generation mPower

Fuel/Core Design and Analysis Update (Redacted Version)

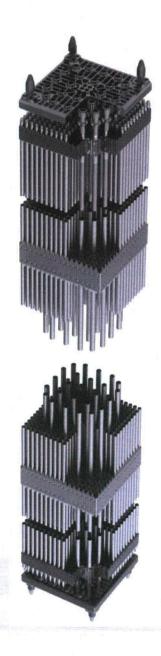
June 22, 2011

© 2011 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved. This presentation is the property of Babcock & Wilcox Nuclear Energy, Inc. Any copying, use, or disclosure of this information without the written permission of Babcock & Wilcox Nuclear Energy, Inc. is strictly prohibited.

- Introduction
- Design Optimization and Revised Plant Layout
- B&W mPower[™] Reactor Fuel Mechanical Design Update
- B&W mPower Reactor Physics Design and Analysis Update
- Conclusions

Note: Bracketed information in this presentation slide package has been determined to be proprietary, confidential commercial information(CCI) as per the affidavit provided to the NRC with the transmittal letter.

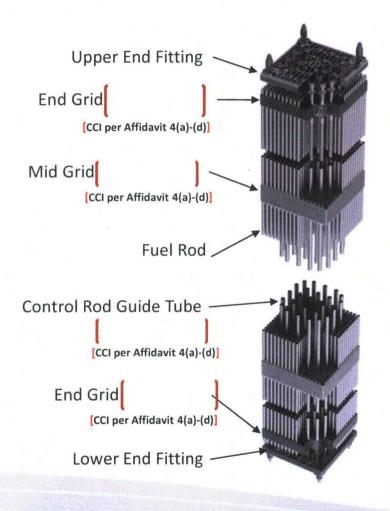
DESIGN OPTIMIZATION OVERVIEW


Other Impacts of Design Optimization

Site Layout and General Arrangement Review

B&W mPowerTM Fuel Mechanical Design Update

General Fuel Mechanical Design Objectives


- Ensure that fuel rods, burnable poison rods, fuel assemblies and in-core control components are designed to -
 - ★ Maintain coolable geometry and control component insertability under all anticipated operational occurrences (AOOs) and postulated accidents (PAs)
 - Designs shall account for the effects of temperature, pressure, irradiation, fission products, static and dynamic loads, and changes in the chemical characteristics of the constituent materials
 - ★ Provide a means for their structural integrity and safe handling during transport, storage, installation, and refueling operations

General Fuel Mechanical Design Objectives (cont.)

- Ensure that the fuel system is designed to -
 - ★ Maintain structural integrity and as-designed fuel geometry under all AOOs and PAs
 - **★** Be compatible under the effects of irradiation, and chemical and physical processes
 - **★** Minimize any potential obstruction to coolant flow

mPower Fuel Assembly Design

Fuel Assembly Attributes

> 17 x 17 Fuel Rod Array

[CCI per Affidavit 4(a)-(d)]

Shortened and Simplified Conventional Fuel Assembly Design

Fuel Rod Attributes

- Low Power Density
- Large Plenum Volume (Low End of Life Pressure)

[CCI per Affidavit 4(a)-(d)]

[CCI per Affidavit 4(a)-(d)]

[CCI per Affidavit 4(a)-(d)]

Conventional Fuel Rod Design

Simplified Upper End Fitting Design

Robust, Low Pressure Drop End Grids

Robust, Low Pressure Drop Mid Grids

generation mPower Guide Tube Assemblies

Double Tube Dashpot Design

Simplified Lower End Fitting Design

Simplified Lower End Fitting Design

Reliable Joint Design

© 2011 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved.

m Power Control Rod Assembly

mPower

Reference Design Control Rod Configuration

mPower

Mechanical Design Analysis Methodology

- Development And Validation of Design Analysis Methodology And Computer Codes
 - Fuel Rod Design Analyses
 - Fuel Assembly Design Analyses
- > Fuel Rod Design Analysis Methodology And Codes

[CCI per Affidavit 4(a)-(d)]

Developing Suite of Design Analysis Codes

Mechanical And Hydraulic Tests

Extensive Mechanical And Hydraulic Testing Planned To Support Fuel Assembly Development And Qualify Design

[CCI per Affidavit 4(a)-(d)]

Comprehensive Fuel System Testing Program

mPower Mechanical And Hydraulic Tests

[CCI per Affidavit 4(a)-(d)]

Extensive Component Mechanical Testing

mPower Mechanical And Hydraulic Tests

Mechanical And Hydraulic Tests

[CCI per Affidavit 4(a)-(d)]

Static and Dynamic Fuel Assembly Tests

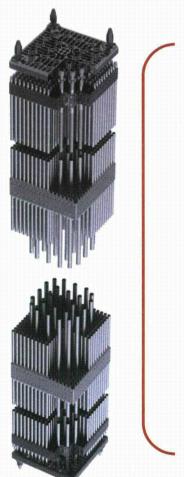
mPower Mechanical And Hydraulic Tests

Mechanical And Hydraulic Tests

generation

mPower
Mechanical And Hydraulic Tests

mPower Prototype Fuel Assembly Fabrication


generation

*mPower*Prototype Fuel Assembly Fabrication

generation

Prototype Fuel Assembly Fabrication

mPower Mechanical Design Summary

[CCI per Affidavit 4(a)-(d)]

Unique, Simple Fuel Assembly Design

B&W mPowerTM Reactor Physics Design Update

Primary Core Design Objectives

- Load Enough Fuel Inventory To Ensure That
 - The Core Excess Reactivity Is Sufficient To Operate At A Steady-State Power Level
 For 4 Years At A Capacity Factor > 95% Without Refueling

[CCI per Affidavit 4(a)-(d)]

Ensure Core Shutdown Margin (SDM) Of > 1% ∆k_{eff}/k_{eff} Under Cold Conditions At The Most Reactive Time In Core Life With The Highest Worth Rod Cluster Stuck Out

Extended Core Life With Large Thermal Margins

mPower Fuel Design Characteristics

Conventional Fuel and Control Materials

generation

*mPower*Core Design Developments

[CCI per Affidavit 4(a)-(d)]

Simplified Assembly Design Variations

mPower

Control Cluster Configuration and Worths

mPower Core Axial Power Distribution

mPower Axial, Radial, and Nodal Peaking

MCNPX Lattice Physics Benchmarks

Lattice Benchmark k_∞ **Preliminary Results**

MCNPX Lattice Reflector Benchmarks

Lattice Benchmark Reflector Preliminary Results

Lattice Benchmark Reflector Preliminary Results

Core Thermal-Hydraulic Subchannel Analysis

CHF Correlation Options in VIPRE

- ➤ The Babcock & Wilcox BW-2 correlation is available in VIPRE, [but the B&W mPower reactor nominal pressure is outside its pressure range]
- Other correlations are for BWRs or non-applicable geometries

Results with Available CHF Correlations

B&W Nuclear Energy CHF Correlation

Reactor Physics Design Status

Conclusions

- Design optimization will maintain or improve core safety margins
- Future meetings with NRC staff to be scheduled to discuss
 - Modified comprehensive static core design detail
 - Preliminary transient analysis results
- MCNPX 2.7.0 release delay impacts schedule for Core Design Methods TR supplement