500-1000 mL of H<sub>2</sub>O.
- 4. Test effluent with AgNO3. If effluent is clear, the resin is ready for milk.



# Figure SR-07-01

## <u>Part A</u>

Total Radiostrontium (Sr-89, -90 Separation)

## <u>Procedure</u>

- 1. Place 1 liter of milk in 4 liter beaker.
- 2. Pipette <u>1.0 mL</u> of strontium carrier solution into <u>10 mL</u> of citrate solution. Swirl to mix .
- 3. Transfer the mixture quantitatively to the milk with 5 mL of DI water.
- 4. Add a clean magnetic stirring bar to each sample beaker. Stir each sample for 5 minutes or longer on a magnetic stirrer. Allow sample to equilibrate at least 1/2 hour. If a milk sample is curdled or lumpy, vacuum filter the sample through a Buchner funnel using a cheesecloth filter. Wash the curd thoroughly with deionized water, collecting the washings with the filtrate. Pour the filtrate back into the original washed and labeled 4-liter beaker and discard the curd.
- 5. Add approximately 170 mL of Dowex 50Wx8 (50-100 mesh) cation resin to each sample beaker and stir on a magnetic stirrer for 2 hours. Turn off the stirrer and allow the resin to settle for 10 minutes.

3

3

- 6. Gently decant and discard the milk sample, taking care to retain as much resin as possible in the beaker. Add approximately 1 liter of deionized water to rinse the resin, allow to settle 2 minutes, and pour off the rinse. Repeat rinsing until all traces of milk are removed from the resin.
- 7. Using a DI water wash bottle, transfer the resin to the column marked with the sample number. Allow resin to settle 2 minutes and drain the standing water.
- 8. Connect 1-liter separatory funnel containing 1 liter of 4<u>N</u> NaCl to the cation column. Allow the solution to flow at 10 mL/minute to elute the alkali metal and alkaline earth ions and to recharge the column. Collect 1 liter of eluate into a 2-liter beaker, but leave the resin covered with 2-3 mL of solution.
- 9. Wash the column with 500 mL of H<sub>2</sub>O or more to remove excess NaCl. Discard the wash.
- 10. Remove 20 mL of the NaCl eluate into a small bottle for the determination of stable calcium, if required (see procedure on calcium determination).
- 11. Dilute the eluate to 1500 mL with DI water.
- 12. Heat the solution to 85-90°C (near boiling on a hot plate) and add, with constant stirring, 100 mL of 3N Na<sub>2</sub>CO<sub>3</sub>. Cover with watch glass. Let stand overnight.
- 13. Decant most of the supernate to waste. Transfer the precipitate to a 250 mL centrifuge bottle with DI water.
- Centrifuge. Pour off the supernate to waste. Dry the precipitate in an oven at 100°C for 1-2 hours. Cool.

3

3

15. Dissolve the precipitate in 30 mL 3<u>M</u> HNO3.

## TIML-SR-07-5

- 16. Place each sample centrifuge tube in front of a SR extraction column. Write sample numbers on gummed labels and attach to the corresponding columns.
- 17. Condition columns by passing 30 mL 3<u>M</u> HNO3 through them with the stopcocks fully open. Catch effluent in a waste beaker.
- 18. Add sample from the beaker into the correspondingly numbered column.

NOTE: Use no water to make this transfer. Use only 3M HNO3 to rinse out the beaker.

Allow the sample to pass through the column. Catch effluent in a waste beaker.

