

Westinghouse Electric Company LLC Hematite Decommissioning Project 3300 State Road P Festus, MO 63028 USA

| Director, Office of Federal and State Materials and Direct fax: 636-9                                                            | 37-6380                                            |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Environmental Management ProgramsE-mail:hackitU.S. Nuclear Regulatory CommissionOur ref:HEMWashington, DC 20555, 0001Our ref:HEM | <u>naek@westinghouse.com</u><br>-11-91<br>21, 2011 |

Subject: Draft Supplemental Response to NRC Request for Additional Information on the Hematite Decommissioning Plan Excluding Chapter 11 (License No. SNM-00033, Docket No. 070-00036)

#### Reference: 1) Westinghouse (E. K. Hackmann) letter to NRC (Document Control Desk), HEM-10-126, dated December 10, 2010, "Partial Responses to Requests for Additional Information on Decommissioning Plan Chapters 1, 4, 6 and 7"

- 2) Westinghouse (E. K. Hackmann) letter to Document Control Desk (NRC), HEM-10-132, dated December 21, 2010, "Remaining Responses to Requests for Additional Information on Decommissioning Plan Chapters 1, 4, 6 and 7"
- 3) Westinghouse (E. K. Hackmann) letter to Document Control Desk (NRC), HEM-11-25, dated March 10, 2011, "Response to Request for Additional Information on Decommissioning Plan Chapter 3, Site Description"
- 4) Westinghouse (E. K. Hackmann) letter to Document Control Desk (NRC), HEM-10-85, dated August 11, 2010, "Response to Request for Additional Information Concerning Hematite Decommissioning Plan: Chapter 5, Dose Modeling"
- 5) Westinghouse (E. K. Hackmann) letter to Document Control Desk (NRC), HEM-10-89, dated September 15, 2010, "Additional Responses to Questions on Decommissioning Plan Chapter 5, Dose Modeling"
- 6) Westinghouse (E. K. Hackmann) letter to Document Control Desk (NRC), HEM-10-105, dated October 7, 2010, "Remaining Responses to Request for Additional Information Concerning Hematite Decommissioning Plan: Chapter 5, Dose Modeling"
- 7) Westinghouse (E. K. Hackmann) letter to Document Control Desk (NRC), HEM-10-137, dated January 24, 2011, "Responses to Requests for Additional Information on Decommissioning Plan Chapters 8 and 9"
- 8) Westinghouse (E. K. Hackmann) letter to Document Control Desk (NRC), HEM-11-37, dated March 21, 2011, "Response to Remaining NRC Request for Additional Information on the Hematite Decommissioning Plan Chapter 9"

- 9) Westinghouse (E. K. Hackmann) letter to Document Control Desk (NRC), HEM-10-138, dated January 28, 2011, "Responses to Requests for Additional Information on Decommissioning Plan Chapters 10 and 12"
- 10) Westinghouse (E. K. Hackmann) letter to Document Control Desk (NRC), HEM-11-2, dated January 19, 2011, "Response to Request for Additional Information on Decommissioning Plan Chapter 13"
- 11) Westinghouse (E. K. Hackmann) letter to Document Control Desk (NRC), HEM-10-80, dated July 30, 2010, "Response to Request for Additional Information Concerning Hematite Decommissioning Plan: Chapter 14, Characterization Report and Surrogates Report"
- 12) NRC (J. J. Hayes) Memorandum to NRC (P. Michalak), dated June 13, 2011, "Westinghouse Hematite Request for Additional Information Resolution" (ML111640173)

References 1 to 11 provided Westinghouse responses to NRC's Requests for Additional Information (RAIs) concerning the Hematite Decommissioning Plan (DP). This letter provides draft supplemental responses to those RAIs where NRC required clarification. These draft supplemental responses are provided in support of the scheduled June 24 and 27 conference calls identified in Reference 12.

Please contact Kevin Davis at 314-810-3348 should you have questions or need any additional information.

Sincerely,

Kenno Hauris for E. Kurt Hackmann

E. Kurt Hackmann Director, Hematite Decommissioning Project

- Attachments: 1) Draft Supplemental Response to NRC Requests for Additional Information on Decommissioning Plan Chapter 1
  - 2) Draft Supplemental Response to NRC Requests for Additional Information on Decommissioning Plan Chapter 3
  - 3) Draft Supplemental Response to NRC Requests for Additional Information on Decommissioning Plan Chapter 4
  - 4) Draft Supplemental Response to NRC Requests for Additional Information on Decommissioning Plan Chapter 5
  - 5) Draft Supplemental Response to NRC Requests for Additional Information on Decommissioning Plan Chapter 8
  - 6) Draft Supplemental Response to NRC Requests for Additional Information on Decommissioning Plan Chapter 9

- 7) Draft Supplemental Response to NRC Requests for Additional Information on Decommissioning Plan Chapter 10
- 8) Draft Supplemental Response to NRC Requests for Additional Information on Decommissioning Plan Chapter 12
- 9) Draft Supplemental Response to NRC Requests for Additional Information on Decommissioning Plan Chapter 13
- 10) Draft Supplemental Response to NRC Requests for Additional Information on Decommissioning Plan Chapter 14
- 11) Draft Supplemental Response to NRC Requests for Additional Information on Historical Radiological Characterization Report
- 12) Draft Supplemental Response to NRC Requests for Additional Information on Decommissioning Plan Information Relating to Summary Paper "Evaluation of Tc-99 Under the Process Buildings"
- 13) Draft Supplemental Response to NRC Requests for Additional Information on Decommissioning Plan Reference to Effluent and Environmental Monitoring Plan
- 14) Draft Supplemental Response to NRC Requests for Additional Information on Decommissioning Plan Reference to Water Management Plan
- 15) Draft Supplemental Response to NRC Requests for Additional Information on Decommissioning Plan Reference to Waste Management and Transportation Plan
- 16) Draft Supplemental Response to NRC Requests for Additional Information on Decommissioning Plan Reference to Nuclear Criticality Safety Items in the License Application Request
- cc: J. J. Hayes, NRC/FSME/DWMEP/DURLD
  J. W. Smetanka, Westinghouse, w/o attachments
  J. E. Tapp, NRC Region III/DNMS/MCID, w/o attachments

### **ATTACHMENT 1**

### Draft Supplemental Response to NRC Requests for Additional Information on Decommissioning Plan Chapter 1

Westinghouse Electric Company LLC, Hematite Decommissioning Project

Docket No. 070-00036

© 2011 Westinghouse Electric Company LLC All Rights Reserved

|              |                                                                           | Chapter 1 – Executi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eutive Summary – Follow-up Comments to RAI Responses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |
|--------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| RAI<br>No.   | Issues                                                                    | Path Forward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Discussion Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Proposed Resolution                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |
| 1-1a         | Ok as noted<br>under the Path<br>Forward                                  | NRC agrees that the Hematite site is not a Group 5 site but it is also not a Group 4 site. The manner of addressing the issues associated with the resolution of Chapters 3 and 5 RAIs. (Refer to RAI Chapter 5- RAI No. 11 as one example.) Based on the definition of aquifer given in Appendix A, 10 CFR 40, the Sand/Gravel and Jefferson City-Cotter constitute the upper most aquifer regardless if Sand/gravel itself could provide sufficient yield, as they are interconnected hydraulically and behave as a single aquifer (No confining layer is present between the two formations). Trace amounts of Tc-99 have been detected in the Sand/Gravel aquifer. The Sand/Gravel and Jefferson City-Cotter aquifers need to be protected. However, the NRC has issues associated with the approach to remediation proposed by Westinghouse. Issues identified below will need to be addressed in either additional RAIs or the staff's discussion with Westinghouse on their response to the RAIs.                                                                                           | Westinghouse agrees that the Jefferson City-Cotter Hydrostratigraphic Unit (HSU), and by<br>interconnection, the Sand/Gravel HSU represent the protected groundwater zone. As such,<br>Westinghouse has committed to monitoring the Sand/Gravel HSU throughout and after<br>remediation. The discussion of these HSUs is outlined within HDP-TBD-EHS-001 Subsurface<br>Water Overview, which was provided to NRC via Westinghouse letter HEM-11-11, dated<br>January 21, 2011.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Westinghouse has provided the<br>requested clarifying information in<br>the Discussion Points. No further<br>action required.                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |
| 1-1b<br>1-1c | Ok as noted<br>under the Path<br>Forward<br>Ok as noted<br>under the Path | <ul> <li>Basis for a 6.7 m excavation when there is contamination below the 6.7 m. The groundwater samples suggest that soil is contaminated with Tc-99 is located in the 24'-34' levels below the surface under Bldg 253. However, WEC is only committed to excavating to 20' (6.7 m). Upper level soils may meet DCGLs providing false confidence that the soil below is clean. Westinghouse has not committed to excavate below 6.7 m to identify the level of contamination.</li> <li>Westinghouse may not have adequately characterized Tc-99 levels under Bldg 253. Measurements in 1988-1989 were only alpha and not beta thus</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Data, evaluation and a proposed resolution for Tc-99 in soil under the former Process Buildings<br>at depths greater than 6.7m are provided in the document, "Evaluation of Technetium-99 Under<br>the Process Buildings."<br>This evaluation clarifies that excavation will be considered complete with the removal of soil<br>that exceeds either the RGs or DCGLs, buried debris, and/or spent limestone. If the chemical<br>RGs are not met and the excavation reaches the sand/gravel layer, then excavation will cease;<br>however, excavation would continue if the DCGLs are not met. The completed excavation will<br>undergo final status survey as discussed in DP Chapter 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Westinghouse letter HEM-11-56<br>dated 5/5/11 forwarded an<br>"Evaluation of Technetium-99 Under<br>the Process Buildings." This<br>evaluation includes changes to the<br>Decommissioning Plan that address<br>this comment. Resolution on this<br>evaluation will address this<br>comment. This comment does not<br>require its own resolution       |  |  |  |  |  |  |  |  |  |
| 1-1d         | Ok as noted<br>under the Path<br>Forward                                  | <ul> <li>Tc-99 would not have been identified.</li> <li>Westinghouse has committed to remove contaminated clay/soil.</li> <li>When Westinghouse excavates, they need to obtain soil samples which meet the DCGLs, and collect and treat the groundwater in the excavation.</li> <li>Westinghouse needs to justify how their proposed action to excavate until the DCGLs are met on the surface is adequate to ensure that unacceptable levels of radionuclides will not be transported to the sand/gravel and Jefferson City-Cotter aquifers during the compliance period.</li> <li>Westinghouse proposed to collect soils samples around the hybrid wells (through soil borings) based on the assumption that there is NO deeper soil contamination beyond the 6.7 m and that the Tc-99 contamination observed in the water was caused by the contaminated soils at shallow depth. However, if contamination soil/spent limestone is detected above the DCGL below the 6.7 m depth, Westinghouse has to further define the extent of contaminated soil/spent limestone for excavation.</li> </ul> | In addition, the evaluation specifies subsurface soil sampling (down to the depth of the well)<br>near wells with water that exceed a defined concentration threshold for investigation.<br>Since the original RAI addressed subsurface water, the response to this comment on soil is<br>believed to be based on soil near wells with elevated water sample results. As discussed in the<br>response above, the document "Evaluation of Technetium-99 Under the Process Buildings"<br>specifies subsurface soil sampling down to the well bottom near wells with water that exceed a<br>defined concentration threshold for investigation. This sampling will determine whether there is<br>soil below the excavation surface that exceeds the DCGLs and requires excavation.<br>In addition, the response to the follow-up comment on RAI HDP-8-Q6 addresses the collection<br>and handling of water in an excavation and ensuring unacceptable levels of radionuclides will<br>not be transported to the Sand/Gravel and Jefferson City-Cotter HSUs. In summary, the dose<br>modeling presented in DP Chapter 5 demonstrates that the residual radioactivity concentration in<br>pore space water in soil that is less than DCGL is acceptable and by definition, if the soil meets<br>the DCGL, there will not be groundwater activity concentrations in the future that will cause the<br>25 mrem/yr to be exceeded.<br>Also, see the process described in the Tc-99 paper for starting with investigating at depth close<br>to the wells and then if results greater than DCGL expanding out to track the contamination for<br>remediation back to the source. | require its own resolution.<br>Westinghouse letter HEM-11-56<br>dated 5/5/11 forwarded an<br>"Evaluation of Technetium-99 Under<br>the Process Buildings." This<br>evaluation and RAI No. 6 for DP<br>Chapter 8 address this comment.<br>Resolution of those items will<br>resolve this comment. This comment<br>does not require its own resolution. |  |  |  |  |  |  |  |  |  |

### **ATTACHMENT 2**

### Draft Supplemental Response to NRC Requests for Additional Information on Decommissioning Plan Chapter 3

Westinghouse Electric Company LLC, Hematite Decommissioning Project

Docket No. 070-00036

© 2011 Westinghouse Electric Company LLC All Rights Reserved

#### Attachment 2 to HEM-11-91 June 21, 2011 Page 2 of 7

## DRAFT

| RAI<br>No. | Issues                                                                                                                                        | Path Forward                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                          | <b>Discussion Points</b>                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                          |                                                                                                               |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| 3-4        | Schedule for<br>installation of 14<br>new monitoring<br>wells and length<br>or duration of<br>post-remedial<br>groundwater<br>monitoring.     | <ol> <li>Provide a time table for the<br/>completion of these new<br/>monitoring wells;</li> <li>Provide criterion for the<br/>termination of post-remedial<br/>groundwater monitoring.</li> <li>Westinghouse should clarify if they<br/>are checking that the annual dose is</li> </ol>                                                                                                      | known, a<br>basis, pos<br>and will b<br>Burial Pit<br>will be in<br>remediation                                                                                 | specific time table that includes<br>t-remediation monitoring wells<br>be sampled for laboratory analys<br>remediation is completed durin<br>stalled and developed in order to                                                                                                                           | dates cannot be forecasted for will be installed and developed<br>is during the second quarter foll<br>g the fourth quarter of 2011, the<br>o obtain a sample for laboratory                                                                                                                        | Pit Area, Tc-99 Area) will be co<br>well installation. However on an<br>during the first quarter following<br>lowing remediation. For example<br>post remediation monitoring we<br>analysis during the first quarter<br>te is based on DP Figure 1-1, "Pr                                                                | area-by-area<br>gremediation<br>e, assuming the<br>ells for that area<br>of 2012, even if                     |
|            |                                                                                                                                               | less than 25 mrem, or if they are                                                                                                                                                                                                                                                                                                                                                             | Well No.                                                                                                                                                        | <b>Related Site Area</b>                                                                                                                                                                                                                                                                                 | End of Area Remediation                                                                                                                                                                                                                                                                             | Well Installation                                                                                                                                                                                                                                                                                                        |                                                                                                               |
|            |                                                                                                                                               | assuming that the all pathways dose                                                                                                                                                                                                                                                                                                                                                           | GW-CC                                                                                                                                                           | <b>Evaporation Ponds</b>                                                                                                                                                                                                                                                                                 | DP Approval + 20 Months                                                                                                                                                                                                                                                                             | DP Approval + 23 Months                                                                                                                                                                                                                                                                                                  |                                                                                                               |
|            |                                                                                                                                               | will be less than 25 mrem based on<br>the drinking water dose being less                                                                                                                                                                                                                                                                                                                      | GW-DD                                                                                                                                                           | Process Buildings, Soil Area                                                                                                                                                                                                                                                                             | DP Approval + 21 Months                                                                                                                                                                                                                                                                             | DP Approval + 24 Months                                                                                                                                                                                                                                                                                                  |                                                                                                               |
|            |                                                                                                                                               | than 4 mrem.                                                                                                                                                                                                                                                                                                                                                                                  | GW-EE                                                                                                                                                           | Burial Pits                                                                                                                                                                                                                                                                                              | DP Approval + 23 Months                                                                                                                                                                                                                                                                             | DP Approval + 26 Months                                                                                                                                                                                                                                                                                                  |                                                                                                               |
|            |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                               | GW-FF                                                                                                                                                           | Burial Pits                                                                                                                                                                                                                                                                                              | DP Approval + 23 Months                                                                                                                                                                                                                                                                             | DP Approval + 26 Months                                                                                                                                                                                                                                                                                                  |                                                                                                               |
|            |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                               | GW-GG                                                                                                                                                           | Burial Pits                                                                                                                                                                                                                                                                                              | DP Approval + 23 Months                                                                                                                                                                                                                                                                             | DP Approval + 26 Months                                                                                                                                                                                                                                                                                                  |                                                                                                               |
|            |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                               | GW-HH                                                                                                                                                           | Burial Pits                                                                                                                                                                                                                                                                                              | DP Approval + 23 Months                                                                                                                                                                                                                                                                             | DP Approval + 26 Months                                                                                                                                                                                                                                                                                                  |                                                                                                               |
|            |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                               | GW-II                                                                                                                                                           | Burial Pits                                                                                                                                                                                                                                                                                              | DP Approval + 23 Months                                                                                                                                                                                                                                                                             | DP Approval + 26 Months                                                                                                                                                                                                                                                                                                  |                                                                                                               |
|            |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                               | BR-13-JC                                                                                                                                                        | Process Buildings, Soil Area                                                                                                                                                                                                                                                                             | DP Approval + 21 Months                                                                                                                                                                                                                                                                             | DP Approval + 24 Months                                                                                                                                                                                                                                                                                                  |                                                                                                               |
|            |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                               | BR-14-JC                                                                                                                                                        | Burial Pits                                                                                                                                                                                                                                                                                              | DP Approval + 23 Months                                                                                                                                                                                                                                                                             | DP Approval + 26 Months                                                                                                                                                                                                                                                                                                  |                                                                                                               |
|            |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                               | BR-15-JC                                                                                                                                                        | Burial Pits                                                                                                                                                                                                                                                                                              | DP Approval + 23 Months                                                                                                                                                                                                                                                                             | DP Approval + 26 Months                                                                                                                                                                                                                                                                                                  |                                                                                                               |
|            |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                               | BR-16-JC                                                                                                                                                        | Process Buildings                                                                                                                                                                                                                                                                                        | DP Approval + 21 Months                                                                                                                                                                                                                                                                             | DP Approval + 24 Months                                                                                                                                                                                                                                                                                                  |                                                                                                               |
|            |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                               | BR-17-JC                                                                                                                                                        | Process Buildings                                                                                                                                                                                                                                                                                        | DP Approval + 21 Months                                                                                                                                                                                                                                                                             | DP Approval + 24 Months                                                                                                                                                                                                                                                                                                  |                                                                                                               |
|            |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                               | BR-18-JC                                                                                                                                                        | Process Buildings                                                                                                                                                                                                                                                                                        | DP Approval + 21 Months                                                                                                                                                                                                                                                                             | DP Approval + 24 Months                                                                                                                                                                                                                                                                                                  |                                                                                                               |
|            |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                               | BR-19-JC                                                                                                                                                        | Evaporation Ponds                                                                                                                                                                                                                                                                                        | DP Approval + 20 Months                                                                                                                                                                                                                                                                             | DP Approval + 23 Months                                                                                                                                                                                                                                                                                                  |                                                                                                               |
|            |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                               | comparate<br>sampling<br>Maximun<br>residual c<br>millirem/                                                                                                     | ors for determining suitability for<br>that show that the contribution t<br>n Contaminant Level (MCL) of<br>oncentrations in groundwater an<br>year.                                                                                                                                                     | or unrestricted use and license te<br>to dose from the sum of all licen<br>4 millirem per year, and also than<br>and residual concentrations in soi                                                                                                                                                 | owing installation until license ter<br>ermination are the results of sequ<br>used radionuclides do not exceed<br>at the sum of the contributions to<br>l do not result in an annual dose                                                                                                                                | ential quarterly<br>the EPA<br>dose from<br>that exceeds 25                                                   |
| 3-5        | Hydrogeological<br>connectivity<br>between the<br>Hematite source<br>areas in the silt<br>clay overburden<br>and the<br>Roubidoux<br>aquifer. | Provide the basis for the conclusion<br>that there is very limited<br>hydrogeological connectivity<br>between the Hematite source areas in<br>the silt clay overburden and the<br>Roubidoux aquifer when the<br>migration of VOCs from the<br>Hematite site, presumably in the<br>overburden to the private Roubidoux<br>wells illustrates the hydraulic<br>connection between the overburden | <ul> <li>private wells p</li> <li>the wells screet</li> <li>The o</li> <li>detect</li> <li>Well 46 and</li> <li>BR-1</li> <li>The o</li> <li>betweet</li> </ul> | providing a pathway from the Je<br>ened in the Roubidoux HSU that<br>bserved VOC contamination at<br>ted in Well PW-03JC appear ins<br>PW-03JC than Well PW-03RB)<br>d NB-71 or in the nearby Jeffers<br>1-JC, BR-02-JC, BR-04RB, BR-<br>bserved VOC contamination at<br>then the Site and Well PW-19RB. | efferson City-Cotter HSU and th<br>t have VOC contamination.<br>Well PW-03RB northeast of the<br>ufficient as a source for the leve<br>. Also, VOC contamination is r<br>son City-Cotter or Roubidoux be<br>-05RB, and BR-02-RB.<br>Well PW-19RB is not observed<br>. The lack of VOC contamination | butable to the open borehole con<br>e Roubidoux HSU. Figure 1 (att<br>e facility is anomalous since VOC<br>el of contamination (roughly a fa-<br>not observed in the nearby overbu-<br>edrock Wells BR-04-JC, BR-05J<br>in Wells BR-08-RB or BR-10-R<br>on in the Roubidoux HSU at wel<br>reas to the Roubidoux HSU (via | C concentrations<br>ctor of 10 less at<br>urden Wells NB-<br>C, BR-09-JC,<br>B, which are<br>ls closer to the |

#### **Proposed Resolution**

The following paragraph will be added at the end of DP Section 14.5.1:

Post-remediation monitoring wells will be sampled quarterly after the completion of remediation until license termination. The data collected will be used to confirm that the sum of the annual dose from groundwater for all the radionuclides does not exceed the EPA Maximum Contaminant Level (MCL) of 4 millirem/year. Separately, the sum of the dose from all residual sources remaining after remediation, including soil and groundwater pathways, will be confirmed to result in an annual dose that does not exceed 25 millirem/year.

Westinghouse has provided the requested clarifying information in the Discussion Points. No further action required.

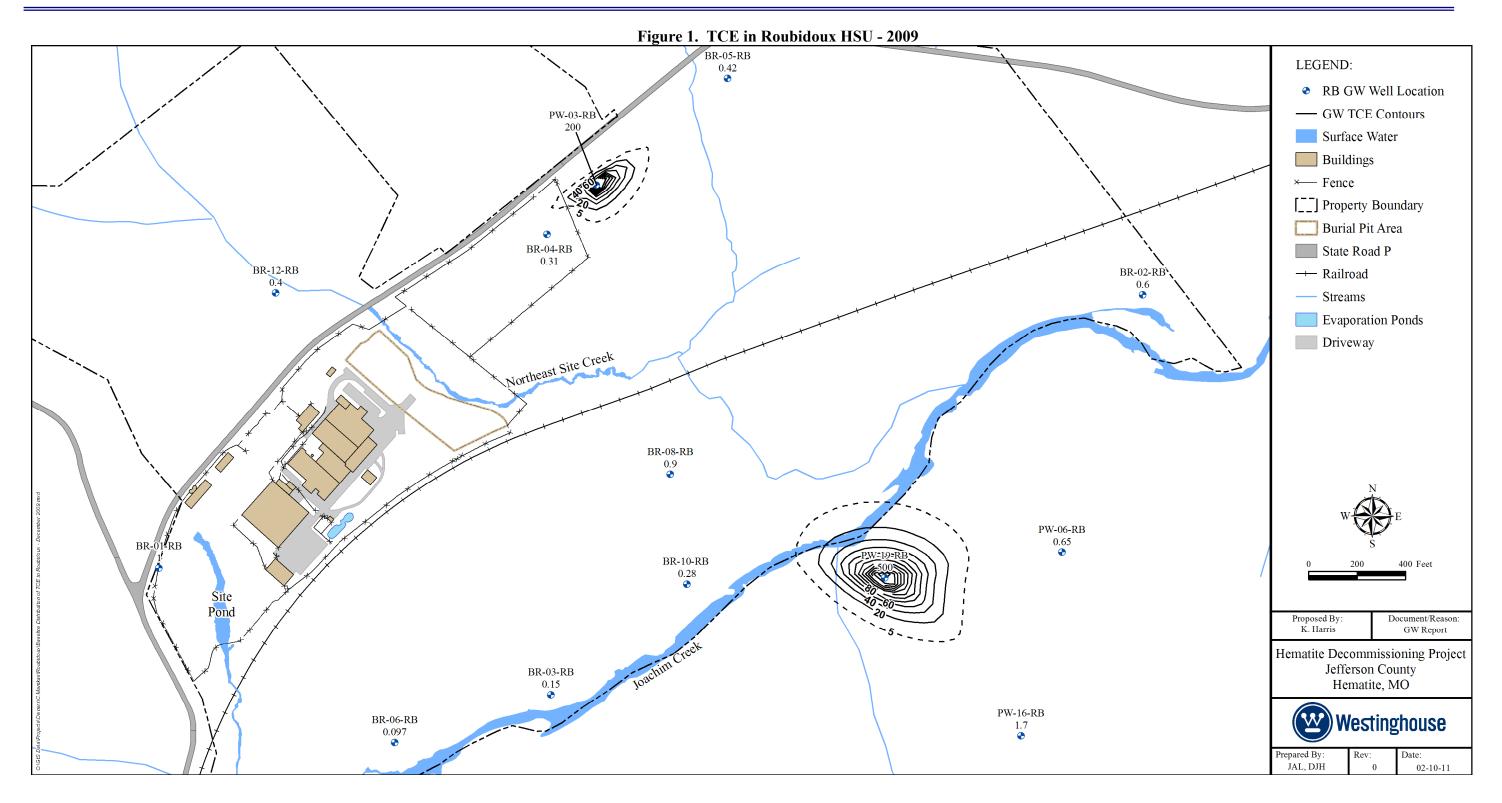
| RAI<br>No. | Issues | Path Forward                                                                                                                                                                                                                                                                 | Discussion Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|            |        | at the site and the Roubidoux aquifer<br>or modify the DP text to correct the<br>claim<br>With respect to Fig. 3 of<br>"Radionuclide activity in bedrock<br>groundwater at Westinghouse                                                                                      | and Jefferson City-Cotter HSUs). Instead, the data indicates VOCs migrated vertically from Site sources areas to the Jefferson City-Cotter HSU and then laterally in the Jefferson City-Cotter HSU until it reached the open borehole Well PW-19RB. This and other nearby private wells have been reconstructed to isolate the Roubidoux HSU from the Jefferson City-Cotter HSU, precluding further migration of contamination to the Roubidoux HSU. Continuing observation of VOC contamination at Well PW-19RB after well reconstruction reflects remaining residual contamination at that location, although the relative concentrations have declined.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|            |        | Hematite facility, Hematite,<br>Missouri", explain the water level<br>"mount" just south of the Joachim<br>Creek in the Roubidoux aquifer.<br>With respect to Table 4 of<br>"Radionuclide activity in bedrock<br>groundwater at Westinghouse<br>Hematite facility, Hematite, | <ul> <li>The hydraulic stress induced on the Roubidoux HSU by the Festus production wells and by the private wells south of Joachim Creek accentuated the movement of VOC contamination through the open boreholes until the summer of 2003. The Festus municipal wells were put on standby in the summer of 2003 when a "collector" well located in the floodplain of the Mississippi River was brought online. The Festus production wells are now used intermittently to supplement the "collector" well, and the limited pumping from the Roubidoux HSU has allowed recovery of the Roubidoux HSU from the hydraulic stresses. Public water was supplied to the residences south of Joachim Creek in late 2003 and early 2004 and the use of the private wells was discontinued.</li> <li>Evidence of limited connectivity via the contact zone between the Jefferson City-Cotter HSU and the Roubidoux HSU:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|            |        | Missouri" by SAIC, July 2009,<br>explain how the "minimum" and<br>"maximum" vertical hydraulic<br>gradient calculated.                                                                                                                                                       | • Testing was conducted in December 2004 in wells PW-06-JC/RB, PW-16-JC/RB, and PW-19-JC/RB to verify the integrity of the grout seals in the nested wells. The results of the testing inferred a lack of hydraulic communication between the Jefferson City-Cotter and Roubidoux HSUs based on the observed response of the shallow wells to pumping in the deeper wells in the nest. (Source: "Radionuclide Activity in Bedrock Groundwater at Westinghouse Hematite Facility, Hematite, Missouri," which was provided to NRC via Westinghouse letter HEM-09-133, dated 11/10/2009.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|            |        |                                                                                                                                                                                                                                                                              | <ul> <li>Vertical hydraulic gradient analysis suggests some degree of communication between the upper and lower aquifers with the rate of groundwater movement controlled by the hydraulic conductivity of the bedrock formations and the availability of secondary porosity (fractures, joints, dissolution features). Vertical hydraulic gradients were calculated between the Jefferson City-Cotter HSU and the Roubidoux HSU for five well pairs with unambiguous screen interval locations. The vertical gradients at these locations were predominantly upward directed in each of the well pairs over the period from 2004 to 2009. Periods of downward directed gradients were observed in well pairs BR-02-JC/RB (December 2004 to September 2007), BR-04-JC/RB (September 2007), and PW-06-JC/RB (June 2007 to December 2007). The steepest downward vertical gradients (0.1837 to 0.4 feet/foot) were observed from pre-remedial investigation (2002) water level measurements in Roubidoux HSU wells that were influenced by the Festus production wells. Vertical gradients between the Jefferson City and Roubidoux HSUs have been upward-directed approximately since the end of 2007. Well BR-03-RB exhibited flowing artesian conditions between September 2008 and March 2009. The significance of maintaining an upward directed hydraulic gradient from the Roubidoux HSU is to impede downward vertical migration. (Source: "Radionuclide Activity in Bedrock Groundwater at Westinghouse Hematite Facility, Hematite, Missouri;" provided to NRC via Westinghouse letter HEM-09-133, dated 11/10/2009.)</li> </ul> |  |
|            |        |                                                                                                                                                                                                                                                                              | • Hydrographs for the wells screened in the Jefferson City-Cotter and Roubidoux HSUs indicated that the units responded differently to stresses induced by the Festus production wells and private wells south of Joachim Creek. Hydrographs from wells at Hematite that are screened in the Roubidoux HSU showed significant water level recovery following August 2003 after the Festus production wells being put on standby. (Source: 2007 Remedial Investigation Report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|            |        |                                                                                                                                                                                                                                                                              | • The groundwater elevation data from the wells screened in the Jefferson City-Cotter HSU from the period between 2002 and 2004 is limited. However, the available measurements (graphed in the attached Figure 2) for well BR-04-JC do not show drawdown that is seen in the Roubidoux wells, drawdown that is attributable to the Festus production wells and private wells south of Joachim Creek. (Source: 2007 Remedial Investigation Report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|            |        |                                                                                                                                                                                                                                                                              | • The observed absence of hydraulic interconnection between the Jefferson City-Cotter and Roubidoux HSUs was supported by borehole injection tests that showed intervals of high transmissivity separated by a zone of lower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |

### **Proposed Resolution**

| RAI<br>No. | Issues                                                                                                                                       | Path Forward                                                                                                                                                                                                                               | Discussion Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                                                                                              |                                                                                                                                                                                                                                            | transmissivity. Integration of hydraulic conductivity test results with geologic cross-sections indicated that the low transmissivity zone roughly corresponded to the contact zone between the Jefferson City-Cotter and Roubidoux HSUs. (Source: 2007 Remedial Investigation Report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            |                                                                                                                                              |                                                                                                                                                                                                                                            | • Because open-hole construction was used in the domestic wells, the head difference between the Jefferson City-Cotter HSU and the Roubidoux HSU under the influence of the pumping center at Festus may have been sufficient to induce inter-aquifer flow with the open boreholes acting as conduits. The hypothesis was evaluated by groundwater modeling using an extraction rate of 2000 feet/day (10.4 gpm) applied to 13 wells in the vicinity of PW-19 to simulate vertical flow along an unsealed well casing. A significant impact on the potentiometric surface was observed, including flow paths from the facility area toward locations PW-03, BR-08 and BR-09, beneath Joachim Creek, and into the area of PW-19 and PW-16. (Source: 2007 Remedial Investigation Report, Appendix A)                                                                                                                                                                                                                                                                                                                                                                                                     |
|            |                                                                                                                                              |                                                                                                                                                                                                                                            | The water level "mount" just south of the Joachim Creek in the Roubidoux aquifer is most likely an artifact of this well being a converted private borehole well. The vertical hydraulic gradients in Table 4 of "Radionuclide activity in bedrock groundwater at Westinghouse Hematite facility, Hematite, Missouri" by SAIC, July 2009, were calculated by: The actual water level data was used to calculated the gradient at a specific well for each monitoring period; from among those calculated results, the maximum and minimum results were reported in the Table.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3-7        | (c) " The<br>increasing height<br>of the bedrock to<br>the north and<br>northwest would<br>preclude general<br>flow direction of<br>north or | Need to discuss the basis for this<br>conclusion.<br>The hydraulic heads measured from<br>monitoring wells appear to indicate a<br>possibility that groundwater in the<br>Jefferson-Cotter HSU may locally<br>flow towards north/northwest | The Jefferson City-Cotter HSU is a component of the Ozark aquifer on the Salem Plateau. Imes and Emmett (1994) and Miller and Vandike (1997) indicate that groundwater within the Ozark aquifer [which contains the Cotter, Jefferson City and Roubidoux Formations] occurs under unconfined conditions with groundwater flow occurring from upland areas toward valleys where it discharges as stream base flow. In the vicinity of the Hematite Site, groundwater within the Jefferson City – Cotter HSU appears to be unconfined. However, the results of a variety of hydraulic testing and potentiometric measurements for the Roubidoux HSU suggest that the deeper aquifer is confined. (Source: "Radionuclide Activity in Bedrock Groundwater at Westinghouse Hematite Facility, Hematite, Missouri," which was provided to NRC via Westinghouse letter HEM-09-133, dated 11/10/2009.)                                                                                                                                                                                                                                                                                                         |
|            | northwest".                                                                                                                                  | direction at the NW site boundary<br>area of site buildings. The<br>Discussion Points provided address<br>the flow in general terms. Are there<br>site or local specific conditions that<br>show otherwise?                                | The Hematite facility is located in the Joachim Creek valley with groundwater flow occurring from bedrock formations comprising the valley sides and moving toward Joachim Creek. The facility and Joachim Creek are shown in yellow in the attached Figure 3. This figure is intended to show the relative steepness of the valley within which the facility is located. The local site specific conditions of hills to the northwest of the site and the gaining Joachim Creek to the southeast of the site suggest that the upper bedrock layer (Jefferson City-Cotter) slopes towards the southeast, with groundwater flowing in that direction. As seen in the groundwater flow maps provided in the response to RAI 4-13, the water level data at PZ-04 only intermittently appears to "mound," and create an appearance of flow to the northwest. This "mounding" is considered an anomaly, attributed to local natural geologic and hydrogeologic conditions possibly resulting from a combination of locally confined conditions, a local lack of secondary porosity features such as fractures or joints, and massive, fine-grained bedrock lithology in the screened interval in each well. |
|            |                                                                                                                                              |                                                                                                                                                                                                                                            | Imes, J.L. and Emmett, L.F. 1994. <i>Geohydrology of the Ozarks Plateau Aquifer System in Parts of Missouri, Arkansas, Oklahoma, and Kansas</i> , U.S. Geological Survey Professional Paper 1414-D, Regional Aquifer System Analysis- Central Midwest. pp 43-51.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            |                                                                                                                                              |                                                                                                                                                                                                                                            | Miller, D.E. and Vandike, J.E. 1997. <i>Groundwater Resources of Missouri</i> , Missouri State Water Plan Series Volume II, Missouri Water Resources Report No 46, Missouri Department of Natural Resources, Rolla, Missouri. pg 64.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

Westinghouse has provided the requested clarifying information in the Discussion Points. No further action required.

**Proposed Resolution** 


Attachment 2 to HEM-11-91 June 21, 2011 Page 5 of 7

# DRAFT

| RAI<br>No. | Issues                                                                                                                                                                                        | Path Forward                                           | Discussion Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ī |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 3-9        | Characterization<br>for Tc-99 in<br>contaminated<br>soil/spent<br>limestone at a<br>depth greater<br>than the<br>proposed depth<br>of excavation<br>and below the<br>lower activity<br>Tc-99. | Issue related to other RAIs in<br>Chapters 4, 5, & 14. | Data, evaluation and a proposed resolution for Tc-99 in soil under the former Process Buildings at depths greater than 6.7m will be addressed in the summary document, "Evaluation of Technetium-99 Under the Process Buildings."<br>This summary document will clarify that excavation will be only be considered complete (regardless of depth) after the removal of soil that exceeds either of the RGs or DCGLs, the removal of buried debris, and the removal of spent limestone. Samples of the completed excavation will be analyzed by gamma spectroscopy for U-235, U-238, Th-232, and Ra-226 progeny, and analyzed for Tc-99 and VOCs. In addition, the summary document will establish subsurface soil sampling down to the well bottom near wells with water that exceeds a defined concentration threshold for investigation. |   |

#### **Proposed Resolution**

Resolution of NRC comments via the summary document "Evaluation of Technetium-99 Under the Process Buildings," submitted via Westinghouse letter HEM-11-56, dated 5/5/11, will also resolve this comment. This comment does not require its own resolution.



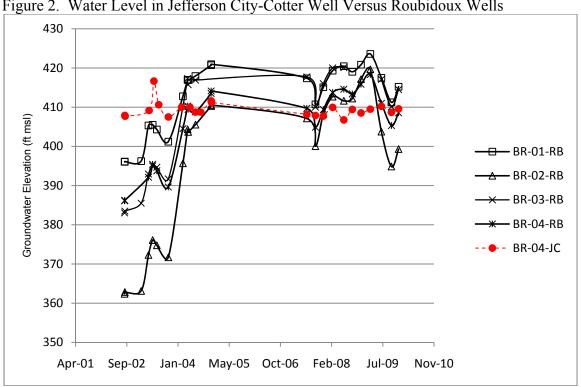
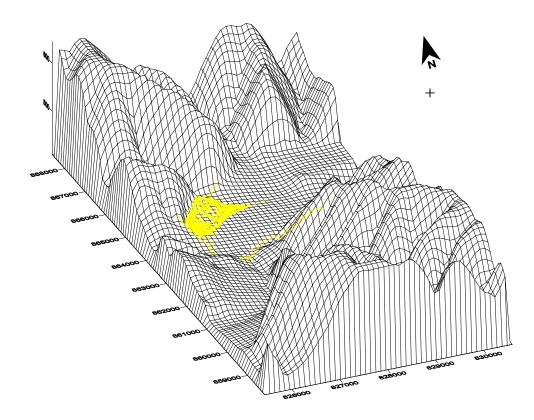




Figure 2. Water Level in Jefferson City-Cotter Well Versus Roubidoux Wells

Figure 3. Bedrock Topography in the Vicinity of the Hematite Site

(z-axis is ft above mean sea level, x-axis and y-axis are standard easting and northing grids)



### **ATTACHMENT 3**

### Draft Supplemental Response to NRC Requests for Additional Information on Decommissioning Plan Chapter 4

Westinghouse Electric Company LLC, Hematite Decommissioning Project

Docket No. 070-00036

© 2011 Westinghouse Electric Company LLC All Rights Reserved

| RAI<br>No. | Issues                                                                    | Path Forward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Discussion Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Proposed Resolution                                                                                                              |
|------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 4-6a       | 2010 concrete<br>core data<br>samples                                     | <ul> <li>(1) Clarify if the concrete core samples taken by WEC in 2010 from the buildings were analyzed for contamination and</li> <li>(2) How the results will be included in the DP.</li> <li>(3) Clarify if these samples taken for the concrete and soil were biased towards cracks and crevices.</li> <li>Clarification on whether the NRC received the results of these samples. Staff questions Westinghouse's position that the data is not necessarily applicable to the DP. While the material that was characterized is likely going to be sent off site, it would seem that this data is still relative for the DP because it provides information on the relative ratios of radionuclides in the buildings.</li> <li>The ratios observed in the concrete cores are mostly consistent with the ratios assumed in the DP for the buildings that will remain after decommissioning. The exception to this is that some of the samples from stations 2, 3, 20, and 21 have high Tc results. What was the source of this Tc? Is it known from process history that the cause of the Tc contamination in the demolished buildings is also the cause in the buildings that will remain? In other words, how does</li> </ul> | <ol> <li>The concrete core samples taken in 2010 from the floor of the former Process Buildings were analyzed by an off-site laboratory. The samples from each sample location was analyzed by gamma spectroscopy for K-40, Bi-212, Pb-212, Bi-214, Pb-214, Ac-228, Pa-231, Th-232, Pa-234, Th-234, U-235 and isotopic uranium. Additionally, all samples were analyzed for Tc-99 by liquid scintillation. A minimum MDC of 1 pC/<i>y</i> was targeted for this analysis. The sample results represented the top-most <i>V</i> inch, the subsequent '<i>k</i> - <sup>3</sup>/<sub>4</sub> inch in depth, the balance of the concrete core, and the underlying soil-like material.</li> <li>The data was collected for waste characterization purposes, and was not intended to be included in the DP. However, the data will be included in a request for disposal under the provisions of 10 CFR 20.2002 that will be submitted to the NRC within the next few months.</li> <li>These locations for concrete and soil sampling were biased towards cracks and crevices.</li> <li>The core sampling data are provided in a separate spreadsheet following this matrix. In 2010, Characterization of Former Process Buildings Slabs involved coring of the concrete floors was performed to more extensively characterizes the depth of penetration and radionuclide contamination in concrete. Core samples were biased toward locations with high surface activity (as determined by NaI measurements) and where cracks were evident within the floor surface. After removing the concrete cores, Westinghouse obtained samples of the immediately underlying soil/gravel fill. These sampling locations are shown on Figure 1 of the paper "Evaluation of Technetim-99 Under the Process Buildings" with identification numbers from 1 to 21.</li> <li>Sample stations 2, 3, 20 and 21 were located in the concrete floor of the Process Buildings. These sample stations, which have elevated Tc-99, were located where wet processes associated with fuel fabrication were used. The wet processes provided the mechanism for Tc-99 con</li></ol> | Westinghouse has provided<br>the requested clarifying<br>information in the<br>Discussion Points. No<br>further action required. |
| 4-6b       | Depth of soil<br>samples<br>beneath the<br>process<br>buildings.          | Include soil depths for the data presented in Table 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | The soils samples referenced in Table 1-Process Building Underlying Soil Sampling Data-2010 that was presented in the Westinghouse Response to RAI HDP-4-Q6 were collected from the fill material located from the first six inches of material beneath the concrete slab surfaces.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Westinghouse has provided<br>the requested clarifying<br>information in the<br>Discussion Points. No<br>further action required. |
| 4-8a       | Cross Sections<br>should be<br>designated as<br>Figure 27 not<br>Figure 2 | Westinghouse to correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Westinghouse agrees that that the response to RAI HDP-4-Q8 that was transmitted in Attachment 1 to HEM-10-132 should have read as follows:<br>"Cross-sections illustrating the geological characteristics associated with the new wells and paired hybrid and leachate wells are provided herein on Figure 27 in the response to RAI HDP-4-Q12."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Westinghouse has provided<br>the requested clarifying<br>information in the<br>Discussion Points. No<br>further action required. |
| 4-8b       |                                                                           | Provide the basis for Westinghouse's claim that the Tc-<br>99 in GW-X/PL-06 is due to the thickness of the sand<br>at this location and that seasonal variation can cause the<br>sand to be unsaturated and allow water containing Tc-<br>99 in the overlaying clay to drain into the sand/gravel<br>zone. Justify the basis when similar concentrations of<br>Tc-99 found in both sand/gravel and hybrid wells seem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Summary: These wells are located in an area with unique subsurface sand characteristics. Sand was observed extending about 10 feet above the sand/gravel layer into a sandy clay layer. This sandy clay layer is suspected to provide lateral transport not seen in the regular silty clay soil identified at the rest of the Site. The screens for both wells GW-X/PL-06 extend into the sandy clay layer. A former leach field and the sewage treatment line (if it leaks) are potential sources of contamination in the area; these areas are planned for remediation. The soil around these wells will be sampled in the same manner as the wells under the former Process Buildings, as specified in Westinghouse letter HEM-11-56, dated May 5, 2011. Also, as specified in that letter, soil sample results exceeding the DCGL require further investigation as to the extent of contamination, remediation, and final status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Westinghouse has provided<br>the requested clarifying<br>information in the<br>Discussion Points. No<br>further action required. |

\_

| RAI<br>No. | Issues | Path Forward                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                            |                                                                                                                                                               |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                 | Discussion Points                                                                                                                                                                                                                                   |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                         | <b>Proposed Resolution</b> |
|------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|            |        | to indicate that the contamination in the sand/gravel<br>aquifer may not be resulted from the transport of<br>"leachate" through a hybrid well. Provide the basis for<br>the claim when it appears that there is no known<br>contaminated soil in the immediate vicinity of this well<br>couple.<br>The Tc-99 detected in the sand/gravel at GW-X may | Groundwa<br>of the well<br>clay layer                                                                                                                      | tely south of Building 231.<br>encountered at the bottom<br>lls, there is also a sandy<br>n for Well PL-06 extends<br>clay layer into the sandy               |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                         |                            |
|            |        | not result from the installation of hybrid well PL-6. As GW-X is approximately 10 ft upgradient of PL-6, an overlapping of wells screens in both wells should not cause Tc-99 contamination in the sand/gravel by                                                                                                                                     | Well                                                                                                                                                       | Date                                                                                                                                                          | Water Level<br>Elevation (ft)                                                                                                                                                                                                                                              | Sand<br>Elevation<br>(ft)                                                                                                                                                                       | Difference in<br>Water & Sand<br>Elevation (ft)                                                                                                                                                                                                     | Sandy Clay<br>Elevation (ft)                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                         |                            |
|            |        | transporting contaminated "leachate" in the overburden                                                                                                                                                                                                                                                                                                | PL-06                                                                                                                                                      | 4Q04                                                                                                                                                          | 415.53                                                                                                                                                                                                                                                                     | 405                                                                                                                                                                                             | 10.53                                                                                                                                                                                                                                               | 416                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                         |                            |
|            |        | clay/sandy clay above. Potential sources cited include                                                                                                                                                                                                                                                                                                | PL-06                                                                                                                                                      | 2Q07                                                                                                                                                          | 409.90                                                                                                                                                                                                                                                                     | 405                                                                                                                                                                                             | 4.9                                                                                                                                                                                                                                                 | 416                                                                                                                                                                                                                        | ]                                                                                                                                                                                                                                                                                       |                            |
|            |        | former leach field, leak from a sewage treatment line,<br>and also potentially preferential flow path along the gas                                                                                                                                                                                                                                   | PL-06                                                                                                                                                      | 3Q07                                                                                                                                                          | 409.50                                                                                                                                                                                                                                                                     | 405                                                                                                                                                                                             | 4.5                                                                                                                                                                                                                                                 | 416                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                         |                            |
|            |        | line passing through the evaporation ponds. Why is                                                                                                                                                                                                                                                                                                    | PL-06                                                                                                                                                      | 4Q07                                                                                                                                                          | 409.40                                                                                                                                                                                                                                                                     | 405                                                                                                                                                                                             | 4.4                                                                                                                                                                                                                                                 | 416                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                         |                            |
|            |        | there a significant concentration of Tc-99 at this well?                                                                                                                                                                                                                                                                                              | PL-06                                                                                                                                                      | 1Q08                                                                                                                                                          | 411.45                                                                                                                                                                                                                                                                     | 405                                                                                                                                                                                             | 6.45                                                                                                                                                                                                                                                | 416                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                         |                            |
|            |        |                                                                                                                                                                                                                                                                                                                                                       | PL-06                                                                                                                                                      | 2Q08                                                                                                                                                          | 412.30                                                                                                                                                                                                                                                                     | 405                                                                                                                                                                                             | 7.3                                                                                                                                                                                                                                                 | 416                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                         |                            |
|            |        |                                                                                                                                                                                                                                                                                                                                                       | PL-06                                                                                                                                                      | 3Q08                                                                                                                                                          | 411.58                                                                                                                                                                                                                                                                     | 405                                                                                                                                                                                             | 6.58                                                                                                                                                                                                                                                | 416                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                         |                            |
|            |        |                                                                                                                                                                                                                                                                                                                                                       | PL-06                                                                                                                                                      | 4Q08                                                                                                                                                          | 409.72                                                                                                                                                                                                                                                                     | 405                                                                                                                                                                                             | 4.72                                                                                                                                                                                                                                                | 416                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                         |                            |
|            |        |                                                                                                                                                                                                                                                                                                                                                       | PL-06                                                                                                                                                      | 1Q09                                                                                                                                                          | 411.25                                                                                                                                                                                                                                                                     | 405                                                                                                                                                                                             | 6.25                                                                                                                                                                                                                                                | 416                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                         |                            |
|            |        |                                                                                                                                                                                                                                                                                                                                                       | PL-06                                                                                                                                                      | 2Q09                                                                                                                                                          | 412.64                                                                                                                                                                                                                                                                     | 405                                                                                                                                                                                             | 7.64                                                                                                                                                                                                                                                | 416                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                         |                            |
|            |        |                                                                                                                                                                                                                                                                                                                                                       | PL-06                                                                                                                                                      | 3Q09                                                                                                                                                          | 410.20                                                                                                                                                                                                                                                                     | 405                                                                                                                                                                                             | 5.2                                                                                                                                                                                                                                                 | 416                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                         |                            |
|            |        |                                                                                                                                                                                                                                                                                                                                                       | PL-06                                                                                                                                                      | 4Q09                                                                                                                                                          | 411.63                                                                                                                                                                                                                                                                     | 405                                                                                                                                                                                             | 6.63                                                                                                                                                                                                                                                | 416                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                         |                            |
|            |        |                                                                                                                                                                                                                                                                                                                                                       | PL-06                                                                                                                                                      | 1Q10                                                                                                                                                          | 411.51                                                                                                                                                                                                                                                                     | 405                                                                                                                                                                                             | 6.51                                                                                                                                                                                                                                                | 416                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                         |                            |
|            |        |                                                                                                                                                                                                                                                                                                                                                       | PL-06                                                                                                                                                      | 2Q10                                                                                                                                                          | 410.62                                                                                                                                                                                                                                                                     | 405                                                                                                                                                                                             | 5.62                                                                                                                                                                                                                                                | 416                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                         |                            |
|            |        |                                                                                                                                                                                                                                                                                                                                                       | PL-06                                                                                                                                                      | 3Q10                                                                                                                                                          | 411.03                                                                                                                                                                                                                                                                     | 405                                                                                                                                                                                             | 6.03                                                                                                                                                                                                                                                | 416                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                         |                            |
|            |        |                                                                                                                                                                                                                                                                                                                                                       | PL-06                                                                                                                                                      | 4Q10                                                                                                                                                          | 410.42                                                                                                                                                                                                                                                                     | 405                                                                                                                                                                                             | 5.42                                                                                                                                                                                                                                                | 416                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                         |                            |
|            |        |                                                                                                                                                                                                                                                                                                                                                       | PL-06                                                                                                                                                      | ,                                                                                                                                                             |                                                                                                                                                                                                                                                                            | 405                                                                                                                                                                                             | 5.86                                                                                                                                                                                                                                                | 416                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                         |                            |
|            |        |                                                                                                                                                                                                                                                                                                                                                       | monitored<br>msl) overla<br>pCi/L (GW<br>well PL-06<br>ranges of T<br>at this well<br>and 33 fee<br>wells in 20<br>Sources of<br>treatment I<br>associated | interval (i<br>ap includin<br>7-X) and 9<br>5 is an olde<br>c-99 cond<br>pair indic<br>t bgs for lo<br>04 and 20<br>7 the contan<br>ine to Out<br>soil will b | ncluding the sand particulation of the lower sand un<br>2.3 to 170 pCi/L (Per hybrid well screen<br>centrations at 96 to 1<br>cates a potential local<br>ocation PL-06 and 1<br>09, respectively.<br>mination in this area<br>fall 001 or the soils<br>e removed to the De | ack material) in<br>it. The wells have<br>L-06). Well GW-<br>ned across the ac-<br>57 pCi/L (GW-<br>1 Tc-99 source.<br>4 and 28 feet bg<br>of the Hematite<br>in the former le<br>CGL and RGs d | Well PL-06 (401 to 4<br>ave detected virtually<br>V-X is better construc-<br>quitard and the sand a<br>X) and 92.3 to 170 p<br>However, Tc-99 was<br>s for location GW-X<br>e facility may consist<br>ach field area. The fe<br>uring the decommiss | cted to inhibit migration alo<br>aquifer. The wells have det<br>Ci/L (PL-06). The presences<br>s not detected in soil samples<br>the samples were taken du<br>of leakage associated with<br>pormer leach field, sewage the | 7-X (400.2 to 408.2 feet<br>concentrations at 96 to 157<br>ong the well bore while<br>tected virtually identical<br>e of Tc-99 in groundwater<br>es taken at 7, 13, 17, 29<br>uring construction of these<br>an underground sewage<br>reatment line and<br>ter in these wells meets the |                            |

|            |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>Westinghouse recognizes the confounding data between soil (lower results) and leachate (higher results) for Tc-99. A useful the radioactivity found in when there is no known planation of how the Tc-99 did not</li> <li>I. Westinghouse recognizes the confounding data between soil (lower results) and leachate (higher results) for Tc-99. A useful the the conformation of how the Tc-99 did not</li> <li>If the Tc-99 did not</li> <li>If the Tc-99 did not</li> <li>This report concluded that the source of Tc-hontium-99 in Groundwater Monitoring Wells 17 and 17B, Combustion Engineering Hematite Facility," ABB Combustion Engineering.</li> <li>This report concluded that the source of the Tc-99 in water samples from Well 17B appeared to be the former ring storage area based on the leachate sample results, even though the gross beta radioactivity results for soil samples in that area were consistent with background. Well WS-17B is twenty free tdee nat monitors the leachate in the Silty Clay Aquitard HSU. The NRC response letter dated September 29, 1997 (ML052550295), stated that NRC "agrees that the source of the Tc-99 appears to be the former ring storage area." The former ring storage area is planned for excavation, which removes this likely source area for Tc-99 and/gravel.</li> <li>The former ring storage area and the GW-V/NB-31 well pair. Subsequent to the 1996 fact, samples from Well WS-17B continue to contain elevated concentrations of Tc-99, although somewhat lower than in 1996. The 1996 report inferent data a "discrete Hydrostratigraphic unit of higher relative permeability, perhaps a silt or snal lens" in the silty-clay overburden was the transport mechanism for leached Tc-99 to migrate from the former ring storage area to Well WS-17B. This may also be the relevant pathway to Well WB-31.</li> <li>Soils were visually inspected during boring to determining the soil classification and to evaluate the presence of higher permeability layers such as sand. Samples were collected fro</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                  |  |  |
|------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|
| RAI<br>No. |                                                | Path Forward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>L. Westinghouse recognizes the confounding data between soil (lower results) and leachate (higher results) for TC-99. A useful report establishing that this condition exists at the Hematite Site is the September 1996 report Gateway Environmental Associates. Inc., "Investigation to Determine the Source of Technetium-99 in Groundwater Monitoring Wells 17 and 17B, Combustion Tradingenering Hematite Facility," ABB Combustion Engineering.</li> <li>This report concluded that the source of the Te-99 in water samples from Well 17B appeared to be the former ring storage area based on the leachate sample results, even though the gross beta radioactivity results for soil samples in that area were consistent with background. Well WS-17B is towerly feet deep and monitors the leachate in the Silty Clay Aquitard HSU. The NRC response letter dated September 29, 1997 (ML05255025), stated that NRC "agrees that the source of the Te-99 appears to be the former ring storage area is located northwest (upgradient) of well pair GW-V/NB-31, and Well WS-17B is located between the former ring storage area and the GW-V/NB-31 well pair. Subsequent to the 1996 data, samples from Well WS-17B continue to contain elevated concentrations of Tc-99, although somewhat lower than in 1996. The 1996 report inferred that a "discrete Hydrostratigraphic unit of higher relative permeability, perhaps a silt or sand leas' if the isity-clay overburden was the relevant pathway to Vell NB-31.</li> <li>2. Soils were visually inspected during boring to determining the soil classification and to evaluate the presence of higher repermeability layers such as sand. Samples were collected from NB-31 detribution of monitoring Well GW-V is from 0.03 to 3.9 feet below ground surface. The screened interval for Monitoring Wells NB-S11 is from 2: to 3.2 feet below ground surface was less than the MDC (MDC molecons). The sample collected from the sample collected from 3.2 feet below ground surface was less than the MDC (MDC = 0.51 pCi/g). The table bel</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                  |  |  |
| No.        | Radioactivity<br>in leachate in<br>GW-V/NB-31. | <ol> <li>Provide an explanation for the radioactivity found in<br/>the leachate in GW-V/NB-31 when there is no known<br/>Tc-99 source. Provide an explanation of how the Tc-99<br/>could be in the groundwater if the Tc-99 did not<br/>transfer via the soil?</li> <li>Provide an explanation considering that boring logs<br/>provide no information and Westinghouse claims that<br/>there is no contamination in the soil above the screened<br/>area.</li> <li>Provide water level data to show the occurrence of<br/>unsaturated conditions in the sand/gravel, and further<br/>explain how the unsaturated conditions would increase<br/>the transport of leachate to the sand/gravel.</li> </ol> | report establishing that thi<br>Inc., "Investigation to Det<br>Engineering Hematite Fac<br>This report concluded that<br>based on the leachate sam<br>with background. Well W<br>response letter dated Septo<br>former ring storage area."<br>in the leachate.<br>The former ring storage are<br>the former ring storage are<br>to contain elevated concer<br>Hydrostratigraphic unit of<br>mechanism for leached To<br>pathway to Well NB-31.<br>2. Soils were visually insp<br>permeability layers such a<br>The soil samples were col<br>NB-31 is from 22 to 32 fe<br>ranged from 0.78 to 0.83 p<br>collected from the boreho<br>30.9 to 33.9 feet bgs. The<br>pCi/g). The Tc-99 result for<br>the table below contains to<br>this area is presumed to be<br>to as the Tc-99 area and w<br>meets the criteria for the m<br>Soil Sample<br>Location<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>Soil Sample<br>Location<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB-31<br>NB- | s condition exists a<br>ermine the Source of<br>eility," ABB Combu-<br>t the source of the T<br>ple results, even the<br>7S-17B is twenty fe<br>ember 29, 1997 (MI<br>The former ring st<br>rea is located northwe<br>a and the GW-V/N<br>trations of Tc-99, a<br>higher relative per-<br>c-99 to migrate from<br>bected during boring<br>is sand. Samples w<br>lected from 5, 15, 2<br>et below ground su<br>oCi/g). Also, during<br>le at 26 and 32 feet<br>to Tc-99 result for the<br>for the sample colle<br>the results of soil sa<br>do not indicate a so<br>the former ring stor<br>vill be remediated to<br>earby soil to be evan<br>Sample<br>Depth<br>5<br>15<br>27<br>32<br>26<br>32<br>bonse to RAI HDP-<br>we elevation of the s | data between it<br>the Hematite<br>of Technetium-<br>istion Engineer<br>ic-99 in water so<br>bugh the gross if<br>et deep and mode<br>L052550295), so<br>orage area is play<br>west (upgradier<br>B-31 well pair<br>although somewer<br>meability, perh<br>in the former rim<br>g to determining<br>ere collected fr<br>7, and 32 feet for<br>frace (BGS). The<br>g the installation<br>below ground is<br>esample collect<br>cted from 32 feet<br>mpling for Tc-<br>urce of Tc-99 co<br>orage area. This<br>o DCGL during<br>aluated as discut<br><b>Date</b><br>03-Jun-04<br>03-Jun-04<br>03-Jun-04<br>03-Jun-04<br>11-Sep-09<br>11-Sep-09 | soil (lower results) and<br>Site is the September<br>.99 in Groundwater M<br>ing.<br>samples from Well 17.<br>beta radioactivity resu-<br>onitors the leachate in<br>stated that NRC "agre<br>lanned for excavation,<br>at) of well pair GW-V.<br>. Subsequent to the 19.<br>what lower than in 199<br>aps a silt or sand lensing<br>storage area to Well<br>g the soil classification<br>om NB-31 during the<br>below ground surface.<br>The Tc-99 results for the<br>on of monitoring well<br>surface. The screened<br>tet at 26 feet below g<br>eet below ground surface<br>to a former ring storage<br>the decommissioning<br>sis former ring storage<br>the decommissioning<br>stated in the summary p<br>Analyte<br>Technetium-99<br>Technetium-99<br>Technetium-99<br>Technetium-99<br>Technetium-99<br>Technetium-99 | 1996 report Gatew<br>onitoring Wells 17<br>B appeared to be the<br>lits for soil sample<br>the Silty Clay Aque<br>es that the source of<br>which removes the<br>/NB-31, and Well<br>996 data, samples<br>96. The 1996 report<br>in the silty-clay of<br>1 WS-17B. This man<br>and to evaluate the<br>installation of the<br>The screened intre-<br>hese samples were<br>GW-V in September<br>interval for Moni-<br>ground surface was<br>ace was less than the<br>gs.<br>south of the rail line<br>area is included in<br>gractivities. In add<br>paper for Tc-99 un<br><b>Result</b> (pCi/g)<br>-0.0307<br>0.726<br>-0.134<br>-0.139<br>1.09<br>-0.04 | vay Environmental Associates,<br>7 and 17B, Combustion<br>he former ring storage area<br>s in that area were consistent<br>uitard HSU. The NRC<br>of the Tc-99 appears to be the<br>is likely source area for Tc-99<br>WS-17B is located between<br>from Well WS-17B continue<br>rt inferred that a "discrete<br>overburden was the transport<br>hay also be the relevant<br>he presence of higher<br>monitoring well in June 2004.<br>erval for Monitoring Wells<br>less than the MDC (MDC<br>ber 2009, soil samples were<br>toring Well GW-V is from<br>6 1.09 pCi/g (MDC of 0.52<br>he MDC (MDC = 0.51 pCi/g).<br>e. The origin of the Tc-99 in<br>the remediation area referred<br>ition, the water in these wells<br>der the process buildings.<br>MDC<br>(pCi/g)<br>0.826<br>0.778<br>0.81<br>0.799<br>0.52<br>0.51 | Westinghouse has provided<br>the requested clarifying<br>information in the<br>Discussion Points. No<br>further action required. |  |  |

Attachment 3 to HEM-11-91 June 21, 2011 Page 5 of 14

\_

| RAI<br>No. | Issues | Path Forward |             |       |                 |                   | Disc       | cussion P | oints |                 |                   |            | Proposed Resolution |
|------------|--------|--------------|-------------|-------|-----------------|-------------------|------------|-----------|-------|-----------------|-------------------|------------|---------------------|
|            |        | W            | Vell        | llate | GW<br>Elevation | Sand<br>Elevation | Difference | Well      | Date  | GW<br>Elevation | Sand<br>Elevation | Difference |                     |
|            |        | N            | B-31 2      | 2Q07  | 411.82          | 403               | 8.82       | GW-V      | 3Q09  | 411.09          | 403.45            | 7.64       |                     |
|            |        | N            | B-31        | 3Q07  | 410.13          | 403               | 7.13       | GW-V      | 4Q09  | 412.78          | 403.45            | 9.33       |                     |
|            |        | N            | B-31 4      | 4Q07  | 409.48          | 403               | 6.48       | GW-V      | 1Q10  | 412.92          | 403.45            | 9.47       |                     |
|            |        | N            | <b>B-31</b> | 1Q08  | 412.89          | 403               | 9.89       | GW-V      | 2Q10  | 411.63          | 403.45            | 8.18       |                     |
|            |        | N            | B-31 2      | 2Q08  | 413.82          | 403               | 10.82      | GW-V      | 3Q10  | 412.11          | 403.45            | 8.66       |                     |
|            |        | Ν            | B-31 3      | 3Q08  | 412.38          | 403               | 9.38       | GW-V      | 4Q10  | 411.37          | 403.45            | 7.92       |                     |
|            |        | N            | B-31 4      | 4Q08  | 411.00          | 403               | 8.00       | GW-V      | 1Q11  | 412.01          | 403.45            | 8.56       |                     |
|            |        | N            | B-31        | 1Q09  | 413.17          | 403               | 10.17      |           |       |                 |                   |            |                     |
|            |        | Ν            | B-31 2      | 2Q09  | 414.22          | 403               | 11.22      |           |       |                 |                   |            |                     |
|            |        | N            | B-31 3      | 3Q09  | 412.22          | 403               | 9.22       |           |       |                 |                   |            |                     |
|            |        | N            | B-31 4      | 4Q09  | 413.84          | 403               | 10.84      |           |       |                 |                   |            |                     |
|            |        | N            | B-31        | 1Q10  | 413.87          | 403               | 10.87      |           |       |                 |                   |            |                     |
|            |        | N            | B-31 2      | 2Q10  | 412.39          | 403               | 9.39       |           |       |                 |                   |            |                     |
|            |        | N            | B-31        | 3Q10  | 413.83          | 403               | 10.83      |           |       |                 |                   |            |                     |
|            |        | N            | B-31 4      | 4Q10  | 412.48          | 403               | 9.48       |           |       |                 |                   |            |                     |
|            |        | N            | <b>B-31</b> | 1Q11  | 410.17          | 403               | 7.17       |           |       |                 |                   |            |                     |

|            | - <u>F</u>                     | F                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                  |
|------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| RAI<br>No. | Issues                         | Path Forward                                                                                                                                                                                                                                                                                                                                                                            | Discussion Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>Proposed Resolution</b>                                                                                                       |
| 4-13       | as PZ-04, BR-<br>02-JC and BR- | Provide an explanation for the constructed groundwater<br>level contour maps for the Jefferson City aquifer in Fig.<br>30-38 appearing to show relatively high water level<br>elevations around, PZ-04, BR-02-JC and BR-02-JC and<br>whether this implies some kind of localized recharge at<br>these locations, or is it an artifact resulting from the use<br>of the contour program. | responding similarly to natural recharge. Well BR-12-JC is located off of the Central Tract approximately 370 feet northwest of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Westinghouse has provided<br>the requested clarifying<br>information in the<br>Discussion Points. No<br>further action required. |
|            |                                |                                                                                                                                                                                                                                                                                                                                                                                         | 412<br>411.5<br>411.5<br>410.5<br>410<br>409.5<br>409<br>409.5<br>409<br>408.5<br>408.5<br>408.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407.5<br>407 |                                                                                                                                  |

# Page 7 of 14

Attachment 3 to HEM-11-91

### Process Bldgs Slab Core Sample Data.xlsx

DRAFT

|         | Am-241 Np-237 Pu-239/240 |                                                              |         |                       |       | Ra-226 |               |       | Тс-99  |                |       | Th-232 |               |       | U-234 |               |     | U-235 |         |       | <b>U-238</b> | Total          | Perc. |       |                |       |      |                |      |         |         |
|---------|--------------------------|--------------------------------------------------------------|---------|-----------------------|-------|--------|---------------|-------|--------|----------------|-------|--------|---------------|-------|-------|---------------|-----|-------|---------|-------|--------------|----------------|-------|-------|----------------|-------|------|----------------|------|---------|---------|
| Station | Sample ID                | Description                                                  |         |                       |       |        | -             |       |        |                | U     |        |               |       |       |               |     |       |         |       |              |                |       |       |                |       |      |                |      | Enrich. |         |
| ID      | Sample ID                | Description                                                  | Conc.   | <u>(pCi/g)</u><br>±2σ | С     | Conc.  | pCi/g)<br>±2σ | MDC   | Conc.  | (pCi/g)<br>±2σ | MDC   | Conc.  | pCi/g)<br>±2σ | MDC   |       | pCi/g)<br>±2σ | MDC |       | (pCi/g) | MDC   | Conc.        | (pCi/g)<br>±2σ | MDC   | Conc. | (pCi/g)<br>±2σ | MDC   | 1    | (pCi/g)<br>±2σ | MDC  |         | (U-235) |
| 1       | 991-MS-<br>100413-13-1   | Concrete sample<br>from Station # 1 -<br>top 1/4 "           |         | 0.075                 | _     | 0.077  |               |       | 0.11   | 0.079          |       | 0.76   |               | 0.068 |       | 0.88          | 2.1 | 0.19  |         | 0.20  | <i>178</i>   | 26             | 0.23  |       | 1.2            | 0.13  | 9.8  | 1.9            | 0.23 | 193     | 7.4     |
| 1       | 991-MS-<br>100413-13-2   | Concrete sample<br>from Station # 1 -<br>middle 1/2 "        | _       | -                     | -     | -      | -             | -     | -      | -              | -     |        |               |       | -0.13 | 0.83          | 1.8 | -     | -       | -     | 176          | 28             | 0.28  | 6.1   | 1.4            | 0.21  | 8.4  | 1.7            | 0.28 | 190     | 10      |
| 1       | 991-MS-<br>100413-13-3   | Concrete sample<br>from Station # 1 -<br>remainder of core   | -0.20   | 0.97                  | 0.36  | -      | -             | -     | -      | -              | -     | 0.64   | 0.11          | 0.026 | 0.068 | 0.84          | 1.9 | 0.46  | 0.12    | 0.060 | -            | -              | -     | 3.7   | 0.55           | 0.16  | 8.8  | 3.2            | 0.83 | 78      | 6.1     |
| 1       | 991-SS-<br>100413-13-4   | Underlying<br>soil/gravel from<br>station # 1                | 0       | 0.54                  | 0.32  | -      | -             | -     | -      | -              | -     | 0.71   | 0.13          | 0.039 | -0.40 | 0.87          | 2.4 | 0.59  | 0.15    | 0.094 | -            | -              | -     | 1.5   | 0.41           | 0.15  | 2.8  | 3.4            | 1.8  | 32      | 7.8     |
|         |                          |                                                              |         |                       |       |        |               |       |        |                |       |        |               |       |       |               |     |       |         |       |              |                |       |       |                |       |      |                |      |         |         |
| 2       | 992-MS-<br>100413-13-1   | Concrete sample<br>from Station # 2 -<br>top 1/4 "           | 0.045   | 0.078                 | 0.15  | 0.099  | 0.12          | 0.18  | 0.067  | 0.063          | 0.088 | 0.95   | 2.0           | 1.2   | 42738 | 2950          | 3.7 | 0.068 | 0.095   | 0.092 | 34384        | 4986           | 95    | 1255  | 280            | 61    | 5051 | 834            | 26   | 40690   | 3.7     |
| 2       | 992-MS-<br>100413-13-2   | Concrete sample<br>from Station # 2 -<br>middle 1/2 "        | -       | -                     | -     | -      | -             | -     | -      | -              | -     |        |               |       | 4.5   | 1.1           | 2.8 | -     | -       | -     | 15           | 2.7            | 0.097 | 0.29  | 0.20           | 0.097 | 2.5  | 0.70           | 0.19 | 18      | 1.8     |
| 2       | 992-MS-<br>100413-13-3a  | Concrete sample<br>from Station # 2 -<br>remainder of core A | 0.0070  | 0.033                 | 0.052 | -      | -             | -     | -      | -              | -     | 0.23   | 0.054         | 0.067 | 0.72  | 0.91          | 2.8 | 0.14  | 0.11    | 0.20  | -            | -              | -     | 0.41  | 0.050          | 0.16  | 11   | 7.0            | 4.3  | 21      | 0.56    |
| 2       | 992-MS-<br>100413-13-5   | 1/4 inch Subfloor<br>wafer                                   |         | 0.0080                |       | 0.010  | 0.044         | 0.093 | -0.040 | 0.056          | 0.14  | 0.42   | 0.26          | 0.11  | -0.13 | 0.88          | 2.3 | 0.51  | 0.27    | 0.21  | 123          | 18             | 0.29  | 3.3   | 0.92           | 0.13  | 2.0  | 0.67           | 0.13 | 128     | 21      |
| 2       | 992-MS-<br>100413-13-6   | 1/2 inch Subfloor<br>wafer                                   | -       | -                     | -     | -      | -             | -     | -      | -              | -     |        |               |       | -0.17 | 0.88          | 1.9 | -     | -       | -     | 1.4          | 0.51           | 0.26  | 0.063 | 0.11           | 0.19  | 0.95 | 0.40           | 0.19 | 2.4     | 1.0     |
|         | 992-MS-<br>100413-13-3b  | Concrete sample<br>from Station # 2 -<br>remainder of core B | 0.27    | 0.41                  | 0.23  | -      | -             | -     | -      | -              | -     | 0.73   | 0.13          | 0.030 | 0.46  | 0.86          | 2.1 | 0.57  | 0.13    | 0.051 | _            | -              | -     | 0.25  | 0.24           | 0.15  | 0.27 | 3.0            | 1.8  | 5.2     | 13      |
| 2       | 992-SS-<br>100413-13-4   | Underlying<br>soil/gravel from<br>station # 2                | -0.11   |                       |       | -      | -             | -     | -      | -              | -     | 0.48   | 0.086         | 0.020 | -0.13 | 0.83          | 1.7 | 0.10  | 0.063   | 0.066 | 2.6          | 0.72           | 0.22  | 0.049 | 0.081          | 0.094 | 0.56 | 0.30           | 0.25 | 3.2     | 1.4     |
|         |                          |                                                              |         |                       |       |        |               |       |        |                |       |        |               |       |       |               |     |       |         |       |              |                |       |       |                |       |      |                |      |         |         |
| 3       | 993-MS-<br>100413-13-1   | Concrete sample<br>from Station # 3 -<br>top 1/4 "           | -0.025  | 0.0080                | 0.16  | 0.000  | 0.11          | 0.32  | 0.010  | 0.077          | 0.15  | 0.45   | 0.65          | 0.36  | 22646 | 547           | 2.6 | 0.12  | 0.14    | 0.23  | 15232        | 4884           | 5.6   | 544   | 181            | 3.1   | 2364 | 764            | 6.7  | 18140   | 3.5     |
| 3       | 993-MS-<br>100413-13-2   | Concrete sample<br>from Station # 3 -<br>middle 1/2 "        | _       | _                     | _     | -      | -             | -     | -      | -              | -     |        |               |       | 122   | 14            | 2.3 | -     | -       | -     | 6109         | 2122           | 2.7   | 206   | 74             | 1.4   | 904  | 316            | 2.7  | 7219    | 3.4     |
| 3       | 993-MS-<br>100413-13-3a  | Concrete sample<br>from Station # 3 -<br>remainder of core A | -0.0040 | 0.27                  | 0.34  | -      | -             | -     | -      | -              | -     | 0.23   | 0.097         | 0.13  | 101   | 13            | 1.9 | 0.055 | 0.15    | 0.26  | -            | -              | -     | 65    | 2.8            | 0.77  | 265  | 43             | 9.1  | 1513    | 3.7     |
| 3       | 993-MS-<br>100413-13-5   | 1/4 inch Subfloor<br>wafer                                   |         | 0.037                 | 0.18  | 0.027  | 0.040         | 0.066 | -0.018 | 0.058          | 0.13  | 0.78   | 0.30          | 0.090 | 19    | 2.9           | 2.0 | 0.20  | 0.17    | 0.22  | 107          | 16             | 0.27  | 3.8   | 0.98           | 0.23  | 21   | 3.6            | 0.23 | 132     | 2.8     |

