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NUCLEAR REGULATORY COMMISSION REPORT DISCLAIMER

IMPORTANT NOTICE REGARDING CONTENTS AND USE OF THIS
’ DOCUMENT

PLEASE READ CAREFULLY

This technicai report was derived through research and development programs
sponsored by Advanced Nuclear Fuels Corporation. It is being submitted by Ad-
vanced Nuclear Fuels Corporation to the U.S. Nuclear Regulatory Commission
as part of a technicai contribution to facilitate safety analyses by licensees of the
U.S. Nuciear Regulatory Commission which utilize Advanced Nuclear Fuels
Corporation-fabricated reload fuel or other technical services provided by Ad-
vanced Nuclear Fuels Corporation for light water power reactors and it is true and
correct to the best of Advanced Nuclear Fuels Corporation’s knowledge, informa-
tion, and belief. The information contained herein may be used by the U.S.
Nuclear Regulatory Commission in its review of this report, and under the terms
of the respective agreements, by licensees or applicants before the U.S. Nuclear
Regulatory Commission which are customers of Advanced Nuclear Fuels Cor-
poration in their demonstration of compliance with the U.S. Nuclear Regulatory
Commission’s regulations.

Advanced Nuolear Fuels Corporation’'s warranties and representations concern-
ing the subject matter of this document are those set forth in the agreement bet-
ween Advanced Nuciear Fuels Corporation and the customer to which this docu-
ment is issued. Accordingly, except as otherwise expressly provided in such
agreement, neither Advanced Nuclear Fueis Corporation nor any person acting
on its behalf:

A. Makes any warranty, or representation, express or im-
plied, with respect to the accuracy, completeness, or use-
fulness of the information contained in this document, or
that the use of any information, apparatus, method, or pro-
cess disclosed in this document will not infringe privately
owned rights, or

B8 Assumes any liabilities with respect to the use of, or for
damages resuiting from the use of, any information, ap-
paratus, method. or process disclosed in this document.

XN-NF-FQ0-766 (1/87)
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1.0 INTRODUCTION AND_SUMMARY

This document presents analytical results for a postulated large break
loss-of-coolant accidént (LOCA) for the Kewaunee reactor operating with
Advanced Nuclear Fuels (ANF) fuel. The analysis was performed to
determine the axially dependent linear heat generation rate (LHGR) Timits
for Kewaunee (i.e., the K(Z) curve). The analyses assume a reactor
operating power of 1683 MWt (1650 MWt plus 2% power uncertainty), and use
of Advanced Nuclear Fuels Corporation’s (ANF’s) fuel. The calculations
were made for the double-ended cold leg guillotine break with a discharge
coefficient of 0.4 (0.4 DECLG), identified in the previous analyses as the
most limiting break.(1’2’3’4)

The LOCA analyses were performed for a full core of ANF fuel using the
EXEM/PWR ECCS evaluation model(s), with the RODEX2 computer model for
evaluating the rod stored energy and fission gas re]ease.(s) The EXEM/PWR
ECCS evaluation model includes the NRC fuel swelling and flow blockage
model, NUREG-0630.(7) The analyses are applicable to a five percent (5%)
average steam generator (SG) tube plugging. The maximum allowable linear
heat generation rate (including the 1.02 factor for power uncertainty) is
14.76 kW/ft, corresponding to a maximum total power peaking factor of 2.28
(FXH), and nuclear enthalpy rise of 1.55 (EIH).(4)

The present LOCA-ECCS analyses were performed with three axial power
shapes to bound the power distributions anticipated to occur. The first
profile was cosine shaped. The last two profiles were a
beginning-of-cycle (BOC) slightly top skewed cosine shape, and
end-of-cycle (EOC) heavily top skewed shape. Al11 of the cases analyzed
used a conservative burnup corresponding to peak stored energy. These
power shapes are shown in Figure 1.1 and compared to the FE(Z) limit.

The calculational basis and results of the present analysis are summarized
in Table 1.1. The maximum calculated PCT is equal to 2025°F, and occurs
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at 54 seconds from the start of the transient at a location 6.0 feet from
the bottom of the active core, with a total metal-water reaction less than
one percent. The 2025°F PCT result includes a +59°F temperature
correction to allow for the use of NRC interim upper plenum injection
mode1(8) as modified by Westinghouse.(g)

The results of the analyses show that for breaks up to and including the
double-ended severance of a reactor cold leg coolant pipe, the Kewaunee
nuclear reactor and the Emergency- Core Cooling System will meet the
Acceptance Criteria as presented in 10 CFR 50.46.(10) The analyses cover
operation at the rated system power with steam generator tube plugging up
to 5% and with- the 2.28 Fa and 1.55 EZH Timits. The Acceptance Criteria
are as follows:

(1) The calculated peak fuel element clad temperature does not exceed the
2200 F limit.

(2) The amount of fuel element cladding that reacts chemically with water
or steam does not exceed 1 percent of the total amount of zircaloy in
the reactor.