- 19. When the column reservoir is drained, measure 70 mL 3M HNO3 in a graduated cylinder and pass through the column to rinse. Catch effluent in a waste beaker. When the column is drained, <u>RECORD THE DATE AND TIME ON THE WORK SHEET AS THE BEGINNING OF Y-90 INGROWTH.</u>
- 20. Write the sample number on a clean 150 mL beaker. Place it under the column after the rinse solution has drained. Discard the contents of the waste beaker.
- 21. Elute strontium by adding 70 mL DI water to the column. Catch effluent in the 150 mL beaker.
- 22. When the elution is complete, add 1.00 mL standardized yttrium carrier to the numbered sample beaker using an Eppendorf pipet.
- 23. Place sample beaker on a moderate hotplate and evaporate gently to approximately 10 mL volume. Remove beaker from hotplate and allow to cool.
  - <u>NOTE</u>: If the sample accidentally evaporates to dryness, allow it to cool, then add a few drops HNO3 and approximately 10 mL DI water. Warm gently and swirl to dissolve residue.
- 24. Mark the sample number on a 40 mL centrifuge tube. Transfer the sample using the minimum amount of DI water.
- 25. Seal the sample tube with parafilm and place in a rack to stand for a minimum 5-day period for Y-90 ingrowth.
- 26. Rinse the SR extraction columns with an additional 70 mL DI water. Catch effluent in a waste beaker. Leave the columns wet with DI water, with the stopcocks closed.
- 27. Enter column number, date, and sample number in the SR Column Log.

## <u>Separation</u>

- 1. After storage (ingrowth period), heat the 40mL centrifuge tube containing the sample in the hot water bath (approximately 90°C) for 10 minutes.
- 2. Adjust pH to 8.0-8.5 with NH4OH, stirring continuously.
- 3. Cool in a cold water bath and centrifuge for 5 minutes.
- 4. Decant the supernate into a 40mL centrifuge tube marked with the sample number and "SR-89." <u>RECORD THE DATE AND TIME OF DECANTATION AS THE END OF Y-90</u> <u>INGROWTH IN SR FRACTION AND THE BEGINNING OF ITS DECAY IN Y-90</u> <u>FRACTION.</u>
- 5. Redissolve the precipitate by adding 3-4 drops of 6<u>N</u> HCl and add 5-10 mL of DI water with stirring.
- 6. Repeat Steps 1, 2, and 3.
- 7. Combine supernate with the one in Step 4.
- 8. Wash the precipitate <u>twice</u> with 20mL portions of DI Water. Centrifuge each time and discard supernate.
- 9. Proceed with determination.

3

3

## Determination

#### A. Strontium-90 (Yttrium-90)

Add 3 drops of 6<u>N</u> HCl to dissolve the precipitate from Step 4, Separation; then add 5-10 mL of DI water. Heat in a water bath at approximately 90°C for about 10 minutes. Add 1 ml of saturated oxalic acid solution dropwise with vigorous stirring. Adjust to a pH of 2-3 with NH4OH. Allow the precipitate to digest for approximately one hour.

NOTE: Do Part "B" while precipitate is digesting.

- 2. Cool to room temperature in a cold water bath. Centrifuge for 10 minutes and decant most of the supernate to waste. Filter by suction on a weighed 2.5 cm filter paper. Wash the precipitate with <u>water</u> and <u>alcohol</u>.
- 3. Dry the precipitate under the lamp for 30 minutes. Cool and weigh. Mount and count in a proportional counter. (See Part C for mounting.)

## B. <u>Strontium-89 (Total Strontium</u>)

- 1. Heat the solution from Step 7, Separation, in water bath.
- 2. Adjust the pH to 8-8.5 using NH4OH.
- 3. With continuous stirring, add 5 mL of 3<u>N</u> Na<sub>2</sub>CO<sub>3</sub> solution. Stir until precipitate appears. Heat gently for 10 minutes.
- 4. Cool and filter on a weighed No. 42 (2.4 cm) Whatman filter paper.
- 5. Wash precipitate with <u>water</u> and <u>alcohol</u>.
- 6. Dry the precipitate under the lamp for 30 minutes. Cool and weigh. Mount and count in a proportional counter. (See Part C for mounting.)

## C. Filtering and Mounting

- 1. Place filters under heat lamps for 30 minutes before weighing.
- 2. Use Mettler balance (Serial No. 343112) for weighing.
- 3. Label a clean petri dish with the weight of the filter paper. (After samples are filtered, the filter paper will again be dried and weighed to determine weight of precipitate <u>before</u> mounting.)
- 4. Mount weighed filter paper and precipitate on nylon disc using 1" transparent tape to hold filter paper and 2" mylar foil placed over precipitate and held in place with slip-ring. Trim off excess mylar foil and place the mounted sample in a labeled petri dish.
- 5. Fill out corresponding loading sheets and place samples in counting room.