### Attachment 3 to HEM-11-91 Page 8 of 14

#### Process Bldgs Slab Core Sample Data.xlsx

DRAFT

|         | 1                       | 1                                                            |        |         |       |       |         |      |        |          |       |       |        |       |       |         |      |       |         |       |       |         |      |       |         |       |       |         |       |         |         |
|---------|-------------------------|--------------------------------------------------------------|--------|---------|-------|-------|---------|------|--------|----------|-------|-------|--------|-------|-------|---------|------|-------|---------|-------|-------|---------|------|-------|---------|-------|-------|---------|-------|---------|---------|
| Station |                         |                                                              |        | Am-241  |       |       | Np-237  |      |        | 1-239/24 | 0     |       | Ra-226 |       |       | Tc-99   |      |       | Th-232  |       |       | U-234   |      |       | U-235   |       |       | U-238   |       | Total   | Perc.   |
| ID      | Sample ID               | Description                                                  |        | (pCi/g) | 1     |       | (pCi/g) |      |        | (pCi/g)  | 1     |       | pCi/g) |       |       | (pCi/g) | 1    |       | (pCi/g) |       |       | (pCi/g) | 1    | 1     | (pCi/g) |       |       | (pCi/g) |       |         | Enrich. |
|         |                         |                                                              | Conc.  | ±2σ     | С     | Conc. | ±2σ     | MDC  | Conc.  | ±2σ      | MDC   | Conc. | ±2σ    | MDC   | Conc. | ±2σ     | MDC  | Conc. | ±2σ     | MDC   | Conc. | ±2σ     | MDC  | Conc. | ±2σ     | MDC   | Conc. | ±2σ     | MDC   | (pCi/g) | (U-235) |
| 3       | 993-MS-<br>100413-13-6  | 1/2 inch Subfloor<br>wafer                                   | -      | -       | -     | -     | -       | -    | -      | -        | -     |       |        |       | 2.5   | 1.1     | 1.9  | -     | -       | -     | 4.2   | 0.97    | 0.20 | 0.13  | 0.13    | 0.086 | 1.3   | 0.45    | 0.086 | 5.6     | 1.5     |
| 3       | 993-MS-<br>100413-13-3b | Concrete sample<br>from Station # 3 -<br>remainder of core B | -0.080 | 1.7     | 0.25  | -     | -       | -    | -      | -        | -     | 0.59  | 0.094  | 0.031 | 2.8   | 1.1     | 2.2  | 0.38  | 0.11    | 0.10  | -     | -       | -    | 0.23  | 0.21    | 0.13  | 3.8   | 3.4     | 1.7   | 8.7     | 0.91    |
| 3       | 993-SS-<br>100413-13-4  | Underlying<br>soil/gravel from<br>station # 3                | -3.7   | 3.0     | 1.7   | -     | -       | -    | -      | -        | -     | 0.97  | 0.20   | 0.057 | 12    | 2.1     | 1.9  | 0.85  | 0.22    | 0.12  | -     | -       | -    | 100   | 11      | 0.82  | 685   | 73      | 2.8   | 2627    | 2.2     |
|         |                         |                                                              |        |         | -     |       | -       |      |        |          | -     |       | -      |       |       |         | -    |       | -       |       |       |         | _    |       |         | -     |       |         |       |         |         |
| 4       | 997-MS-<br>100414-13-1  | Concrete sample<br>from Station # 4 -<br>top 1/4 "           | 0.000  | 0.048   | 0.16  | 0.071 | 0.11    | 0.19 | 0.010  | 0.045    | 0.095 | 0.69  | 0.30   | 0.12  | 18    | 2.6     | 2.2  | 0.39  | 0.23    | 0.088 | 1439  | 262     | 1.3  | 56    | 12      | 0.57  | 311   | 58      | 1.1   | 1806    | 2.7     |
| 4       | 997-MS-<br>100414-13-2  | Concrete sample<br>from Station # 4 -<br>middle 1/2 "        | -      | -       | -     | -     | -       | -    | -      | -        | -     |       |        |       | 5.7   | 0.88    | 0.85 | -     | -       | -     | 4661  | 980     | 1.9  | 179   | 40      | 1.9   | 1011  | 215     | 1.9   | 5851    | 2.7     |
| 4       | 997-MS-<br>100414-13-3  | Concrete sample<br>from Station # 4 -<br>remainder of core   | -0.19  | 0.93    | 0.54  | -     | -       | -    | -      | -        | -     | 0.53  | 0.15   | 0.049 | 2.6   | 0.51    | 1.0  | 0.51  | 0.13    | 0.065 | -     | -       | -    | 151   | 21      | 0.57  | 1071  | 144     | 2.9   | 4009    | 2.1     |
| 4       | 997-SS-<br>100414-13-4  | Underlying<br>soil/gravel from<br>station # 4                | 0.14   | 1.5     | 0.89  | -     | -       | -    | -      | -        | -     | 0.81  | 0.14   | 0.040 | -0.18 | 0.83    | 1.9  | 1.0   | 0.19    | 0.059 | -     | -       | -    | 23    | 2.6     | 0.37  | 178   | 22      | 1.7   | 628     | 2.0     |
|         |                         |                                                              |        |         |       |       |         |      |        |          |       |       |        | -     |       |         |      |       |         |       |       |         |      |       |         | -     |       |         | -     |         |         |
| 5       | 998-MS-<br>100414-13-1  | Concrete sample<br>from Station # 5 -<br>top 1/4 "           | 0.024  | 0.059   | 0.14  | 0.085 | 0.10    | 0.16 | 0.010  | 0.093    | 0.18  | 1.5   | 0.64   | 0.64  | 24    | 1.8     | 1.4  | 0.50  | 0.25    | 0.16  | 37544 | 6057    | 145  | 1805  | 471     | 101   | 11035 | 1947    | 56    | 50384   | 2.5     |
| 5       | 998-MS-<br>100414-13-2  | Concrete sample<br>from Station # 5 -<br>middle 1/2 "        | -      | _       | _     | -     | -       | -    | -      | -        | -     |       |        |       | 2.1   | 0.99    | 2.5  | -     | -       | -     | 50    | 8.3     | 0.24 | 3.0   | 0.81    | 0.20  | 21    | 3.7     | 0.20  | 74      | 2.2     |
| 5       | 998-MS-<br>100414-13-3  | Concrete sample<br>from Station # 5 -<br>remainder of core   | 0.10   | 0.61    | 0.35  | -     | -       | -    | -      | -        | -     | 0.73  | 0.12   | 0.034 | 0.45  | 0.85    | 1.9  | 0.75  | 0.14    | 0.067 | -     | -       | -    | 0.63  | 0.29    | 0.18  | 4.5   | 4.0     | 2.1   | 17      | 2.1     |
| 5       | 998-SS-<br>100414-13-4  | Underlying<br>soil/gravel from<br>station # 5                | 0.081  | 1.6     | 0.91  | -     | -       | -    | -      | -        | -     | 0.75  | 0.14   | 0.038 | 1.3   | 0.90    | 2.1  | 0.48  | 0.15    | 0.081 | -     | -       | -    | 27    | 2.9     | 0.43  | 173   | 22      | 1.8   | 690     | 2.3     |
|         |                         |                                                              |        |         |       |       |         |      |        |          |       |       |        |       |       |         |      |       |         |       |       |         |      |       |         |       |       |         |       |         |         |
| 6       | 1008-MS-<br>100415-13-1 | Concrete sample<br>from Station # 6 -<br>top 1/4 "           | 0.062  | 0.11    | 0.23  | 0.041 | 0.14    | 0.34 | -0.040 | 0.072    | 0.16  | 0.87  | 1.1    | 1.3   | 16    | 1.3     | 1.5  | 1.1   | 0.41    | 0.24  | 20166 | 3281    | 104  | 1101  | 312     | 79    | 5896  | 1086    | 79    | 27163   | 2.8     |
| 6       | 1008-MS-<br>100415-13-2 | Concrete sample<br>from Station # 6 -<br>middle 1/2 "        | -      | -       | -     | -     | -       | -    | -      | -        | -     |       |        |       | 2.9   | 1.0     | 2.1  | -     | -       | -     | 1.4   | 0.46    | 0.20 | 0.095 | 0.11    | 0.086 | 0.64  | 0.30    | 0.17  | 2.1     | 2.3     |
| 6       | 1008-MS-<br>100415-13-3 | Concrete sample<br>from Station # 6 -<br>remainder of core   | 0.080  | 0.18    | 0.100 | -     | -       | -    | -      | -        | -     | 0.72  | 0.13   | 0.024 | 1.9   | 0.91    | 2.1  | 0.60  | 0.12    | 0.049 | -     | -       | -    | 0.12  | 0.19    | 0.11  | 0.93  | 2.9     | 1.6   | 3.3     | 1.9     |
| 6       | 1008-SS-<br>100415-13-4 | Underlying<br>soil/gravel from<br>station # 6                | -0.25  | 1.1     | 0.40  | -     | -       | -    | -      | -        | -     | 1.0   | 0.16   | 0.041 | 0.71  | 0.86    | 2.1  | 0.81  | 0.17    | 0.12  | -     | -       | -    | 0.31  | 0.29    | 0.20  | 0.23  | 4.1     | 2.4   | 6.6     | 17      |

#### Process Bldgs Slab Core Sample Data.xlsx

Attachment 3 to HEM-11-91

Page 9 of 14

DRAFT

| ~       |                         |                                                            | 1       | Am-241  |       | I      | Np-237  |      | Pı     | 1-239/24 | 0     | ]    | Ra-226   |       |       | Tc-99   |      |        | Th-232  |       |       | U-234   |      |       | U-235   |       |       | U-238      |       | Total | Perc.   |
|---------|-------------------------|------------------------------------------------------------|---------|---------|-------|--------|---------|------|--------|----------|-------|------|----------|-------|-------|---------|------|--------|---------|-------|-------|---------|------|-------|---------|-------|-------|------------|-------|-------|---------|
| Station | Sample ID               | Description                                                |         | (pCi/g) |       |        | (pCi/g) |      |        | (pCi/g)  |       |      | (pCi/g)  |       |       | (pCi/g) |      |        | (pCi/g) | 1     |       | (pCi/g) |      |       | (pCi/g) |       |       | (pCi/g)    |       | U     | Enrich. |
| ID      | -                       | 1                                                          | Conc.   | ±2σ     | С     | Conc.  | ±2σ     | MDC  | Conc.  | 1        | MDC   | 1    | <b>x</b> | MDC   |       |         | MDC  | Conc.  |         | MDC   | Conc. |         | MDC  | Conc. |         |       | Conc. | ř <u> </u> |       |       | (U-235) |
|         | l                       |                                                            |         |         |       |        |         |      |        |          |       |      |          |       |       |         |      |        |         |       |       |         |      |       |         |       |       |            |       |       | ()      |
| 7       | 1000-MS-<br>100415-13-1 | Concrete sample<br>from Station # 7 -<br>top 1/4 "         | -0.023  | 0.038   | 0.18  | 0.29   | 0.21    | 0.28 | -0.045 | 0.069    | 0.16  | 1.0  | 0.65     | 0.23  | 1.5   | 0.46    | 0.78 | 0.87   | 0.38    | 0.24  | 3304  | 868     | 5.6  | 145   | 43      | 1.9   | 1074  | 286        | 3.6   | 4523  | 2.1     |
| 7       | 1000-MS-<br>100415-13-2 | Concrete sample<br>from Station # 7 -<br>middle 1/2 "      | -       | -       | -     | -      | -       | -    | -      | -        | -     |      |          |       | 0.64  | 0.85    | 2.2  | -      | -       | -     | 2.7   | 0.68    | 0.21 | 0.12  | 0.12    | 0.079 | 1.4   | 0.44       | 0.15  | 4.1   | 1.3     |
| 7       | 1000-MS-<br>100415-13-3 | Concrete sample<br>from Station # 7 -<br>remainder of core | -0.22   | 0.77    | 0.27  | -      | -       | -    | -      | -        | -     | 0.68 | 0.12     | 0.031 | 0.041 | 0.79    | 2.1  | 0.56   | 0.11    | 0.048 | -     | -       | -    | 0.26  | 0.14    | 0.13  | 0.89  | 2.8        | 1.6   | 5.8   | 4.3     |
| 7       | 1000-SS-<br>100415-13-4 | Underlying<br>soil/gravel from<br>station # 7              | 0.045   | 0.14    | 0.078 | -      | -       | -    | -      | -        | -     | 0.23 | 0.073    | 0.021 | 0.27  | 0.83    | 1.7  | 0.068  | 0.054   | 0.060 | -     | -       | -    | 0.059 | 0.13    | 0.073 | 0.31  | 0.33       | 0.18  | 1.5   | 2.8     |
|         |                         |                                                            |         |         |       |        |         |      |        |          |       |      | •        |       |       |         |      |        |         |       |       |         |      |       |         |       |       |            |       |       |         |
| 8       | 999-MS-<br>100414-13-1  | Concrete sample<br>from Station #8 -<br>top 1/4 "          | -0.031  | 0.093   | 0.26  | -0.030 | 0.057   | 0.25 | 0      | 0.059    | 0.13  | 0.35 | 0.21     | 0.27  | 163   | 4.1     | 4.1  | 0.0090 | 0.070   | 0.21  | 2599  | 463     | 1.7  | 89    | 18      | 1.1   | 370   | 68         | 1.1   | 3058  | 3.6     |
| 8       | 999-MS-<br>100414-13-2  | Concrete sample<br>from Station # 8-<br>middle 1/2 "       | _       | -       | _     | -      | -       | -    | -      | -        | -     |      |          |       | 34    | 1.5     | 8.2  | -      | -       | -     | 0.73  | 0.31    | 0.19 | 0.029 | 0.058   | 0.080 | 0.29  | 0.19       | 0.15  | 1.1   | 1.5     |
| 8       | 999-MS-<br>100414-13-3  | Concrete sample<br>from Station # 8 -<br>remainder of core | 0.088   | 0.39    | 0.23  | -      | -       | -    | -      | -        | -     | 0.41 | 0.093    | 0.028 | 1.8   | 0.93    | 2.2  | 0.16   | 0.10    | 0.089 | -     | -       | -    | 0.31  | 0.21    | 0.12  | -0.40 | 9.6        | 2.1   | 9.9   | HEU     |
| 8       | 999-SS-<br>100414-13-4  | Underlying<br>soil/gravel from<br>station # 8              | -0.033  | 2.6     | 0.34  | -      | -       | -    | -      | -        | -     | 1.2  | 0.18     | 0.028 | 112   | 17      | 1.5  | 0.076  | 0.13    | 0.086 | -     | -       | -    | 0.84  | 0.32    | 0.13  | 6.6   | 3.7        | 1.2   | 23    | 1.9     |
|         |                         |                                                            |         |         |       |        |         |      |        |          |       |      |          |       |       |         |      |        |         |       |       |         |      |       |         |       |       |            |       |       |         |
| 9       | 1009-MS-<br>100415-13-1 | Concrete sample<br>from Station # 9 -<br>top 1/4 "         | 0.00    | 0.092   | 0.24  | 0.037  | 0.13    | 0.31 | 0.032  | 0.036    | 0.029 | 0.71 | 0.87     | 0.48  | 0.54  | 0.39    | 0.81 | 0.18   | 0.15    | 0.082 | 11874 | 2919    | 4.8  | 403   | 103     | 1.6   | 1574  | 391        | 1.6   | 13851 | 3.8     |
| 9       | 1009-MS-<br>100415-13-2 | Concrete sample<br>from Station # 9<br>middle 1/2 "        | _       | _       | _     | -      | -       | -    | -      | -        | -     |      |          |       | 0.77  | 0.88    | 2.0  | -      | -       | -     | 0.70  | 0.33    | 0.25 | 0.069 | 0.11    | 0.22  | 0.38  | 0.25       | 0.25  | 1.1   | 2.7     |
| 9       | 1009-MS-<br>100415-13-3 | Concrete sample<br>from Station # 9 -<br>remainder of core | -0.0020 | 0.23    | 0.13  | -      | -       | -    | -      | -        | -     | 0.28 | 0.077    | 0.023 | 0.57  | 0.79    | 2.1  | 0.093  | 0.065   | 0.070 | -     | -       | -    | 0.12  | 0.11    | 0.057 | 1.4   | 2.5        | 1.3   | 3.9   | 1.4     |
| 9       | 1009-SS-<br>100415-13-4 | Underlying<br>soil/gravel from<br>station # 9              | 0.099   | 0.35    | 0.20  | -      | -       | -    | -      | -        | -     | 0.16 | 0.074    | 0.027 | 0.12  | 0.81    | 2.1  | -0.052 | 0.97    | 0.073 | -     | -       | -    | 0.49  | 0.21    | 0.083 | 1.1   | 3.3        | 1.9   | 10    | 6.5     |
|         |                         | 1 -                                                        |         |         |       |        |         |      |        |          |       |      |          |       |       |         |      |        |         |       |       |         |      |       |         |       |       |            |       |       |         |
| 10      | 1010-MS-<br>100415-13-1 | Concrete sample<br>from Station # 10-<br>top 1/4 "         | 0.011   | 0.086   | 0.21  | 0.000  | 0.040   | 0.16 | 0.049  | 0.064    | 0.11  | 1.6  | 0.95     | 0.39  | 0.97  | 0.41    | 0.88 | 0.19   | 0.18    | 0.24  | 36426 | 5775    | 82   | 1267  | 346     | 82    | 5657  | 1056       | 46    | 43350 | 3.4     |
| 10      | 1010-MS-<br>100415-13-2 | Concrete sample<br>from Station # 10-<br>middle 1/2 "      | _       | -       | _     | -      | -       | -    | -      | -        | -     |      |          |       | 1.0   | 0.82    | 1.8  | -      | -       | -     | 1.6   | 0.53    | 0.28 | 0.033 | 0.066   | 0.091 | 0.33  | 0.21       | 0.091 | 2.0   | 1.5     |

#### Process Bldgs Slab Core Sample Data.xlsx

Attachment 3 to HEM-11-91

Page 10 of 14

DRAFT

| <b>a</b>      |                         |                                        | 1       | Am-241  |       | ]     | Np-237       |       | Pu     | u-239/24 | 40    | ]     | Ra-226  |       |       | Tc-99   |      |       | Th-232  | )     |      | U-234   |      |       | U-235   |       |      | U-238   |      | Total    | Perc.     |
|---------------|-------------------------|----------------------------------------|---------|---------|-------|-------|--------------|-------|--------|----------|-------|-------|---------|-------|-------|---------|------|-------|---------|-------|------|---------|------|-------|---------|-------|------|---------|------|----------|-----------|
| Station<br>ID | Sample ID               | Description                            |         | (pCi/g) |       |       | -<br>(pCi/g) |       |        | (pCi/g)  |       |       | (pCi/g) |       |       | (pCi/g) |      |       | (pCi/g) |       |      | (pCi/g) |      |       | (pCi/g) |       |      | (pCi/g) |      | U        | Enrich.   |
| ID            | _                       | _                                      | Conc.   | ±2σ     | С     | Conc. | 1            | MDC   | Conc.  | <u> </u> | MDC   |       |         | MDC   | Conc. | 1       | MDC  |       |         | MDC   |      |         | MDC  |       | ±2σ     | 1     | 1    | 1 0/    |      | (pCi/g)  | (U-235)   |
|               | 1010-MS-                | Concrete sample<br>from Station # 10 - |         |         |       |       |              |       |        |          |       | 0.38  | 0.006   | 0.025 | 0.073 | 0.83    | 1.9  | 0.11  | 0.065   | 0.072 | _    |         |      | 1.6   | 0.37    | 0.11  | 13   | 4.0     | 0.63 | 44       | 1.8       |
| 10            |                         | remainder of core                      | 0.042   | 0.20    | 0.11  | -     | -            | -     | -      | -        | -     | 0.58  | 0.090   | 0.025 | 0.075 | 0.85    | 1.9  | 0.11  | 0.005   | 0.075 | -    | -       | -    | 1.0   | 0.57    | 0.11  | 15   | 4.0     | 0.05 | 44       | 1.0       |
| 10            | 100415-15-5             | remainder of core                      | 0.042   | 0.20    | 0.11  |       |              |       |        |          |       |       |         |       |       |         |      |       |         |       |      |         |      |       |         |       |      |         |      | <u> </u> | +         |
|               |                         |                                        |         |         |       |       |              |       |        |          |       |       |         |       |       |         |      |       |         |       |      |         |      |       |         |       |      |         |      |          |           |
|               |                         | Concrete sample                        |         |         |       |       |              |       |        |          |       |       |         |       |       |         |      |       |         |       |      |         |      |       |         |       |      |         |      |          |           |
|               | 1011-MS-                | from Station # 11 -                    | 0.011   | 0.10    | 0.05  | 0.067 | 0.11         | 0.22  | 0.0090 | 0.038    | 0.081 | 0.33  | 0.29    | 0.16  | -0.12 | 0.35    | 1.2  | 0.24  | 0.21    | 0.28  | 1523 | 257     | 1.1  | 50    | 9.9     | 0.39  | 205  | 36      | 0.61 | 1778     | 3.7       |
| 11            | 100415-13-1             | top 1/4 "<br>Concrete sample           | 0.011   | 0.10    | 0.25  |       |              |       |        |          |       |       |         |       |       |         |      |       |         |       |      |         |      |       |         |       |      |         |      | ┣───     | '         |
|               | 1011-MS-                | from Station # 11 -                    |         |         |       | _     | _            | _     | _      | _        | _     |       |         |       | 0.80  | 0.87    | 2.0  | _     | _       | _     | 8.6  | 1.6     | 0.28 | 0.34  | 0.20    | 0.15  | 1.5  | 0.46    | 0.20 | 10       | 3.5       |
| 11            |                         | middle 1/2 "                           | -       | -       | -     |       |              |       |        |          |       |       |         |       | 0.00  | 0.07    | 2.0  |       |         |       | 0.0  | 1.0     | 0.20 | 0.54  | 0.20    | 0.15  | 1.5  | 0.40    | 0.20 | 10       | 5.5       |
|               |                         | Concrete sample                        |         |         |       |       |              |       |        |          |       |       |         |       |       |         |      |       |         |       |      |         |      |       |         |       |      |         |      |          |           |
|               | 1011-MS-                | from Station # 11 -                    |         |         |       | -     | -            | -     | -      | -        | -     | 0.33  | 0.077   | 0.021 | -0.40 | 0.78    | 2.0  | 0.32  | 0.098   | 0.052 | -    | -       | -    | 2.1   | 0.41    | 0.15  | 14   | 4.1     | 0.87 | 55       | 2.4       |
| 11            | 100415-13-3             | remainder of core                      | 0.0037  | 0.45    | 0.26  |       |              |       |        |          |       |       |         |       |       |         |      |       |         |       |      |         |      |       |         |       |      |         |      | <b> </b> | '         |
|               | 1011-SS-                | Underlying<br>soil/gravel from         |         |         |       | _     | _            | _     |        |          |       | 0.16  | 0.057   | 0.010 | 0.85  | 0.86    | 1.8  | 0.042 | 0.036   | 0.052 |      |         |      | 0.038 | 0.11    | 0.061 | 0.75 | 2.2     | 1.2  | 1.6      | 0.79      |
| 11            |                         | station # 11                           | -0.0020 | 0.12    | 0.068 |       | -            | -     | -      | -        | -     | 0.10  | 0.037   | 0.019 | 0.05  | 0.80    | 1.0  | 0.042 | 0.050   | 0.055 | -    | -       | -    | 0.038 | 0.11    | 0.001 | 0.75 | 2.2     | 1.2  | 1.0      | 0.79      |
| 11            |                         | Station # 11                           | 0.0020  | 0.12    | 0.000 |       |              |       |        |          |       |       |         |       |       |         |      |       |         |       |      |         |      |       |         |       |      |         |      | <u> </u> |           |
|               |                         | -                                      |         |         |       |       | r            |       |        |          | -     |       | -       | -     |       | r       | -    |       |         |       |      | -       |      |       | -       |       |      |         |      |          |           |
|               | 1017 10                 | Concrete sample                        |         |         |       |       |              |       |        |          |       |       |         |       |       |         |      |       |         |       |      |         |      |       |         |       |      |         |      |          |           |
| 10            | 1017-MS-<br>100416-13-1 | from Station # 12 -<br>top 1/4 "       | 0.021   | 0.077   | 0.16  | 0.098 | 0.30         | 0.74  | -0.029 | 0.056    | 0.14  | 0.20  | 0.25    | 0.68  | -0.11 | 0.34    | 1.3  | 1.4   | 0.50    | 0.10  | 4481 | 949     | 2.2  | 165   | 38      | 1.0   | 650  | 141     | 2.2  | 5296     | 3.8       |
| 12            | 100410-13-1             | Concrete sample                        | 0.021   | 0.066   | 0.10  |       |              |       |        |          |       |       |         |       |       |         |      |       |         |       |      |         |      |       |         |       |      |         |      | ┣────    | <u> </u>  |
|               | 1017-MS-                | from Station # 12                      |         |         |       | _     | _            | _     | _      | _        | _     |       |         |       | 1.1   | 0.84    | 1.7  | _     | _       | _     | 0.60 | 0.29    | 017  | 0 032 | 0.062   | 0.086 | 0.19 | 0.16    | 0.20 | 0.82     | 2.6       |
| 12            | 100416-13-2             | middle 1/2 "                           | -       | -       | -     |       |              |       |        |          |       |       |         |       |       | 0.01    | 1.,  |       |         |       | 0.00 | 0.27    | 0.17 | 0.032 | 0.002   | 0.000 | 0.17 | 0.10    | 0.20 | 0.02     | 2.0       |
|               |                         | Concrete sample                        |         |         |       |       |              |       |        |          |       |       |         |       |       |         |      |       |         |       |      |         |      |       |         |       |      |         |      |          |           |
|               | 1017-MS-                | from Station # 12 -                    |         |         |       | -     | -            | -     | -      | -        | -     | 0.35  | 0.083   | 0.025 | 0.31  | 0.33    | 1.2  | 0.18  | 0.096   | 0.073 | -    | -       | -    | 0.028 | 0.14    | 0.077 | 0.32 | 2.7     | 1.6  | 0.88     | 1.3       |
| 12            | 100416-13-3             | remainder of core                      | -0.076  | 2.3     | 0.10  |       |              |       |        |          |       |       |         |       |       |         |      |       |         |       |      |         |      |       |         |       |      |         |      | <u> </u> | '         |
|               | 1017-SS-                | Underlying<br>soil/gravel from         |         |         |       | _     | _            | _     | -      |          |       | 0.23  | 0.078   | 0.024 | 0.00  | 0.32    | 0.81 | 0.10  | 0.068   | 0.064 | _    |         |      | 0.16  | 0.17    | 0.094 | 1.6  | 2.9     | 1.6  | 4.7      | 1.5       |
| 12            |                         | station # 12                           | 0.021   | 0.33    | 0.19  | -     | -            | -     | -      | -        | -     | 0.23  | 0.078   | 0.024 | 0.00  | 0.32    | 0.01 | 0.10  | 0.008   | 0.004 | -    | -       | -    | 0.10  | 0.17    | 0.094 | 1.0  | 2.9     | 1.0  | 4./      | 1.5       |
| 12            | 100.10 10 1             | 500010111112                           | 0.021   | 0.55    | 0.19  |       |              | 1     |        | 1        |       |       |         |       |       |         |      |       |         |       |      |         |      |       |         |       |      |         |      | <u> </u> | 1         |
|               |                         |                                        |         |         |       |       |              |       |        |          |       |       |         |       |       |         |      |       |         |       |      |         |      |       |         |       |      |         |      |          |           |
|               | 1010 100                | Concrete sample                        |         |         |       |       |              |       |        |          |       |       |         |       |       |         |      |       |         |       |      |         |      |       |         |       |      |         |      |          |           |
| 12            | 1018-MS-<br>100416-13-1 | from Station # 13-<br>top 1/4 "        | 0.053   | 0.11    | 0.22  | 0.070 | 0.098        | 0.095 | -0.020 | 0.062    | 0.14  | 0.31  | 0.39    | 0.26  | 3.8   | 0.59    | 0.92 | 0.34  | 0.24    | 0.28  | 2154 | 378     | 1.1  | 74    | 15      | 0.48  | 259  | 47      | 0.89 | 2487     | 4.3       |
| 13            | 100410-13-1             | Concrete sample                        | 0.053   | 0.11    | 0.23  |       |              |       |        |          |       |       |         |       |       |         |      |       |         |       |      |         |      |       |         |       |      |         |      | ┣────    |           |
|               | 1018-MS-                | from Station # 13-                     |         |         |       | _     | _            | _     | -      | _        | -     |       |         |       | 0.37  | 0 34    | 0.90 | _     | _       | _     | 585  | 92      | 0.30 | 15    | 2.7     | 0.096 | 2.8  | 0.76    | 0.19 | 602      | 45        |
| 13            |                         | middle 1/2 "                           | -       | -       | -     |       |              |       |        |          |       |       |         |       | 0.07  | 0.5 1   | 0.90 |       |         |       | 200  | /2      | 0.20 | 10    | 2.7     | 0.070 | 2.0  | 0.70    | 0.17 | 002      | 10        |
|               |                         | Concrete sample                        |         |         |       | 1     |              |       |        |          |       |       |         |       |       |         |      |       |         |       | 1    |         |      |       |         |       |      |         |      |          | 1         |
|               | 1018-MS-                | from Station # 13 -                    |         |         |       | -     | -            | -     | -      | -        | -     | 0.47  | 0.10    | 0.025 | 0.78  | 0.36    | 0.82 | 0.15  | 0.078   | 0.068 | -    | -       | -    | 8.7   | 1.3     | 0.19  | 28   | 6.1     | 0.70 | 195      | 4.6       |
| 13            | 100416-13-3             | remainder of core                      | -0.018  | 85      | 0.21  |       |              |       |        |          |       |       |         |       |       |         |      |       |         |       |      |         |      |       |         |       |      |         |      | ───      | <b></b> ' |
|               | 1018-SS-                | Underlying<br>soil/gravel from         |         |         |       |       |              |       |        |          |       | 0.46  | 0.11    | 0.020 | 0.97  | 0.26    | 0.67 | 0.14  | 0.070   | 0.074 | _    |         |      | 18    | 2.0     | 0.34  | 72   | 11      | 1.1  | 411      | 3.7       |
| 13            |                         |                                        | 0.0058  | 1.1     | 0.61  | -     | -            | -     | -      | -        | -     | 0.40  | 0.11    | 0.030 | 0.97  | 0.30    | 0.07 | 0.14  | 0.079   | 0.074 | -    | -       | -    | 18    | 2.0     | 0.34  | 12   |         | 1.1  | 411      | 5./       |
| 15            | 100110 10 1             |                                        | 0.0050  | 1.1     | 0.01  |       | 1            | I     |        | 1        | 1     |       | L       | 1     |       | 1       | 1    |       |         | 1     |      | 1       | 1    |       | ]       | I     |      | I       |      | <u> </u> | łł        |
|               |                         |                                        |         |         |       |       |              |       |        |          |       |       |         |       |       |         |      |       |         |       |      |         |      |       |         |       |      |         |      |          |           |
|               | 1010 150                | Concrete sample                        |         |         |       |       |              |       |        |          |       |       |         |       |       |         |      |       | 1       |       |      |         |      |       |         |       |      |         |      |          |           |
| 14            | 1019-MS-<br>100416-13-1 | from Station # 14 - top $1/4$ "        | 0.010   | 0.042   | 0.16  |       | 0.069        | 0.22  | 0.021  | 0.041    | 0.078 | 0.026 | 0.34    | 0.20  | 5.0   | 0.48    | 1.9  | 0.011 | 0.086   | 0.26  | 534  | 79      | 0.38 | 16    | 3.1     | 0.16  | 46   | 7.5     | 0.29 | 596      | 5.2       |
| 14            | 100410-13-1             | top 1/4 "                              | -0.019  | 0.042   | 0.16  |       |              |       |        |          |       |       |         |       |       |         |      |       |         |       |      |         |      |       |         |       |      |         |      |          | <u> </u>  |

### Attachment 3 to HEM-11-91 Page 11 of 14

#### Process Bldgs Slab Core Sample Data.xlsx

DRAFT

|         |                         |                                                             | A      | Am-241      |      | ſ      | Np-237 |      | Pu      | -239/24 | 0     | ŀ     | Ra-226 |       |       | Тс-99  |      |       | Th-232        |       |       | U-234   |      |       | U-235   |       |       | U-238   |       | Total | Perc.   |
|---------|-------------------------|-------------------------------------------------------------|--------|-------------|------|--------|--------|------|---------|---------|-------|-------|--------|-------|-------|--------|------|-------|---------------|-------|-------|---------|------|-------|---------|-------|-------|---------|-------|-------|---------|
| Station | Sample ID               | Description                                                 |        | (pCi/g)     |      |        | pCi/g) |      |         | (pCi/g) | -     |       | pCi/g) |       |       | pCi/g) |      |       | (pCi/g)       |       |       | (pCi/g) |      |       | (pCi/g) |       |       | (pCi/g) |       |       | Enrich. |
| ID      | I                       |                                                             | Conc.  | <u>±2</u> σ | С    | Conc.  |        | MDC  | Conc.   | ±2σ     | MDC   | Conc. |        | MDC   | Conc. |        | MDC  |       | $\pm 2\sigma$ | MDC   | Conc. | u 0/    | MDC  | Conc. |         | MDC   | Conc. | ±2σ     | -     |       |         |
| 14      |                         | Concrete sample<br>from Station # 14 -<br>middle 1/2 "      | -      | -           | -    | -      | -      | -    | -       | -       | -     |       |        |       | 1.2   | 0.41   | 0.74 | -     | -             | -     | 407   | 65      | 0.33 | 13    | 2.4     | 0.22  | 40    | 6.7     | 0.22  | 459   | 4.8     |
| 14      | 1019-MS-<br>100416-13-3 | Concrete sample<br>from Station # 14 -<br>remainder of core | -0.10  | 4.7         | 0.23 | -      | -      | -    | -       | -       | -     | 0.52  | 0.11   | 0.023 | 0.29  | 0.34   | 0.72 | 0.16  | 0.11          | 0.073 | -     | -       | -    | 13    | 1.8     | 0.23  | 4.5   | 3.4     | 1.6   | 287   | 30      |
| 14      |                         | Underlying<br>soil/gravel from<br>station # 14              | 0.11   | 1.3         | 0.75 | -      | -      | -    | -       | -       | -     | 1.1   | 0.18   | 0.035 | 0.54  | 0.35   | 0.72 | 1.2   | 0.22          | 0.075 | -     | -       | -    | 20    | 2.3     | 0.39  | 11    | 6.5     | 2.0   | 439   | 22      |
|         |                         |                                                             |        |             |      |        |        |      |         |         |       |       |        |       |       |        |      |       |               |       |       |         |      |       |         |       |       |         |       | Í     |         |
| 15      | 1025-MS-                | Concrete sample<br>from Station # 15 -<br>top 1/4 "         | 0.00   | 0.064       | 0.18 | 0.015  | 0.055  | 0.11 | -0.0070 | 0.030   | 0.076 | 1.1   | 0.31   | 0.14  | 2.8   | 0.55   | 0.74 | 0.22  | 0.18          | 0.23  | 495   | 76      | 0.50 | 18    | 3.6     | 0.45  | 85    | 14      | 0.50  | 598   | 3.3     |
| 15      | 1025-MS-<br>100419-13-2 | Concrete sample<br>from Station # 15<br>middle 1/2 "        | -      | -           | -    | -      | -      | -    | -       | -       | -     |       |        |       | 1.2   | 0.41   | 0.75 | -     | -             | -     | 0.78  | 0.31    | 0.22 | 0.049 | 0.068   | 0.066 | 0.39  | 0.20    | 0.066 | 1.2   | 1.9     |
| 15      | 1025-MS-<br>100419-13-3 | Concrete sample<br>from Station # 15 -<br>remainder of core | -0.15  | 0.87        | 0.14 | -      | -      | -    | -       | -       | -     | 0.61  | 0.12   | 0.025 | 1.6   | 0.39   | 1.2  | 0.14  | 0.076         | 0.072 | -     | -       | -    | 0.84  | 0.24    | 0.11  | 2.9   | 3.0     | 1.5   | 19    | 4.3     |
| 15      | 1025-SS-<br>100419-13-4 | Underlying<br>soil/gravel from<br>station # 15              | -0.42  | 0.80        | 0.46 | -      | -      | -    | -       | -       | -     | 0.76  | 0.15   | 0.035 | 2.1   | 0.46   | 0.84 | 0.54  | 0.14          | 0.070 | -     | -       | -    | 4.3   | 0.66    | 0.19  | 30    | 7.6     | 1.6   | 115   | 2.2     |
|         |                         |                                                             |        |             |      |        |        |      |         |         | •     |       |        |       |       |        | •    |       |               | -     |       |         | •    |       |         | •     |       |         |       |       |         |
| 16      |                         | Concrete sample<br>from Station # 16-<br>top 1/4 "          | 0.078  | 0.12        | 0.22 | -0.028 | 0.038  | 0.21 | -0.029  | 0.060   | 0.14  | 0.82  | 0.51   | 0.24  | 125   | 6.3    | 2.1  | 1.2   | 0.47          | 0.27  | 10714 | 3817    | 8.5  | 415   | 155     | 6.8   | 2572  | 922     | 9.0   | 13701 | 2.4     |
| 16      | 1026-MS-                | Concrete sample<br>from Station # 16-<br>middle 1/2 "       | -      | _           | _    | -      | -      | -    | -       | -       | -     |       |        |       | 2.4   | 0.49   | 0.87 | -     | -             | -     | 1.2   | 0.40    | 0.20 | 0.18  | 0.14    | 0.071 | 0.47  | 0.23    | 0.12  | 1.9   | 5.7     |
| 16      | 1026-MS-                | Concrete sample<br>from Station # 16 -<br>remainder of core | 0.16   | 0.26        | 0.14 | -      | -      | -    | -       | -       | -     | 0.62  | 0.13   | 0.026 | 6.7   | 0.91   | 0.86 | 0.077 | 0.040         | 0.090 | -     | -       | -    | 0.23  | 0.16    | 0.078 | 5.8   | 2.9     | 0.77  | 11    | 0.61    |
|         |                         | Underlying<br>soil/gravel from<br>station # 16              | -0.88  | 1.0         | 0.57 | -      | -      | -    | -       | -       | -     | 1.2   | 0.19   | 0.041 | 2.3   | 0.50   | 0.77 | 1.3   | 0.23          | 0.12  | -     | -       | -    | 5.5   | 0.87    | 0.31  | 55    | 10      | 1.4   | 164   | 1.5     |
|         |                         |                                                             |        |             |      |        |        |      |         |         |       |       |        |       |       |        |      |       |               |       |       |         |      |       |         |       |       |         |       | Í     |         |
| 17      | 1027-MS-<br>100419-13-1 | Concrete sample<br>from Station # 17 -<br>top 1/4 "         | -0.096 | 0.064       | 0.27 | 0.13   | 0.095  | 0.12 | 0.072   | 0.062   | 0.076 | 0.80  | 0.33   | 0.093 | 5.8   | 0.71   | 1.2  | 0.13  | 0.15          | 0.24  | 1125  | 199     | 1.2  | 39    | 8.6     | 0.47  | 297   | 54      | 1.4   | 1461  | 2.0     |
| 17      | 1027-MS-<br>100419-13-2 | Concrete sample<br>from Station # 17 -<br>middle 1/2 "      | -      | -           | -    | -      | -      | -    | -       | -       | -     |       |        |       | 2.4   | 0.54   | 0.85 | -     | -             | -     | 4494  | 982     | 4.5  | 172   | 43      | 1.9   | 841   | 189     | 1.9   | 5507  | 3.1     |
|         | 1027-MS-                | Concrete sample<br>from Station # 17 -<br>remainder of core | -0.15  | 1.3         | 0.18 | -      | -      | -    | -       | -       | -     | 0.67  | 0.13   | 0.036 | 0.53  | 0.36   | 0.72 | 0.17  | 0.078         | 0.074 | -     | -       | -    | 1.9   | 0.41    | 0.14  | 21    | 5.5     | 1.1   | 60    | 1.4     |
| 17      |                         | Underlying<br>soil/gravel from<br>station # 17              | -0.14  | 0.31        | 0.17 | -      | -      | -    | -       | -       | -     | 0.56  | 0.11   | 0.023 | 0.23  | 0.33   | 0.75 | 0.085 | 0.064         | 0.074 | -     | -       | -    | 0.18  | 0.20    | 0.11  | 2.3   | 1.1     | 0.38  | 6.0   | 1.2     |

#### Process Bldgs Slab Core Sample Data.xlsx

Attachment 3 to HEM-11-91

Page 12 of 14

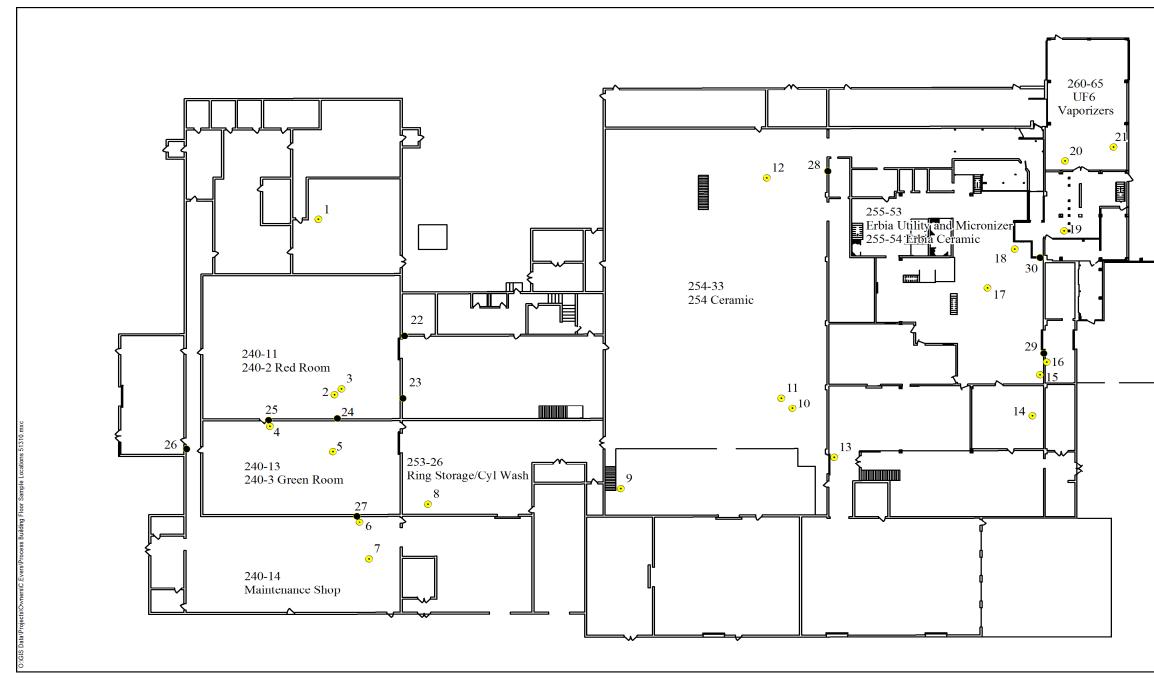
DRAFT

|         |                         |                                                             |        | Am-241        |       | 1     | Np-237  |       | Pı     | u-239/24 | 0     | 1     | Ra-226   |       |       | Tc-99   |      |       | Th-232  |       |        | U-234   |      |       | U-235   |       |       | U-238   |      | Total  | Perc.   |
|---------|-------------------------|-------------------------------------------------------------|--------|---------------|-------|-------|---------|-------|--------|----------|-------|-------|----------|-------|-------|---------|------|-------|---------|-------|--------|---------|------|-------|---------|-------|-------|---------|------|--------|---------|
| Station | Sample ID               | Description                                                 |        | (pCi/g)       |       |       | (pCi/g) |       |        | (pCi/g)  | •     |       | (pCi/g)  |       |       | (pCi/g) |      |       | (pCi/g) |       |        | (pCi/g) |      |       | (pCi/g) |       |       | (pCi/g) |      |        | Enrich. |
| ID      | Sample ID               | Description                                                 | Conc.  | $\pm 2\sigma$ | С     | Conc. |         | MDC   | Conc.  |          | MDC   | Conc. | <b>*</b> | MDC   | Conc. |         | MDC  | Conc. |         | MDC   | Conc.  |         | MDC  | Conc. |         | MDC   | Conc. |         |      | -      | (U-235) |
|         |                         |                                                             | Conc.  | 120           | C     | Conc. | 120     | WIDC  | conc.  | 120      | MDC   | Conc. | 120      | MDC   | conc. | 120     | MDC  | Conc. |         | MDC   | Conc.  | 120     | MDC  | Conc. | 120     | MDC   | Conc. | 120     | MDC  | (perg) | (0-233) |
| 18      | 1028-MS-<br>100419-13-1 | Concrete sample<br>from Station # 18 -<br>top 1/4 "         | 0.046  | 0.087         | 0.18  | 0.076 | 0.13    | 0.25  | 0.0090 | 0.054    | 0.11  | 0.51  | 0.26     | 0.25  | 1.8   | 0.41    | 1.1  | 0.51  | 0.27    | 0.092 | 629    | 108     | 1.2  | 23    | 5.4     | 0.42  | 222   | 39      | 0.42 | 874    | 1.6     |
| 18      | 1028-MS-<br>100419-13-2 | Concrete sample<br>from Station # 18 -<br>middle 1/2 "      | _      | -             | -     | -     | -       | -     | -      | -        | -     |       |          |       | 0.60  | 0.39    | 0.77 | -     | -       | -     | 793    | 189     | 1.2  | 41    | 11      | 0.52  | 327   | 79      | 1.2  | 1161   | 1.9     |
| 18      | 1028-MS-<br>100419-13-3 | Concrete sample<br>from Station # 18 -<br>remainder of core | -1.0   | 0.85          | 0.34  | -     | -       | -     | -      | -        | -     | 0.55  | 0.13     | 0.034 | 0.094 | 0.35    | 0.84 | 0.21  | 0.090   | 0.077 | -      | -       | -    | 11    | 1.6     | 0.25  | 129   | 20      | 1.4  | 343    | 1.3     |
| 18      | 1028-SS-<br>100419-13-4 | Underlying<br>soil/gravel from<br>station # 18              | -0.048 | 0.75          | 0.43  | -     | -       | -     | -      | -        | -     | 0.68  | 0.12     | 0.030 | 0.31  | 0.36    | 0.93 | 0.25  | 0.098   | 0.085 | -      | -       | -    | 4.1   | 0.63    | 0.19  | 46    | 9.5     | 1.9  | 128    | 1.4     |
|         |                         |                                                             |        |               |       |       |         |       |        |          |       |       |          |       |       |         |      |       |         |       |        |         |      |       |         |       |       |         |      |        |         |
| 19      | 1031-MS-<br>100420-13-1 | Concrete sample<br>from Station # 19-<br>top 1/4 "          | -0.023 | 0.084         | 0.25  | 0.067 | 0.10    | 0.19  | 0.019  | 0.054    | 0.10  | 0.85  | 0.42     | 0.15  | 7.1   | 0.73    | 1.4  | 0.30  | 0.24    | 0.27  | 3925   | 857     | 3.8  | 142   | 34      | 2.1   | 797   | 177     | 2.8  | 4864   | 2.7     |
| 19      | 1031-MS-<br>100420-13-2 | Concrete sample<br>from Station # 19-<br>middle 1/2 "       | _      | _             | _     | -     | -       | -     | -      | -        | -     |       |          |       | 7.5   | 1.3     | 0.70 | -     | -       | -     | 2409   | 742     | 2.4  | 98    | 32      | 1.9   | 618   | 192     | 2.6  | 3125   | 2.4     |
| 19      | 1031-MS-<br>100420-13-3 | Concrete sample<br>from Station # 19 -<br>remainder of core | -0.15  | 0.95          | 0.13  | -     | -       | -     | -      | -        | -     | 0.59  | 0.13     | 0.030 | 0.32  | 0.36    | 0.90 | 0.17  | 0.077   | 0.077 | -      | -       | -    | 0.47  | 0.24    | 0.099 | 4.8   | 3.9     | 1.8  | 14     | 1.5     |
| 19      | 1031-SS-<br>100420-13-4 | Underlying<br>soil/gravel from<br>station # 19              | 0.0027 | 0.47          | 0.27  | -     | -       | -     | -      | -        | -     | 0.45  | 0.10     | 0.031 | 10    | 1.4     | 0.85 | 0.23  | 0.090   | 0.082 | -      | -       | -    | 1.4   | 0.36    | 0.12  | 13    | 4.6     | 1.2  | 41     | 1.7     |
|         |                         |                                                             |        |               |       |       |         |       |        |          |       |       |          |       |       |         |      |       |         |       |        |         |      |       |         |       |       |         |      |        |         |
| 20      | 1032-MS-<br>100420-13-1 | Concrete sample<br>from Station # 20 -<br>top 1/4 "         | 0.11   | 0.13          | 0.24  | 0.033 | 0.065   | 0.090 | 0.040  | 0.051    | 0.083 | 0.91  | 1.0      | 0.58  | 643   | 32      | 2.1  | 0.093 | 0.14    | 0.24  | 1929   | 560     | 0.88 | 73    | 22      | 0.48  | 322   | 95      | 0.48 | 2324   | 3.4     |
| 20      | 1032-MS-<br>100420-13-2 | Concrete sample<br>from Station # 20 -<br>middle 1/2 "      | _      | -             | _     | -     | -       | -     | -      | -        | -     |       |          |       | 52    | 6.1     | 0.87 | -     | -       | -     | 3.6    | 0.96    | 0.32 | 0.14  | 0.15    | 0.12  | 1.4   | 0.53    | 0.24 | 5.0    | 1.5     |
| 20      | 1032-MS-<br>100420-13-3 | Concrete sample<br>from Station # 20 -<br>remainder of core | -0.041 | 0.42          | 0.093 | -     | -       | -     | -      | -        | -     | 0.53  | 0.11     | 0.024 | 16    | 1.9     | 0.88 | 0.10  | 0.078   | 0.069 | -      | -       | -    | 0.083 | 0.15    | 0.083 | 3.0   | 3.0     | 1.5  | 5.1    | 0.42    |
| 20      | 1032-SS-<br>100420-13-4 | Underlying<br>soil/gravel from<br>station # 20              | -0.37  | 1.3           | 0.74  | -     | -       | -     | -      | -        | -     | 1.1   | 0.18     | 0.035 | 5.2   | 0.85    | 0.81 | 0.88  | 0.20    | 0.11  | -      | -       | -    | 13    | 1.5     | 0.30  | 74    | 12      | 2.8  | 323    | 2.7     |
| 21      | 1033-MS-<br>100420-13-1 | Concrete sample<br>from Station # 21 -<br>top 1/4 "         | 0.056  | 0.11          | 0.23  | 0.032 | 0.064   | 0.088 | 0.14   | 0.082    | 0.098 | 3.1   | 0.96     | 1.1   | 750   | 37      | 2.1  | 0.64  | 0.33    | 0.11  | 170561 | 26694   | 389  | 5692  | 1488    | 328   | 24175 | 4433    | 181  | 200428 | 3.5     |
| 21      | 1033-MS-<br>100420-13-2 | Concrete sample<br>from Station # 21 -<br>middle 1/2 "      | _      | _             | _     | -     | -       | -     | -      | -        | -     |       |          |       | 2086  | 35      | 6.0  | -     | -       | -     | 64     | 10      | 0.29 | 2.4   | 0.72    | 0.11  | 12    | 2.3     | 0.34 | 78     | 3.0     |

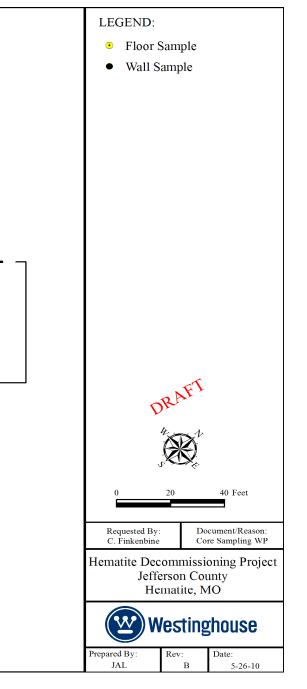
### Attachment 3 to HEM-11-91 Page 13 of 14

#### Process Bldgs Slab Core Sample Data.xlsx

DRAFT


| Station       |                                                     |                     | A      | Am-241  |      | 1     | Np-237  |     | Pu    | 1-239/24 | 0   | ]     | Ra-226 |       |       | Tc-99  |      | 1     | Th-232  | ,     |       | U-234   |     |       | U-235   |      |       | U-238   |     | Total   | Perc.   |
|---------------|-----------------------------------------------------|---------------------|--------|---------|------|-------|---------|-----|-------|----------|-----|-------|--------|-------|-------|--------|------|-------|---------|-------|-------|---------|-----|-------|---------|------|-------|---------|-----|---------|---------|
| Station<br>ID | Sample ID                                           | Description         |        | (pCi/g) |      |       | (pCi/g) |     |       | (pCi/g)  |     | (     | pCi/g) |       | (     | pCi/g) |      |       | (pCi/g) |       |       | (pCi/g) |     |       | (pCi/g) |      | (     | (pCi/g) |     | U       | Enrich. |
| ID            |                                                     |                     | Conc.  | ±2σ     | С    | Conc. | ±2σ     | MDC | Conc. | ±2σ      | MDC | Conc. | ±2σ    | MDC   | Conc. | ±2σ    | MDC  | Conc. | ±2σ     | MDC   | Conc. | ±2σ     | MDC | Conc. | ±2σ     | MDC  | Conc. | ±2σ     | MDC | (pCi/g) | (U-235) |
|               |                                                     | Concrete sample     |        |         |      |       |         |     |       |          |     |       |        |       |       |        |      |       |         |       |       |         |     |       |         |      |       |         |     |         |         |
|               | 1033-MS-                                            | from Station # 21 - |        |         |      | -     | -       | -   | -     | -        | -   | 0.53  | 0.13   | 0.034 | 22    | 1.9    | 1.3  | 0.30  | 0.11    | 0.057 | -     | -       | -   | 43    | 6.0     | 0.39 | 209   | 31      | 2.3 | 1025    | 3.1     |
| 21            | 100420-13-3                                         | remainder of core   | -1.1   | 1.1     | 0.49 |       |         |     |       |          |     |       |        |       |       |        |      |       |         |       |       |         |     |       |         |      |       |         |     |         |         |
|               |                                                     | Underlying          |        |         |      |       |         |     |       |          |     |       |        |       |       |        |      |       |         |       |       |         |     |       |         |      |       |         |     |         |         |
|               | 1033-SS-                                            | soil/gravel from    |        |         |      | -     | -       | -   | -     | -        | -   | 0.95  | 0.15   | 0.031 | 11    | 1.4    | 0.88 | 0.92  | 0.18    | 0.080 | -     | -       | -   | 4.7   | 0.68    | 0.23 | 28    | 8.2     | 2.0 | 118     | 2.5     |
| 21            | 100420-13-4                                         | station # 21        | -0.058 | 0.89    | 0.52 |       |         |     |       |          |     |       |        |       |       |        |      |       |         |       |       |         |     |       |         |      |       |         |     |         |         |
| Bold va       | ues are less tl                                     | han the MDC         |        |         |      |       |         |     |       |          |     |       |        |       |       |        |      |       |         |       |       |         |     |       |         |      |       |         |     |         |         |
| Italicize     | alicized values were analyzed by alpha spectroscopy |                     |        |         |      |       |         |     |       |          |     |       |        |       |       |        |      |       |         |       |       |         |     |       |         |      |       |         |     |         |         |

#### June 21, 2011


Attachment 3 to HEM-11-91 Page 14 of 14

#### Process Bldgs Slab Core Sample Data.xlsx

DRAFT



#### Sample Locations (map)



### **ATTACHMENT 4**

### Draft Supplemental Response to NRC Requests for Additional Information on Decommissioning Plan Chapter 5

Westinghouse Electric Company LLC, Hematite Decommissioning Project

Docket No. 070-00036

© 2011 Westinghouse Electric Company LLC All Rights Reserved

| RAI<br>No. | Issues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Path Forward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Discussion Points | Proposed Resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5-1        | <ol> <li>Utilization of site<br/>characterization data for Ra<br/>and Th as a basis for<br/>measurement of Ra &amp; Th<br/>during the FSS may not be<br/>appropriate. This<br/>specifically relates to using<br/>threshold values determined<br/>during characterization as<br/>decision points for FSS<br/>results.</li> <li>There is inconsistency<br/>between the statements:<br/>"Th-232 and Ra-226 will be<br/>included in the analysis of<br/>FSS samples site wide" and<br/>"Th-232 will only be<br/>included for demonstrating<br/>compliance in areas<br/>distinguishable from<br/>background or when an<br/>individual result exceeds the<br/>BTV."</li> </ol> | <ol> <li>Measure and use results in compliance demonstration for<br/>Ra and Th throughout site in FSS.</li> <li>OR</li> <li>Use the Scenario B approach and take more samples to<br/>determine which areas should be measured for demonstrating<br/>compliance for the FSS.</li> <li>OR</li> <li>Determine and justify impacted and non-impacted areas on an<br/>area-by-area basis and measure for Ra and Th in <i>areas</i> that<br/>are impacted by Ra and Th as opposed to a point by point<br/>comparison.</li> <li>Clarify statements on analysis of Th-232 and use for<br/>compliance purposes.</li> <li>Use of different analyses methods for different radionuclides<br/>to determine <i>Th-232, U and Ra-226</i> impacted areas. This also<br/>relates to WEC's treatment of background, and the<br/>subsequent determination of background threshold values<br/>(i.e., Pro UCL for Th and 99<sup>th</sup> percentile for U &amp; Ra). [See<br/>Additional Resolution A]</li> <li>In the uranium calculation, why were Quantile test results for<br/>uranium excluded when it would have otherwise identified<br/>impacted areas? Were enough samples taken? [See<br/>Additional Resolution B]</li> <li>Th-232 determinations did not appear to have utilized<br/>individual elevated results to identify impacted <i>areas</i>. [See<br/>Resolution 2]</li> <li>Retraction of commitment to perform Ra &amp; Th analyses at<br/>non-impacted areas. [See Resolution 2]</li> <li>Requested all uranium data in non-impacted area and figure<br/>showing locations.</li> <li>Requested revised figure Attachment 2 to address all Th-232<br/>impacted sample points within a Th-impacted area or Survey<br/>Unit. [See Resolution 2]</li> <li>NRC evaluate HDP's concern that since the BTV is set up so<br/>5% of background samples will exceed it, requiring a survey<br/>unit to be Th-232 impacted on only 1 sample in a Survey Unit<br/>exceeding the Th-232.</li> <li>The update to DP Section 4.3.5.2 (quoted below) indicates<br/>that the area south of the natural gas pipeline is non-impacted.</li> </ol> |                   | <ol> <li>As committed in<br/>Th-232 and Ra-226 in the<br/>spectroscopy will be per-<br/>will be used to quantify '</li> <li>SOF calculation:         <ul> <li>The concept of i<br/>Ra-226, etc.) will<br/>specified as imp<br/>compliance purp<br/>concern will be of<br/>impacted areas.</li> <li>Westinghouse we<br/>the net, will be or<br/>purposes. The S<br/>Hematite proced<br/>14.4.2.5 needs to</li> <li>Westinghouse we<br/>compliance purp<br/>will update the d</li> </ul> </li> <li>Westinghouse has identified the definition of the<br/>treatment of background<br/>and Ra-226 are consister<br/>Level (UTL)). The remation<br/>and BTV for U is technic<br/>purpose than determining<br/>revised calculation of the<br/>places while the U DCG<br/>would not change. Since<br/>survey process, a BTV re-<br/>calculation and populating<br/>would be an administration<br/>final status surveys. Ap<br/>uranium data in the non-<br/>containing the data used<br/>B. HDP reviewed the<br/>4) and has determined the<br/>The review determi</li></ol> |

in the response to RAI HDP C5-Q1, HDP will include the evaluation of FSS samples site wide. Gamma erformed on all samples and Ac-228 and Pb-214/Bi-214 y Th-232 and Ra-226 activity, respectively.

#### ns

f individual radionuclide impacted areas (i.e., Th-232, vill no longer be used by Westinghouse. Areas will be pacted or non-impacted prior to remediation, and for rposes, dose contributions from all radionuclides of e considered in the sum-of-fractions calculations for all a.

will update the DP to indicate that gross FSS results, not used for either the Sign or WRS test for compliance Sign test, as described in the DP is in error. DP and edures will be corrected to address the errors. Section to be updated and maybe others.

will also confirm if the calculation of dose for rposes is sufficiently described in the DP. If not, they document.

tified the changes necessary to implement the above 2, and has provided them in Appendix A to this matrix.

#### 15

HRCR Appendix B, (Appendix B to this response), the nd and background threshold values (BTVs) for Th-232 tent (both use ProUCL 95<sup>th</sup> normal Upper Tolerance maining inconsistency for the treatment of background nically insignificant. The U BTV serves no other ing the MARSSIM class designation in the DP. A the U BTV would change its value only by decimal CGLs are in the hundreds so the initial class designations ace U background is not subtracted in the final status revision has no impact. Revising its method of sting the result in the DP and supporting documents ative effort with no material impact on remediation and Appendix M contains pages from a spreadsheet of all n-impacted area. Also pages from spreadsheets ed in ProUCL tests for U, Th-232, and R-226.

the non-impacted area uranium data (RE: HDPC 14 Qthat the Quantile test could provide meaningful results. I that two of the locations that were used in the statistical L and NB-95-4.5-SL) are actually located within the these results are removed from the non-impacted area



| RAI<br>No. | Issues                                                                                                                                                                                                                                                                                                                                                    | Path Forward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Discussion Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Proposed Resolution                                                                                                                     |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                                                                                                                                                                                                                                                                                                           | Is this consistent with the recent changes to impacted areas (removal of Ra-226 and Th-232 specific areas) and the discussion of adding a Class 3 buffer area south of the railroad?<br>"Outside of the elevated Ra-226 area within the burial pits, two samples (both 1.7 pCi/g) in the impacted area beneath the process buildings and two samples (1.7 and 2.6 pCi/g) in the natural gas pipeline area exceeded the Ra-226 threshold value of 1.6 pCi/g. All of the results described above are |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | population, there is suffic<br>Whitney tests. The result<br>provided in Appendix C.<br>boundary and the sample                          |
|            |                                                                                                                                                                                                                                                                                                                                                           | considered to be statistical outliers and defining the area south<br>of the natural gas pipeline area as non-impacted is valid."                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                         |
| 5-3        | Westinghouse showed a<br>sensitivity analysis for the<br>Deep DCGLs but did not<br>discuss how the Uniform<br>DCGLs might be impacted<br>by a similar sensitivity<br>analysis.                                                                                                                                                                            | <ol> <li>Perform a sensitivity analysis showing how the <i>Uniform</i> Tc-99 DGCLs change with variation in the contaminated zone thickness.</li> <li>Send an updated Figure 5-5.</li> </ol>                                                                                                                                                                                                                                                                                                       | 1. Westinghouse has performed a sensitivity analysis showing how the Uniform Tc-99 DGCL is affected with variation in the contaminated zone thickness. The sensitivity analysis varied the depth of the contaminated zone varied from 6.7 meters to 9.1 meters, while adjusting the size of the unsaturated zone so that the sum of the two remained equal to 9.1 meters. The analysis shows that the DCGL is insensitive to the thickness of the contaminated zone.                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ol> <li>Appendix E show</li> <li>Appendix F prov<br/>Contamination".</li> </ol>                                                        |
|            |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2. DP Figure 5-5, "Depth of Soil Contamination" has been revised.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                         |
| 5-5        | Plant transfer factors for Pa-<br>231 and milk transfer factor<br>for Ra need to be revised.                                                                                                                                                                                                                                                              | Provide RESRAD files with revised DCGL values after correcting for transfer factors.                                                                                                                                                                                                                                                                                                                                                                                                               | In letter HEM-10-85, dated 8/11/201, Westinghouse stated<br>the revised plant transfer factor for Pa-231 and a revised milk<br>transfer factor for Ra-226. The revised factors are based on<br>the median values for these factors from NUREG/CR-6697.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Appendices G and H pro-<br>factors in DP Table 5-6.<br>Appendix I provides draf<br>resulting from the DP RA<br>this follow-up response. |
|            |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The associated RESRAD<br>submitted with the revision<br>Appendix N.                                                                     |
| 5-6        | Conservatism of assumed<br>ratios of radionuclide<br>concentrations in sensitivity<br>analysis is not adequately<br>justified. Some areas of the<br>site have a higher ratio of<br>Tc, than assumed in the<br>sensitivity analyses (i.e.,<br>20%) and the behavior of<br>this radionuclide can be<br>significantly different than<br>other radionuclides. | Perform a sensitivity analysis assuming 100% Tc-99 to see<br>what parameters are sensitive. If additional parameters are<br>found to be sensitive when there is only Tc-99 present, treat<br>these as sensitive parameters in all CSMs.                                                                                                                                                                                                                                                            | Westinghouse performed additional sensitivity analyses to<br>provide adequate justification as follows:<br>1 <sup>st</sup> Step: Assumed 100% of the activity was attributed to Tc-<br>99 to determine sensitive parameters. The analysis showed<br>that in addition to the parameters noted as sensitive in DP<br>Table 5-5, the Milk Transfer Factor was a sensitive parameter<br>for the Uniform CSM. The effect on the DCGL (when<br>recalculated using the 75th percentile of the distribution from<br>NUREG-6697) was relatively minor, and resulted in a<br>maximum reduction of approximately 2%. Appendix J<br>provides the results of this 1 <sup>st</sup> Step, a comparison of Tc-99<br>DCGLs between the DP Tables and the potential change<br>from the milk transfer factor, and a similar comparison<br>among theTc-99 excavation scenario concentrations resulting<br>in 25 mrem/yr. |                                                                                                                                         |

fficient data and it passes both the Quantile and Mann sults of these tests along with the data sets used are C. A figure showing the location of the impacted area ple locations is provided in Appendix D.

hows the sensitivity chart resulting from the analysis. rovides revised DP Figure 5-5, "Depth of Soil n".

rovide the revised plant transfer and milk transfer 6.

raft revised DCGL tables; these DCGLs reflect changes RAI responses submitted by Westinghouse to date, and e.

AD summary files (DP Chapter 5 Appendices) will be ision to the DP. The RESRAD summary files are in

he sensitivity for milk transfer factor had only minor 'c-99 case, and was not identified as a sensitive ad assessment that was based on actual site conditions, ntinue to treat this factor as an insensitive parameter nsitivity analysis presented in the DP).

### Attachment 4 to HEM-11-91 June 21, 2011 Page 4 of 139 & RESRAD Pages

# DRAFT

| RAI<br>No. | Issues                                                                                                                               | Path Forward                                                                                                                                                                                              | Discussion Points                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Proposed Resolution                                |
|------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
|            |                                                                                                                                      |                                                                                                                                                                                                           | 2 <sup>nd</sup> Step: As a refinement to the 1 <sup>st</sup> Step, a sensitivity<br>analysis for the Uniform CSM was performed using a<br>distribution representative of actual site conditions for Tc-99<br>concentration values and the average concentration values for<br>all other radionuclides. This analysis determined that the<br>Milk Transfer Factor was not a sensitive parameter.<br>Appendix K provides the radionuclides used in the second<br>step. |                                                    |
|            | The higher value assumed<br>by Westinghouse for root<br>depth is less conservative for<br>the Surface, Root, and<br>Excavation CSMs. | Provide a basis for why the site-specific value of 0.6 m was<br>averaged with non-site specific data from NUREG-6697 of<br>1.1 m or use the site specific value for root depth in the dose<br>assessment. | The following sentence from the RAI response to HDP-<br>C5Q8 from HEM-10-85 was incorrectly stated: "As noted in<br>the DP section and the NRC's RAI, choosing a larger value<br>for the root depth is conservative for the Surface and Root<br>models." As stated later in the response and in DP Section<br>5.3.4.4.5, Westinghouse recognizes that the root depth<br>parameter is negatively correlated with dose for the Surface<br>and Root models.             | Based on the discussion pappropriate. No further a |
|            |                                                                                                                                      |                                                                                                                                                                                                           | Westinghouse does not consider the value of 0.6 m root depth<br>value to be site-specific. The 0.6 m value was based on only<br>3 crops (corn, soybeans, and wheat) listed for Jefferson<br>County in the 2007 Agricultural Census. Westinghouse<br>considers the 0.6 m value to a lower bound of a<br>representative root depth value.                                                                                                                              |                                                    |
|            |                                                                                                                                      |                                                                                                                                                                                                           | An upper bound for the representative root depth value of 1.225 m was determined based on the 25th percentile of the root depth PDF from NUREG/CR-6697 Table 6.1-2.                                                                                                                                                                                                                                                                                                  |                                                    |
| 5-8        |                                                                                                                                      |                                                                                                                                                                                                           | Another upper bound for the representative root depth value<br>of 1.1 m was determined by a weighted average of the root<br>depths provided in NUREG/CR-6697, Attachment C, Table<br>6.1-1 and Table 6.1-2. The weighting was based the<br>consumption rate of, 112 kg/yr for fruits, vegetables, and<br>grains (FVG) and 21 kg/yr, for leafy vegetables (Leafy).                                                                                                    |                                                    |
|            |                                                                                                                                      |                                                                                                                                                                                                           | As a confirmation of 0.9 m as a representative root depth value, Westinghouse considered all 4 of the top crops in Jefferson County MO based on the 2007 Agricultural Census.                                                                                                                                                                                                                                                                                        |                                                    |
|            |                                                                                                                                      |                                                                                                                                                                                                           | CropAcresMean Root Value* (m)grass18,4771.05soybean6,2410.45corn4,2310.9wheat8950.22                                                                                                                                                                                                                                                                                                                                                                                 |                                                    |
|            |                                                                                                                                      |                                                                                                                                                                                                           | *NUREG/CR-6697, Att. C, Table 6.1-1 and Table 6.1-2                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    |
|            |                                                                                                                                      |                                                                                                                                                                                                           | The weight root depth value considering these top 4 crops is 0.88 m. This confirms that the 0.9 value is representative.                                                                                                                                                                                                                                                                                                                                             |                                                    |

on points, Westinghouse believes the 0.9 m parameter is her action required.

| RAI<br>No. | Issues                                                                                                                                                                                                  | Path Forward                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Discussion Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Proposed Resolution                                                                                                                                                                                                                        |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | It is unclear as to which<br>Np-237 DCGL will be used<br>for contamination below 1.5<br>m.                                                                                                              | Clarify that the Uniform or Deep DCGL for Np-237 (0.3 pCi/g) will be used for contamination that exists below 1.5 m, while the Excavation DCGL will be used for all other radionuclides.                                                                                                                                                                                                                                                                                                   | <ul> <li>The following DCGLs will be used for contamination that exists below 1.5 m:</li> <li>For Np-237, the Uniform or Deep DCGL (both are</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                               | DP Section 5.3.6, last par<br>While the Deep DCGLs p<br>evaluating unexcavated s                                                                                                                                                           |
|            |                                                                                                                                                                                                         | No comments on the Proposed Resolution. Comment on the 2 numbered constraints in this RAI response:<br>Request RESRAD summary files for area factor.                                                                                                                                                                                                                                                                                                                                       | <ul> <li>0.3 pCi/g).</li> <li>For all other radionuclides, the Excavation DCGL.</li> <li>In addition, the DCGL values have been adjusted to account for the contribution of Np-237 as one of the insignificant</li> </ul>                                                                                                                                                                                                                                                                                                                                             | be pursued since the sma<br>with the exception of Np-<br>below 3 m, the following<br>at any depth below 1.5 m                                                                                                                              |
| 5-9        |                                                                                                                                                                                                         | Request revised DP Table 5-13.<br>Request explanation of how used the 2 constraints discussed<br>in the RAI response.<br>NRC does not agree with the statement that the Deep DCGLs<br>are technically justified for evaluating unexcavated soil below<br>3 m. While the intruder construction scenario may not apply<br>for depths below 3m, the intruder well scenario would still<br>apply. Absent an analysis of the intruder well scenario, NRC<br>does not agree with this statement. | radionuclides.<br>The 2 constraints were used to develop the most limiting area<br>factors. Analysis used each of the constraints separately<br>ensure the post-excavate soil is properly modeled for<br>contiguous soil placement and for distributed soil placement<br>of the hot spot. The lowest result obtained by either<br>placement scenario is contained in Table 5-13c (which is for<br>field use).                                                                                                                                                         | <ul> <li>For Np-237, the 0</li> <li>For all other rada</li> <li>In response NRC's observed</li> <li>DCGL for the Deep CSM</li> <li>Westinghouse has modified insignificant radionuclide</li> <li>RAI HDPC-14-Q1 that determined</li> </ul> |
| 5-10       | It is unclear as to which<br>DCGL will be used to<br>determine the area factor for<br>Np-237 for depths greater<br>than 1.5 m.                                                                          | <ol> <li>Ensure Area Factor for Np-237 for depths greater<br/>than 1.5 m is based on the Uniform or Deep DCGL for Np-<br/>237.</li> <li>Provide RESRAD Summary Reports for development<br/>of Area Factors.</li> </ol>                                                                                                                                                                                                                                                                     | 1. As discussed in Section 14.1.3.1 of the Hematite<br>Decommissioning Plan (DP), Np-237, along with Pu-239/240<br>and Am-241, are considered insignificant radionuclides. As<br>discussed in Section 3.3 of NUREG-1575, Vol. 2, by<br>adjusting the remaining DCGLs, the dose from insignificant<br>radionuclides is now accounted for in demonstrating<br>compliance and the insignificant radionuclides are eliminated<br>from further consideration during final status survey.<br>Therefore, no Np-237 area factors are required during final<br>status surveys. | <ol> <li>Westinghouse ha<br/>radionuclide. Therefore,<br/>accounted for as part of th<br/>soil DCGLs</li> <li>Westinghouse wi<br/>development of Area Fac<br/>Chapter 5. The RESRAD</li> </ol>                                             |
|            |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2. Westinghouse will provide the RESRAD Summary<br>Reports for development of Area Factors as an Appendix to<br>Chapter 5 in the revision to the DP. If requested, the files can<br>be emailed to NRC prior to submittal of the revised DP.                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                            |
| 5-11       | Westinghouse does not<br>provide sufficient evidence<br>to demonstrate that the<br>groundwater concentrations<br>would decline over time<br>from their current values<br>after release of the facility. | Clarify how the leachate source term will be removed during<br>the remediation of the contaminated soil in the burial pits and<br>under the process buildings. Clarify if there will be<br>dewatering of the pore space at the depths where the<br>measurements of the leachate in Table 4-28 were taken. If<br>these measurements were taken below the CZ, clarify how the<br>complete source term will be removed.<br>1. Lack of soil characterization data under Bldgs 240 &<br>253.    | The following is the summary to the response to RAI HDP-3-Q9 in letter HEM-11-25 dated 3/10/11:<br>Summary: Westinghouse considers there to be an inconsistency between Westinghouse's intent concerning its statement in RAI HDP-C5-Q11 regarding "leachate removal" and the NRC's reading of this statement, as expressed in this RAI's 'comment' and 'path forward.' is addressed in the 'Discussion' below. Westinghouse was not intending to imply creation of a distinct leachate removal program with its                                                      | Westinghouse will perfor<br>associated with monitorir<br>sampling associated with<br>Chapter 3, HDP-3-Q9.<br>For Items 1-4 in the Path<br>56, dated 5/5/11, a summ<br>under the former process                                             |
|            |                                                                                                                                                                                                         | <ol> <li>Explanation of Tc-99 2007 &amp; 2008 data from wells<br/>BD-02 &amp; BD-04 with respect to high concentrations<br/>and the movement from BD-02 towards BD-04 and<br/>decrease in concentrations by two orders of</li> </ol>                                                                                                                                                                                                                                                       | own criteria.<br>The criteria used for assessing remediation of the overburden<br>are based on the soil since that is the source of radioactivity<br>in the leachate. For soil, the estimate of areal and vertical                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                            |

#### baragraph, will be revised as follows:

s provided in Table 5-9 are technically viable for d soil below 3 m, additional effort to justify them will not naller Excavation DCGLs provide an ALARA measure, p-237. Rather than apply separate DCGLs at depths ng DCGLs will be used for evaluating unexcavated soil m:

e Uniform or Deep DCGL (both are 0.3 pCi/g).

adionuclides, the Excavation DCGL.

Servation during a conference call that the Np-237 SM is inconsistent with RAI response HDPC-14-1, lified the methodology to evaluate the contribution from ides. Appendix L contains a revised response to NRC t describes the revised approach.

has determined that Np-237 is an insignificant re, instead of using Np-237 area factors, Np-237 is f the insignificant radionuclide adjustment to all of the

will provide the RESRAD Summary Reports for actors with the revision to the DP as an Appendix to AD summary files are in Appendix N.

form sampling as appropriate of unexcavated soil ring wells to verify DCGLs are met. The details for this ith wells were provided with the response to RAI for DP

th Forward, Westinghouse provided via letter HEM-11mary paper regarding the nature and extent of Tc-99 ss buildings 240, 253, 254, 255, 256, and 260.

