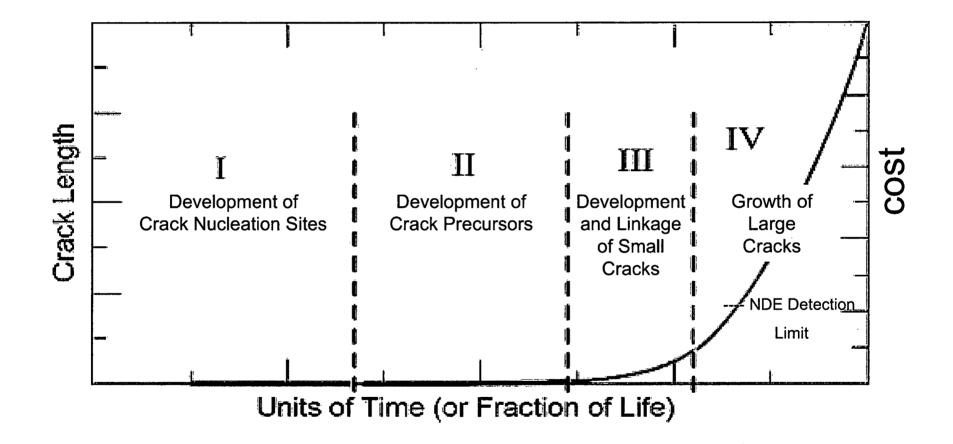


EPEI ELECTRIC POWER RESEARCH INSTITUTE

Materials Degradation Matrix and Issue Management Tables Overview - LTO Update

Robin Dyle Technical Executive, EPRI

NRC/Industry Management Meeting June 21, 2011



Introduction

- Materials Aging Management is Critical to Long Term
 Operation
- Affects Almost All Nuclear Systems
- Must be Addressed Proactively
- Major Focus of EPRI Programs
 - Primary Pressure Boundary (metallic)
 - Nondestructive Examination early detection
 - Cables
 - Concrete

Stages of Environmentally-Assisted Cracking

ELECTRIC POWER RESEARCH INSTITUTE

Integrated Materials Issues Strategic Plan

- Provides Systematic Approach to Managing Materials Issues
 - Identify vulnerabilities
 - Assess condition (inspect & evaluate)
 - Mitigate degradation initiation and propagation mechanism
 - Repair or replace as required
- Approach Used:
 - Degradation Matrix and Issue Management Tables
 - Degradation Matrix and Issues Management Tables
 to be maintained as living documents

Industry Materials Degradation and Issue Management Table Approach

- Develop a fundamental understanding of the degradation phenomena/mechanisms
- Perform operability and safety assessments
- Develop Inspection and evaluation guideline
- Evaluate available mitigation options
- Develop repair & replace options
- Monitor and assess plant operation experience
- Obtain regulatory acceptance

Materials Degradation Matrix (MDM) and Issue Management Tables (IMT) are effective materials aging management tools in support of industry's Materials Degradation and Issue Management Initiative

MDM

IMTs

Materials Degradation Matrix (MDM)

© 2011 Electric Power Research Institute, Inc. All rights reserved.

Materials Degradation Matrix (MDM)

- MDM provides a comprehensive listing of potential degradation mechanisms for existing LWR primary system components
- Assesses the extent to which applicable degradation mechanisms are understood
- Evaluates the state of industry knowledge worldwide associated with mitigation of applicable degradation mechanisms
- Documents the results of an expert elicitation process
- Proactively identifies potential challenges to avoid surprises

MDM Revision 1 Strategic Issues (2008)

- Environmental Effects on Fracture Resistance
- Environmental Effects on Fatigue Life
- SCC of Ni-Base Alloys
- SCC of Stainless Steels
- Effect of Fluence on SCC Susceptibility and SCC Crack Growth Rates

NRC PMDA reached the same conclusions

2010 MDM Revisions

2010 Revisions of the MDM (Rev. 2) address:

- 80-year operations (Long-Term Operations or "LTO")
- Updates on identifying degradation mechanisms
- Recent operating experience
- Industry progress in addressing LWR materials issues
- Most Gaps revised to keep contents up to date