## TIML-SR-07-8

## Calculations

Part A

Strontium-90 Concentration (pCi/L) =  $\frac{A}{2.22 \times B \times C \times D \times E \times F \times G}$ 

Where:

- 2.22 = dpm/pCi
  - A = Net beta count rate of yttrium-90 (cpm)
  - B = Recovery of yttrium carrier
  - C = Recovery of strontium carrier
  - D = Counter efficiency for counting yttrium-90 as yttrium oxalate mounted on a 2.4 cm diameter filter paper (cpm/dpm) [4]
  - E = Sample volume (liters)
  - $F = Correction factor e^{-\lambda t}$  for yttrium-90 decay, where t is the time from the time of decantation (Step 4, Separation) to the time of counting
  - $G = Correction factor 1-e^{\lambda t}$  for the degree of equilibrium attained during the yttrium-90 ingrowth period, where t is the time from the beginning of ingrowth (Step 19, Total Radiostrontium Separation) to the time of decantation (Step 4, Separation)

Lower Limit of Detection (LLD), at 4.66 sigma

LLD for Sr-90: 1 pCi/L. LLD is based on the following typical parameters: Sample Size: 1 L Recovery (Sr and Y): 0.6 Decay Factor (Y-90): 0.8 Ingrowth Factor (Y-90): 0.6 Counter Efficiency: 0.4 Counter Background: 0.3cpm Counting Time: 100 minutes

4

(Changes in any of the above parameters will change LLD correspondingly.)

## <u>Part B</u>

Strontium-89 Concentration (pCi/L) = 
$$\frac{1}{2.22 \times B \times C} \left[ \frac{A}{D \times E} - 2.22 \times F(G + H \times I) \right]$$

Where:

2.22 = dpm/pCi

- A = Net beta count rate of "total radiostrontium" (cpm)
- B = Counter efficiency for counting strontium-89 as strontium carbonate mounted on a 2.4 cm diameter filter paper (cpm/dpm) 4
- $C = Correction factor e^{-\lambda t}$  for strontium-89 decay, where t is the time from sample collection to the time of counting
- D = Recovery of strontium carrier
- E = Sample volume (liters)
- F =Strontium-90 concentration (pCi/liter) from Part A
- G = Counter efficiency for counting strontium-90 as strontium carbonate mounted on a 2.4 cm diameter filter paper (cpm/dpm)
- H = Counter efficiency for counting yttrium-90 as yttrium oxalate mounted on a 2.4 cm diameter filter paper (cpm/dpm)
- I = Correction factor  $1 e^{-\lambda t}$  for yttrium-90 ingrowth, where t is the time from the last decantation of the nitric acid (Step 4, Separation) to the time of counting

## Lower Limit of Detection (LLD), at 4.66 sigma

LLD for Sr-89: 2. 0 pCi/L. LLD is based on the following typical parameters: Sample Size: 1 L Recovery: 0.7 Decay Factor: 0.5 Counter Efficiency: 0.3 Counter Background: 0.3 cpm Counting Time: 100 minutes LLD for Sr-90: 1 pCi/L

4

4

4

(Changes in any of the above parameters will change LLD correspondingly.)

REFERENCES: <u>Radioassay Procedures for Environmental Samples</u>, U. S. Department of Health, Education, and Welfare. Environmental Health Series, January 1967.

Horwitz, Dietz, Fisher, Analytical Chemistry, 63 (5), March 1991.

## TIML-SR-07-10



MOWEST LABORATORY

700 LANOWENR ROAD

NORTHEROOK, ILLINOIS 60082-2118

(312) 584-0700 FAX (312) 564-4617

PROCEDURE FOR COMPOSITING WATER AND MILK SAMPLES

PROCEDURE NO. TIML-COMP-01

Prepared by

Teledyne Isotopes Midwest Laboratory

Copy No. \_\_\_\_\_

| Revised<br>Pages | Revision<br>No. | Date     | Pages    | Prepared by | Approved by                |
|------------------|-----------------|----------|----------|-------------|----------------------------|
|                  | 0               | 11-07-88 | 2        | js. Grob    | Approved by<br>RP Herebure |
| <u></u>          |                 | ·        |          |             |                            |
|                  |                 |          | <u> </u> |             |                            |
|                  |                 |          |          |             |                            |

(This procedure, or any portion thereof, shall not be reproduced in any manner or distributed to any third party without the written permission of Teledyne Isotopes Midwest Laboratory.)

