

Welding and Repair Technology Center – Overview

Greg Frederick, EPRI WRTC Program Manager

Dan Patten, FENOC Program Chair June 21, 2011

Outline - Summary

- Welding & Repair Technology Center (WRTC)
 - WRTC Mission/Strategic Plan
 - Advisory Structure/Meetings
 - Technology Roadmaps/Key Areas

WRTC Strategic Plan

- WRTC balances fundamental research (long-term) with tactical projects (short-term)
 - WRTC focus on tactical support and short-term, utilityrequested R&D.
 - emergent repair needs
 - code cases
 - repair and welding process optimization
 - information exchange
 - Apply resources toward <u>proactive</u> resolution of major industry gaps & development of advanced solutions
 - Collaborations to develop and deploy materials joining and repair fundamental solutions
 - Align WRTC resources, program objectives, and projects for long term research

WRTC Strategic Plan

- WRTC Strategic Plan (Roadmaps)
 - Technology gaps were identified in the area of welding and repair
 - Six areas were highlighted for further development
 - Three roadmaps address fundamental R&D
 - Develop new welding technology and guidance for the repair of highly irradiated material (PWR and BWR Internals)
 - 2. Alloy 52M Nickel-base filler metal weldability solution
 - Develop a new SCC resistant nickel based or alternative alloy with high weldability for dissimilar metal weld applications

WRTC Strategic Plan

- Three roadmaps address tactical applications
 - Development & Implementation of Advanced Welding Technologies
 - Residual Stress Assessment Solutions
 - Welding Impact on Inspectability
 - Production Rates
 - 5. Small Bore Pipe Asset Management
 - ASME Code Issues and Support White papers and technical bases
- Other Key WRTC Activities
 - Root Cause Analyses
 - Best Practices and Guidelines Benchmarking
 - Information exchange
 - Training Guidelines (Overlay, Failure analyses, Temperbead welding)

WRTC Advisory Structure

- 25 of 26 US Utility Organizations (operating BWR and PWRs) participate in WRTC
- 5 International members
 - EDF France
 - KNHP Korea (New 2011)
 - · COG Canada
 - CEZ NPP (New 2011)
 - British Energy Generation Ltd.

RRAC - WRTC Team

- Program Manager
 - Greg Frederick; (704) 595-2571
 - gfrederi@epri.com
- Welding/Repair & Replacement Activities/New Plant Build
 - <u>Steve McCracken</u>, (704) 595-2627
 - smccracken@epri.com
- Welding/Repair & Replacement Activities/Best Practices
 - **Dana Couch**, (704) 595-2504
 - rcouch@epri.com

- Welding/Repair & Replacement Activities/New Plant Build
 - Eric Willis, (650) 855-2023
 - <u>ewillis@epri.com</u>
- Stress Measurement/Mechanical Technologies/Testing
 - Artie Peterson; (704) 595-2605
 - arpeters@epri.com
- Technical Staff Assistant
 - Stacey Burnett; (704) 595-2673
 - sburnett@epri.com

Welding Technology Conferences

- Established conference series for Welding and Repair Technology
 - Welding and Repair Technology for Power Plants, 9th
 International Conference, Marco Island, FL (2012)
 - Welding and Fabrication Technology for New Power Plants and Components (June 21-24, 2011, Omni Champions Gate, Orlando)
 - Sponsored by WRTC and Fossil Materials Repair (Program 87), Boiler Life and Availability (Program 63), HRSG Dependability (Program 88)

Workshops Planned for 2011 Conference

B31.1 Materials, Fabrication, & Examination - Doing It Right

- Discuss the bases for the B31.1 Power Piping Code rules for materials, fabrication, and inspection/examination. Special emphasis will be placed on rules that are different from other ASME Codes
- Course conductor: Philip D. Flenner, PE