### Attachment 4 to HEM-11-91 June 21, 2011 Page 6 of 139 & RESRAD Pages

# DRAFT

| RAI<br>No. | Issues                                                                 | Path Forward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Discussion Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Proposed Resolution |
|------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|            |                                                                        | <ul> <li>magnitude for BD-02 &amp; the increase in BD-04 by an order of magnitude as a function of time. What is the source of the activity spikes?</li> <li>3. No characterization by Westinghouse of the soil under the buildings, 1.5 m and below. (RAI 4Q6)</li> <li>4. Clarification from Westinghouse of which layer they are referring to when discussing the contamination zone (CZ).</li> <li>5. Westinghouse's protocol for identifying what the "appropriate" trigger is as referred to Westinghouse's</li> </ul> | <ul> <li>extent impacted overburden soil is provided in the HRCR, and summarized in DP Chapter 4; DP Chapter 5 provides the basis for the release criteria for soil removal; and DP Chapter 14 describes the process for evaluating the adequacy of remediation, including a comparison to the release criteria defined in DP Chapter 5. The inputs to this evaluation include data obtained through radiological surveys and laboratory analysis of soil samples.</li> <li>Coincident with soil excavation, the portion of the leachate entrained in soil that exceeds the DCGL will be removed. Similarly, a portion of the leachate will be entrained in the</li> </ul>                                                                                                                                                            |                     |
|            |                                                                        | commitment to perform "sampling as appropriate of<br>unexcavated soil below the CZ associated with<br>monitoring wells to verify DCGLs are met." (RAI<br>5Q11) [The details for this sampling associated with<br>wells were provided with the response to RAI for DP<br>Chapter 3, HDP-3-Q9.]                                                                                                                                                                                                                                | soil samples analyzed by the laboratory, thereby accounting<br>for that contribution to residual radioactivity. The RESRAD<br>modeling described in DP Chapter 5 accounts for the residual<br>radioactivity (i.e., whether in soil or leachate), so meeting the<br>DCGLs is protective of the ground water. DP Chapter 7<br>addresses the ALARA aspects of DCGLs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
|            | Source lifetime parameter<br>assumed in RESRAD is<br>non-conservative. | The source lifetime parameter used in RESRAD BUILD<br>should reflect the most likely value. The DCGL calculations<br>should be updated to include this.                                                                                                                                                                                                                                                                                                                                                                      | Westinghouse recognizes that the 25th percentile value of 17,918 days is not the most conservative option when compared to the 10,000 day value mentioned in NUREG/CR-6697 Section 8.8; however, use of the 25th percentile value is consistent with current regulatory guidance and is consistent with what has been used at other decommissioning sites.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |
|            |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The 10,000 day value in NUREG/CR-6697 Section 8.8 is the peak of the triangular distribution frequency distribution presented in NUREG/CR 6697, and is not necessarily the most appropriate value as applied to a specific application.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |
| 5-14       |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The applicability of the 10,000 day value in NUREG/CR-<br>6697 Section 8.8 is described as: "Another suggestion by the<br>ANS is an air release rate of $4 \times 10$ -6/h for solid powders that<br>are covered with a substantial layer of debris or are<br>constrained by indoor static conditions (ANS, 1998). This<br>rate is equivalent to a lifetime of approximately 10,000 days<br>(27.4 yr). The loose contaminants on a contaminated surface<br>can be considered as being restricted by some weak physical<br>binding force and would, therefore, behave like the<br>constrained solid powders. The lifetime of the constrained<br>solid powders can be used as the most likely value for the<br>loose contaminants." This description is not representative of<br>the conditions that exist for HDP buildings to remain. |                     |
|            |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Westinghouse selected the 25th percentile value based on the conditions of the buildings to remain and believes it to be more appropriate than the 10,000 day value that the commenter has suggested.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |

ers the source lifetime parameter of 17,918 d to be atory guidance and representative of site conditions. No

#### Attachment 4 to HEM-11-91 June 21, 2011 Page 7 of 139 & RESRAD Pages

# DRAFT

| RAI<br>No. | Issues | Path Forward | Discussion Points                                                                                                                                                                               | Proposed Resolution                                                                                                                                                                                                         |
|------------|--------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5-17       |        |              | Based on historical use and survey data, volumetric contamination does not exist within the buildings expected to                                                                               | Rather than develop volu<br>a new last paragraph will<br>"Volumetric DCGLs hav<br>to remain at the time of li<br>contamination from proce<br>contaminated material wi<br>status survey. However,<br>be developed and submit |
|            |        |              | volumetrically contaminated materials will be removed and<br>disposed prior to final status survey or appropriate DCGLs<br>will be developed at that time and submitted to NRC for<br>approval. |                                                                                                                                                                                                                             |

volumetric DCGLs or criteria that are unlikely to be used, will be added to DP Section 5.4.4 as follows: have not been developed for buildings that are expected of license termination based on no evidence of volumetric process knowledge and analysis to date. Volumetrically I will be removed and shipped for disposal prior to final ver, if the material will remain, appropriate DCGLs will mitted to NRC for approval."

|                              | Appendix A                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <b>DP</b> Section            | Section Title                                                     | Text in DP Revision 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Proposed                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| TABLE OF<br>CONTENTS         | PLAN LIST OF TABLES                                               | 4-9 Statistical Results of Burial Pits Ra-226 Impacted Area Soils                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.9 Statistical Results of Elevated                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| TABLE OF<br>CONTENTS         | PLAN LIST OF FIGURES                                              | 5-3 Ra-226 Impacted Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.3 Elevated Ra-226 Area within                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Ch 4<br>TABLE OF<br>CONTENTS | PLAN LIST OF TABLES                                               | 4-9 Statistical Results of Burial Pits Ra-226 Impacted Area Soils                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.9 Statistical Results of Elevated                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| 4.0                          | RADIOLOGICAL STATUS OF<br>FACILITY                                | <ul> <li>Thorium-232 is present naturally in background soil, and has been identified as a ROC at a limited number of locations within the area of the buried waste. An analysis of the characterization data obtained from the non-impacted and the impacted areas of the site was performed and documented in Appendix A of the HRCR to determine which areas contain Th-232 at concentrations that are distinguishable from background.</li> <li>Radium-226 was also identified as a ROC in one area containing two Burial Pits. Results for soil sample IDs SO-BP6C-12 and SS-BP-028-DV-EL-9 showed concentrations of 414 and 183 picoCuries per gram (pCi/g), respectively (sample locations are provided on Figure 4-7 of the HRCR). The elevated Ra-226 was likely introduced into the Burial Pits with waste as a result of the installation of contaminated equipment into the process operations as described in Section 4.7.1.5 of the HRCR.</li> </ul> | Thorium-232 is present naturally in ba<br>number of locations within the area of<br>Radium-226 was also identified as a R<br>for soil sample IDs SO-BP6C-12 and<br>and 183 picoCuries per gram (pCi/g),<br>4-7 of the HRCR). The elevated Ra-2<br>waste as a result of the installation of<br>as described in Section 4.7.1.5 of the I<br>Although only low concentrations of 7<br>outside of the Burial Pit Area, these ra |  |  |
| 4.3.3                        | Characterization Summary                                          | • Statistical Results of Burial Pits Ra-226 Impacted Area Soils (Table 4-9 and Section 4.7 of the HRCR);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • Statistical results of elevated I Section 4.7 of the HRCR);                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 4.3.5.1                      | Surface Soil                                                      | No surface soil samples from non-impacted areas exceeded the threshold values discussed in<br>Section 4.3.4 for total Uranium, Tc-99 and Th-232. Outside of the Ra-226 Impacted Area, one<br>sample (2.0 pCi/g) in the area south of the railroad exceeded the Ra-226 threshold value of 1.6<br>pCi/g. This result is considered to be a statistical outlier and defining the sampled area as non-<br>impacted (with respect to Ra-226) is valid.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No surface soil samples from non-imp<br>in Section 4.3.4 for total Uranium, Tc<br>within the burial pits, one sample (NB<br>railroad and near the eastern property<br>pCi/g. This result is considered to be<br>identified presence of the naturally oc<br>concentrations of radium). Defining t<br>226) is valid.                                                                                                          |  |  |
| 4.3.5.2                      | Sub-surface Soil                                                  | Burial Pits Soil – Total Uranium, Tc-99 and Ra-226 (isolated to the Ra-226 Impacted Area);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Burial Pits Soil – Total Uranium, Tc-9                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 4.3.5.2                      | Sub-surface Soil                                                  | Outside of the Ra-226 Impacted Area, two samples (both 1.7 pCi/g) in the impacted area beneath the process buildings and two samples (1.7 and 2.6 pCi/g) in the natural gas pipeline area exceeded the Ra-226 threshold value of 1.6 pCi/g. All of the results described above are considered to be statistical outliers and defining the sampled areas as non-impacted is valid.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Outside of the elevated Ra-226 area w<br>BD-27-13-SL, BD-32-13-SL, and BD<br>buildings, two samples (NB-134-4.5-5<br>natural gas pipeline area, and one sam<br>side of Building 260 exceeded the Ra-<br>described above are considered to be s                                                                                                                                                                              |  |  |
| Table 4-9                    | Statistical Results of Burial Pits Ra-<br>226 Impacted Area Soils | Statistical Results of Burial Pits Ra-226 Impacted Area Soils                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Statistical Results of the Elevated Ra-                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Figure 4-1                   | Groundwater Sample Locations                                      | "RA-226 Impacted Area" (in legend)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Rename as "Elevated Ra-226 Area" (i                                                                                                                                                                                                                                                                                                                                                                                         |  |  |

#### ed Text for DP Revision 1 ed Ra-226 Area within the Burial Pits

in the Burial Pits

ed Ra-226 Area within the Burial Pits

background soil, and has been identified at a limited of the buried waste.

a ROC in one area containing two Burial Pits. Results and SS-BP-028-DV-EL-9 showed concentrations of 414 g), respectively (sample locations are provided on Figure a-226 was likely introduced into the Burial Pits with of contaminated equipment into the process operations are HRCR.

of Th-232 and Ra-226 have been identified at locations e radionuclides will be considered ROCs site-wide.

ed Ra-226 area within the Burial Pits (Table 4-9 and

mpacted areas exceeded the threshold values discussed Tc-99 and Th-232. Outside the elevated Ra-226 area NB-04-00-SL at 2.0 pCi/g) in the area south of the ty line exceeded the Ra-226 threshold value of 1.6 be a statistical outlier, and is consistent with the occurring volcanic rock rhyolite (naturally higher g the sampled area as non-impacted (with respect to Ra-

c-99 and Ra-226 (isolated to the elevated Ra-226 area);

a within the burial pits, four samples (BD-33-4.5-SL, 3D-37-5-SL at 1.7 pCi/g) in the area beneath the process 5-SL at 1.7 pCi/g and NB-134-9-SL at 2.6 pCi/g) in the ample (NB-101-4.5- SL at 1.7 pCi/g) adjacent to the east Ra-226 threshold value of 1.6 pCi/g. While the results be statistical outliers, they are within the impacted area.

a-226 Area within the Burial Pits

(in legend).

|                            |                                                            | Appendix A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                        |  |
|----------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <b>DP</b> Section          | Section Title                                              | Text in DP Revision 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Proposed                                                                                                                                                                                                               |  |
| Figure 4-12                | Impacted Area – Sub-Surface Soil<br>Contamination – Ra-226 | "RA-226 Impacted Area" (in legend)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rename as "Elevated Ra-226 Area" (                                                                                                                                                                                     |  |
| Figure 4-14                | Groundwater monitoring Wells                               | "RA-226 Impacted Area" (in legend)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rename as "Elevated Ra-226 Area" (                                                                                                                                                                                     |  |
| Ch 5 LIST<br>OF<br>FIGURES | N/A                                                        | 5-3 Ra-226 Impacted Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.3 Elevated Ra-226 area within                                                                                                                                                                                        |  |
| 5.2                        | RADIONUCLIDES OF<br>CONCERN                                | <ul> <li>Thorium-232 is present in natural background and has been identified as a ROC at a limited number of locations within the area of the buried waste.</li> <li>Radium-226 was identified as a ROC at two locations in the buried waste (see Chapter 4 for characterization details). The elevated Ra-226 was likely introduced into the Burial Pits with waste as a result of installing contaminated equipment into the process operations.</li> </ul>                                                                                                                                    | Thorium-232 is present naturally in b concentration greater than the Backgr of locations within the area of the bur                                                                                                    |  |
|                            |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Radium-226 was also identified as a l<br>elevated Ra-226 was likely introduced<br>installation of contaminated equipment                                                                                               |  |
|                            |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Although only low concentrations of outside of the Burial Pit Area, these re-                                                                                                                                          |  |
| 5.3.3.1                    | Contaminated Zone                                          | The characterization also identified two locations within the north end of the buried waste that contain Ra-226 contamination (Ra-226 Impacted Area). The size of the Ra-226 Impacted Area is approximately 0.3 acres (1,292 m <sup>2</sup> ) (see Figure 5-3). The elevated Ra-226 was likely introduced into the Burial Pits with waste as a result of installing contaminated equipment into the process operations (see Chapter 4). A separate CSM was developed for Ra-226 which assumes a 1292 m <sup>2</sup> Contaminated Zone area in order to be more representative of site conditions. | The characterization also identified tw<br>that contain Ra-226 contamination. T<br>approximately 0.3 acres $(1,292 \text{ m}^2)$ (s<br>introduced into the Burial Pits with w<br>into the process operations (see Chap |  |
| 5.3.4.3                    | Resrad Parameter Sensitivity<br>Analysis                   | The detailed RESRAD output reports including the Regression and Correlation Output are provided in Reference 5-8. The numerical results for the PRCC (as well as PCC, SRC and SRRC) for all of the parameters evaluated and all four CSMs are provided in Appendix B.                                                                                                                                                                                                                                                                                                                             | The detailed RESRAD output reports<br>provided in Reference 5-15. The num<br>SRRC) for all of the parameters evalu                                                                                                     |  |
|                            |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [Note: This specific change assumes<br>report will be created and listed as<br>RESRAD output is assumed to be                                                                                                          |  |
| Table 5-5                  | Summary Of RESRAD Parameter<br>Sensitivity Analyses        | (Table currently shows two columns for each CSM, one for the site and one titled RIA. In the legend, RIA is defined as "Radium Impacted Area (1,292 m <sup>2</sup> )")                                                                                                                                                                                                                                                                                                                                                                                                                            | [Note: Specific change not yet availa<br>the revised sensitivity analysis (which<br>definition of RIA needs to be deleted                                                                                              |  |
| Table 5-6<br>(pg 5 of 21)  | RESRAD Input Parameters                                    | $1,292 \text{ m}^2$ The estimated size of the Ra-226 impacted area for Burial Pits 1A and 6A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [Note: Delete]                                                                                                                                                                                                         |  |
| Table 5-6<br>(pg 6 of 21)  | RESRAD Input Parameters                                    | 41 $m^2$ The length parallel to the aquifer for the radium affected area was estimated as the diameter of the 1,292 $m^2$ contaminated area which is 41 m.                                                                                                                                                                                                                                                                                                                                                                                                                                        | [Note: Delete]                                                                                                                                                                                                         |  |
| Table 5-7                  | Soil DSRs And DCGLs - Surface                              | Ra-226+C 4.16E+00 0 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ([Note: Specific change not yet avail<br>Soil.]                                                                                                                                                                        |  |
| Table 5-8                  | Soil DSRs And DCGLs - Root                                 | Ra-226+C 1.153E+01 248.2 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [Note: Specific change not yet availa                                                                                                                                                                                  |  |
| Table 5-9                  | Soil DSRs And DCGLs - Deep                                 | Ra-226+C 2.078E-03 1000 12,030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [Note: Specific change not yet availa                                                                                                                                                                                  |  |
| Table 5-10                 | Soil DSRs And DCGLs - Uniform                              | Ra-226+C 1.282E+01 0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [Note: Specific change not yet availa<br>Soil.]                                                                                                                                                                        |  |

#### ed Text for DP Revision 1

' (in legend).

' (in legend).

in the Burial Pits

a background soil, and has been identified at ground Threshold Value for Th-232 at a limited number puried waste.

a ROC in one area containing two burial pits. The ced into the burial pits with waste as a result of the nent into the process operations

of Th-232 and Ra-226 have been identified at locations e radionuclides will be considered ROCs site-wide.

two locations within the north end of the buried waste The aerial extent of the Ra-226 contamination is (see Figure 5-3). The elevated Ra-226 was likely waste as a result of installing contaminated equipment apter 4).

rts including the Regression and Correlation Output are imerical results for the PRCC (as well as PCC, SRC and aluated and all four CSMs are provided in Appendix A.

es that an addendum to the sensitivity analysis as a new reference (Reference 15 is next citation). be in Appendix A of this new addendum.]

ilable. The Table will be updated to reflect the results of ich includes Ra-226 in the site wide model). Also, the ed from the table legend.]

ailable. Revise Ra-226 DSR and DCGL for Surface

ilable. Revise Ra-226 DSR and DCGL for Root Soil.]

ilable. Revise Ra-226 DSR and DCGL for Deep Soil.]

ilable. Revise Ra-226 DSR and DCGL for Uniform

| <u> </u>          |                                                                                                         | Appendix A                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                  |  |
|-------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <b>DP Section</b> | Section Title                                                                                           | Text in DP Revision 0                                                                                                                                                                                                                                                                                                                                                                                        | Proposed                                                                                                                                                                                                                                                                                                                                                                         |  |
| Table 5-11        | Alternate Excavation Scenario<br>Concentration Corresponding To 25<br>mrem/yr Compared To Deep<br>DCGLs | Ra-226+C 9.69E+00 2.6 6015                                                                                                                                                                                                                                                                                                                                                                                   | [Note: Specific change not yet availa<br>Deep Soil.]                                                                                                                                                                                                                                                                                                                             |  |
| Table 5-12        | Alternate Excavation Scenario<br>DCGL                                                                   | Ra-226+C 5.2                                                                                                                                                                                                                                                                                                                                                                                                 | [Note: Specific change not yet availa Scenario.]                                                                                                                                                                                                                                                                                                                                 |  |
| Table 5-13        | Area Factors for Soil                                                                                   | (Table currently shows "N/A" in place of area factors for Ra-226 in Elevated Measurement Areas for $153,375 \text{ m}^2$ , $10,000 \text{ m}^2$ and $3000 \text{ m}^2$ in each of the three CSMs.)                                                                                                                                                                                                           | [Note: Specific change not yet availa<br>in the same manner as the other radio                                                                                                                                                                                                                                                                                                   |  |
| Figure 5-3        | Ra-226 Impacted Area                                                                                    | Ra-226 Impacted Area                                                                                                                                                                                                                                                                                                                                                                                         | Elevated Ra-226 Area within the Bur                                                                                                                                                                                                                                                                                                                                              |  |
| 10.5              | EXTERNAL EXPOSURE<br>DETERMINATION                                                                      | Based upon the HSA and other investigations, the primary HDP radionuclides of concern are Uranium (U-234, U-235, U-236 and U-238), Thorium (Th-232), Technetium-99 (Tc-99), Americium-241 (Am-241), Plutonium-239/240 (Pu-239/240) and Neptunium-237 (Np-237). Radium-226 (Ra-226) is also considered to be a radionuclide of concern in an isolated area (Ra-226 impacted area) within the Burial Pit area. | Based upon the HSA and other invest<br>are Uranium (U-234, U-235, U-236 a<br>99), Americium-241 (Am-241), Pluto<br>237). Radium-226 (Ra-226) is also co<br>primarily within the elevated Ra-226                                                                                                                                                                                  |  |
| 14.1.1            | RADIONUCLIDES OF<br>CONCERN                                                                             | Thorium-232 (Th-232 + C) is present in natural background and has been identified as a ROC at a limited number of locations within the Burial Pit Area. Radium-226 (Ra-226 + C) was identified as a ROC at two locations in the Burial Pit Area. The elevated Ra-226 was likely introduced into the burial pits with waste as a result of installing contaminated equipment into the process operations.     | Thorium-232 is present naturally in be<br>concentration greater than the Backgr<br>of locations within the area of the bur<br>as a ROC and has been identified prin<br>226 was also identified as a ROC in o<br>226 was likely introduced into the bur<br>contaminated equipment into the proc<br>Th-232 and Ra-226 have been identified<br>radionuclides will be considered ROC |  |
| 14.1.5.1          | Sum-Of-Fractions And Weighted<br>Sigma Calculations                                                     | When using the Wilcoxon Rank Sum (WRS) test, for each contaminant present in background, and when a background value is used (e.g., Ra-226 and Th-232), the greater of the survey unit and reference area sigma is used in the calculation.                                                                                                                                                                  | When using the Wilcoxon Rank Sum background, the greater of the survey calculation.                                                                                                                                                                                                                                                                                              |  |

ed Text for DP Revision 1 ilable. Revise Ra-226 DSR and DCGL for Excavated

ilable. Revise Ra-226 DCGL for Alternate Excavation

ilable. For each CSM, calculate area factors for Ra-226 lionuclides.]

urial Pits

estigations, the primary HDP radionuclides of concern 6 and U-238), Thorium (Th-232), Technetium-99 (Tcutonium-239/240 (Pu-239/240) and Neptunium-237 (Npo considered to be a radionuclide of concern and is found 26 area identified in the burial pits.

a background soil, and has been identified at aground Threshold Value for Th-232 at a limited number puried waste. Radium-226 (Ra-226 + C) was identified rimarily at two locations in the Burial Pit Area. Radiumn one area containing two burial pits. The elevated Raburial pits with waste as a result of the installation of rocess operations. Although only low concentrations of tified at locations outside of the Burial Pit Area, these OCs site-wide.

im (WRS) test, for each contaminant present in ey unit and reference area sigma is used in the Attachment 4 to HEM-11-91 June 21, 2011 Page 11 of 139 & RESRAD Pages

# DRAFT

|                   |                        | Appendix A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                          |
|-------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>DP</b> Section | Section Title          | Text in DP Revision 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Proposed                                                                                                                                                                 |
| 14.1.5.1.1        | Scan Or In Situ        | For scan or <i>in-situ</i> surveys, the SOF will be calculated based on the ratio of the radioactivity concentrations (in pCi/g) of total Uranium plus Th-232 and Ra-226 (when present above the background concentration), and their respective soil DCGL <sub>w</sub> . The total Uranium concentration may be a calculated or measured value depending on instrumentation and software capabilities. The SOF will be calculated using the following equation, based on Equation 4-3 of MARSSIM. The values used in Equation 14-9 will be net results after correcting for the contribution of Ra-226 and Th-232 in open land areas where those radionuclides exist. | [Note: Delete]                                                                                                                                                           |
|                   |                        | (14-9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                          |
|                   |                        | $SOF = \frac{Conc_{Total U}}{DCGL_{w,Total U}} + \frac{Conc_{Th-232}}{DCGL_{w,Th-232}} + \frac{Conc_{Ra-226}}{DCGL_{w,Ra-226}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                          |
|                   |                        | The weighted sigma value is calculated using the following equation, based on Equation I-17 of MARSSIM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |
|                   |                        | (14-10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |
|                   |                        | $\sigma_{SOF} = \sqrt{\left(\frac{\sigma_{Total  U}}{DCGL_{w,Total  U}}\right)^2 + \left(\frac{\sigma_{Th-232}}{DCGL_{w,Th-232}}\right)^2 + \left(\frac{\sigma_{Ra-226}}{DCGL_{w,Ra-226}}\right)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                          |
| 14.1.5.1.2        | Sample – Measure Tc-99 | When measuring Tc-99, the SOF will be calculated based on the ratio of the radioactivity concentrations (in pCi/g) of U-234, U-235, U-238, Tc-99, Ra-226 and Th-232 (when present above the background concentration), and their respective soil DCGLw values using the following equation, based on Equation 4-3 of MARSSIM.                                                                                                                                                                                                                                                                                                                                          | When measuring Tc-99, the SOF will<br>concentrations (in pCi/g) of U-234, U-<br>Th-232 will be corrected for backgrou<br>DCGL <sub>w</sub> values using the following eq |

### ed Text for DP Revision 1

will be calculated based on the ratio of the radioactivity , U-235, U-238, Tc-99, Ra-226 and Th-232 (Ra-226 and ground when calculating dose), and their respective soil g equation, based on Equation 4-3 of MARSSIM. Attachment 4 to HEM-11-91 June 21, 2011 Page 12 of 139 & RESRAD Pages

# DRAFT

|                   |                                       | Appendix A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                         |
|-------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>DP</b> Section | Section Title                         | Text in DP Revision 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Proposed                                                                                                                                                                                                                                                                                                                                |
| 14.1.5.1.3        | Sample – Infer Tc-99                  | When inferring Tc-99, the SOF will be calculated based on the ratio of the radioactivity concentrations (in pCi/g) of U-234, U-235, U-238, Ra-226 and Th-232 (when present above the background concentration), and their respective soil DCGL <sub>w</sub> values. In this case, the measurement of U-235 accounts for the dose contribution of Tc-99 and the DCGL <sub>w</sub> for U-235 is appropriately modified as provided in Table 14-10.                                                                                                                                                                                                | [Note: Delete.]                                                                                                                                                                                                                                                                                                                         |
|                   |                                       | The SOF will be calculated using the following equation, based on Equation 4-3 of MARSSIM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                         |
|                   |                                       | (14-13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                         |
|                   |                                       | $SOF = \frac{Conc_{U-234}}{DCGL_{w,U-234}} + \frac{Conc_{U-235}}{DCGL_{w,U-235}} + \frac{Conc_{U-238}}{DCGL_{w,U-238}} + \frac{Conc_{Th-232}}{DCGL_{w,Th-232}} + \frac{Conc_{Ra-226}}{DCGL_{w,Ra-226}}$                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                         |
|                   |                                       | The weighted sigma value is calculated using the following equation, based on Equation I-17 of MARSSIM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                         |
|                   |                                       | (14-14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                         |
|                   |                                       | $\sigma_{SOF} = \sqrt{\left(\frac{\sigma_{U-234}}{DCGL_{w,U-234}}\right)^2 + \left(\frac{\sigma_{U-235}}{DCGL_{w,U-235}}\right)^2 + \left(\frac{\sigma_{U-238}}{DCGL_{w,U-238}}\right)^2 + \left(\frac{\sigma_{Th-232}}{DCGL_{w,Th-232}}\right)^2 + \left(\frac{\sigma_{Ra-226}}{DCGL_{w,Ra-226}}\right)^2}$                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                         |
|                   |                                       | $\left\  \left( \frac{\sigma_{Th-232}}{DCGL_{w,Th-232}} \right)^2 + \left( \frac{\sigma_{Ra-226}}{DCGL_{w,Ra-226}} \right)^2 \right\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                         |
| 14.1.5.1.4        | Sample – Sample Start Depth >1.5<br>m | For samples obtained at a depth >1.5 m, the SOF will be calculated from the radioactivity concentrations (in pCi/g) of U-234, U-235, U-238, Ra-226 and Th-232 (when present above the background concentration), and their respective soil DCGLw values using Equation 14-13. The weighted sigma value is calculated using Equation 14-14.                                                                                                                                                                                                                                                                                                      | For samples obtained at a depth >1.5 concentrations (in pCi/g) of U-234, U will be corrected for background whe values using Equation 14-13. The we 14.                                                                                                                                                                                 |
| 14.4.1            | OVERVIEW                              | The statistical tests will include the Sign test, or the Wilcoxon Rank Sum (WRS) test for instances when the measurement results are corrected for the contribution from background radioactivity. Typically, the use of the WRS test will be limited to the evaluation of results obtained within open land surveys where Ra-226 and Th-232 are identified in soil. The balance of the measurements of soil within open land areas, and the measurements of surface contamination within buildings will be evaluated using the Sign test.                                                                                                      | The statistical tests will include the Si<br>instances when the measurement resu<br>radioactivity. The WRS test will used<br>land surveys. The measurements of s<br>evaluated using the Sign test.                                                                                                                                      |
| 14.4.2.5          | Background Reference Areas            | Background reference area measurements are required when using statistical application of the WRS test, and when background subtraction is required to correct gross radioactivity measurements for naturally-occurring radioactivity present in soil, and in construction materials prior to applying the Sign test. Background reference areas for soil have been identified and sampled with analytical results provided in Chapter 4. However, it is anticipated that only correction for the contribution from Ra-226 and Th-232 will be applied to the gross measurement results. A discussion on this approach is provided in Chapter 5. | Background reference area measurem<br>the WRS test; no background correcti<br>test on the sample results. Backgroun<br>sampled with analytical results and re<br>Sign test will be used for surface cont<br>net FSS results; the net results will be<br>ambient conditions from the gross res<br>due to naturally-occurring radioactivi |

### ed Text for DP Revision 1

.5 m, the SOF will be calculated from the radioactivity , U-235, U-238, Ra-226 and Th-232 (Ra-226 and Th-232 hen calculating dose) and their respective soil DCGL<sub>W</sub> weighted sigma value is calculated using Equation 14-

Sign test, or the Wilcoxon Rank Sum (WRS) test for esults are corrected for the contribution from background sed for the evaluation of results obtained within open f surface contamination within buildings will be

ements are required when using statistical application of action to soil sample results when performing the WRS bund reference areas for soil have been identified and resulting background levels provided in Chapter 4. The ontamination on building surfaces, and will be based on be obtained by subtracting the instrument response to results, but will not include a correction for the response ivity in materials of construction.

|                   |                                                                 |                                                                                                                                                                                                                         |                                                                                     |                                                                  |                                                  | I                                     | Append                                    | lix A                                            |                                               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------|---------------------------------------|-------------------------------------------|--------------------------------------------------|-----------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>DP</b> Section | Section Title                                                   |                                                                                                                                                                                                                         | Т                                                                                   | ext in D                                                         | P Revis                                          | sion 0                                |                                           |                                                  |                                               |                                         | Proposed                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 14.4.3.1.10       | Excavation Depth Considerations<br>On Sample Size Determination | First, a modification to t<br>simply be equal to unity<br>of the LBGR to the mea<br>calculate the LBGR <sub>SOF</sub> , i<br>is unlikely that the areas<br>equal and therefore the <i>a</i><br>following equation defin | (1) due to me<br>n concentration<br>normalized to<br>of the survey<br>average conce | asuring r<br>on in the s<br>unity, by<br>unit at R<br>ntration 1 | nultiple<br>survey un<br>using the<br>loot strat | ROCs.<br>nit, Equance avera<br>um and | When it<br>ation 14<br>ge conc<br>Deep st | t is desire<br>-22 will<br>entration<br>ratum co | ed to set<br>be used<br>for each<br>onditions | the value<br>to<br>n ROC. It<br>will be | First, a modification to the shift ( $\Delta$ ) is<br>will simply be equal to unity (1) due t<br>the value of the LBGR to the mean co-<br>used to calculate the LBGR <sub>SOF</sub> , norma<br>each ROC. It is unlikely that the area<br>conditions will be equal and therefore<br>to be weighted. If actual Tc-99 conce<br>used to determine sample size, then th<br>the presence of Tc-99 (Table 14-9) will<br>calculation: |
| 14.4.5.3          | Wilcoxon Rank Sum Test                                          | For the site, if the WRS guidance in Section 8.4                                                                                                                                                                        |                                                                                     |                                                                  |                                                  |                                       |                                           |                                                  |                                               |                                         | For the site, the WRS Test will be app<br>8.4 of MARSSIM. The WRS Test wi                                                                                                                                                                                                                                                                                                                                                     |
| 14.4.5.4          | Sign Test                                                       | For the site, the Sign Telland areas not containing                                                                                                                                                                     |                                                                                     |                                                                  |                                                  |                                       |                                           |                                                  |                                               |                                         | For the site, the Sign Test will be applusing the guidance in Section 8.3 of M                                                                                                                                                                                                                                                                                                                                                |
| 14.4.5.5          | Excavation Depth Considerations<br>On Data Assessment           | When the DQO process<br>data assessment is also r<br>Equation 14-9, the DCG<br>Root stratum vs. Deep st<br>as described in Section 1                                                                                    | equired. Whe<br>Lw used depe<br>tratum. The c                                       | en the SO<br>ands on th                                          | F is calc<br>ne elevat                           | ulated f                              | or each the sam                           | sample l                                         | ocation,<br>collected                         | using<br>l, i.e.,                       | When the DQO process is modified as<br>the data assessment is also required.<br>using Equation 14-9, the DCGL <sub>w</sub> used<br>collected, i.e., Root stratum vs. Deep<br>WRS test as described in Section 14.4                                                                                                                                                                                                            |
| Table 14-2        | Site-Specific Soil DCGLs                                        | Ra-226+C 6.0                                                                                                                                                                                                            | 2.2 12,03                                                                           | 0 2.0                                                            | 5.2                                              |                                       |                                           |                                                  |                                               |                                         | [Note: Specific change not yet availa                                                                                                                                                                                                                                                                                                                                                                                         |
|                   |                                                                 | <sup>d</sup> This DCGL only appli                                                                                                                                                                                       | es to those are                                                                     | as of the                                                        | site ider                                        | tified as                             | s a Ra-2                                  | 26 impa                                          | cted area                                     | l.                                      | [Note: Delete footnote.]                                                                                                                                                                                                                                                                                                                                                                                                      |
| Table 14-4        | Adjusted Site-Specific Soil DCGLs                               | Ra-226+C 5.9                                                                                                                                                                                                            | 2.2 11,91                                                                           | 0 2.0                                                            | 5.1                                              |                                       |                                           |                                                  |                                               |                                         | [Note: Specific change not yet availa                                                                                                                                                                                                                                                                                                                                                                                         |
| Table 14-10       | Adjusted And Modified Soil                                      | Plant Soil SEA                                                                                                                                                                                                          |                                                                                     |                                                                  |                                                  |                                       |                                           |                                                  |                                               |                                         | [Note: Specific change not yet availa                                                                                                                                                                                                                                                                                                                                                                                         |
|                   | DCGLw Values For Demonstrating<br>Compliance                    | Ra-226+C N/A                                                                                                                                                                                                            | N/A N/A                                                                             | N/A                                                              | N/A                                              | N/A                                   | N/A                                       | N/A                                              | N/A                                           | N/A                                     | each CSM]                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   | Compliance                                                      | Tc-99 SEA                                                                                                                                                                                                               |                                                                                     |                                                                  |                                                  |                                       |                                           |                                                  |                                               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                   |                                                                 | Ra-226+C N/A                                                                                                                                                                                                            | N/A N/A                                                                             | N/A                                                              | N/A                                              | N/A                                   | N/A                                       | N/A                                              | N/A                                           | N/A                                     |                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                   |                                                                 | Burial Pit SEA                                                                                                                                                                                                          |                                                                                     |                                                                  |                                                  |                                       |                                           |                                                  |                                               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                   |                                                                 | Ra-226+C 5.9                                                                                                                                                                                                            | 5.9 2.2                                                                             | 2.2                                                              | 11,910                                           | ) 11,91                               | 0 2.0                                     | 2.0                                              | 5.1                                           | 5.1                                     |                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Table 5-13        | Area Factors for Soil                                           | (Table currently shows '<br>Measurement Areas for                                                                                                                                                                       | 'blank space''<br>92,539 m <sup>2</sup> , 10                                        | in place<br>,000 m <sup>2</sup> a                                | of area fa<br>and 3000                           | actors fo<br>) m <sup>2</sup> in e    | or Ra-22<br>each of t                     | 26 in Elev<br>the three                          | vated<br>CSMs.)                               |                                         | [Note: Specific change not yet availa<br>in Elevated Measurement Areas consi                                                                                                                                                                                                                                                                                                                                                  |

### ed Text for DP Revision 1

) is required (Equation 14-20). In all cases, the DCGL<sub>w</sub> te to measuring multiple ROCs. When it is desired to set concentration in the survey unit, Equation 14-22 will be malized to unity, by using the average concentration for reas of the survey unit at Root stratum and Deep stratum ore the average concentration level in each area will need neentrations are not included in the data set that will be in the modified U-235 soil DCGL<sub>w</sub> values accounting for will be used. The following equation defines this

applied to the soil surveys using the guidance in Section will be conducted as described below.

pplied to the building and structural surface surveys f MARSSIM.

as described in Section 14.4.3, a minor modification to When the SOF is calculated for each sample location, sed depends on the elevation that the sample was ep stratum. The calculated SOF value is then used in the 4.4.5.

lable. Revise Ra-226 DCGL for each CSM]

lable. Revise Ra-226 DCGL for each CSM]

lable. Revise Ra-226 adjusted and modified DCGL for

ilable. For each CSM, calculate area factors for Ra-226 nsistent with the other radionuclides.]

### Appendix B. Radium Non-Impacted Area Analysis

(Appendix B to HRCR)

### Appendix B

Ra-226 Soil Concentration Comparison with Background Ra-226 Soil Concentration

### List of Tables

Table No.

- B-1 Known In-growth Ra-226 Data WMW, Quantile, and QQ Plot
- B-2 Unknown In-growth BTV Determination
- B-3 Known In-growth BTV Determination

Radium-226 (Ra-226) is present naturally in soil. The Hematite Site derived concentration guideline levels (DCGLs) equivalent to the 25 mrem per year dose criterion are only slightly higher than typical background soil concentrations. A statistical evaluation of the data was performed to determine if the Ra-226 concentration in site areas are different from the Ra-226 concentration in background samples. The site areas include the Radium Impacted Area (RIA) and the remaining impacted areas of the site noted as non-impacted (NI) for Ra-226 (henceforth referred to as non-impacted areas in this Appendix). The Quantile and Mann-Whitney U (Rank Sum) tests were performed to compare the two populations (background and NI), and determine if they have the same distribution.

Radium-226 gamma spectroscopy data were input into ProUCL V4.0. A data set for background and a data set for the NI samples were used and hypothesis testing was done to determine if the Ra-226 from NI samples was distinguishable from background Ra-226 concentrations. The twosample hypothesis testing was performed using the Quantile test and Mann-Whitney U (referred to as the Wilcoxon Mann Whitney (WMW) test in ProUCL technical guidance) in parallel on each data set as recommended in the guidance documents (Reference B-1). As described in Reference B-1, the "WMW test does not place enough weight on the larger site and background measurements. This means, a WMW may lead to the conclusion that two populations are comparable even when the observations in the right tail of one distribution (e.g., site) are significantly larger than the right tail observations of other populations." The QQ (Quantile-Quantile test is used to compare upper tails of the two distributions." The QQ (Quantile-Quantile) plot is provided in addition to the WMW and Quantile tests as recommended by Reference B-1; the QQ plot visual display of the data sets is useful in identifying outliers.

The null hypothesis for both the Wilcoxon Mann Whitney test and the Quantile test were:

Null Hypothesis, H0: Site or area mean/median is less than or equal to the background mean/median.

When the null hypothesis was not rejected, then the Ra-226 was considered indistinguishable from background. The conclusion for these areas is that the Ra-226 concentration is consistent

with background and there is no reason to believe that there is residual licensed Ra-226 in the soils.

For the purpose of comparing soil concentrations to background, the data sets were broken up into unknown and known in-growth (of Ra-226 progeny beyond the radon portion of the decay chain) analyses. Mean values for Ra-226 in background soil for unknown and known in-growth are provided below, with the known in-growth mean predictably higher.

- Background unknown in-growth (N=32): 0.9 picoCuries per gram (pCi/g)
- Background known in-growth (N=32): 1.5 pCi/g

Background threshold values (BTVs) were calculated using the unknown and known in-growth background data sets. The BTVs were calculated to be 1.2 pCi/g for unknown in-growth and 1.9 pCi/g for known in-growth using the 95% normal Upper Tolerance Level (UTL) for the background distribution. It is noted that one of the background values in each case exceeded the respective BTV; however, since there were 32 background observations, one value exceeding the 95% UPL is expected. As discussed in the subsections of DP Section 14.1.5, this BTV will be used in the determination of whether sampling results necessitate a Survey Unit to be designated as impacted by Ra-226.

ProUCL results for the WMW and Quantile tests and QQ plot of the sample and background using the known in-growth data sets are provided at the back of this Appendix. ProUCL output calculations for the BTV values are also provided for the unknown and known in-growth data sets.

### REFERENCES

B-1 <u>U.S. Environmental Protection Agency</u>, "ProUCL Version 4.0 Technical Guide," April 2007.

### Appendix C

### Table B-1

Page 1 of 3

### Known In-growth Ra-226 Data WMW, Quantile, and QQ Plot

Wilcoxon-Mann-Whitney Site vs Background Comparison Test for Full Data Sets without NDs

| User Selected Options    | 3                                                                             |
|--------------------------|-------------------------------------------------------------------------------|
| From File                | ProUCL.wst                                                                    |
| Full Precision           | OFF                                                                           |
| Confidence Coefficient   | 95%                                                                           |
| Substantial Difference   | 0.000                                                                         |
| Selected Null Hypothesis | Site or AOC Mean/Median Less Than or Equal to Background Mean/Median (Form 1) |
| Alternative Hypothesis   | Site or AOC Mean/Median Greater Than Background Mean/Median                   |

Area of Concern Data: NI Ra-226 w/Ingrowth Background Data: BKG Ra-226 w/Ingrowth

Raw Statistics

|                                 | Site  | Background |
|---------------------------------|-------|------------|
| Number of Valid Observations    | 46    | 32         |
| Number of Distinct Observations | 37    | 27         |
| Minimum                         | 0.138 | 0.976      |
| Maximum                         | 3.4   | 1.97       |
| Mean                            | 1.107 | 1.475      |
| Median                          | 1.11  | 1.525      |
| SD                              | 0.523 | 0.223      |
| SE of Mean                      | 0.077 | 0.0395     |

#### Wilcoxon-Mann-Whitney (WMW) Test

H0: Mean/Median of Site or AOC <= Mean/Median of Background

Site Rank Sum W-Stat 1319 WMW Test U-Stat -5.064 WMW Critical Value (0.050) 1.645 P-Value 1

Conclusion with Alpha = 0.05

Do Not Reject H0, Conclude Site <= Background P-Value >= alpha (0.05)

### Table B-1 (continued)

Page 2 of 3

### Known In-growth Ra-226 Data WMW, Quantile, and QQ Plot

Non-parametric Quantile Hypothosis Test for Full Dataset (No NDs)

| User Selected Options                     | 3                                                                                        |
|-------------------------------------------|------------------------------------------------------------------------------------------|
| From File                                 | ProUCL.wst                                                                               |
| Full Precision                            | OFF                                                                                      |
| Confidence Coefficient                    | 95%                                                                                      |
| Null Hypothesis                           | Site or AOC Concentration Less Than or Equal to Background Concentration (Form 1)        |
| Alternative Hypothesis                    | Site or AOC Concentration Greater Than Background Concentration                          |
| Confidence Coefficient<br>Null Hypothesis | 95%<br>Site or AOC Concentration Less Than or Equal to Background Concentration (Form 1) |

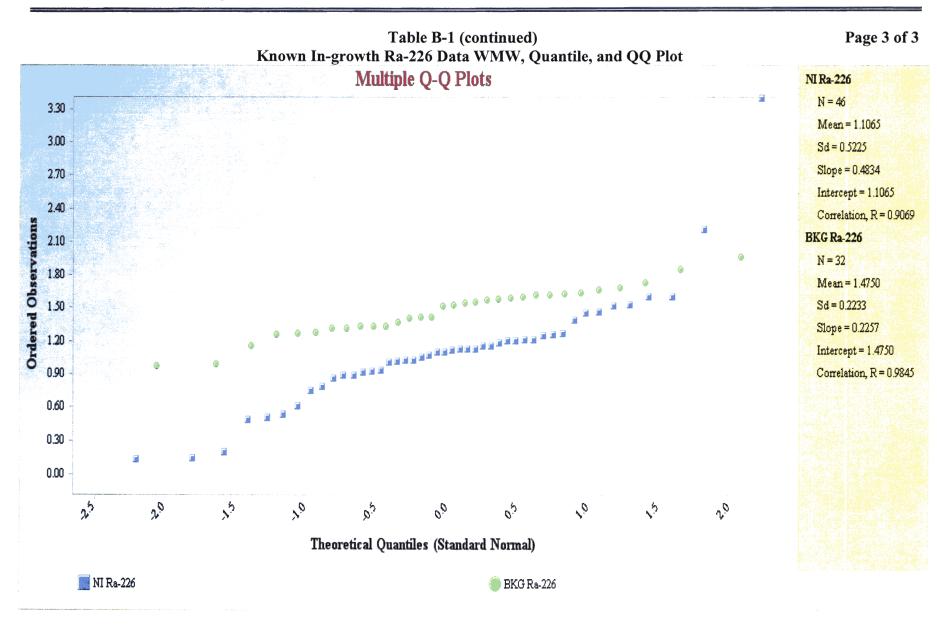
Area of Concern Data: NI Ra-226 w/Ingrowth Background Data: BKG Ra-226 w/Ingrowth

#### **Raw Statistics**

|                                 | Site  | Background |
|---------------------------------|-------|------------|
| Number of Valid Observations    | 46    | 32         |
| Number of Distinct Observations | 37    | 27         |
| Minimum                         | 0.138 | 0.976      |
| Maximum                         | 3.4   | 1.97       |
| Mean                            | 1.107 | 1.475      |
| Median                          | 1.11  | 1.525      |
| SD                              | 0.523 | 0.223      |
| SE of Mean                      | 0.077 | 0.0395     |

#### Quantile Test

H0: Site Concentration <= Background Concentration (Form 1)


| Approximate R Value (0.04)                 | 6      |
|--------------------------------------------|--------|
| Approximate K Value (0.04)                 | 6      |
| Number of Site Observations in 'R' Largest | 2      |
| Calculated Alpha                           | 0.0365 |

#### Conclusion with Alpha = 0.04

Do Not Reject H0, Perform Wilcoxon-Mann-Whitney Ranked Sum Test

### Attachment 4 to HEM-11-91 June 21, 2011 Page 18 of 139 & RESRAD Pages

# DRAFT



|                                | UIIM                                     | 0,111          | n-growth DI v Deter hunation                   |                |
|--------------------------------|------------------------------------------|----------------|------------------------------------------------|----------------|
|                                | General Background St                    | tatistics for  | Full Data Sets                                 |                |
| User Selected Options          | j.                                       |                |                                                |                |
| From File                      | ProUCL.wst                               |                |                                                |                |
| Full Precision                 | OFF                                      |                |                                                |                |
| Confidence Coefficient         | 95%                                      |                |                                                |                |
| Coverage                       | 90%                                      |                |                                                |                |
| Different or Future K Values   | 1                                        |                |                                                |                |
| Number of Bootstrap Operations | 2000                                     |                |                                                |                |
|                                |                                          |                |                                                |                |
| BKG Ra-226 w/Unknown Ingrowth  | 1                                        |                |                                                |                |
|                                |                                          | Conorrol       | Statistics                                     |                |
| Total A                        | Number of Observations                   | General<br>32  | Number of Distinct Observations                | 29             |
| i otari                        | rumber of Observations                   | 32             | Number of Distinct Observations                | 29             |
| Raw S                          | tatistics                                |                | Log-Transformed Statistics                     |                |
|                                | Minimum                                  | 0.661          | Minimum                                        | -0.414         |
|                                | Maximum                                  | 1.21           | Maximum                                        | 0.191          |
|                                | Second Largest                           | 1.15           | Second Largest                                 | 0.14           |
|                                | First Quartile                           | 0.87           | First Quartile                                 | -0.14          |
|                                | Median                                   | 0.943          | Median                                         | -0.0587        |
|                                | Third Quartile                           | 1.09           | Third Quartile                                 | 0.0862         |
|                                | Mean                                     | 0.947          | Mean                                           | -0.0668        |
|                                | SD                                       | 0.145          | SD                                             | 0.159          |
|                                | Coefficient of Variation                 | 0.154          |                                                |                |
|                                | Skewness                                 | -0.208         |                                                |                |
|                                |                                          | Backgrour      | d Statistics                                   |                |
| Normal Dist                    | tribution Test                           |                | Lognormal Distribution Test                    |                |
| Sh                             | apiro Wilk Test Statistic                | 0.963          | Shapiro Wilk Test Statistic                    | 0.948          |
|                                | apiro Wilk Critical Value                | 0.93           | Shapiro Wilk Critical Value                    | 0.93           |
| Data appear Normal a           | t 5% Significance Level                  |                | Data appear Lognormal at 5% Significance Level |                |
|                                |                                          |                |                                                |                |
|                                | mal Distribution                         | 4.004          | Assuming Lognormal Distribution                | 1 000          |
| 95% U                          | TL with 90% Coverage                     | 1.201          | 95% UTL with 90% Coverage                      | 1.236          |
|                                | 95% UPL (t)                              | 1.197          | 95% UPL (t)                                    | 1.231          |
|                                | 90% Percentile (z)<br>95% Percentile (z) | 1.133<br>1.186 | 90% Percentile (z)<br>95% Percentile (z)       | 1.147<br>1.216 |
|                                | 99% Percentile (z)                       | 1.285          | 99% Percentile (z)                             | 1.355          |
|                                | 33 % Fercentile (2)                      | 1.20J          | 55 % Percentile (2)                            | 1.555          |
| Gamma Dis                      | tribution Test                           |                | Data Distribution Test                         |                |
|                                | k star                                   | 38.02          | Data appear Normal at 5% Significance Level    |                |
|                                | Theta Star                               | 0.0249         |                                                |                |
|                                | MLE of Mean                              | 0.947          |                                                |                |
| MLI                            | E of Standard Deviation                  | 0.154          |                                                |                |
|                                | nu star                                  | 2433           |                                                |                |
|                                | A-D Test Statistic                       | 0.421          | Nonparametric Statistics                       |                |
|                                | 5% A-D Critical Value                    | 0.745          | 90% Percentile                                 | 1.12           |
|                                | K-S Test Statistic                       | 0.119          | 95% Percentile                                 | 1.139          |
|                                | 5% K-S Critical Value                    | 0.155          | 99% Percentile                                 | 1.191          |
| Data appear Gamma Distribu     | Ited at 5% Significance                  | Level          |                                                |                |

### **Unknown In-growth BTV Determination**

Table B-2

Page 1 of 2

### Table B-2

### Page 2 of 2

## **Unknown In-growth BTV Determination**

| Assuming Gamma Distribution                |       | 95% UTL with 90% Coverage                      | 1.15  |
|--------------------------------------------|-------|------------------------------------------------|-------|
| 90% Percentile                             | 1.148 | 95% Percentile Bootstrap UTL with 90% Coverage | 1.148 |
| 95% Percentile                             | 1.213 | 95% BCA Bootstrap UTL with 90% Coverage        | 1.147 |
| 99% Percentile                             | 1.34  | 95% UPL                                        | 1.171 |
|                                            |       | 95% Chebyshev UPL                              | 1.59  |
| 95% WH Approx. Gamma UPL                   | 1.217 | Upper Threshold Limit Based upon IQR           | 1.421 |
| 95% HW Approx. Gamma UPL                   | 1.22  |                                                |       |
| 95% WH Approx. Gamma UTL with 90% Coverage | 1.222 |                                                |       |
| 95% HW Approx. Gamma UTL with 90% Coverage | 1.225 |                                                |       |
|                                            |       |                                                |       |
|                                            |       |                                                |       |

|                                |                           |               | Table B-3                                      |         |
|--------------------------------|---------------------------|---------------|------------------------------------------------|---------|
|                                | Kno                       | wn In         | -growth BTV Determination                      |         |
|                                | General Background S      | tatistics for | Full Data Sets                                 |         |
| User Selected Options          | 3                         |               |                                                |         |
| From File                      | ProUCL.wst                |               |                                                |         |
| Full Precision                 | OFF                       |               |                                                |         |
| Confidence Coefficient         | 95%                       |               |                                                |         |
| Coverage                       | 90%                       |               |                                                |         |
| Different or Future K Values   | 1                         |               |                                                |         |
| Number of Bootstrap Operations | 2000                      |               |                                                |         |
| BKG Ra-226 w/Ingrowth          |                           |               |                                                |         |
|                                |                           | General       | Statistics                                     |         |
| Total f                        | Number of Observations    | 32            | Number of Distinct Observations                | 27      |
| Raw S                          | statistics                |               | Log-Transformed Statistics                     |         |
|                                | Minimum                   | 0.976         | Minimum                                        | -0.0243 |
|                                | Maximum                   | 1.97          | Maximum                                        | 0.678   |
|                                | Second Largest            | 1.86          | Second Largest                                 | 0.621   |
|                                | First Quartile            | 1.335         | First Quartile                                 | 0.289   |
|                                | Median                    | 1.525         | Median                                         | 0.422   |
|                                | Third Quartile            | 1.62          | Third Quartile                                 | 0.482   |
|                                | Mean                      | 1.475         | Mean                                           | 0.377   |
|                                | SD                        | 0.223         | SD                                             | 0.159   |
|                                | Coefficient of Variation  | 0.151         |                                                |         |
|                                | Skewness                  | -0.222        |                                                |         |
|                                |                           | Backgrou      | nd Statistics                                  |         |
|                                | tribution Test            |               | Lognormal Distribution Test                    |         |
|                                | apiro Wilk Test Statistic | 0.97          | Shapiro Wilk Test Statistic                    | 0.946   |
|                                | apiro Wilk Critical Value | 0.93          | Shapiro Wilk Critical Value                    | 0.93    |
| Data appear Normal a           | t 5% Significance Level   |               | Data appear Lognormal at 5% Significance Level |         |
| Assuming Nor                   | mal Distribution          |               | Assuming Lognormal Distribution                |         |
| 95% U                          | TL with 90% Coverage      | 1.865         | 95% UTL with 90% Coverage                      | 1.923   |
|                                | 95% UPL (t)               | 1.86          | 95% UPL (t)                                    | 1.915   |
|                                | 90% Percentile (z)        | 1.761         | 90% Percentile (z)                             | 1.786   |
|                                | 95% Percentile (z)        | 1.842         | 95% Percentile (z)                             | 1.892   |
|                                | 99% Percentile (z)        | 1.995         | 99% Percentile (z)                             | 2.108   |
| Gamma Dis                      | tribution Test            |               | Data Distribution Test                         |         |
|                                | k star                    | 38.72         | Data appear Normal at 5% Significance Level    |         |
|                                | Theta Star                | 0.0381        |                                                |         |
|                                | MLE of Mean               | 1.475         |                                                |         |
| ML                             | E of Standard Deviation   | 0.237         |                                                |         |
|                                | nu star                   | 2478          |                                                |         |
|                                | A-D Test Statistic        | 0.532         | Nonparametric Statistics                       |         |
|                                | 5% A-D Critical Value     | 0.745         | 90% Percentile                                 | 1.688   |
|                                | K-S Test Statistic        | 0.129         | 95% Percentile                                 | 1.794   |
|                                | 5% K-S Critical Value     | 0.155         | 99% Percentile                                 | 1.936   |
| Data appear Gamma Distrib      | uted at 5% Significance   | Level         |                                                |         |
|                                |                           |               |                                                |         |

## Table R 3

### Page 1 of 2

### Table B-3

### Page 2 of 2

## Known In-growth BTV Determination

| 1.86  | 90% Coverage   | 95% UTL with                      |       | Assuming Gamma Distribution                |
|-------|----------------|-----------------------------------|-------|--------------------------------------------|
| 1.86  | 90% Coverage   | 95% Percentile Bootstrap UTL with | 1.786 | 90% Percentile                             |
| 1.848 | 90% Coverage   | 95% BCA Bootstrap UTL with        | 1.885 | 95% Percentile                             |
| 1.899 | 95% UPL        |                                   | 2.082 | 99% Percentile                             |
| 2.464 | Chebyshev UPL  | 95% 0                             |       |                                            |
| 2.048 | Based upon IQR | Upper Threshold Limit E           | 1.893 | 95% WH Approx. Gamma UPL                   |
|       |                |                                   | 1.898 | 95% HW Approx. Gamma UPL                   |
|       |                |                                   | 1.9   | 95% WH Approx. Gamma UTL with 90% Coverage |
|       |                |                                   | 1.905 | 95% HW Approx. Gamma UTL with 90% Coverage |

### Uranium Non Impacted Statistical Analysis

### **Uranium Data – Non Impacted Area**

| Sample ID      | Total Uranium<br>(pCi/g) |
|----------------|--------------------------|
| NB-02-00-SL    | 1.16                     |
| NB-06-00-SL    | 1.80                     |
| NB-114-0.5-SL  | 0.75                     |
| NB-121-0.5-SL  | 0.43                     |
| NB-17-00-SL    | 1.92                     |
| NB-23-00-SL    | 1.96                     |
| NB-114-2.5-SL  | 1.03                     |
| NB-121-12.5-SL | 1.88                     |
| NB-121-2.5-SL  | 2.26                     |
| NB-36-05-SL    | 1.63                     |
| NB-36-15-SL    | 1.80                     |
| NB-44-05-SL    | 1.00                     |
| NB-63-05-SL    | 1.51                     |
| NB-71-01-SL    | 2.60                     |
| NB-78-07-SL    | 1.47                     |
| NB-81-09-SL    | 1.51                     |

Bold values are less than MDC

### **Uranium Data – Background Area**

| Sample ID   | Total Uranium |
|-------------|---------------|
| -           | (pCi/g)       |
| BG-01-00-SL | 1.26          |
| BG-02-00-SL | 1.49          |
| BG-03-00-SL | 1.55          |
| BG-04-00-SL | 1.31          |
| BG-05-00-SL | 1.47          |
| BG-06-00-SL | 1.44          |
| BG-07-00-SL | 1.29          |
| BG-08-00-SL | 1.99          |
| BG-09-00-SL | 1.97          |
| BG-10-00-SL | 1.97          |
| BG-11-00-SL | 1.99          |
| BG-12-00-SL | 1.86          |
| BG-13-00-SL | 1.80          |
| BG-14-00-SL | 1.78          |
| BG-15-00-SL | 1.15          |
| BG-16-00-SL | 1.42          |
| BG-01-03-SL | 1.37          |
| BG-02-03-SL | 1.52          |
| BG-03-03-SL | 1.61          |
| BG-04-03-SL | 1.58          |
| BG-05-03-SL | 1.64          |
| BG-06-03-SL | 1.76          |
| BG-07-03-SL | 1.51          |
| BG-08-03SL  | 1.94          |
| BG-09-03-SL | 1.89          |
| BG-10-03-SL | 1.89          |
| BG-11-03-SL | 1.79          |
| BG-12-03-SL | 1.93          |
| BG-13-03-SL | 1.87          |
| BG-14-03-SL | 1.83          |
| BG-15-03-SL | 1.75          |
| BG-16-03-SL | 1.33          |

Bold values are less than MDC

### Attachment 4 to HEM-11-91 June 21, 2011 Page 24 of 139 & RESRAD Pages

# DRAFT

|                        | Non-parametric Quantile Hypothosis Test for Full Dataset (No NDs)                 |
|------------------------|-----------------------------------------------------------------------------------|
| User Selected Options  |                                                                                   |
| From File              | C:\Documents and Settings\guidojs\Desktop\totalU RevNI ProUCL IN.xls.wst          |
| Full Precision         | OFF                                                                               |
| Confidence Coefficient | 95%                                                                               |
| Null Hypothesis        | Site or AOC Concentration Less Than or Equal to Background Concentration (Form 1) |
| Alternative Hypothesis | Site or AOC Concentration Greater Than Background Concentration                   |

### Area of Concern Data: TotalURevNI Background Data: TotalU AS BKG

| Raw Statistics                  |       |            |  |  |
|---------------------------------|-------|------------|--|--|
|                                 | Site  | Background |  |  |
| Number of Valid Observations    | 16    | 32         |  |  |
| Number of Distinct Observations | 16    | 32         |  |  |
| Minimum                         | 0.425 | 1.149      |  |  |
| Maximum                         | 2.596 | 1.993      |  |  |
| Mean                            | 1.543 | 1.655      |  |  |
| Median                          | 1.572 | 1.694      |  |  |
| SD                              | 0.566 | 0.252      |  |  |
| SE of Mean                      | 0.141 | 0.0445     |  |  |
|                                 |       |            |  |  |

Quantile Test

#### H0: Site Concentration <= Background Concentration (Form 1)

Approximate R Value (0.052) 10 Approximate K Value (0.052) 6 Number of Site Observations in 'R' Largest 4 Calculated Alpha 0.0537

#### Conclusion with Alpha = 0.052

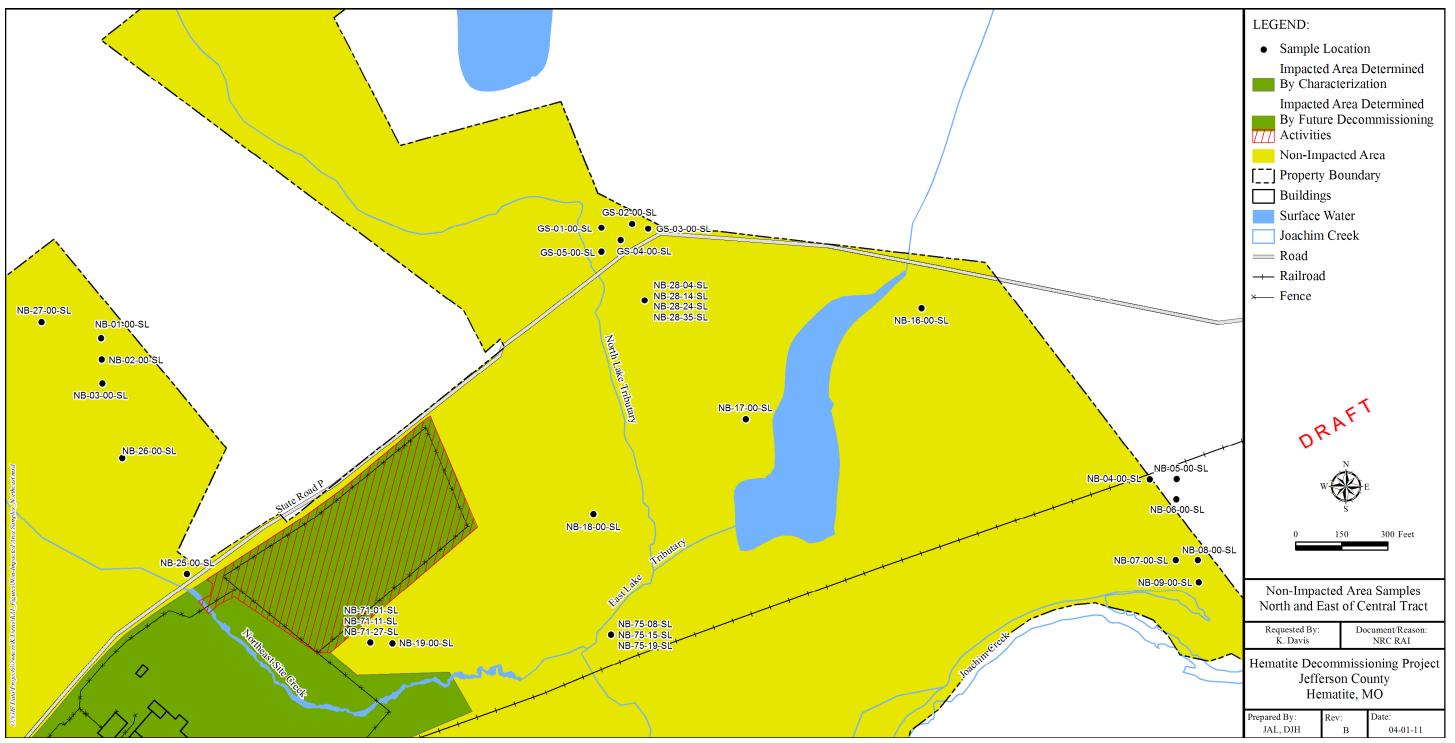
Do Not Reject H0, Perform Wilcoxon-Mann-Whitney Ranked Sum Test

#### Wilcoxon-Mann-Whitney Site vs Background Comparison Test for Full Data Sets without NDs

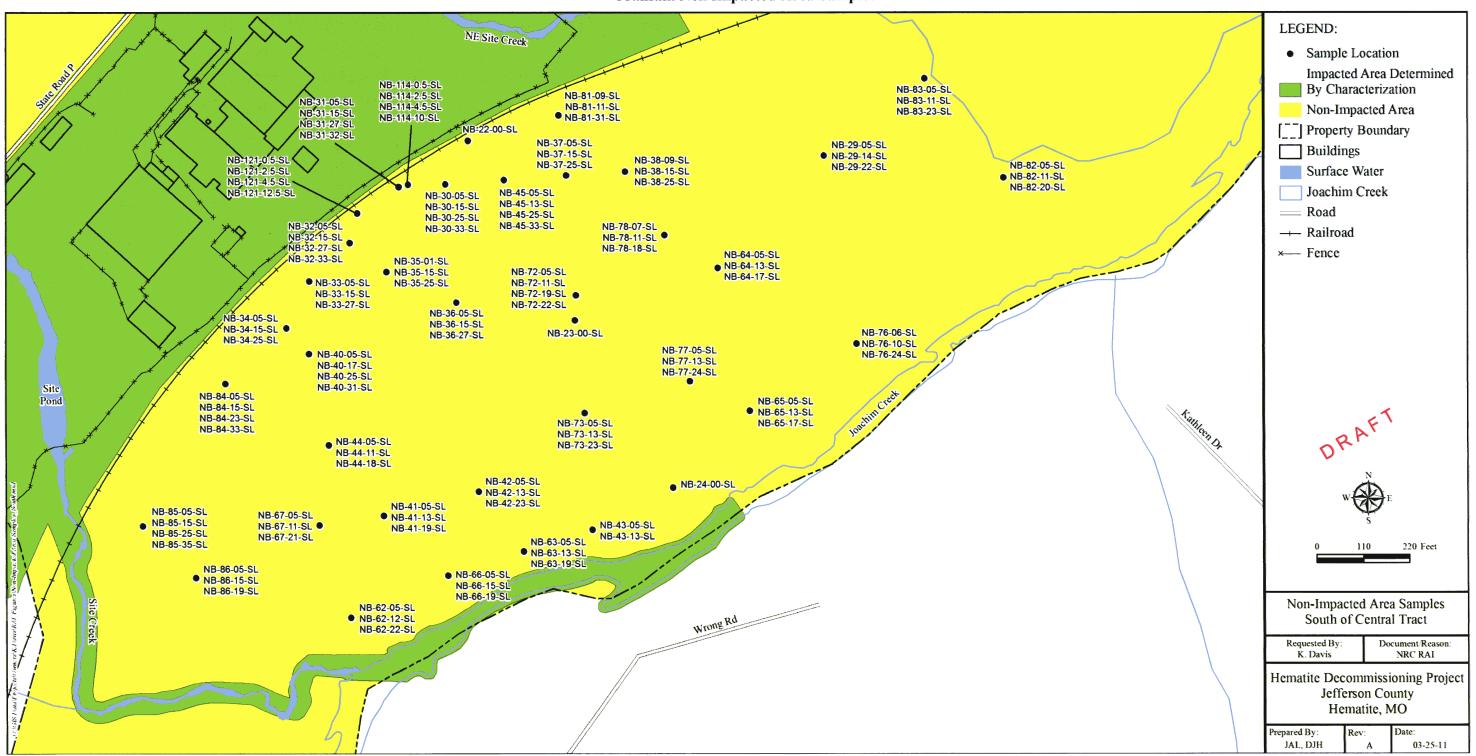
| User Selected Options    | 3                                                                               |
|--------------------------|---------------------------------------------------------------------------------|
| From File                | C:\Documents and Settings\guidojs\Desktop\totalU RevNI ProUCL IN.xls.wst        |
| Full Precision           | OFF                                                                             |
| Confidence Coefficient   | 95%                                                                             |
| Substantial Difference   | 0                                                                               |
| Selected Null Hypothesis | Site or AOC Mean/ Median Less Than or Equal to Background Mean/ Median (Form 1) |
| Alternative Hypothesis   | Site or AOC Mean/ Median Greater Than Background Mean/ Median                   |
|                          |                                                                                 |

#### Area of Concern Data: TotalURevNI Background Data: TotalU AS BKG

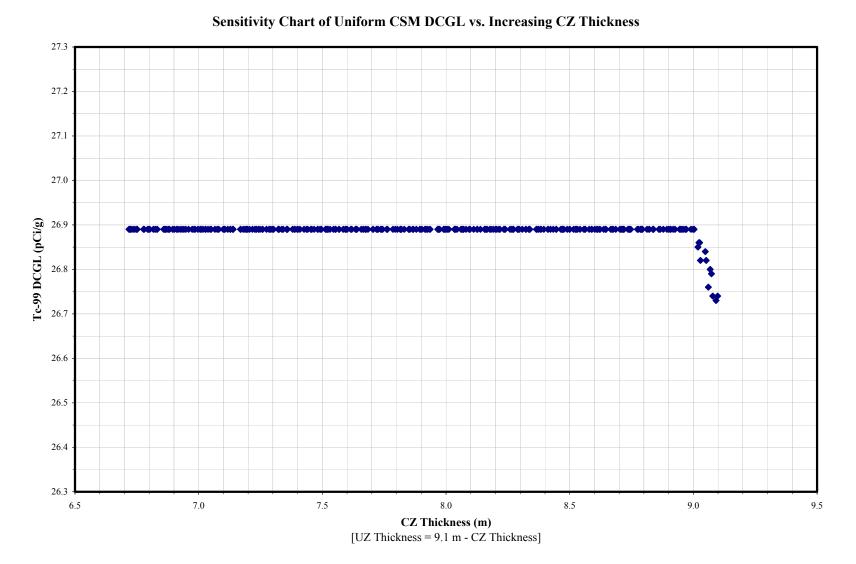
| Raw Statis                      | tics  |            |  |
|---------------------------------|-------|------------|--|
|                                 | Site  | Background |  |
| Number of Valid Observations    | 16    | 32         |  |
| Number of Distinct Observations | 16    | 32         |  |
| Minimum                         | 0.425 | 1.149      |  |
| Maximum                         | 2.596 | 1.993      |  |
| Mean                            | 1.543 | 1.655      |  |
| Median                          | 1.572 | 1.694      |  |
| SD                              | 0.566 | 0.252      |  |
| SE of Mean                      | 0.141 | 0.0445     |  |
|                                 |       |            |  |

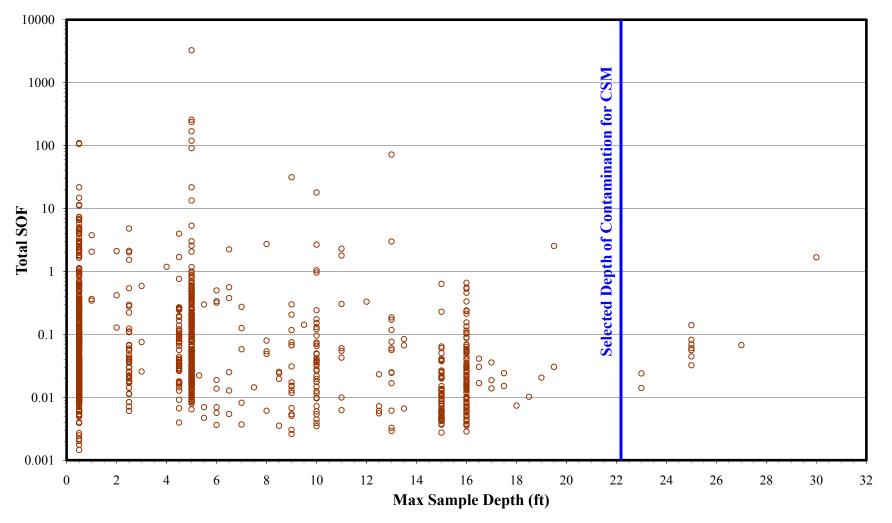

#### Wilcoxon-Mann-Whitney (WMW) Test

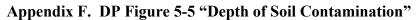
#### H0: Mean/Median of Site or AOC <= Mean/Median of Background


Site Rank Sum W-Stat 362 WMW Test U-Stat -0.667 WMW Critical Value (0.050) 1.645 P-Value 0.748

Conclusion with Alpha = 0.05 Do Not Reject H0, Conclude Site <= Background P-Value >= alpha (0.05)





Uranium Non Impacted Area Samples



### Appendix E







### Appendix G. Revised Plant Transfer Factor Table (excerpt from DP Table 5-6)

|              | RESRAD     |           | INPUT PARAMETER |             |                                                                                 |               |
|--------------|------------|-----------|-----------------|-------------|---------------------------------------------------------------------------------|---------------|
| Parameter    | Code       | Default   | Value           | Units       | Justification                                                                   | Reference     |
|              |            | HEMA      | ATITE CUST      | OM DOSH     | E FACTOR LIBRARY                                                                | _             |
|              |            |           | Plar            | nt Transfer | Factors                                                                         |               |
| Uranium      | BRTF(92,1) | 2.50 E-03 | 3.70 E-03       | unitless    | P1 Physical Parameter. The 75 <sup>th</sup> quantile of NUREG/CR-6697 PDF used. | Reference 5-4 |
| Plutonium    | BRTF(94,1) | 1.00 E-03 | 1.00 E-03       | unitless    | The median of NUREG/CR-6697 PDF used.                                           | Reference 5-4 |
| Technetium   | BRTF(43,1) | 5.00 E+00 | 9.27 E+00       | unitless    | The 75 <sup>th</sup> quantile of NUREG/CR-6697<br>PDF used.                     | Reference 5-4 |
| Thorium      | BRTF(90,1) | 1.00 E-03 | 9.93 E-04       | unitless    | The median of NUREG/CR-6697 PDF used.                                           | Reference 5-4 |
| Neptunium    | BRTF(93,1) | 2.00 E-02 | 2.00 E-02       | unitless    | The median of NUREG/CR-6697 PDF used.                                           | Reference 5-4 |
| Americium    | BRTF(95,1) | 1.00 E-03 | 1.00 E-03       | unitless    | The median of NUREG/CR-6697 PDF used.                                           | Reference 5-4 |
| Actinium     | BRTF(89,1) | 2.50 E-03 | 1.00 E-03       | unitless    | The median of NUREG/CR-6697 PDF used.                                           | Reference 5-4 |
| Protactinium | BRTF(91,1) | 1.00 E-02 | 1.00 E-02       | unitless    | The median of NUREG/CR-6697 PDF used.                                           | Reference 5-4 |
| Lead         | BRTF(82,1) | 1.00 E-02 | 4.00 E-03       | unitless    | The median of NUREG/CR-6697 PDF used.                                           | Reference 5-4 |
| Radium       | BRTF(88,1) | 4.00 E-02 | 7.40 E-02       | unitless    | The 75 <sup>th</sup> quantile of NUREG/CR-6697<br>PDF used.                     | Reference 5-4 |

|              | RESRAD     |           | INPUT PARAMETER |                      |                                                                                 |               |
|--------------|------------|-----------|-----------------|----------------------|---------------------------------------------------------------------------------|---------------|
| Parameter    | Code       | Default   | Value           | Units                | Justification                                                                   | Reference     |
|              |            |           | N               | Ailk Transfei        | r Factors                                                                       |               |
| Uranium      | BRTF(92,3) | 6.00 E-04 | 6.00 E-04       | (pCi/L) /<br>(pCi/d) | P2 Physical Parameter. The 75 <sup>th</sup> quantile of NUREG/CR-6697 PDF used. | Reference 5-4 |
| Plutonium    | BRTF(94,3) | 1.00 E-06 | 9.90 E-07       | (pCi/L) /<br>(pCi/d) | The median of NUREG/CR-6697 PDF used.                                           | Reference 5-4 |
| Technetium   | BRTF(43,3) | 1.00 E-03 | 1.00 E-03       | (pCi/L) /<br>(pCi/d) | The median of NUREG/CR-6697 PDF used.                                           | Reference 5-4 |
| Thorium      | BRTF(90,3) | 5.00 E-06 | 4.90 E-06       | (pCi/L) /<br>(pCi/d) | The median of NUREG/CR-6697 PDF used.                                           | Reference 5-4 |
| Neptunium    | BRTF(93,3) | 5.00 E-06 | 1.00 E-05       | (pCi/L) /<br>(pCi/d) | The median of NUREG/CR-6697 PDF used.                                           | Reference 5-4 |
| Americium    | BRTF(95,3) | 2.00 E-06 | 2.00 E-06       | (pCi/L) /<br>(pCi/d) | The median of NUREG/CR-6697 PDF used.                                           | Reference 5-4 |
| Actinium     | BRTF(89,3) | 2.00 E-05 | 2.00 E-06       | (pCi/L) /<br>(pCi/d) | The median of NUREG/CR-6697 PDF used.                                           | Reference 5-4 |
| Protactinium | BRTF(91,3) | 5.00 E-06 | 4.90 E-06       | (pCi/L) /<br>(pCi/d) | The median of NUREG/CR-6697 PDF used.                                           | Reference 5-4 |
| Lead         | BRTF(82,3) | 3.00 E-04 | 3.00 E-04       | (pCi/L) /<br>(pCi/d) | The median of NUREG/CR-6697 PDF used.                                           | Reference 5-4 |
| Radium       | BRTF(88,3) | 1.00 E-03 | 1.00 E-03       | (pCi/L) /<br>(pCi/d) | The median of NUREG/CR-6697 PDF used.                                           | Reference 5-4 |

### Appendix H. Revised Milk Transfer Factor Table (excerpt from DP Table 5-6)



Hematite Decommissioning Plan

### Table 5-7

Page 1 of 1

### Soil DSRs And DCGLs - Surface

| Radionuclide | DSR<br>(mrem/yr per pCi/g) | Year of<br>Maximum Dose | DCGL <sup>a</sup><br>(pCi/g) |
|--------------|----------------------------|-------------------------|------------------------------|
| U-234        | 4.584E-02                  | 0                       | 545.4                        |
| U-235 + D    | 2.278E-01                  | 0                       | 109.7                        |
| U-238 + D    | 7.831E-02                  | 0                       | 319.2                        |
| Tc-99        | 1.543E-01                  | 0                       | 162.0                        |
| Th-232 + C   | 5.031E+00                  | 0                       | 5.0                          |
| Ra-226 + C   | 4.602E+00                  | 0                       | 5.4                          |
| Np-237 + D   | 1.441E+00                  | 0                       | 17.4                         |
| Pu-239/240   | 1.044E-01                  | 0                       | 239.6                        |
| Am-241       | 1.133E-01                  | 0                       | 220.7                        |

<sup>a</sup> The reported soil limits, DCGL<sub>WS</sub> are the activities for the parent radionuclide as specified.



Hematite Decommissioning Plan

### Table 5-8

Page 1 of 1

### Soil DSRs And DCGLs – Root

| Radionuclide | DSR<br>(mrem/yr per pCi/g) | Year of<br>Maximum Dose | DCGL <sup>a</sup><br>(pCi/g) |
|--------------|----------------------------|-------------------------|------------------------------|
| U-234        | 9.892E-02                  | 249.8                   | 252.7                        |
| U-235 + D    | 3.640E-01                  | 1,000                   | 68.7                         |
| U-238 + D    | 1.272E-01                  | 249.9                   | 196.6                        |
| Tc-99        | 7.750E-01                  | 44.94                   | 32.3                         |
| Th-232 + C   | 1.195E+01                  | 250.3                   | 2.1                          |
| Ra-226 + C   | 1.099E+01                  | 250.0                   | 2.3                          |
| Np-237 + D   | 4.991E+00                  | 0                       | 5.0                          |
| Pu-239/240   | 2.938E-01                  | 249.9                   | 85.1                         |
| Am-241       | 2.109E-01                  | 249.7                   | 118.5                        |

<sup>a</sup> The reported soil limits, DCGL<sub>W</sub>s are the activities for the parent radionuclide as specified.



Hematite Decommissioning Plan

### Table 5-9

Page 1 of 1

### Soil DSRs And DCGLs – Deep

| Radionuclide | DSR<br>(mrem/yr per pCi/g) | Year of<br>Maximum Dose | DCGL <sup>a</sup><br>(pCi/g) |
|--------------|----------------------------|-------------------------|------------------------------|
| U-234        | 8.066E-03                  | 1,000                   | 3,099                        |
| U-235 + D    | 7.684E-03                  | 1,000                   | 3,254                        |
| U-238 + D    | 7.700E-03                  | 1,000                   | 3,247                        |
| Tc-99        | 2.363E-04                  | 1,000                   | 105,800                      |
| Th-232 + C   | 2.512E-03                  | 1,000                   | 9,952                        |
| Ra-226 + C   | 1.789E-03                  | 1,000                   | 13,974                       |
| Np-237 + D   | 8.436E+01                  | 595                     | 0.3                          |
| Pu-239/240   | 7.047E-05                  | 1,000                   | 354,700                      |
| Am-241       | 8.379E-03                  | 1,000                   | 2,984                        |

<sup>a</sup> The reported soil limits, DCGL<sub>WS</sub> are the activities for the parent radionuclide as specified.



Hematite Decommissioning Plan

### **Table 5-10**

Page 1 of 1

### Soil DSRs And DCGLs – Uniform

| Radionuclide | DSR<br>(mrem/yr per pCi/g) | Year of<br>Maximum Dose | DCGL <sup>a</sup><br>(pCi/g) |
|--------------|----------------------------|-------------------------|------------------------------|
| U-234        | 1.193E-01                  | 1,000                   | 209.6                        |
| U-235 + D    | 4.520E-01                  | 1,000                   | 55.3                         |
| U-238 + D    | 1.381E-01                  | 0                       | 181.0                        |
| Tc-99        | 9.296E-01                  | 0                       | 26.9                         |
| Th-232 + C   | 1.195E+01                  | 0.2543                  | 2.1                          |
| Ra-226 + C   | 1.225E+01                  | 0                       | 2.0                          |
| Np-237 + D   | 8.971E+01                  | 595                     | 0.3                          |
| Pu-239/240   | 3.010E-01                  | 0                       | 83.1                         |
| Am-241       | 3.151E-01                  | 0                       | 79.3                         |

<sup>a</sup> The reported soil limits, DCGL<sub>W</sub>s are the activities for the parent radionuclide as specified.