## TIML-COMP-01

Revision 0, 11-07-88



## Procedure for Compositing Water and Milk Samples

- 1. At the beginning of each composite period, (month, quarter, semi-annual), prepare a one-gallon cubitainer for a specific location and time-period.
- 2. Remove an equal aliquoit of original sample (for example, one liter) and transfer to prepared cubitainer. Do this for each week, month, etc. Mark date of original sample on prepared cubitainer.
- 3. When prepared container is complete, give the sample to the recording clerk for assigning a number.
- 4. Analyze according to the client requirement.



MIDWEST LABORATORY

700 LANDWEHR ROAD

NORTHBROOK, ILLINOIS 60062-2310

(312) 564-0700 FAX (312) 564-4517

## DETERMINATION OF STABLE CALCIUM IN MILK

PROCEDURE NO. TIML-CA-01

Prepared by

## Teledyne Isotopes Midwest Laboratory

Copy No.

| Revision No. | Date              | Pages   | Prepared by | Approved by |
|--------------|-------------------|---------|-------------|-------------|
| 0            | 07 <b>-0</b> 8-88 | 4       | B. Job      | La Duchun   |
|              |                   |         |             |             |
|              |                   | <u></u> |             |             |
|              |                   |         |             |             |

(This procedure, or any portion thereof, shall not be reproduced in any manner or distributed to any third party without the written permission of Teledyne Isotopes Midwest Laboratory.)

#### TIML-CA-01

## Determination of Stable Calcium in Milk

## Principle of Method

Strontium, barium, and calcium are absorbed on the cation-exchange resin, then eluted with sodium chloride solution. An aliquot of the eluate is diluted to reduce the high sodium ion concentration. From this diluted aliquot, calcium oxalate is precipitated, dissolved in dilute hydrochloric acid, and the oxalate is titrated with standardized potassium permaganate.

#### Reagents

Ammonium hydroxide, NH40H: 6<u>11</u> Ammonium oxalate, (NH4)<sub>2</sub>C<sub>2</sub>O<sub>4</sub>.H<sub>2</sub>O: 0.03<u>N</u> Carrier solutions: Ba<sup>+2</sup> as barium nitrate, Ba(NO<sub>3</sub>)<sub>2</sub>: 20 mgBa<sup>+2</sup> per ml Sr<sup>+2</sup> as strontium nitrate, Sr(NO<sub>3</sub>)<sub>2</sub>: 20 mg Sr<sup>+2</sup> per ml <u>Cation-exchange resin</u>: Dowex 50W-X8 (Na<sup>+</sup> form, 50-100 mesh) <u>Citrate solution</u>: <u>3N</u> (pH 6.5) <u>Hydrochloric acid</u>, H<sub>2</sub>C<sub>2</sub>O<sub>4</sub>.2H<sub>2</sub>: <u>IN</u> <u>Potassium permanganate</u>, KMnO<sub>4</sub>: 0.05<u>N</u> standardized <u>Sodium chloride</u>, NaCI: <u>4N</u> <u>Sodium oxalate</u>, Na<sub>2</sub>C<sub>2</sub>O<sub>4</sub>:

#### Apparatus

Burette

## Procedure

- 1. Follow the TIML-SR-01 or SR-07 procedures, Steps 1-10.
- 2. Into a 40 ml glass centrifuge tube, pipette 10 ml aliquot of the initial eluate collected in Step 10.
- 3. Dilute the 10 ml aliquot to approximately 20 ml with D.I. water.
- 4. Heat in a hot water bath. Add 5 ml of 1N oxalic acid, and stir. While hot, adjust to pH 3 with 6N NH4OH (use a pH meter) to precipitate calcium oxalate. Cool slowly to room temperature, centrifuge, and discard the supernate.