Expert Elicitation

• 2010 MDM expert panel meeting held in Feb at EPRI -Palo Alto offices. Focus Included:

- Long-Term Operations "LTO" (2nd 20-year license renewal term)
- Recent research program results

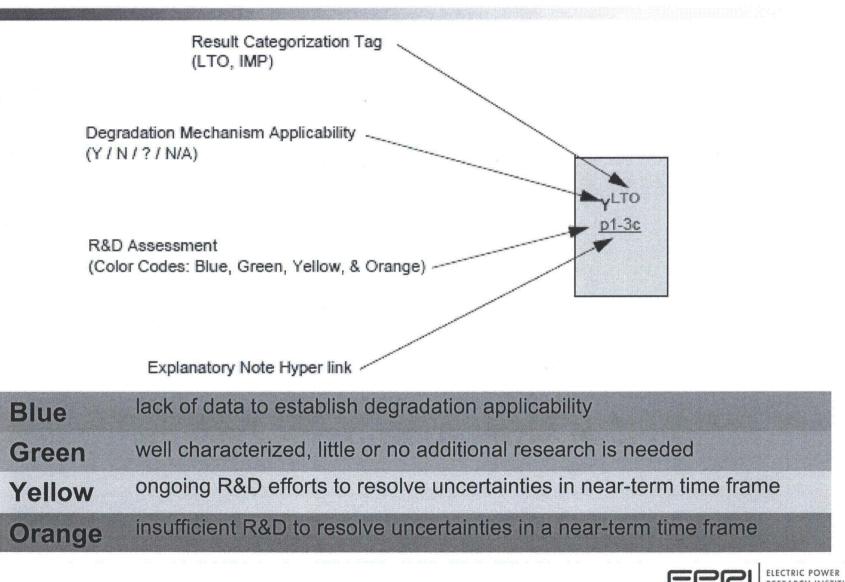
Expert panel:

- Vendors/Industry Experts
 - Scott, Andresen, Sandusky, Fyfitch, Lott, Horn, Lunceford
- Utilities
 - Armson, Covill, Kammerdeiner, Shaw, Whitaker, Wirtz,
- NRC and DOE observers
- EPRI PMs & Contractors (Marks, Eaker)

- <u>-</u>

Identify Strategic Issues in Materials Degradation

• Major LTO issues:


- Increased EOL Neutron Fluence (RPV integrity, high fluence effects on austenitic SS, expanded regions of neutron effects)
- -Increased Fatigue Cycles (with focus on environmental effects)
- -Late-Life SCC Initiation and Stress Improvement Technique Stability
- -Steam Generator Fouling / Corrosion / Long-Term Management

• Other major issues:

- -Effect of environment on fracture properties
- -SCC initiation factors (cold work, welding effects, PWR system oxygen ingress)