Hematite Decommissioning Plan

### Table 5-11

### Page 1 of 1

### Alternate Excavation Scenario Concentration Corresponding To 25 mrem/yr Compared To Deep DCGLs

| Radionuclide | DSR<br>(mrem/yr per pCi/g) | Excavation Scenario<br>Concentrations<br>Corresponding to<br>25 mrem/yr<br>(pCi/g) | Deep Scenario<br>Concentrations<br>Corresponding to<br>25 mrem/yr<br>(pCi/g) |
|--------------|----------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| U-234        | 5.344E-02                  | 467.8                                                                              | 3,099                                                                        |
| U-235 + D    | 2.241E-01                  | 111.6                                                                              | 3,254                                                                        |
| U-238 + D    | 8.460E-02                  | 295.5                                                                              | 3,247                                                                        |
| Tc-99        | 6.306E-01                  | 39.7                                                                               | 105,800                                                                      |
| Th-232 + C   | 8.839E+00                  | 2.8                                                                                | 9,952                                                                        |
| Ra-226 + C   | 8.542E+00                  | 2.9                                                                                | 13,974                                                                       |
| Np-237 + D   | 4.428E+00                  | 5.6                                                                                | 0.3                                                                          |
| Pu-239/240   | 2.028E-01                  | 123.3                                                                              | 354,700                                                                      |
| Am-241       | 2.181E-01                  | 114.6                                                                              | 2,984                                                                        |



Hematite Decommissioning Plan

### Table 5-12

DRAFT

### Page 1 of 1

| Radionuclide   | DCGL <sup>a, b</sup><br>(pCi/g) |
|----------------|---------------------------------|
| U-234          | 935.6                           |
| U-235 + D      | 223.2                           |
| U-238 + D      | 591                             |
| Tc-99          | 79.4                            |
| Th-232 + C     | 5.6                             |
| Ra-226 + C     | 5.8                             |
| Np-237 + D     | 11.2                            |
| Pu-239/ Pu-240 | 246.6                           |
| Am-241         | 229.2                           |

### Alternate Excavation Scenario DCGLs

<sup>a</sup> The reported DCGLs are the activities for the parent radionuclide as specified.

<sup>b</sup> The Excavation Scenario DCGLs were derived by multiplying the "Excavation Scenario Concentrations Corresponding to 25 mrem/year" in Table 5-11 by a factor of two to account for the mixing with the assumed 1.5 m clean cover soil during excavation.

<sup>e</sup> The Deep DCGL of 0.3 pCi/g for Np-237 will be used in lieu of the derived Excavation Scenario DCGL of 11.2 pCi/g when located in the deep strata as it is more limiting.

Westinghouse

### Table 5-13a

**Area Factors For Soil** 

| Dellementle  |         |        |       |       | Elevated Measu | rement Area (m <sup>2</sup> ) |      |       |       |       |
|--------------|---------|--------|-------|-------|----------------|-------------------------------|------|-------|-------|-------|
| Radionuclide | 153,375 | 10,000 | 3,000 | 1,000 | 300            | 100                           | 30   | 10    | 3     | 1     |
| Surface Soil |         |        |       |       |                |                               |      |       |       |       |
| U-234        | 1.0     | 1.5    | 2.2   | 2.6   | 7.8            | 19.3                          | 41.7 | 67.3  | 96.0  | 119.5 |
| U-235 + D    | 1.0     | 1.1    | 1.2   | 1.2   | 1.3            | 1.5                           | 1.8  | 2.6   | 5.4   | 12.1  |
| U-238 + D    | 1.0     | 1.2    | 1.5   | 1.6   | 2.2            | 2.6                           | 3.4  | 4.9   | 10.2  | 22.3  |
| Tc-99        | 1.0     | 1.0    | 1.0   | 1.0   | 3.4            | 10.3                          | 34.2 | 102.2 | 338.5 | 1,009 |
| Th-232 + C   | 1.0     | 1.0    | 1.1   | 1.1   | 1.4            | 1.7                           | 2.3  | 3.5   | 7.3   | 16.9  |
| Ra-226 + C   | 1.0     | 1.1    | 1.2   | 1.2   | 1.8            | 2.2                           | 3.0  | 4.5   | 9.6   | 22.4  |
| Np-237 + D   | 1.0     | 1.1    | 1.1   | 1.1   | 2.6            | 4.5                           | 7.1  | 11.0  | 23.4  | 52.4  |
| Pu-239/240   | 1.0     | 1.1    | 1.1   | 1.1   | 3.6            | 9.5                           | 23.5 | 43.0  | 65.5  | 83.4  |
| Am-241       | 1.0     | 1.0    | 1.1   | 1.1   | 2.9            | 5.6                           | 9.4  | 13.9  | 25.4  | 42.4  |
|              |         |        |       |       | Root Soil      |                               |      |       |       |       |
| U-234        | 1.0     | 1.2    | 1.3   | 1.4   | 4.1            | 9.4                           | 19.2 | 33.0  | 67.9  | 130.4 |
| U-235 + D    | 1.0     | 1.0    | 1.1   | 1.1   | 1.9            | 2.3                           | 2.9  | 4.1   | 8.3   | 17.9  |
| U-238 + D    | 1.0     | 1.1    | 1.3   | 1.3   | 2.5            | 3.6                           | 5.0  | 7.2   | 14.8  | 31.5  |
| Tc-99        | 1.0     | 1.0    | 1.0   | 1.0   | 3.4            | 10.3                          | 34.3 | 103.0 | 343.3 | 1,029 |
| Th-232 + C   | 1.0     | 1.0    | 1.0   | 1.0   | 2.1            | 3.0                           | 4.2  | 6.0   | 12.8  | 28.4  |
| Ra-226 + C   | 1.0     | 1.0    | 1.1   | 1.1   | 2.4            | 3.9                           | 5.8  | 8.7   | 18.5  | 41.6  |
| Np-237 + D   | 1.0     | 1.0    | 1.0   | 1.0   | 3.4            | 9.9                           | 30.7 | 57.2  | 132.0 | 298.4 |
| Pu-239/240   | 1.0     | 1.0    | 1.0   | 1.0   | 3.4            | 9.8                           | 29.1 | 68.4  | 137.7 | 207.4 |
| Am-241       | 1.0     | 1.0    | 1.0   | 1.0   | 3.1            | 7.8                           | 17.4 | 31.0  | 62.2  | 109.8 |

June 21, 2011

Hematite Decommissioning Plan

## Page 1 of 2

Westinghouse

Appendix I DRAFT

### Table 5-13a (continued)

### **Area Factors For Soil**

| Radionuclide | Elevated Measurement Area (m <sup>2</sup> ) |        |       |       |      |      |       |       |       |       |  |  |
|--------------|---------------------------------------------|--------|-------|-------|------|------|-------|-------|-------|-------|--|--|
| Kaulonuchue  | 153,375                                     | 10,000 | 3,000 | 1,000 | 300  | 100  | 30    | 10    | 3     | 1     |  |  |
| Uniform Soil |                                             |        |       |       |      |      |       |       |       |       |  |  |
| U-234        | 1.0                                         | 1.2    | 1.3   | 1.3   | 4.0  | 9.3  | 19.6  | 34.3  | 70.5  | 132.8 |  |  |
| U-235 + D    | 1.0                                         | 1.1    | 1.1   | 1.1   | 1.9  | 2.5  | 3.3   | 4.7   | 9.6   | 20.5  |  |  |
| U-238 + D    | 1.0                                         | 1.1    | 1.3   | 1.3   | 2.5  | 3.6  | 5.0   | 7.2   | 14.9  | 31.6  |  |  |
| Тс-99        | 1.0                                         | 1.0    | 1.0   | 1.0   | 3.4  | 10.3 | 34.3  | 102.9 | 342.7 | 1,027 |  |  |
| Th-232 + C   | 1.0                                         | 1.0    | 1.0   | 1.0   | 2.1  | 3.0  | 4.2   | 6.1   | 12.9  | 28.9  |  |  |
| Ra-226 + C   | 1.0                                         | 1.1    | 1.1   | 1.1   | 2.5  | 4.1  | 6.1   | 9.1   | 19.3  | 43.4  |  |  |
| Np-237 + D   | 1.0                                         | 1.7    | 4.7   | 9.7   | 31.0 | 84.0 | 221.3 | 425.7 | 981.7 | 2,218 |  |  |
| Pu-239/240   | 1.0                                         | 1.0    | 1.0   | 1.0   | 3.4  | 9.8  | 29.1  | 68.4  | 137.7 | 207.3 |  |  |
| Am-241       | 1.0                                         | 1.0    | 1.0   | 1.0   | 3.1  | 7.8  | 17.4  | 31.0  | 62.1  | 109.7 |  |  |

### Table 5-13b

Calculated Area Factors Based On Excavation Scenario Constraints 1 And 2

| Radionuclide | Area Factor Based on Contiguous Elevated Area after Excavation<br>(size of elevated area shown in m <sup>2</sup> )* |                   |              |              |               |              |  |  |  |  |
|--------------|---------------------------------------------------------------------------------------------------------------------|-------------------|--------------|--------------|---------------|--------------|--|--|--|--|
|              | 148                                                                                                                 | 100               | 30           | 10           | 3.0           | 1.0          |  |  |  |  |
| U-234        | 1.0                                                                                                                 | 4.0               | 12           | 19           | 35            | 65           |  |  |  |  |
| U-235 + D    | 1.0                                                                                                                 | 1.3               | 2            | 2            | 4             | 7            |  |  |  |  |
| U-238 + D    | 1.0                                                                                                                 | 1.9               | 3            | 4            | 7             | 13           |  |  |  |  |
| Тс-99        | 1.0                                                                                                                 | 4.2               | 14           | 42           | 140           | 410          |  |  |  |  |
| Th-232 + C   | 1.0                                                                                                                 | 1.9               | 3            | 4            | 7             | 14           |  |  |  |  |
| Ra-226 + C   | 1.0                                                                                                                 | 2.3               | 4            | 5            | 10            | 20           |  |  |  |  |
| Np-237 + D   | 1.0                                                                                                                 | 3.6               | 9            | 17           | 37            | 79           |  |  |  |  |
| Pu-239/240   | 1.0                                                                                                                 | 4.1               | 13           | 32           | 71            | 117          |  |  |  |  |
| Am-241       | 1.0                                                                                                                 | 3.6               | 9            | 17           | 32            | 58           |  |  |  |  |
|              | Area Fac                                                                                                            | tor Based on Elev | ated Area be | ing Uniforml | y Mixed after | r Excavation |  |  |  |  |
| Any          | 1.0                                                                                                                 | 2.0               | 6.7          | 20           | 67            | 200          |  |  |  |  |

|                              | Tab | le 5- | 1 |
|------------------------------|-----|-------|---|
| <b>Effective Area Factor</b> | For | Use   | ١ |

| ה וי וי ח    |     |     | Size of eleva | ated area show | wn in m <sup>2</sup> |            |
|--------------|-----|-----|---------------|----------------|----------------------|------------|
| Radionuclide | 148 | 100 | 30            | 10             | 3                    | 1          |
| U-234        | 1.0 | 2.0 | <u>6.7</u>    | 19             | 35                   | 65         |
| U-235 + D    | 1.0 | 1.3 | 2             | 2              | 4                    | 7          |
| U-238 + D    | 1.0 | 1.9 | 3             | 4              | 7                    | 13         |
| Tc-99        | 1.0 | 2.0 | <u>6.7</u>    | <u>20</u>      | <u>67</u>            | <u>200</u> |
| Th-232 + C   | 1.0 | 1.9 | 3             | 4              | 7                    | 14         |
| Ra-226 + C   | 1.0 | 2.0 | 4             | 5              | 10                   | 20         |
| Np-237 + D   | 1.0 | 2.0 | <u>6.7</u>    | 17             | 37                   | 79         |
| Pu-239/240   | 1.0 | 2.0 | <u>6.7</u>    | <u>20</u>      | <u>67</u>            | 117        |
| Am-241       | 1.0 | 2.0 | <u>6.7</u>    | <u>6.7</u> 17  |                      | 58         |

Underlined values were constrained based on uniform mixing after excavation (200/area)

\*Note - An adjustment factor of 1.5/0.9 was applied during modeling for geometrical transformation between the excavation (200 m2 x 3 m) and modeled (700 m2 x 0.9 m) geometry.

Hematite Decommissioning Plan

### Page 2 of 2

### -13c

### With Excavation DCGLs



Hematite Decommissioning Plan

### **Table 14-2**

### Page 1 of 1

### Site-Specific Soil DCGLs

|                         | DCGL <sub>w</sub> (pCi/g) <sup>a</sup> By Conceptual Site Model |                 |                 |                    |                        |  |  |  |  |
|-------------------------|-----------------------------------------------------------------|-----------------|-----------------|--------------------|------------------------|--|--|--|--|
| Radionuclide            | Surface<br>Stratum                                              | Root<br>Stratum | Deep<br>Stratum | Uniform<br>Stratum | Excavation<br>Scenario |  |  |  |  |
| U-234                   | 545.4                                                           | 252.7           | 3,099           | 209.6              | 935.6                  |  |  |  |  |
| U-235 + D $^{\rm b}$    | 109.7                                                           | 68.7            | 3,254           | 55.3               | 223.2                  |  |  |  |  |
| U-238 + D <sup>b</sup>  | 319.2                                                           | 196.6           | 3,247           | 181                | 591                    |  |  |  |  |
| Тс-99                   | 162                                                             | 32.3            | 105,800         | 26.9               | 79.4                   |  |  |  |  |
| Th-232 + C <sup>c</sup> | 5                                                               | 2.1             | 9,952           | 2.1                | 5.6                    |  |  |  |  |
| $Ra-226 + C^{c}$        | 5.4                                                             | 2.3             | 13,974          | 2                  | 5.8                    |  |  |  |  |

<sup>a</sup> The reported soil limits are the activities for the parent radionuclide as specified.
 <sup>b</sup> "+ D" = plus short-lived decay products.
 <sup>c</sup> "+ C" = plus the entire decay chain (progeny) in secular equilibrium.



Hematite Decommissioning Plan

### **Table 14-4**

### Page 1 of 1

### Adjusted Site-Specific Soil DCGLs

|                         | DCGL <sub>w</sub> (pCi/g) <sup>a</sup> By Conceptual Site Model |                 |                 |                    |                        |  |  |  |  |  |
|-------------------------|-----------------------------------------------------------------|-----------------|-----------------|--------------------|------------------------|--|--|--|--|--|
| Radionuclide            | Shallow<br>Stratum                                              | Root<br>Stratum | Deep<br>Stratum | Uniform<br>Stratum | Excavation<br>Scenario |  |  |  |  |  |
| U-234                   | 508.5                                                           | 235.6           | 2890            | 195.4              | 872.4                  |  |  |  |  |  |
| U-235 + D <sup>b</sup>  | 102.3                                                           | 64.1            | 3034            | 51.6               | 208.1                  |  |  |  |  |  |
| U-238 + D <sup>b</sup>  | 297.6                                                           | 183.3           | 3028            | 168.8              | 551.1                  |  |  |  |  |  |
| Тс-99                   | 151.0                                                           | 30.1            | 98649           | 25.1               | 74.0                   |  |  |  |  |  |
| Th-232 + C $^{\circ}$   | 4.7                                                             | 2.0             | 9279            | 2.0                | 5.2                    |  |  |  |  |  |
| Ra-226 + C <sup>c</sup> | 5.0                                                             | 2.1             | 13029           | 1.9                | 5.4                    |  |  |  |  |  |

<sup>a</sup> The reported soil limits are the activities for the parent radionuclide as specified and were calculated using Equation 14-1 to account for the dose contribution from insignificant radionuclides (see Section 14.1.3.2).

<sup>b</sup> "+ D" = plus short-lived decay products.

<sup>c</sup> "+ C" = plus the entire decay chain (progeny) in secular equilibrium.



Hematite Decommissioning Plan

### Table 14-9

Page 1 of 1

| Site Area      | Modified U-235 DCGL <sub>w</sub> <sup>a</sup> (pCi/g) By Conceptual Site Model |                 |                 |                    |                        |  |  |  |  |
|----------------|--------------------------------------------------------------------------------|-----------------|-----------------|--------------------|------------------------|--|--|--|--|
|                | Shallow<br>Stratum                                                             | Root<br>Stratum | Deep<br>Stratum | Uniform<br>Stratum | Excavation<br>Scenario |  |  |  |  |
| Plant Soil SEA | 14.1                                                                           | 3.0             | 2565            | 2.5                | 11.8                   |  |  |  |  |
| Tc-99 SEA      | 3.2                                                                            | 1.4             | 1815            | 1.2                | 3.3                    |  |  |  |  |
| Burial Pit SEA | 20.4                                                                           | 7.0             | 2647            | 5.8                | 14.5                   |  |  |  |  |

### Modified U-235 Soil $DCGL_w$ Values Accounting For Tc-99

<sup>a</sup> Calculated using Equation 4-1 of MARSSIM



Hematite Decommissioning Plan

### Table 14-10

Page 1 of 3

### $\label{eq:complexity} \mbox{Adjusted And Modified Soil DCGL}_w \mbox{ Values For Demonstrating Compliance}$

|                               | DCGL <sub>w</sub> (pCi/g) By Conceptual Site Model |                |                  |                |                  |                      |                  |                  |                         |                |  |
|-------------------------------|----------------------------------------------------|----------------|------------------|----------------|------------------|----------------------|------------------|------------------|-------------------------|----------------|--|
| Radionuclide                  | Surfac                                             | e Soil         | Root St          | tratum         | Deep Vol         | umetric <sup>a</sup> | Unifo            | orm <sup>b</sup> | Excavation <sup>a</sup> |                |  |
|                               | Measure<br>Tc-99                                   | Infer<br>Tc-99 | Measure<br>Tc-99 | Infer<br>Tc-99 | Measure<br>Tc-99 | Infer<br>Tc-99       | Measure<br>Tc-99 | Infer<br>Tc-99   | Measure<br>Tc-99        | Infer<br>Tc-99 |  |
| Plant Soil SEA                | Plant Soil SEA                                     |                |                  |                |                  |                      |                  |                  |                         |                |  |
| Total<br>Uranium <sup>c</sup> | 394.3                                              | 191.7          | 202.4            | 52.8           | 2917             | 2895                 | 170.2            | 44.1             | 706.3                   | 202.8          |  |
| U-234                         | 508.5                                              | 508.5          | 235.6            | 235.6          | 2890             | 2890                 | 195.4            | 195.4            | 872.4                   | 872.4          |  |
| U-235                         | 102.3                                              | 14.1           | 64.1             | 3.0            | 3034             | 2565                 | 51.6             | 2.5              | 208.1                   | 11.8           |  |
| U-238                         | 297.6                                              | 297.6          | 183.3            | 183.3          | 3028             | 3028                 | 168.8            | 168.8            | 551.1                   | 551.1          |  |
| Тс-99                         | 151.0                                              | N/A            | 30.1             | N/A            | 98649            | N/A                  | 25.1             | N/A              | 74.0                    | N/A            |  |
| Th-232 + C                    | 4.7                                                | 4.7            | 2.0              | 2.0            | 9279             | 9279                 | 2.0              | 2.0              | 5.2                     | 5.2            |  |
| Ra-226 + C                    | 5.0                                                | 5.0            | 2.1              | 2.1            | 13029            | 13029                | 1.9              | 1.9              | 5.4                     | 5.4            |  |

a The distribution ratio for Deep Stratum soil was used to calculate the DCGL<sub>w</sub> for Total Uranium and U-235 when inferring Tc-99

b The distribution ratio for Root Stratum soil was used to calculate the DCGL<sub>w</sub> for Total Uranium and U-235 when inferring Tc-99

c Total Uranium DCGL<sub>w</sub> values were calculated using Equation 4-4 of MARSSIM, adjusted DCGL<sub>w</sub> values from Table 14-4, modified U-235 DCGL<sub>w</sub> values from Table 14-9, and radioactivity fractions provided in Table 14-5 corresponding to an average Uranium enrichment of 4% in soil.



Appendix I DRAFT

Hematite Decommissioning Plan

### Table 14-10 (continued)

Page 2 of 3

### $\label{eq:complexity} \mbox{Adjusted And Modified Soil DCGL}_w \mbox{ Values For Demonstrating Compliance}$

|                               | DCGL <sub>w</sub> (pCi/g) By Conceptual Site Model |                |                  |                |                  |                      |                  |                  |                         |                |  |
|-------------------------------|----------------------------------------------------|----------------|------------------|----------------|------------------|----------------------|------------------|------------------|-------------------------|----------------|--|
| Radionuclide                  | Surfac                                             | e Soil         | Root St          | tratum         | Deep Vol         | umetric <sup>a</sup> | Unifo            | orm <sup>b</sup> | Excavation <sup>a</sup> |                |  |
|                               | Measure<br>Tc-99                                   | Infer<br>Tc-99 | Measure<br>Tc-99 | Infer<br>Tc-99 | Measure<br>Tc-99 | Infer<br>Tc-99       | Measure<br>Tc-99 | Infer<br>Tc-99   | Measure<br>Tc-99        | Infer<br>Tc-99 |  |
| Tc-99 SEA                     |                                                    |                |                  |                |                  |                      |                  |                  |                         |                |  |
| Total<br>Uranium <sup>c</sup> | 394.3                                              | 62.9           | 202.4            | 28.8           | 2917             | 2837                 | 170.2            | 24.0             | 706.3                   | 69.7           |  |
| U-234                         | 508.5                                              | 508.5          | 235.6            | 235.6          | 2890             | 2890                 | 195.4            | 195.4            | 872.4                   | 872.4          |  |
| U-235                         | 102.3                                              | 3.2            | 64.1             | 1.4            | 3034             | 1815                 | 51.6             | 1.2              | 208.1                   | 3.3            |  |
| U-238                         | 297.6                                              | 297.6          | 183.3            | 183.3          | 3028             | 3028                 | 168.8            | 168.8            | 551.1                   | 551.1          |  |
| Тс-99                         | 151.0                                              | N/A            | 30.1             | N/A            | 98649            | N/A                  | 25.1             | N/A              | 74.0                    | N/A            |  |
| Th-232 + C                    | 4.7                                                | 4.7            | 2.0              | 2.0            | 9279             | 9279                 | 2.0              | 2.0              | 5.2                     | 5.2            |  |
| Ra-226 + C                    | 5.0                                                | 5.0            | 2.1              | 2.1            | 13029            | 13029                | 1.9              | 1.9              | 5.4                     | 5.4            |  |

a The distribution ratio for Deep Stratum soil was used to calculate the DCGL<sub>w</sub> for Total Uranium and U-235 when inferring Tc-99

b The distribution ratio for Root Stratum soil was used to calculate the DCGL<sub>w</sub> for Total Uranium and U-235 when inferring Tc-99

c Total Uranium DCGL<sub>w</sub> values were calculated using Equation 4-4 of MARSSIM, adjusted DCGL<sub>w</sub> values from Table 14-4, modified U-235 DCGL<sub>w</sub> values from Table 14-9, and radioactivity fractions provided in Table 14-5 corresponding to an average Uranium enrichment of 4%.



Hematite Decommissioning Plan

### Table 14-10 (continued)

Page 3 of 3

### $\label{eq:complexity} \mbox{Adjusted And Modified Soil DCGL}_w \mbox{ Values For Demonstrating Compliance}$

|                               | DCGL <sub>w</sub> (pCi/g) By Conceptual Site Model |                |                  |                |                              |                |                      |                |                         |                |
|-------------------------------|----------------------------------------------------|----------------|------------------|----------------|------------------------------|----------------|----------------------|----------------|-------------------------|----------------|
| Radionuclide                  | Surface Soil                                       |                | Root Stratum     |                | Deep Volumetric <sup>a</sup> |                | Uniform <sup>b</sup> |                | Excavation <sup>a</sup> |                |
|                               | Measure<br>Tc-99                                   | Infer<br>Tc-99 | Measure<br>Tc-99 | Infer<br>Tc-99 | Measure<br>Tc-99             | Infer<br>Tc-99 | Measure<br>Tc-99     | Infer<br>Tc-99 | Measure<br>Tc-99        | Infer<br>Tc-99 |
| Burial Pit SEA                |                                                    |                |                  |                |                              |                |                      |                |                         |                |
| Total<br>Uranium <sup>c</sup> | 394.3                                              | 235.3          | 202.4            | 95.1           | 2917                         | 2899           | 170.2                | 79.6           | 706.3                   | 236.3          |
| U-234                         | 508.5                                              | 508.5          | 235.6            | 235.6          | 2890                         | 2890           | 195.4                | 195.4          | 872.4                   | 872.4          |
| U-235                         | 102.3                                              | 20.4           | 64.1             | 7.0            | 3034                         | 2647           | 51.6                 | 5.8            | 208.1                   | 14.5           |
| U-238                         | 297.6                                              | 297.6          | 183.3            | 183.3          | 3028                         | 3028           | 168.8                | 168.8          | 551.1                   | 551.1          |
| Тс-99                         | 151.0                                              | N/A            | 30.1             | N/A            | 98649                        | N/A            | 25.1                 | N/A            | 74.0                    | N/A            |
| Th-232 + C                    | 4.7                                                | 4.7            | 2.0              | 2.0            | 9279                         | 9279           | 2.0                  | 2.0            | 5.2                     | 5.2            |
| Ra-226 + C                    | 5.0                                                | 5.0            | 2.1              | 2.1            | 13029                        | 13029          | 1.9                  | 1.9            | 5.4                     | 5.4            |

a The distribution ratio for Deep Stratum soil was used to calculate the DCGL<sub>w</sub> for Total Uranium and U-235 when inferring Tc-99

b The distribution ratio for Root Stratum soil was used to calculate the DCGL<sub>w</sub> for Total Uranium and U-235 when inferring Tc-99

c Total Uranium DCGL<sub>w</sub> values were calculated using Equation 4-4 of MARSSIM, adjusted DCGL<sub>w</sub> values from Table 14-4, modified U-235 DCGL<sub>w</sub> values from Table 14-9, and radioactivity fractions provided in Table 14-5 corresponding to an average Uranium enrichment of 4%.

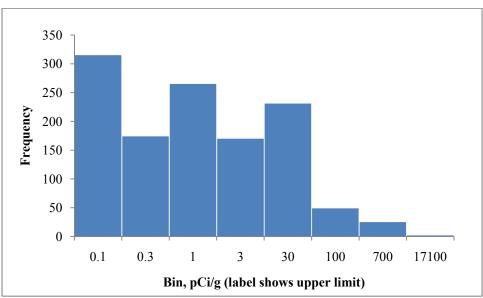
### APPENDIX J. SUMMARY OF 100% TC-99 SENSITIVITY ANALYSIS

| Description of Probabilistic Variable                          |     | Coefficients for Peak of Mean Dose by Repetition |     |       |     |       |       |  |
|----------------------------------------------------------------|-----|--------------------------------------------------|-----|-------|-----|-------|-------|--|
|                                                                |     | PRCC                                             |     |       |     |       |       |  |
|                                                                |     | 1                                                |     | 2     |     | 3     |       |  |
|                                                                | Sig | Coeff                                            | Sig | Coeff | Sig | Coeff | Coeff |  |
| Kd of Tc-99 in Saturated Zone                                  | 11  | -0.04                                            | 5   | -0.08 | 5   | -0.13 | -0.08 |  |
| Plant transfer factor for Tc-99 (identified in DP Table 5-5)   | 1   | 1.00                                             | 1   | 1.00  | 1   | 1.00  | 1.00  |  |
| Meat transfer factor for Tc-99                                 | 4   | -0.12                                            | 4   | 0.09  | 12  | -0.03 | -0.02 |  |
| Milk transfer factor for Tc-99                                 | 2   | 0.58                                             | 2   | 0.51  | 2   | 0.56  | 0.55  |  |
| Fish transfer factor for Tc-99                                 | 13  | -0.01                                            | 6   | 0.08  | 8   | -0.08 | 0.00  |  |
| Well pumping rate                                              | 9   | -0.05                                            | 8   | 0.07  | 13  | 0.00  | 0.01  |  |
| Mass loading for inhalation                                    | 6   | 0.07                                             | 13  | 0.01  | 11  | 0.03  | 0.04  |  |
| Indoor dust filtration factor                                  | 8   | 0.07                                             | 9   | -0.06 | 4   | -0.18 | -0.06 |  |
| Depth of soil mixing layer                                     | 12  | -0.03                                            | 7   | -0.08 | 10  | 0.04  | -0.02 |  |
| Depth of roots                                                 | 10  | -0.05                                            | 11  | 0.03  | 3   | -0.21 | -0.08 |  |
| Wet weight crop yield of fruit, grain and non-leafy vegetables | 5   | -0.09                                            | 12  | 0.02  | 9   | -0.05 | -0.04 |  |
| Weathering removal constant of all vegetation                  | 7   | 0.07                                             | 3   | -0.13 | 6   | 0.11  | 0.02  |  |
| Wet foliar interception fraction of leafy vegetables           | 3   | 0.16                                             | 10  | -0.05 | 7   | -0.11 | 0.00  |  |

#### Sensitivity Results for Hematite Uniform Conceptual Site Model

#### Tc-99 DCGL Comparison between DP Tables and Potential Change from Milk Transfer Factor

| CSM     | HDP DCGL from<br>Tables 5-7 – 5-10<br>(pCi/g) | DCGL (pCi/g) Using<br>75 <sup>th</sup> Percentile of Tc-99<br>Milk Transfer Factor | Percent<br>Change |
|---------|-----------------------------------------------|------------------------------------------------------------------------------------|-------------------|
| Surface | 162.0                                         | 159.0                                                                              | -1.9%             |
| Root    | 32.3                                          | 31.7                                                                               | -1.9%             |
| Deep    | 105,800                                       | 104,200                                                                            | -1.5%             |
| Uniform | 26.9                                          | 26.4                                                                               | -1.9%             |


Tc-99 Excavation Scenario Concentration Resulting in 25 mrem/yr Comparison between DP Tables and Potential Change from Milk Transfer Factor

| HDP Table 5-11<br>Result (pCi/g) | Concentration (pCi/g)<br>Using 75 <sup>th</sup> Percentile of Tc<br>Milk Transfer Factor | Percent<br>Change |  |  |
|----------------------------------|------------------------------------------------------------------------------------------|-------------------|--|--|
| 39.7                             | 39.6                                                                                     | -0.3%             |  |  |

## Appendix K

### **Radionuclide Concentrations Used in Actual Site Conditions Sensitivity Analysis**

| Radionuclide | Concentration     |
|--------------|-------------------|
| Am-241       | 7.13E-03          |
| Np-237       | 2.03E-02          |
| Pu-239/240   | 1.63E-03          |
| U-234        | 4.19E+02          |
| U-235        | 5.75E+00          |
| U-238        | 1.41E+01          |
| Tc-99        | See figure, below |



# Uniform CSM Tc-99 Concentration Profile

## Appendix L. Proposed Re-Write of DP-14 Question 1 RAI Response

 (HDPC-14-Q1) <u>Comment</u>: Section 14.1.3.1 of the Hematite Decommissioning Plan (HDP) and Section 2.2 of the "Derivation of Surrogates and Scaling Factors for Hard-To-Detect Radionuclides" indicate that Np-237, Pu-239/240, and Am-241 are considered to be insignificant radionuclides of concern. This conclusion was based on the aggregate dose of these radionuclides being less than 10% of the Total Effective Dose Equivalent (TEDE) for each Conceptual Site Model. Population activity concentration results are given for these radionuclides in the Surrogate Report (DO-08-008), but it is not clear how the average concentration and associated statistics were determined.

<u>Basis</u>: Per guidance in NUREG-1757, Vol. 2, Rev. 1, Section 3.3, "It is important that the licensee documents the radionuclides and pathways that have been considered insignificant and eliminated from further consideration and that the licensee justifies the decision to consider them insignificant."

<u>Path Forward</u>: Provide details on how the average concentration, variance, and range of the results were determined for insignificant radionuclides of concern.

## Westinghouse Response:

Please note that there is an error in the column heading in Table 2-2 of DO-08-008. A value is reported for each of the three CSMs in units of "Dose (mrem per year)". The values actually represent the fractional contribution to the DCGL (average SOF) for each of the three CSMs.

The details for identifying radionuclides that may be insignificant contributors to dose is contained in *Derivation of Surrogates and Scaling Factors for Hard-to-Detect Radionuclides*, Revision 0, July 2009, and are summarized below.

Existing radiological characterization data were compiled and segregated into sample populations consistent with the conceptual site models (CSMs) that were used to derive the DCGLs. The CSMs were defined by the depth of the soil below ground surface (bgs) and include: Surface Stratum: 0 meters to 0.15 meters bgs; Root Stratum: > 0.15 meters to 1.5 meter bgs; and, Deep Stratum: > 1.5 meters to depth. In each of the soil sample populations, the average activity concentration for Am-214, Np-237 and Pu-239/240 was divided by the proposed DCGLs that were developed from dose-modeling performed in support of DP development to obtain the dose contribution. The proposed DCGLs are presented in Table 2-1, and the dose contributions from Am-214, Np-237 and Pu-239/240 are provided in Table 2-2. Since the time this document was submitted to NRC, Westinghouse has re-considered the method that was selected for this determination, and considers that the dose contribution from insignificant radionuclides be defined based on site-wide average concentrations as opposed to average values within each individual CSM. Westinghouse believes this is appropriate because the CSM boundaries are constructs used for modeling purposes and do not necessarily represent the radionuclide concentration profile.

In addition, Westinghouse recommends that the dose contribution from insignificant radionuclides be calculated using the Uniform CSM rather than the CSM appropriate to each sample's depth. Because a sample was not collected at each depth consistent with the Surface, Root, and Deep CSMs, the previous method of dividing the sample's result by the applicable DCGL by depth may not have accounted for the total dose in the vertical soil column at the sample location. Rather, as discussed in the paragraph above, the site-wide average concentration will be determined for each radionuclide, and then divided by the Uniform DCGL applicable to the radionuclide to determine the dose contribution from that radionuclide.

The recommended method includes first calculating the average concentration for each radionuclide (across all samples), then calculating the SOF for each radionuclide by dividing each by the applicable Uniform CSM DCGL., and then comparing the sum of these three SOF values to 0.10 of the DCGL. (2.5 mrem/year)

Section 2.2, paragraphs 1 – 3 of DO-08-008, "Derivation of Surrogates and Scaling Factors for Hard-To-Detect Radionuclides" will be revised to state the following:

Characterization data for all the impacted site areas were reviewed to determine if any of the radionuclides of concern listed in Section 2.1 were considered insignificant dose contributors using methods consistent with the guidance provided in NUREG-1757 (Reference 6-3). In summary, the aggregate dose contribution from insignificant radionuclides must not exceed 10 percent of the TEDE criterion, or 2.5 mrem per year. Additionally, the aggregate dose from insignificant radionuclides must be included with the total dose from all radionuclides when demonstrating compliance with the TEDE criterion.

Radiological characterization data for Am-241, Pu-239, and Np-237 were compiled. For each radionuclide, the average concentration across all sample locations was calculated. The SOF values from Am-241, Np-237 and Pu-239/240 were determined by dividing each average radionuclide sample activity by the corresponding Uniform CSM DCGL. The aggregate dose from each all three insignificant radionuclides (Am-241, Pu-239, and Np-237) was determined by summing the individual radionuclide SOF contributions and multiplying by 25 mrem.

The aggregate dose contribution from Am-214, Np-237 and Pu-239/240 was determined to be 1.7 mrem, which is less than 10 percent of the TEDE; and thus, these radionuclides are considered to be insignificant radionuclides of concern. The characterization sample data and SOF calculations are provided in Appendix A. The proposed DCGLs used in this calculation are presented in Table 2-1, and the contribution of Am-241, Np-237 and Pu-239/240 are provided in Table 2-2.

Tables 2-1, 2-2, and A-1 will be revised as follows:

| Radionuclide        | DCGL  |
|---------------------|-------|
| U-234               | 209.6 |
| U-235 + D °         | 55.3  |
| U-238 + D °         | 181.0 |
| Tc-99               | 26.9  |
| $Th-232 + C^{c}$    | 2.1   |
| Ra-226 + C $^{d,e}$ | 2.2   |
| Np-237 + D °        | 0.3   |
| Pu-239/240          | 83.1  |
| Am-241              | 79.3  |

Table 2-1, Proposed Site-Specific Uniform CSM Soil DCGLs (pCi/g)<sup>a,b</sup>

<sup>a</sup> The reported soil limits are the activities for the parent radionuclide as specified.

<sup>b</sup> DCGL values shown have been updated to include changes to RESRAD input factors in accordance with applicable RAI responses.

<sup>c</sup> "+ D" = plus short-lived decay products.

d'' + C'' = plus the entire decay chain (progeny) in secular equilibrium.

<sup>f</sup> Np-237 DCGL in the Deep CSM is based on the alternate excavation scenario

<sup>&</sup>lt;sup>e</sup> This DCGL only applies to those areas of the site identified as a Ra-226 impacted area.

| Insignificant<br>Radionuclide | Average<br>Concentration<br>(pCi/g) | DCGL    | Average<br>SOF | Dose<br>Contribution<br>(mrem/yr) |
|-------------------------------|-------------------------------------|---------|----------------|-----------------------------------|
| Am-241                        | 5.1E-03                             | 7.9E+01 | 6.4E-05        | 1.6E-03                           |
| Np-237 + D                    | 2.0E-02                             | 3.0E-01 | 6.8E-02        | 1.7E+00                           |
| Pu-239/240                    | 1.6E-03                             | 8.3E+01 | 2.0E-05        | 4.9E-04                           |
|                               | Total                               |         | 6.8E-02        | 1.7E+00                           |

Table 2-2, Dose Contribution from Insignificant Radionuclides

Table A-1, Summary of Statistics - Am-241, Np-237 and Pu-239/240

|               | Number of Samples |                 |       |  |  |  |  |  |  |  |  |  |
|---------------|-------------------|-----------------|-------|--|--|--|--|--|--|--|--|--|
| Insignificant | Concept           | tual Site Model | (CSM) |  |  |  |  |  |  |  |  |  |
| Radionuclide  | Surface           | Root            | Deep  |  |  |  |  |  |  |  |  |  |
| Am-241        | 390               | 434             | 456   |  |  |  |  |  |  |  |  |  |
| Np-237        | 74                | 57              | 19    |  |  |  |  |  |  |  |  |  |
| Pu-239/240    | 74                | 57              | 19    |  |  |  |  |  |  |  |  |  |

| Insignificant Radionuclide | Average Concentration<br>(pCi/g) |
|----------------------------|----------------------------------|
| Am-241                     | 5.1E-03                          |
| Np-237                     | 2.0E-02                          |
| Pu-239/240                 | 1.6E-03                          |

Additionally, the last two sentences in Section 14.1.3.1 of the Hematite Decommissioning Plan (HDP) will be revised as follows:

The contribution of insignificant radionuclides was calculated to be 1.7 mrem per year (or 6.8 percent of the TEDE criterion) for Np-237, Pu-239/240, and Am-241 for all soil depths. Details of the calculations are taken from Section 2.2 of Reference 14-4.

# Attachment 4 to HEM-11-91 Page 52 of 139 & RESRAD Pages

# Uranium Non-impacted Data.xlsx

# DRAFT

|               | 1     | Am-241  |      |       | Np-237  | 1    | P     | u-239/2 | 40   |       | Ra-226      |      | Ra-22 | 6 w/Ing     | rowth |       | Tc-99   |      |       | Th-232      |      |      | U-234   |      |       | U-235   |      |       | U-238   |      | Total       | Perc.               |
|---------------|-------|---------|------|-------|---------|------|-------|---------|------|-------|-------------|------|-------|-------------|-------|-------|---------|------|-------|-------------|------|------|---------|------|-------|---------|------|-------|---------|------|-------------|---------------------|
|               |       | (pCi/g) |      |       | (pCi/g) |      |       | (pCi/g) |      |       | (pCi/g)     |      |       | (pCi/g)     |       |       | (pCi/g) |      |       | (pCi/g)     |      |      | (pCi/g) |      |       | (pCi/g) |      |       | (pCi/g) |      | Uraniu<br>m | Enrich.             |
| Sample ID     | Conc. | ±2σ     | MDC  |       | ±2σ     |      | Conc. | ±2σ     |      | Conc. | <u>a</u> 0, | MDC  | Conc. | <b>u</b> 0/ | MDC   | Conc. | ±2σ     | MDC  | Conc. | <b>u</b> 0/ | MDC  |      | ±2σ     | MDC  | Conc. | u 0/    | MDC  | Conc. | u 0/    | MDC  |             | (U-235)             |
| GS-01-00-SL   | -0.01 | 0.23    | 0.4  | -     |         | _    | -     |         | _    | 0.65  | 0.36        | 0.55 | -     |             | -     | 0.43  | 0.63    | 1    | 0.74  | 0.39        | 0.75 | -    |         | -    | 0.1   | 0.45    | 0.76 | 0.31  | 12      | 2    | 2.3         | <b>(0 200)</b>      |
| GS-02-00-SL   | -0.08 | 0.16    | 0.3  | _     | _       | _    | _     | _       | _    | 1.1   | 0.27        | 0.34 | _     | _           | _     | -0.11 | 0.56    | 0.97 | 0.96  | 0.37        | 0.63 | _    | _       | _    | -0.07 | 0.42    | 0.77 | 0.79  | 0.67    | 1.3  | 1.6         | <mdc< td=""></mdc<> |
| GS-03-00-SL   | 0.01  | 0.12    | 0.22 | _     | _       | _    | _     | _       | _    | 0.46  | 0.19        | 0.29 | _     | _           | _     | -0.08 | 0.54    | 0.94 | 0.23  | 0.4         | 0.68 | _    | _       | _    | -0.18 | 0.32    | 0.62 | -0.48 | 0.79    | 1.5  | 0           | <mdc< td=""></mdc<> |
| GS-04-00-SL   | 0.11  | 0.14    | 0.23 | _     | _       | _    | _     | _       | _    | 1.2   | 0.26        | 0.27 | _     | _           | _     | 0.02  | 0.67    | 1.2  | 0.99  | 0.39        | 0.48 | _    | _       | _    | -0.04 | 0.36    | 0.65 | 1.6   | 0.97    | 1.7  | 3.2         | <mdc< td=""></mdc<> |
| GS-05-00-SL   | -0.1  | 0.14    | 0.26 | _     | _       | _    | _     | _       | _    | 0.91  | 0.32        | 0.36 | _     | _           | _     | 0.33  | 0.6     | 0.99 | 0.73  | 0.42        | 0.52 | _    | _       | _    | -0.12 | 0.37    | 0.68 | 1.1   | 0.8     | 1.7  | 2.3         | <mdc< td=""></mdc<> |
| NB-01-00-SL   | 0.54  | 0.43    | 0.66 | _     | _       | _    | _     | _       | _    | 0.8   | 0.22        | 0.28 | _     | _           | _     | 0.81  | 0.69    | 1.1  | 0.74  | 0.32        | 0.47 | _    | _       | _    | -0.03 | 0.36    | 0.66 | -0.45 | 1.3     | 2.4  | 0           | <mdc< td=""></mdc<> |
| NB-02-00-SL   | 0.09  | 0.12    | 0.19 | _     | _       | _    | _     | _       | _    | 0.53  | 0.24        | 0.29 | _     | _           | _     | 0.16  | 0.51    | 0.87 | 0.28  | 0.08        | 0.03 | 0.76 | 0.15    | 0.03 | 0.03  | 0.02    | 0.02 | 0.37  | 0.09    | 0.02 | 1.2         | 1.10%               |
| NB-03-00-SL   | 0     | 0.14    | 0.24 | 0     | 0.01    | 0.02 | 0.03  | 0.02    | 0.01 | 0.57  | 0.19        | 0.24 | _     | _           | _     | 0.89  | 0.65    | 1    | 0.38  | 0.4         | 0.63 | -    | _       | _    | 0.68  | 0.4     | 0.56 | 0.57  | 1.2     | 2    | 14.5        | <mdc< td=""></mdc<> |
| NB-04-00-SL   | 0     | 0.16    | 0.29 | _     | _       | _    | _     | _       | _    | 2     | 0.37        | 0.38 | _     | _           | _     | 0.95  | 1.5     | 2.4  | 1.5   | 0.45        | 0.61 | _    | _       | _    | -0.03 | 0.4     | 0.71 | 1.5   | 1.4     | 2.3  | 3           | <mdc< td=""></mdc<> |
| NB-05-00-SL   | -0.09 | 0.28    | 0.49 | _     | _       | _    | _     | _       | _    | 1     | 0.3         | 0.47 | _     | _           | _     | 0.15  | 0.76    | 1.3  | 0.82  | 0.47        | 0.94 | _    | _       | _    | -0.24 | 0.47    | 0.84 | 1.7   | 1.4     | 2.2  | 3.4         | <mdc< td=""></mdc<> |
| NB-06-00-SL   | 0.05  | 0.17    | 0.29 | 0.01  | 0.01    | 0.03 | 0.02  | 0.01    | 0.01 | 1.3   | 0.27        | 0.24 | _     | _           | _     | -0.09 | 0.51    | 0.89 | 0.84  | 0.2         | 0.04 | 0.89 | 0.17    | 0.02 | 0.06  | 0.03    | 0.03 | 0.85  | 0.17    | 0.03 | 1.8         | 1.00%               |
| NB-07-00-SL   | 0.13  | 0.19    | 0.31 | _     | _       | _    | _     | _       | _    | 1.1   | 0.28        | 0.34 | _     | _           | _     | 0.38  | 0.52    | 0.86 | 1.1   | 0.47        | 0.64 | _    | _       | _    | 0.43  | 0.49    | 0.79 | 1.8   | 1.2     | 2.3  | 9.9         | <mdc< td=""></mdc<> |
| NB-08-00-SL   | -0.3  | 0.43    | 0.84 | _     | _       | _    | _     | _       | _    | 1.3   | 0.36        | 0.34 | _     | _           | _     | -0.29 | 0.47    | 0.84 | 0.78  | 0.38        | 0.73 | _    | _       | _    | 0.16  | 0.4     | 0.69 | 3.2   | 1.7     | 2.5  | 6.7         | <mdc< td=""></mdc<> |
| NB-09-00-SL   | -0.03 | 0.46    | 0.84 | _     | _       | _    | _     | _       | _    | 1.3   | 0.29        | 0.36 | _     | _           | _     | 0.45  | 0.57    | 0.93 | 1.4   | 0.48        | 0.81 | _    | _       | _    | 0.23  | 0.41    | 0.7  | 0.72  | 1.5     | 2.5  | 5.1         | <mdc< td=""></mdc<> |
| NB-114-0.5-SL | 0     | 0.07    | 0.12 | -0.01 | 0.03    | 0.07 | -0.01 | 0.03    | 0.06 | 0.22  | 0.08        | 0.13 | 0.21  | 0.08        | 0.06  | -0.08 | 0.33    | 0.56 | 0.05  | 0.15        | 0.28 | 0.39 | 0.15    | 0.07 | 0.06  | 0.06    | 0.06 | 0.3   | 0.13    | 0.06 | 0.75        | <mdc< td=""></mdc<> |
| NB-114-10-SL  | -0.03 | 0.1     | 0.18 | _     | _       | _    | _     | _       | _    | 1.1   | 0.17        | 0.16 | 1.1   | 0.23        | 0.17  | _     | _       | _    | 0.89  | 0.24        | 0.31 | _    | _       | _    | 0.02  | 0.25    | 0.43 | 0.75  | 0.51    | 1.4  | 1.2         | <mdc< td=""></mdc<> |
| NB-114-2.5-SL | 0.04  | 0.1     | 0.17 | _     | _       | -    | -     | _       | _    | 0.34  | 0.1         | 0.12 | 0.54  | 0.16        | 0.12  | -0.01 | 0.32    | 0.47 | 0.14  | 0.16        | 0.27 | 0.48 | 0.16    | 0.05 | 0.06  | 0.06    | 0.06 | 0.49  | 0.16    | 0.05 | 1           | <mdc< td=""></mdc<> |
| NB-114-4.5-SL | -0.02 | 0.18    | 0.32 | _     | _       | _    | _     | _       | _    | 1.1   | 0.24        | 0.17 | 1.5   | 0.26        | 0.14  | 0.09  | 61      | 0.5  | 0.96  | 0.29        | 0.39 | _    | _       | _    | 0.23  | 0.38    | 0.64 | 2.2   | 1       | 2.2  | 6.8         | <mdc< td=""></mdc<> |
| NB-121-0.5-SL | -0.01 | 0.06    | 0.11 | 0     | 0       | 0.03 | 0.01  | 0.02    | 0.05 | _     | _           | _    | _     | _           | _     | -0.08 | 0.39    | 0.67 | 0.05  | 0.14        | 0.24 | 0.25 | 0.12    | 0.08 | 0     | 0.03    | 0.07 | 0.18  | 0.1     | 0.05 | 0.43        | <mdc< td=""></mdc<> |
| SL            | -0.05 | 0.17    | 0.29 | -0.01 | 0.03    | 0.06 | 0     | 0       | 0.03 | 1.1   | 0.24        | 0.21 | 1.6   | 0.32        | 0.18  | _     |         | _    | 0.95  | 0.27        | 0.4  | 0.8  | 0.21    | 0.06 | 0.05  | 0.06    | 0.04 | 1     | 0.25    | 0.05 | 1.9         | 0.80%               |
| NB-121-2.5-SL | 0.03  | 0.09    | 0.17 | _     |         | _    | _     | _       | _    | 0.61  | 0.21        | 0.19 | 0.61  | 0.2         | 0.18  | 0.17  | 0.28    | 0.46 | 0.08  | 0.23        | 0.42 | 1.5  | 0.31    | 0.04 | 0.05  | 0.06    | 0.04 | 0.76  | 0.2     | 0.03 | 2.3         | 1.00%               |
| NB-121-2.5-SL | 0.03  | 0.05    | 0.17 | _     |         | _    | _     |         | _    | 13    | 0.21        | 0.08 | 1.6   | 0.29        | 0.10  | 0.35  | 0.25    | 0.39 | 0.69  | 0.23        | 0.52 | -    | 0.51    |      | 0.05  | 0.00    | 0.07 | 2     | 0.2     | 1.7  | 4.4         | < <u>MDC</u>        |
| NB-16-00-SL   | 0.07  | 0.39    | 0.68 | _     | _       | _    | _     | _       | _    | 1.5   | 0.22        | 0.00 | -     | 0.27        | 0.12  | -0.14 | 0.23    | 0.89 | 0.96  | 0.42        | 0.52 | _    | _       | _    | -0.29 | 0.20    | 0.66 | 1.6   | 1.6     | 2.5  | 3.2         | <mdc< td=""></mdc<> |
| NB-17-00-SL   | -0.04 | 0.41    | 0.75 | _     | _       | _    | _     | _       | _    | 12    | 0.23        | 0.20 | _     | _           | _     | -0.17 | 0.48    | 0.84 | 1.5   | 0.46        | 0.62 | 11   | 0.2     | 0.03 | 0.03  | 0.02    | 0.03 | 0.8   | 0.16    | 0.02 | 1.9         | 0.60%               |
| NB-18-00-SL   | 0     | 0.15    | 0.27 | _     | _       | _    | _     | _       | _    | 1.2   | 0.20        | 0.3  | _     | _           | _     | 0.4   | 0.51    | 0.83 | 1.5   | 0.39        | 0.45 | _    | -       | -    | 0.02  | 0.37    | 0.66 | 1.9   | 11      | 1.5  | 2.6         | < <u>MDC</u>        |
| NB-19-00-SL   | -0.02 | 0.14    | 0.24 | _     | _       | _    | _     | _       | _    | 0.99  | 0.22        | 0.23 | _     | _           | _     | 0.77  | 0.55    | 0.85 | 1.2   | 0.36        | 0.48 | _    | _       | _    | 0.32  | 0.34    | 0.55 | 1.5   | 1       | 1.6  | 7.7         | <mdc< td=""></mdc<> |
| NB-22-00-SL   | -0.05 | 0.16    | 0.3  | _     | _       | _    | _     | _       | _    | 1.1   | 0.37        | 0.41 | _     | _           | _     | 2.3   | 1.6     | 2.5  | 0.92  | 0.42        | 0.66 | _    | _       | _    | -0.02 | 0.49    | 0.88 | 2.3   | 1.2     | 2.2  | 4.6         | <mdc< td=""></mdc<> |
| NB-23-00-SL   | -0.13 | 0.15    | 0.28 | 0     | 0.01    | 0.02 | 0.01  | 0.01    | 0.01 | 1.1   | 0.26        | 0.3  | _     | _           | _     | 0.29  | 0.55    | 0.92 | 1     | 0.37        | 0.63 | 1.1  | 0.2     | 0.02 | 0.06  | 0.03    | 0.02 | 0.8   | 0.16    | 0.02 | 2           | 1.20%               |
| NB-24-00-SL   | 0.05  | 0.38    | 0.67 | _     | _       | _    | _     | _       | _    | 1.2   | 0.25        | 0.26 | _     | _           | _     | 0.4   | 0.56    | 0.92 | 0.79  | 0.34        | 0.51 | _    | _       | _    | 0.17  | 0.34    | 0.57 | 0.71  | 1.2     | 2    | 3.9         | <mdc< td=""></mdc<> |
| NB-25-00-SL   | -0.07 | 0.13    | 0.24 | _     | _       | _    | _     | _       | _    | 0.71  | 0.21        | 0.26 | _     | _           | _     | 0.82  | 0.59    | 0.92 | 0.63  | 0.44        | 0.62 | _    | _       | _    | 0.22  | 0.34    | 0.57 | 1.2   | 1.2     | 1.9  | 5.4         | <mdc< td=""></mdc<> |
| NB-26-00-SL   | -0.11 |         | 0.56 | _     | _       | _    | _     | _       | _    | 0.49  | 0.2         | 0.24 | _     | _           | _     |       | 0.54    |      |       |             | 0.43 | _    | _       | _    | 0.16  |         |      |       | 0.78    |      | 3.3         | <mdc< td=""></mdc<> |
| NB-27-00-SL   | 0.38  | 0.48    | 0.78 | _     | _       | _    | _     | _       | _    | 0.58  | 0.22        | 0.34 | _     | _           | _     | -0.15 | 0.68    | 1.2  | 0.58  | 0.36        |      | _    | _       | _    | 0.07  | 0.5     | 0.86 | 0.76  | 1.3     | 2.1  | 2.1         | <mdc< td=""></mdc<> |
| NB-28-04-SL   | 0.2   | 0.48    | 0.83 | _     | _       | _    | _     | _       | _    | 1.1   | 0.3         | 0.38 | _     | _           | _     | 0.44  | 0.51    | 0.84 | 1.5   | 0.79        | 1    | _    | _       | _    | 0.13  | 0.43    | 0.75 | 0.37  | 1.6     | 2.8  | 2.8         | <mdc< td=""></mdc<> |
| NB-28-14-SL   | -0.08 | 0.14    | 0.27 | _     | _       | _    | _     | _       | _    | 0.76  | 0.26        | 0.38 | _     | _           | _     | 0.36  | 0.49    | 0.8  | 1     | 0.53        | 0.87 | _    | _       | _    | 0.06  | 0.49    | 0.88 | 0.61  | 1.1     | 1.8  | 1.8         | <mdc< td=""></mdc<> |
| NB-28-24-SL   | 0.03  | 0.22    | 0.38 | _     | _       | _    | _     | _       | _    | 0.53  | 0.21        | 0.35 | _     | _           | _     | 0.06  | 0.48    | 0.82 | 0.68  | 0.43        | 0.79 | _    | _       | _    | -0.07 | 0.39    | 0.69 | 0.65  | 1.2     | 2    | 1.3         | <mdc< td=""></mdc<> |
| NB-28-35-SL   | -0.09 | 0.2     | 0.36 | _     | _       | _    | _     | _       | _    | 0.4   | 0.19        | 0.33 | _     | _           | _     | 0.24  | 0.47    | 0.79 | 0.35  | 0.54        | 0.89 | _    | _       | _    | 0.16  | 0.37    | 0.62 | 0.45  | 1.1     | 1.8  | 3.5         | <mdc< td=""></mdc<> |
| NB-29-05-SL   | -0.14 | 0.15    | 0.3  | _     | _       | _    | _     | _       | _    | 0.87  | 0.29        | 0.37 |       | _           | _     | 0.25  | 0.49    | 0.82 | 1.1   | 0.56        | 0.84 | _    | _       | _    | 0     |         | 0.88 | 0.49  | 1.3     | 2.1  | 0.97        | <mdc< td=""></mdc<> |
| NB-29-14-SL   | -     | 0.18    | 0.3  | _     | _       | _    | _     | _       | -    | 0.2   | 0.17        | 0.32 |       | _           | _     | 0.11  | 0.47    | 0.8  | 0.12  | 0.41        | 0.71 | -    | _       | _    | 0.12  |         | 0.57 | -0.59 | 0.74    |      | 3.9         | <mdc< td=""></mdc<> |
| NB-29-22-SL   |       | 0.27    | 0.54 | _     | _       | _    | _     | _       | _    | 0.47  | 0.23        | 0.29 | _     | _           | _     | 0.32  | 0.49    | 0.81 | 0.33  | 0.43        | 0.7  | _    | _       | _    | 0.02  | 0.26    |      | 0.71  | 0.8     | 1.3  | 1.2         | <mdc< td=""></mdc<> |
| NB-30-05-SL   |       | 0.61    | 1.1  | _     | _       | _    | _     | _       | _    | 1     | 0.4         | 0.46 | _     | _           | _     | 0.08  | 0.47    | 0.8  | 1.2   | 0.24        | 0.01 | 0.92 | 0.18    | 0.04 | 0.12  |         |      | 0.88  | 0.17    | 0.03 | 1.9         | <mdc< td=""></mdc<> |
| NB-30-15-SL   | -0.13 | 0.67    | 1.2  | _     | _       | _    | _     | _       | _    | 1.1   | 0.46        | 0.58 | _     | _           | _     | 0.14  | 0.48    | 0.82 | 0.88  | 0.47        | 0.94 | -    | _       | _    | 0.24  |         |      | 2.7   | 2.2     | 3.5  | 7.5         | <mdc< td=""></mdc<> |
| NB-30-25-SL   |       | 0.16    | 0.27 | _     | _       | _    | _     | _       | _    | 1     | 0.46        | 0.56 | _     | _           | _     | 0.14  | 0.48    | 0.81 | 1.1   | 0.54        | 0.87 | _    | _       | _    | 0.41  |         |      | 0.64  | 1.2     | 2.1  | 8.7         | <mdc< td=""></mdc<> |
| NB-30-33-SL   | -0.36 | 0.5     | 0.97 | _     | _       | _    | _     | _       | _    | 0.53  | 0.23        | 0.33 |       | _           | _     | 0.03  |         | 0.79 | 0.32  | 0.45        | 0.74 | -    | _       | _    | 0.45  | 0.44    |      | 0.5   | 1.4     | 2.5  | 9.5         | <mdc< td=""></mdc<> |
| NB-31-05-SL   | -0.02 |         | 0.29 | _     | _       | _    | -     | _       | _    | 0.89  | 0.39        | 0.43 | _     | _           | _     | -0.03 |         | 0.83 | 0.85  | 0.64        | 1.4  | -    | _       | _    | 0.1   |         | 0.93 | 0.81  | 0.99    | 2    | 2.8         | <mdc< td=""></mdc<> |
| NB-31-15-SL   | -0.09 | 0.66    | 1.2  | _     | _       | -    | -     | _       | _    | 1.1   | 0.39        | 0.45 | _     | -           | _     | 0.73  | 0.5     | 0.78 | 0.69  | 0.56        | 0.82 | 0.92 | 0.18    | 0.02 | 0.24  | 0.42    | 0.72 | 0.85  | -       | 0.02 | 2           | <mdc< td=""></mdc<> |
| NB-31-27-SL   |       | 0.61    | 1.1  | _     | _       | _    | -     | _       | _    | 1.1   | 0.3         | 0.4  | _     | _           | _     | -0.13 | 0.46    | 0.81 | 0.74  | 0.41        | 0.74 | -    | _       | _    | -0.2  | 0.49    | 0.92 | 1.1   | 1.5     | 2.5  | 2.1         | <mdc< td=""></mdc<> |
| NB-31-32-SL   | -0.15 | 0.14    | 0.27 | _     | _       | _    | -     | _       | _    | 0.9   | 0.29        | 0.37 | _     | _           | _     | -0.14 | 0.46    | 0.8  | 0.77  | 0.68        | 1    | _    | _       | _    | -0.12 | 0.46    | 0.86 | 1.5   | 1.1     | 1.8  | 3.1         | <mdc< td=""></mdc<> |
| NB-32-05-SL   | 0.07  | 0.15    | 0.26 | _     | _       | _    | -     | _       | _    | 0.98  | 0.44        | 0.53 | _     | _           | _     | 0.4   | 0.51    | 0.83 | 1     | 0.73        | 1    | _    | _       | _    | -0.06 | 0.52    | 0.95 | -1.1  | 1.2     | 2.2  | 0           | <mdc< td=""></mdc<> |
| NB-32-15-SL   |       | 0.15    | 0.24 | _     | _       | —    | _     | _       | _    | 1.1   | 0.32        | 0.41 | _     | _           | _     | 0.79  | 0.54    | 0.83 | 0.95  | 0.56        | 0.91 | _    | _       | _    | 0.24  | 0.5     | 0.86 | 1.1   | 0.83    |      | 5.7         | <mdc< td=""></mdc<> |
| NB-32-27-SL   |       | 0.41    | 0.73 |       | _       | _    | _     | _       | _    | 1     | 0.37        | 0.42 |       | _           | _     | 1.7   | 0.65    | 0.87 | 1.1   | 0.51        | 0.94 | _    | _       | _    | 0.03  | 0.39    | 0.71 | 0.88  | 1.5     | 2.5  | 1.5         | <mdc< td=""></mdc<> |

# Attachment 4 to HEM-11-91 Page 53 of 139 & RESRAD Pages

# Uranium Non-impacted Data.xlsx

# DRAFT

|                            |       | Am-241 Np-237 Pu-239/240 Ra-226 Ra-226 |             |       |         | 6 w/Ing | rowth |          | Tc-99 |       |         | Th-232    |       |         | U-234 |       |             | U-235       |       |          | U-238 |       | Total   | Perc. |               |         |      |             |             |          |            |                                      |
|----------------------------|-------|----------------------------------------|-------------|-------|---------|---------|-------|----------|-------|-------|---------|-----------|-------|---------|-------|-------|-------------|-------------|-------|----------|-------|-------|---------|-------|---------------|---------|------|-------------|-------------|----------|------------|--------------------------------------|
|                            | 1     | 1111-241                               | L           |       | ryp-237 |         | 1     | u-239/2- | ŧV    |       | Na-220  |           | Na-22 | o w/mg  | rowth |       | 1(-))       |             |       | 1 11-232 |       |       | 0-234   |       |               | 0-233   |      |             | 0-230       |          | Uraniu     | 1 61 6.                              |
|                            |       | (pCi/g)                                |             |       | (pCi/g) | 1       |       | (pCi/g)  |       |       | (pCi/g) |           |       | (pCi/g) |       |       | (pCi/g)     |             |       | (pCi/g)  |       |       | (pCi/g) |       |               | (pCi/g) |      |             | (pCi/g)     |          | m          | Enrich.                              |
| Sample ID                  | Conc. | ±2σ                                    | MDC         | Conc. | ±2σ     | MDC     | Conc. | ±2σ      | MDC   | Conc. | ±2σ     | MDC       | Conc. | ±2σ     | MDC   | Conc. | ±2σ         | MDC         | Conc. | ±2σ      | MDC   | Conc. | ±2σ     | MDC   | Conc.         | ±2σ     | MDC  | Conc.       | ±2σ         | MDC      | (pCi/g)    | (U-235)                              |
| NB-32-33-SL                | 0.17  | 0.14                                   | 0.22        | —     | —       | -       | -     | _        | —     | 0.56  | 0.36    | 0.51      | -     | _       | -     | 0.32  | 0.5         | 0.82        | 0.82  | 0.55     | 0.65  | —     | -       | —     | 0.17          | 0.39    | 0.68 | 0           | 0.94        | 1.7      | 5.5        | <mdc< td=""></mdc<>                  |
| NB-33-05-SL                | -0.09 | 0.37                                   | 0.71        | _     | —       | _       | _     | _        | —     | 0.97  | 0.27    | 0.36      | _     | _       | _     | 0.55  | 0.52        | 0.83        | 0.99  | 0.52     | 0.96  | —     | _       | —     | 0.17          | 0.46    | 0.8  | -0.75       | 1.4         | 2.6      | 5.7        | <mdc< td=""></mdc<>                  |
| NB-33-15-SL                | -0.05 | 0.15                                   | 0.28        | —     | _       | -       | _     | —        | —     | 1     | 0.34    | 0.41      | _     | _       | _     | 0.1   | 0.51        | 0.87        | 1.2   | 0.88     | 1.3   | —     | _       | —     | 0.18          | 0.55    | 0.95 | 0.81        | 0.92        | 2        | 4.3        | <mdc< td=""></mdc<>                  |
| NB-33-27-SL                | -0.09 | 0.36                                   | 0.68        | —     | —       | -       | -     | —        | —     | 0.68  | 0.29    | 0.36      | —     | —       | —     | 0.59  | 0.51        | 0.81        | 0.4   | 0.55     | 0.91  | —     | —       | —     | 0.31          | 0.31    | 0.49 | -0.14       | 1.2         | 2.2      | 10.4       | <mdc< td=""></mdc<>                  |
| NB-34-05-SL                | -0.11 | 0.15                                   | 0.29        | —     | —       | -       | —     | —        | -     | 1.2   | 0.35    | 0.54      | —     | —       | —     | 0     | 0.5         | 0.86        | 1.1   | 0.57     | 1     | -     | _       | —     | 0.19          | 0.55    | 0.95 | 1.3         | 0.98        | 1.9      | 4.9        | <mdc< td=""></mdc<>                  |
| NB-34-15-SL                | 0.24  | 0.4                                    | 0.68        | —     | _       | -       | -     | —        | -     | 1.1   | 0.29    | 0.4       | _     | —       | _     | 0.26  | 0.53        | 0.88        | 0.33  | 0.55     | 1     | —     | _       | —     | -0.04         | 0.43    | 0.79 | 2           | 1.7         | 2.7      | 3.9        | <mdc< td=""></mdc<>                  |
| NB-34-25-SL                | 0.01  | 0.11                                   | 0.2         | —     | -       |         | _     | —        | _     | 0.51  | 0.22    | 0.39      | _     | _       | _     | 0.33  | 0.51        | 0.84        | 0.55  | 0.57     | 0.89  | -     | -       | —     | 0.23          | 0.35    | 0.59 | 0.29        | 0.93        | 1.6      | 4.7        | <mdc< td=""></mdc<>                  |
| NB-35-01-SL                | 0.11  | 0.15                                   | 0.25        | —     | -       |         | -     | —        | _     | 0.97  | 0.49    | 0.65      | _     | _       | _     | 0.33  | 0.51        | 0.85        | 0.91  | 0.7      | 1     | _     | _       | —     | -0.12         | 0.52    | 0.97 | 1.2         | 1.5         | 2.4      | 2.3        | <mdc< td=""></mdc<>                  |
| NB-35-15-SL                | -0.03 | 0.15                                   | 0.27        | —     | —       | -       | —     | —        | -     | 1.1   | 0.29    | 0.29      | —     | -       | —     | 0.1   | 0.47        | 0.81        | 0.77  | 0.55     | 1.2   | -     | —       | —     | 0.06          | 0.53    | 0.93 | 0.68        | 0.77        | 1.6      | 1.9        | <mdc< td=""></mdc<>                  |
| NB-35-25-SL                | -0.08 | 0.54                                   | 1           | —     | —       | -       | -     | —        | -     | 1     | 0.37    | 0.39      | -     | _       | -     | 0.19  | 0.5         | 0.84        | 0.99  | 0.48     | 0.79  | -     | -       | -     | 0.13          | 0.44    | 0.77 | 0.25        | 1.8         | 3.1      | 2.7        | <mdc< td=""></mdc<>                  |
| NB-36-05-SL                | -0.04 | 0.55                                   | l           | —     | —       | -       | -     | —        | -     | 0.89  | 0.27    | 0.38      | —     | -       | —     | 0.15  | 0.49        | 0.83        | 0.8   | 0.17     | 0.02  | 0.75  | 0.15    | 0.02  | 0.05          | 0.03    | 0.01 | 0.83        | 0.16        | 0.02     | 1.6        | 1.00%                                |
| NB-36-15-SL                | 0.15  | 0.16                                   | 0.26        | —     | —       | -       | -     | —        | -     | 1.5   | 0.51    | 0.54      | _     | _       | _     | 0.24  | 0.49        | 0.82        | 1.2   | 0.62     | 1.2   | 0.98  | 0.19    | 0.03  | 0.03          | 0.02    | 0.02 | 0.79        | 0.16        | 0.02     | 1.8        | 0.50%                                |
| NB-36-27-SL                | 0.04  | 0.14                                   | 0.25        | —     | -       |         | _     | _        | _     | 0.97  | 0.3     | 0.38      | _     | _       | _     | 0     | 0.52        | 0.89        | 1.3   | 0.58     | 0.86  | -     | -       | -     | -0.48         | 0.46    | 0.92 | 1.1         | 1.1         | 1.8      | 2.1        | <mdc< td=""></mdc<>                  |
| NB-37-05-SL                | -0.1  | 0.59                                   | 1.1         | _     | —       |         | _     | _        | _     | 0.96  | 0.3     | 0.42      | _     | _       | _     | 0.28  | 0.51        | 0.85        | 1.2   | 0.72     | 0.98  | _     | _       | —     | -0.08         | 0.48    | 0.87 | 1.3         | 1.5         | 2.4      | 2.5        | <mdc< td=""></mdc<>                  |
| NB-37-15-SL                | 0.05  | 0.14                                   | 0.24        | —     | _       | -       | _     | _        | _     | 1.3   | 0.34    | 0.46      | _     | _       | _     | 0.53  | 0.51        | 0.82        | 0.63  | 0.71     | 1.1   | _     | _       | —     | -0.35         | 0.48    | 0.93 | 1.3         | 1.5         | 2.4      | 2.7        | <mdc< td=""></mdc<>                  |
| NB-37-25-SL                | -0.44 | 0.58                                   | 1.1         | —     | _       | _       | _     | —        | _     | 0.93  | 0.29    | 0.42      | —     | _       | —     | 0.05  | 0.48        | 0.82        | 1.4   | 0.71     | 0.91  | -     | -       | —     | 0.24          | 0.4     | 0.67 | 0.06        | 1.3         | 2.3      | 5.6        | <mdc< td=""></mdc<>                  |
| NB-38-09-SL                | -0.21 | 0.22                                   | 0.4         |       | _       | _       | —     |          | _     | 0.84  | 0.23    | 0.34      | _     | _       | _     | 0.46  | 0.51        | 0.83        | 0.86  | 0.5      | 0.99  | _     |         |       | -0.01         | 0.39    | 0.68 | 1.6         | 1.2         | 1.9      | 3.2        | <mdc<br><mdc< td=""></mdc<></mdc<br> |
| NB-38-15-SL                | -0.18 | 0.22                                   | 0.4         | _     |         |         | _     | —        |       | 0.76  | 0.22    | 0.36      |       | _       |       | 0.15  | 0.48        | 0.81        | 0.72  | 0.44     | 0.89  | -     |         |       | -0.36         | 0.38    | 0.7  | 0.37        | 1.1         | 1.9      | 0.75       | <mdc< td=""></mdc<>                  |
| NB-38-25-SL                | -0.05 | 0.22                                   | 0.38        |       | _       | _       | _     |          | _     | 0.82  | 0.24    | 0.38 0.62 | _     | _       | _     | 0.27  | 0.49        | 0.82        | 0.68  | 0.37     | 0.69  | _     |         |       | -0.08         | 0.4     | 0.71 | 1.8         | 1.3<br>0.97 | 2.1      | 3.5        |                                      |
| NB-40-05-SL<br>NB-40-17-SL | 0.08  | 0.14                                   | 0.24        | _     |         |         | _     | _        | _     | 0.81  | 0.44    | 0.62      | _     | _       | _     | 0.09  | 0.5         | 0.84        | 0.85  | 0.58     | 1.1   | _     | _       |       | -0.03         | 0.45    | 0.83 | 1.2         | 2.2         | 3.7      | 2.5<br>3.3 | <mdc< td=""></mdc<>                  |
| NB-40-17-SL<br>NB-40-25-SL | 0.05  | 0.65                                   | 1.2<br>0.18 |       | _       | _       | -     | _        | _     | 0.96  | 0.29    | 0.37      | _     | _       |       | 0.49  | 0.5<br>0.51 | 0.8<br>0.78 | 0.81  | 0.51     | 0.8   | _     | -       |       | -0.08<br>0.13 | 0.48    | 0.87 | 1.6<br>0.17 | 0.78        | <u> </u> | 2.7        | <mdc<br><mdc< td=""></mdc<></mdc<br> |
| NB-40-23-SL<br>NB-40-31-SL | -0.29 | 0.11                                   | 0.18        | —     | —       | -       | _     | _        |       | 0.33  | 0.24    | 0.27      |       |         |       | 0.85  | 0.31        | 0.78        | 0.81  | 0.44     | 0.74  |       |         | —     | 0.13          | 0.37    | 0.03 | -0.25       | 0.78        | 1.4      | 8.4        | <mdc< td=""></mdc<>                  |
| NB-41-05-SL                | 0.09  | 0.18                                   | 0.98        |       |         |         | _     |          | _     | 0.68  | 0.19    | 0.31      | _     |         | _     | 0.22  | 0.49        | 0.83        | 0.88  | 0.44     | 0.08  | _     |         |       | -0.2          | 0.33    | 0.34 | 0.45        | 1.5         | 2.5      | 0.9        | <mdc< td=""></mdc<>                  |
| NB-41-13-SL                | -0.01 | 0.09                                   | 0.98        |       |         |         | _     | _        |       | 0.08  | 0.33    | 0.48      |       |         |       | 0.17  | 0.49        | 0.81        | 0.88  | 0.45     | 0.7   |       |         |       | 0.2           | 0.47    | 0.59 | 1.2         | 0.83        | 1.3      | 5.1        | <mdc< td=""></mdc<>                  |
| NB-41-19-SL                | -0.01 | 0.0                                    | 0.35        |       |         | _       | _     | _        | _     | 0.58  | 0.25    | 0.36      |       |         |       | 0.23  | 0.47        | 0.78        | 0.45  | 0.49     | 0.83  |       |         |       | 0.32          | 0.39    | 0.63 | 0.26        | 0.96        | 1.6      | 6.9        | <mdc< td=""></mdc<>                  |
| NB-42-05-SL                | -0.05 | 0.2                                    | 1.1         | _     |         | _       | _     | _        |       | 0.72  | 0.25    | 0.35      | _     | _       |       | 0.54  | 0.53        | 0.85        | 0.53  | 0.51     | 0.85  | _     | _       |       | 0.13          | 0.39    | 0.67 | 1.3         | 1.5         | 2.5      | 3.9        | <mdc< td=""></mdc<>                  |
| NB-42-13-SL                | 0.05  | 0.11                                   | 0.18        |       | _       | _       | _     |          | _     | 0.51  | 0.26    | 0.34      | _     | _       |       | 0.01  | 0.47        | 0.77        | 0.36  | 0.47     | 0.77  | _     | _       |       | 0.07          | 0.38    | 0.67 | 0.59        | 0.88        | 1.5      | 2          | <mdc< td=""></mdc<>                  |
| NB-42-23-SL                | 0.05  | 0.17                                   | 0.10        | _     | _       | _       | _     | _        | _     | 0.3   | 0.17    | 0.31      | _     | _       | _     | 0.19  | 0.49        | 0.82        | 0.21  | 0.45     | 0.76  | _     | _       | _     | 0.07          | 0.3     | 0.49 | 0.07        | 0.83        | 1.4      | 4.8        | <mdc< td=""></mdc<>                  |
| NB-43-05-SL                | 0.4   | 0.52                                   | 0.86        | _     | _       | _       | _     | _        | _     | 0.8   | 0.25    | 0.37      | _     | _       | _     | 0.39  | 0.48        | 0.78        | 0.64  | 0.5      | 0.73  | _     | _       | _     | 0.1           | 0.36    | 0.64 | 2.4         | 17          | 2.5      | 4.6        | <mdc< td=""></mdc<>                  |
| NB-43-13-SL                | 0.38  | 0.45                                   | 0.72        | _     | _       | _       | _     | _        | _     | 0.39  | 0.24    | 0.34      | _     | _       | _     | 0.34  | 0.49        | 0.81        | 0.12  | 0.41     | 0.75  | _     | _       | _     | -0.04         | 0.34    | 0.62 | 0.67        | 1.4         | 2.3      | 1.3        | <mdc< td=""></mdc<>                  |
| NB-44-05-SL                | 0.01  | 0.1                                    | 0.19        | _     | _       | _       | _     | _        | _     | 0.44  | 0.27    | 0.38      | _     | _       | _     | 0.36  | 0.48        | 0.79        | 0.36  | 0.34     | 0.7   | 0.49  | 0.11    | 0.02  | 0.03          | 0.02    | 0.02 | 0.47        | 0.1         | 0.01     | 1          | 1.10%                                |
| NB-44-11-SL                | -0.18 | 0.33                                   | 0.69        | _     | _       | _       | _     | _        | _     | 0.38  | 0.16    | 0.25      | _     | _       | _     | 0.5   | 0.5         | 0.81        | 0.31  | 0.33     | 0.5   | _     | _       | _     | 0.13          | 0.26    | 0.44 | 0.73        | 0.96        |          | 3.3        | <mdc< td=""></mdc<>                  |
| NB-44-18-SL                | 0.13  | 0.4                                    | 0.7         | _     | _       | _       | _     | _        | _     | 0.4   | 0.19    | 0.29      | _     | _       | _     | 0.51  | 0.49        | 0.78        | 0.54  | 0.44     | 0.63  | _     | _       | _     | 0.16          | 0.31    | 0.54 | 0.7         | 1.2         | 2        | 3.8        | <mdc< td=""></mdc<>                  |
| NB-45-05-SL                | 0.01  | 0.15                                   | 0.27        | _     | _       | _       | _     | _        | _     | 0.81  | 0.32    | 0.51      | _     | _       | _     | 0.13  | 0.48        | 0.81        | 1.3   | 0.93     | 1.4   | _     | _       | _     | 0.56          | 0.55    | 0.86 | 1.3         | 1.3         | 2        | 11.9       | <mdc< td=""></mdc<>                  |
| NB-45-13-SL                | 0.04  | 0.14                                   | 0.24        | _     | _       | -       | _     | _        | _     | 1     | 0.42    | 0.49      | _     | _       | _     | 0.29  | 0.48        | 0.79        | 1     | 0.56     | 0.93  | _     | _       | _     | -0.16         | 0.47    | 0.89 | 1.3         | 1.1         | 2.2      | 2.5        | <mdc< td=""></mdc<>                  |
| NB-45-25-SL                | 0.06  | 0.15                                   | 0.25        | _     | _       | _       | _     | _        | _     | 0.86  | 0.3     | 0.35      | _     | _       | _     | 0.51  | 0.51        | 0.82        | 1.2   | 0.71     | 0.86  | _     | _       | _     | -0.07         | 0.53    | 0.98 | 0.38        | 1.3         | 2.2      | 0.76       | <mdc< td=""></mdc<>                  |
| NB-45-33-SL                | -0.03 | 0.2                                    | 0.35        | —     | _       | -       | _     | —        | _     | 0.5   | 0.19    | 0.31      | _     | _       | _     | 0.73  | 0.5         | 0.77        | 0.38  | 0.33     | 0.69  | _     | _       | —     | 0.11          | 0.33    | 0.56 | 0.2         | 1           | 1.7      | 2.4        | <mdc< td=""></mdc<>                  |
| NB-62-05-SL                | -0.12 | 0.14                                   | 0.27        | _     | _       | _       | _     | —        | _     | 0.69  | 0.38    | 0.51      | _     | _       | _     | 0.54  | 0.9         | 1.5         | 0.86  | 0.71     | 1     | _     | _       | _     | 0.36          | 0.47    | 0.77 | 1.4         | 1.1         | 1.7      | 8.3        | <mdc< td=""></mdc<>                  |
| NB-62-12-SL                | -0.01 | 0.29                                   | 0.55        | —     | _       | _       | _     | _        | _     | 0.38  | 0.27    | 0.41      | _     | _       | _     | -0.05 | 0.81        | 1.4         | 0.1   | 0.4      | 0.74  | _     | _       | —     | -0.13         | 0.3     | 0.59 | 1.3         | 1.1         | 1.7      | 2.7        | <mdc< td=""></mdc<>                  |
| NB-62-22-SL                | -0.02 | 0.11                                   | 0.21        | —     | —       | _       | _     | _        | _     | 0.32  | 0.2     | 0.35      |       | _       |       | 0.27  | 0.81        | 1.4         | -0.05 | 0.54     | 1.1   | —     | -       | —     | 0.51          | 0.37    | 0.54 | 0.04        | 0.75        | 1.4      | 14.5       | <mdc< td=""></mdc<>                  |
| NB-63-05-SL                | -0.12 | 0.14                                   | 0.27        | _     | _       | _       | _     | _        | _     | 0.83  | 0.3     | 0.41      | _     | _       | _     | 0.22  | 0.84        | 1.5         | 0.99  | 0.52     | 0.91  | 0.74  | 0.15    | 0.02  | 0.04          | 0.02    | 0.01 | 0.74        | 0.15        | 0.02     | 1.5        | 0.70%                                |
| NB-63-13-SL                | 0.28  | 0.48                                   | 0.81        | _     | _       | -       | _     | _        | -     | 0.66  | 0.34    | 0.45      | -     | -       | -     | -0.04 | 0.79        | 1.4         | 0.6   | 0.55     | 0.83  | —     | -       | _     | -0.03         | 0.38    | 0.7  | -0.57       | 1.4         | 2.5      | 0          | <mdc< td=""></mdc<>                  |
| NB-63-19-SL                | -0.1  | 0.34                                   | 0.65        | _     | _       | _       | _     | _        | _     | 0.38  | 0.22    | 0.3       | _     | _       | _     | 0.15  | 0.86        | 1.5         | 0.26  | 0.38     | 0.64  | _     | _       | _     | 0.07          | 0.29    | 0.52 | 0.52        | 1.2         | 2        | 1.9        | <mdc< td=""></mdc<>                  |
| NB-64-05-SL                | 0.09  | 0.44                                   | 0.78        | _     | _       | -       | -     | —        | —     | 0.71  | 0.3     | 0.37      | _     | —       | _     | -0.08 | 0.78        | 1.4         | 0.85  | 0.52     | 0.61  | -     | -       | _     | 0.33          | 0.45    | 0.75 | 0.43        | 1.5         | 2.6      | 6.9        | <mdc< td=""></mdc<>                  |
| NB-64-13-SL                | 0.04  | 0.12                                   | 0.2         | _     | _       | _       | _     | —        | —     | 0.27  | 0.25    | 0.38      | _     | _       | -     | 0.13  | 0.87        | 1.5         | 0.34  | 0.55     | 0.93  | -     | -       | _     | 0.03          | 0.38    | 0.7  | 0.11        | 0.82        | 1.5      | 0.68       | <mdc< td=""></mdc<>                  |
| NB-64-17-SL                | 0.24  | 0.32                                   | 0.53        | —     | —       | -       | -     | —        | —     | 0.42  | 0.35    | 0.55      | _     | —       | _     | -0.17 | 0.77        | 1.4         | 0.26  | 0.46     | 0.79  | —     | _       | —     | 0.23          | 0.28    | 0.46 | 0.08        | 1           | 1.9      | 5.4        | <mdc< td=""></mdc<>                  |
| NB-65-05-SL                | -0.34 | 0.39                                   | 0.8         | —     | _       | -       | -     | _        | -     | 0.91  | 0.26    | 0.31      | -     | -       | -     | 0.12  | 0.85        | 1.5         | 0.69  | 0.58     | 0.85  | -     | -       | _     | 0.18          | 0.38    | 0.65 | 0.89        | 1.4         | 2.4      | 4.3        | <mdc< td=""></mdc<>                  |
| NB-65-13-SL                | 0.07  | 0.37                                   | 0.68        | —     | _       | -       | —     | —        | —     | 0.89  | 0.26    | 0.35      | -     | -       | -     | -0.1  | 0.85        | 1.5         | 0.66  | 0.57     | 0.85  | _     | -       | —     | -0.15         | 0.37    | 0.72 | 0.28        | 1.4         | 2.5      | 0.55       | <mdc< td=""></mdc<>                  |
| NB-65-17-SL                | 0.04  | 0.11                                   | 0.2         | _     | —       | _       | _     | _        | _     | 0.36  | 0.24    | 0.32      | _     | _       | —     | -0.03 | 0.84        | 1.5         | 0.54  | 0.47     | 0.64  | —     | —       | —     | 0.15          | 0.41    | 0.71 | 0.58        | 1.2         | 2        | 3.5        | <mdc< td=""></mdc<>                  |