TIML-CA-01

## Procedure (continued)

- 5. Thoroughly wash the precipitate and the wall of the centrifuge tube, using not more than 5 ml of 0.03N ammonium oxalate. Centrifuge, and discard the supernatant.
- 6. Wash the precipitate with 10 ml of hot D.I. water. Cool to room temperature, centrifuge, and discard the supernate. (A stirring rod may be used to agitate the precipitate while it is being washed. It is important to remove all excess oxalic acid from the precipitate.)
- 7. Dissolve the precipitate in approximately 2.5 ml of 6N HCl. Heat in hot water bath for 5 minutes.
- 8. Dilute the acid solution to approximately 10 ml with D.I. water. Quantitatively transfer it to a 125 ml Erlenmeyer flask, rinsing the centrifuge tube with D.I. water.
- 9. Add an additional 1 ml of 6N HCl, and adjust the volume of solution to approximately 25 ml with D.I. water. Heat to near boiling.
- 10. While hot, titrate with standardized 0.05N KMnO4 to the first faint pink endpoint which persists for at least 30 seconds.

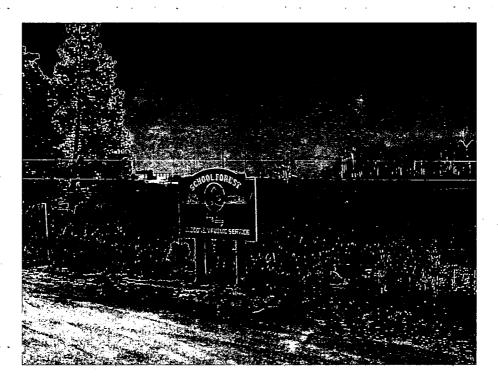
Calculations

Where:

A = Volume of KNnO4 solution used for titration (ml) B = Normality of standardized KMn4 solution (mg/ml) C = Milli-equivalent weight of calcium (mg/meg) D = Sample volume (ml)

Since the sample size is 10 ml and the milli-equivalent weight of calcium is 20 mg, the equation reduces to:

Calcium (g/liter) - A x B x 2


## Evaluation of Data

The standard deviation of replicate analyses has been determined to be  $\pm 0.02$  g/liter.

Reference: Radioassay Procedures for Environmental Samples, U.S. Department of Health, Education and Welfare. Environmental Health Series, January 1967.

# **ANNUAL REPORT PART III**

# PROGRAM SELF-ASSESSMENT AND PROGRAM CHANGES



Kewaunee's School Forest Project and wetlands restoration project south of the plant

## Kewaunee Nuclear Power Plant Annual Radiological Environmental Monitoring Report

## ANNUAL REPORT – PART III INCIDENT REPORTS

January - December 1998

Section 2.4.1.c of the Kewaunee Radiological Environmental Monitoring Manual (REMM) states in part:

"The annual Radiological Environmental Monitoring Report shall include...discussion of all deviations from the sampling schedule of Table 2.2.1-A..."

The following is a description of four events that occurred during 1998, which deviated from the requirements of the sampling schedule of Table 2.2.1-A:

- 1. On 3/10/98, environmental air sampler K-7 was discovered not operating. There was power to the sampling station but the sample pump motor was not operating. The motor had failed and was subsequently repaired. Total out-of-service time was 191.75 hours. (KAP-1574)
- 2. On 3/24/98, environmental air sampler K-1f was found not running. An investigation found that Plant Electricians had shut off electric power to the meteorological tower for routine breaker maintenance. That action caused a loss of power to the air sampler located at the tower. Total out-of-service time was 6.0 hours. (KAP-1604)
- 3. On 5/19/98, environmental air sampler K-2 was found not operating properly; the hour meter was not advancing even though the air sampler pump was running. Work Request No. 214197 was issued, the hour meter was replaced and returned to service on 6/25/98. Since this affected only the hour meter and not the pump, continuous sampling was maintained and K-2 was never actually out of service. (KAP-1745)
- 4. On 10/13/98, discovered that the run-time hour total for environmental air sampler K-15 was 24 hours less than what it should have been for the week. Inspected the air sampler, but all equipment appeared to be operating properly. Since he shortage of hours could not be explained it is assumed there had been a spurious power interruption. Total out-of-service time was conservatively calculated to be 24.0 hours. (KAP-2114)