Color Chart Presentation of MDM Results

MDM Results---- PWR Reactor Internals

Table 3-2 PWR Reactor Vessel Internals

ng Kang padiatan Kang Kanangan ang pang kanangan sa						D	EGRADA	TION MOI	DE					
	S	cc		Corre	osion		Wear	Fat	igue	and the second se	ction in roperties	Irrac	liation Ef	fects
MATERIAL	IG/TG	А	<u>Wstg.</u>	Pitting	FAC	Foul	Wear	HC	LC- Env.	Th.	Env.	Emb.	VS	IC/SR
SS: 300 Series Base Metal	уLТО <u>p2-1a</u>	уLТО <u>p2-2a</u>	N	N	N	N	Y ^{IMP} p2-7a	уLТО <u>p2-8a</u>	у ^{LTO} <u>p2-9а</u>	N	ү ^{сто} <u>p2-11a</u>	үLTO <u>p2-12a</u>	үLTO <u>p2-13a</u>	үLTO <u>p2-14a</u>
SS: 300 Series Welds & Clad	үLTО <u>p2-1b</u>	YLTO p2-2b	N	N	N	N	N	YLTO p2-8b	YLTO <u>p2-9b</u>	YLTO p2-10b	YLTO <u>p2-11b</u>	YLTO <u>p2-12b</u>	YLTO p2-13b	YLTO p2-14b
CASS	у ^{LTO} <u>p2-1c</u>	2 ^{LTO}	N	N	N	N	N	Y <u>p2-8c</u>	YLTO <u>p2-9c</u>	Y ^{IMP} p2-10c	YET0 p2-11c	YLTO <u>p2-12c</u>	N	N .
Ni-Alloy: Base Metal (A600)	Y ^{IMP} p2-1d	N	N	N	N	N	Y ^{IMP} p2-7d	ү <u>p2-8d</u>	YLTO p2-9d	N	Y <u>p2-11d</u>	N	N	N
Ni-Alloy: X-750	YLTO p2-1f	2LTO p2-2f	N	N	N	N	Y <u>p2-7f</u>	YLTO p2-8f	YLTO <u>p2-9f</u>	N	YLTO <u>p2-11t</u>	?LTO p2-12f	N	N
SS: Precip. Hardened (A-286)	үLTО <u>p2-1</u> д	үLTО <u>p2-2g</u>	N	N	N	N	үLTО <u>p2-7</u> д	үLTO <u>p2-8g</u>	ү ^{сто} <u>р2-9</u> д	усто <u>p2-10g</u>	2LTO <u>p2-11g</u>	YLTO <u>p2-12g</u>	N	үLTО <u>p2-14g</u>
SS: Martensitic	YLTO p2-1h	N	N	N	N	N	Y <u>p2-7h</u>	Y <u>p2-8h</u>	Y ^{LTO} p2-9h	YLTO p2-10h	? <u>p2-11h</u>	N	N	N

© 2011 Electric Power Research Institute, Inc. All rights reserved.

13

ELECTRIC POWER RESEARCH INSTITUTE

EPC

MDM Results for PWR: - Neutron Irradiation Effects

Low Alloy Steels

2008	2010	LTO		
Irradiation embrittlement	Irradiation embrittlement	Irradiation embrittlement		

Austenitic Stainless Steels

2008	2010	LTO
–IASCC	–IASCC	–IASCC
–Irradiation embrittlement	–Irradiation embrittlement	–Irradiation embrittlement
–Void swelling	–Void swelling	–Void swelling

ASTITUTE

High Strength Stainless Steels and Alloy X-750

	2008	2010	LTO
A-286	–IASCC –Irradiation embrittlement	–IASCC –Irradiation embrittlement	–IASCC –Irradiation embrittlement
X-750			–IASCC –Irradiation embrittlement

MDM Results for PWR: - Environmental Effects on

Fatigue Life and Fracture Toughness, Thermal Aging

Environmental Effects on Fatigue Life

2008	2010	LTO
Environmental fatigue	Environmental fatigue	Environmental fatigue

Embrittlement due to Thermal Aging

Materials	2008	2010	LTO
690/52/152	Thermal aging	Thermal aging	
CASS	Thermal aging	Thermal aging	

Environmental Effects on Fracture Property

Materials	2008	2010	LTO
SS Base Metal	Loss Fracture Resistance	Loss Fracture Resistance	Loss Fracture Resistance
SS Weld & Clad	Loss Fracture Resistance	Loss Fracture Resistance	Loss Fracture Resistance
CASS	Loss Fracture Resistance	Loss Fracture Resistance	Loss Fracture Resistance
Ni-Alloys	Loss Fracture Resistance	Loss Fracture Resistance	

© 2011 Electric Power Research Institute, Inc. All rights reserved.