# Attachment 4 to HEM-11-91 Page 54 of 139 & RESRAD Pages

### Uranium Non-impacted Data.xlsx

### DRAFT

|                          | 1              | <b>Am-24</b>                      | l    |       | Np-237        | 1       | P     | u-239/24      | 40  |       | Ra-226        |      | Ra-22   | 6 w/Ing | rowth |       | Tc-99         |     |       | Th-232        | 2    |           | U-234          |      |       | U-235   |      |       | U-238         |      | Total        | Perc.                         |
|--------------------------|----------------|-----------------------------------|------|-------|---------------|---------|-------|---------------|-----|-------|---------------|------|---------|---------|-------|-------|---------------|-----|-------|---------------|------|-----------|----------------|------|-------|---------|------|-------|---------------|------|--------------|-------------------------------|
|                          |                | (pCi/g)                           |      |       | (pCi/g)       |         |       | (pCi/g)       |     |       | (pCi/g)       |      |         | (pCi/g) |       |       | (pCi/g)       |     |       | (pCi/g)       |      |           | (pCi/g)        |      |       | (pCi/g) |      |       | (pCi/g)       |      | Uraniu<br>m  | Enrich.                       |
| Sampla ID                | â              | $\frac{(p \in I/g)}{\pm 2\sigma}$ |      | Conc. | $\pm 2\sigma$ | MDC     | Conc. | $\pm 2\sigma$ | MDC | Conc. | $\pm 2\sigma$ | MDC  | Conc.   |         | MDC   | Conc. | $\pm 2\sigma$ | MDC | Conc. | $\pm 2\sigma$ |      | Conc.     | (pc1/g)<br>±2σ | MDC  | Conc. | u 0/    | MDC  | Conc. | $\pm 2\sigma$ |      | m<br>(pCi/g) | (U-235)                       |
| Sample ID<br>NB-66-05-SL | Conc.<br>-0.09 | 0.13                              | 0.26 | Conc. | 120           | MDC     | Conc. |               | MDC | 0.46  | 0.33          | 0.46 | Conc.   | 120     | MDC   | 0.85  | 0.88          | 1.4 | 0.02  | 0.71          | 14   | Conc.     | 120            | WIDC | -0.21 | 0.49    | 0.94 | 0.4   | 1             | 1.8  | 0.79         | <b>(U-233)</b><br><b>(MDC</b> |
| NB-66-15-SL              | -0.36          | 0.15                              | 0.20 | _     |               | _       | _     | _             |     | 0.40  | 0.35          | 0.40 | _       | _       |       | 0.53  | 0.86          | 1.4 | 1.4   | 0.71          | 0.72 |           | _              |      | 0.06  | 0.49    | 0.94 | 1.1   | 1.6           | 2.7  | 2.3          | <mdc< td=""></mdc<>           |
| NB-66-19-SL              | -0.09          | 0.30                              | 0.61 | _     |               | _       |       | _             |     | 0.32  | 0.33          | 0.35 |         |         |       | -0.13 | 0.80          | 1.4 | 0.38  | 0.07          | 0.72 |           |                |      | 0.00  | 0.43    | 0.6  | 1.1   | 1.0           | 1.9  | 1.4          | <mdc< td=""></mdc<>           |
| NB-67-05-SL              | -0.02          | 0.14                              | 0.01 | _     | _             | _       | _     | _             | _   | 0.55  | 0.24          | 0.55 | _       | _       | _     | -0.15 | 0.77          | 1.4 | 0.30  | 0.79          | 1.2  | _         | _              |      | 0.01  | 0.33    | 0.85 | 1.3   | 0.9           | 1.9  | 5.7          | <mdc< td=""></mdc<>           |
| NB-67-11-SL              | -0.02          | 0.19                              | 0.20 | _     |               |         | _     | _             |     | 0.32  | 0.18          | 0.33 |         |         |       | 0.34  | 0.83          | 1.4 | 0.07  | 0.43          | 0.7  |           |                |      | -0.29 | 0.34    | 0.63 | 0.23  | 0.94          | 1.6  | 0.45         | <mdc< td=""></mdc<>           |
| NB-67-21-SL              | -0.11          | 0.17                              | 0.77 | _     | _             |         | _     | _             |     | 0.32  | 0.16          | 0.35 |         |         |       | 0.19  | 0.85          | 1.4 | 0.4   | 0.39          | 0.58 |           |                |      | -0.18 | 0.34    | 0.66 | 0.23  | 1.2           | 1.0  | 1.8          | <mdc< td=""></mdc<>           |
| NB-71-01-SL              | 0.27           | 0.63                              | 11   | _     | _             | _       | _     | _             |     | 0.98  | 0.23          | 0.39 |         |         |       | 0.67  | 0.93          | 1.5 | 11    | 0.24          | 0.03 | 17        | 0.3            | 0.04 | 0.06  | 0.03    | 0.02 | 0.84  | 0.16          | 0.03 | 2.6          | 1.10%                         |
| NB-71-11-SL              | 0.03           | 0.03                              | 0.25 | _     | _             | _       | _     | _             | _   | 0.99  | 0.20          | 0.43 |         | _       |       | -0.03 | 0.85          | 1.5 | 1.5   | 0.66          | 1.1  |           | -              |      | 0.00  | 0.49    | 0.86 | 0.04  | 0.82          | 1.8  | 3            | < <u>MDC</u>                  |
| NB-71-27-SL              | 0.09           | 0.49                              | 0.25 | _     | _             | _       | _     | _             | _   | 0.61  | 0.31          | 0.43 | _       | _       | _     | -0.1  | 0.8           | 1.4 | 0.57  | 0.54          | 0.83 | _         | _              | _    | -0.01 | 0.38    | 0.69 | 0.41  | 1.1           | 2    | 0.81         | <mdc< td=""></mdc<>           |
| NB-72-05-SL              | -0.16          | 0.54                              | 1    | _     | _             | _       | _     | _             | _   | 0.01  | 0.32          | 0.47 | _       | _       | _     | -0.44 | 0.81          | 1.5 | 0.65  | 0.54          | 0.05 | _         | _              | _    | 0.19  | 0.42    | 0.72 | 0.52  | 1.5           | 2.6  | 4.2          | <mdc< td=""></mdc<>           |
| NB-72-11-SL              | -0.12          | 0.14                              | 0.28 | _     | _             | _       | _     | _             | _   | 0.56  | 0.42          | 0.61 | _       | _       | _     | 0.43  | 0.89          | 1.5 | 0.05  | 0.71          | 1.3  | _         | _              | _    | -0.04 | 0.43    | 0.82 | 0.62  | 1.2           | 2.0  | 1.2          | <mdc< td=""></mdc<>           |
| NB-72-19-SL              | 0.02           | 0.14                              | 0.20 | _     |               |         | _     | _             |     | 0.5   | 0.42          | 0.32 |         |         |       | 0.14  | 0.86          | 1.5 | 0.20  | 0.45          | 0.73 |           |                |      | -0.39 | 0.33    | 0.62 | 0.35  | 1.2           | 1.7  | 0.69         | <mdc< td=""></mdc<>           |
| NB-72-22-SL              | 0.02           | 0.2                               | 0.18 | _     | _             | _       | _     | _             | _   | 0.48  | 0.22          | 0.32 | _       | _       | _     | 0.35  | 0.87          | 1.5 | 0.35  | 0.46          | 0.75 | _         | _              | _    | 0.07  | 0.38    | 0.69 | 0.44  | 0.71          | 1.7  | 0.89         | <mdc< td=""></mdc<>           |
| NB-73-05-SL              | -0.02          | 0.12                              | 0.10 | _     | _             | _       | _     | _             | _   | 0.46  | 0.27          | 0.50 | _       | _       | _     | 0.77  | 0.92          | 1.5 | 0.3   | 0.58          | 1    | _         | _              | _    | 0.43  | 0.30    | 0.75 | 0.56  | 0.89          | 1.5  | 9            | <mdc< td=""></mdc<>           |
| NB-73-13-SL              | 0.02           | 0.12                              | 0.19 | _     | _             | _       | _     | _             | _   | 0.38  | 0.25          | 0.36 |         |         | _     | 1     | 0.92          | 1.4 | 0.02  | 0.50          | 11   | _         | _              |      | 0.36  | 0.36    | 0.55 | 0.55  | 0.96          | 1.6  | 7.7          | <mdc< td=""></mdc<>           |
| NB-73-23-SL              | 0.02           | 0.12                              | 0.1  | _     | _             | _       | _     | _             | _   | 0.30  | 0.23          | 0.46 |         | _       | _     | 0.21  | 0.91          | 1.4 | 0.02  | 0.49          | 0.95 |           | _              | _    | 0.00  | 0.39    | 0.68 | 0.52  | 0.99          | 1.0  | 2.6          | <mdc< td=""></mdc<>           |
| NB-75-08-SL              | -0.35          | 0.61                              | 1.2  | _     | _             | _       | _     | _             |     | 0.85  | 0.35          | 0.40 |         |         |       | 0.35  | 0.88          | 1.5 | 0.85  | 0.64          | 0.93 |           |                |      | -0.23 | 0.35    | 0.72 | 1.3   | 1.7           | 2.7  | 2.6          | <mdc< td=""></mdc<>           |
| NB-75-15-SL              | 0              | 0.59                              | 1.2  | _     | _             | _       | _     | _             |     | 0.05  | 0.26          | 0.35 |         |         |       | -0.12 | 0.84          | 1.5 | 0.65  | 0.65          | 1    |           |                |      | -0.34 | 0.42    | 0.82 | 0.69  | 1.7           | 2.5  | 1.4          | <mdc< td=""></mdc<>           |
| NB-75-19-SL              | 0.25           | 0.29                              | 0.47 | _     |               |         | _     | _             |     | 0.29  | 0.17          | 0.24 |         |         |       | 0.58  | 0.91          | 1.5 | 0.03  | 0.05          | 0.78 |           |                |      | 0.07  | 0.42    | 0.54 | 0.75  | 1.5           | 1.8  | 2.2          | <mdc< td=""></mdc<>           |
| NB-76-06-SL              | -0.5           | 0.54                              | 11   | _     | _             | _       | _     | _             |     | 0.18  | 0.17          | 0.24 |         |         |       | 1     | 0.96          | 1.5 | -0.08 | 0.45          | 0.91 |           |                |      | -0.13 | 0.4     | 0.76 | -0.55 | 1.1           | 2.3  | 0            | <mdc< td=""></mdc<>           |
| NB-76-10-SL              | -0.09          | 0.29                              | 0.57 | _     | _             | _       | _     | _             | _   | 0.25  | 0.18          | 0.25 | _       | _       | _     | 0.13  | 0.84          | 1.5 | -0.03 | 0.37          | 0.73 | _         | _              | _    | 0.13  | 0.28    | 0.49 | -0.28 | 0.92          | 17   | 4.2          | <mdc< td=""></mdc<>           |
| NB-76-24-SL              | 0.02           | 0.09                              | 0.17 | _     | _             | _       | _     | _             | _   | 0.38  | 0.24          | 0.34 | _       | _       | _     | 0.99  | 1             | 1.6 | 0.02  | 0.49          | 0.86 | _         | _              | _    | 0.13  | 0.39    | 0.68 | -0.13 | 0.61          | 1.4  | 4.3          | <mdc< td=""></mdc<>           |
| NB-77-05-SL              | 0.06           | 0.19                              | 0.32 | _     | _             | _       | _     | _             |     | 0.31  | 0.18          | 0.33 | _       | _       | _     | 0.4   | 0.88          | 1.5 | 0.38  | 0.39          | 0.63 |           | _              | _    | 0.04  | 0.36    | 0.62 | 0.02  | 0.87          | 1.5  | 0.8          | <mdc< td=""></mdc<>           |
| NB-77-13-SL              | 0.12           | 0.5                               | 0.88 | _     | _             | _       | _     | _             | _   | 0.22  | 0.10          | 0.32 | _       | _       | _     | 0.66  | 0.92          | 1.5 | 0.21  | 0.41          | 0.72 |           | _              | _    | -0.06 | 0.36    | 0.68 | 0.52  | 1.2           | 2.1  | 1            | <mdc< td=""></mdc<>           |
| NB-77-24-SL              | 0.112          | 0.33                              | 0.6  | _     | _             | _       | _     | _             | _   | 0.74  | 0.21          | 0.22 | _       | _       | _     | 0.00  | 0.86          | 1.5 | 0.14  | 0.46          | 0.82 |           | _              | _    | 0.02  | 0.28    | 0.52 | 0.43  | 1.2           | 1.9  | 0.82         | <mdc< td=""></mdc<>           |
| NB-78-07-SL              | 0.06           | 0.15                              | 0.26 | _     | _             | _       | _     | _             |     | 1.1   | 0.54          | 0.72 | _       | _       | _     | 0.55  | 0.93          | 1.6 | 0.85  | 0.18          | 0.03 | 0.74      | 0.15           | 0.04 | 0.04  | 0.03    | 0.02 | 0.69  | 0.14          | 0.03 | 1.5          | 1.00%                         |
| NB-78-11-SL              | -0.11          | 0.13                              | 0.20 | _     | _             | _       | _     | _             | _   | 0.43  | 0.2           | 0.72 | _       | _       | _     | -0.21 | 0.82          | 1.5 | 0.53  | 0.41          | 0.87 | -         | -              | -    | 0.09  | 0.36    | 0.62 | -0.07 | 0.91          | 1.6  | 2.9          | < <u>MDC</u>                  |
| NB-78-18-SL              | 0.02           | 0.56                              | 1    | _     | _             | _       | _     | _             | _   | 0.87  | 0.36          | 0.43 | _       | _       | _     | 0.14  | 0.86          | 1.5 | 0.74  | 0.41          | 0.81 | _         | _              | _    | 0.23  | 0.38    | 0.64 | 1.6   | 1.5           | 2.4  | 6            | <mdc< td=""></mdc<>           |
| NB-81-09-SL              | -0.24          | 0.57                              | 11   | _     | _             | _       | _     | _             | _   | 0.95  | 0.28          | 0.35 | _       | _       | _     | 0.08  | 0.87          | 1.5 | 0.83  | 0.44          | 0.72 | 0.71      | 0.14           | 0.02 | 0.02  | 0.02    | 0.01 | 0.77  | 0.15          | 0.02 | 1.5          | 0.50%                         |
| NB-81-11-SL              | 0.02           | 0.42                              | 0.77 | _     | _             | _       | _     | _             | _   | 0.98  | 0.37          | 0.42 | _       | _       | _     | 0.25  | 0.89          | 1.5 | 1     | 0.64          | 0.85 | -         | -              | -    | 0.13  | 0.02    | 0.71 | -1.1  | 14            | 2.7  | 4.2          | <mdc< td=""></mdc<>           |
| NB-81-31-SL              | -0.05          | 0.19                              | 0.34 | _     | _             | _       | _     | _             | _   | 0.48  | 0.19          | 0.33 | _       | _       | _     | 0.09  | 0.89          | 1.6 | 0.37  | 0.44          | 0.03 |           | _              | _    | 0.01  | 0.36    | 0.62 | 0.27  | 0.95          | 1.6  | 0.49         | <mdc< td=""></mdc<>           |
| NB-82-05-SL              | 0.19           | 0.69                              | 1.2  | _     | _             | _       | _     | _             | _   | 1.2   | 0.43          | 0.48 | _       | _       | _     | 1     | 1.5           | 2.5 | 0.87  | 0.47          | 0.73 | _         | _              | _    | -0.11 | 0.53    | 0.97 | 1.4   | 1.8           | 3    | 2.8          | <mdc< td=""></mdc<>           |
| NB-82-11-SL              | -0.17          | 0.17                              | 0.32 | _     | _             | _       | _     | _             |     | 0.24  | 0.2           | 0.32 | _       | _       |       | -0.18 | 0.83          | 1.5 | 0.11  | 0.45          | 0.78 |           | _              |      | -0.45 | 0.34    | 0.63 | 0.34  | 0.83          | 1.4  | 0.68         | <mdc< td=""></mdc<>           |
| NB-82-20-SL              | 0.11           | 0.33                              | 0.52 | _     | _             | _       | _     | _             | _   | 0.39  | 0.21          | 0.37 | _       | _       | _     | 0.42  | 0.86          | 1.5 | 0.08  | 0.38          | 0.71 | _         | _              | _    | 0.12  | 0.33    | 0.58 | -0.24 | 0.99          |      | 3.9          | <mdc< td=""></mdc<>           |
| NB-83-05-SL              | 0.01           | 0.16                              | 0.3  | _     | _             | _       | _     | _             |     | 0.87  | 0.34          | 0.48 |         | _       |       | 0.14  | 0.88          | 1.5 | 1.4   | 11            | 1.5  |           | _              |      | 0.12  | 0.53    | 0.95 | 1.3   | 1.5           |      | 4.2          | <mdc< td=""></mdc<>           |
| NB-83-11-SL              | 0.08           | 0.2                               | 0.33 |       | _             | _       | _     | _             |     | 0.39  | 0.19          | 0.34 | _       | _       | _     | 0.24  | 0.96          | 1.7 | 0.19  | 0.32          | 0.55 |           | _              | _    | -0.29 | 0.35    | 0.64 | -0.09 | 1.3           | 2.2  | 0            | <mdc< td=""></mdc<>           |
| NB-83-23-SL              | 0.05           | 0.28                              | 0.55 | _     | _             | _       | _     | _             |     | 0.44  | 0.25          | 0.33 | _       | _       |       | -0.02 | 0.8           | 1.4 | -0.07 | 0.46          | 0.9  | _         | _              |      | 0.11  | 0.29    | 0.51 | 0.83  | 1.2           | 2    | 2.9          | <mdc< td=""></mdc<>           |
| NB-84-05-SL              | 0.16           | 0.17                              | 0.28 | _     | _             | _       | _     | _             |     | 1.1   | 0.53          | 0.7  | _       | _       | _     | 0.75  | 0.89          | 1.4 | 0.05  | 0.85          | 1.6  |           | _              |      | 0.29  | 0.57    | 0.97 | 1.7   | 1.2           | 2.6  | 7.2          | <mdc< td=""></mdc<>           |
| NB-84-15-SL              | 0.01           | 0.22                              | 0.37 | _     | _             | _       | _     | _             | _   | 0.65  | 0.21          | 0.37 | _       | _       | _     | 0.01  | 0.83          | 1.5 | 0.57  | 0.6           | 0.97 | _         | _              | _    | -0.47 | 0.41    | 0.75 | -0.4  | 0.95          |      | 0            | <mdc< td=""></mdc<>           |
| NB-84-23-SL              | -0.36          | 0.45                              | 0.96 | _     | _             | _       | _     | _             |     | 0.05  | 0.26          | 0.4  | _       | _       | _     | -0.11 | 0.86          | 1.5 | 0.3   | 0.42          | 0.69 |           | _              |      | -0.23 |         | 0.67 | -0.06 |               | 2.2  | 0            | <mdc< td=""></mdc<>           |
| NB-84-33-SL              | -0.23          | 0.5                               | 0.93 | _     | _             | _       | _     | _             | _   | 0.53  | 0.20          | 0.29 |         |         | _     | 0.11  | 0.91          | 1.5 | 0.43  | 0.46          | 0.71 |           | _              | _    | -0.05 | 0.31    | 0.59 | 0.64  | 11            | 1.9  | 1.3          | <mdc< td=""></mdc<>           |
| NB-85-05-SL              | -0.18          | 0.68                              | 1.3  | _     | _             | _       | _     | _             | _   | 0.99  | 0.24          | 0.43 | _       | _       | _     | 0.45  | 0.84          | 1.4 | 0.61  | 0.40          | 1.1  |           | _              | _    | 0.34  | 0.51    | 0.88 | 0.55  | 1.7           | 3    | 7.2          | <mdc< td=""></mdc<>           |
| NB-85-15-SL              | 0.16           | 0.63                              | 1.1  | _     | _             | _       | _     | _             | _   | 1     | 0.2)          | 0.41 | _       | _       | _     | 0.10  | 0.79          | 1.4 | 1.1   | 0.44          | 0.62 |           | _              | _    | 0.34  | 0.45    | 0.75 | 1.8   | 1.7           | 2.6  | 8.4          | <mdc< td=""></mdc<>           |
| NB-85-25-SL              | 0.15           | 0.73                              | 1.3  | _     | _             | _       | _     | _             | _   | 0.92  | 0.31          | 0.46 | _       | _       | _     | 0.22  | 0.82          | 1.4 | 1.3   | 0.6           | 1 1  | _         | _              | _    | -0.04 | 0.45    | 0.83 | 1.0   | 1.7           | 2.0  | 2.1          | <mdc< td=""></mdc<>           |
| NB-85-35-SL              | 0.13           | 0.25                              | 0.43 | _     | _             | _       | _     | _             | _   | 0.25  | 0.15          | 0.40 | _       | _       | _     | 0.33  | 0.83          | 1.4 | -0.09 | 0.27          | 0.59 |           | _              | _    | 0.18  | 0.45    | 0.03 | -0.38 | 1.,           |      | 6.2          | <mdc< td=""></mdc<>           |
| NB-86-05-SL              | -0.01          | 0.17                              | 0.45 | _     | _             | _       | _     | _             | _   | 0.23  | 0.13          | 0.25 | _       | _       | _     | 0.33  | 0.85          | 1.4 | 0.44  | 0.27          | 1.4  | _         | _              | _    | 0.10  | 0.20    | 0.86 | 1.2   | 1.2           | 2.6  | 14.3         | <mdc< td=""></mdc<>           |
| NB-86-15-SL              |                | 0.51                              | 1.1  | _     |               | _       | _     | _             | _   | 0.96  | 0.35          | 0.43 | _       | _       | _     | 0.23  | 0.82          | 1.4 | 1.4   | 0.65          |      | _         | _              | _    | -0.01 | 0.46    | 0.80 | 0.68  |               |      | 14.5         | <mdc< td=""></mdc<>           |
| NB-86-19-SL              |                | 0.33                              | 0.56 |       | _             | _       | _     | _             | _   | 0.55  | 0.2)          | 0.44 | _       | _       | _     | -0.34 | 0.02          | 1.4 | 0.43  | 0.54          | 0.88 | _         | _              | _    | 0.07  | 0.35    | 0.62 | 1.2   | 1.5           |      | 2.7          | <mdc< td=""></mdc<>           |
| NOTE 1 – Bolde           |                |                                   |      |       | lt is less    | than th |       |               |     |       |               |      | apostro | Soonu u |       |       |               |     |       |               |      | licate th | at no an       |      |       |         | 0.02 | 1.14  | 1.5           |      |              |                               |

NOTE 1 – Bolded values indicate analytical result is less than the MDC value, italicized values indicate an alpha spectroscopy versus gamma spectroscopy result, and cells with "-" indicate that no analysis was performed. NOTE 2 - For data reported as "Ra-226," the decay chain was not known to be in secular equilibrium.

### Attachment 4 to HEM-11-91 Page 55 of 139 & RESRAD Pages

#### Uranium Non-impacted Data.xlsx

DRAFT

|   |          | Am-241        | Np-237        | Pu-239/240    | Ra-226        | Ra-226 w/Ingrowth | Tc-99                 | Th-232        | U-234         | U-235                 | U-238         | Total P     | Perc.  |
|---|----------|---------------|---------------|---------------|---------------|-------------------|-----------------------|---------------|---------------|-----------------------|---------------|-------------|--------|
|   |          |               |               |               |               |                   |                       |               |               |                       |               | Uraniu      |        |
|   |          | (pCi/g)       | (pCi/g)       | (pCi/g)       | (pCi/g)       | (pCi/g)           | (pCi/g)               | (pCi/g)       | (pCi/g)       | (pCi/g)               | (pCi/g)       |             | nrich. |
| S | ample ID | Conc. ±2σ MDC     | Conc. ±2 $\sigma$ MDC | Conc. ±2σ MDC | Conc. ±2σ MDC | Conc. ±2 $\sigma$ MDC | Conc. ±2σ MDC | (pCi/g) (U- | -235)  |

NOTE 3 – For data reported as "Ra-226 w/Ingrowth," the sample was sealed and the decay chain was allowed to achieve secular equilibrium prior to measurement of progeny by gamma spectroscopy.

NOTE 4 – The total Uranium calculation uses actual analytical data for U-235 and U-238; however, when U-234 was not reported, it was calculated as discussed in Section 4.0.

Using the individual analytical values reported in the table above, which are rounded, may yield a slightly different value for total Uranium.

NOTE 5 – The reported total Uranium value was bolded when any of the Uranium isotope analytical results were less than MDC.

NOTE 6 – A value was not calculated for U-235 percent enrichment (by weight) if the total Uranium value was less than MDC.

## June 21, 2011

## Attachment 4 to HEM-11-91 Page 56 of 139 & RESRAD Pages

Uranium Bkgrd & non-impacted Data for ProUCL.xls

Background U-234, U-235, U-238 and Total U via Alpha Spectroscopy

| Sample ID   | Sample_Date | Units | U_234_Alpha_Spec | U_235_Alpha_Spec | U_238_Alpha_Spec | Total_Uranium | PercentEnrichment_U_235 |
|-------------|-------------|-------|------------------|------------------|------------------|---------------|-------------------------|
| BG-01-00-SL | 1/6/2005    | pCi/g | 0.684            | 0.0256           | 0.554            | 1.2636        | 0.7%                    |
| BG-02-00-SL | 1/6/2005    | pCi/g | 0.7              | 0.021            | 0.766            | 1.487         | 0.4%                    |
| BG-03-00-SL | 1/6/2005    | pCi/g | 0.644            | 0.0297           | 0.878            | 1.5517        | 0.5%                    |
| BG-04-00-SL | 1/6/2005    | pCi/g | 0.672            | 0.0391           | 0.602            | 1.3131        | 1.0%                    |
| BG-05-00-SL | 1/6/2005    | pCi/g | 0.712            | 0.0168           | 0.745            | 1.4738        | 0.3%                    |
| BG-06-00-SL | 1/6/2005    | pCi/g | 0.695            | 0.0695           | 0.673            | 1.4375        | 1.6%                    |
| BG-07-00-SL | 1/6/2005    | pCi/g | 0.633            | 0.022            | 0.634            | 1.289         | 0.5%                    |
| BG-08-00-SL | 1/6/2005    | pCi/g | 0.942            | 0.066            | 0.985            | 1.993         | 1.0%                    |
| BG-09-00-SL | 1/6/2005    | pCi/g | 0.922            | 0.0692           | 0.98             | 1.9712        | 1.1%                    |
| BG-10-00-SL | 1/6/2005    | pCi/g | 0.906            | 0.066            | 0.996            | 1.968         | 1.0%                    |
| BG-11-00-SL | 1/6/2005    | pCi/g | 0.968            | 0.0628           | 0.96             | 1.9908        | 1.0%                    |
| BG-12-00-SL | 1/6/2005    | pCi/g | 0.943            | 0.0583           | 0.859            | 1.8603        | 1.0%                    |
| BG-13-00-SL | 1/6/2005    | pCi/g | 0.906            | 0.0426           | 0.855            | 1.8036        | 0.8%                    |
| BG-14-00-SL | 1/6/2005    | pCi/g | 0.839            | 0.0174           | 0.921            | 1.7774        | <mdc< td=""></mdc<>     |
| BG-15-00-SL | 1/6/2005    | pCi/g | 0.533            | 0.0258           | 0.59             | 1.1488        | <mdc< td=""></mdc<>     |
| BG-16-00-SL | 1/6/2005    | pCi/g | 0.648            | 0.0512           | 0.718            | 1.4172        | 1.1%                    |
| BG-01-03-SL | 1/6/2005    | pCi/g | 0.656            | 0.0629           | 0.649            | 1.3679        | 1.5%                    |
| BG-02-03-SL | 1/6/2005    | pCi/g | 0.751            | 0.033            | 0.736            | 1.52          | 0.7%                    |
| BG-03-03-SL | 1/6/2005    | pCi/g | 0.742            | 0.0532           | 0.811            | 1.6062        | 1.0%                    |
| BG-04-03-SL | 1/6/2005    | pCi/g | 0.743            | 0.0802           | 0.758            | 1.5812        | 1.6%                    |
| BG-05-03-SL | 1/6/2005    | pCi/g | 0.784            | 0.0514           | 0.801            | 1.6364        | 1.0%                    |
| BG-06-03-SL | 1/6/2005    | pCi/g | 0.87             | 0.0672           | 0.821            | 1.7582        | 1.3%                    |
| BG-07-03-SL | 1/6/2005    | pCi/g | 0.719            | 0.0471           | 0.744            | 1.5101        | 1.0%                    |
| BG-08-03SL  | 1/6/2005    | pCi/g | 0.922            | 0.0617           | 0.957            | 1.9407        | 1.0%                    |
| BG-09-03-SL | 1/6/2005    | pCi/g | 0.889            | 0.0399           | 0.963            | 1.8919        | 0.6%                    |
| BG-10-03-SL | 1/6/2005    | pCi/g | 0.895            | 0.0494           | 0.942            | 1.8864        | 0.8%                    |
| BG-11-03-SL | 1/6/2005    | pCi/g | 0.838            | 0.0814           | 0.871            | 1.7904        | 1.4%                    |
| BG-12-03-SL | 1/6/2005    | pCi/g | 0.924            | 0.0287           | 0.98             | 1.9327        | 0.5%                    |
| BG-13-03-SL | 1/6/2005    | pCi/g | 0.821            | 0.0614           | 0.99             | 1.8724        | 1.0%                    |
| BG-14-03-SL | 1/6/2005    | pCi/g | 0.842            | 0.0325           | 0.96             | 1.8345        | 0.5%                    |
| BG-15-03-SL | 1/6/2005    | pCi/g | 0.898            | 0.0589           | 0.795            | 1.7519        | 1.1%                    |
| BG-16-03-SL | 1/6/2005    | pCi/g | 0.672            | 0.025            | 0.629            | 1.326         | 0.6%                    |

DRAFT

BKG

## Attachment 4 to HEM-11-91 Page 57 of 139 & RESRAD Pages

Uranium Bkgrd & non-impacted Data for ProUCL.xls

Non-Impacted U-234, U-235, U-238 and Total U via Alpha Spectroscopy

| Sample ID      | Sample_Date | Units | U_234_Alpha_Spec | U_235_Alpha_Spec | U_238_Alpha_Spec | Total_Uranium | PercentEnrichment_U_235 |
|----------------|-------------|-------|------------------|------------------|------------------|---------------|-------------------------|
| NB-02-00-SL    | 4/29/2004   | pCi/g | 0.759            | 0.026            | 0.373            | 1.158         | 1.1%                    |
| NB-06-00-SL    | 4/30/2004   | pCi/g | 0.888            | 0.0565           | 0.851            | 1.7955        | 1.0%                    |
| NB-114-0.5-SL  | 11/16/2007  | pCi/g | 0.39             | 0.056            | 0.3              | 0.746         | <mdc< td=""></mdc<>     |
| NB-114-2.5-SL  | 11/16/2007  | pCi/g | 0.48             | 0.055            | 0.49             | 1.025         | <mdc< td=""></mdc<>     |
| NB-121-0.5-SL  | 11/16/2007  | pCi/g | 0.25             | -0.003           | 0.175            | 0.425         | <mdc< td=""></mdc<>     |
| NB-121-12.5-SL | 11/16/2007  | pCi/g | 0.8              | 0.052            | 1.03             | 1.882         | 0.8%                    |
| NB-121-2.5-SL  | 11/16/2007  | pCi/g | 1.45             | 0.051            | 0.76             | 2.261         | 1.0%                    |
| NB-17-00-SL    | 4/30/2004   | pCi/g | 1.09             | 0.0328           | 0.801            | 1.9238        | 0.6%                    |
| NB-23-00-SL    | 5/3/2004    | pCi/g | 1.1              | 0.0606           | 0.803            | 1.9636        | 1.2%                    |
| NB-30-05-SL    | 6/3/2004    | pCi/g | 0.917            |                  |                  |               |                         |
| NB-31-15-SL    | 6/3/2003    | pCi/g | 0.923            |                  |                  |               |                         |
| NB-36-05-SL    | 6/7/2004    | pCi/g | 0.753            | 0.0518           | 0.83             | 1.6348        | 1.0%                    |
| NB-36-15-SL    | 6/7/2004    | pCi/g | 0.976            | 0.0268           | 0.794            | 1.7968        | 0.5%                    |
| NB-44-05-SL    | 6/11/2004   | pCi/g | 0.494            | 0.0344           | 0.474            | 1.0024        | 1.1%                    |
| NB-63-05-SL    | 7/13/2004   | pCi/g | 0.738            | 0.035            | 0.736            | 1.509         | 0.7%                    |
| NB-71-01-SL    | 7/15/2004   | pCi/g | 1.7              | 0.058            | 0.838            | 2.596         | 1.1%                    |
| NB-78-07-SL    | 7/21/2004   | pCi/g | 0.736            | 0.0446           | 0.689            | 1.4696        | 1.0%                    |
| NB-81-09-SL    | 7/26/2004   | pCi/g | 0.713            | 0.0228           | 0.771            | 1.5068        | 0.5%                    |

June 21, 2011

Non-Impacted

DRAFT

Uranium Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| TotalU AS BKG | TotalU AS NI |
|---------------|--------------|
| 1.1488        | 1.16         |
| 1.2636        | 1.8          |
| 1.289         | 0.75         |
| 1.3131        | 0.43         |
| 1.326         | 1.92         |
| 1.3679        | 1.96         |
| 1.4172        | 1.03         |
| 1.4375        | 1.88         |
| 1.4738        | 2.26         |
| 1.487         | 1.63         |
| 1.5101        | 1.8          |
| 1.52          | 1            |
| 1.5517        | 1.51         |
| 1.5812        | 2.6          |
| 1.6062        | 1.47         |
| 1.6364        | 1.51         |
| 1.7519        |              |
| 1.7582        |              |
| 1.7774        |              |
| 1.7904        |              |
| 1.8036        |              |
| 1.8345        |              |
| 1.8603        |              |
| 1.8724        |              |
| 1.8864        |              |
| 1.8919        |              |
| 1.9327        |              |
| 1.9407        |              |
| 1.968         |              |
| 1.9712        |              |
| 1.9908        |              |
| 1.993         |              |

ProUCL Input

Unknown Ingrowth Background Ra-226 via Gamma Spectroscopy

| Sample ID   | Sample_Date | Units | Ra_226_Unknown_Ingrowth |
|-------------|-------------|-------|-------------------------|
| BG-01-00-SL | 1/6/2005    | pCi/g | 0.874                   |
| BG-01-03-SL | 1/6/2005    | pCi/g | 0.759                   |
| BG-02-00-SL | 1/6/2005    | pCi/g | 0.937                   |
| BG-02-03-SL | 1/6/2005    | pCi/g | 0.991                   |
| BG-03-00-SL | 1/6/2005    | pCi/g | 0.833                   |
| BG-03-03-SL | 1/6/2005    | pCi/g | 0.838                   |
| BG-04-00-SL | 1/6/2005    | pCi/g | 0.873                   |
| BG-04-03-SL | 1/6/2005    | pCi/g | 0.949                   |
| BG-05-00-SL | 1/6/2005    | pCi/g | 0.88                    |
| BG-05-03-SL | 1/6/2005    | pCi/g | 1                       |
| BG-06-00-SL | 1/6/2005    | pCi/g | 0.689                   |
| BG-06-03-SL | 1/6/2005    | pCi/g | 1.02                    |
| BG-07-00-SL | 1/6/2005    | pCi/g | 0.661                   |
| BG-07-03-SL | 1/6/2005    | pCi/g | 1.12                    |
| BG-08-00-SL | 1/6/2005    | pCi/g | 0.777                   |
| BG-08-03SL  | 1/6/2005    | pCi/g | 1.04                    |
| BG-09-00-SL | 1/6/2005    | pCi/g | 1.09                    |
| BG-09-03-SL | 1/6/2005    | pCi/g | 1.01                    |
| BG-10-00-SL | 1/6/2005    | pCi/g | 0.885                   |
| BG-10-03-SL | 1/6/2005    | pCi/g | 1.15                    |
| BG-11-00-SL | 1/6/2005    | pCi/g | 1.13                    |
| BG-11-03-SL | 1/6/2005    | pCi/g | 1.12                    |
| BG-12-00-SL | 1/6/2005    | pCi/g | 0.877                   |
| BG-12-03-SL | 1/6/2005    | pCi/g | 1.09                    |
| BG-13-00-SL | 1/6/2005    | pCi/g | 1.1                     |
| BG-13-03-SL | 1/6/2005    | pCi/g | 1.09                    |
| BG-14-00-SL | 1/6/2005    | pCi/g | 0.859                   |
| BG-14-03-SL | 1/6/2005    | pCi/g | 1.21                    |
| BG-15-00-SL | 1/6/2005    | pCi/g | 0.681                   |
| BG-15-03-SL | 1/6/2005    | pCi/g | 0.951                   |
| BG-16-00-SL | 1/6/2005    | pCi/g | 0.901                   |
| BG-16-03-SL | 1/6/2005    | pCi/g | 0.909                   |

Unknown Ingrowth BKG

### Known Ingrowth BKG

Known Ingrowth Background Ra-226 via Gamma Spectroscopy

| sampleid    | analyte    | result | qualifier | units | mdl   | error |
|-------------|------------|--------|-----------|-------|-------|-------|
| BG-01-00-SL | Radium 226 | 1.34   |           | pci/g | 0.367 | 0.282 |
| BG-01-03-SL | Radium 226 | 0.976  | LT        | pci/g | 0.453 | 0.271 |
| BG-02-00-SL | Radium 226 | 1.32   | G         | pci/g | 0.533 | 0.316 |
| BG-02-03-SL | Radium 226 | 1.53   | G         | pci/g | 0.564 | 0.349 |
| BG-03-00-SL | Radium 226 | 1.28   | G         | pci/g | 0.407 | 0.301 |
| BG-03-03-SL | Radium 226 | 1.27   | G         | pci/g | 0.613 | 0.343 |
| BG-04-00-SL | Radium 226 | 1.42   | G         | pci/g | 0.571 | 0.347 |
| BG-04-03-SL | Radium 226 | 1.42   | G         | pci/g | 0.346 | 0.299 |
| BG-05-00-SL | Radium 226 | 1.52   | G         | pci/g | 0.42  | 0.324 |
| BG-05-03-SL | Radium 226 | 1.59   | G         | pci/g | 0.532 | 0.361 |
| BG-06-00-SL | Radium 226 | 1.34   | G         | pci/g | 0.505 | 0.336 |
| BG-06-03-SL | Radium 226 | 1.64   | G         | pci/g | 0.501 | 0.351 |
| BG-07-00-SL | Radium 226 | 1.16   | G         | pci/g | 0.39  | 0.284 |
| BG-07-03-SL | Radium 226 | 1.41   | G         | pci/g | 0.417 | 0.273 |
| BG-08-00-SL | Radium 226 | 1.62   | G         | pci/g | 0.589 | 0.369 |
| BG-08-03-SL | Radium 226 | 1.61   |           | pci/g |       |       |
| BG-09-00-SL | Radium 226 | 1.63   |           | pci/g | 0.35  | 0.275 |
| BG-09-03-SL | Radium 226 | 1.97   | G         | pci/g | 0.518 | 0.38  |
| BG-10-00-SL | Radium 226 | 1.74   | G         | pci/g | 0.572 | 0.397 |
| BG-10-03-SL | Radium 226 | 1.6    | G         | pci/g | 0.565 | 0.327 |
| BG-11-00-SL | Radium 226 | 1.67   | G         | pci/g | 0.564 | 0.385 |
| BG-11-03-SL | Radium 226 | 1.58   | G         | pci/g | 0.501 | 0.386 |
| BG-12-00-SL | Radium 226 | 1.62   | G         | pci/g | 0.47  | 0.312 |
| BG-12-03-SL | Radium 226 | 1.69   | G         | pci/g | 0.514 | 0.388 |
| BG-13-00-SL | Radium 226 | 1.55   | G         | pci/g | 0.534 | 0.357 |
| BG-13-03-SL | Radium 226 | 1.86   | G         | pci/g | 0.528 | 0.395 |
| BG-14-00-SL | Radium 226 | 1.34   | G         | pci/g | 0.553 | 0.347 |
| BG-14-03-SL | Radium 226 | 1.56   | G         | pci/g | 0.566 | 0.376 |
| BG-15-00-SL | Radium 226 | 0.995  | LT,G      | pci/g | 0.529 | 0.303 |
| BG-15-03-SL | Radium 226 | 1.37   | G         | pci/g | 0.59  | 0.338 |
| BG-16-00-SL | Radium 226 | 1.26   | G         | pci/g | 0.419 | 0.302 |
| BG-16-03-SL | Radium 226 | 1.32   | G         | pci/g | 0.462 | 0.305 |

Non-Impacted

| Sample ID     | Sample Date Units | Ra_226_Unknown_Ingrowth | Ra 226 with Ingrowth |
|---------------|-------------------|-------------------------|----------------------|
| BD-09-00-SL   | 5/5/2004 pCi/g    | 0.342                   | 0.75                 |
| BD-10-00-SL   | 5/6/2004 pCi/g    | 0.69                    |                      |
| BD-11-00-SL   | 5/6/2004 pCi/g    | 1.13                    |                      |
| BD-12-00-SL   | 5/5/2004 pCi/g    | 0.628                   |                      |
| BD-13-09-SL   | 7/6/2004 pCi/g    | 0.606                   |                      |
| BD-13-15-SL   | 7/6/2004 pCi/g    | 1.01                    |                      |
| BD-13-23-SL   | 7/6/2004 pCi/g    | 0.843                   |                      |
| BD-13-30-SL   | 7/6/2004 pCi/g    | 0.6                     |                      |
| BD-14-05-SL   | 7/8/2004 pCi/g    | 0.966                   |                      |
| BD-14-13-SL   | 7/8/2004 pCi/g    | 0.66                    |                      |
| BD-14-25-SL   | 7/8/2004 pCi/g    | 0.893                   |                      |
| BD-14-31-SL   | 7/8/2004 pCi/g    | 0.404                   |                      |
| BD-15-05-SL   | 7/8/2004 pCi/g    | 0.871                   |                      |
| BD-15-17-SL   | 7/8/2004 pCi/g    | 0.932                   |                      |
| BD-15-25-SL   | 7/8/2004 pCi/g    | 0.673                   |                      |
| BD-15-31-SL   | 7/8/2004 pCi/g    | 0.946                   |                      |
| BD-16-05-SL   | 7/6/2004 pCi/g    | 0.878                   |                      |
| BD-16-15-SL   | 7/6/2004 pCi/g    | 1.18                    |                      |
| BD-16-19-SL   | 7/6/2004 pCi/g    | 0.886                   |                      |
| BD-16-25-SL   | 7/6/2004 pCi/g    | 1.09                    |                      |
| BD-16-34-SL   | 7/6/2004 pCi/g    | 1.12                    |                      |
| BD-17-2.5-SL  | 11/26/2007 pCi/g  | 1.15                    | 1.1                  |
| BD-17-4.5-SL  | 11/26/2007 pCi/g  | 1.14                    |                      |
| BD-17-8.5-SL  | 11/26/2007 pCi/g  | 1.24                    |                      |
| BD-18-2.5-SL  | 11/26/2007 pCi/g  | 0.97                    |                      |
| BD-18-4.5-SL  | 11/26/2007 pCi/g  | 1.43                    |                      |
| BD-18-8.5-SL  | 11/26/2007 pCi/g  | 1.09                    |                      |
| BD-19-0.5-SL  | 11/19/2007 pCi/g  | 0.26                    |                      |
| BD-19-10.5-SL | 11/19/2007 pCi/g  | 1.5                     |                      |
| BD-19-4.5-SL  | 11/19/2007 pCi/g  | 1.07                    |                      |
| BD-20-16.5-SL | 11/26/2007 pCi/g  | 1.53                    |                      |
| BD-20-2.5-SL  | 11/26/2007 pCi/g  | 1.02                    |                      |
| BD-20-4.5-SL  | 11/26/2007 pCi/g  | 1.45                    |                      |
| BD-21-2.5-SL  | 11/26/2007 pCi/g  | 0.84                    |                      |
| BD-21-4.5-SL  | 11/26/2007 pCi/g  | 1.11                    |                      |
| BD-21-9-SL    | 11/26/2007 pCi/g  | 1.1                     |                      |
| BD-22-12.5-SL | 11/26/2007 pCi/g  | 1.56                    |                      |
| BD-22-2.5-SL  | 11/26/2007 pCi/g  | 0.111                   |                      |
| BD-22-4.5-SL  | 11/26/2007 pCi/g  | 1.03                    |                      |
| BD-23-2.5-SL  | 11/26/2007 pCi/g  | 1.17                    | 0.89                 |
| BD-23-4.5-SL  | 11/26/2007 pCi/g  | 1.1                     |                      |
| BD-23-5-SL    | 11/26/2007 pCi/g  | 1.05                    |                      |

Non-Impacted

| Sample ID     | Sample Date Units | Ra_226_Unknown_Ingrowth | Ra_226_with_Ingrowth |
|---------------|-------------------|-------------------------|----------------------|
| BD-24-0.5-SL  | 11/20/2007 pCi/g  | 1.26                    | 1.39                 |
| BD-24-13-SL   | 11/20/2007 pCi/g  | 0.94                    |                      |
| BD-24-2.5-SL  | 11/20/2007 pCi/g  | 0.34                    |                      |
| BD-24-4.5-SL  | 11/20/2007 pCi/g  | 0.88                    |                      |
| BD-25-16.5-SL | 11/26/2007 pCi/g  | 1.28                    |                      |
| BD-25-2.5-SL  | 11/26/2007 pCi/g  | 0.55                    |                      |
| BD-25-4.5-SL  | 11/26/2007 pCi/g  | 1.06                    |                      |
| BD-26-2.5-SL  | 11/21/2007 pCi/g  | 0.92                    |                      |
| BD-26-4.5-SL  | 11/21/2007 pCi/g  | 1.47                    |                      |
| BD-26-7.5-SL  | 11/21/2007 pCi/g  | 1.46                    |                      |
| BD-27-13-SL   | 11/26/2007 pCi/g  | 1.7                     |                      |
| BD-27-2.5-SL  | 11/26/2007 pCi/g  | 0.166                   |                      |
| BD-27-4.5-SL  | 11/26/2007 pCi/g  | 0.87                    |                      |
| BD-28-0.5-SL  | 11/17/2007 pCi/g  | 0.63                    | 0.94                 |
| BD-28-12.5-SL | 11/17/2007 pCi/g  | 1.44                    |                      |
| BD-28-2.5-SL  | 11/17/2007 pCi/g  | 0.64                    |                      |
| BD-28-4.5-SL  | 11/17/2007 pCi/g  | 1.37                    |                      |
| BD-29-2.5-SL  | 11/26/2007 pCi/g  | 1.1                     |                      |
| BD-29-4.5-SL  | 11/26/2007 pCi/g  | 1.46                    |                      |
| BD-29-8.5-SL  | 11/26/2007 pCi/g  | 1.41                    |                      |
| BD-30-2.5-SL  | 11/21/2007 pCi/g  | 1.11                    | 1.08                 |
| BD-30-4.5-SL  | 11/21/2007 pCi/g  | 0.37                    |                      |
| BD-30-9-SL    | 11/21/2007 pCi/g  | 1.1                     |                      |
| BD-31-2.5-SL  | 11/26/2007 pCi/g  | 0.39                    |                      |
| BD-31-4.5-SL  | 11/26/2007 pCi/g  | 1.18                    |                      |
| BD-31-8.5-SL  | 11/26/2007 pCi/g  | 1.21                    |                      |
| BD-32-13-SL   | 11/26/2007 pCi/g  | 1.65                    |                      |
| BD-32-2.5-SL  | 11/26/2007 pCi/g  | 1.01                    |                      |
| BD-32-4.5-SL  | 11/26/2007 pCi/g  | 1.16                    |                      |
| BD-33-12.5-SL | 11/21/2007 pCi/g  | 1.58                    |                      |
| BD-33-2.5-SL  | 11/21/2007 pCi/g  | 1.36                    |                      |
| BD-33-4.5-SL  | 11/21/2007 pCi/g  | 1.66                    | 1.27                 |
| BD-34-13-SL   | 11/19/2007 pCi/g  | 1.18                    |                      |
| BD-34-2.5-SL  | 11/19/2007 pCi/g  | 0.75                    |                      |
| BD-34-4.5-SL  | 11/19/2007 pCi/g  | 1.06                    |                      |
| BD-35-2.5-SL  | 11/16/2007 pCi/g  | 0.42                    |                      |
| BD-35-4.5-SL  | 11/16/2007 pCi/g  | 1.18                    |                      |
| BD-35-6.5-SL  | 11/16/2007 pCi/g  | 1.55                    |                      |
| BD-36-12.5-SL | 11/26/2007 pCi/g  | 1.2                     |                      |
| BD-36-4.5-SL  | 11/26/2007 pCi/g  | 1.35                    |                      |
| BD-37-2.5-SL  | 11/26/2007 pCi/g  | 0.86                    |                      |
| BD-37-4.5-SL  | 11/26/2007 pCi/g  | 1.46                    |                      |

Non-Impacted

| Sample ID      | Sample Date Units | Ra_226_Unknown_Ingrowth | Ra_226_with_Ingrowth |
|----------------|-------------------|-------------------------|----------------------|
| BD-37-5-SL     | 11/26/2007 pCi/g  | 1.65                    |                      |
| BD-38-2.5-SL   | 11/20/2007 pCi/g  | 0.5                     |                      |
| BD-38-4.5-SL   | 11/20/2007 pCi/g  | 1.26                    |                      |
| BD-38-5-SL     | 11/20/2007 pCi/g  | 1.27                    |                      |
| BD-39-2.5-SL   | 11/26/2007 pCi/g  | 1.04                    | 1.03                 |
| BD-39-4.5-SL   | 11/26/2007 pCi/g  | 1.05                    |                      |
| BD-39-8.5-SL   | 11/26/2007 pCi/g  | 1.56                    |                      |
| BD-40-18-SL    | 11/15/2007 pCi/g  | 1.36                    |                      |
| BD-40-2.5-SL   | 11/15/2007 pCi/g  | 0.34                    |                      |
| BD-40-4.5-SL   | 11/15/2007 pCi/g  | 1.25                    |                      |
| BD-41-2.5-SL   | 11/9/2007 pCi/g   | 0.35                    |                      |
| BD-41-4.5-SL   | 11/9/2007 pCi/g   | 0.63                    |                      |
| BD-41-6-SL     | 11/9/2007 pCi/g   | 1.36                    |                      |
| BD-42-2.5-SL   | 11/20/2007 pCi/g  | 0.172                   |                      |
| BD-42-4.5-SL   | 11/20/2007 pCi/g  | 0.5                     |                      |
| BD-42-9-SL     | 11/20/2007 pCi/g  | 1.05                    |                      |
| BD-43-2.5-SL   | 11/20/2007 pCi/g  | 1.07                    |                      |
| BD-43-4.5-SL   | 11/20/2007 pCi/g  | 1.4                     |                      |
| BD-43-5-SL     | 11/20/2007 pCi/g  | 1.62                    |                      |
| BD-44-2.5-SL   | 11/19/2007 pCi/g  | 0.68                    |                      |
| BD-44-4.5-SL   | 11/19/2007 pCi/g  | 0.67                    |                      |
| BD-44-8.5-SL   | 11/19/2007 pCi/g  | 1.49                    |                      |
| BD-45-13-SL    | 11/8/2007 pCi/g   | 1.23                    |                      |
| BD-45-2.5-SL   | 11/8/2007 pCi/g   | 0.76                    |                      |
| BD-45-4.5-SL   | 11/8/2007 pCi/g   | 1.53                    |                      |
| BD-46-2.5-SL   | 11/20/2007 pCi/g  | 0.65                    |                      |
| BD-46-4.5-SL   | 11/20/2007 pCi/g  | 1.47                    |                      |
| BD-46-5-SL     | 11/20/2007 pCi/g  | 0.94                    |                      |
| BD-47-2.5-SL   | 11/19/2007 pCi/g  | 1.03                    |                      |
| BD-47-4.5-SL   | 11/19/2007 pCi/g  |                         |                      |
| BD-47-6.5-SL   | 11/19/2007 pCi/g  | 1.2                     |                      |
| BD-48-2.5-SL   | 11/19/2007 pCi/g  | 1.09                    |                      |
| BD-48-4.5-SL   | 11/19/2007 pCi/g  | 1.38                    |                      |
| BD-48-5.5-SL   | 11/19/2007 pCi/g  | 1.39                    |                      |
| BLD240-01-01   | 11/25/2003 pCi/g  | 0.99                    |                      |
| BLD240-01-09   | 11/25/2003 pCi/g  | 1.03                    |                      |
| BLD240-01-09FD | 11/25/2003 pCi/g  | 0.85                    |                      |
| BLD240-01-Fill | 11/25/2003 pCi/g  | 0.16                    |                      |
| BLD240-03-04   | 11/25/2003 pCi/g  | 1.29                    |                      |
| BLD240-03-04FD | 11/25/2003 pCi/g  | 0.92                    |                      |
| BLD240-03-19   | 11/25/2003 pCi/g  | 1                       |                      |
| BLD240-03-Fill | 11/25/2003 pCi/g  | 0.45                    |                      |

### Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| Sample ID        | Sample_Date Units | Ra_226_Unknown_Ingrowth | Ra_226_with_Ingrowth |
|------------------|-------------------|-------------------------|----------------------|
| BLD240-04-02     | 11/24/2003 pCi/g  | 0.63                    |                      |
| BLD240-04-04     | 11/24/2003 pCi/g  | 0.73                    |                      |
| BLD240-04-Fill   | 11/24/2003 pCi/g  | 0.38                    |                      |
| BLD240-05-01     | 11/21/2003 pCi/g  | 0.89                    |                      |
| BLD240-05-02     | 11/21/2003 pCi/g  | 1.07                    |                      |
| BLD253-02-01     | 11/24/2003 pCi/g  | 0.95                    |                      |
| BLD253-02-04     | 11/24/2003 pCi/g  | 1                       |                      |
| BLD253-02-Fill   | 11/24/2003 pCi/g  | 0.17                    |                      |
| BLD253-02-FillFD | 11/24/2003 pCi/g  | 0.23                    |                      |
| BLD255-05-Fill   | 11/21/2003 pCi/g  | 0.41                    |                      |
| BLD255-07-02     | 11/24/2003 pCi/g  | 0.92                    |                      |
| BLD255-07-15     | 11/24/2003 pCi/g  | 0.91                    |                      |
| BLD255-08-01     | 11/19/2003 pCi/g  | 0.81                    |                      |
| BLD255-08-08     | 11/19/2003 pCi/g  | 1.12                    |                      |
| BLD260-06-01     | 11/20/2003 pCi/g  | 1.04                    |                      |
| BLD260-06-03     | 11/20/2003 pCi/g  | 1.26                    |                      |
| BLD260-06-Fill   | 11/20/2003 pCi/g  | 0.72                    |                      |
| BP-01-00-SL      | 4/28/2004 pCi/g   | 0.792                   |                      |
| BP-02-00-SL      | 5/3/2004 pCi/g    | 0.927                   |                      |
| BP-03-00-SL      | 5/3/2004 pCi/g    | 1.02                    |                      |
| BP-04-00-SL      | 5/3/2004 pCi/g    | 0.797                   |                      |
| BP-05-00-SL      | 5/3/2004 pCi/g    | 1.26                    |                      |
| BP-06-00-SL      | 4/28/2004 pCi/g   | 1.08                    |                      |
| BP-07-00-SL      | 4/29/2004 pCi/g   | 0.992                   |                      |
| BP-08-00-SL      | 4/28/2004 pCi/g   | 1.59                    |                      |
| BP-09-00-SL      | 4/28/2004 pCi/g   | 1.18                    |                      |
| BP-10-00-SL      | 4/29/2004 pCi/g   | 1.43                    |                      |
| BP-11-00-SL      | 4/29/2004 pCi/g   | 1.31                    |                      |
| BP-12-00-SL      | 4/29/2004 pCi/g   | 1.44                    | 1.03                 |
| BP-13-05-SL      | 6/15/2004 pCi/g   | 1.01                    | 1.26                 |
| BP-13-11-SL      | 6/15/2004 pCi/g   | 0.998                   |                      |
| BP-13-15-SL      | 6/15/2004 pCi/g   | 0.69                    |                      |
| BP-13-25-SL      | 6/15/2004 pCi/g   | 0.946                   |                      |
| BP-13-35-SL      | 6/15/2004 pCi/g   | 0.773                   |                      |
| BP-17-05-SL      | 6/30/2004 pCi/g   | 0.641                   |                      |
| BP-17-15-SL      | 6/30/2004 pCi/g   | 0.894                   |                      |
| BP-17-23-SL      | 6/30/2004 pCi/g   | 0.891                   |                      |
| BP-17-31-SL      | 6/30/2004 pCi/g   | 0.947                   |                      |
| BP-18-05-SL      | 6/30/2004 pCi/g   | 0.768                   | 1.16                 |
| BP-18-15-SL      | 6/30/2004 pCi/g   | 1.12                    |                      |
| BP-18-25-SL      | 6/30/2004 pCi/g   | 0.995                   |                      |
| BP-18-31-SL      | 6/30/2004 pCi/g   | 0.474                   |                      |

Non-Impacted

| Sample ID      | Sample Date Units | Ra_226_Unknown_Ingrowth | Ra_226_with_Ingrowth |
|----------------|-------------------|-------------------------|----------------------|
| BP-19-05-SL    | 6/30/2004 pCi/g   | 0.865                   | 0                    |
| BP-19-13-SL    | 6/30/2004 pCi/g   | 1.02                    |                      |
| BP-19-25-SL    | 6/30/2004 pCi/g   | 1                       |                      |
| BP-19-29-SL    | 6/30/2004 pCi/g   | 0.828                   |                      |
| BP-20-03-SL    | 6/29/2004 pCi/g   | 1.03                    |                      |
| BP-20-19-SL    | 6/29/2004 pCi/g   | 0.738                   |                      |
| BP-20-27-SL    | 6/29/2004 pCi/g   | 0.548                   |                      |
| BP-21-07-SL    | 6/28/2004 pCi/g   | 0.848                   |                      |
| BP-21-07-SL-FD | 6/28/2004 pCi/g   | 1.04                    |                      |
| BP-21-13-SL    | 6/28/2004 pCi/g   | 0.961                   |                      |
| BP-21-24-SL    | 6/28/2004 pCi/g   | 1.01                    |                      |
| BP-21-34-SL    | 6/28/2004 pCi/g   | 0.571                   |                      |
| BP-22-05-SL    | 6/29/2004 pCi/g   | 0.949                   |                      |
| BP-22-13-SL    | 6/29/2004 pCi/g   | 0.728                   |                      |
| BP-22-23-SL    | 6/29/2004 pCi/g   | 0.843                   |                      |
| BP-22-33-SL    | 6/29/2004 pCi/g   | 0.398                   |                      |
| CB-01-00-SL    | 4/27/2004 pCi/g   | 0.789                   |                      |
| CB-01-00-SL-FD | 4/27/2004 pCi/g   | 0.998                   |                      |
| CB-02-05-SL    | 6/2/2004 pCi/g    | 0.901                   |                      |
| CB-02-05-SL-FD | 6/2/2004 pCi/g    | 1.02                    |                      |
| CB-02-15-SL    | 6/2/2004 pCi/g    | 0.886                   |                      |
| CB-02-25-SL    | 6/2/2004 pCi/g    | 0.748                   |                      |
| DM-02-05-SL    | 7/1/2003 pCi/g    | 0.777                   |                      |
| DM-02-17-SL    | 7/1/2004 pCi/g    | 1.07                    |                      |
| DM-02-22-SL    | 7/1/2005 pCi/g    | 0.743                   |                      |
| DM-02-33-SL    | 7/1/2006 pCi/g    | 0.732                   |                      |
| DM-03-05-SL    | 7/2/2004 pCi/g    | 0.716                   |                      |
| DM-03-05-SL-FD | 7/2/2004 pCi/g    | 1.51                    |                      |
| DM-03-13-SL    | 7/2/2004 pCi/g    | 1.17                    |                      |
| DM-03-25-SL    | 7/2/2004 pCi/g    | 1.1                     |                      |
| DM-03-34-SL    | 7/2/2004 pCi/g    | 0.842                   |                      |
| EP-01-00-SL    | 5/6/2004 pCi/g    | 1.45                    |                      |
| EP-02-00-SL    | 5/7/2004 pCi/g    | 1.21                    |                      |
| EP-03-00-SL    | 5/8/2004 pCi/g    | 1.19                    |                      |
| EP-04-00-SL    | 5/6/2004 pCi/g    | 0.654                   |                      |
| EP-04-00-SL-FD | 5/6/2004 pCi/g    | 0.959                   |                      |
| EP-05-00-SL    | 5/6/2004 pCi/g    | 1.07                    |                      |
| EP-06-00-SL    | 5/5/2004 pCi/g    | 0.476                   |                      |
| EP-07-00-SL    | 5/5/2004 pCi/g    | 0.812                   |                      |
| EP-08-00-SL    | 5/5/2004 pCi/g    | 1.02                    |                      |
| EP-09-00-SL    | 5/5/2004 pCi/g    | 1.39                    |                      |
| EP-10-00-SL    | 5/5/2004 pCi/g    | 0.799                   |                      |
|                |                   |                         |                      |

Unknown and Known Ingrowth Non-Impacted Ra-226 via Gamma Spectroscopy

| Sample ID             | Sample_Date Units | Ra_226_Unknown_Ingrowth | Ra_226_with_Ingrowth |
|-----------------------|-------------------|-------------------------|----------------------|
| EP-11-00-SL           | 5/5/2004 pCi/g    | 0.979                   |                      |
| EP-12-00-SL           | 5/5/2004 pCi/g    | 0.873                   |                      |
| EP-13-03-SL           | 7/7/2004 pCi/g    | 1.36                    |                      |
| EP-13-13-SL           | 7/7/2004 pCi/g    | 1.18                    |                      |
| EP-13-25-SL           | 7/7/2004 pCi/g    | 0.945                   |                      |
| EP-13-30-SL           | 7/7/2004 pCi/g    | 0.714                   |                      |
| EP-14-05-SL           | 7/7/2004 pCi/g    | 0.885                   | 1.1                  |
| EP-14-13-SL           | 7/7/2004 pCi/g    | 0.98                    |                      |
| EP-14-25-SL           | 7/7/2004 pCi/g    | 0.961                   |                      |
| EP-14-31-SL           | 7/7/2004 pCi/g    | 0.772                   |                      |
| EP-15-05-SL           | 6/10/2004 pCi/g   | 1.09                    |                      |
| EP-15-13-SL           | 6/10/2004 pCi/g   | 0.992                   |                      |
| EP-15-25-SL           | 6/10/2004 pCi/g   | 0.58                    |                      |
| EP-15-29-SL           | 6/10/2004 pCi/g   | 1.03                    |                      |
| EP-16-05-SL           | 6/9/2004 pCi/g    | 1.26                    |                      |
| EP-16-15-SL           | 6/9/2004 pCi/g    | 1.03                    |                      |
| EP-16-27-SL           | 6/9/2004 pCi/g    | 0.322                   |                      |
| EP-17-05-SL           | 6/10/2004 pCi/g   | 1.15                    |                      |
| EP-17-15-SL           | 6/10/2004 pCi/g   | 1.2                     |                      |
| EP-17-25-SL           | 6/10/2004 pCi/g   | 0.983                   |                      |
| EP-17-30-SL           | 6/10/2004 pCi/g   | 0.438                   |                      |
| EP-18-09-SL           | 7/7/2004 pCi/g    | 1.06                    |                      |
| EP-18-09-SL-FD        | 7/7/2004 pCi/g    | 0.921                   |                      |
| EP-18-15-SL           | 7/7/2004 pCi/g    | 1.02                    |                      |
| EP-18-29-SL           | 7/7/2004 pCi/g    | 1.29                    |                      |
| EP-19-05-SL           | 7/7/2004 pCi/g    | 0.729                   |                      |
| EP-19-13-SL           | 7/7/2004 pCi/g    | 0.912                   |                      |
| EP-19-25-SL           | 7/7/2004 pCi/g    | 0.937                   |                      |
| EP-19-31-SL           | 7/7/2004 pCi/g    | 0.748                   |                      |
| EP-20-05-SL           | 6/8/2004 pCi/g    | 0.937                   |                      |
| EP-20-15-SL           | 6/8/2004 pCi/g    | 1.09                    |                      |
| EP-20-25-SL           | 6/8/2004 pCi/g    | 0.97                    |                      |
| FS-19-1-BIA-1-SO-1    | 7/1/2008 pCi/g    | 1.01                    |                      |
| FS-19-1-BIA-1-SO-2    | 7/1/2008 pCi/g    | 1.09                    |                      |
| FS-19-1-BIA-1-SO-3    | 7/1/2008 pCi/g    | 1.1                     |                      |
| FS-19-1-BIA-1-SO-3-QC | 7/1/2008 pCi/g    | 1.16                    |                      |
| FS-19-1-BIA-2-SO-1    | 7/1/2008 pCi/g    | 1.04                    |                      |
| FS-19-1-BIA-2-SO-2    | 7/1/2008 pCi/g    | 0.992                   |                      |
| FS-19-1-BIA-2-SO-3    | 7/1/2008 pCi/g    | 1.08                    |                      |
| FS-19-1-BIA-3-SO-1    | 7/1/2008 pCi/g    | 0.61                    |                      |
| FS-19-1-BIA-3-SO-2    | 7/1/2008 pCi/g    | 1.02                    |                      |
| FS-19-1-BIA-3-SO-3    | 7/1/2008 pCi/g    | 1.19                    |                      |

Non-Impacted

Non-Impacted

| Sample ID             | Sample Date Units | Ra_226_Unknown_Ingrowth | Ra_226_with_Ingrowth |
|-----------------------|-------------------|-------------------------|----------------------|
| FS-19-1-BIA-3-SO-3-QA | 7/1/2008 pCi/g    | 1.09                    |                      |
| FS-19-1-BIA-4-SO-1    | 7/1/2008 pCi/g    | 0.658                   |                      |
| FS-19-1-BIA-4-SO-2    | 7/1/2008 pCi/g    | 1.06                    |                      |
| FS-19-1-BIA-4-SO-3    | 7/1/2008 pCi/g    | 1.18                    |                      |
| FS-19-1-BIA-5-SO-1    | 7/1/2008 pCi/g    | 0.78                    |                      |
| FS-19-1-BIA-5-SO-2    | 7/1/2008 pCi/g    | 1.08                    |                      |
| FS-19-1-BIA-5-SO-3    | 7/1/2008 pCi/g    | 1.09                    |                      |
| FS-19-1-QA-10-SO-3    | 6/25/2008 pCi/g   | 1.14                    |                      |
| FS-19-1-QA-1-SO-3     | 6/24/2008 pCi/g   | 1.11                    |                      |
| FS-19-1-QA-21-SO-3    | 6/26/2008 pCi/g   | 0.823                   |                      |
| FS-19-1-QA-9-SO-3     | 6/23/2008 pCi/g   | 1.23                    |                      |
| FS-19-1-SYS-10-SO-1   | 6/25/2008 pCi/g   | 1.07                    |                      |
| FS-19-1-SYS-10-SO-2   | 6/25/2008 pCi/g   | 1.31                    |                      |
| FS-19-1-SYS-10-SO-3   | 6/25/2008 pCi/g   | 1.17                    |                      |
| FS-19-1-SYS-11-SO-1   | 6/24/2008 pCi/g   | 0.844                   |                      |
| FS-19-1-SYS-11-SO-2   | 6/24/2008 pCi/g   | 1.12                    |                      |
| FS-19-1-SYS-11-SO-3   | 6/24/2008 pCi/g   | 1.11                    |                      |
| FS-19-1-SYS-12-SO-1   | 6/25/2008 pCi/g   | 1.01                    |                      |
| FS-19-1-SYS-12-SO-2   | 6/25/2008 pCi/g   | 1.16                    |                      |
| FS-19-1-SYS-12-SO-3   | 6/25/2008 pCi/g   | 1.17                    |                      |
| FS-19-1-SYS-13-SO-1   | 6/25/2008 pCi/g   | 0.92                    |                      |
| FS-19-1-SYS-13-SO-2   | 6/25/2008 pCi/g   | 1.13                    |                      |
| FS-19-1-SYS-13-SO-3   | 6/25/2008 pCi/g   | 1.13                    |                      |
| FS-19-1-SYS-14-SO-1   | 6/25/2008 pCi/g   | 0.893                   |                      |
| FS-19-1-SYS-14-SO-2   | 6/25/2008 pCi/g   | 1.26                    |                      |
| FS-19-1-SYS-14-SO-3   | 6/25/2008 pCi/g   | 1.2                     |                      |
| FS-19-1-SYS-15-SO-1   | 6/24/2008 pCi/g   | 0.726                   |                      |
| FS-19-1-SYS-15-SO-2   | 6/24/2008 pCi/g   | 0.849                   |                      |
| FS-19-1-SYS-15-SO-3   | 6/24/2008 pCi/g   | 1.18                    |                      |
| FS-19-1-SYS-16-SO-1   | 6/25/2008 pCi/g   | 0.989                   |                      |
| FS-19-1-SYS-16-SO-2   | 6/25/2008 pCi/g   | 1.06                    |                      |
| FS-19-1-SYS-16-SO-3   | 6/25/2008 pCi/g   | 1.19                    |                      |
| FS-19-1-SYS-17-SO-1   | 6/26/2008 pCi/g   | 0.674                   |                      |
| FS-19-1-SYS-17-SO-2   | 6/26/2008 pCi/g   | 0.934                   |                      |
| FS-19-1-SYS-17-SO-3   | 6/26/2008 pCi/g   | 1.07                    |                      |
| FS-19-1-SYS-18-SO-1   | 6/26/2008 pCi/g   | 0.93                    |                      |
| FS-19-1-SYS-18-SO-2   | 6/26/2008 pCi/g   | 0.931                   |                      |
| FS-19-1-SYS-18-SO-3   | 6/26/2008 pCi/g   | 1.19                    |                      |
| FS-19-1-SYS-19-SO-1   | 6/26/2008 pCi/g   | 0.401                   |                      |
| FS-19-1-SYS-19-SO-2   | 6/26/2008 pCi/g   | 0.918                   |                      |
| FS-19-1-SYS-19-SO-3   | 6/26/2008 pCi/g   | 1                       |                      |
| FS-19-1-SYS-1-SO-1    | 6/24/2008 pCi/g   | 0.777                   |                      |