(3) The cladding temperature transient is terminated at a time when the
core geometry is still amenable to cooling. The hot fuel rod
cladding oxidation limits of 17% are not exceeded during or after
quenching.

(4) The core temperature is reduced and decay heat is removed for an
extended period of time, as required by the long-Tived radioactivity
remaining in the core.




Table 1.1 Kewaunee LOCA-ECCS Analysis Results - K(Z)

Analysis Results Cosine BOC

Peak Clad Temperature (PCT), °F* 2025 1959 1996

APCT for UPL1, °F 59 5 -4

Time of PCT, sec. ‘ 54 168 178

Peak Clad Temperature Location, ft. 6.0 10.9 11.13

Local Zr/HZO Reaction (max.), %** 2.6 3.0 3.6 .

Local Zr/HZO Location, ft. from bottom 6.0 10.9 11.13 '

Total H2 Generation, % of Total Zr Reacted 1.0 1.0 1.0

Hot Rod Burst Time, sec. : ‘ 38.6 42.0 43.3

Hot Rod Burst Location, ft. | 6.0 | 7.63 | 10.13 o

Peak Power lLocation, ft. 6.0 7.63 10.13

Calculational Basis

License Core Power, MWt 1650 1650 1650

Power Used for Analysis, MWt*** 1683 1683 1683

Peak Linear Power for Analysis, kW/ft¥** 14.76 14.4 14.0

Total Peaking Factor, Fi 2.28 2.23 2.16 ®

Enthalpy Rise, Nuclear, Fy 1.55 1.79 1.55

Steam Generator Tube Plugging (%) 5.00 "~ 5.00 5.00 © =
s =
2T
S &

* Includes APCT for UPI "'%

**  Computer value at 380 seconds .
***  Including 1.02 factor for power uncertainties
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2.0 LIMITING BREAK LOCA ANALYSIS

This report provides the results of a LOCA-ECCS analysis performed for
Kewaunee with total steam generator tube plugging up to 5%. The analytical
techniques used are in compliance with Appendix K of 10 CFR 50, and are
described in the ANF WREM models(11l), and the Emergency Core Cooling System
Evaluation Model Updates: WREM-I1(12), WREM-11A(13) and EXEM/PWR(5,18),

A LOCA break spectrum analysis was performed for a similar Westinghouse two-
Toop plant, with results reported in XN—NF—78<46(1). The limiting LOCA break
was determined to be a large double-ended guillotine break of the cold leg,
with a discharge coefficient of 0.4 (0.4 DECLG).

2.1 LOCA Analysis Model

The Advanced Nuclear Fuels Corp. EXEM/PWR ECCS evaluation model(5) was used to
perform the analyses. This model consists of the following computer codes:
RODEX2(6) code for initial rod stored energy and internal fuel rod gas
inventory; RELAP4-EM(14) for the system blowdown and hot channel blowdown
ca]cu]ﬁtions; CONTEMPT-LT/22 as modified in CSB 6-1(15) for computation of
containment backpressure; REFLEX(5,7,16) for computation of system reflood;
and TOODEE2(5,7,17) for the calculation of final fuel rod heatup. The quench
and heat transfer coefficient models used in the reflood portion of the
transient are based on the Fuel Cooling Test Facility (FCTF) test data and are
reported in References 18 and 19. The NRC upper plenum injection (UPI)
interim model, developed by the NRC staff(8) and modified by Westinghouse(g),
was utilized.

The Kewaunee nuclear reactor is a two-loop Westinghouse pressurized water
reactor with upper plenum injection and dry containment. The reactor coolant
system is nodalized into control volumes representing reasonably homogeneous
regions, interconnected by flow-paths or “junctions" as described in XN-NF-
77—25(A)(15). The system nodalization is as depicted in Figure 2.1. The hump

e
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performance characteristic curves are supplied by the NSSS vendor. Five
percent of the steam generator tubes are assumed to be plugged in each
generator. The transient behavior was determined from the governing
conservation equations for mass, energy, and momentum. Energy transport,
flow rates, and heat transfers are determined from appropriate correlations.
System input parameters are given in Table 2.1.

The reactor core is modeled with heat generation rates determined from reactor
kinetics equations with reactivity feedback and with decay heating as
required by Appendix K of 10 CFR 50. The LOCA/ECCS analysis presented in this
report supports the current K(Z) function developed by the NSSS vendor for the
portion bf the function defined by the large break LOCA. Where small break
LOCA is limiting, the K(Z) curve is defined such that the Linear Heat
Generation Rates (LHGRs) determined by the NSSS vendor analysis are un-
changed. The K(Z) function is shown in Figure 2.49. The analysis of the loss-
of-coolant accident is performed at 102 percent of rated power. The fuel
design parameters are shown in Table 2.2.