ELECTRIC POWER

MDM Results---- BWR Reactor Internals

Table 4-2 BWR Reactor Vessel Internals

						D	EGRADA	TION MOI	DE					
	S	cc		Corro	osion		Wear	Fat	igue		tion in operties	Irrad	iation E	ffects
MATERIAL	IG/TG	<u>IA</u>	<u>Wstg.</u>	Pitting	FAC	Foul	<u>Wear</u>	HC	LC- Env.	<u>Th.</u>	<u>Env.</u>	<u>Emb.</u>	<u>Vs</u>	IC / SR
SS: Wrought / Forged	yLTO b2-1a	YLTO b2-2a	N	N	. N	Y b2-6a	Y ^{IMP} b2-7a	Y ^{IMP} b2-8a	YLTO b2-9a	N	YLTO b2-11a	yLTO b2-12a	N	Y ^{IMP} b2-14a
SS: Welds & Clad	үLTО <u>b2-1b</u>	YLTO b2-2b	N	N	N	Y <u>b2-6b</u>	Y ^{IMP} b2-7b	Y ^{IMP} b2-8b	YLTO b2-9b	Y <u>b2-10b</u>	2LTO b2-11b	YLTO b2-12b	N	Y <u>b2-14b</u>
CASS	yLTO b2-1c	YLTO b2-2c	N	N	N	N	N	Y ^{IMP} b2-8c	YLTO b2-9c	YIMP b2-10c	2LTO b2-11c	yLTO b2-12c	N	N
Ni-Alloy: Wrought (A600)	YLTO b2-1d	N	N	N	N	N	N	Y ^{IMP} b2-8d	YLTO b2-9d	N	Y b2-11d	N	N	N
Ni-Alloy: Welds & Clad (A82/ 182)	yLTO b2-1e	N ^{LTO} .	N	N	N	N	N	Y ^{IMP} b2-8e	YLTO b2-9e	N	YLTO b2-11e	N	N	N
<u>X-750</u>	YLTO b2-1f	YLTO b2-2f	N	N	N	N	N	YIMP b2-8f	YLTO b2-9f	N	YLJO <u>b2-11f</u>	γLTO <u>b2-12f</u>	N	γLT0 <u>b2-14f</u>
<u>XM-19</u>	YLTO <u>b2-1g</u>	үLTO <u>b2-2g</u>	N	N	N	N	N	Y ^{IMP} b2-8g	YLTO b2-9g	N	2LTO b2-11g	yLTO <u>b2-12g</u>	N	уLTO <u>b2-14g</u>

MDM Results for BWR: - SCC & Neutron Irradiation Effects

SCC of Low Alloy RPV Steels

2008	2010	LTO
IG/TG	IG/TG	IG/TG

SCC of Austenitic Stainless Steels

2008	2010	LTO
IG/TG	IG/TG	IG/TG

Irradiation effects on Low Alloy Steels

2008	2010	LTO
IASCC	IASCC	IASCC
Irradiation embrittlement	Irradiation embrittlement	Irradiation embrittlement

Irradiation effects on Austenitic Stainless Steels

2008	2010	LTO
IASCC	IASCC	IASCC
Irradiation embrittlement	Irradiation embrittlement	Irradiation embrittlement

Irradiation effects on X-750 & X-19 (High Strength)

2008	2010	LTO	
IASCC	IASCC	IASCC	
Irradiation embrittlement	Irradiation embrittlement	Irradiation embrittlement	

E

ELECTRIC POWER

MDM Results for BWR: – Fatigue & Fracture Toughness

Fatigue

Environmental Effects on Fatigue Life

2008	2010	LTO	
Lo-C Env.	Lo-C Env.	Lo-C Env.	

High-C Thermal Fatigue of BWR Piping

2008	2010	LTO		
Hi-C Fat.	Hi-C Fat. ^{IMP}			

Reduction in Fracture Properties

Thermal Aging of CASS

2008	2010	LTO	
Thermal aging	Thermal aging		

Environmental effects on Fracture Toughness

	2008	2010	LTO
SS	RiFP-Env	RiFP-Env	RiFP-Env
Ni-Alloys	RiFP-Env	RiFP-Env	

Issue Management Tables

PWR IMT Update

- Product issued as MRP-205, Rev 2 (1021024)
- 76 Currently Open Gaps (total same as for Rev 1)
 - 16 new R&D gaps identified
 - Majority tied to consideration of longer service life (>60 years)
 - 1 High Priority, 5 Medium Priority, and 10 Low Priority
 - High Priority = P-I&E-22 "Appendix VIII Compliance"
 - 16 previous R&D gaps closed
 - 30 High Priority Items (7 elevated from Medium plus 1 new)