Non-Impacted

| Sample ID           | Sample_Date Units | Ra_226_Unknown_Ingrowth | Ra_226_with_Ingrowth |
|---------------------|-------------------|-------------------------|----------------------|
| FS-19-1-SYS-1-SO-2  | 6/24/2008 pCi/g   | 0.972                   |                      |
| FS-19-1-SYS-1-SO-3  | 6/24/2008 pCi/g   | 1.15                    |                      |
| FS-19-1-SYS-20-SO-1 | 6/26/2008 pCi/g   | 0.723                   |                      |
| FS-19-1-SYS-20-SO-2 | 6/26/2008 pCi/g   | 0.96                    |                      |
| FS-19-1-SYS-20-SO-3 | 6/26/2008 pCi/g   | 1.35                    |                      |
| FS-19-1-SYS-21-SO-1 | 6/26/2008 pCi/g   | 0.708                   |                      |
| FS-19-1-SYS-21-SO-2 | 6/26/2008 pCi/g   | 0.91                    |                      |
| FS-19-1-SYS-21-SO-3 | 6/26/2008 pCi/g   | 0.855                   |                      |
| FS-19-1-SYS-22-SO-1 | 6/26/2008 pCi/g   | 0.729                   |                      |
| FS-19-1-SYS-22-SO-2 | 6/26/2008 pCi/g   | 0.85                    |                      |
| FS-19-1-SYS-22-SO-3 | 6/26/2008 pCi/g   | 0.9                     |                      |
| FS-19-1-SYS-2-SO-1  | 6/24/2008 pCi/g   | 0.795                   |                      |
| FS-19-1-SYS-2-SO-2  | 6/24/2008 pCi/g   | 1.23                    |                      |
| FS-19-1-SYS-2-SO-3  | 6/24/2008 pCi/g   | 1.04                    |                      |
| FS-19-1-SYS-3-SO-1  | 6/24/2008 pCi/g   | 0.926                   |                      |
| FS-19-1-SYS-3-SO-2  | 6/24/2008 pCi/g   | 1.18                    |                      |
| FS-19-1-SYS-3-SO-3  | 6/24/2008 pCi/g   | 1.16                    |                      |
| FS-19-1-SYS-4-SO-1  | 6/23/2008 pCi/g   | 1.06                    |                      |
| FS-19-1-SYS-4-SO-2  | 6/23/2008 pCi/g   | 1.22                    |                      |
| FS-19-1-SYS-4-SO-3  | 6/23/2008 pCi/g   | 1.26                    |                      |
| FS-19-1-SYS-5-SO-1  | 6/24/2008 pCi/g   | 0.531                   |                      |
| FS-19-1-SYS-5-SO-2  | 6/24/2008 pCi/g   | 1.22                    |                      |
| FS-19-1-SYS-5-SO-3  | 6/24/2008 pCi/g   | 1.12                    |                      |
| FS-19-1-SYS-6-SO-1  | 6/23/2008 pCi/g   | 1.16                    |                      |
| FS-19-1-SYS-6-SO-2  | 6/23/2008 pCi/g   | 1.14                    |                      |
| FS-19-1-SYS-6-SO-3  | 6/23/2008 pCi/g   | 1.23                    |                      |
| FS-19-1-SYS-7-SO-1  | 6/23/2008 pCi/g   | 0.636                   |                      |
| FS-19-1-SYS-7-SO-2  | 6/23/2008 pCi/g   | 1.29                    |                      |
| FS-19-1-SYS-7-SO-3  | 6/23/2008 pCi/g   | 1.24                    |                      |
| FS-19-1-SYS-8-SO-1  | 6/23/2008 pCi/g   | 0.783                   |                      |
| FS-19-1-SYS-8-SO-2  | 6/23/2008 pCi/g   | 1.07                    |                      |
| FS-19-1-SYS-8-SO-3  | 6/23/2008 pCi/g   | 1.21                    |                      |
| FS-19-1-SYS-9-SO-1  | 6/23/2008 pCi/g   | 0.831                   |                      |
| FS-19-1-SYS-9-SO-2  | 6/23/2008 pCi/g   | 1.02                    |                      |
| FS-19-1-SYS-9-SO-3  | 6/23/2008 pCi/g   | 1.15                    |                      |
| FS-19-2-QA-06-SO-3  | 6/28/2008 pCi/g   | 1.12                    |                      |
| FS-19-2-QA-17-SO-3  | 6/27/2008 pCi/g   | 0.973                   |                      |
| FS-19-2-QA-8-SO-3   | 6/30/2008 pCi/g   | 1.1                     |                      |
| FS-19-2-QC-04-SO-3  | 6/28/2008 pCi/g   | 0.95                    |                      |
| FS-19-2-SYS-01-SO-1 | 6/28/2008 pCi/g   | 1.11                    |                      |
| FS-19-2-SYS-01-SO-2 | 6/28/2008 pCi/g   | 1.07                    |                      |
| FS-19-2-SYS-01-SO-3 | 6/28/2008 pCi/g   | 0.99                    |                      |
|                     |                   |                         |                      |

Non-Impacted

| Sample ID           | Sample_Date Units | Ra_226_Unknown_Ingrowth | Ra_226_with_Ingrowth |
|---------------------|-------------------|-------------------------|----------------------|
| FS-19-2-SYS-02-SO-1 | 6/30/2008 pCi/g   | 1.03                    |                      |
| FS-19-2-SYS-02-SO-2 | 6/30/2008 pCi/g   | 1.17                    |                      |
| FS-19-2-SYS-02-SO-3 | 6/30/2008 pCi/g   | 0.958                   |                      |
| FS-19-2-SYS-03-SO-1 | 6/28/2008 pCi/g   | 0.988                   |                      |
| FS-19-2-SYS-03-SO-2 | 6/28/2008 pCi/g   | 1.28                    |                      |
| FS-19-2-SYS-03-SO-3 | 6/28/2008 pCi/g   | 0.916                   |                      |
| FS-19-2-SYS-04-SO-1 | 6/28/2008 pCi/g   | 1.2                     |                      |
| FS-19-2-SYS-04-SO-2 | 6/28/2008 pCi/g   | 1.13                    |                      |
| FS-19-2-SYS-04-SO-3 | 6/28/2008 pCi/g   | 1.03                    |                      |
| FS-19-2-SYS-05-SO-1 | 6/30/2008 pCi/g   | 0.99                    |                      |
| FS-19-2-SYS-05-SO-2 | 6/30/2008 pCi/g   | 1.17                    |                      |
| FS-19-2-SYS-05-SO-3 | 6/30/2008 pCi/g   | 1.15                    |                      |
| FS-19-2-SYS-06-SO-1 | 6/28/2008 pCi/g   | 1                       |                      |
| FS-19-2-SYS-06-SO-2 | 6/28/2008 pCi/g   | 1.02                    |                      |
| FS-19-2-SYS-06-SO-3 | 6/28/2008 pCi/g   | 1.07                    |                      |
| FS-19-2-SYS-09-SO-1 | 6/28/2008 pCi/g   | 0.712                   |                      |
| FS-19-2-SYS-09-SO-2 | 6/28/2008 pCi/g   | 0.961                   |                      |
| FS-19-2-SYS-09-SO-3 | 6/28/2008 pCi/g   | 1.06                    |                      |
| FS-19-2-SYS-10-SO-1 | 6/30/2008 pCi/g   | 1.02                    |                      |
| FS-19-2-SYS-10-SO-2 | 6/30/2008 pCi/g   | 1.27                    |                      |
| FS-19-2-SYS-10-SO-3 | 6/30/2008 pCi/g   | 1.17                    |                      |
| FS-19-2-SYS-11-SO-1 | 6/30/2008 pCi/g   | 1.13                    |                      |
| FS-19-2-SYS-11-SO-2 | 6/30/2008 pCi/g   | 1.06                    |                      |
| FS-19-2-SYS-11-SO-3 | 6/30/2008 pCi/g   | 1.02                    |                      |
| FS-19-2-SYS-12-SO-1 | 6/28/2008 pCi/g   | 0.803                   |                      |
| FS-19-2-SYS-12-SO-2 | 6/28/2008 pCi/g   | 1.03                    |                      |
| FS-19-2-SYS-12-SO-3 | 6/28/2008 pCi/g   | 1.06                    |                      |
| FS-19-2-SYS-13-SO-1 | 6/30/2008 pCi/g   | 1.14                    |                      |
| FS-19-2-SYS-13-SO-2 | 6/30/2008 pCi/g   | 0.98                    |                      |
| FS-19-2-SYS-13-SO-3 | 6/30/2008 pCi/g   | 1.06                    |                      |
| FS-19-2-SYS-14-SO-1 | 6/30/2008 pCi/g   | 0.909                   |                      |
| FS-19-2-SYS-14-SO-2 | 6/30/2008 pCi/g   | 1.05                    |                      |
| FS-19-2-SYS-14-SO-3 | 6/30/2008 pCi/g   | 1.1                     |                      |
| FS-19-2-SYS-15-SO-1 | 6/28/2008 pCi/g   | 0.584                   |                      |
| FS-19-2-SYS-15-SO-2 | 6/28/2008 pCi/g   | 0.99                    |                      |
| FS-19-2-SYS-15-SO-3 | 6/28/2008 pCi/g   | 1.04                    |                      |
| FS-19-2-SYS-16-SO-1 | 6/27/2008 pCi/g   | 0.467                   |                      |
| FS-19-2-SYS-16-SO-2 | 6/27/2008 pCi/g   | 0.839                   |                      |
| FS-19-2-SYS-16-SO-3 | 6/27/2008 pCi/g   | 0.945                   |                      |
| FS-19-2-SYS-17-SO-1 | 6/27/2008 pCi/g   | 0.601                   |                      |
| FS-19-2-SYS-17-SO-2 | 6/27/2008 pCi/g   | 0.822                   |                      |
| FS-19-2-SYS-17-SO-3 | 6/27/2008 pCi/g   | 0.97                    |                      |

Non-Impacted

| Sample ID           | Sample Date Units | Ra_226_Unknown_Ingrowth | Ra_226_with_Ingrowth |
|---------------------|-------------------|-------------------------|----------------------|
| FS-19-2-SYS-18-SO-1 | 6/28/2008 pCi/g   | 0.784                   |                      |
| FS-19-2-SYS-18-SO-2 | 6/28/2008 pCi/g   | 0.915                   |                      |
| FS-19-2-SYS-18-SO-3 | 6/28/2008 pCi/g   | 0.94                    |                      |
| FS-19-2-SYS-19-SO-1 | 6/27/2008 pCi/g   | 0.882                   |                      |
| FS-19-2-SYS-19-SO-2 | 6/27/2008 pCi/g   | 0.898                   |                      |
| FS-19-2-SYS-19-SO-3 | 6/27/2008 pCi/g   | 1.05                    |                      |
| FS-19-2-SYS-20-SO-1 | 6/27/2008 pCi/g   | 0.663                   |                      |
| FS-19-2-SYS-20-SO-2 | 6/27/2008 pCi/g   | 0.943                   |                      |
| FS-19-2-SYS-20-SO-3 | 6/27/2008 pCi/g   | 0.864                   |                      |
| FS-19-2-SYS-21-SO-1 | 6/27/2008 pCi/g   | 0.655                   |                      |
| FS-19-2-SYS-21-SO-2 | 6/27/2008 pCi/g   | 0.967                   |                      |
| FS-19-2-SYS-21-SO-3 | 6/27/2008 pCi/g   | 1.35                    |                      |
| FS-19-2-SYS-22-SO-1 | 6/27/2008 pCi/g   | 0.83                    |                      |
| FS-19-2-SYS-22-SO-2 | 6/27/2008 pCi/g   | 0.978                   |                      |
| FS-19-2-SYS-22-SO-3 | 6/27/2008 pCi/g   | 0.729                   |                      |
| FS-19-2-SYS-7-SO-1  | 6/30/2008 pCi/g   | 1.08                    |                      |
| FS-19-2-SYS-7-SO-2  | 6/30/2008 pCi/g   | 0.968                   |                      |
| FS-19-2-SYS-7-SO-3  | 6/30/2008 pCi/g   | 1.08                    |                      |
| FS-19-2-SYS-8-SO-1  | 6/30/2008 pCi/g   | 0.967                   |                      |
| FS-19-2-SYS-8-SO-2  | 6/30/2008 pCi/g   | 1.04                    |                      |
| FS-19-2-SYS-8-SO-3  | 6/30/2008 pCi/g   | 1.06                    |                      |
| GS-01-00-SL         | 4/30/2004 pCi/g   | 0.652                   |                      |
| GS-01-00-SL-FD      | 4/30/2004 pCi/g   | 0.807                   |                      |
| GS-02-00-SL         | 5/3/2004 pCi/g    | 1.08                    |                      |
| GS-03-00-SL         | 4/30/2004 pCi/g   | 0.455                   |                      |
| GS-04-00-SL         | 5/3/2004 pCi/g    | 1.16                    |                      |
| GS-05-00-SL         | 5/3/2004 pCi/g    | 0.909                   |                      |
| LB01R               | 10/10/2005 pCi/g  |                         |                      |
| LB02R               | 10/10/2005 pCi/g  |                         |                      |
| LB03R               | 10/10/2005 pCi/g  |                         |                      |
| LB04R               | 10/10/2005 pCi/g  |                         |                      |
| LB05R               | 10/10/2005 pCi/g  |                         |                      |
| LB06R               | 10/10/2005 pCi/g  |                         |                      |
| LB0708C1            | 10/10/2005 pCi/g  |                         |                      |
| LB07R               | 10/10/2005 pCi/g  |                         |                      |
| LB08R               | 10/10/2005 pCi/g  |                         |                      |
| LB09R               | 10/10/2005 pCi/g  |                         |                      |
| LB10R               | 10/10/2005 pCi/g  |                         |                      |
| LB11R               | 10/11/2005 pCi/g  |                         |                      |
| LB12R               | 10/11/2005 pCi/g  |                         |                      |
| LB13R               | 10/11/2005 pCi/g  |                         |                      |
| LB14R               | 10/11/2005 pCi/g  |                         |                      |

Non-Impacted

| Sample ID   | Sample Date Units | Ra 226 Unknown Ingrowth | Ra_226_with_Ingrowth |
|-------------|-------------------|-------------------------|----------------------|
| LB15R       | 10/11/2005 pCi/g  |                         |                      |
| LB15RD      | 10/11/2005 pCi/g  |                         |                      |
| LB1617C2    | 10/11/2005 pCi/g  |                         |                      |
| LB16R       | 10/11/2005 pCi/g  |                         |                      |
| LB17R       | 10/11/2005 pCi/g  |                         |                      |
| LB18R       | 10/11/2005 pCi/g  |                         |                      |
| LB19R       | 10/11/2005 pCi/g  |                         |                      |
| LB20R       | 10/11/2005 pCi/g  |                         |                      |
| LB21R       | 10/11/2005 pCi/g  |                         |                      |
| LB22R       | 10/11/2005 pCi/g  |                         |                      |
| LB23R       | 10/11/2005 pCi/g  |                         |                      |
| LB2425C3    | 10/11/2005 pCi/g  |                         |                      |
| LB24R       | 10/11/2005 pCi/g  |                         |                      |
| LB25R       | 10/11/2005 pCi/g  |                         |                      |
| LB26R       | 10/11/2005 pCi/g  |                         |                      |
| LB27R       | 10/11/2005 pCi/g  |                         |                      |
| LB28R       | 10/11/2005 pCi/g  |                         |                      |
| LB29R       | 10/11/2005 pCi/g  |                         |                      |
| LB30R       | 10/11/2005 pCi/g  |                         |                      |
| LB31R       | 10/11/2005 pCi/g  |                         |                      |
| LB3233C4    | 10/12/2005 pCi/g  |                         |                      |
| LB32R       | 10/11/2005 pCi/g  |                         |                      |
| LB33R       | 10/12/2005 pCi/g  |                         |                      |
| LB34R       | 10/12/2005 pCi/g  |                         |                      |
| LB35R       | 10/12/2005 pCi/g  |                         |                      |
| LB3637RC5   | 10/12/2005 pCi/g  |                         |                      |
| LB36R       | 10/12/2005 pCi/g  |                         |                      |
| LB36RD      | 10/12/2005 pCi/g  |                         |                      |
| LB37R       | 10/12/2005 pCi/g  |                         |                      |
| LB38R       | 10/12/2005 pCi/g  |                         |                      |
| LB39R       | 10/12/2005 pCi/g  |                         |                      |
| LF-01-00-SL | 5/5/2004 pCi/g    | 0.695                   |                      |
| LF-02-00-SL | 5/5/2004 pCi/g    | 0.333                   |                      |
| LF-03-00-SL | 5/5/2004 pCi/g    | 0.794                   |                      |
| LF-04-00-SL | 5/5/2004 pCi/g    | 0.907                   |                      |
| LF-05-00-SL | 5/5/2004 pCi/g    | 0.635                   |                      |
| LF-06-05-SL | 7/19/2004 pCi/g   | 0.828                   | 0.79                 |
| LF-06-13-SL | 7/19/2004 pCi/g   | 0.818                   |                      |
| LF-06-27-SL | 7/19/2004 pCi/g   | 0.798                   |                      |
| LF-06-32-SL | 7/19/2004 pCi/g   | 0.287                   |                      |
| LF-07-09-SL | 7/16/2004 pCi/g   | 1.06                    |                      |
| LF-07-15-SL | 7/16/2004 pCi/g   | 1                       |                      |

#### Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| Sample ID      | Sample Date Units | Ra_226_Unknown_Ingrowth | Ra_226_with_Ingrowth |
|----------------|-------------------|-------------------------|----------------------|
| LF-07-25-SL    | 7/16/2004 pCi/g   | 1.05                    | 0                    |
| LF-07-34-SL    | 7/16/2004 pCi/g   | 0.577                   |                      |
| LF-08-05-SL    | 7/16/2004 pCi/g   | 1.16                    |                      |
| LF-08-05-SL-FD | 7/16/2004 pCi/g   | 0.758                   |                      |
| LF-08-15-SL    | 7/16/2004 pCi/g   | 1.16                    |                      |
| LF-08-21-SL    | 7/16/2004 pCi/g   | 0.947                   |                      |
| LF-08-37-SL    | 7/16/2004 pCi/g   | 0.709                   |                      |
| LF-09-03-SL    | 7/16/2004 pCi/g   | 0.818                   |                      |
| LF-09-17-SL    | 7/16/2004 pCi/g   | 1.04                    |                      |
| LF-09-25-SL    | 7/16/2004 pCi/g   | 1.12                    |                      |
| LF-09-31-SL    | 7/16/2004 pCi/g   | 0.604                   |                      |
| LS-01-00-SL    | 5/6/2004 pCi/g    | 0.757                   |                      |
| LS-02-00-SL    | 5/6/2004 pCi/g    | 0.501                   |                      |
| LS-03-00-SL    | 5/6/2004 pCi/g    | 0.859                   |                      |
| NB-01-00-SL    | 4/29/2004 pCi/g   | 0.798                   |                      |
| NB-02-00-SL    | 4/29/2004 pCi/g   | 0.532                   |                      |
| NB-03-00-SL    | 4/29/2004 pCi/g   | 0.569                   |                      |
| NB-04-00-SL    | 4/30/2004 pCi/g   | 1.97                    |                      |
| NB-05-00-SL    | 4/30/2004 pCi/g   | 1.01                    |                      |
| NB-06-00-SL    | 4/30/2004 pCi/g   | 1.25                    |                      |
| NB-07-00-SL    | 4/30/2004 pCi/g   | 1.13                    |                      |
| NB-07-00-SL-FD | 4/30/2004 pCi/g   | 1.39                    |                      |
| NB-08-00-SL    | 4/30/2004 pCi/g   | 1.32                    |                      |
| NB-09-00-SL    | 4/30/2004 pCi/g   | 1.29                    |                      |
| NB-10-00-SL    | 5/3/2004 pCi/g    | 1.24                    |                      |
| NB-100-4.5-SL  | 11/9/2007 pCi/g   | 1.29                    |                      |
| NB-100-7-SL    | 11/9/2007 pCi/g   | 1.63                    |                      |
| NB-101-2.5-SL  | 11/17/2007 pCi/g  | 0.38                    |                      |
| NB-101-4.5-SL  | 11/17/2007 pCi/g  | 1.71                    |                      |
| NB-101-7-SL    | 11/17/2007 pCi/g  | 0.179                   |                      |
| NB-102-0.5-SL  | 11/17/2007 pCi/g  | 0.56                    |                      |
| NB-102-4.5-SL  | 11/17/2007 pCi/g  | 0.59                    |                      |
| NB-102-5-SL    | 11/17/2007 pCi/g  | 0.69                    |                      |
| NB-103-13.5-SL | 11/17/2007 pCi/g  | 1.17                    |                      |
| NB-103-2.5-SL  | 11/17/2007 pCi/g  | 0.41                    |                      |
| NB-103-4.5-SL  | 11/17/2007 pCi/g  | 0.55                    |                      |
| NB-104-0.5-SL  | 11/19/2007 pCi/g  | 0.98                    |                      |
| NB-104-12.5-SL | 11/19/2007 pCi/g  | 1.07                    |                      |
| NB-104-4.5-SL  | 11/19/2007 pCi/g  | 1.07                    |                      |
| NB-105-15.5-SL | 11/15/2007 pCi/g  | 0.72                    |                      |
| NB-105-4.5-SL  | 11/15/2007 pCi/g  | 0.8                     |                      |
| NB-106-2.5-SL  | 11/19/2007 pCi/g  | 0.195                   |                      |
|                |                   |                         |                      |

Non-Impacted

| Sample ID      | Sample_Date Units | Ra_226_Unknown_Ingrowth | Ra_226_with_Ingrowth |
|----------------|-------------------|-------------------------|----------------------|
| NB-106-4.5-SL  | 11/19/2007 pCi/g  | 1.2                     |                      |
| NB-106-7.5-SL  | 11/19/2007 pCi/g  | 0.8                     |                      |
| NB-107-0.5-SL  | 11/19/2007 pCi/g  | 0.84                    |                      |
| NB-107-17-SL   | 11/19/2007 pCi/g  | 1.19                    |                      |
| NB-107-4.5-SL  | 11/19/2007 pCi/g  | 1.16                    |                      |
| NB-108-0.5-SL  | 11/19/2007 pCi/g  | 1.23                    |                      |
| NB-108-4.5-SL  | 11/19/2007 pCi/g  | 0.95                    |                      |
| NB-108-9-SL    | 11/19/2007 pCi/g  | 1.01                    |                      |
| NB-109-0.5-SL  | 11/15/2007 pCi/g  | 1.32                    |                      |
| NB-109-4.5-SL  | 11/15/2007 pCi/g  | 0.85                    |                      |
| NB-109-5-SL    | 11/15/2007 pCi/g  | 0.95                    |                      |
| NB-110-0.5-SL  | 11/15/2007 pCi/g  | 0.95                    |                      |
| NB-11-00-SL    | 5/3/2004 pCi/g    | 1.12                    |                      |
| NB-110-4.5-SL  | 11/15/2007 pCi/g  | 1.11                    |                      |
| NB-110-5-SL    | 11/15/2007 pCi/g  | 1.42                    |                      |
| NB-111-0.5-SL  | 11/15/2007 pCi/g  | 1.14                    |                      |
| NB-111-4.5-SL  | 11/15/2007 pCi/g  | 0.76                    |                      |
| NB-111-8.5-SL  | 11/15/2007 pCi/g  | 1.55                    |                      |
| NB-112-4.5-SL  | 11/15/2007 pCi/g  | 0.92                    |                      |
| NB-112-8.5-SL  | 11/15/2007 pCi/g  | 0.82                    |                      |
| NB-113-19.5-SL | 11/20/2007 pCi/g  | 1.49                    |                      |
| NB-113-2.5-SL  | 11/17/2007 pCi/g  | 0.304                   |                      |
| NB-113-4.5-SL  | 11/17/2007 pCi/g  | 0.91                    |                      |
| NB-114-0.5-SL  | 11/16/2007 pCi/g  | 0.223                   | 0.206                |
| NB-114-10-SL   | 11/16/2007 pCi/g  | 1.06                    | 1.06                 |
| NB-114-2.5-SL  | 11/16/2007 pCi/g  | 0.337                   | 0.54                 |
| NB-114-4.5-SL  | 11/16/2007 pCi/g  | 1.07                    | 1.53                 |
| NB-115-12.5-SL | 11/17/2007 pCi/g  | 1.39                    |                      |
| NB-115-2.5-SL  | 11/17/2007 pCi/g  | 0.38                    |                      |
| NB-115-4.5-SL  | 11/17/2007 pCi/g  | 1.38                    |                      |
| NB-116-0.5-SL  | 11/14/2007 pCi/g  | 1.21                    |                      |
| NB-116-12.5-SL | 11/14/2007 pCi/g  | 1.32                    |                      |
| NB-116-4.5-SL  | 11/14/2007 pCi/g  | 1.39                    |                      |
| NB-117-13.5-SL | 11/15/2007 pCi/g  | 1.09                    |                      |
| NB-117-4.5-SL  | 11/15/2007 pCi/g  | 1.21                    |                      |
| NB-118-0.5-SL  | 11/15/2007 pCi/g  | 0.31                    |                      |
| NB-118-10.5-SL | 11/15/2007 pCi/g  | 1.49                    |                      |
| NB-118-4.5-SL  | 11/15/2007 pCi/g  | 0.48                    |                      |
| NB-119-0.5-SL  | 11/15/2007 pCi/g  | 0.9                     |                      |
| NB-119-13.5-SL | 11/15/2007 pCi/g  | 1.11                    |                      |
| NB-119-2.5-SL  | 11/15/2007 pCi/g  | 0.76                    |                      |
| NB-119-4.5-SL  | 11/15/2007 pCi/g  | 1.13                    |                      |

### Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| Sample ID      | Sample_Date Units | Ra 226 Unknown Ingrowth | Ra_226_with_Ingrowth |
|----------------|-------------------|-------------------------|----------------------|
| NB-120-0.5-SL  | 11/16/2007 pCi/g  | 0.6                     |                      |
| NB-12-00-SL    | 5/3/2004 pCi/g    | 1.2                     |                      |
| NB-120-16.5-SL | 11/16/2007 pCi/g  | 1.25                    |                      |
| NB-120-2.5-SL  | 11/16/2007 pCi/g  | 0.94                    |                      |
| NB-120-4.5-SL  | 11/16/2007 pCi/g  | 1.16                    |                      |
| NB-121-0.5-SL  | 11/16/2007 pCi/g  |                         |                      |
| NB-121-12.5-SL | 11/16/2007 pCi/g  | 1.12                    | 1.61                 |
| NB-121-2.5-SL  | 11/16/2007 pCi/g  | 0.61                    | 0.61                 |
| NB-121-4.5-SL  | 11/16/2007 pCi/g  | 1.34                    | 1.61                 |
| NB-122-0.5-SL  | 11/15/2007 pCi/g  |                         |                      |
| NB-122-14.5-SL | 11/15/2007 pCi/g  | 1.19                    |                      |
| NB-122-4.5-SL  | 11/15/2007 pCi/g  | 0.85                    | 1.12                 |
| NB-123-0.5-SL  | 11/16/2007 pCi/g  | 0.55                    |                      |
| NB-123-2.5-SL  | 11/16/2007 pCi/g  | 1.27                    |                      |
| NB-123-4.5-SL  | 11/16/2007 pCi/g  | 1.59                    |                      |
| NB-123-8.5-SL  | 11/16/2007 pCi/g  | 0.96                    |                      |
| NB-124-0.5-SL  | 11/14/2007 pCi/g  | 1                       |                      |
| NB-124-4.5-SL  | 11/14/2007 pCi/g  | 0.87                    |                      |
| NB-124-8.5-SL  | 11/14/2007 pCi/g  | 0.91                    |                      |
| NB-125-0.5-SL  | 11/14/2007 pCi/g  | 1.09                    |                      |
| NB-125-4.5-SL  | 11/14/2007 pCi/g  | 1.05                    |                      |
| NB-125-7-SL    | 11/14/2007 pCi/g  | 1.16                    |                      |
| NB-126-0.5-SL  | 11/14/2007 pCi/g  | 0.78                    |                      |
| NB-126-12.5-SL | 11/14/2007 pCi/g  | 0.76                    |                      |
| NB-126-4.5-SL  | 11/14/2007 pCi/g  | 1.2                     |                      |
| NB-127-4.5-SL  | 11/15/2007 pCi/g  | 0.73                    |                      |
| NB-127-5-SL    | 11/15/2007 pCi/g  | 1.04                    |                      |
| NB-128-0.5-SL  | 11/16/2007 pCi/g  | 0.92                    |                      |
| NB-128-18.5-SL | 11/16/2007 pCi/g  | 1.1                     |                      |
| NB-128-2.5-SL  | 11/16/2007 pCi/g  | 1.02                    |                      |
| NB-128-4.5-SL  | 11/16/2007 pCi/g  | 1.07                    |                      |
| NB-129-0.5-SL  | 11/16/2007 pCi/g  | 1.02                    |                      |
| NB-129-19-SL   | 11/16/2007 pCi/g  | 1.29                    |                      |
| NB-129-2.5-SL  | 11/16/2007 pCi/g  | 0.85                    |                      |
| NB-129-4.5-SL  | 11/16/2007 pCi/g  | 0.94                    |                      |
| NB-130-0.5-SL  | 11/14/2007 pCi/g  | 1.36                    | 1.25                 |
| NB-13-00-SL    | 5/3/2004 pCi/g    | 1.24                    |                      |
| NB-130-11-SL   | 11/14/2007 pCi/g  | 0.9                     |                      |
| NB-130-4.5-SL  | 11/14/2007 pCi/g  | 0.9                     |                      |
| NB-131-0.5-SL  | 11/15/2007 pCi/g  | 0.28                    |                      |
| NB-131-4.5-SL  | 11/15/2007 pCi/g  | 0.352                   |                      |
| NB-131-6.5-SL  | 11/15/2007 pCi/g  | 0.92                    |                      |

June 21, 2011

Non-Impacted

#### Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| Sample ID      | Sample_Date Units | Ra_226_Unknown_Ingrowth | Ra_226_with_Ingrowth |
|----------------|-------------------|-------------------------|----------------------|
| NB-132-13-SL   | 11/15/2007 pCi/g  | 1.19                    |                      |
| NB-132-4.5-SL  | 11/15/2007 pCi/g  | 0.81                    |                      |
| NB-133-2.5-SL  | 11/15/2007 pCi/g  | 0.47                    | 1.02                 |
| NB-133-4.5-SL  | 11/15/2007 pCi/g  | 1.11                    |                      |
| NB-133-5.5-SL  | 11/15/2007 pCi/g  | 0.86                    |                      |
| NB-134-0.5-SL  | 11/16/2007 pCi/g  | 0.78                    |                      |
| NB-134-2.5-SL  | 11/16/2007 pCi/g  | 0.74                    |                      |
| NB-134-4.5-SL  | 11/16/2007 pCi/g  | 1.72                    |                      |
| NB-134-9-SL    | 11/16/2007 pCi/g  | 2.6                     |                      |
| NB-135-0.5-SL  | 11/14/2007 pCi/g  | 1.51                    |                      |
| NB-135-15-SL   | 11/14/2007 pCi/g  | 1.09                    |                      |
| NB-135-4.5-SL  | 11/14/2007 pCi/g  | 1.26                    |                      |
| NB-136-0.5-SL  | 11/14/2007 pCi/g  | 1.4                     |                      |
| NB-136-17.5-SL | 11/14/2007 pCi/g  | 1.25                    |                      |
| NB-136-4.5-SL  | 11/14/2007 pCi/g  | 1.55                    | 1.13                 |
| NB-137-0.5-SL  | 11/13/2007 pCi/g  | 1.14                    |                      |
| NB-137-13.5-SL | 11/13/2007 pCi/g  | 1.49                    |                      |
| NB-137-4.5-SL  | 11/13/2007 pCi/g  | 1.48                    |                      |
| NB-138-0.5-SL  | 11/15/2007 pCi/g  |                         |                      |
| NB-138-14.5-SL | 11/15/2007 pCi/g  | 1.33                    |                      |
| NB-138-4.5-SL  | 11/15/2007 pCi/g  | 0.99                    |                      |
| NB-139-0.5-SL  | 11/15/2007 pCi/g  | 1.4                     |                      |
| NB-139-15-SL   | 11/15/2007 pCi/g  | 1.41                    |                      |
| NB-139-4.5-SL  | 11/19/2007 pCi/g  | 1.25                    |                      |
| NB-140-0.5-SL  | 11/15/2007 pCi/g  | 0.99                    | 1.46                 |
| NB-14-00-SL    | 5/3/2004 pCi/g    | 1.05                    |                      |
| NB-140-12.5-SL | 11/15/2007 pCi/g  | 1.5                     |                      |
| NB-140-4.5-SL  | 11/15/2007 pCi/g  | 1.18                    |                      |
| NB-141-0.5-SL  | 11/13/2007 pCi/g  | 1.28                    |                      |
| NB-141-17.5-SL | 11/13/2007 pCi/g  | 1.04                    |                      |
| NB-141-4.5-SL  | 11/13/2007 pCi/g  | 1.6                     | 1.47                 |
| NB-142-0.5-SL  | 11/15/2007 pCi/g  | 0.88                    |                      |
| NB-142-4.5-SL  | 11/15/2007 pCi/g  | 0.93                    |                      |
| NB-142-9-SL    | 11/15/2007 pCi/g  | 1.34                    |                      |
| NB-143-0.5-SL  | 11/13/2007 pCi/g  | 0.42                    |                      |
| NB-143-4.5-SL  | 11/13/2007 pCi/g  | 0.83                    |                      |
| NB-143-6.5-SL  | 11/13/2007 pCi/g  | 1.09                    |                      |
| NB-144-0.5-SL  | 11/14/2007 pCi/g  | 0.3                     |                      |
| NB-144-4.5-SL  | 11/14/2007 pCi/g  | 0.73                    |                      |
| NB-144-7-SL    | 11/14/2007 pCi/g  | 1.22                    |                      |
| NB-15-00-SL    | 5/3/2004 pCi/g    | 1.38                    |                      |
| NB-16-00-SL    | 4/30/2004 pCi/g   | 1.02                    |                      |

### Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| Sample ID      | Sample Date Units | Ra_226_Unknown_Ingrowth | Ra_226_with_Ingrowth |
|----------------|-------------------|-------------------------|----------------------|
| NB-17-00-SL    | 4/30/2004 pCi/g   | 1.23                    | 0                    |
| NB-18-00-SL    | 4/30/2004 pCi/g   | 1.16                    |                      |
| NB-19-00-SL    | 5/3/2004 pCi/g    | 0.99                    |                      |
| NB-20-00-SL    | 4/28/2004 pCi/g   | 1.15                    |                      |
| NB-21-00-SL    | 5/3/2004 pCi/g    | 0.944                   |                      |
| NB-22-00-SL    | 5/3/2004 pCi/g    | 1.08                    |                      |
| NB-23-00-SL    | 5/3/2004 pCi/g    | 1.12                    |                      |
| NB-24-00-SL    | 5/3/2004 pCi/g    | 1.18                    |                      |
| NB-25-00-SL    | 5/3/2004 pCi/g    | 0.712                   |                      |
| NB-26-00-SL    | 4/29/2004 pCi/g   | 0.492                   |                      |
| NB-27-00-SL    | 4/29/2004 pCi/g   | 0.58                    |                      |
| NB-27-00-SL-FD | 4/29/2004 pCi/g   | 1.03                    |                      |
| NB-28-04-SL    | 5/25/2004 pCi/g   | 1.07                    |                      |
| NB-28-14-SL    | 5/25/2004 pCi/g   | 0.756                   |                      |
| NB-28-24-SL    | 5/25/2004 pCi/g   | 0.525                   |                      |
| NB-28-35-SL    | 5/27/2004 pCi/g   | 0.395                   |                      |
| NB-29-05-SL    | 5/25/2004 pCi/g   | 0.867                   |                      |
| NB-29-14-SL    | 5/25/2004 pCi/g   | 0.198                   |                      |
| NB-29-22-SL    | 5/27/2004 pCi/g   | 0.465                   |                      |
| NB-30-05-SL    | 6/3/2004 pCi/g    | 1                       |                      |
| NB-30-15-SL    | 6/3/2004 pCi/g    | 1.08                    |                      |
| NB-30-25-SL    | 6/3/2004 pCi/g    | 1.03                    |                      |
| NB-30-33-SL    | 6/3/2005 pCi/g    | 0.532                   |                      |
| NB-31-05-SL    | 6/3/2002 pCi/g    | 0.888                   |                      |
| NB-31-15-SL    | 6/3/2003 pCi/g    | 1.06                    |                      |
| NB-31-27-SL    | 6/3/2004 pCi/g    | 1.09                    |                      |
| NB-31-32-SL    | 6/3/2004 pCi/g    | 0.903                   |                      |
| NB-32-05-SL    | 6/4/2004 pCi/g    | 0.981                   |                      |
| NB-32-15-SL    | 6/4/2004 pCi/g    | 1.07                    |                      |
| NB-32-27-SL    | 6/4/2004 pCi/g    | 1.02                    |                      |
| NB-32-33-SL    | 6/4/2004 pCi/g    | 0.56                    |                      |
| NB-33-05-SL    | 6/4/2004 pCi/g    | 0.967                   |                      |
| NB-33-15-SL    | 6/4/2004 pCi/g    | 1.02                    |                      |
| NB-33-27-SL    | 6/4/2004 pCi/g    | 0.676                   |                      |
| NB-34-05-SL    | 6/4/2004 pCi/g    | 1.16                    |                      |
| NB-34-15-SL    | 6/4/2004 pCi/g    | 1.06                    |                      |
| NB-34-25-SL    | 6/4/2004 pCi/g    | 0.514                   |                      |
| NB-35-01-SL    | 6/7/2004 pCi/g    | 0.97                    |                      |
| NB-35-15-SL    | 6/7/2004 pCi/g    | 1.07                    |                      |
| NB-35-25-SL    | 6/7/2004 pCi/g    | 1.04                    |                      |
| NB-36-05-SL    | 6/7/2004 pCi/g    | 0.892                   |                      |
| NB-36-15-SL    | 6/7/2004 pCi/g    | 1.53                    |                      |

### Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| Sample ID      | Sample_Date Units | Ra_226_Unknown_Ingrowth | Ra_226_with_Ingrowth |
|----------------|-------------------|-------------------------|----------------------|
| NB-36-27-SL    | 6/7/2004 pCi/g    | 0.971                   | 0                    |
| NB-37-05-SL    | 6/8/2004 pCi/g    | 0.962                   |                      |
| NB-37-15-SL    | 6/8/2004 pCi/g    | 1.31                    |                      |
| NB-37-25-SL    | 6/8/2004 pCi/g    | 0.927                   |                      |
| NB-38-09-SL    | 6/8/2004 pCi/g    | 0.842                   |                      |
| NB-38-15-SL    | 6/8/2004 pCi/g    | 0.756                   |                      |
| NB-38-25-SL    | 6/8/2004 pCi/g    | 0.818                   |                      |
| NB-39-05-SL    | 6/9/2004 pCi/g    | 1.01                    |                      |
| NB-39-15-SL    | 6/9/2004 pCi/g    | 1.05                    |                      |
| NB-39-25-SL    | 6/9/2004 pCi/g    | 0.758                   |                      |
| NB-39-30-SL    | 6/9/2004 pCi/g    | 0.657                   |                      |
| NB-40-05-SL    | 6/10/2004 pCi/g   | 0.814                   |                      |
| NB-40-05-SL-FD | 6/10/2004 pCi/g   | 0.652                   |                      |
| NB-40-17-SL    | 6/10/2004 pCi/g   | 0.959                   |                      |
| NB-40-25-SL    | 6/10/2004 pCi/g   | 0.548                   |                      |
| NB-40-31-SL    | 6/10/2004 pCi/g   | 0.21                    |                      |
| NB-41-05-SL    | 6/11/2004 pCi/g   | 0.675                   |                      |
| NB-41-13-SL    | 6/11/2004 pCi/g   | 0.459                   |                      |
| NB-41-19-SL    | 6/11/2004 pCi/g   | 0.584                   |                      |
| NB-42-05-SL    | 6/11/2004 pCi/g   | 0.717                   |                      |
| NB-42-13-SL    | 6/11/2004 pCi/g   | 0.507                   |                      |
| NB-42-23-SL    | 6/11/2004 pCi/g   | 0.304                   |                      |
| NB-43-05-SL    | 6/11/2004 pCi/g   | 0.799                   |                      |
| NB-43-13-SL    | 6/11/2004 pCi/g   | 0.388                   |                      |
| NB-44-05-SL    | 6/11/2004 pCi/g   | 0.443                   |                      |
| NB-44-05-SL-FD | 6/11/2004 pCi/g   | 0.327                   |                      |
| NB-44-11-SL    | 6/11/2004 pCi/g   | 0.382                   |                      |
| NB-44-18-SL    | 6/11/2004 pCi/g   | 0.404                   |                      |
| NB-45-05-SL    | 6/16/2004 pCi/g   | 0.808                   |                      |
| NB-45-05-SL-FD | 6/16/2004 pCi/g   | 1.08                    |                      |
| NB-45-13-SL    | 6/16/2004 pCi/g   | 1.01                    |                      |
| NB-45-25-SL    | 6/16/2004 pCi/g   | 0.863                   |                      |
| NB-45-33-SL    | 6/16/2004 pCi/g   | 0.504                   |                      |
| NB-46-09-SL    | 6/15/2004 pCi/g   | 0.774                   |                      |
| NB-46-17-SL    | 6/15/2004 pCi/g   | 0.654                   |                      |
| NB-46-25-SL    | 6/15/2004 pCi/g   | 0.813                   |                      |
| NB-46-29-SL    | 6/15/2004 pCi/g   | 0.862                   |                      |
| NB-47-05-SL    | 6/21/2004 pCi/g   | 0.96                    |                      |
| NB-47-15-SL    | 6/21/2004 pCi/g   | 1.12                    |                      |
| NB-47-25-SL    | 6/21/2004 pCi/g   | 1.27                    |                      |
| NB-47-31-SL    | 6/21/2004 pCi/g   | 0.747                   |                      |
| NB-48-05-SL    | 6/21/2004 pCi/g   | 1.16                    |                      |

### Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| Sample ID      | Sample Date Units | Ra 226 Unknown Ingrowth | Ra_226_with_Ingrowth |
|----------------|-------------------|-------------------------|----------------------|
| NB-48-11-SL    | 6/21/2004 pCi/g   | 1.09                    | 0                    |
| NB-48-15-SL    | 6/21/2004 pCi/g   | 1.29                    |                      |
| NB-48-25-SL    | 6/21/2004 pCi/g   | 1.12                    |                      |
| NB-48-35-SL    | 6/21/2004 pCi/g   | 0.794                   |                      |
| NB-49-05-SL    | 6/22/2004 pCi/g   | 1.04                    |                      |
| NB-49-05-SL-FD | 6/22/2004 pCi/g   | 0.866                   |                      |
| NB-49-15-SL    | 6/22/2004 pCi/g   | 1.15                    |                      |
| NB-49-25-SL    | 6/22/2004 pCi/g   | 0.977                   |                      |
| NB-49-37-SL    | 6/22/2004 pCi/g   | 0.478                   |                      |
| NB-50-05-SL    | 6/22/2004 pCi/g   | 0.917                   |                      |
| NB-50-15-SL    | 6/22/2004 pCi/g   | 1.17                    |                      |
| NB-50-25-SL    | 6/22/2004 pCi/g   | 0.931                   |                      |
| NB-50-37-SL    | 6/22/2004 pCi/g   | 0.479                   |                      |
| NB-51-05-SL    | 6/22/2004 pCi/g   | 0.706                   |                      |
| NB-51-13-SL    | 6/22/2004 pCi/g   | 0.815                   |                      |
| NB-51-25-SL    | 6/22/2004 pCi/g   | 1.06                    |                      |
| NB-51-37-SL    | 6/22/2004 pCi/g   | 1.01                    |                      |
| NB-52-05-SL    | 6/23/2004 pCi/g   | 0.872                   |                      |
| NB-52-13-SL    | 6/23/2004 pCi/g   | 0.832                   |                      |
| NB-52-25-SL    | 6/23/2004 pCi/g   | 0.989                   |                      |
| NB-52-35-SL    | 6/23/2004 pCi/g   | 0.753                   |                      |
| NB-53-05-SL    | 6/23/2004 pCi/g   | 0.82                    |                      |
| NB-53-13-SL    | 6/23/2004 pCi/g   | 0.887                   |                      |
| NB-53-23-SL    | 6/23/2004 pCi/g   | 0.909                   |                      |
| NB-53-33-SL    | 6/23/2004 pCi/g   | 0.802                   |                      |
| NB-54-05-SL    | 6/24/2004 pCi/g   | 0.837                   |                      |
| NB-54-13-SL    | 6/24/2004 pCi/g   | 0.85                    |                      |
| NB-54-25-SL    | 6/24/2004 pCi/g   | 0.784                   |                      |
| NB-54-31-SL    | 6/24/2004 pCi/g   | 0.254                   |                      |
| NB-55-05-SL    | 6/24/2004 pCi/g   | 0.66                    |                      |
| NB-55-13-SL    | 6/24/2004 pCi/g   | 0.845                   |                      |
| NB-55-25-SL    | 6/24/2004 pCi/g   | 0.786                   |                      |
| NB-55-33-SL    | 6/24/2004 pCi/g   | 0.262                   |                      |
| NB-56-05-SL    | 6/24/2004 pCi/g   | 0.839                   |                      |
| NB-56-13-SL    | 6/24/2004 pCi/g   | 1.28                    |                      |
| NB-56-25-SL    | 6/24/2004 pCi/g   | 0.841                   |                      |
| NB-56-33-SL    | 6/24/2004 pCi/g   | 0.476                   |                      |
| NB-57-05-SL    | 6/25/2004 pCi/g   | 0.867                   |                      |
| NB-57-05-SL-FD | 6/25/2004 pCi/g   | 0.747                   |                      |
| NB-57-15-SL    | 6/25/2004 pCi/g   | 0.945                   |                      |
| NB-57-29-SL    | 6/25/2004 pCi/g   | 0.956                   |                      |
| NB-57-34-SL    | 6/25/2004 pCi/g   | 0.766                   |                      |

### Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| Sample ID      | Sample Date Units | Ra 226 Unknown Ingrowth | Ra_226_with_Ingrowth |
|----------------|-------------------|-------------------------|----------------------|
| NB-58-05-SL    | 6/25/2004 pCi/g   | 0.983                   | 0                    |
| NB-58-15-SL    | 6/25/2004 pCi/g   | 0.84                    |                      |
| NB-58-29-SL    | 6/25/2004 pCi/g   | 0.97                    |                      |
| NB-58-36-SL    | 6/25/2004 pCi/g   | 0.704                   |                      |
| NB-59-05-SL    | 6/25/2004 pCi/g   | 0.955                   |                      |
| NB-59-13-SL    | 6/25/2004 pCi/g   | 0.804                   |                      |
| NB-59-25-SL    | 6/25/2004 pCi/g   | 0.946                   |                      |
| NB-59-31-SL    | 6/25/2004 pCi/g   | 0.652                   |                      |
| NB-60-05-SL    | 7/19/2004 pCi/g   | 0.984                   |                      |
| NB-60-13-SL    | 7/19/2004 pCi/g   | 0.873                   |                      |
| NB-60-23-SL    | 7/19/2004 pCi/g   | 0.866                   |                      |
| NB-60-31-SL    | 7/19/2004 pCi/g   | 0.491                   |                      |
| NB-61-05-SL    | 6/28/2004 pCi/g   | 1.24                    |                      |
| NB-61-13-SL    | 6/28/2004 pCi/g   | 0.94                    |                      |
| NB-61-23-SL    | 6/28/2004 pCi/g   | 0.803                   |                      |
| NB-61-28-SL    | 6/28/2004 pCi/g   | 0.562                   |                      |
| NB-62-05-SL    | 7/2/2004 pCi/g    | 0.689                   |                      |
| NB-62-12-SL    | 7/2/2004 pCi/g    | 0.379                   |                      |
| NB-62-22-SL    | 7/2/2004 pCi/g    | 0.322                   |                      |
| NB-63-05-SL    | 7/13/2004 pCi/g   | 0.827                   |                      |
| NB-63-13-SL    | 7/13/2004 pCi/g   | 0.659                   |                      |
| NB-63-19-SL    | 7/13/2004 pCi/g   | 0.384                   |                      |
| NB-64-05-SL    | 7/12/2004 pCi/g   | 0.708                   |                      |
| NB-64-13-SL    | 7/12/2004 pCi/g   | 0.267                   |                      |
| NB-64-17-SL    | 7/12/2004 pCi/g   | 0.415                   |                      |
| NB-65-05-SL    | 7/12/2004 pCi/g   | 0.911                   |                      |
| NB-65-13-SL    | 7/12/2004 pCi/g   | 0.885                   |                      |
| NB-65-17-SL    | 7/12/2004 pCi/g   | 0.361                   |                      |
| NB-66-05-SL    | 7/13/2004 pCi/g   | 0.462                   |                      |
| NB-66-05-SL-FD | 7/13/2004 pCi/g   | 0.527                   |                      |
| NB-66-15-SL    | 7/13/2004 pCi/g   | 0.524                   |                      |
| NB-66-19-SL    | 7/13/2004 pCi/g   | 0.33                    |                      |
| NB-67-05-SL    | 7/13/2004 pCi/g   | 0.695                   |                      |
| NB-67-11-SL    | 7/13/2004 pCi/g   | 0.315                   |                      |
| NB-67-21-SL    | 7/13/2004 pCi/g   | 0.439                   |                      |
| NB-68-05-SL    | 7/14/2004 pCi/g   | 0.827                   |                      |
| NB-68-13-SL    | 7/14/2004 pCi/g   | 0.968                   |                      |
| NB-68-17-SL    | 7/14/2004 pCi/g   | 0.759                   |                      |
| NB-68-25-SL    | 7/14/2004 pCi/g   | 0.955                   |                      |
| NB-68-33-SL    | 7/14/2004 pCi/g   | 0.398                   |                      |
| NB-69-05-SL    | 7/14/2004 pCi/g   | 0.972                   |                      |
| NB-69-15-SL    | 7/14/2004 pCi/g   | 0.51                    |                      |

#### Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| Sample ID      | Sample Date Units | Ra 226 Unknown Ingrowth | Ra_226_with_Ingrowth |
|----------------|-------------------|-------------------------|----------------------|
| NB-69-22-SL    | 7/14/2004 pCi/g   | 0.685                   | 0                    |
| NB-69-34-SL    | 7/14/2004 pCi/g   | 0.533                   |                      |
| NB-70-05-SL    | 7/14/2004 pCi/g   | 1.01                    |                      |
| NB-70-15-SL    | 7/14/2004 pCi/g   | 0.922                   |                      |
| NB-70-23-SL    | 7/14/2004 pCi/g   | 0.85                    |                      |
| NB-70-33-SL    | 7/14/2004 pCi/g   | 0.809                   |                      |
| NB-71-01-SL    | 7/15/2004 pCi/g   | 0.977                   |                      |
| NB-71-01-SL-FD | 7/15/2004 pCi/g   | 0.93                    |                      |
| NB-71-11-SL    | 7/15/2004 pCi/g   | 0.994                   |                      |
| NB-71-27-SL    | 7/15/2004 pCi/g   | 0.611                   |                      |
| NB-72-05-SL    | 7/15/2004 pCi/g   | 0.44                    |                      |
| NB-72-11-SL    | 7/15/2004 pCi/g   | 0.557                   |                      |
| NB-72-19-SL    | 7/15/2004 pCi/g   | 0.501                   |                      |
| NB-72-22-SL    | 7/15/2004 pCi/g   | 0.48                    |                      |
| NB-73-05-SL    | 7/15/2004 pCi/g   | 0.257                   |                      |
| NB-73-13-SL    | 7/15/2004 pCi/g   | 0.378                   |                      |
| NB-73-23-SL    | 7/15/2004 pCi/g   | 0.414                   |                      |
| NB-74-05-SL    | 7/20/2004 pCi/g   | 0.969                   |                      |
| NB-74-17-SL    | 7/20/2004 pCi/g   | 0.976                   |                      |
| NB-74-25-SL    | 7/20/2004 pCi/g   | 0.983                   |                      |
| NB-74-33-SL    | 7/20/2004 pCi/g   | 0.534                   |                      |
| NB-75-08-SL    | 7/19/2004 pCi/g   | 0.85                    |                      |
| NB-75-15-SL    | 7/19/2004 pCi/g   | 0.802                   |                      |
| NB-75-19-SL    | 7/19/2004 pCi/g   | 0.288                   |                      |
| NB-76-06-SL    | 7/21/2004 pCi/g   | 0.177                   |                      |
| NB-76-10-SL    | 7/21/2004 pCi/g   | 0.247                   |                      |
| NB-76-24-SL    | 7/21/2004 pCi/g   | 0.381                   |                      |
| NB-77-05-SL    | 7/21/2004 pCi/g   | 0.305                   |                      |
| NB-77-13-SL    | 7/21/2004 pCi/g   | 0.223                   |                      |
| NB-77-24-SL    | 7/21/2004 pCi/g   | 0.743                   |                      |
| NB-78-07-SL    | 7/21/2004 pCi/g   | 1.09                    |                      |
| NB-78-11-SL    | 7/21/2004 pCi/g   | 0.431                   |                      |
| NB-78-18-SL    | 7/21/2004 pCi/g   | 0.871                   |                      |
| NB-79-05-SL    | 7/23/2004 pCi/g   | 0.801                   |                      |
| NB-79-05-SL-FD | 7/23/2004 pCi/g   | 0.814                   |                      |
| NB-79-11-SL    | 7/23/2004 pCi/g   | 0.48                    |                      |
| NB-79-24-SL    | 7/23/2004 pCi/g   | 0.63                    |                      |
| NB-80-05-SL    | 7/23/2004 pCi/g   | 0.503                   |                      |
| NB-80-11-SL    | 7/23/2004 pCi/g   | 0.534                   |                      |
| NB-80-27-SL    | 7/23/2004 pCi/g   | 0.6                     |                      |
| NB-81-09-SL    | 7/26/2004 pCi/g   | 0.954                   |                      |
| NB-81-11-SL    | 7/26/2004 pCi/g   | 0.982                   |                      |
|                |                   |                         |                      |

### Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| Sample ID     | Sample Date Units | Ra 226 Unknown Ingrowth | Ra_226_with_Ingrowth |
|---------------|-------------------|-------------------------|----------------------|
| NB-81-31-SL   | 7/26/2004 pCi/g   | 0.478                   | 0                    |
| NB-82-05-SL   | 7/27/2004 pCi/g   | 1.19                    |                      |
| NB-82-11-SL   | 7/27/2004 pCi/g   | 0.236                   |                      |
| NB-82-20-SL   | 7/27/2004 pCi/g   | 0.385                   |                      |
| NB-83-05-SL   | 7/27/2004 pCi/g   | 0.866                   |                      |
| NB-83-11-SL   | 7/27/2004 pCi/g   | 0.386                   |                      |
| NB-83-23-SL   | 7/27/2004 pCi/g   | 0.442                   |                      |
| NB-84-05-SL   | 7/28/2004 pCi/g   | 1.07                    |                      |
| NB-84-15-SL   | 7/28/2004 pCi/g   | 0.651                   |                      |
| NB-84-23-SL   | 7/28/2004 pCi/g   | 0.254                   |                      |
| NB-84-33-SL   | 7/28/2004 pCi/g   | 0.533                   |                      |
| NB-85-05-SL   | 8/24/2004 pCi/g   | 0.987                   |                      |
| NB-85-15-SL   | 8/24/2004 pCi/g   | 1.02                    |                      |
| NB-85-25-SL   | 8/24/2004 pCi/g   | 0.918                   |                      |
| NB-85-35-SL   | 8/24/2004 pCi/g   | 0.254                   |                      |
| NB-86-05-SL   | 8/24/2004 pCi/g   | 0.838                   |                      |
| NB-86-15-SL   | 8/24/2004 pCi/g   | 0.955                   |                      |
| NB-86-19-SL   | 8/24/2004 pCi/g   | 0.549                   |                      |
| NB-87-18-SL   | 11/9/2007 pCi/g   | 1.29                    |                      |
| NB-87-4.5-SL  | 11/9/2007 pCi/g   | 0.69                    |                      |
| NB-88-0.5-SL  | 11/16/2007 pCi/g  | 1.07                    |                      |
| NB-88-20-SL   | 11/16/2007 pCi/g  | 0.73                    |                      |
| NB-88-4.5-SL  | 11/16/2007 pCi/g  | 1.21                    |                      |
| NB-89-0.5-SL  | 11/13/2007 pCi/g  | 0.62                    |                      |
| NB-89-19.5-SL | 11/13/2007 pCi/g  | 0.58                    |                      |
| NB-89-4.5-SL  | 11/13/2007 pCi/g  | 0.59                    |                      |
| NB-90-11.5-SL | 11/9/2007 pCi/g   | 1.39                    |                      |
| NB-90-4.5-SL  | 11/9/2007 pCi/g   | 1.11                    |                      |
| NB-91-0.5-SL  | 11/16/2007 pCi/g  | 0.62                    |                      |
| NB-91-4.5-SL  | 11/16/2007 pCi/g  | 0.76                    |                      |
| NB-91-6.5-SL  | 11/16/2007 pCi/g  | 0.54                    |                      |
| NB-92-11-SL   | 11/9/2007 pCi/g   | 1.36                    |                      |
| NB-92-4.5-SL  | 11/9/2007 pCi/g   | 1.04                    |                      |
| NB-93-0.5-SL  | 11/16/2007 pCi/g  | 0.59                    |                      |
| NB-93-15-SL   | 11/16/2007 pCi/g  | 1.13                    |                      |
| NB-93-4.5-SL  | 11/16/2007 pCi/g  | 1.2                     |                      |
| NB-94-15-SL   | 11/9/2007 pCi/g   | 1.13                    |                      |
| NB-94-4.5-SL  | 11/9/2007 pCi/g   | 0.87                    |                      |
| NB-95-16.5-SL | 11/9/2007 pCi/g   | 1.23                    |                      |
| NB-95-4.5-SL  | 11/9/2007 pCi/g   | 1.09                    |                      |
| NB-96-0.5-SL  | 11/16/2007 pCi/g  | 0.33                    |                      |
| NB-96-4.5-SL  | 11/16/2007 pCi/g  | 1.03                    |                      |

### Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| Sample ID      | Sample Date Units | Ra_226_Unknown_Ingrowth | Ra_226_with_Ingrowth |
|----------------|-------------------|-------------------------|----------------------|
| NB-96-5-SL     | 11/16/2007 pCi/g  | 0.78                    |                      |
| NB-97-0.5-SL   | 11/16/2007 pCi/g  | 1.04                    |                      |
| NB-97-4.5-SL   | 11/16/2007 pCi/g  | 1.27                    |                      |
| NB-97-9.5-SL   | 11/16/2007 pCi/g  | 1.6                     |                      |
| NB-99-13-SL    | 11/9/2007 pCi/g   | 1.12                    |                      |
| NB-99-4.5-SL   | 11/9/2007 pCi/g   | 1.2                     |                      |
| OA-01-00-SL    | 4/27/2004 pCi/g   | 0.749                   |                      |
| OA-01-00-SL-FD | 4/27/2004 pCi/g   | 0.618                   |                      |
| OA-02-00-SL    | 4/27/2004 pCi/g   | 0.817                   |                      |
| OA-03-00-SL    | 4/27/2004 pCi/g   | 1.08                    |                      |
| OA-04-00-SL    | 4/28/2004 pCi/g   | 1.18                    |                      |
| OA-05-00-SL    | 4/28/2004 pCi/g   | 1.22                    |                      |
| OA-06-00-SL    | 5/6/2004 pCi/g    | 1.11                    |                      |
| OA-07-00-SL    | 5/6/2004 pCi/g    | 1.12                    |                      |
| OA-08-00-SL    | 5/6/2004 pCi/g    | 1.06                    |                      |
| OA-09-00-SL    | 5/6/2004 pCi/g    | 1.14                    |                      |
| OA-10-00-SL    | 5/4/2004 pCi/g    | 0.834                   |                      |
| OA-11-00-SL    | 5/4/2004 pCi/g    | 0.842                   |                      |
| OA-12-00-SL    | 5/4/2004 pCi/g    | 0.983                   |                      |
| OA-13-00-SL    | 5/4/2004 pCi/g    | 1.09                    |                      |
| OA-14-00-SL    | 5/4/2004 pCi/g    | 0.997                   |                      |
| OA-15-00-SL    | 5/4/2004 pCi/g    | 0.7                     |                      |
| OA-16-00-SL    | 5/4/2004 pCi/g    | 0.782                   |                      |
| OA-18-03-SL    | 7/1/2004 pCi/g    | 0.938                   |                      |
| OA-18-17-SL    | 7/1/2004 pCi/g    | 1.08                    |                      |
| OA-18-25-SL    | 7/1/2004 pCi/g    | 0.857                   |                      |
| OA-18-33-SL    | 7/1/2004 pCi/g    | 0.745                   |                      |
| OA-19-05-SL    | 7/1/2004 pCi/g    | 1.01                    |                      |
| OA-19-15-SL    | 7/1/2004 pCi/g    | 1.21                    |                      |
| OA-19-25-SL    | 7/1/2004 pCi/g    | 0.947                   |                      |
| OA-19-33-SL    | 7/1/2004 pCi/g    | 0.638                   |                      |
| OA-20-00-SL    | 5/4/2004 pCi/g    | 0.955                   |                      |
| OA-21-00-SL    | 5/4/2004 pCi/g    | 0.951                   |                      |
| OA-22-00-SL    | 5/4/2004 pCi/g    | 0.895                   |                      |
| OA-23-00-SL    | 5/4/2004 pCi/g    | 0.441                   |                      |
| OA-24-00-SL    | 5/4/2004 pCi/g    | 1.1                     |                      |
| OA-25-00-SL    | 5/5/2004 pCi/g    | 0.438                   |                      |
| OA-26-00-SL    | 5/6/2004 pCi/g    | 0.796                   |                      |
| OA-27-00-SL    | 5/3/2004 pCi/g    | 1.04                    |                      |
| OA-28-00-SL    | 4/28/2004 pCi/g   | 1.07                    |                      |
| OA-29-00-SL    | 4/28/2004 pCi/g   | 1.16                    |                      |
| OA-30-00-SL    | 4/28/2004 pCi/g   | 1.02                    |                      |

| Sample ID      | Sample Date Units | Ra_226_Unknown_Ingrowth | Ra 226 with Ingrowth |
|----------------|-------------------|-------------------------|----------------------|
| OA-31-00-SL    | 4/28/2004 pCi/g   | 1.23                    |                      |
| OA-32-00-SL    | 4/28/2004 pCi/g   | 1.08                    |                      |
| OA-33-00-SL    | 4/28/2004 pCi/g   | 1.15                    |                      |
| OA-34-00-SL    | 4/29/2004 pCi/g   | 1.02                    |                      |
| OA-35-00-SL    | 4/29/2004 pCi/g   | 0.709                   |                      |
| OA-36-00-SL    | 4/29/2004 pCi/g   | 0.9                     |                      |
| OA-37-00-SL    | 4/29/2004 pCi/g   | 1.22                    | 1.01                 |
| OA-38-00-SL    | 4/29/2004 pCi/g   | 1.06                    | 0.86                 |
| OA-39-00-SL    | 4/29/2004 pCi/g   | 1.14                    | 1.21                 |
| OA-40-00-SL    | 4/29/2004 pCi/g   | 0.931                   |                      |
| PL-01-00-SL    | 4/29/2004 pCi/g   | 1.1                     |                      |
| PL-02-00-SL    | 4/29/2004 pCi/g   | 1.07                    |                      |
| PL-03-00-SL    | 4/29/2004 pCi/g   | 1.36                    |                      |
| PL-04-05-SL    | 6/29/2004 pCi/g   | 1.18                    |                      |
| PL-04-13-SL    | 6/29/2004 pCi/g   | 0.865                   |                      |
| PL-04-23-SL    | 6/29/2004 pCi/g   | 0.914                   |                      |
| PL-04-31-SL    | 6/29/2004 pCi/g   | 0.866                   |                      |
| PL-05-05-SL    | 6/7/2004 pCi/g    | 0.859                   |                      |
| PL-05-15-SL    | 6/7/2004 pCi/g    | 0.798                   |                      |
| PL-05-28-SL    | 6/7/2004 pCi/g    | 0.731                   |                      |
| PL-06-07-SL    | 6/18/2004 pCi/g   | 0.936                   |                      |
| PL-06-13-SL    | 6/18/2004 pCi/g   | 0.969                   |                      |
| PL-06-17-SL    | 6/18/2004 pCi/g   | 1.09                    |                      |
| PL-06-29-SL    | 6/18/2004 pCi/g   | 0.471                   |                      |
| PL-06-33-SL    | 6/18/2004 pCi/g   | 0.377                   |                      |
| RR-01-00-SL    | 4/27/2004 pCi/g   | 0.595                   |                      |
| RR-02-00-SL    | 4/27/2004 pCi/g   | 1.12                    |                      |
| RR-03-00-SL    | 4/27/2004 pCi/g   | 1.29                    |                      |
| RR-04-07-SL    | 6/2/2004 pCi/g    | 1.18                    |                      |
| RR-04-15-SL    | 6/2/2004 pCi/g    | 0.939                   |                      |
| RR-04-25-SL    | 6/2/2004 pCi/g    | 0.886                   |                      |
| RR-05-05-SL    | 6/1/2004 pCi/g    | 0.971                   |                      |
| RR-05-05-SL-FD | 6/1/2004 pCi/g    | 1.12                    |                      |
| RR-05-15-SL    | 6/1/2004 pCi/g    | 0.91                    |                      |
| RR-05-25-SL    | 6/1/2004 pCi/g    | 0.872                   |                      |
| SO-BP1D-12     | 11/1/2006 pCi/g   | 0.92                    |                      |
| SO-BP2B-12     | 11/1/2006 pCi/g   | 0.96                    |                      |
| SO-BP2C-12     | 11/1/2006 pCi/g   | 0.94                    |                      |
| SO-BP2D-05     | 11/1/2006 pCi/g   | 1.09                    |                      |
| SO-BP2D-05-D   | 11/1/2006 pCi/g   | 1.12                    |                      |
| SO-BP2E-07     | 11/1/2006 pCi/g   | 1.04                    |                      |
| SO-BP4A-04     | 11/1/2006 pCi/g   | 0.79                    |                      |

Non-Impacted

| Sample ID       | Sample Date Units | Ra_226_Unknown_Ingrowth | Ra_226_with_Ingrowth |
|-----------------|-------------------|-------------------------|----------------------|
| SO-BP4D-08      | 11/1/2006 pCi/g   | 1.25                    | 0                    |
| SO-BP4E-09      | 11/1/2006 pCi/g   | 1.31                    |                      |
| SO-BP4F-08      | 11/1/2006 pCi/g   | 1.34                    |                      |
| SO-BP5B-10      | 11/1/2006 pCi/g   | 1.08                    |                      |
| SO-BP5C-08      | 11/1/2006 pCi/g   | 1.01                    |                      |
| SO-BP5D-08      | 11/1/2006 pCi/g   | 1.31                    |                      |
| SO-BP5E-10      | 11/1/2006 pCi/g   | 1.33                    |                      |
| SO-BP7B-08      | 11/1/2006 pCi/g   | 1.14                    |                      |
| SO-BP7C-12      | 11/1/2006 pCi/g   | 1.21                    |                      |
| SO-BP9A-16      | 11/1/2006 pCi/g   | 0.87                    |                      |
| SO-PB5-04       | 11/1/2006 pCi/g   | 1.01                    |                      |
| SO-RR6-01       | 11/1/2006 pCi/g   | 0.73                    |                      |
| SO-RR7-01       | 11/1/2006 pCi/g   | 0.81                    |                      |
| SO-RR8-05       | 11/1/2006 pCi/g   | 0.82                    |                      |
| SO-RR9-01       | 11/1/2006 pCi/g   | 0.74                    |                      |
| SS-BP-001-DV    | 5/21/2008 pCi/g   | 0.95                    |                      |
| SS-BP-001-SF    | 5/21/2008 pCi/g   | 0.81                    |                      |
| SS-BP-001-SV    | 5/21/2008 pCi/g   | 1                       |                      |
| SS-BP-002-DV    | 7/18/2008 pCi/g   | 0.736                   |                      |
| SS-BP-002-SF    | 7/18/2008 pCi/g   | 0.841                   |                      |
| SS-BP-002-SV    | 7/18/2008 pCi/g   | 0.957                   |                      |
| SS-BP-003-DV    | 7/17/2008 pCi/g   | 0.997                   |                      |
| SS-BP-003-DV-QC | 7/17/2008 pCi/g   | 0.94                    |                      |
| SS-BP-003-SF    | 7/17/2008 pCi/g   | 0.934                   | 1.16                 |
| SS-BP-003-SV    | 7/17/2008 pCi/g   | 0.9                     |                      |
| SS-BP-004-DV    | 5/28/2007 pCi/g   | 0.9                     |                      |
| SS-BP-004-SF    | 5/28/2007 pCi/g   | 0.97                    |                      |
| SS-BP-004-SV    | 5/28/2007 pCi/g   | 0.84                    |                      |
| SS-BP-005-DV    | 5/21/2008 pCi/g   | 0.84                    |                      |
| SS-BP-005-SF    | 5/21/2008 pCi/g   | 0.168                   |                      |
| SS-BP-005-SV    | 5/21/2008 pCi/g   | 0.83                    |                      |
| SS-BP-007-DV    | 5/28/2007 pCi/g   | 0.96                    |                      |
| SS-BP-007-EL-10 | 5/28/2007 pCi/g   | 1.32                    |                      |
| SS-BP-007-SF    | 5/28/2007 pCi/g   | 0.91                    |                      |
| SS-BP-007-SV    | 5/28/2007 pCi/g   | 0.83                    |                      |
| SS-BP-008-DV    | 5/28/2007 pCi/g   | 1.05                    |                      |
| SS-BP-008-SF    | 5/28/2007 pCi/g   | 1                       |                      |
| SS-BP008-SV     | 5/28/2007 pCi/g   | 0.85                    |                      |
| SS-BP-009-DV    | 5/28/2007 pCi/g   | 1.03                    |                      |
| SS-BP-009-SF    | 5/28/2007 pCi/g   | 0.82                    |                      |
| SS-BP-009-SV    | 5/28/2007 pCi/g   | 0.78                    |                      |
| SS-BP-010-DV    | 5/29/2008 pCi/g   | 0.91                    |                      |

Non-Impacted

#### Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| Sample ID          | Sample Date Units | Ra_226_Unknown_Ingrowth | Ra_226_with_Ingrowth |
|--------------------|-------------------|-------------------------|----------------------|
| SS-BP-010-SF       | 5/29/2008 pCi/g   | 0.81                    | 0                    |
| SS-BP-010-SV       | 5/29/2008 pCi/g   | 0.96                    |                      |
| SS-BP-011-DV       | 5/29/2008 pCi/g   | 1.21                    |                      |
| SS-BP-011-SF       | 5/29/2008 pCi/g   | 0.76                    |                      |
| SS-BP-011-SV       | 5/29/2008 pCi/g   | 0.69                    |                      |
| SS-BP-012-DV       | 5/29/2008 pCi/g   | 0.87                    |                      |
| SS-BP-012-SF       | 5/29/2008 pCi/g   | 0.92                    |                      |
| SS-BP-012-SV       | 5/29/2008 pCi/g   | 0.61                    |                      |
| SS-BP-014-DV       | 6/19/2008 pCi/g   | 0.75                    |                      |
| SS-BP-014-DV-QC    | 6/19/2008 pCi/g   | 0.696                   |                      |
| SS-BP-014-SF       | 6/19/2008 pCi/g   | 0.228                   |                      |
| SS-BP-014-SV       | 6/19/2008 pCi/g   | 0.781                   |                      |
| SS-BP-017-DV       | 5/30/2008 pCi/g   | 1.02                    |                      |
| SS-BP-017-DV-EL-11 | 5/30/2008 pCi/g   | 1.02                    |                      |
| SS-BP-017-SF       | 5/30/2008 pCi/g   | 0.79                    |                      |
| SS-BP-017-SV       | 5/30/2008 pCi/g   | 0.81                    |                      |
| SS-BP-018DV        | 5/30/2008 pCi/g   | 1.09                    |                      |
| SS-BP-018-SF       | 5/30/2008 pCi/g   | 0.77                    |                      |
| SS-BP-018-SV       | 5/30/2008 pCi/g   | 0.83                    |                      |
| SS-BP-021-DV       | 5/30/2008 pCi/g   | 0.93                    |                      |
| SS-BP-021-SF       | 5/30/2008 pCi/g   | 1                       |                      |
| SS-BP-021-SV       | 5/30/2008 pCi/g   | 1.02                    |                      |
| SS-BP-024-DV       | 5/29/2008 pCi/g   | 0.88                    |                      |
| SS-BP-024-SF       | 5/29/2008 pCi/g   | 0.44                    |                      |
| SS-BP-024-SV       | 5/29/2008 pCi/g   | 1.08                    |                      |
| SS-BP-025-DV       | 6/19/2008 pCi/g   | 0.892                   |                      |
| SS-BP-025-DV-QC    | 6/19/2008 pCi/g   | 0.86                    |                      |
| SS-BP-025-SF       | 6/19/2008 pCi/g   | 0.685                   |                      |
| SS-BP-025-SV       | 6/19/2008 pCi/g   | 0.794                   |                      |
| SS-BP-026-DV       | 6/18/2008 pCi/g   | 0.94                    |                      |
| SS-BP-026-DV-QC    | 6/18/2008 pCi/g   | 1.03                    |                      |
| SS-BP-026-SF       | 6/18/2008 pCi/g   | 1.38                    |                      |
| SS-BP-026-SV       | 6/18/2008 pCi/g   | 0.397                   |                      |
| SS-BP-027-DV       | 5/29/2008 pCi/g   | 0.94                    |                      |
| SS-BP-027-SF       | 5/29/2008 pCi/g   | 0.435                   |                      |
| SS-BP-027-SV       | 5/29/2008 pCi/g   | 0.74                    |                      |
| SS-BP-031-DV       | 6/3/2008 pCi/g    | 0.91                    |                      |
| SS-BP-031-SF       | 6/3/2008 pCi/g    | 0.86                    |                      |
| SS-BP-031-SV       | 6/3/2008 pCi/g    | 0.97                    |                      |
| SS-BP-032-DV       | 6/18/2008 pCi/g   | 0.993                   |                      |
| SS-BP-032-SF       | 6/18/2008 pCi/g   | 0.292                   |                      |
| SS-BP-032-SV       | 6/18/2008 pCi/g   | 0.708                   |                      |
|                    |                   |                         |                      |

Non-Impacted

#### Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| Sample ID       | Sample Date Units | Ra_226_Unknown_Ingrowth | Ra_226_with_Ingrowth |
|-----------------|-------------------|-------------------------|----------------------|
| SS-BP-033-DV    | 6/4/2008 pCi/g    | 1.11                    | 0                    |
| SS-BP-033-SF    | 6/4/2008 pCi/g    | 0.81                    |                      |
| SS-BP-033-SV    | 6/4/2008 pCi/g    | 0.88                    |                      |
| SS-BP-037-DV    | 6/3/2008 pCi/g    | 0.78                    |                      |
| SS-BP-037-SF    | 6/3/2008 pCi/g    | 0.82                    |                      |
| SS-BP-037-SV    | 6/3/2008 pCi/g    | 0.83                    |                      |
| SS-BP-038-DV    | 6/5/2008 pCi/g    | 1.11                    |                      |
| SS-BP-038-SF    | 6/5/2008 pCi/g    | 0.87                    | 0.92                 |
| SS-BP-038-SV    | 6/5/2008 pCi/g    | 0.97                    |                      |
| SS-BP-039-DV    | 6/5/2008 pCi/g    | 0.95                    |                      |
| SS-BP-039-SF    | 6/5/2008 pCi/g    | 0.76                    | 1.13                 |
| SS-BP-039-SV    | 6/5/2008 pCi/g    | 0.94                    |                      |
| SS-BP-039-SV-QC | 6/5/2008 pCi/g    | 0.9                     |                      |
| SS-BP-040-DV    | 5/23/2008 pCi/g   | 1.13                    |                      |
| SS-BP-040-SF    | 5/23/2008 pCi/g   | 0.82                    |                      |
| SS-BP-040-SV    | 5/23/2008 pCi/g   | 0.93                    |                      |
| SS-BP-041-DV    | 6/5/2008 pCi/g    | 0.94                    |                      |
| SS-BP-041-SF    | 6/5/2008 pCi/g    | 0.99                    |                      |
| SS-BP-041-SV    | 6/5/2008 pCi/g    | 0.94                    |                      |
| SS-BP-042-DV    | 6/5/2008 pCi/g    | 1.09                    |                      |
| SS-BP-042-SF    | 6/5/2008 pCi/g    | 1.07                    |                      |
| SS-BP-042-SV    | 6/5/2008 pCi/g    | 0.83                    |                      |
| SS-BP-043-DV    | 6/5/2008 pCi/g    | 0.97                    |                      |
| SS-BP-043-SV    | 6/5/2008 pCi/g    | 0.79                    |                      |
| SS-BP-044-DV    | 6/5/2008 pCi/g    | 1                       |                      |
| SS-BP-044-SF    | 6/5/2008 pCi/g    | 0.78                    |                      |
| SS-BP-044-SV    | 6/5/2008 pCi/g    | 0.98                    |                      |
| SS-BP-045-DV    | 6/18/2008 pCi/g   | 1.24                    |                      |
| SS-BP-045-DV-QC | 6/17/2008 pCi/g   | 1.04                    |                      |
| SS-BP-045-SF    | 6/18/2008 pCi/g   | 1.07                    |                      |
| SS-BP-045-SV    | 6/18/2008 pCi/g   | 1.09                    |                      |
| SS-BP-046-DV    | 6/14/2008 pCi/g   | 0.981                   |                      |
| SS-BP-046-SF    | 6/14/2008 pCi/g   | 1.06                    |                      |
| SS-BP-046-SV    | 6/14/2008 pCi/g   | 0.997                   |                      |
| SS-BP-047-DV    | 6/7/2008 pCi/g    | 1.22                    |                      |
| SS-BP-047-SF    | 6/7/2008 pCi/g    | 1.04                    |                      |
| SS-BP-047-SV    | 6/7/2008 pCi/g    | 0.93                    |                      |
| SS-BP-048-DV    | 6/7/2008 pCi/g    | 1.27                    |                      |
| SS-BP-048-SF    | 6/7/2008 pCi/g    | 1.02                    |                      |
| SS-BP-048-SV    | 6/7/2008 pCi/g    | 0.84                    |                      |
| SS-BP-049-DV    | 6/6/2008 pCi/g    | 1.12                    |                      |
| SS-BP-049-SF    | 6/6/2008 pCi/g    | 1.21                    |                      |