LOCA/ECCS calculations were performed with three axial power shapes to bound
the power distributions anticipated to occur. Two power shapes repre-
sentative of the most top peaked anticipated at BOC and EOC conditions were
chosen from a study of a number of different reactors and cycles. The third
axial power profile analyzed was cosine shaped. The BOC axial power
distribution (Figure 2.2) was analyzed in conjunction with a conservative
value for FZH in excess of the Technical Specification limit. This was done
in order to be able to analyze with a peak Fq at the Technical Specification
limit. The EOC axial power distribution (Figure 2.4) was conservatively
increased in value in the top portion of the core and decreased at the bottom
portion of the core in order to be analyzed with a peak Fg at the Technical
Specification Timit and with an Fly value equal to the Technical Specification
lTimit. A1l cases were analyzed at the burnup corresponding to peak stored
energy. These power shapes are shown in Figure 1.1 and compared to the Fq(Z)
limit.
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2.2 Results

Table 2.3 presents the timing and sequence of events as determined for the
Targe guillotine break with a discharge coefficient of 0.4. Comparison of
these results with the previous LOCA-ECCS analysis for ANF fuel shows very
slight change in the event times. Figures 2.5 through 2.11 present plotted
results for system blowdown ana]ysis(4). Unless otherwise noted on the
figures, time zero corresponds to the time of break initiation. Figure 2.12
presents calculated containment backpressure time history(4). Figures 2.13
through 2.30 present results for the hot channel blowdown calculations.
Figures 2.31 through 2.33 show the normalized power calculation results. The
reflood calculation results are shown in Figures 2.34 through 2.45.

The maximum peak cladding temperature (PCT) calculated for the 0.4 DECLG break
with a cosine shape is 20259F (Figure 2.46). This value includes a +590F
temperature correction associated with the use of the NRC interim upper plenum
injection (UPI) model as modified by Westinghouse. The maximum local metal-
water reaction in this case is 2.6% after 380 seconds, and the total core
metal-water reaction is less than 1%. The PCT location is at an elevation of
6.0 feet from the bottom of active core. For ANF fuel with an upskewed BOC
shape, the PCT is 19590F (Figure 2.47) including +59F for UPI effect,
occurring at 10.9 feet elevation relative to the bottom of the active core.
The local metal-water reaction is 3.0%, with a total meta]—watef reaction of
less than 1%. For ANF fuel with a top peaked EOC shape, the PCT is 19960F
(Figure 2.48) including -49F for UPI effect, occurring at 11.1 feet elevation
relative to the bottom of the active core. The local metal-water reaction is
3.6%, with a total metal-water reaction of less than 1%. The peak cladding
temperatures shown in Figures 2.46, 2.47 and 2.48 do not include the UPI
corrections.

o



Table 2.1 °Kewaunee System Data

Primary Heat Output, MWt
Primary Coolant Flow, 1bm/hr
Operating Pressure, psia
In]et Coolant Temperature, °F
Reactor Vessel Volume, ft3

Pressurizer Volume, Total, ft3

Pressurizer Volume, Liquid, ft3
Accumulator Volume, Total, ft3 (each of two)
Accumulator Volume, Liquid, ft3
Accumulator Trip Point Pressure, psia

Steam Generator Secondary Heat Transfer Area, ftz
Steam Generator Secondary F]ow, 1bm/hr

Steam Generator Secondary Pressure, psia

Reactor Coolant Pump Head, ft (Design)

Reactor Coolant Pump Speed, ft (Design)

Moment of Inertia, 1bm-ft2/rad

Cold Leg Pipe, I.D., in.

Hot Leg Pipe, I.D., in.

Pump Suction Pipe, I.D., in.

XN-NF-85-98
Revision 1

1650%
6.82 x 10’
2250

534

2406

1000

600

2000

1250

714.7

48, 925%*
3.56 x 10°
750

277

1190
80,000
27.5

29

3]

* Primary Heat Output used in RELAP4-EM Model = 1.02 x 1650 = 1683 MWt.

** Tpncludes 5% SG tube plugging.




Table 2.2

Cladding, 0.D., in.
Cladding, I.D., in.
Cladding Thickness, in.
Pellet 0.D., in.
Diametral Gap, in.
Pellet Density, % TD

Active Fuel Length, in.

Rod Pitch, in.

Fuel Design Parameters

XN-NF-85-98
Revision 1

0.424
0.364
0.030
0.3565
0.0075
94.0
144.0
0.556
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Table 2.3 Kewaunee LOCA-ECCS Analysis Results,
Event Times

Event | Time (sec.
Start 0.00
Break Initiation .05
Safety Injection Signal .65
Accumulator Injection, Broken Loop 4.8
Accumulator Injection, Intact Loop 8.8
End-of-Bypass 22.7
Safety Injection Flow 25.7
Start of Reflood ‘ 36.9
Accumulator Empties, Intact Loop | 43.1

Peak Clad Temperature Reached -

Cosine 53.0
BOC 168.0
EOC 178.0
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Figure 2.16 Hot Channel Average Fuel Temperature, PCT Node
0.4 DECLG Break, Cosine Shape
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