Example IMT – PWR

Table A-1 Issue Management Table: PWR Reactor Pressure Vessel

Component & ID No.	Material	Degradation Mechanism [®]	Conseq. of Failure	Mitigation [®]	Repair / Replace	t & E Guidance	Gaps
1.1 Upper She	I Assembly	/	,	I			I
1.1-1 Upper Sheli Flange (Vessel Flange)	C&LAS/ SS Clad (SA-336 or A/SA-508, Cl 2 or 3)	<u>SCC:</u> IG, IA, TG, LTCP, PW <u>C&W:</u> Wstg, Wear <u>Fat:</u> LC/Th, Env <u>RiT:</u> Th, Emb, Fl	A, B, E, F, G	Water Chemistry <u>TR-105714,</u> Primary Water Chemistry	ASME Sect. XI IWA-4000	Boric Acid Corrosion Control EPRI: <u>1000975</u> , <i>BAC Handbook</i> Vendor: <u>WCAP-15988-NP</u> , <i>BAC Prog.</i> NRC: <u>GL 88-05</u> LC / Env. Fatigue Management EPRI: <u>MRP-148</u> , <i>Fatigue Mannt</i> . <u>MRP-149</u> , <i>Lic. Basis Mon</i> . <u>MRP-149</u> , <i>Lic. Basis Mon</i> . <u>MRP-47</u> , <i>Fatigue Env. Effects</i> NRC: <u>GALL X.M1</u> , <i>Fatigue Mon</i> . <u>NUREGS 6260 & 6583</u> ASME Code Sect. XI <u>IWB-2500-1</u> : <i>B-A (Vol)-R.G. 1.150</i> <i>B-P (VT-2)</i>	DM-01 DM-02 AS-02 AS-27

PWR LTO Summary

- Neutron Fluence Effects
 - RPV embrittlement
 - -SS materials data for >60 years
 - Threshold stress
 - Reduction in toughness
 - Void swelling
 - Impact on core periphery materials
- Fatigue Usage
- Steam Generator Corrosion Limits
 - FAC impact
 - Number of cleaning cycles

BWR IMT Update

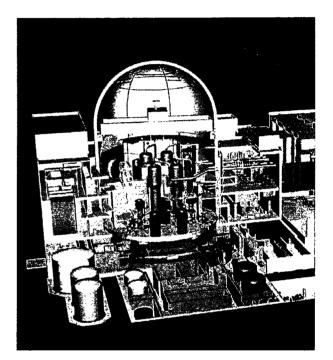
- Product issued as BWRVIP-167NP, Rev 2 (1020995)
- 45 Currently Open Gaps (3 less than for Rev 1)
 - 10 new R&D gaps identified
 - Majority tied to consideration of longer service life (>60 years)
 - 3 High Priority, 4 Medium Priority, and 3 Low Priority
 - High Priority = B-AS-29 "Steam Dryer Evaluation Methodology"
 - 13 previous R&D gaps closed
- 18 High Priority Items (4 elevated from Medium plus 3 new)

Example IMT – BWR

Table A-2 (continued) Reactor Vessel Internals

Component & ID No.	Material	Degradation Mechanism ^{®1}	Conseq. of Failure	Mitigation ²³	Repair / Replace	l & E Guidance	Gaps & Priority
2.9 Shroud	•••••••••••••••••••••••••••••••••••••••	•••••••	• • • •	••••••••	•••••••	••••••	• *** • •
2.9–1 Shroud Cylinders (Includes Welds H1–H7 and Shroud Vertical Welds)	SS (304, 304L)	IGSCC (e103) IASCC / Neutron Emb. (e045, e116) TGSCC (e104) Env. Fatigue (e014)	Loss of Support / Orientation Loss of Flow Distribution	Chemistry Control BWRVIP-130 (BWRVIP 2005- 168) HWC / NMCA BWRVIP-62 (Some locations not mitigated by HWC / NMCA)	EPRI BWRVIP BWRVIP-02-A (RDC)	EPRI BWRVIP BWRVIP-76	DM-02: SCC of "Resistant" SS AS-01: RAMA Code AS-09: Fluence Impact on CGR/Fract Tough AS-10: HWC / NMCA Impact on CGRs AS-11: Assess Fast Reactor Data AS-14: Fat. Environ. Eff. MT-01: Alt. Mitigation Technology MT-02: ECP Model MT-03: High Fluence Eff. on NMCA / HWC MT-04: On-Line NMCA MT-05: Startup & Shutdown Chem. MT-06: NMCA Durab. & Long Term Effect
							RR-02: Weld Process for Irrad. Mati