Non-Impacted

| Sample ID          | Sample_Date Units | Ra_226_Unknown_Ingrowth | Ra_226_with_Ingrowth |
|--------------------|-------------------|-------------------------|----------------------|
| SS-BP-049-SV       | 6/6/2008 pCi/g    | 0.68                    | 8                    |
| SS-BP-049-SV-QC    | 6/6/2008 pCi/g    | 1.08                    |                      |
| SS-BP-051-DV       | 6/6/2008 pCi/g    | 1.24                    |                      |
| SS-BP-051-SF       | 6/6/2008 pCi/g    | 0.99                    |                      |
| SS-BP-051-SV       | 6/6/2008 pCi/g    | 1.13                    |                      |
| SS-BP-052-DV       | 6/11/2008 pCi/g   | 1.41                    |                      |
| SS-BP-052-EL-6     | 6/11/2008 pCi/g   | 1.14                    |                      |
| SS-BP-052-SF       | 6/11/2008 pCi/g   | 1.04                    |                      |
| SS-BP-052-SV       | 6/11/2008 pCi/g   | 1.14                    |                      |
| SS-BP-053-DV       | 6/12/2008 pCi/g   | 1.16                    |                      |
| SS-BP-053-SF       | 6/12/2008 pCi/g   | 1.09                    |                      |
| SS-BP-053-SV       | 6/12/2008 pCi/g   | 1.09                    |                      |
| SS-BP-054-DV       | 6/12/2008 pCi/g   | 1.12                    |                      |
| SS-BP-054-SF       | 6/12/2008 pCi/g   | 1.08                    |                      |
| SS-BP-054-SV       | 6/12/2008 pCi/g   | 1.18                    |                      |
| SS-BP-055-DV       | 5/27/2008 pCi/g   | 0.97                    |                      |
| SS-BP-055-SF       | 5/27/2008 pCi/g   | 1.2                     |                      |
| SS-BP-055-SV       | 5/27/2008 pCi/g   | 1.01                    |                      |
| SS-BP-056-DV       | 6/12/2008 pCi/g   | 1.09                    |                      |
| SS-BP-056-SF       | 6/12/2008 pCi/g   | 1.09                    |                      |
| SS-BP-056-SV       | 6/12/2008 pCi/g   | 1.12                    |                      |
| SS-BP-057-DV       | 6/6/2008 pCi/g    | 0.98                    |                      |
| SS-BP-057-SF       | 6/6/2008 pCi/g    | 0.75                    |                      |
| SS-BP-057-SV       | 6/6/2008 pCi/g    | 0.97                    |                      |
| SS-BP-058-DV       | 6/6/2008 pCi/g    | 0.89                    |                      |
| SS-BP-058-SF       | 6/6/2008 pCi/g    | 0.92                    |                      |
| SS-BP-058-SV       | 6/6/2008 pCi/g    | 0.96                    |                      |
| SS-BP-060-DV       | 6/7/2008 pCi/g    | 1.32                    |                      |
| SS-BP-060-SF       | 6/7/2008 pCi/g    | 0.92                    |                      |
| SS-BP-060-SV       | 6/7/2008 pCi/g    | 0.91                    |                      |
| SS-BP-061-DV       | 6/17/2008 pCi/g   | 1.05                    |                      |
| SS-BP-061-SF       | 6/17/2008 pCi/g   | 1.13                    |                      |
| SS-BP-061-SV       | 6/17/2008 pCi/g   | 1.04                    |                      |
| SS-BP-062-DV       | 6/18/2008 pCi/g   | 1.21                    |                      |
| SS-BP-062-DV-EL-10 | 6/18/2008 pCi/g   | 1.14                    |                      |
| SS-BP-062-SF       | 6/18/2008 pCi/g   | 1.09                    |                      |
| SS-BP-062-SV       | 6/18/2008 pCi/g   | 1.11                    |                      |
| SS-BP-063-DV       | 6/18/2008 pCi/g   | 1.08                    |                      |
| SS-BP-063-DV-QC    | 6/18/2008 pCi/g   | 1.16                    |                      |
| SS-BP-063-SF       | 6/18/2008 pCi/g   | 1.12                    |                      |
| SS-BP-063-SV       | 6/18/2008 pCi/g   | 1.13                    |                      |
| SS-BP-064-DV       | 6/17/2008 pCi/g   | 1                       |                      |

Non-Impacted

| Sample ID         | Sample Date Units | Ra_226_Unknown_Ingrowth | Ra_226_with_Ingrowth |
|-------------------|-------------------|-------------------------|----------------------|
| SS-BP-064-DV-QC   | 6/17/2008 pCi/g   | 0.995                   | 0                    |
| SS-BP-064-SF      | 6/17/2008 pCi/g   | 1.01                    |                      |
| SS-BP-064-SV      | 6/17/2008 pCi/g   | 1.02                    |                      |
| SS-BP-065-DV      | 6/17/2008 pCi/g   | 1                       |                      |
| SS-BP-065-DV-EL-5 | 6/17/2008 pCi/g   | 0.98                    |                      |
| SS-BP-065-SF      | 6/17/2008 pCi/g   | 1.01                    |                      |
| SS-BP-065-SV      | 6/17/2008 pCi/g   | 1.02                    |                      |
| SS-BP-066-CUT-EL  | 6/17/2008 pCi/g   | 0.85                    |                      |
| SS-BP-066-DV      | 6/17/2008 pCi/g   | 1.04                    |                      |
| SS-BP-066-SF      | 6/17/2008 pCi/g   | 1.02                    |                      |
| SS-BP-066-SV      | 6/17/2008 pCi/g   | 1.02                    |                      |
| SS-BP-067-DV      | 6/14/2008 pCi/g   | 1.14                    |                      |
| SS-BP-067-SF      | 6/14/2008 pCi/g   | 1.08                    |                      |
| SS-BP-067-SV      | 6/14/2008 pCi/g   | 1.2                     |                      |
| SS-BP-068-DV      | 6/14/2008 pCi/g   | 1.11                    |                      |
| SS-BP-068-SF      | 6/14/2008 pCi/g   | 1.07                    |                      |
| SS-BP-068-SV      | 6/14/2008 pCi/g   | 1.1                     |                      |
| SS-BP-069-DV      | 6/17/2008 pCi/g   | 1                       |                      |
| SS-BP-069-SF      | 6/17/2008 pCi/g   | 0.99                    |                      |
| SS-BP-069-SV      | 6/17/2008 pCi/g   | 1.43                    |                      |
| SS-BP-070-DV      | 6/13/2008 pCi/g   | 0.964                   |                      |
| SS-BP-070-DV-QC   | 6/13/2008 pCi/g   | 0.95                    |                      |
| SS-BP-070-SF      | 6/13/2008 pCi/g   | 0.99                    | 1.22                 |
| SS-BP-070-SV      | 6/13/2008 pCi/g   | 1.02                    |                      |
| SS-BP-071-DV      | 6/13/2008 pCi/g   | 1.03                    |                      |
| SS-BP-071-SF      | 6/13/2008 pCi/g   | 1.1                     | 1.21                 |
| SS-BP-071-SV      | 6/13/2008 pCi/g   | 1.01                    |                      |
| SS-BP-072-DV      | 6/13/2008 pCi/g   | 1.07                    |                      |
| SS-BP-072-SF      | 6/13/2008 pCi/g   | 1.07                    |                      |
| SS-BP-072-SV      | 6/13/2008 pCi/g   | 1.14                    |                      |
| SS-BP-073-DV      | 6/14/2008 pCi/g   | 1.08                    |                      |
| SS-BP-073-SF      | 6/14/2008 pCi/g   | 1.05                    |                      |
| SS-BP-073-SV      | 6/14/2008 pCi/g   | 1.15                    |                      |
| SS-BP-074-DV      | 6/14/2008 pCi/g   | 1.1                     |                      |
| SS-BP-074-DV-QC   | 6/14/2008 pCi/g   | 1.09                    |                      |
| SS-BP-074-SF      | 6/14/2008 pCi/g   | 1.09                    |                      |
| SS-BP-074-SV      | 6/14/2008 pCi/g   | 1.13                    |                      |
| SS-BP-075-DV      | 6/14/2008 pCi/g   | 1.08                    |                      |
| SS-BP-075-DV-EL-7 | 6/14/2008 pCi/g   | 0.9                     |                      |
| SS-BP-075-SF      | 6/14/2008 pCi/g   | 1.12                    |                      |
| SS-BP-075-SV      | 6/14/2008 pCi/g   | 1.08                    |                      |
| SS-BP-076-DV      | 6/17/2008 pCi/g   | 1.11                    |                      |
|                   |                   |                         |                      |

Non-Impacted

#### Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| SS-BP-076-DV-QC $6/16/2008 \text{ pCi/g}$ $1.12$ SS-BP-076-SF $6/17/2008 \text{ pCi/g}$ $1.05$ SS-BP-076-SV $6/17/2008 \text{ pCi/g}$ $1.02$ SS-BP-077-DV $6/12/2008 \text{ pCi/g}$ $1.19$ SS-BP-077-SF $6/12/2008 \text{ pCi/g}$ $0.952$ SS-BP-078-DV $6/7/2008 \text{ pCi/g}$ $1.13$ SS-BP-078-SF $6/7/2008 \text{ pCi/g}$ $0.95$ SS-BP-078-SF $6/7/2008 \text{ pCi/g}$ $0.95$ SS-BP-078-SV $6/7/2008 \text{ pCi/g}$ $0.93$ SS-BP-079-DV $6/12/2008 \text{ pCi/g}$ $1.14$ SS-BP-079-SF $6/12/2008 \text{ pCi/g}$ $1.14$ SS-BP-079-SV $6/12/2008 \text{ pCi/g}$ $1.14$ SS-BP-079-SF $6/12/2008 \text{ pCi/g}$ $1.14$ SS-BP-079-SV $6/12/2008 \text{ pCi/g}$ $1.16$ SS-BP-080-DV $6/12/2008 \text{ pCi/g}$ $1.16$ SS-BP-080-SF $6/12/2008 \text{ pCi/g}$ $1.2$ SS-BP-080-SV $6/12/2008 \text{ pCi/g}$ $1.2$ SS-BP-080-SV $6/12/2008 \text{ pCi/g}$ $1.2$ | Sample ID          | Sample Date Units | Ra_226_Unknown_Ingrowth | Ra_226_with_Ingrowth |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|-------------------------|----------------------|
| SS-BP-076-SF $6/17/2008$ pCi/g1.05SS-BP-076-SV $6/17/2008$ pCi/g1.02SS-BP-077-DV $6/12/2008$ pCi/g1.19SS-BP-077-SF $6/12/2008$ pCi/g0.952SS-BP-077-SV $6/12/2008$ pCi/g1.19SS-BP-078-DV $6/7/2008$ pCi/g1.13SS-BP-078-SF $6/7/2008$ pCi/g0.95SS-BP-078-SV $6/7/2008$ pCi/g0.93SS-BP-078-SV $6/7/2008$ pCi/g1.14SS-BP-079-DV $6/12/2008$ pCi/g1.34SS-BP-079-SF $6/12/2008$ pCi/g1.11SS-BP-080-DV $6/12/2008$ pCi/g1.08SS-BP-080-SF $6/12/2008$ pCi/g1SS-BP-080-SV $6/12/2008$ pCi/g1                                                                                                                                                                            | -                  |                   |                         | 0                    |
| SS-BP-076-SV6/17/2008 pCi/g1.02SS-BP-077-DV6/12/2008 pCi/g1.19SS-BP-077-SF6/12/2008 pCi/g0.952SS-BP-077-SV6/12/2008 pCi/g1.19SS-BP-078-DV6/7/2008 pCi/g1.13SS-BP-078-SF6/7/2008 pCi/g0.95SS-BP-078-SV6/7/2008 pCi/g0.93SS-BP-079-DV6/12/2008 pCi/g1.14SS-BP-079-SF6/12/2008 pCi/g1.34SS-BP-079-SV6/12/2008 pCi/g1.1SS-BP-080-DV6/12/2008 pCi/g1.08SS-BP-080-SF6/12/2008 pCi/g1SS-BP-080-SV6/12/2008 pCi/g1SS-BP-080-SV6/12/2008 pCi/g1SS-BP-080-SV6/12/2008 pCi/g1SS-BP-080-SV6/12/2008 pCi/g1                                                                                                                                                                                                                                                                                                                                                           |                    |                   | 1.05                    |                      |
| SS-BP-077-DV6/12/2008 pCi/g1.19SS-BP-077-SF6/12/2008 pCi/g0.952SS-BP-077-SV6/12/2008 pCi/g1.19SS-BP-078-DV6/7/2008 pCi/g1.13SS-BP-078-SF6/7/2008 pCi/g0.95SS-BP-078-SV6/7/2008 pCi/g0.93SS-BP-079-DV6/12/2008 pCi/g1.14SS-BP-079-SF6/12/2008 pCi/g1.34SS-BP-079-SV6/12/2008 pCi/g1.1SS-BP-080-DV6/12/2008 pCi/g1.08SS-BP-080-SF6/12/2008 pCi/g1SS-BP-080-SV6/12/2008 pCi/g1SS-BP-080-SV6/12/2008 pCi/g1SS-BP-080-SV6/12/2008 pCi/g1                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                   |                         |                      |
| SS-BP-077-SF6/12/2008 pCi/g0.952SS-BP-077-SV6/12/2008 pCi/g1.19SS-BP-078-DV6/7/2008 pCi/g1.13SS-BP-078-SF6/7/2008 pCi/g0.95SS-BP-078-SV6/7/2008 pCi/g0.93SS-BP-079-DV6/12/2008 pCi/g1.14SS-BP-079-SF6/12/2008 pCi/g1.34SS-BP-079-SV6/12/2008 pCi/g1.1SS-BP-080-DV6/12/2008 pCi/g1.08SS-BP-080-SF6/12/2008 pCi/g1SS-BP-080-SV6/12/2008 pCi/g1SS-BP-080-SV6/12/2008 pCi/g1SS-BP-080-SV6/12/2008 pCi/g1                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | 1 0               |                         |                      |
| SS-BP-077-SV6/12/2008 pCi/g1.19SS-BP-078-DV6/7/2008 pCi/g1.13SS-BP-078-SF6/7/2008 pCi/g0.95SS-BP-078-SV6/7/2008 pCi/g0.93SS-BP-079-DV6/12/2008 pCi/g1.14SS-BP-079-SF6/12/2008 pCi/g1.34SS-BP-079-SV6/12/2008 pCi/g1.1SS-BP-080-DV6/12/2008 pCi/g1.08SS-BP-080-SF6/12/2008 pCi/g1SS-BP-080-SV6/12/2008 pCi/g1SS-BP-080-SV6/12/2008 pCi/g1SS-BP-106-DV6/12/2008 pCi/g1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                   |                         |                      |
| SS-BP-078-DV6/7/2008 pCi/g1.13SS-BP-078-SF6/7/2008 pCi/g0.95SS-BP-078-SV6/7/2008 pCi/g0.93SS-BP-079-DV6/12/2008 pCi/g1.14SS-BP-079-SF6/12/2008 pCi/g1.34SS-BP-079-SV6/12/2008 pCi/g1.1SS-BP-080-DV6/12/2008 pCi/g1.08SS-BP-080-SF6/12/2008 pCi/g1SS-BP-080-SV6/12/2008 pCi/g1SS-BP-080-SV6/12/2008 pCi/g1SS-BP-080-SV6/12/2008 pCi/g1SS-BP-080-SV6/12/2008 pCi/g1SS-BP-080-SV6/12/2008 pCi/g1                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SS-BP-077-SV       | 1 Q               | 1.19                    |                      |
| SS-BP-078-SV       6/7/2008 pCi/g       0.93         SS-BP-079-DV       6/12/2008 pCi/g       1.14         SS-BP-079-SF       6/12/2008 pCi/g       1.34         SS-BP-079-SV       6/12/2008 pCi/g       1.1         SS-BP-080-DV       6/12/2008 pCi/g       1.08         SS-BP-080-SF       6/12/2008 pCi/g       1         SS-BP-080-SV       6/12/2008 pCi/g       1         SS-BP-080-SV       6/12/2008 pCi/g       1         SS-BP-080-SV       6/12/2008 pCi/g       1         SS-BP-080-SV       6/12/2008 pCi/g       1                                                                                                                                                                                                                                                                                                                       | SS-BP-078-DV       |                   | 1.13                    |                      |
| SS-BP-078-SV       6/7/2008 pCi/g       0.93         SS-BP-079-DV       6/12/2008 pCi/g       1.14         SS-BP-079-SF       6/12/2008 pCi/g       1.34         SS-BP-079-SV       6/12/2008 pCi/g       1.1         SS-BP-080-DV       6/12/2008 pCi/g       1.08         SS-BP-080-SF       6/12/2008 pCi/g       1         SS-BP-080-SV       6/12/2008 pCi/g       1         SS-BP-080-SV       6/12/2008 pCi/g       1         SS-BP-080-SV       6/12/2008 pCi/g       1         SS-BP-080-SV       6/12/2008 pCi/g       1                                                                                                                                                                                                                                                                                                                       | SS-BP-078-SF       | 6/7/2008 pCi/g    | 0.95                    |                      |
| SS-BP-079-SF       6/12/2008 pCi/g       1.34         SS-BP-079-SV       6/12/2008 pCi/g       1.1         SS-BP-080-DV       6/12/2008 pCi/g       1.08         SS-BP-080-SF       6/12/2008 pCi/g       1         SS-BP-080-SV       6/12/2008 pCi/g       1         SS-BP-080-SF       6/12/2008 pCi/g       1         SS-BP-080-SV       6/12/2008 pCi/g       1         SS-BP-080-SV       6/12/2008 pCi/g       1                                                                                                                                                                                                                                                                                                                                                                                                                                  | SS-BP-078-SV       | 6/7/2008 pCi/g    | 0.93                    |                      |
| SS-BP-079-SV       6/12/2008 pCi/g       1.1         SS-BP-080-DV       6/12/2008 pCi/g       1.08         SS-BP-080-SF       6/12/2008 pCi/g       1         SS-BP-080-SV       6/12/2008 pCi/g       1         SS-BP-080-SV       6/12/2008 pCi/g       1         SS-BP-080-SV       6/12/2008 pCi/g       1         SS-BP-080-SV       6/12/2008 pCi/g       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SS-BP-079-DV       | 6/12/2008 pCi/g   | 1.14                    |                      |
| SS-BP-080-DV       6/12/2008 pCi/g       1.08         SS-BP-080-SF       6/12/2008 pCi/g       1         SS-BP-080-SV       6/12/2008 pCi/g       1         SS-BP-106-DV       6/17/2008 pCi/g       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SS-BP-079-SF       | 6/12/2008 pCi/g   | 1.34                    |                      |
| SS-BP-080-SF6/12/2008 pCi/g1SS-BP-080-SV6/12/2008 pCi/g1.2SS-BP-106-DV6/17/2008 pCi/g1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SS-BP-079-SV       | 6/12/2008 pCi/g   | 1.1                     |                      |
| SS-BP-080-SV6/12/2008 pCi/g1.2SS-BP-106-DV6/17/2008 pCi/g1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SS-BP-080-DV       | 6/12/2008 pCi/g   | 1.08                    |                      |
| SS-BP-106-DV 6/17/2008 pCi/g 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SS-BP-080-SF       | 6/12/2008 pCi/g   | 1                       |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SS-BP-080-SV       | 6/12/2008 pCi/g   | 1.2                     |                      |
| SS-BP-106-SF 6/17/2008 pCi/g 1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SS-BP-106-DV       | 6/17/2008 pCi/g   | 1                       |                      |
| r 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SS-BP-106-SF       | 6/17/2008 pCi/g   | 1.06                    |                      |
| SS-BP-106-SV 6/17/2008 pCi/g 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SS-BP-106-SV       | 6/17/2008 pCi/g   | 1.02                    |                      |
| SS-BP-107-DV 6/4/2008 pCi/g 0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SS-BP-107-DV       | 6/4/2008 pCi/g    | 0.71                    |                      |
| SS-BP-107-SF 6/4/2008 pCi/g 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SS-BP-107-SF       | 6/4/2008 pCi/g    | 0.97                    |                      |
| SS-BP-107-SV 6/4/2008 pCi/g 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SS-BP-107-SV       | 6/4/2008 pCi/g    | 0.84                    |                      |
| SS-BP-108B-DV 6/4/2008 pCi/g 1.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SS-BP-108B-DV      | 6/4/2008 pCi/g    | 1.31                    |                      |
| SS-BP-108B-DV-EL-6 6/4/2008 pCi/g 0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SS-BP-108B-DV-EL-6 | 6/4/2008 pCi/g    | 0.73                    |                      |
| SS-BP-108B-SF 6/4/2008 pCi/g 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SS-BP-108B-SF      | 6/4/2008 pCi/g    | 0.8                     |                      |
| SS-BP-108B-SV 6/4/2008 pCi/g 0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SS-BP-108B-SV      | 6/4/2008 pCi/g    | 0.89                    |                      |
| SS-BP-108-SF 6/4/2008 pCi/g 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SS-BP-108-SF       | 6/4/2008 pCi/g    | 0.68                    |                      |
| SS-BP-108-SV 6/4/2008 pCi/g 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SS-BP-108-SV       | 6/4/2008 pCi/g    | 0.86                    |                      |
| SS-BP-110-DV 6/4/2008 pCi/g 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SS-BP-110-DV       | 6/4/2008 pCi/g    | 0.9                     |                      |
| SS-BP-110-SF 6/4/2008 pCi/g 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SS-BP-110-SF       | 6/4/2008 pCi/g    | 0.91                    |                      |
| SS-BP-110-SV 6/4/2008 pCi/g 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SS-BP-110-SV       | 6/4/2008 pCi/g    | 0.98                    |                      |
| SS-BP-111-DV 6/5/2008 pCi/g 1.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SS-BP-111-DV       | 6/5/2008 pCi/g    | 1.16                    |                      |
| SS-BP-111-SF 6/5/2008 pCi/g 1.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SS-BP-111-SF       | 6/5/2008 pCi/g    | 1.08                    |                      |
| SS-BP-111-SV 6/5/2008 pCi/g 0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SS-BP-111-SV       | 6/5/2008 pCi/g    | 0.89                    |                      |
| SS-E.EVAP-001-SF 7/21/2008 pCi/g 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SS-E.EVAP-001-SF   | 7/21/2008 pCi/g   | 0.99                    |                      |
| SS-E.EVAP-001-SV 7/21/2008 pCi/g 1.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SS-E.EVAP-001-SV   | 7/21/2008 pCi/g   | 1.21                    |                      |
| SS-GA-001-DV 7/10/2008 pCi/g 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SS-GA-001-DV       | 7/10/2008 pCi/g   | 1.02                    |                      |
| SS-GA-001-SF 7/10/2008 pCi/g 0.729                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SS-GA-001-SF       | 7/10/2008 pCi/g   | 0.729                   |                      |
| SS-GA-001-SV 7/10/2008 pCi/g 0.863                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SS-GA-001-SV       | 7/10/2008 pCi/g   | 0.863                   |                      |
| SS-GA-002-DV 7/9/2008 pCi/g 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SS-GA-002-DV       | 7/9/2008 pCi/g    | 0.86                    |                      |
| SS-GA-002-SF 7/9/2008 pCi/g 0.942                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SS-GA-002-SF       | 7/9/2008 pCi/g    | 0.942                   |                      |
| SS-GA-002-SV 7/9/2008 pCi/g 1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SS-GA-002-SV       | 7/9/2008 pCi/g    | 1.03                    |                      |
| SS-GA-003-DV 6/17/2008 pCi/g 0.854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SS-GA-003-DV       | 6/17/2008 pCi/g   | 0.854                   |                      |

Non-Impacted

#### Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| Sample ID       | Sample Date Units | Ra_226_Unknown_Ingrowth | Ra_226_with_Ingrowth |
|-----------------|-------------------|-------------------------|----------------------|
| SS-GA-003-SV    | 6/17/2008 pCi/g   | 1.08                    |                      |
| SS-GA-004-DV    | 6/21/2008 pCi/g   | 1.21                    |                      |
| SS-GA-004-DV-QC | 6/21/2008 pCi/g   | 1.15                    |                      |
| SS-GA-004-SF    | 6/21/2008 pCi/g   | 0.538                   |                      |
| SS-GA-004-SV    | 6/21/2008 pCi/g   | 0.766                   |                      |
| SS-GA-005-DV    | 6/21/2008 pCi/g   | 1.12                    |                      |
| SS-GA-005-SF    | 6/21/2008 pCi/g   | 0.7                     |                      |
| SS-GA-005-SV    | 6/21/2008 pCi/g   | 1.22                    |                      |
| SS-GB-002-DV    | 7/15/2008 pCi/g   | 0.91                    |                      |
| SS-GB-002-SF    | 7/15/2008 pCi/g   | 0.93                    |                      |
| SS-GB-002-SV    | 7/15/2008 pCi/g   | 1.1                     |                      |
| SS-GB-003-SF    | 7/9/2008 pCi/g    | 1.06                    |                      |
| SS-GB-003-SV    | 7/9/2008 pCi/g    | 1.16                    |                      |
| SS-GB-004-DV    | 7/14/2008 pCi/g   | 1.13                    |                      |
| SS-GB-004-SF    | 7/14/2008 pCi/g   | 0.845                   |                      |
| SS-GB-004-SV    | 7/14/2008 pCi/g   | 0.99                    |                      |
| SS-GB-006-DV    | 6/21/2008 pCi/g   | 1.26                    |                      |
| SS-GB-006-SF    | 6/21/2008 pCi/g   | 0.91                    |                      |
| SS-GB-006-SV    | 6/21/2008 pCi/g   | 1.3                     |                      |
| SS-GB-007-DV    | 6/21/2008 pCi/g   | 1.4                     |                      |
| SS-GB-007-SF    | 6/21/2008 pCi/g   | 1.2                     |                      |
| SS-GB-007-SV    | 6/21/2008 pCi/g   | 1.2                     |                      |
| SS-GB-009-DV    | 6/21/2008 pCi/g   | 1.2                     |                      |
| SS-GB-009-SF    | 6/21/2008 pCi/g   | 1.03                    |                      |
| SS-GB-009-SV    | 6/21/2008 pCi/g   | 0.93                    |                      |
| SS-GB-010-DV    | 6/21/2008 pCi/g   | 1.08                    |                      |
| SS-GB-010-DV-QC | 6/21/2008 pCi/g   | 1.05                    |                      |
| SS-GB-010-SF    | 6/21/2008 pCi/g   | 0.926                   |                      |
| SS-GB-010-SV    | 6/21/2008 pCi/g   | 0.987                   |                      |
| SS-GB-012-DV    | 6/20/2008 pCi/g   | 1.26                    |                      |
| SS-GB-012-DV-QC | 6/20/2008 pCi/g   | 1.11                    |                      |
| SS-GB-012-SF    | 6/20/2008 pCi/g   | 0.917                   |                      |
| SS-GB-012-SV    | 6/20/2008 pCi/g   | 1.16                    |                      |
| SS-GB-013-DV    | 6/20/2008 pCi/g   | 0.932                   |                      |
| SS-GB-013-SF    | 6/20/2008 pCi/g   | 0.945                   |                      |
| SS-GB-013-SV    | 6/20/2008 pCi/g   | 1.24                    |                      |
| SS-GB-015-DV    | 6/20/2008 pCi/g   | 1.03                    |                      |
| SS-GB-015-SF    | 6/20/2008 pCi/g   | 0.624                   |                      |
| SS-GB-015-SV    | 6/20/2008 pCi/g   | 1.06                    |                      |
| SS-GB-016-DV    | 6/20/2008 pCi/g   | 1.15                    |                      |
| SS-GB-016-DV-QC | 6/20/2008 pCi/g   | 1.15                    |                      |
| SS-GB-016-SF    | 6/20/2008 pCi/g   | 0.872                   |                      |

Non-Impacted

| Sample ID       | Sample Date Units | Ra_226_Unknown_Ingrowth | Ra_226_with_Ingrowth |
|-----------------|-------------------|-------------------------|----------------------|
| SS-GB-016-SV    | 6/20/2008 pCi/g   | 1.08                    |                      |
| SS-GB-018-DV    | 6/20/2008 pCi/g   | 1.16                    |                      |
| SS-GB-018-SF    | 6/20/2008 pCi/g   | 0.562                   |                      |
| SS-GB-018-SV    | 6/20/2008 pCi/g   | 1.06                    |                      |
| SS-GB-019-DV    | 6/20/2008 pCi/g   | 1.14                    |                      |
| SS-GB-019-SF    | 6/20/2008 pCi/g   | 0.89                    |                      |
| SS-GB-019-SV    | 6/20/2008 pCi/g   | 0.96                    |                      |
| SS-GB-020-DV    | 6/20/2008 pCi/g   | 1                       |                      |
| SS-GB-020-SF    | 6/20/2008 pCi/g   | 1.03                    |                      |
| SS-GB-020-SV    | 6/20/2008 pCi/g   | 0.99                    |                      |
| SS-GB-020-SV-QC | 6/20/2008 pCi/g   | 1.04                    |                      |
| SS-GB-021-DV    | 6/20/2008 pCi/g   | 0.99                    |                      |
| SS-GB-021-SF    | 6/20/2008 pCi/g   | 0.89                    |                      |
| SS-GB-021-SF-QC | 6/20/2008 pCi/g   | 0.82                    |                      |
| SS-GB-021-SV    | 6/20/2008 pCi/g   | 0.946                   |                      |
| SS-GB-022-SF    | 7/8/2008 pCi/g    | 0.945                   |                      |
| SS-GB-022-SV    | 7/8/2008 pCi/g    | 1.01                    |                      |
| SS-GB-023-SF    | 7/8/2008 pCi/g    | 1.04                    |                      |
| SS-GB-023-SV    | 7/8/2008 pCi/g    | 0.99                    |                      |
| SS-GC-001-DV    | 6/20/2008 pCi/g   | 0.875                   |                      |
| SS-GC-001-SF    | 6/20/2008 pCi/g   | 0.656                   |                      |
| SS-GC-001-SV    | 6/20/2008 pCi/g   | 0.97                    |                      |
| SS-GC-002-DV    | 6/20/2008 pCi/g   | 0.952                   |                      |
| SS-GC-002-SF    | 6/20/2008 pCi/g   | 0.88                    |                      |
| SS-GC-002-SV    | 6/20/2008 pCi/g   | 0.902                   |                      |
| SS-GC-004-DV    | 6/19/2008 pCi/g   | 1.15                    |                      |
| SS-GC-004-DV-QC | 6/19/2008 pCi/g   | 1.18                    |                      |
| SS-GC-004-SF    | 6/19/2008 pCi/g   | 0.967                   |                      |
| SS-GC-004-SV    | 6/19/2008 pCi/g   | 1.18                    |                      |
| SS-GC-005-DV    | 6/19/2008 pCi/g   | 1.17                    |                      |
| SS-GC-005-SF    | 6/19/2008 pCi/g   | 1.13                    |                      |
| SS-GC-005-SV    | 6/19/2008 pCi/g   | 1.1                     |                      |
| SS-GC-007-DV    | 7/8/2008 pCi/g    | 0.91                    |                      |
| SS-GC-007-SF    | 7/8/2008 pCi/g    | 0.889                   |                      |
| SS-GC-007-SF-QC | 7/8/2008 pCi/g    | 0.96                    |                      |
| SS-GC-007-SV    | 7/8/2008 pCi/g    | 1.01                    |                      |
| SS-GC-008-DV    | 6/19/2008 pCi/g   | 1.31                    |                      |
| SS-GC-008-SF    | 6/19/2008 pCi/g   | 1.05                    |                      |
| SS-GC-008-SV    | 6/19/2008 pCi/g   | 1.23                    |                      |
| SS-GC-010-DV    | 7/7/2008 pCi/g    | 0.951                   |                      |
| SS-GC-010-SF    | 7/7/2008 pCi/g    | 0.949                   |                      |
| SS-GC-010-SV    | 7/7/2008 pCi/g    | 0.89                    |                      |

Non-Impacted

#### Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| Sample ID       | Sample_Date Units | Ra_226_Unknown_Ingrowth | Ra 226 with Ingrowth |
|-----------------|-------------------|-------------------------|----------------------|
| SS-GC-011-DV    | 6/18/2008 pCi/g   | 1.13                    |                      |
| SS-GC-011-SF    | 6/18/2008 pCi/g   | 1.13                    |                      |
| SS-GC-011-SV    | 6/18/2008 pCi/g   | 1.16                    |                      |
| SS-GL-001-SF    | 6/10/2008 pCi/g   | 0.148                   | 0.138                |
| SS-GL-001-SV    | 6/10/2008 pCi/g   | 1.04                    |                      |
| SS-GL-002-SF    | 6/10/2008 pCi/g   | 0.899                   |                      |
| SS-GL-002-SV    | 6/10/2008 pCi/g   | 0.931                   |                      |
| SS-GL-003-SF    | 6/10/2008 pCi/g   | 0.824                   |                      |
| SS-GL-003-SV    | 6/10/2008 pCi/g   | 0.961                   |                      |
| SS-GL-004-SF    | 6/10/2008 pCi/g   | 0.118                   | 0.144                |
| SS-GL-004-SV    | 6/10/2008 pCi/g   | 0.946                   |                      |
| SS-GL-005-SF    | 6/10/2008 pCi/g   | 0.774                   |                      |
| SS-GL-005-SV    | 6/10/2008 pCi/g   | 0.773                   |                      |
| SS-GL-006-SF    | 6/10/2008 pCi/g   | 0.163                   |                      |
| SS-GL-006-SV    | 6/10/2008 pCi/g   | 0.709                   |                      |
| SS-GL-007-SF    | 6/10/2008 pCi/g   | 0.545                   |                      |
| SS-GL-007-SV    | 6/10/2008 pCi/g   | 1.06                    |                      |
| SS-GL-008-DV    | 6/10/2008 pCi/g   | 1.16                    |                      |
| SS-GL-008-SF    | 6/10/2008 pCi/g   | 0.44                    |                      |
| SS-GL-008-SV    | 6/10/2008 pCi/g   | 1.07                    |                      |
| SS-GL-009-DV    | 6/11/2008 pCi/g   | 1.2                     |                      |
| SS-GL-009-SF    | 6/11/2008 pCi/g   | 0.525                   | 0.509                |
| SS-GL-009-SV    | 6/11/2008 pCi/g   | 1.05                    |                      |
| SS-GL-009-SV-QC | 6/11/2008 pCi/g   | 0.94                    |                      |
| SS-GL-010-DV    | 6/11/2008 pCi/g   | 1.19                    |                      |
| SS-GL-010-SF    | 6/11/2008 pCi/g   | 1.04                    |                      |
| SS-GL-010-SV    | 6/11/2008 pCi/g   | 1.14                    |                      |
| SS-GL-011-SF    | 6/12/2008 pCi/g   | 0.818                   |                      |
| SS-GL-011-SV    | 6/12/2008 pCi/g   | 1.11                    |                      |
| SS-GL-012-SF    | 6/12/2008 pCi/g   | 0.8                     |                      |
| SS-GL-012-SV    | 6/12/2008 pCi/g   | 1.11                    |                      |
| SS-GL-013-SF    | 6/12/2008 pCi/g   | 0.96                    |                      |
| SS-GL-013-SV    | 6/11/2008 pCi/g   | 1.11                    |                      |
| SS-GL-014-SF    | 6/11/2008 pCi/g   | 0.637                   |                      |
| SS-GL-014-SV    | 6/11/2008 pCi/g   | 1.14                    |                      |
| SS-GL-015-SF    | 6/13/2008 pCi/g   | 1.07                    |                      |
| SSGL-015-SV     | 6/13/2008 pCi/g   | 0.99                    |                      |
| SS-GL-016-SF    | 6/13/2008 pCi/g   | 0.884                   |                      |
| SS-GL-016-SV    | 6/13/2008 pCi/g   | 1                       |                      |
| SS-GL-017-SF    | 6/13/2008 pCi/g   | 1                       |                      |
| SS-GL-017-SV    | 6/13/2008 pCi/g   | 1.11                    |                      |
| SS-GL-018-SF    | 6/13/2008 pCi/g   | 0.11                    |                      |

Unknown and Known Ingrowth Non-Impacted Ra-226 via Gamma Spectroscopy

| Sample ID        | Sample Date Units | Ra_226_Unknown_Ingrowth | Ra_226_with_Ingrowth |
|------------------|-------------------|-------------------------|----------------------|
| SS-GL-018-SV     | 6/13/2008 pCi/g   | 1.03                    |                      |
| SS-GL-019-SF     | 6/13/2008 pCi/g   | 0.166                   |                      |
| SS-GL-019-SV     | 6/13/2008 pCi/g   | 0.92                    |                      |
| SS-GL-020-SF     | 6/13/2008 pCi/g   | 0.225                   |                      |
| SS-GL-020-SV     | 6/13/2008 pCi/g   | 0.914                   |                      |
| SS-GL-021-SF     | 6/16/2008 pCi/g   | 0.272                   |                      |
| SS-GL-021-SV     | 6/16/2008 pCi/g   | 1.18                    |                      |
| SS-GL-022-SF     | 6/16/2008 pCi/g   | 0.479                   | 0.494                |
| SS-GL-022-SV     | 6/16/2008 pCi/g   | 0.899                   |                      |
| SS-GL-022-SV-QC  | 6/16/2008 pCi/g   | 1.1                     |                      |
| SS-GL-023-SF     | 6/16/2008 pCi/g   | 0.355                   |                      |
| SS-GL-023-SV     | 6/16/2008 pCi/g   | 0.587                   |                      |
| SS-GL-024-SF     | 6/16/2008 pCi/g   | 0.348                   |                      |
| SS-GL-024-SV     | 6/16/2008 pCi/g   | 0.508                   |                      |
| SS-GL-025-SF     | 6/16/2008 pCi/g   | 1.02                    |                      |
| SS-GL-025-SV     | 6/16/2008 pCi/g   | 1.07                    |                      |
| SS-GL-026-SF     | 6/16/2008 pCi/g   | 1                       |                      |
| SS-GL-026-SV     | 6/16/2008 pCi/g   | 1.12                    |                      |
| SS-GL-027-SF     | 6/16/2008 pCi/g   | 1.03                    |                      |
| SS-GL-027-SV     | 6/16/2008 pCi/g   | 1.04                    |                      |
| SS-GL-028-SF     | 6/16/2008 pCi/g   | 1.03                    |                      |
| SS-GL-028-SV     | 6/16/2008 pCi/g   | 1.07                    |                      |
| SS-GL-029-SF     | 6/16/2008 pCi/g   | 0.966                   |                      |
| SS-GL-029-SV     | 6/16/2008 pCi/g   | 1.14                    |                      |
| SS-GL-030-SF     | 6/17/2008 pCi/g   | 1.06                    |                      |
| SS-GL-030-SV     | 6/17/2008 pCi/g   | 1.15                    |                      |
| SS-GL-031-SF     | 6/17/2008 pCi/g   | 1.11                    |                      |
| SS-GL-031-SV     | 6/17/2008 pCi/g   | 1.11                    |                      |
| SS-GL-031-SV-QC  | 6/17/2008 pCi/g   | 1.1                     |                      |
| SS-GL-032-SF     | 6/17/2008 pCi/g   | 1.18                    |                      |
| SS-GL-032-SV     | 6/17/2008 pCi/g   | 1.13                    |                      |
| SS-GL-033-SF     | 6/17/2008 pCi/g   | 1.05                    |                      |
| SS-GL-033-SV     | 6/17/2008 pCi/g   | 1.21                    |                      |
| SS-GL-034-SF     | 6/17/2008 pCi/g   | 1.17                    |                      |
| SS-GL-034-SV     | 6/17/2008 pCi/g   | 1.25                    |                      |
| SS-GL-035-SF     | 6/17/2008 pCi/g   | 1.1                     |                      |
| SS-GL-035-SV     | 6/17/2008 pCi/g   | 1.08                    |                      |
| SS-HS-001-SF     | 7/15/2008 pCi/g   | 0.881                   |                      |
| SS-HS-001-SV     | 7/15/2008 pCi/g   | 0.862                   |                      |
| SS-HS-001-SV-A   | 7/16/2008 pCi/g   | 0.876                   |                      |
| SS-HS-002-EL-0.5 | 7/16/2008 pCi/g   | 1.97                    | 1.52                 |
| SS-HS-002-SF     | 7/16/2008 pCi/g   | 0.873                   |                      |

Non-Impacted

Unknown and Known Ingrowth Non-Impacted Ra-226 via Gamma Spectroscopy

| Sample ID            | Sample_Date Units | Ra_226_Unknown_Ingrowth | Ra_226_with_Ingrowth |
|----------------------|-------------------|-------------------------|----------------------|
| SS-HS-002-SV         | 7/16/2008 pCi/g   | 0.876                   |                      |
| SS-HS-003-SF         | 7/16/2008 pCi/g   | 0.86                    |                      |
| SS-HS-003-SV         | 7/16/2008 pCi/g   | 0.892                   |                      |
| SS-HS-004-EL-1.0     | 7/16/2008 pCi/g   | 1.14                    |                      |
| SS-HS-004-SF         | 7/16/2008 pCi/g   | 0.926                   |                      |
| SS-HS-004-SV         | 7/16/2008 pCi/g   | 0.96                    |                      |
| SS-HS-005-DV         | 7/21/2008 pCi/g   | 1.3                     |                      |
| SS-HS-005EL-0.75-1.0 | 7/21/2008 pCi/g   | 4.3                     | 3.4                  |
| SS-HS-005-EL-1.0-1.5 | 7/21/2008 pCi/g   | 2.29                    |                      |
| SS-HS-005-EL-4.5-5.0 | 7/21/2008 pCi/g   | 2.1                     |                      |
| SS-HS-005-SF         | 7/21/2008 pCi/g   | 1.18                    |                      |
| SS-HS-005-SV         | 7/21/2008 pCi/g   | 2.55                    | 2.21                 |
| SS-HS-006-EL-0.5-1.0 | 7/21/2008 pCi/g   | 1.35                    |                      |
| SS-HS-006-SF         | 7/21/2008 pCi/g   | 1.09                    |                      |
| SS-LA-006-DV         | 5/31/2008 pCi/g   | 0.87                    |                      |
| SS-LA-006-SF         | 5/31/2008 pCi/g   | 0.82                    |                      |
| SS-LA-006-SV         | 5/31/2008 pCi/g   | 0.86                    |                      |
| SS-LA-019-DV         | 6/2/2008 pCi/g    | 0.93                    |                      |
| SS-LA-019-SF         | 6/2/2008 pCi/g    | 0.38                    |                      |
| SS-LA-019-SV         | 6/2/2008 pCi/g    | 1.22                    |                      |
| SS-LA-020-DV         | 5/31/2008 pCi/g   | 0.98                    |                      |
| SS-LA-020-SF         | 5/31/2008 pCi/g   | 0.42                    |                      |
| SS-LA-020-SV         | 5/31/2008 pCi/g   | 0.85                    |                      |
| SS-LA-029-DV         | 6/2/2008 pCi/g    | 1.02                    |                      |
| SS-LA-029-SF         | 6/2/2008 pCi/g    | 0.66                    |                      |
| SS-LA-029-SV         | 6/2/2008 pCi/g    | 0.87                    |                      |
| SS-LA-035-DV         | 6/9/2008 pCi/g    | 1.09                    |                      |
| SS-LA-035-SF         | 6/9/2008 pCi/g    | 1.03                    |                      |
| SS-LA-035-SV         | 6/9/2008 pCi/g    | 1.09                    |                      |
| SS-LA-036-DV         | 6/10/2008 pCi/g   | 1.25                    |                      |
| SS-LA-036-SF         | 6/10/2008 pCi/g   | 0.989                   |                      |
| SS-LA-036-SV         | 6/10/2008 pCi/g   | 1.06                    |                      |
| SS-LA-050-DV         | 6/6/2008 pCi/g    | 0.8                     |                      |
| SS-LA-050-SF         | 6/6/2008 pCi/g    | 0.85                    |                      |
| SS-LA-050-SV         | 6/6/2008 pCi/g    | 0.73                    |                      |
| SS-LA-050-SV-QC      | 6/6/2008 pCi/g    | 0.78                    |                      |
| SS-LA-059-DV         | 6/7/2008 pCi/g    | 1.04                    |                      |
| SS-LA-059-SF         | 6/7/2008 pCi/g    | 0.68                    |                      |
| SS-LA-059-SV         | 6/7/2008 pCi/g    | 0.73                    |                      |
| SS-LA-081-DV         | 5/31/2008 pCi/g   | 1.08                    |                      |
| SS-LA-081-SF         | 5/31/2008 pCi/g   | 0.84                    |                      |
| SS-LA-081-SV         | 5/31/2008 pCi/g   | 1.12                    |                      |

Non-Impacted

Non-Impacted

#### Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| Sample ID         | Sample_Date Units | Ra_226_Unknown_Ingrowth | Ra_226_with_Ingrowth |
|-------------------|-------------------|-------------------------|----------------------|
| SS-LA-082-DV      | 5/31/2008 pCi/g   | 1.04                    |                      |
| SS-LA-082-SF      | 5/31/2008 pCi/g   | 0.06                    |                      |
| SS-LA-082-SV      | 5/31/2008 pCi/g   | 0.75                    |                      |
| SS-LA-083-DV      | 5/31/2008 pCi/g   | 0.97                    |                      |
| SS-LA-083-SF      | 5/31/2008 pCi/g   | 0.59                    |                      |
| SS-LA-083-SV      | 5/31/2008 pCi/g   | 0.95                    |                      |
| SS-LA-084-DV      | 6/2/2008 pCi/g    | 1.01                    |                      |
| SS-LA-084-SF      | 6/2/2008 pCi/g    | 0.064                   |                      |
| SS-LA-084-SV      | 6/2/2008 pCi/g    | 1.15                    |                      |
| SS-LA-085-DV      | 6/2/2008 pCi/g    | 0.94                    |                      |
| SS-LA-085-DV-EL-6 | 6/2/2008 pCi/g    | 1.18                    |                      |
| SS-LA-085-SF      | 6/2/2008 pCi/g    | 0.44                    |                      |
| SS-LA-085-SV      | 6/2/2008 pCi/g    | 1.41                    |                      |
| SS-LA-086-DV      | 6/2/2008 pCi/g    | 1                       |                      |
| SS-LA-086-SF      | 6/2/2008 pCi/g    | 0.61                    |                      |
| SS-LA-086-SV      | 6/2/2008 pCi/g    | 0.99                    |                      |
| SS-LA-086-SV-QC   | 6/2/2008 pCi/g    | 1.27                    |                      |
| SS-LA-087-DV      | 6/2/2008 pCi/g    | 0.95                    |                      |
| SS-LA-087-SF      | 6/2/2008 pCi/g    | 0.97                    |                      |
| SS-LA-087-SV      | 6/2/2008 pCi/g    | 1.15                    |                      |
| SS-LA-088-DV      | 6/9/2008 pCi/g    | 1.07                    |                      |
| SS-LA-088-SV      | 6/9/2008 pCi/g    | 0.81                    |                      |
| SS-LA-089-DV      | 6/7/2008 pCi/g    | 0.87                    |                      |
| SS-LA-089-SF      | 6/7/2008 pCi/g    | 0.84                    | 1.19                 |
| SS-LA-089-SV      | 6/7/2008 pCi/g    | 0.9                     |                      |
| SS-LA-089-SV-QC   | 6/7/2008 pCi/g    | 0.92                    |                      |
| SS-LA-090-DV      | 6/9/2008 pCi/g    | 0.97                    |                      |
| SS-LA-090-SF      | 6/9/2008 pCi/g    | 0.81                    |                      |
| SS-LA-090-SV      | 6/9/2008 pCi/g    | 0.97                    |                      |
| SS-LA-091-DV      | 6/9/2008 pCi/g    | 0.93                    |                      |
| SS-LA-091-SF      | 6/9/2008 pCi/g    | 0.72                    | 0.89                 |
| SS-LA-091-SV      | 6/9/2008 pCi/g    | 1.01                    |                      |
| SS-LA-092-DV      | 6/9/2008 pCi/g    | 1.05                    |                      |
| SS-LA-092-DV-QC   | 6/9/2008 pCi/g    | 1.28                    |                      |
| SS-LA-092-SF      | 6/9/2008 pCi/g    | 0.96                    |                      |
| SS-LA-092-SV      | 6/9/2008 pCi/g    | 1.06                    |                      |
| SS-LA-093-DV      | 6/9/2008 pCi/g    | 1.14                    |                      |
| SS-LA-093-SF      | 6/9/2008 pCi/g    | 0.89                    |                      |
| SS-LA-093-SV      | 6/9/2008 pCi/g    | 0.95                    |                      |
| SS-LA-094-DV      | 6/9/2008 pCi/g    | 1.06                    |                      |
| SS-LA-094-SF      | 6/9/2008 pCi/g    | 0.87                    |                      |
| SS-LA-094-SV      | 6/9/2008 pCi/g    | 1.19                    |                      |

Non-Impacted

#### Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| Sample ID        | Sample_Date Units | Ra_226_Unknown_Ingrowth | Ra_226_with_Ingrowth |
|------------------|-------------------|-------------------------|----------------------|
| SS-LA-095-DV     | 6/10/2008 pCi/g   | 1.23                    |                      |
| SS-LA-095-SF     | 6/10/2008 pCi/g   | 0.883                   | 0.93                 |
| SS-LA-095-SV     | 6/10/2008 pCi/g   | 0.95                    |                      |
| SS-LA-096-DV     | 6/10/2008 pCi/g   | 1.12                    |                      |
| SS-LA-096-DV-QC  | 6/10/2008 pCi/g   | 1.08                    |                      |
| SS-LA-096-SF     | 6/10/2008 pCi/g   | 0.952                   |                      |
| SS-LA-096-SV     | 6/10/2008 pCi/g   | 1.06                    |                      |
| SS-LA-097-DV     | 6/10/2008 pCi/g   | 1.09                    |                      |
| SS-LA-097-SF     | 6/10/2008 pCi/g   | 0.503                   |                      |
| SS-LA-098-DV     | 6/10/2008 pCi/g   | 1.17                    |                      |
| SS-LA-098-SF     | 6/10/2008 pCi/g   | 0.892                   |                      |
| SS-LA-098-SV     | 6/10/2008 pCi/g   | 1.33                    |                      |
| SS-LA-099-DV     | 6/9/2008 pCi/g    | 1.2                     |                      |
| SS-LA-099-DV-QC  | 6/9/2008 pCi/g    | 1.19                    |                      |
| SS-LA-099-SF     | 6/9/2008 pCi/g    | 0.94                    | 1.22                 |
| SS-LA-099-SV     | 6/9/2008 pCi/g    | 0.99                    |                      |
| SS-LA-100-DV     | 6/10/2008 pCi/g   | 1.14                    |                      |
| SS-LA-100-SF     | 6/10/2008 pCi/g   | 0.826                   |                      |
| SS-LA-100-SV     | 6/10/2008 pCi/g   | 1.16                    |                      |
| SS-LF-101-DV     | 6/11/2008 pCi/g   | 0.934                   |                      |
| SS-LF-101-DV-QC  | 6/11/2008 pCi/g   | 1.12                    |                      |
| SS-LF-101-SF     | 6/11/2008 pCi/g   | 0.755                   |                      |
| SS-LF-101-SV     | 6/11/2008 pCi/g   | 0.791                   |                      |
| SS-LF-102-DV     | 6/11/2008 pCi/g   | 1.05                    |                      |
| SS-LF-102-SF     | 6/11/2008 pCi/g   | 0.91                    |                      |
| SS-LF-102-SV     | 6/11/2008 pCi/g   | 0.847                   |                      |
| SS-LF-103-DV     | 6/11/2008 pCi/g   | 1                       |                      |
| SS-LF-103-SF     | 6/11/2008 pCi/g   | 0.85                    |                      |
| SS-LF-103-SV     | 6/11/2008 pCi/g   | 0.99                    |                      |
| SS-LF-104-DV     | 6/11/2008 pCi/g   | 1.06                    |                      |
| SS-LF-104-SF     | 6/11/2008 pCi/g   | 0.683                   |                      |
| SS-LF-104-SV     | 6/11/2008 pCi/g   | 0.89                    |                      |
| SS-LF-105-DV     | 6/11/2008 pCi/g   | 1.05                    |                      |
| SS-LF-105-SF     | 6/11/2008 pCi/g   | 0.928                   |                      |
| SS-LF-105-SV     | 6/11/2008 pCi/g   | 0.885                   |                      |
| SS-W.EVAP-001-SF | 7/22/2008 pCi/g   | 1.04                    |                      |
| SS-W.EVAP-001-SV | 7/22/2008 pCi/g   | 1.24                    |                      |
| SW-01-00-SL      | 4/27/2004 pCi/g   | 1.14                    |                      |
| SW-01-SS         | 4/28/2004 pCi/g   | 1.37                    |                      |
| SW-02-00-SL      | 4/27/2004 pCi/g   | 1.32                    |                      |
| SW-02-01-SL      | 6/14/2004 pCi/g   | 0.932                   |                      |
| SW-02-09-SL      | 6/14/2004 pCi/g   | 0.798                   |                      |

Unknown and Known Ingrowth Non-Impacted Ra-226 via Gamma Spectroscopy

| Sample ID      | Sample_Date Units | Ra_226_Unknown_Ingrowth | Ra_226_with_Ingrowth |
|----------------|-------------------|-------------------------|----------------------|
| SW-02-15-SL    | 6/14/2004 pCi/g   | 1.02                    |                      |
| SW-02-23-SL    | 6/14/2004 pCi/g   | 0.938                   |                      |
| SW-02-SS       | 4/27/2004 pCi/g   | 0.572                   |                      |
| SW-03-00-SL    | 4/27/2004 pCi/g   | 0.924                   |                      |
| SW-03-SS       | 4/27/2004 pCi/g   | 0.83                    |                      |
| SW-04-00-SL    | 4/27/2004 pCi/g   | 1.26                    |                      |
| SW-04-SS       | 4/27/2004 pCi/g   | 0.991                   |                      |
| SW-05-08-SL    | 5/25/2004 pCi/g   | 1.24                    |                      |
| SW-05-12-SL    | 5/25/2004 pCi/g   | 0.914                   |                      |
| SW-05-SS       | 4/27/2004 pCi/g   | 1.22                    |                      |
| SW-06-05-SL    | 5/27/2004 pCi/g   | 0.786                   |                      |
| SW-06-05-SL-FD | 5/27/2004 pCi/g   | 1.01                    |                      |
| SW-06-13-SL    | 5/27/2004 pCi/g   | 0.913                   |                      |
| SW-06-23-SL    | 5/27/2004 pCi/g   | 0.891                   |                      |
| SW-06-SS       | 4/27/2004 pCi/g   | 1.13                    |                      |
| SW-07-05-SL    | 5/27/2004 pCi/g   | 1.14                    | 1.13                 |
| SW-07-15-SL    | 5/27/2004 pCi/g   | 0.929                   |                      |
| SW-07-23-SL    | 5/27/2004 pCi/g   | 0.762                   |                      |
| SW-07-SS       | 4/28/2004 pCi/g   | 1.51                    |                      |
| SW-08-03-SL    | 6/1/2004 pCi/g    | 0.999                   |                      |
| SW-08-05-SL    | 6/1/2004 pCi/g    | 0.961                   |                      |
| SW-08-15-SL    | 6/1/2004 pCi/g    | 1.08                    |                      |
| SW-08-25-SL    | 6/1/2004 pCi/g    | 0.304                   |                      |
| SW-08-SS       | 4/28/2004 pCi/g   | 0.309                   |                      |
| SW-08-SS-FD    | 4/28/2004 pCi/g   | 0.426                   |                      |
| SW-10-SS       | 4/30/2004 pCi/g   | 0.746                   |                      |
| SW-11-SS       | 4/30/2004 pCi/g   | 0.68                    |                      |
| SW-12-SS       | 4/30/2004 pCi/g   | 0.491                   |                      |
| SW-13-SS       | 4/30/2004 pCi/g   | 1                       |                      |
| SW-14-SS       | 4/29/2004 pCi/g   | 0.308                   |                      |
| SW-15-SS       | 4/29/2004 pCi/g   | 0.955                   |                      |
| SW-16-SS       | 4/29/2004 pCi/g   | 0.3                     |                      |
| WS-BP2A-11     | 11/1/2006 pCi/g   | 0.92                    |                      |
| WS-BP5A-07     | 11/1/2006 pCi/g   | 0.97                    |                      |
| WS-BP7A-08     | 11/1/2006 pCi/g   | 1.45                    |                      |
| WS-BP8A-10     | 11/1/2006 pCi/g   | 1.06                    |                      |

Non-Impacted

| BKG Ra-226 w/Unknown | NI Ra-226 w/Unknown |                       |                      |
|----------------------|---------------------|-----------------------|----------------------|
| Ingrowth             | Ingrowth            | BKG Ra-226 w/Ingrowth | NI Ra-226 w/Ingrowth |
| 0.661                | 0.06                | 0.976                 | 0.138                |
| 0.681                | 0.064               | 0.995                 | 0.144                |
| 0.689                | 0.11                | 1.16                  | 0.206                |
| 0.759                | 0.111               | 1.26                  | 0.494                |
| 0.777                | 0.118               | 1.27                  | 0.509                |
| 0.833                | 0.148               | 1.28                  | 0.54                 |
| 0.838                | 0.16                | 1.32                  | 0.61                 |
| 0.859                | 0.163               | 1.32                  | 0.75                 |
| 0.873                | 0.166               | 1.32                  | 0.79                 |
| 0.874                | 0.166               |                       |                      |
|                      |                     | 1.34                  | 0.86                 |
| 0.877                | 0.168               | 1.34                  | 0.89                 |
| 0.88                 | 0.17                | 1.37                  | 0.89                 |
| 0.885                | 0.172               | 1.41                  | 0.92                 |
| 0.901                | 0.177               | 1.42                  | 0.93                 |
| 0.909                | 0.179               | 1.42                  | 0.94                 |
| 0.937                | 0.195               | 1.52                  | 1.01                 |
| 0.949                | 0.198               | 1.53                  | 1.02                 |
| 0.951                | 0.21                | 1.55                  | 1.03                 |
| 0.991                | 0.223               | 1.56                  | 1.03                 |
| 1                    | 0.223               | 1.58                  | 1.06                 |
| 1.01                 | 0.225               | 1.59                  | 1.08                 |
| 1.02                 | 0.228               | 1.6                   | 1.1                  |
| 1.04                 | 0.23                | 1.61                  | 1.1                  |
| 1.09                 | 0.236               | 1.62                  | 1.12                 |
| 1.09                 | 0.247               | 1.62                  | 1.13                 |
| 1.09                 | 0.254               | 1.63                  | 1.13                 |
| 1.1                  | 0.254               | 1.64                  | 1.13                 |
| 1.12                 | 0.254               | 1.67                  | 1.16                 |
| 1.12                 | 0.257               | 1.69                  | 1.16                 |
| 1.12                 | 0.26                | 1.74                  | 1.19                 |
| 1.15                 | 0.262               | 1.86                  | 1.13                 |
| 1.13                 |                     |                       | 1.21                 |
| 1.21                 | 0.267               | 1.97                  |                      |
|                      | 0.272               |                       | 1.22                 |
|                      | 0.28                |                       | 1.22                 |
|                      | 0.287               |                       | 1.25                 |
|                      | 0.288               |                       | 1.26                 |
|                      | 0.292               |                       | 1.27                 |
|                      | 0.3                 |                       | 1.39                 |
|                      | 0.3                 |                       | 1.46                 |
|                      | 0.304               |                       | 1.47                 |
|                      | 0.304               |                       | 1.52                 |
|                      | 0.304               |                       | 1.53                 |
|                      | 0.305               |                       | 1.61                 |
|                      | 0.308               |                       | 1.61                 |
|                      | 0.309               |                       | 2.21                 |
|                      | 0.31                |                       | 3.4                  |
|                      | 0.315               |                       |                      |
|                      | 0.322               |                       |                      |
|                      | 0.322               |                       |                      |
|                      | 0.327               |                       |                      |
|                      | 0.33                |                       |                      |
|                      | 0.00                |                       |                      |

Attachment 4 to HEM-11-91 Page 99 of 139 & RESRAD Pages

## Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| Ingrowth<br>0.33<br>0.337<br>0.34<br>0.34<br>0.34<br>0.342<br>0.348<br>0.35<br>0.352<br>0.355<br>0.361<br>0.37<br>0.377<br>0.378<br>0.379<br>0.38<br>0.38<br>0.38<br>0.38<br>0.381<br>0.382<br>0.384<br>0.385<br>0.386<br>0.388<br>0.388<br>0.385<br>0.386<br>0.388<br>0.39 | BKG Ra-226 w/lng                                           | growth                                                     | NI Ra-226 w/Ingrow                                                 | th                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------|
| 0.333<br>0.337<br>0.34<br>0.34<br>0.342<br>0.348<br>0.35<br>0.352<br>0.355<br>0.361<br>0.37<br>0.377<br>0.378<br>0.379<br>0.38<br>0.38<br>0.38<br>0.38<br>0.381<br>0.382<br>0.384<br>0.385<br>0.386<br>0.388                                                                |                                                            |                                                            |                                                                    |                                                            |
| 0.337<br>0.34<br>0.34<br>0.342<br>0.348<br>0.35<br>0.352<br>0.355<br>0.361<br>0.37<br>0.377<br>0.378<br>0.379<br>0.38<br>0.38<br>0.38<br>0.38<br>0.381<br>0.382<br>0.384<br>0.385<br>0.386<br>0.388                                                                         |                                                            |                                                            |                                                                    |                                                            |
| 0.34<br>0.342<br>0.348<br>0.35<br>0.352<br>0.355<br>0.361<br>0.37<br>0.377<br>0.378<br>0.379<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.381<br>0.382<br>0.381<br>0.382<br>0.384<br>0.385<br>0.386<br>0.386<br>0.388                                                       |                                                            |                                                            |                                                                    |                                                            |
| 0.34<br>0.342<br>0.348<br>0.35<br>0.352<br>0.355<br>0.361<br>0.37<br>0.377<br>0.378<br>0.379<br>0.378<br>0.379<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.381<br>0.382<br>0.384<br>0.385<br>0.386<br>0.386<br>0.388                                                       |                                                            |                                                            |                                                                    |                                                            |
| 0.342<br>0.348<br>0.35<br>0.352<br>0.355<br>0.361<br>0.37<br>0.377<br>0.378<br>0.379<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.381<br>0.382<br>0.381<br>0.382<br>0.384<br>0.385<br>0.386<br>0.386<br>0.388                                                       |                                                            |                                                            |                                                                    |                                                            |
| 0.348<br>0.35<br>0.352<br>0.355<br>0.361<br>0.37<br>0.377<br>0.378<br>0.379<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.381<br>0.382<br>0.384<br>0.385<br>0.386<br>0.388                                                                                                   |                                                            |                                                            |                                                                    |                                                            |
| 0.35<br>0.352<br>0.355<br>0.361<br>0.37<br>0.377<br>0.378<br>0.379<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.381<br>0.382<br>0.381<br>0.382<br>0.384<br>0.385<br>0.386<br>0.386<br>0.388                                                                                 |                                                            |                                                            |                                                                    |                                                            |
| 0.352<br>0.355<br>0.361<br>0.37<br>0.377<br>0.378<br>0.379<br>0.38<br>0.38<br>0.38<br>0.38<br>0.381<br>0.382<br>0.381<br>0.382<br>0.384<br>0.385<br>0.386<br>0.386<br>0.388                                                                                                 |                                                            |                                                            |                                                                    |                                                            |
| 0.355<br>0.361<br>0.37<br>0.377<br>0.378<br>0.379<br>0.38<br>0.38<br>0.38<br>0.38<br>0.381<br>0.382<br>0.381<br>0.382<br>0.384<br>0.385<br>0.386<br>0.386<br>0.388                                                                                                          |                                                            |                                                            |                                                                    |                                                            |
| 0.361<br>0.37<br>0.377<br>0.378<br>0.379<br>0.38<br>0.38<br>0.38<br>0.38<br>0.381<br>0.382<br>0.384<br>0.385<br>0.386<br>0.386<br>0.388                                                                                                                                     |                                                            |                                                            |                                                                    |                                                            |
| 0.37<br>0.377<br>0.378<br>0.379<br>0.38<br>0.38<br>0.38<br>0.38<br>0.381<br>0.382<br>0.384<br>0.385<br>0.386<br>0.386<br>0.388                                                                                                                                              |                                                            |                                                            |                                                                    |                                                            |
| 0.37<br>0.377<br>0.378<br>0.379<br>0.38<br>0.38<br>0.38<br>0.38<br>0.381<br>0.382<br>0.384<br>0.385<br>0.386<br>0.386<br>0.388                                                                                                                                              |                                                            |                                                            |                                                                    |                                                            |
| 0.377<br>0.378<br>0.379<br>0.38<br>0.38<br>0.38<br>0.38<br>0.381<br>0.382<br>0.384<br>0.385<br>0.386<br>0.386<br>0.388                                                                                                                                                      |                                                            |                                                            |                                                                    |                                                            |
| 0.378<br>0.379<br>0.38<br>0.38<br>0.38<br>0.38<br>0.381<br>0.382<br>0.384<br>0.385<br>0.386<br>0.388                                                                                                                                                                        |                                                            |                                                            |                                                                    |                                                            |
| 0.379<br>0.38<br>0.38<br>0.38<br>0.38<br>0.381<br>0.382<br>0.384<br>0.385<br>0.386<br>0.388                                                                                                                                                                                 |                                                            |                                                            |                                                                    |                                                            |
| 0.38<br>0.38<br>0.38<br>0.381<br>0.382<br>0.384<br>0.385<br>0.386<br>0.388                                                                                                                                                                                                  |                                                            |                                                            |                                                                    |                                                            |
| 0.38<br>0.38<br>0.381<br>0.382<br>0.384<br>0.385<br>0.386<br>0.388                                                                                                                                                                                                          |                                                            |                                                            |                                                                    |                                                            |
| 0.38<br>0.38<br>0.381<br>0.382<br>0.384<br>0.385<br>0.386<br>0.388                                                                                                                                                                                                          |                                                            |                                                            |                                                                    |                                                            |
| 0.38<br>0.381<br>0.382<br>0.384<br>0.385<br>0.386<br>0.388                                                                                                                                                                                                                  |                                                            |                                                            |                                                                    |                                                            |
| 0.381<br>0.382<br>0.384<br>0.385<br>0.386<br>0.388                                                                                                                                                                                                                          |                                                            |                                                            |                                                                    |                                                            |
| 0.382<br>0.384<br>0.385<br>0.386<br>0.388                                                                                                                                                                                                                                   |                                                            |                                                            |                                                                    |                                                            |
| 0.384<br>0.385<br>0.386<br>0.388                                                                                                                                                                                                                                            |                                                            |                                                            |                                                                    |                                                            |
| 0.385<br>0.386<br>0.388                                                                                                                                                                                                                                                     |                                                            |                                                            |                                                                    |                                                            |
| 0.386<br>0.388                                                                                                                                                                                                                                                              |                                                            |                                                            |                                                                    |                                                            |
| 0.388                                                                                                                                                                                                                                                                       |                                                            |                                                            |                                                                    |                                                            |
|                                                                                                                                                                                                                                                                             |                                                            |                                                            |                                                                    |                                                            |
| 0.59                                                                                                                                                                                                                                                                        |                                                            |                                                            |                                                                    |                                                            |
| 0.395                                                                                                                                                                                                                                                                       |                                                            |                                                            |                                                                    |                                                            |
|                                                                                                                                                                                                                                                                             |                                                            |                                                            |                                                                    |                                                            |
| 0.397<br>0.398                                                                                                                                                                                                                                                              |                                                            |                                                            |                                                                    |                                                            |
| 0.398                                                                                                                                                                                                                                                                       |                                                            |                                                            |                                                                    |                                                            |
| 0.398                                                                                                                                                                                                                                                                       |                                                            |                                                            |                                                                    |                                                            |
|                                                                                                                                                                                                                                                                             |                                                            |                                                            |                                                                    |                                                            |
| 0.404                                                                                                                                                                                                                                                                       |                                                            |                                                            |                                                                    |                                                            |
| 0.404                                                                                                                                                                                                                                                                       |                                                            |                                                            |                                                                    |                                                            |
| 0.41                                                                                                                                                                                                                                                                        |                                                            |                                                            |                                                                    |                                                            |
| 0.41                                                                                                                                                                                                                                                                        |                                                            |                                                            |                                                                    |                                                            |
| 0.414                                                                                                                                                                                                                                                                       |                                                            |                                                            |                                                                    |                                                            |
| 0.415                                                                                                                                                                                                                                                                       |                                                            |                                                            |                                                                    |                                                            |
| 0.42                                                                                                                                                                                                                                                                        |                                                            |                                                            |                                                                    |                                                            |
| 0.42                                                                                                                                                                                                                                                                        |                                                            |                                                            |                                                                    |                                                            |
| 0.42                                                                                                                                                                                                                                                                        |                                                            |                                                            |                                                                    |                                                            |
|                                                                                                                                                                                                                                                                             |                                                            |                                                            |                                                                    |                                                            |
|                                                                                                                                                                                                                                                                             |                                                            |                                                            |                                                                    |                                                            |
|                                                                                                                                                                                                                                                                             |                                                            |                                                            |                                                                    |                                                            |
|                                                                                                                                                                                                                                                                             |                                                            |                                                            |                                                                    |                                                            |
|                                                                                                                                                                                                                                                                             |                                                            |                                                            |                                                                    |                                                            |
|                                                                                                                                                                                                                                                                             |                                                            |                                                            |                                                                    |                                                            |
| 0.44                                                                                                                                                                                                                                                                        |                                                            |                                                            |                                                                    |                                                            |
|                                                                                                                                                                                                                                                                             |                                                            |                                                            |                                                                    |                                                            |
| 0.44                                                                                                                                                                                                                                                                        |                                                            |                                                            |                                                                    |                                                            |
| 0.44<br>0.44                                                                                                                                                                                                                                                                |                                                            |                                                            |                                                                    |                                                            |
| 0.44                                                                                                                                                                                                                                                                        |                                                            |                                                            |                                                                    |                                                            |
|                                                                                                                                                                                                                                                                             | 0.426<br>0.431<br>0.435<br>0.438<br>0.438<br>0.439<br>0.44 | 0.426<br>0.431<br>0.435<br>0.438<br>0.438<br>0.439<br>0.44 | 0.426<br>0.431<br>0.435<br>0.438<br>0.438<br>0.439<br>0.44<br>0.44 | 0.426<br>0.431<br>0.435<br>0.438<br>0.438<br>0.439<br>0.44 |

Attachment 4 to HEM-11-91 Page 100 of 139 & RESRAD Pages

Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

ProUCL Input

June 21, 2011

| 3KG Ra-226 w/Unknown<br>Ingrowth | NI Ra-226 w/Unknown<br>Ingrowth | BKG Ra-226 w/Ingrowth   | NI Ra-226 w/lpgrowth    |
|----------------------------------|---------------------------------|-------------------------|-------------------------|
| liigiowtii                       | 0.442                           | BRG Ra-220 Willigiowill | NI IXa-220 W/IIIgi0wiii |
|                                  |                                 |                         |                         |
|                                  | 0.443                           |                         |                         |
|                                  | 0.45                            |                         |                         |
|                                  | 0.455                           |                         |                         |
|                                  | 0.459                           |                         |                         |
|                                  | 0.462                           |                         |                         |
|                                  | 0.465                           |                         |                         |
|                                  | 0.467                           |                         |                         |
|                                  |                                 |                         |                         |
|                                  | 0.47                            |                         |                         |
|                                  | 0.471                           |                         |                         |
|                                  | 0.474                           |                         |                         |
|                                  | 0.476                           |                         |                         |
|                                  | 0.476                           |                         |                         |
|                                  | 0.478                           |                         |                         |
|                                  | 0.478                           |                         |                         |
|                                  | 0.479                           |                         |                         |
|                                  |                                 |                         |                         |
|                                  | 0.479                           |                         |                         |
|                                  | 0.48                            |                         |                         |
|                                  | 0.48                            |                         |                         |
|                                  | 0.48                            |                         |                         |
|                                  | 0.491                           |                         |                         |
|                                  | 0.491                           |                         |                         |
|                                  | 0.492                           |                         |                         |
|                                  | 0.5                             |                         |                         |
|                                  | 0.5                             |                         |                         |
|                                  |                                 |                         |                         |
|                                  | 0.501                           |                         |                         |
|                                  | 0.501                           |                         |                         |
|                                  | 0.503                           |                         |                         |
|                                  | 0.503                           |                         |                         |
|                                  | 0.504                           |                         |                         |
|                                  | 0.507                           |                         |                         |
|                                  | 0.508                           |                         |                         |
|                                  | 0.51                            |                         |                         |
|                                  |                                 |                         |                         |
|                                  | 0.514                           |                         |                         |
|                                  | 0.524                           |                         |                         |
|                                  | 0.525                           |                         |                         |
|                                  | 0.525                           |                         |                         |
|                                  | 0.527                           |                         |                         |
|                                  | 0.531                           |                         |                         |
|                                  | 0.532                           |                         |                         |
|                                  | 0.532                           |                         |                         |
|                                  |                                 |                         |                         |
|                                  | 0.533                           |                         |                         |
|                                  | 0.533                           |                         |                         |
|                                  | 0.534                           |                         |                         |
|                                  | 0.534                           |                         |                         |
|                                  | 0.538                           |                         |                         |
|                                  | 0.54                            |                         |                         |
|                                  | 0.545                           |                         |                         |
|                                  |                                 |                         |                         |
|                                  | 0.548                           |                         |                         |
|                                  | 0.548                           |                         |                         |
|                                  | 0.549                           |                         |                         |

Attachment 4 to HEM-11-91 Page 101 of 139 & RESRAD Pages

Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| BKG Ra-226 w/Unknown | NI Ra-226 w/Unknown |                       |                      |
|----------------------|---------------------|-----------------------|----------------------|
| Ingrowth             | Ingrowth            | BKG Ra-226 w/Ingrowth | NI Ra-226 w/Ingrowth |
|                      | 0.55                |                       |                      |
|                      | 0.55                |                       |                      |
|                      | 0.55                |                       |                      |
|                      | 0.557               |                       |                      |
|                      | 0.56                |                       |                      |
|                      | 0.56                |                       |                      |
|                      | 0.562               |                       |                      |
|                      | 0.562               |                       |                      |
|                      | 0.569               |                       |                      |
|                      | 0.571               |                       |                      |
|                      | 0.572               |                       |                      |
|                      | 0.577               |                       |                      |
|                      | 0.58                |                       |                      |
|                      | 0.58                |                       |                      |
|                      | 0.58                |                       |                      |
|                      | 0.584               |                       |                      |
|                      | 0.584               |                       |                      |
|                      | 0.587               |                       |                      |
|                      | 0.59                |                       |                      |
|                      | 0.59                |                       |                      |
|                      | 0.59                |                       |                      |
|                      | 0.59                |                       |                      |
|                      | 0.595               |                       |                      |
|                      | 0.6                 |                       |                      |
|                      |                     |                       |                      |
|                      | 0.6                 |                       |                      |
|                      | 0.6                 |                       |                      |
|                      | 0.601               |                       |                      |
|                      | 0.604               |                       |                      |
|                      | 0.606               |                       |                      |
|                      | 0.61                |                       |                      |
|                      | 0.61                |                       |                      |
|                      | 0.61                |                       |                      |
|                      | 0.61                |                       |                      |
|                      | 0.611               |                       |                      |
|                      | 0.618               |                       |                      |
|                      | 0.62                |                       |                      |
|                      | 0.62                |                       |                      |
|                      | 0.624               |                       |                      |
|                      | 0.628               |                       |                      |
|                      | 0.63                |                       |                      |
|                      | 0.63                |                       |                      |
|                      | 0.63                |                       |                      |
|                      | 0.63                |                       |                      |
|                      | 0.635               |                       |                      |
|                      | 0.636               |                       |                      |
|                      | 0.637               |                       |                      |
|                      | 0.638               |                       |                      |
|                      | 0.64                |                       |                      |
|                      | 0.641               |                       |                      |
|                      | 0.65                |                       |                      |
|                      | 0.651               |                       |                      |

Attachment 4 to HEM-11-91 Page 102 of 139 & RESRAD Pages

## Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| BKG Ra-226 w/Unknown | NI Ra-226 w/Unknown |                       |                      |
|----------------------|---------------------|-----------------------|----------------------|
| Ingrowth             | Ingrowth            | BKG Ra-226 w/Ingrowth | NI Ra-226 w/Ingrowth |
|                      | 0.652               |                       |                      |
|                      | 0.652               |                       |                      |
|                      | 0.652               |                       |                      |
|                      | 0.654               |                       |                      |
|                      | 0.654               |                       |                      |
|                      | 0.655               |                       |                      |
|                      | 0.656               |                       |                      |
|                      | 0.657               |                       |                      |
|                      | 0.658               |                       |                      |
|                      | 0.659               |                       |                      |
|                      | 0.66                |                       |                      |
|                      | 0.66                |                       |                      |
|                      | 0.66                |                       |                      |
|                      | 0.663               |                       |                      |
|                      | 0.67                |                       |                      |
|                      | 0.673               |                       |                      |
|                      | 0.674               |                       |                      |
|                      | 0.675               |                       |                      |
|                      | 0.676               |                       |                      |
|                      | 0.68                |                       |                      |
|                      | 0.68                |                       |                      |
|                      | 0.68                |                       |                      |
|                      | 0.68                |                       |                      |
|                      | 0.68                |                       |                      |
|                      | 0.683               |                       |                      |
|                      | 0.685               |                       |                      |
|                      | 0.685               |                       |                      |
|                      | 0.689               |                       |                      |
|                      | 0.69                |                       |                      |
|                      | 0.69                |                       |                      |
|                      | 0.69                |                       |                      |
|                      | 0.69                |                       |                      |
|                      | 0.69                |                       |                      |
|                      | 0.695               |                       |                      |
|                      | 0.695               |                       |                      |
|                      | 0.696               |                       |                      |
|                      | 0.7                 |                       |                      |
|                      | 0.7                 |                       |                      |
|                      | 0.704               |                       |                      |
|                      | 0.706               |                       |                      |
|                      | 0.708               |                       |                      |
|                      | 0.708               |                       |                      |
|                      | 0.708               |                       |                      |
|                      | 0.709               |                       |                      |
|                      | 0.709               |                       |                      |
|                      | 0.709               |                       |                      |
|                      | 0.71                |                       |                      |
|                      | 0.712               |                       |                      |
|                      | 0.712               |                       |                      |
|                      | 0.714               |                       |                      |
|                      | 0.716               |                       |                      |
|                      |                     |                       |                      |