Basics of Conducting a Failure Investigation

- Intended to educate the power plant engineer on the proper steps to take when conducting a failure analysis
- Course conductor: Dr. Jude Foulds, P.E., Principal, Clarus Consulting, LLC

Heat Treating Practices for Energy Construction: Quality and Consequences

- Discuss the basics of heat treatment and its growing significance in power construction. Emphasis on material quality and illustration of potential failures in base and weld material
- Course conductor: Gary Lewis and Joe Borror, Superheat FGH

Roadmap – Weldability of Irradiated Material

ISSUE STATEMENT

- Continued operation of light water reactors will require repairs or replacement of reactor internal components as degradation occurs (Welding will play an important role)
- Weldability of the materials is altered by the formation of helium (helium-induced cracking)

Roadmap – Weldability of Irradiated Material

Project Objectives and Scope

- Develop advanced welding technology required for reactor repairs
- Collaborate with industry experts to support reactor life extension beyond 60 years
- Development Modeling Simulation to Guide Process Development and Predictive Application on Irradiated Materials
- Validate Processes
 - Hot Lab Welding and Testing
 - · Laser, hybrid, friction stir
 - Neutron Irradiated Sample Set (Standard)

Alloy 52M Nickel-Base Filler Metal Weldability Solutions

Issue.....

- INCONEL 182 (ENiCrFe-3) filler metal extensively used in DMW welds for critical reactor coolant system components
 - Over time 182 is degraded by primary water stress corrosion cracking (PWSCC)
- High Cr filler metal (52M) has high resistant to PWSCC and required for;
 - Mitigation, Repair and Fabrication
- Weldability and crack susceptibility of 52M are complex, requiring
 - Adequate composition limits
 - Narrow weld process controls
 - Isolation of susceptible base materials
 - Adequate experience required

Roadmap - Development of New SCC Resistant Nickel Based or Alternative alloy

ISSUE.....

- Alloys 52 and 52M currently required for DMW repairs
 - High-chromium, nickel-based weld metals developed specifically for their superior resistance to SCC
 - Alloys are susceptible to weld cracking and have less than optimum weldability.
- A new high-chromium welding alloy is needed
 - With desired mechanical properties and corrosion resistance
 - With significantly improvement in weldability and superior resistance to weld cracking.

Development of New SCC Resistant Nickel Based or Alternative alloy

PLAN

- Fundamental research performed to understand cracking mechanisms and weldability problems
- Development of alloy composition
 - Model welding behavior and mechanical properties of target compositions
 - Validate modeled behavior with experimental weld wire heats
 - Perform mechanical, corrosion, and crack growth rate testing
- Assess welding and nondestructive evaluation of alloy composition
 - Assess process parameters for gas tungsten arc and gas metal arc welding
 - Large scale mockups and assessment of nondestructive evaluation
 - Assess feasibility of alternative advanced welding processes (laser welding, magnetic stir, hybrid, etc.)

Roadmap - Development & Implementation of Advanced Welding Technologies

Objectives

- Roadmap for advance welding process and application development
 - residual stress improvements
 - welding impact on inspectability
 - increase production rates

Development of Advanced Welding Processes

- Welding Process Studies
 - Controlled dilution and material interactions (residual stress)
 - Evaluate processes that do not create a molten weld pool
 - Evaluation of weld filler materials interactions
- Advantages compared to traditional welding processes
 - Creation of a wider repair welding window
 - Effectively changing the local stress/strain field to a compression
 - Reduced heat affected zone (HAZ)

Development & Implementation of Advanced Welding Technologies

Magnetic Stir Welding Process Evaluations

- Initial results with overlay configuration with Alloy 52M
 - Show reduction in weld metal grain size
 - Significantly improved NDE (UT) examination capability by reducing ultrasound attenuation
- Work in 2011 will evaluate
 - Potential for reduction in hot cracking
 - Capabilities to address groove welding application for new construction and repair (single sided applications)

Together...Shaping the Future of Electricity