BWR LTO Summary

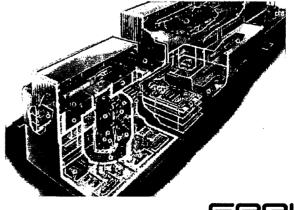

- Neutron Fluence Effects
 - RPV embrittlement
 - Irradiation effects on LAS resistance to environmetally assisted cracking
 - SS materials data for >60 years
 - Impact on CASS reactor internals
 - Impact on nickel alloys
 - Irradiated material welding
- Fatigue Usage
- Late-life SCC Initiation
 - Impact of oxide formation/environment exposure

Examples

Presentation on Industry Strategic Plan for Primary Metals Research

- Environmentally Assisted Stress
 Corrosion Cracking (EASCC)
- Irradiation Assisted Stress Corrosion Cracking (IASCC)
- Reactor Pressure Vessel (RPV)
 Embrittlement

Environmentally-Assisted Stress Corrosion Cracking (EASCC)


• Evaluation of Crack Initiation and Propagation Mechanisms in LWR Components

- EASCC Knowledge Base for Long-Term Operations (periodic, 2012-2020)
- Crack Growth Prediction Model (target 2016)
- Mitigation Strategies for EA Crack Initiation and Growth (target 2017)
- Crack Initiation Prediction Model (target 2019)

Irradiation Assisted Stress Corrosion Cracking (IASCC)

- Identifying Mechanisms and Mitigation Strategies for Irradiation Assisted Stress Corrosion Cracking of Austenitic Steels in LWR Core Components
 - IASCC Knowledge Base for Long Term Operations (target 2014 and then periodic)
 - Parametric Correlations for Crack Initiation and Growth and Mitigation Strategies (target 2014)
 - Report on IASCC Resistant Materials for Repair and Replacement (target 2018)

Reactor Pressure Vessel Embrittlement

- Reactor Pressure Vessel Embrittlement
 - Report on Revisions to Embrittlement Trend Correlation (target 2014)
 - Ongoing Material Testing and Evaluations
 - Late-blooming Effects (target 2016)
 - Support for Demonstration Project Deliverables:
 - Draft Reactor Embrittlement Analysis and Validation
 Plan to 80 Years (target 2012)
 - Gap Analysis and Feasibility Study of Plan for Ginna and Nine Mile Point Unit 1 (target 2012)
 - Demonstration of Plan Elements for Ginna and Nine Mile Point Unit 1 (target 2013)

- MDM Revision-2 has updated the understanding of the potential materials degradation mechanisms for primary circuit components, in the context of 80-year operation
- The identified major LTO degradation mechanisms in primary system materials include: the increased end-of-life neutron fluence, increased fatigue cycles, late-in-life SCC initiation, long-term stress stability, and steam generator fouling/corrosion
- Both PWR and BWR Issue Management Tables (IMTs) have incorporated the MDM results at a component level and from an operational significance perspective

• Primary Metals Research is In Progress to Address LTO Issues for EASCC, IASCC and RPV Embrittlement

- Research Efforts Encompass Worldwide Organizations
- Formal Periodic Reporting Expected to Frame Results and Support Decision Making

Publication of EPRI MDM and IMTs

- EPRI MDM Rev-2, EPRI Report # 1020987
- BWR and PWR IMTs have been updated to reflect MDM extension to 80 years
 - BWR-167NP, Rev-2, EPRI Report # 1020995
 MRP-205, Rev-2, EPRI Report # 1021024
- Available at <u>www.epri.com</u>
- **Contact:** TG Lian, <u>tlian@epri.com</u>; (650) 855-2405

Robin Dyle, <u>rdyle@epri.com</u>; (205) 426-5371

-

Together...Shaping the Future of Electricity

© 2011 Electric Power Research Institute, Inc. All rights reserved.