Attachment 4 to HEM-11-91 Page 103 of 139 & RESRAD Pages

## Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| KG Ra-226 w/Unknown | NI Ra-226 w/Unknown |                       |                      |
|---------------------|---------------------|-----------------------|----------------------|
| Ingrowth            | Ingrowth            | BKG Ra-226 w/Ingrowth | NI Ra-226 w/Ingrowth |
|                     | 0.717               |                       |                      |
|                     | 0.72                |                       |                      |
|                     | 0.72                |                       |                      |
|                     | 0.72                |                       |                      |
|                     | 0.723               |                       |                      |
|                     | 0.726               |                       |                      |
|                     | 0.728               |                       |                      |
|                     | 0.729               |                       |                      |
|                     |                     |                       |                      |
|                     | 0.729               |                       |                      |
|                     | 0.729               |                       |                      |
|                     | 0.729               |                       |                      |
|                     | 0.73                |                       |                      |
|                     | 0.73                |                       |                      |
|                     | 0.73                |                       |                      |
|                     | 0.73                |                       |                      |
|                     | 0.73                |                       |                      |
|                     | 0.73                |                       |                      |
|                     | 0.73                |                       |                      |
|                     | 0.73                |                       |                      |
|                     | 0.731               |                       |                      |
|                     | 0.732               |                       |                      |
|                     | 0.736               |                       |                      |
|                     | 0.738               |                       |                      |
|                     | 0.74                |                       |                      |
|                     |                     |                       |                      |
|                     | 0.74                |                       |                      |
|                     | 0.74                |                       |                      |
|                     | 0.743               |                       |                      |
|                     | 0.743               |                       |                      |
|                     | 0.745               |                       |                      |
|                     | 0.746               |                       |                      |
|                     | 0.747               |                       |                      |
|                     | 0.747               |                       |                      |
|                     | 0.748               |                       |                      |
|                     | 0.748               |                       |                      |
|                     | 0.749               |                       |                      |
|                     | 0.75                |                       |                      |
|                     | 0.75                |                       |                      |
|                     | 0.75                |                       |                      |
|                     | 0.75                |                       |                      |
|                     | 0.753               |                       |                      |
|                     | 0.755               |                       |                      |
|                     | 0.756               |                       |                      |
|                     |                     |                       |                      |
|                     | 0.756               |                       |                      |
|                     | 0.757               |                       |                      |
|                     | 0.758               |                       |                      |
|                     | 0.758               |                       |                      |
|                     | 0.759               |                       |                      |
|                     | 0.76                |                       |                      |
|                     | 0.76                |                       |                      |
|                     | 0.76                |                       |                      |
|                     | 0.76                |                       |                      |

Attachment 4 to HEM-11-91 Page 104 of 139 & RESRAD Pages

## Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| Ingrowth         BKG Ra-226 w/Ingrowth         NI Ra-226 w/Ingrowth           0.76         0.76         0.76           0.762         0.766         0.766           0.766         0.766         0.766           0.772         0.773         0.773           0.773         0.774         0.774           0.774         0.777         0.778           0.778         0.778         0.78           0.78         0.78         0.78           0.78         0.78         0.78           0.78         0.78         0.78           0.78         0.78         0.78           0.78         0.78         0.78           0.78         0.78         0.78           0.78         0.78         0.78           0.78         0.78         0.78           0.78         0.79         0.79           0.79         0.79         0.79           0.79         0.79         0.79           0.794         0.794         0.798           0.798         0.798         0.798           0.798         0.798         0.798           0.798         0.798         0.798           0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BKG Ra-226 w/Unknown | NI Ra-226 w/Unknown |                       |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------|-----------------------|----------------------|
| 0.76<br>0.762<br>0.766<br>0.766<br>0.768<br>0.773<br>0.772<br>0.773<br>0.773<br>0.774<br>0.774<br>0.774<br>0.777<br>0.777<br>0.777<br>0.777<br>0.78<br>0.78<br>0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ingrowth             |                     | BKG Ra-226 w/Ingrowth | NI Ra-226 w/Ingrowth |
| 0.76<br>0.762<br>0.766<br>0.768<br>0.773<br>0.772<br>0.772<br>0.773<br>0.773<br>0.774<br>0.774<br>0.774<br>0.777<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                     |                       |                      |
| 0.762<br>0.766<br>0.768<br>0.773<br>0.772<br>0.773<br>0.773<br>0.774<br>0.774<br>0.774<br>0.777<br>0.777<br>0.777<br>0.778<br>0.78<br>0.78<br>0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                     |                       |                      |
| 0.766<br>0.768<br>0.773<br>0.773<br>0.773<br>0.774<br>0.774<br>0.774<br>0.774<br>0.777<br>0.777<br>0.778<br>0.78<br>0.78<br>0.78<br>0.78<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                     |                       |                      |
| 0.766<br>0.772<br>0.772<br>0.773<br>0.773<br>0.774<br>0.774<br>0.774<br>0.777<br>0.777<br>0.777<br>0.777<br>0.78<br>0.78<br>0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      | 0.762               |                       |                      |
| 0.768<br>0.772<br>0.773<br>0.773<br>0.774<br>0.774<br>0.774<br>0.777<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8                                                                                                                                                                                                                                                                                                                                                                               |                      | 0.766               |                       |                      |
| 0.77<br>0.773<br>0.773<br>0.774<br>0.774<br>0.777<br>0.777<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      | 0.766               |                       |                      |
| 0.772<br>0.773<br>0.774<br>0.774<br>0.774<br>0.777<br>0.777<br>0.777<br>0.78<br>0.78<br>0.78<br>0.78<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      | 0.768               |                       |                      |
| 0.773<br>0.774<br>0.774<br>0.774<br>0.777<br>0.778<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      | 0.77                |                       |                      |
| 0.773<br>0.774<br>0.777<br>0.777<br>0.777<br>0.777<br>0.777<br>0.777<br>0.78<br>0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      | 0.772               |                       |                      |
| 0.773<br>0.774<br>0.777<br>0.777<br>0.777<br>0.777<br>0.777<br>0.777<br>0.78<br>0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      | 0.773               |                       |                      |
| 0.774<br>0.777<br>0.777<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                     |                       |                      |
| 0.774<br>0.777<br>0.778<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                     |                       |                      |
| 0.777<br>0.777<br>0.777<br>0.78<br>0.78<br>0.78<br>0.78<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                     |                       |                      |
| 0.777<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.781<br>0.782<br>0.784<br>0.784<br>0.784<br>0.786<br>0.786<br>0.789<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.791<br>0.792<br>0.794<br>0.794<br>0.794<br>0.795<br>0.795<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.790<br>0.790<br>0.790<br>0.791<br>0.791<br>0.791<br>0.791<br>0.791<br>0.791<br>0.791<br>0.791<br>0.791<br>0.791<br>0.791<br>0.791<br>0.791<br>0.791<br>0.791<br>0.791<br>0.791<br>0.791<br>0.791<br>0.791<br>0.791<br>0.791<br>0.791<br>0.791<br>0.791<br>0.791<br>0.791<br>0.791<br>0.791<br>0.791<br>0.791 |                      |                     |                       |                      |
| 0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                     |                       |                      |
| 0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                     |                       |                      |
| 0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.781<br>0.781<br>0.782<br>0.783<br>0.784<br>0.784<br>0.786<br>0.786<br>0.786<br>0.786<br>0.786<br>0.789<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                     |                       |                      |
| 0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.781<br>0.782<br>0.783<br>0.784<br>0.784<br>0.784<br>0.784<br>0.786<br>0.786<br>0.789<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.791<br>0.792<br>0.794<br>0.794<br>0.794<br>0.794<br>0.795<br>0.795<br>0.795<br>0.795<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                     |                       |                      |
| 0.78<br>0.78<br>0.78<br>0.78<br>0.781<br>0.781<br>0.782<br>0.783<br>0.784<br>0.784<br>0.786<br>0.786<br>0.789<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.791<br>0.792<br>0.794<br>0.794<br>0.794<br>0.794<br>0.794<br>0.795<br>0.795<br>0.797<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.799<br>0.799<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                     |                       |                      |
| 0.78<br>0.78<br>0.781<br>0.781<br>0.782<br>0.783<br>0.784<br>0.784<br>0.786<br>0.786<br>0.786<br>0.789<br>0.79<br>0.79<br>0.79<br>0.79<br>0.79<br>0.791<br>0.792<br>0.794<br>0.794<br>0.794<br>0.794<br>0.795<br>0.796<br>0.796<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                     |                       |                      |
| 0.78<br>0.781<br>0.782<br>0.783<br>0.784<br>0.784<br>0.784<br>0.786<br>0.786<br>0.789<br>0.79<br>0.79<br>0.79<br>0.79<br>0.791<br>0.792<br>0.794<br>0.794<br>0.794<br>0.795<br>0.795<br>0.796<br>0.795<br>0.796<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.799<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                     |                       |                      |
| 0.78<br>0.781<br>0.782<br>0.783<br>0.784<br>0.784<br>0.784<br>0.786<br>0.789<br>0.789<br>0.79<br>0.79<br>0.79<br>0.79<br>0.791<br>0.792<br>0.794<br>0.794<br>0.794<br>0.794<br>0.795<br>0.795<br>0.795<br>0.796<br>0.797<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                     |                       |                      |
| 0.781<br>0.782<br>0.783<br>0.784<br>0.784<br>0.786<br>0.786<br>0.789<br>0.79<br>0.79<br>0.79<br>0.791<br>0.792<br>0.794<br>0.794<br>0.794<br>0.794<br>0.794<br>0.795<br>0.796<br>0.795<br>0.796<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.799<br>0.799<br>0.799<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                     |                       |                      |
| 0.782<br>0.783<br>0.784<br>0.784<br>0.786<br>0.786<br>0.789<br>0.79<br>0.79<br>0.79<br>0.791<br>0.792<br>0.794<br>0.794<br>0.794<br>0.794<br>0.795<br>0.796<br>0.795<br>0.796<br>0.797<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.799<br>0.798<br>0.799<br>0.798<br>0.798<br>0.799<br>0.799<br>0.798<br>0.799<br>0.799<br>0.798<br>0.799<br>0.799<br>0.798<br>0.799<br>0.799<br>0.798<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                     |                       |                      |
| 0.783<br>0.784<br>0.784<br>0.786<br>0.786<br>0.789<br>0.79<br>0.79<br>0.79<br>0.791<br>0.792<br>0.794<br>0.794<br>0.794<br>0.794<br>0.794<br>0.794<br>0.795<br>0.796<br>0.796<br>0.797<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                     |                       |                      |
| 0.784<br>0.786<br>0.786<br>0.789<br>0.79<br>0.79<br>0.79<br>0.79<br>0.791<br>0.792<br>0.794<br>0.794<br>0.794<br>0.794<br>0.795<br>0.795<br>0.796<br>0.797<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.799<br>0.799<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                     |                       |                      |
| 0.784<br>0.786<br>0.786<br>0.789<br>0.79<br>0.79<br>0.79<br>0.791<br>0.792<br>0.794<br>0.794<br>0.794<br>0.795<br>0.795<br>0.795<br>0.796<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                     |                       |                      |
| 0.786<br>0.789<br>0.79<br>0.79<br>0.79<br>0.79<br>0.791<br>0.792<br>0.794<br>0.794<br>0.794<br>0.794<br>0.795<br>0.796<br>0.796<br>0.796<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.799<br>0.799<br>0.799<br>0.799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                     |                       |                      |
| 0.786<br>0.789<br>0.79<br>0.79<br>0.79<br>0.791<br>0.792<br>0.794<br>0.794<br>0.794<br>0.795<br>0.796<br>0.796<br>0.796<br>0.797<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.799<br>0.799<br>0.799<br>0.799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                     |                       |                      |
| 0.789<br>0.79<br>0.79<br>0.79<br>0.791<br>0.792<br>0.794<br>0.794<br>0.794<br>0.794<br>0.795<br>0.796<br>0.796<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                     |                       |                      |
| 0.79<br>0.79<br>0.79<br>0.791<br>0.792<br>0.794<br>0.794<br>0.794<br>0.794<br>0.795<br>0.796<br>0.796<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.799<br>0.799<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                     |                       |                      |
| 0.79<br>0.79<br>0.791<br>0.792<br>0.794<br>0.794<br>0.794<br>0.795<br>0.796<br>0.796<br>0.797<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                     |                       |                      |
| 0.79<br>0.791<br>0.792<br>0.794<br>0.794<br>0.794<br>0.795<br>0.795<br>0.796<br>0.797<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.799<br>0.799<br>0.799<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                     |                       |                      |
| 0.791<br>0.792<br>0.794<br>0.794<br>0.795<br>0.796<br>0.796<br>0.797<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                     |                       |                      |
| 0.792<br>0.794<br>0.794<br>0.795<br>0.796<br>0.796<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.799<br>0.799<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                     |                       |                      |
| 0.794<br>0.794<br>0.794<br>0.795<br>0.796<br>0.797<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.799<br>0.799<br>0.799<br>0.799<br>0.799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                     |                       |                      |
| 0.794<br>0.795<br>0.795<br>0.796<br>0.797<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.799<br>0.799<br>0.799<br>0.799<br>0.8<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                     |                       |                      |
| 0.794<br>0.795<br>0.796<br>0.797<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.799<br>0.799<br>0.799<br>0.8<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                     |                       |                      |
| 0.795<br>0.796<br>0.797<br>0.798<br>0.798<br>0.798<br>0.798<br>0.798<br>0.799<br>0.799<br>0.8<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                     |                       |                      |
| 0.796<br>0.797<br>0.798<br>0.798<br>0.798<br>0.798<br>0.799<br>0.799<br>0.799<br>0.8<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                     |                       |                      |
| 0.797<br>0.798<br>0.798<br>0.798<br>0.798<br>0.799<br>0.799<br>0.799<br>0.8<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                     |                       |                      |
| 0.798<br>0.798<br>0.798<br>0.798<br>0.799<br>0.799<br>0.799<br>0.8<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                     |                       |                      |
| 0.798<br>0.798<br>0.798<br>0.799<br>0.799<br>0.8<br>0.8<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                     |                       |                      |
| 0.798<br>0.798<br>0.799<br>0.799<br>0.8<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                     |                       |                      |
| 0.798<br>0.799<br>0.799<br>0.8<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                     |                       |                      |
| 0.799<br>0.799<br>0.8<br>0.8<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                     |                       |                      |
| 0.799<br>0.8<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                     |                       |                      |
| 0.8<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      | 0.799               |                       |                      |
| 0.8<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                     |                       |                      |
| 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | 0.8                 |                       |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                     |                       |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                     |                       |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                     |                       |                      |

Attachment 4 to HEM-11-91 Page 105 of 139 & RESRAD Pages

## Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| BKG Ra-226 w/Unknown | NI Ra-226 w/Unknown |                       |                      |
|----------------------|---------------------|-----------------------|----------------------|
| Ingrowth             | Ingrowth            | BKG Ra-226 w/Ingrowth | NI Ra-226 w/Ingrowth |
|                      | 0.8                 |                       |                      |
|                      | 0.8                 |                       |                      |
|                      | 0.801               |                       |                      |
|                      | 0.802               |                       |                      |
|                      | 0.802               |                       |                      |
|                      | 0.803               |                       |                      |
|                      | 0.803               |                       |                      |
|                      | 0.804               |                       |                      |
|                      | 0.807               |                       |                      |
|                      | 0.808               |                       |                      |
|                      | 0.809               |                       |                      |
|                      | 0.81                |                       |                      |
|                      | 0.81                |                       |                      |
|                      | 0.81                |                       |                      |
|                      | 0.81                |                       |                      |
|                      | 0.81                |                       |                      |
|                      | 0.81                |                       |                      |
|                      | 0.81                |                       |                      |
|                      | 0.81                |                       |                      |
|                      | 0.81                |                       |                      |
|                      | 0.812               |                       |                      |
|                      | 0.813               |                       |                      |
|                      | 0.814               |                       |                      |
|                      | 0.814               |                       |                      |
|                      | 0.815               |                       |                      |
|                      |                     |                       |                      |
|                      | 0.817               |                       |                      |
|                      | 0.818               |                       |                      |
|                      | 0.818               |                       |                      |
|                      | 0.818               |                       |                      |
|                      | 0.818               |                       |                      |
|                      | 0.82                |                       |                      |
|                      | 0.82                |                       |                      |
|                      | 0.82                |                       |                      |
|                      | 0.82                |                       |                      |
|                      | 0.82                |                       |                      |
|                      | 0.82                |                       |                      |
|                      | 0.82                |                       |                      |
|                      | 0.82                |                       |                      |
|                      | 0.822               |                       |                      |
|                      | 0.823               |                       |                      |
|                      | 0.824               |                       |                      |
|                      | 0.826               |                       |                      |
|                      | 0.827               |                       |                      |
|                      | 0.827               |                       |                      |
|                      | 0.828               |                       |                      |
|                      | 0.828               |                       |                      |
|                      | 0.83                |                       |                      |
|                      | 0.83                |                       |                      |
|                      | 0.83                |                       |                      |
|                      | 0.83                |                       |                      |
|                      | 0.83                |                       |                      |
|                      | 0.00                |                       |                      |

Attachment 4 to HEM-11-91 Page 106 of 139 & RESRAD Pages

## Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| BKG Ra-226 w/Unknown | NI Ra-226 w/Unknown |                       |                      |
|----------------------|---------------------|-----------------------|----------------------|
| Ingrowth             | Ingrowth            | BKG Ra-226 w/Ingrowth | NI Ra-226 w/Ingrowth |
|                      | 0.83                |                       |                      |
|                      | 0.83                |                       |                      |
|                      | 0.83                |                       |                      |
|                      | 0.831               |                       |                      |
|                      | 0.832               |                       |                      |
|                      | 0.834               |                       |                      |
|                      | 0.837               |                       |                      |
|                      | 0.838               |                       |                      |
|                      |                     |                       |                      |
|                      | 0.839               |                       |                      |
|                      | 0.839               |                       |                      |
|                      | 0.84                |                       |                      |
|                      | 0.84                |                       |                      |
|                      | 0.84                |                       |                      |
|                      | 0.84                |                       |                      |
|                      | 0.84                |                       |                      |
|                      | 0.84                |                       |                      |
|                      | 0.84                |                       |                      |
|                      | 0.84                |                       |                      |
|                      | 0.84                |                       |                      |
|                      | 0.841               |                       |                      |
|                      | 0.841               |                       |                      |
|                      |                     |                       |                      |
|                      | 0.842               |                       |                      |
|                      | 0.842               |                       |                      |
|                      | 0.842               |                       |                      |
|                      | 0.843               |                       |                      |
|                      | 0.843               |                       |                      |
|                      | 0.844               |                       |                      |
|                      | 0.845               |                       |                      |
|                      | 0.845               |                       |                      |
|                      | 0.847               |                       |                      |
|                      | 0.848               |                       |                      |
|                      | 0.849               |                       |                      |
|                      | 0.85                |                       |                      |
|                      |                     |                       |                      |
|                      | 0.85                |                       |                      |
|                      | 0.85                |                       |                      |
|                      | 0.85                |                       |                      |
|                      | 0.85                |                       |                      |
|                      | 0.85                |                       |                      |
|                      | 0.85                |                       |                      |
|                      | 0.85                |                       |                      |
|                      | 0.85                |                       |                      |
|                      | 0.85                |                       |                      |
|                      | 0.85                |                       |                      |
|                      | 0.85                |                       |                      |
|                      | 0.85                |                       |                      |
|                      | 0.854               |                       |                      |
|                      |                     |                       |                      |
|                      | 0.855               |                       |                      |
|                      | 0.857               |                       |                      |
|                      | 0.859               |                       |                      |
|                      | 0.859               |                       |                      |
|                      | 0.86                |                       |                      |

Attachment 4 to HEM-11-91 Page 107 of 139 & RESRAD Pages

Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| BKG Ra-226 w/Unknown | NI Ra-226 w/Unknown |                       |                      |
|----------------------|---------------------|-----------------------|----------------------|
| Ingrowth             | Ingrowth            | BKG Ra-226 w/Ingrowth | NI Ra-226 w/Ingrowth |
|                      | 0.86                |                       |                      |
|                      | 0.86                |                       |                      |
|                      | 0.86                |                       |                      |
|                      | 0.86                |                       |                      |
|                      | 0.86                |                       |                      |
|                      | 0.86                |                       |                      |
|                      | 0.86                |                       |                      |
|                      | 0.862               |                       |                      |
|                      | 0.862               |                       |                      |
|                      | 0.863               |                       |                      |
|                      | 0.863               |                       |                      |
|                      | 0.864               |                       |                      |
|                      | 0.865               |                       |                      |
|                      | 0.865               |                       |                      |
|                      | 0.866               |                       |                      |
|                      | 0.866               |                       |                      |
|                      | 0.866               |                       |                      |
|                      | 0.866               |                       |                      |
|                      | 0.867               |                       |                      |
|                      | 0.867               |                       |                      |
|                      | 0.87                |                       |                      |
|                      | 0.87                |                       |                      |
|                      | 0.87                |                       |                      |
|                      | 0.87                |                       |                      |
|                      | 0.87                |                       |                      |
|                      |                     |                       |                      |
|                      | 0.87                |                       |                      |
|                      | 0.87                |                       |                      |
|                      | 0.87                |                       |                      |
|                      | 0.87                |                       |                      |
|                      | 0.87                |                       |                      |
|                      | 0.871               |                       |                      |
|                      | 0.871               |                       |                      |
|                      | 0.872               |                       |                      |
|                      | 0.872               |                       |                      |
|                      | 0.872               |                       |                      |
|                      | 0.873               |                       |                      |
|                      | 0.873               |                       |                      |
|                      | 0.873               |                       |                      |
|                      | 0.875               |                       |                      |
|                      | 0.876               |                       |                      |
|                      | 0.876               |                       |                      |
|                      | 0.878               |                       |                      |
|                      | 0.88                |                       |                      |
|                      | 0.88                |                       |                      |
|                      | 0.88                |                       |                      |
|                      | 0.88                |                       |                      |
|                      | 0.88                |                       |                      |
|                      | 0.881               |                       |                      |
|                      | 0.882               |                       |                      |
|                      | 0.883               |                       |                      |
|                      | 0.884               |                       |                      |
|                      |                     |                       |                      |

Attachment 4 to HEM-11-91 Page 108 of 139 & RESRAD Pages

## Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| BKG Ra-226 w/Unknown | NI Ra-226 w/Unknown |                       |                      |
|----------------------|---------------------|-----------------------|----------------------|
| Ingrowth             | Ingrowth            | BKG Ra-226 w/Ingrowth | NI Ra-226 w/Ingrowth |
|                      | 0.885               |                       |                      |
|                      | 0.885               |                       |                      |
|                      | 0.885               |                       |                      |
|                      | 0.886               |                       |                      |
|                      | 0.886               |                       |                      |
|                      | 0.886               |                       |                      |
|                      | 0.887               |                       |                      |
|                      | 0.888               |                       |                      |
|                      | 0.889               |                       |                      |
|                      | 0.89                |                       |                      |
|                      |                     |                       |                      |
|                      | 0.89                |                       |                      |
|                      | 0.89                |                       |                      |
|                      | 0.89                |                       |                      |
|                      | 0.89                |                       |                      |
|                      | 0.89                |                       |                      |
|                      | 0.89                |                       |                      |
|                      | 0.89                |                       |                      |
|                      | 0.89                |                       |                      |
|                      | 0.891               |                       |                      |
|                      | 0.891               |                       |                      |
|                      | 0.892               |                       |                      |
|                      | 0.892               |                       |                      |
|                      | 0.892               |                       |                      |
|                      | 0.892               |                       |                      |
|                      | 0.893               |                       |                      |
|                      | 0.893               |                       |                      |
|                      | 0.894               |                       |                      |
|                      | 0.895               |                       |                      |
|                      | 0.898               |                       |                      |
|                      | 0.899               |                       |                      |
|                      | 0.899               |                       |                      |
|                      | 0.9                 |                       |                      |
|                      | 0.9                 |                       |                      |
|                      | 0.9                 |                       |                      |
|                      | 0.9                 |                       |                      |
|                      | 0.9                 |                       |                      |
|                      | 0.9                 |                       |                      |
|                      | 0.9                 |                       |                      |
|                      | 0.9                 |                       |                      |
|                      | 0.9                 |                       |                      |
|                      |                     |                       |                      |
|                      | 0.9                 |                       |                      |
|                      | 0.9                 |                       |                      |
|                      | 0.901               |                       |                      |
|                      | 0.902               |                       |                      |
|                      | 0.903               |                       |                      |
|                      | 0.907               |                       |                      |
|                      | 0.909               |                       |                      |
|                      | 0.909               |                       |                      |
|                      | 0.909               |                       |                      |
|                      | 0.91                |                       |                      |
|                      | 0.91                |                       |                      |
|                      |                     |                       |                      |

Attachment 4 to HEM-11-91 Page 109 of 139 & RESRAD Pages

## Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| BKG Ra-226 w/Unknown | NI Ra-226 w/Unknown |                       |                      |
|----------------------|---------------------|-----------------------|----------------------|
| Ingrowth             | Ingrowth            | BKG Ra-226 w/Ingrowth | NI Ra-226 w/Ingrowth |
|                      | 0.91                |                       |                      |
|                      | 0.91                |                       |                      |
|                      | 0.91                |                       |                      |
|                      | 0.91                |                       |                      |
|                      | 0.91                |                       |                      |
|                      | 0.91                |                       |                      |
|                      | 0.91                |                       |                      |
|                      | 0.91                |                       |                      |
|                      | 0.91                |                       |                      |
|                      | 0.91                |                       |                      |
|                      | 0.91                |                       |                      |
|                      | 0.91                |                       |                      |
|                      | 0.911               |                       |                      |
|                      | 0.912               |                       |                      |
|                      | 0.913               |                       |                      |
|                      | 0.914               |                       |                      |
|                      | 0.914               |                       |                      |
|                      | 0.914               |                       |                      |
|                      | 0.915               |                       |                      |
|                      | 0.916               |                       |                      |
|                      | 0.917               |                       |                      |
|                      | 0.917               |                       |                      |
|                      | 0.918               |                       |                      |
|                      | 0.918               |                       |                      |
|                      | 0.92                |                       |                      |
|                      | 0.92                |                       |                      |
|                      | 0.92                |                       |                      |
|                      | 0.92                |                       |                      |
|                      | 0.92                |                       |                      |
|                      | 0.92                |                       |                      |
|                      | 0.92                |                       |                      |
|                      | 0.92                |                       |                      |
|                      | 0.92                |                       |                      |
|                      | 0.92                |                       |                      |
|                      | 0.92                |                       |                      |
|                      | 0.92                |                       |                      |
|                      | 0.92                |                       |                      |
|                      | 0.92                |                       |                      |
|                      | 0.92                |                       |                      |
|                      | 0.922               |                       |                      |
|                      | 0.924               |                       |                      |
|                      | 0.926               |                       |                      |
|                      |                     |                       |                      |
|                      | 0.926               |                       |                      |
|                      | 0.926               |                       |                      |
|                      | 0.927               |                       |                      |
|                      | 0.927               |                       |                      |
|                      | 0.928               |                       |                      |
|                      | 0.929               |                       |                      |
|                      | 0.93                |                       |                      |
|                      | 0.93                |                       |                      |
|                      | 0.93                |                       |                      |

Attachment 4 to HEM-11-91 Page 110 of 139 & RESRAD Pages

## Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| BKG Ra-226 w/Unknown | NI Ra-226 w/Unknown |                       |                      |
|----------------------|---------------------|-----------------------|----------------------|
| Ingrowth             | Ingrowth            | BKG Ra-226 w/Ingrowth | NI Ra-226 w/Ingrowth |
|                      | 0.93                |                       |                      |
|                      | 0.93                |                       |                      |
|                      | 0.93                |                       |                      |
|                      | 0.93                |                       |                      |
|                      | 0.93                |                       |                      |
|                      | 0.93                |                       |                      |
|                      | 0.93                |                       |                      |
|                      | 0.93                |                       |                      |
|                      | 0.931               |                       |                      |
|                      | 0.931               |                       |                      |
|                      | 0.931               |                       |                      |
|                      | 0.931               |                       |                      |
|                      | 0.932               |                       |                      |
|                      | 0.932               |                       |                      |
|                      | 0.932               |                       |                      |
|                      | 0.934               |                       |                      |
|                      | 0.934               |                       |                      |
|                      | 0.934               |                       |                      |
|                      | 0.936               |                       |                      |
|                      | 0.937               |                       |                      |
|                      | 0.937               |                       |                      |
|                      | 0.938               |                       |                      |
|                      | 0.938               |                       |                      |
|                      | 0.939               |                       |                      |
|                      | 0.939               |                       |                      |
|                      | 0.94                |                       |                      |
|                      |                     |                       |                      |
|                      | 0.94                |                       |                      |
|                      | 0.94                |                       |                      |
|                      | 0.94                |                       |                      |
|                      | 0.94                |                       |                      |
|                      | 0.94                |                       |                      |
|                      | 0.94                |                       |                      |
|                      | 0.94                |                       |                      |
|                      | 0.94                |                       |                      |
|                      | 0.94                |                       |                      |
|                      | 0.94                |                       |                      |
|                      | 0.94                |                       |                      |
|                      | 0.94                |                       |                      |
|                      | 0.94                |                       |                      |
|                      | 0.94                |                       |                      |
|                      | 0.942               |                       |                      |
|                      | 0.943               |                       |                      |
|                      | 0.944               |                       |                      |
|                      | 0.945               |                       |                      |
|                      | 0.945               |                       |                      |
|                      | 0.945               |                       |                      |
|                      | 0.945               |                       |                      |
|                      | 0.945               |                       |                      |
|                      | 0.946               |                       |                      |
|                      | 0.946               |                       |                      |
|                      | 0.946               |                       |                      |
|                      | 0.946               |                       |                      |

Attachment 4 to HEM-11-91 Page 111 of 139 & RESRAD Pages

## Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| BKG Ra-226 w/Unknown | NI Ra-226 w/Unknown |                       |                      |
|----------------------|---------------------|-----------------------|----------------------|
| Ingrowth             | Ingrowth            | BKG Ra-226 w/Ingrowth | NI Ra-226 w/Ingrowth |
|                      | 0.946               |                       |                      |
|                      | 0.946               |                       |                      |
|                      | 0.947               |                       |                      |
|                      | 0.947               |                       |                      |
|                      | 0.947               |                       |                      |
|                      | 0.949               |                       |                      |
|                      | 0.949               |                       |                      |
|                      |                     |                       |                      |
|                      | 0.95                |                       |                      |
|                      | 0.95                |                       |                      |
|                      | 0.95                |                       |                      |
|                      | 0.95                |                       |                      |
|                      | 0.95                |                       |                      |
|                      | 0.95                |                       |                      |
|                      | 0.95                |                       |                      |
|                      | 0.95                |                       |                      |
|                      | 0.95                |                       |                      |
|                      | 0.95                |                       |                      |
|                      | 0.95                |                       |                      |
|                      | 0.95                |                       |                      |
|                      |                     |                       |                      |
|                      | 0.95                |                       |                      |
|                      | 0.951               |                       |                      |
|                      | 0.951               |                       |                      |
|                      | 0.952               |                       |                      |
|                      | 0.952               |                       |                      |
|                      | 0.952               |                       |                      |
|                      | 0.954               |                       |                      |
|                      | 0.955               |                       |                      |
|                      | 0.955               |                       |                      |
|                      | 0.955               |                       |                      |
|                      | 0.955               |                       |                      |
|                      | 0.955               |                       |                      |
|                      |                     |                       |                      |
|                      | 0.956               |                       |                      |
|                      | 0.957               |                       |                      |
|                      | 0.958               |                       |                      |
|                      | 0.959               |                       |                      |
|                      | 0.959               |                       |                      |
|                      | 0.96                |                       |                      |
|                      | 0.96                |                       |                      |
|                      | 0.96                |                       |                      |
|                      | 0.96                |                       |                      |
|                      | 0.96                |                       |                      |
|                      | 0.96                |                       |                      |
|                      | 0.96                |                       |                      |
|                      | 0.96                |                       |                      |
|                      | 0.96                |                       |                      |
|                      | 0.96                |                       |                      |
|                      |                     |                       |                      |
|                      | 0.96                |                       |                      |
|                      | 0.96                |                       |                      |
|                      | 0.961               |                       |                      |
|                      | 0.961               |                       |                      |
|                      | 0.961               |                       |                      |

Attachment 4 to HEM-11-91 Page 112 of 139 & RESRAD Pages

## Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| Ingrowth         BKG Ra-226 w/ingrowth         NI Ra-226 w/ingrowth           0.961         0.962         0.964           0.962         0.964         0.966           0.966         0.967         0.967           0.967         0.967         0.967           0.968         0.969         0.969           0.969         0.969         0.969           0.969         0.97         0.97           0.97         0.97         0.97           0.97         0.97         0.97           0.97         0.97         0.97           0.97         0.97         0.97           0.97         0.97         0.97           0.97         0.97         0.97           0.97         0.97         0.97           0.97         0.97         0.97           0.97         0.97         0.97           0.97         0.97         0.97           0.97         0.97         0.97           0.97         0.97         0.97           0.97         0.97         0.97           0.97         0.97         0.97           0.97         0.97         0.97           0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BKG Ra-226 w/Unknown | NI Ra-226 w/Unknown |                       |                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------|-----------------------|----------------------|
| 0.961<br>0.962<br>0.966<br>0.966<br>0.967<br>0.967<br>0.967<br>0.967<br>0.967<br>0.968<br>0.968<br>0.968<br>0.969<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ingrowth             |                     | BKG Ra-226 w/Ingrowth | NI Ra-226 w/Ingrowth |
| 0.962<br>0.966<br>0.966<br>0.967<br>0.967<br>0.967<br>0.967<br>0.967<br>0.968<br>0.968<br>0.969<br>0.969<br>0.969<br>0.970<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                     |                       |                      |
| 0.964<br>0.966<br>0.967<br>0.967<br>0.967<br>0.967<br>0.968<br>0.968<br>0.969<br>0.969<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 0.961               |                       |                      |
| 0.964<br>0.966<br>0.967<br>0.967<br>0.967<br>0.967<br>0.968<br>0.968<br>0.969<br>0.969<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 0.962               |                       |                      |
| 0.966<br>0.967<br>0.967<br>0.967<br>0.968<br>0.968<br>0.968<br>0.969<br>0.969<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                     |                       |                      |
| 0.966<br>0.967<br>0.967<br>0.967<br>0.968<br>0.968<br>0.969<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98                 |                      |                     |                       |                      |
| 0.967<br>0.967<br>0.967<br>0.968<br>0.968<br>0.969<br>0.969<br>0.969<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98                                                                                |                      |                     |                       |                      |
| 0.967<br>0.967<br>0.967<br>0.968<br>0.968<br>0.969<br>0.969<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98 |                      |                     |                       |                      |
| 0.967<br>0.968<br>0.968<br>0.969<br>0.969<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98                                                                                                                                                                                                                                                                                                                                                                           |                      |                     |                       |                      |
| 0.967<br>0.968<br>0.969<br>0.969<br>0.969<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                     |                       |                      |
| 0.968<br>0.969<br>0.969<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                     |                       |                      |
| 0.968         0.969         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.98         0.98         0.98         0.98         0.98         0.98         0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                     |                       |                      |
| 0.969         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.978         0.98         0.98         0.98         0.98         0.98         0.98         0.98         0.98         0.98         0.98         0.98         0.98         0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                     |                       |                      |
| 0.969         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.978         0.98         0.98         0.98         0.98         0.98         0.98         0.98         0.98         0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                     |                       |                      |
| 0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | 0.969               |                       |                      |
| 0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | 0.969               |                       |                      |
| 0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                     |                       |                      |
| 0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.971<br>0.971<br>0.972<br>0.972<br>0.973<br>0.976<br>0.977<br>0.977<br>0.977<br>0.977<br>0.978<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | 0.97                |                       |                      |
| 0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.971<br>0.971<br>0.972<br>0.972<br>0.973<br>0.976<br>0.977<br>0.977<br>0.977<br>0.978<br>0.978<br>0.978<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | 0.97                |                       |                      |
| 0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.971<br>0.971<br>0.972<br>0.972<br>0.973<br>0.976<br>0.977<br>0.977<br>0.977<br>0.978<br>0.978<br>0.978<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | 0.97                |                       |                      |
| 0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.971<br>0.971<br>0.972<br>0.972<br>0.973<br>0.976<br>0.977<br>0.977<br>0.977<br>0.978<br>0.978<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                     |                       |                      |
| 0.97<br>0.97<br>0.97<br>0.97<br>0.971<br>0.971<br>0.972<br>0.972<br>0.973<br>0.976<br>0.977<br>0.977<br>0.977<br>0.978<br>0.978<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                     |                       |                      |
| 0.97<br>0.97<br>0.97<br>0.97<br>0.971<br>0.972<br>0.972<br>0.973<br>0.976<br>0.977<br>0.978<br>0.978<br>0.979<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                     |                       |                      |
| 0.97<br>0.97<br>0.971<br>0.971<br>0.972<br>0.972<br>0.973<br>0.976<br>0.977<br>0.977<br>0.977<br>0.978<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                     |                       |                      |
| 0.97<br>0.971<br>0.971<br>0.972<br>0.972<br>0.973<br>0.976<br>0.977<br>0.977<br>0.977<br>0.978<br>0.978<br>0.978<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                     |                       |                      |
| 0.971<br>0.972<br>0.972<br>0.973<br>0.976<br>0.977<br>0.977<br>0.978<br>0.978<br>0.979<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                     |                       |                      |
| 0.971<br>0.972<br>0.973<br>0.973<br>0.976<br>0.977<br>0.977<br>0.978<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                     |                       |                      |
| 0.972<br>0.972<br>0.973<br>0.976<br>0.977<br>0.977<br>0.978<br>0.978<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                     |                       |                      |
| 0.972<br>0.973<br>0.976<br>0.977<br>0.977<br>0.978<br>0.979<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                     |                       |                      |
| 0.973<br>0.976<br>0.977<br>0.977<br>0.978<br>0.979<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                     |                       |                      |
| 0.976<br>0.977<br>0.977<br>0.978<br>0.979<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                     |                       |                      |
| 0.977<br>0.978<br>0.978<br>0.979<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                     |                       |                      |
| 0.977<br>0.978<br>0.979<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                     |                       |                      |
| 0.977<br>0.978<br>0.979<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | 0.977               |                       |                      |
| 0.978<br>0.979<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      | 0.977               |                       |                      |
| 0.979<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                     |                       |                      |
| 0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                     |                       |                      |
| 0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                     |                       |                      |
| 0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                     |                       |                      |
| 0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                     |                       |                      |
| 0.98<br>0.98<br>0.98<br>0.98<br>0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                     |                       |                      |
| 0.98<br>0.98<br>0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                     |                       |                      |
| 0.98<br>0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                     |                       |                      |
| 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                     |                       |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                     |                       |                      |
| 0.981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                     |                       |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | 0.981               |                       |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                     |                       |                      |

Attachment 4 to HEM-11-91 Page 113 of 139 & RESRAD Pages

## Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| Ingrowth         BKG Ra-226 w/ingrowth         NI Ra-226 w/ingrowth           0.981         0.982         0.983           0.983         0.983         0.983           0.984         0.987         0.987           0.989         0.986         0.989           0.989         0.999         0.99           0.989         0.99         0.99           0.999         0.99         0.99           0.999         0.99         0.99           0.999         0.99         0.99           0.999         0.99         0.99           0.99         0.99         0.99           0.99         0.99         0.99           0.99         0.99         0.99           0.99         0.99         0.99           0.99         0.99         0.99           0.99         0.99         0.99           0.99         0.99         0.99           0.99         0.99         0.99           0.99         0.99         0.99           0.99         0.99         0.99           0.99         0.99         0.99           0.995         0.995         0.995           0.999 <th>BKG Ra-226 w/Unknown</th> <th>NI Ra-226 w/Unknown</th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BKG Ra-226 w/Unknown | NI Ra-226 w/Unknown |                       |                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------|-----------------------|------------------------------------------|
| 0.981<br>0.982<br>0.983<br>0.983<br>0.983<br>0.983<br>0.983<br>0.987<br>0.987<br>0.987<br>0.989<br>0.989<br>0.989<br>0.999<br>0.99<br>0.99<br>0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                     | BKG Ra-226 w/Ingrowth | NI Ra-226 w/Ingrowth                     |
| 0.982<br>0.983<br>0.983<br>0.983<br>0.984<br>0.984<br>0.987<br>0.987<br>0.989<br>0.989<br>0.989<br>0.989<br>0.99<br>0.99<br>0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u>             | 0.981               | <u> </u>              | J. J |
| 0.983<br>0.983<br>0.983<br>0.983<br>0.983<br>0.987<br>0.987<br>0.987<br>0.989<br>0.989<br>0.989<br>0.999<br>0.99<br>0.99<br>0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                     |                       |                                          |
| 0.983<br>0.983<br>0.983<br>0.984<br>0.987<br>0.987<br>0.987<br>0.989<br>0.989<br>0.989<br>0.99<br>0.99<br>0.99<br>0.99<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                     |                       |                                          |
| 0.983<br>0.984<br>0.987<br>0.987<br>0.987<br>0.988<br>0.989<br>0.989<br>0.999<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.9                                                                                                                                                                                                                                                                                                                                                      |                      |                     |                       |                                          |
| 0.983<br>0.984<br>0.987<br>0.987<br>0.988<br>0.989<br>0.989<br>0.989<br>0.999<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.9                                                                                                                                                                                                                                                                                                                                                      |                      |                     |                       |                                          |
| 0.984<br>0.987<br>0.987<br>0.988<br>0.989<br>0.989<br>0.999<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99                                                                                                                                                                                                                                                                                                                                                       |                      |                     |                       |                                          |
| 0.987<br>0.987<br>0.989<br>0.989<br>0.989<br>0.999<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99                                                                                                                                                                                                                                                                                                                                                        |                      |                     |                       |                                          |
| 0.987<br>0.988<br>0.989<br>0.989<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.993<br>0.995<br>0.997<br>0.997<br>0.997<br>0.997<br>0.998<br>0.998<br>0.999<br>0.999<br>0.999<br>0.997<br>0.997<br>0.998<br>0.999<br>0.998<br>0.998<br>0.999<br>0.999<br>0.999<br>0.997<br>0.997<br>0.998<br>0.998<br>0.999<br>0.999<br>0.999<br>0.997<br>0.997<br>0.998<br>0.998<br>0.998<br>0.999<br>0.998<br>0.999<br>0.997<br>0.997<br>0.997<br>0.997<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.999<br>0.997<br>0.997<br>0.997<br>0.997<br>0.998<br>0.998<br>0.998<br>0.999<br>0.999<br>0.999<br>0.997<br>0.997<br>0.997<br>0.997<br>0.997<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.999<br>0.998<br>0.998<br>0.998<br>0.999<br>0.997<br>0.997<br>0.997<br>0.997<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.9988<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.9988<br>0.9988<br>0.9988<br>0.99                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                     |                       |                                          |
| 0 988<br>0 989<br>0 989<br>0 989<br>0 999<br>0 999 |                      |                     |                       |                                          |
| 0 989<br>0 989<br>0 999<br>0 991<br>0 992<br>0 992<br>0 992<br>0 992<br>0 992<br>0 992<br>0 993<br>0 994<br>0 995<br>0 997<br>0 997<br>0 998<br>0 998<br>0 998<br>0 998<br>0 998<br>0 998<br>0 999<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                     |                       |                                          |
| 0.989<br>0.999<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                     |                       |                                          |
| 0.989<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                     |                       |                                          |
| 0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99                                                                                                                                                                                                                                                                                                                                                      |                      |                     |                       |                                          |
| 0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | 0.99                |                       |                                          |
| 0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.993<br>0.995<br>0.995<br>0.995<br>0.995<br>0.997<br>0.995<br>0.997<br>0.997<br>0.997<br>0.997<br>0.998<br>0.998<br>0.998<br>0.999<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                     |                       |                                          |
| 0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.993<br>0.995<br>0.995<br>0.995<br>0.995<br>0.997<br>0.997<br>0.997<br>0.998<br>0.998<br>0.998<br>0.999<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                     |                       |                                          |
| 0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                     |                       |                                          |
| 0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                     |                       |                                          |
| 0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.991<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.993<br>0.994<br>0.995<br>0.995<br>0.995<br>0.997<br>0.997<br>0.997<br>0.997<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                     |                       |                                          |
| 0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.993<br>0.994<br>0.995<br>0.995<br>0.995<br>0.997<br>0.997<br>0.997<br>0.997<br>0.997<br>0.997<br>0.998<br>0.998<br>0.998<br>0.999<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                     |                       |                                          |
| 0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.992<br>0.992<br>0.992<br>0.992<br>0.993<br>0.994<br>0.995<br>0.995<br>0.995<br>0.995<br>0.995<br>0.997<br>0.997<br>0.997<br>0.997<br>0.997<br>0.997<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                     |                       |                                          |
| 0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.992<br>0.992<br>0.992<br>0.992<br>0.993<br>0.993<br>0.995<br>0.995<br>0.995<br>0.995<br>0.995<br>0.997<br>0.997<br>0.997<br>0.997<br>0.997<br>0.998<br>0.998<br>0.998<br>0.998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                     |                       |                                          |
| 0.99<br>0.99<br>0.99<br>0.99<br>0.991<br>0.992<br>0.992<br>0.993<br>0.994<br>0.995<br>0.995<br>0.995<br>0.995<br>0.997<br>0.997<br>0.997<br>0.997<br>0.997<br>0.997<br>0.998<br>0.998<br>0.999<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                     |                       |                                          |
| 0.99<br>0.99<br>0.99<br>0.991<br>0.992<br>0.992<br>0.992<br>0.993<br>0.994<br>0.995<br>0.995<br>0.995<br>0.997<br>0.997<br>0.997<br>0.997<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                     |                       |                                          |
| 0.99<br>0.99<br>0.991<br>0.992<br>0.992<br>0.992<br>0.993<br>0.994<br>0.995<br>0.995<br>0.995<br>0.997<br>0.997<br>0.997<br>0.998<br>0.998<br>0.998<br>0.998<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                     |                       |                                          |
| 0.99<br>0.991<br>0.992<br>0.992<br>0.992<br>0.993<br>0.994<br>0.995<br>0.995<br>0.997<br>0.997<br>0.997<br>0.997<br>0.997<br>0.997<br>0.998<br>0.998<br>0.998<br>0.998<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                     |                       |                                          |
| 0.991<br>0.992<br>0.992<br>0.993<br>0.993<br>0.994<br>0.995<br>0.995<br>0.995<br>0.997<br>0.997<br>0.997<br>0.997<br>0.997<br>0.997<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                     |                       |                                          |
| 0.992<br>0.992<br>0.992<br>0.993<br>0.994<br>0.995<br>0.995<br>0.997<br>0.997<br>0.997<br>0.997<br>0.998<br>0.998<br>0.998<br>0.998<br>0.998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                     |                       |                                          |
| 0.992<br>0.993<br>0.993<br>0.994<br>0.995<br>0.995<br>0.997<br>0.997<br>0.997<br>0.998<br>0.998<br>0.998<br>0.998<br>0.999<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                     |                       |                                          |
| 0.992<br>0.993<br>0.994<br>0.995<br>0.995<br>0.997<br>0.997<br>0.997<br>0.998<br>0.998<br>0.998<br>0.998<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                     |                       |                                          |
| 0.993<br>0.994<br>0.995<br>0.995<br>0.997<br>0.997<br>0.997<br>0.998<br>0.998<br>0.998<br>0.999<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                     |                       |                                          |
| 0.994<br>0.995<br>0.995<br>0.997<br>0.997<br>0.997<br>0.998<br>0.998<br>0.998<br>0.999<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                     |                       |                                          |
| 0.995<br>0.995<br>0.997<br>0.997<br>0.997<br>0.998<br>0.998<br>0.998<br>0.999<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                     |                       |                                          |
| 0.995<br>0.997<br>0.997<br>0.998<br>0.998<br>0.998<br>0.999<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                     |                       |                                          |
| 0.997<br>0.997<br>0.997<br>0.998<br>0.998<br>0.999<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                     |                       |                                          |
| 0.997<br>0.997<br>0.998<br>0.998<br>0.999<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                     |                       |                                          |
| 0.997<br>0.998<br>0.998<br>0.999<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                     |                       |                                          |
| 0.998<br>0.998<br>0.999<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                     |                       |                                          |
| 0.998<br>0.999<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                     |                       |                                          |
| 0.999<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                     |                       |                                          |
| 1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                     |                       |                                          |
| 1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      | 0.999               |                       |                                          |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | 1                   |                       |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      | 1                   |                       |                                          |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | 1                   |                       |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                     |                       |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                     |                       |                                          |

Attachment 4 to HEM-11-91 Page 114 of 139 & RESRAD Pages

# Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| BKG Ra-226 w/Unknown | NI Ra-226 w/Unknown |                       |                      |
|----------------------|---------------------|-----------------------|----------------------|
| Ingrowth             | Ingrowth            | BKG Ra-226 w/Ingrowth | NI Ra-226 w/Ingrowth |
|                      | 1<br>1              |                       |                      |
|                      | 1                   |                       |                      |
|                      | 1                   |                       |                      |
|                      | 1                   |                       |                      |
|                      | 1                   |                       |                      |
|                      | 1                   |                       |                      |
|                      | 1                   |                       |                      |
|                      | 1                   |                       |                      |
|                      | 1                   |                       |                      |
|                      | 1                   |                       |                      |
|                      | 1                   |                       |                      |
|                      | 1                   |                       |                      |
|                      | 1                   |                       |                      |
|                      | 1<br>1              |                       |                      |
|                      | 1                   |                       |                      |
|                      | 1                   |                       |                      |
|                      | 1                   |                       |                      |
|                      | 1                   |                       |                      |
|                      | 1.01                |                       |                      |
|                      | 1.01                |                       |                      |
|                      | 1.01                |                       |                      |
|                      | 1.01                |                       |                      |
|                      | 1.01                |                       |                      |
|                      | 1.01                |                       |                      |
|                      | 1.01                |                       |                      |
|                      | 1.01<br>1.01        |                       |                      |
|                      | 1.01                |                       |                      |
|                      | 1.01                |                       |                      |
|                      | 1.01                |                       |                      |
|                      | 1.01                |                       |                      |
|                      | 1.01                |                       |                      |
|                      | 1.01                |                       |                      |
|                      | 1.01                |                       |                      |
|                      | 1.01                |                       |                      |
|                      | 1.01                |                       |                      |
|                      | 1.01                |                       |                      |
|                      | 1.01                |                       |                      |
|                      | 1.01                |                       |                      |
|                      | 1.01                |                       |                      |
|                      | 1.01<br>1.01        |                       |                      |
|                      | 1.02                |                       |                      |
|                      | 1.02                |                       |                      |
|                      | 1.02                |                       |                      |
|                      | 1.02                |                       |                      |
|                      | 1.02                |                       |                      |
|                      | 1.02                |                       |                      |
|                      | 1.02                |                       |                      |

Attachment 4 to HEM-11-91 Page 115 of 139 & RESRAD Pages

## Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| 3KG Ra-226 w/Unknown | NI Ra-226 w/Unknown | DKC De 200 w//seree // |                      |
|----------------------|---------------------|------------------------|----------------------|
| Ingrowth             | Ingrowth            | BKG Ra-226 w/Ingrowth  | NI Ka-226 W/Ingrowth |
|                      | 1.02                |                        |                      |
|                      | 1.02                |                        |                      |
|                      | 1.02                |                        |                      |
|                      | 1.02                |                        |                      |
|                      | 1.02                |                        |                      |
|                      | 1.02                |                        |                      |
|                      | 1.02                |                        |                      |
|                      | 1.02                |                        |                      |
|                      | 1.02                |                        |                      |
|                      | 1.02                |                        |                      |
|                      | 1.02                |                        |                      |
|                      | 1.02                |                        |                      |
|                      | 1.02                |                        |                      |
|                      |                     |                        |                      |
|                      | 1.02                |                        |                      |
|                      | 1.02                |                        |                      |
|                      | 1.02                |                        |                      |
|                      | 1.02                |                        |                      |
|                      | 1.02                |                        |                      |
|                      | 1.02                |                        |                      |
|                      | 1.02                |                        |                      |
|                      | 1.02                |                        |                      |
|                      | 1.02                |                        |                      |
|                      | 1.02                |                        |                      |
|                      | 1.02                |                        |                      |
|                      | 1.02                |                        |                      |
|                      | 1.02                |                        |                      |
|                      | 1.02                |                        |                      |
|                      | 1.02                |                        |                      |
|                      |                     |                        |                      |
|                      | 1.03                |                        |                      |
|                      | 1.03                |                        |                      |
|                      | 1.03                |                        |                      |
|                      | 1.03                |                        |                      |
|                      | 1.03                |                        |                      |
|                      | 1.03                |                        |                      |
|                      | 1.03                |                        |                      |
|                      | 1.03                |                        |                      |
|                      | 1.03                |                        |                      |
|                      | 1.03                |                        |                      |
|                      | 1.03                |                        |                      |
|                      | 1.03                |                        |                      |
|                      | 1.03                |                        |                      |
|                      | 1.03                |                        |                      |
|                      | 1.03                |                        |                      |
|                      | 1.03                |                        |                      |
|                      |                     |                        |                      |
|                      | 1.03                |                        |                      |
|                      | 1.03                |                        |                      |
|                      | 1.03                |                        |                      |
|                      | 1.03                |                        |                      |
|                      | 1.03                |                        |                      |
|                      | 1.03                |                        |                      |
|                      | 1.04                |                        |                      |

Attachment 4 to HEM-11-91 Page 116 of 139 & RESRAD Pages

## Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| 3KG Ra-226 w/Unknown | NI Ra-226 w/Unknown |                       |                      |
|----------------------|---------------------|-----------------------|----------------------|
| Ingrowth             | Ingrowth            | BKG Ra-226 w/Ingrowth | NI Ra-226 w/Ingrowth |
|                      | 1.04                |                       |                      |
|                      | 1.04                |                       |                      |
|                      | 1.04                |                       |                      |
|                      | 1.04                |                       |                      |
|                      | 1.04                |                       |                      |
|                      | 1.04                |                       |                      |
|                      | 1.04                |                       |                      |
|                      | 1.04                |                       |                      |
|                      | 1.04                |                       |                      |
|                      | 1.04                |                       |                      |
|                      | 1.04                |                       |                      |
|                      | 1.04                |                       |                      |
|                      | 1.04                |                       |                      |
|                      | 1.04                |                       |                      |
|                      | 1.04                |                       |                      |
|                      | 1.04                |                       |                      |
|                      | 1.04                |                       |                      |
|                      | 1.04                |                       |                      |
|                      | 1.04                |                       |                      |
|                      | 1.04                |                       |                      |
|                      | 1.04                |                       |                      |
|                      | 1.04                |                       |                      |
|                      | 1.04                |                       |                      |
|                      | 1.04                |                       |                      |
|                      | 1.04                |                       |                      |
|                      | 1.04                |                       |                      |
|                      | 1.04                |                       |                      |
|                      | 1.04                |                       |                      |
|                      | 1.05                |                       |                      |
|                      | 1.05                |                       |                      |
|                      | 1.05                |                       |                      |
|                      | 1.05                |                       |                      |
|                      | 1.05                |                       |                      |
|                      | 1.05                |                       |                      |
|                      | 1.05                |                       |                      |
|                      | 1.05                |                       |                      |
|                      | 1.05                |                       |                      |
|                      | 1.05                |                       |                      |
|                      | 1.05                |                       |                      |
|                      | 1.05                |                       |                      |
|                      | 1.05                |                       |                      |
|                      | 1.05                |                       |                      |
|                      | 1.05                |                       |                      |
|                      | 1.05                |                       |                      |
|                      | 1.05                |                       |                      |
|                      |                     |                       |                      |
|                      | 1.05                |                       |                      |
|                      | 1.05                |                       |                      |
|                      | 1.05                |                       |                      |
|                      | 1.06                |                       |                      |
|                      | 1.06                |                       |                      |
|                      | 1.06                |                       |                      |

Attachment 4 to HEM-11-91 Page 117 of 139 & RESRAD Pages

Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| KG Ra-226 w/Unknown<br>Ingrowth | NI Ra-226 w/Unknown<br>Ingrowth | BKG Ra-226 w/Ingrowth  | NI Ra_226 w/lngrowth   |
|---------------------------------|---------------------------------|------------------------|------------------------|
| ngrowur                         | 1.06                            | BIG Ra-220 Willigiowth | Ni Ka-220 W/IIIgiOWIII |
|                                 | 1.06                            |                        |                        |
|                                 | 1.06                            |                        |                        |
|                                 | 1.06                            |                        |                        |
|                                 | 1.06                            |                        |                        |
|                                 |                                 |                        |                        |
|                                 | 1.06                            |                        |                        |
|                                 | 1.06                            |                        |                        |
|                                 | 1.06                            |                        |                        |
|                                 | 1.06                            |                        |                        |
|                                 | 1.06                            |                        |                        |
|                                 | 1.06                            |                        |                        |
|                                 | 1.06                            |                        |                        |
|                                 | 1.06                            |                        |                        |
|                                 | 1.06                            |                        |                        |
|                                 | 1.06                            |                        |                        |
|                                 | 1.06                            |                        |                        |
|                                 | 1.06                            |                        |                        |
|                                 | 1.06                            |                        |                        |
|                                 | 1.06                            |                        |                        |
|                                 | 1.06                            |                        |                        |
|                                 | 1.06                            |                        |                        |
|                                 | 1.06                            |                        |                        |
|                                 | 1.06                            |                        |                        |
|                                 | 1.06                            |                        |                        |
|                                 | 1.06                            |                        |                        |
|                                 | 1.06                            |                        |                        |
|                                 | 1.06                            |                        |                        |
|                                 | 1.06                            |                        |                        |
|                                 | 1.07                            |                        |                        |
|                                 | 1.07                            |                        |                        |
|                                 | 1.07                            |                        |                        |
|                                 | 1.07                            |                        |                        |
|                                 | 1.07                            |                        |                        |
|                                 | 1.07                            |                        |                        |
|                                 | 1.07                            |                        |                        |
|                                 | 1.07                            |                        |                        |
|                                 | 1.07                            |                        |                        |
|                                 | 1.07                            |                        |                        |
|                                 | 1.07                            |                        |                        |
|                                 | 1.07                            |                        |                        |
|                                 | 1.07                            |                        |                        |
|                                 | 1.07                            |                        |                        |
|                                 | 1.07                            |                        |                        |
|                                 |                                 |                        |                        |
|                                 | 1.07                            |                        |                        |
|                                 | 1.07                            |                        |                        |
|                                 | 1.07                            |                        |                        |
|                                 | 1.07                            |                        |                        |
|                                 | 1.07                            |                        |                        |
|                                 | 1.07                            |                        |                        |
|                                 | 1.07                            |                        |                        |
|                                 | 1.07                            |                        |                        |

Attachment 4 to HEM-11-91 Page 118 of 139 & RESRAD Pages

## Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| BKG Ra-226 w/Unknown | NI Ra-226 w/Unknown | BKC Do 226 w/logrowth | NI Do 226 w/logrowth |
|----------------------|---------------------|-----------------------|----------------------|
| Ingrowth             | Ingrowth<br>1.07    | BKG Ra-226 w/Ingrowth | in Ra-220 w/ingrowth |
|                      |                     |                       |                      |
|                      | 1.07                |                       |                      |
|                      | 1.07                |                       |                      |
|                      | 1.07                |                       |                      |
|                      | 1.07                |                       |                      |
|                      | 1.07                |                       |                      |
|                      | 1.07                |                       |                      |
|                      | 1.07                |                       |                      |
|                      | 1.08                |                       |                      |
|                      | 1.08                |                       |                      |
|                      | 1.08                |                       |                      |
|                      | 1.08                |                       |                      |
|                      | 1.08                |                       |                      |
|                      | 1.08                |                       |                      |
|                      | 1.08                |                       |                      |
|                      | 1.08                |                       |                      |
|                      | 1.08                |                       |                      |
|                      | 1.08                |                       |                      |
|                      | 1.08                |                       |                      |
|                      | 1.08                |                       |                      |
|                      | 1.08                |                       |                      |
|                      | 1.08                |                       |                      |
|                      | 1.08                |                       |                      |
|                      | 1.08                |                       |                      |
|                      | 1.08                |                       |                      |
|                      | 1.08<br>1.08        |                       |                      |
|                      | 1.08                |                       |                      |
|                      | 1.08                |                       |                      |
|                      | 1.08                |                       |                      |
|                      | 1.08                |                       |                      |
|                      | 1.08                |                       |                      |
|                      | 1.08                |                       |                      |
|                      | 1.08                |                       |                      |
|                      | 1.08                |                       |                      |
|                      | 1.08                |                       |                      |
|                      | 1.08                |                       |                      |
|                      | 1.08                |                       |                      |
|                      | 1.09                |                       |                      |
|                      | 1.09                |                       |                      |
|                      | 1.09                |                       |                      |
|                      | 1.09                |                       |                      |
|                      | 1.09                |                       |                      |
|                      | 1.09                |                       |                      |
|                      | 1.09                |                       |                      |
|                      | 1.09                |                       |                      |
|                      | 1.09                |                       |                      |
|                      | 1.09                |                       |                      |
|                      | 1.09                |                       |                      |
|                      | 1.09                |                       |                      |
|                      | 1.09                |                       |                      |
|                      | 1.03                |                       |                      |

Attachment 4 to HEM-11-91 Page 119 of 139 & RESRAD Pages

| KG Ra-226 w/Unknown | NI Ra-226 w/Unknown |                       |                      |
|---------------------|---------------------|-----------------------|----------------------|
| Ingrowth            | Ingrowth            | BKG Ra-226 w/Ingrowth | NI Ra-226 w/Ingrowth |
|                     | 1.09                |                       |                      |
|                     | 1.09                |                       |                      |
|                     | 1.09                |                       |                      |
|                     | 1.09                |                       |                      |
|                     | 1.09                |                       |                      |
|                     | 1.09                |                       |                      |
|                     | 1.09                |                       |                      |
|                     | 1.09                |                       |                      |
|                     | 1.09                |                       |                      |
|                     | 1.09                |                       |                      |
|                     | 1.09                |                       |                      |
|                     | 1.09                |                       |                      |
|                     | 1.09                |                       |                      |
|                     | 1.09                |                       |                      |
|                     | 1.09                |                       |                      |
|                     |                     |                       |                      |
|                     | 1.09                |                       |                      |
|                     | 1.09                |                       |                      |
|                     | 1.09                |                       |                      |
|                     | 1.09                |                       |                      |
|                     | 1.09                |                       |                      |
|                     | 1.1                 |                       |                      |
|                     | 1.1                 |                       |                      |
|                     | 1.1                 |                       |                      |
|                     | 1.1                 |                       |                      |
|                     | 1.1                 |                       |                      |
|                     | 1.1                 |                       |                      |
|                     | 1.1                 |                       |                      |
|                     | 1.1                 |                       |                      |
|                     | 1.1                 |                       |                      |
|                     | 1.1                 |                       |                      |
|                     | 1.1                 |                       |                      |
|                     | 1.1                 |                       |                      |
|                     | 1.1                 |                       |                      |
|                     | 1.1                 |                       |                      |
|                     | 1.1                 |                       |                      |
|                     | 1.1                 |                       |                      |
|                     | 1.1                 |                       |                      |
|                     | 1.1                 |                       |                      |
|                     | 1.1                 |                       |                      |
|                     | 1.1                 |                       |                      |
|                     | 1.11                |                       |                      |
|                     | 1.11                |                       |                      |
|                     | 1.11                |                       |                      |
|                     | 1.11                |                       |                      |
|                     | 1.11                |                       |                      |
|                     | 1.11                |                       |                      |
|                     | 1.11                |                       |                      |
|                     | 1.11                |                       |                      |
|                     |                     |                       |                      |
|                     | 1.11                |                       |                      |
|                     | 1.11<br>1.11        |                       |                      |
|                     |                     |                       |                      |

Attachment 4 to HEM-11-91 Page 120 of 139 & RESRAD Pages

## Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| 3KG Ra-226 w/Unknown | NI Ra-226 w/Unknown |                       |                      |
|----------------------|---------------------|-----------------------|----------------------|
| Ingrowth             | Ingrowth            | BKG Ra-226 w/Ingrowth | NI Ra-226 w/Ingrowth |
|                      | 1.11                |                       |                      |
|                      | 1.11                |                       |                      |
|                      | 1.11                |                       |                      |
|                      | 1.11                |                       |                      |
|                      | 1.11                |                       |                      |
|                      | 1.11                |                       |                      |
|                      | 1.11                |                       |                      |
|                      | 1.11                |                       |                      |
|                      | 1.11                |                       |                      |
|                      | 1.11                |                       |                      |
|                      | 1.11                |                       |                      |
|                      | 1.12                |                       |                      |
|                      | 1.12                |                       |                      |
|                      | 1.12                |                       |                      |
|                      | 1.12                |                       |                      |
|                      | 1.12                |                       |                      |
|                      | 1.12                |                       |                      |
|                      | 1.12                |                       |                      |
|                      | 1.12                |                       |                      |
|                      | 1.12                |                       |                      |
|                      | 1.12                |                       |                      |
|                      | 1.12                |                       |                      |
|                      | 1.12                |                       |                      |
|                      | 1.12                |                       |                      |
|                      | 1.12                |                       |                      |
|                      | 1.12                |                       |                      |
|                      | 1.12                |                       |                      |
|                      | 1.12                |                       |                      |
|                      | 1.12                |                       |                      |
|                      | 1.12                |                       |                      |
|                      | 1.12                |                       |                      |
|                      | 1.12                |                       |                      |
|                      | 1.12                |                       |                      |
|                      | 1.12                |                       |                      |
|                      | 1.12                |                       |                      |
|                      | 1.12                |                       |                      |
|                      | 1.12                |                       |                      |
|                      | 1.12                |                       |                      |
|                      | 1.12                |                       |                      |
|                      | 1.12                |                       |                      |
|                      | 1.13                |                       |                      |
|                      | 1.13                |                       |                      |
|                      | 1.13                |                       |                      |
|                      | 1.13                |                       |                      |
|                      | 1.13                |                       |                      |
|                      |                     |                       |                      |
|                      | 1.13                |                       |                      |
|                      | 1.13                |                       |                      |
|                      | 1.13                |                       |                      |
|                      | 1.13                |                       |                      |
|                      | 1.13                |                       |                      |
|                      | 1.13                |                       |                      |

Attachment 4 to HEM-11-91 Page 121 of 139 & RESRAD Pages

## Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| KG Ra-226 w/Unknown | NI Ra-226 w/Unknown |                       |                      |
|---------------------|---------------------|-----------------------|----------------------|
| Ingrowth            | Ingrowth            | BKG Ra-226 w/Ingrowth | NI Ra-226 w/Ingrowth |
|                     | 1.13                |                       |                      |
|                     | 1.13                |                       |                      |
|                     | 1.13                |                       |                      |
|                     | 1.13                |                       |                      |
|                     | 1.13                |                       |                      |
|                     | 1.13                |                       |                      |
|                     | 1.13                |                       |                      |
|                     | 1.13                |                       |                      |
|                     |                     |                       |                      |
|                     | 1.13                |                       |                      |
|                     | 1.14                |                       |                      |
|                     | 1.14                |                       |                      |
|                     | 1.14                |                       |                      |
|                     | 1.14                |                       |                      |
|                     | 1.14                |                       |                      |
|                     | 1.14                |                       |                      |
|                     | 1.14                |                       |                      |
|                     | 1.14                |                       |                      |
|                     | 1.14                |                       |                      |
|                     | 1.14                |                       |                      |
|                     | 1.14                |                       |                      |
|                     | 1.14                |                       |                      |
|                     | 1.14                |                       |                      |
|                     | 1.14                |                       |                      |
|                     | 1.14                |                       |                      |
|                     | 1.14                |                       |                      |
|                     | 1.14                |                       |                      |
|                     | 1.14                |                       |                      |
|                     | 1.14                |                       |                      |
|                     | 1.14                |                       |                      |
|                     | 1.14                |                       |                      |
|                     | 1.14                |                       |                      |
|                     |                     |                       |                      |
|                     | 1.14                |                       |                      |
|                     | 1.14                |                       |                      |
|                     | 1.15                |                       |                      |
|                     | 1.15                |                       |                      |
|                     | 1.15                |                       |                      |
|                     | 1.15                |                       |                      |
|                     | 1.15                |                       |                      |
|                     | 1.15                |                       |                      |
|                     | 1.15                |                       |                      |
|                     | 1.15                |                       |                      |
|                     | 1.15                |                       |                      |
|                     | 1.15                |                       |                      |
|                     | 1.15                |                       |                      |
|                     | 1.15                |                       |                      |
|                     | 1.15                |                       |                      |
|                     | 1.15                |                       |                      |
|                     | 1.15                |                       |                      |
|                     | 1.15                |                       |                      |
|                     | 1.16                |                       |                      |
|                     | 1.16                |                       |                      |
|                     | 1.10                |                       |                      |

Attachment 4 to HEM-11-91 Page 122 of 139 & RESRAD Pages

## Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| Ingrowth | Ingrowth | BKG Ra-226 w/Ingrowth                                        | NI Ra-226 w/Ingrowth                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------|----------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |          |                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | 1.16     |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | 1.16     |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | 1.16     |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | 1.16     |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | 1.16     |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | 1.16     |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | 1.16     |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | 1.16     |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | 1.16     |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | 1.16     |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | 1.16     |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | 1.16     |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | 1.16     |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | 1.16     |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | 1.10     |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |          |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | 1.18     |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |          | 1.16<br>1.16<br>1.16<br>1.16<br>1.16<br>1.16<br>1.16<br>1.16 | 1.16 $1.16$ $1.16$ $1.16$ $1.16$ $1.16$ $1.16$ $1.16$ $1.16$ $1.16$ $1.16$ $1.16$ $1.16$ $1.17$ $1.17$ $1.17$ $1.17$ $1.17$ $1.17$ $1.17$ $1.17$ $1.17$ $1.17$ $1.17$ $1.17$ $1.18$ $1.18$ $1.18$ $1.18$ $1.18$ $1.18$ $1.18$ $1.18$ $1.18$ $1.18$ $1.18$ $1.18$ $1.18$ $1.18$ $1.18$ $1.18$ $1.18$ $1.18$ $1.18$ $1.18$ $1.18$ $1.18$ $1.18$ $1.18$ $1.18$ $1.18$ $1.18$ $1.18$ $1.18$ $1.18$ $1.18$ $1.18$ $1.18$ $1.18$ $1.18$ $1.18$ $1.18$ $1.18$ $1.18$ $1.18$ |

Attachment 4 to HEM-11-91 Page 123 of 139 & RESRAD Pages

## Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| Ingrowth <ul> <li>1.18</li> <li>1.18</li> <li>1.18</li> <li>1.18</li> <li>1.18</li> <li>1.19</li> </ul> | BKG Ra-226 w/Ingrowth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NI Ra-226 w/Ingrowth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.18<br>1.18<br>1.18<br>1.19<br>1.19<br>1.19<br>1.19<br>1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.18<br>1.18<br>1.19<br>1.19<br>1.19<br>1.19<br>1.19<br>1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.18<br>1.19<br>1.19<br>1.19<br>1.19<br>1.19<br>1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.18<br>1.19<br>1.19<br>1.19<br>1.19<br>1.19<br>1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.19<br>1.19<br>1.19<br>1.19<br>1.19<br>1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.19<br>1.19<br>1.19<br>1.19<br>1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.19<br>1.19<br>1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.19<br>1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $     \begin{array}{r}       1.19 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\      $ | $     \begin{array}{c}       1.19\\       1.2\\       1.2\\       1.2\\       1.2\\       1.2\\       1.2\\       1.2\\       1.2\\       1.2\\       1.2\\       1.2\\       1.2\\       1.2\\       1.2\\       1.2\\       1.2\\       1.2\\       1.2\\       1.2\\       1.2\\       1.2\\       1.2\\       1.2\\       1.21\\       1.21\\       1.21\\       1.21\\       1.21\\       1.21\\       1.21\\       1.21\\       1.21\\       1.21\\       1.21\\       1.21\\       1.21\\       1.21\\       1.21\\       1.21\\       1.21\\       1.21\\       1.21\\       1.21\\       1.21\\       1.21\\       1.21\\       1.21\\       1.21\\       1.21\\       1.21\\       1.21\\       1.21\\       1.21\\       1.21\\       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21       1.21 $ |

Attachment 4 to HEM-11-91 Page 124 of 139 & RESRAD Pages

## Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| 3KG Ra-226 w/Unknown | NI Ra-226 w/Unknown |                       |                      |
|----------------------|---------------------|-----------------------|----------------------|
| Ingrowth             | Ingrowth            | BKG Ra-226 w/Ingrowth | NI Ra-226 w/Ingrowth |
|                      | 1.22                |                       |                      |
|                      | 1.22                |                       |                      |
|                      | 1.22                |                       |                      |
|                      | 1.22                |                       |                      |
|                      | 1.22                |                       |                      |
|                      | 1.22                |                       |                      |
|                      | 1.22                |                       |                      |
|                      |                     |                       |                      |
|                      | 1.23                |                       |                      |
|                      | 1.23                |                       |                      |
|                      | 1.23                |                       |                      |
|                      | 1.23                |                       |                      |
|                      | 1.23                |                       |                      |
|                      | 1.23                |                       |                      |
|                      | 1.23                |                       |                      |
|                      | 1.23                |                       |                      |
|                      | 1.23                |                       |                      |
|                      | 1.23                |                       |                      |
|                      | 1.24                |                       |                      |
|                      | 1.24                |                       |                      |
|                      |                     |                       |                      |
|                      | 1.24                |                       |                      |
|                      | 1.24                |                       |                      |
|                      | 1.24                |                       |                      |
|                      | 1.24                |                       |                      |
|                      | 1.24                |                       |                      |
|                      | 1.24                |                       |                      |
|                      | 1.24                |                       |                      |
|                      | 1.24                |                       |                      |
|                      | 1.25                |                       |                      |
|                      | 1.25                |                       |                      |
|                      | 1.25                |                       |                      |
|                      | 1.25                |                       |                      |
|                      | 1.25                |                       |                      |
|                      |                     |                       |                      |
|                      | 1.25                |                       |                      |
|                      | 1.25                |                       |                      |
|                      | 1.25                |                       |                      |
|                      | 1.26                |                       |                      |
|                      | 1.26                |                       |                      |
|                      | 1.26                |                       |                      |
|                      | 1.26                |                       |                      |
|                      | 1.26                |                       |                      |
|                      | 1.26                |                       |                      |
|                      | 1.26                |                       |                      |
|                      | 1.26                |                       |                      |
|                      | 1.26                |                       |                      |
|                      | 1.26                |                       |                      |
|                      | 1.26                |                       |                      |
|                      |                     |                       |                      |
|                      | 1.27                |                       |                      |
|                      | 1.27                |                       |                      |
|                      | 1.27                |                       |                      |
|                      | 1.27                |                       |                      |
|                      | 1.27                |                       |                      |

Attachment 4 to HEM-11-91 Page 125 of 139 & RESRAD Pages

## Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| 3KG Ra-226 w/Unknown | NI Ra-226 w/Unknown |                       |                      |
|----------------------|---------------------|-----------------------|----------------------|
| Ingrowth             | Ingrowth            | BKG Ra-226 w/Ingrowth | NI Ra-226 w/Ingrowth |
|                      | 1.27                |                       |                      |
|                      | 1.27                |                       |                      |
|                      | 1.28                |                       |                      |
|                      | 1.28                |                       |                      |
|                      | 1.28                |                       |                      |
|                      | 1.28                |                       |                      |
|                      | 1.28                |                       |                      |
|                      | 1.20                |                       |                      |
|                      |                     |                       |                      |
|                      | 1.29                |                       |                      |
|                      | 1.29                |                       |                      |
|                      | 1.29                |                       |                      |
|                      | 1.29                |                       |                      |
|                      | 1.29                |                       |                      |
|                      | 1.29                |                       |                      |
|                      | 1.29                |                       |                      |
|                      | 1.29                |                       |                      |
|                      | 1.3                 |                       |                      |
|                      | 1.3                 |                       |                      |
|                      | 1.31                |                       |                      |
|                      | 1.31                |                       |                      |
|                      | 1.31                |                       |                      |
|                      |                     |                       |                      |
|                      | 1.31                |                       |                      |
|                      | 1.31                |                       |                      |
|                      | 1.31                |                       |                      |
|                      | 1.31                |                       |                      |
|                      | 1.32                |                       |                      |
|                      | 1.32                |                       |                      |
|                      | 1.32                |                       |                      |
|                      | 1.32                |                       |                      |
|                      | 1.32                |                       |                      |
|                      | 1.32                |                       |                      |
|                      | 1.33                |                       |                      |
|                      | 1.33                |                       |                      |
|                      | 1.33                |                       |                      |
|                      | 1.34                |                       |                      |
|                      | 1.34                |                       |                      |
|                      | 1.34                |                       |                      |
|                      | 1.34                |                       |                      |
|                      |                     |                       |                      |
|                      | 1.35                |                       |                      |
|                      | 1.35                |                       |                      |
|                      | 1.35                |                       |                      |
|                      | 1.35                |                       |                      |
|                      | 1.36                |                       |                      |
|                      | 1.36                |                       |                      |
|                      | 1.36                |                       |                      |
|                      | 1.36                |                       |                      |
|                      | 1.36                |                       |                      |
|                      | 1.36                |                       |                      |
|                      | 1.36                |                       |                      |
|                      | 1.37                |                       |                      |
|                      | 1.37                |                       |                      |
|                      | 1.37                |                       |                      |

Attachment 4 to HEM-11-91 Page 126 of 139 & RESRAD Pages

## Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| 3KG Ra-226 w/Unknown | NI Ra-226 w/Unknown |                       |                      |
|----------------------|---------------------|-----------------------|----------------------|
| Ingrowth             | Ingrowth            | BKG Ra-226 w/Ingrowth | NI Ra-226 W/Ingrowth |
|                      | 1.38                |                       |                      |
|                      | 1.38                |                       |                      |
|                      | 1.38                |                       |                      |
|                      | 1.38                |                       |                      |
|                      | 1.39                |                       |                      |
|                      | 1.39                |                       |                      |
|                      | 1.39                |                       |                      |
|                      | 1.39                |                       |                      |
|                      | 1.39                |                       |                      |
|                      | 1.39                |                       |                      |
|                      | 1.4                 |                       |                      |
|                      | 1.4                 |                       |                      |
|                      | 1.4                 |                       |                      |
|                      | 1.4                 |                       |                      |
|                      | 1.41                |                       |                      |
|                      | 1.41                |                       |                      |
|                      | 1.41                |                       |                      |
|                      | 1.41                |                       |                      |
|                      | 1.42                |                       |                      |
|                      | 1.43                |                       |                      |
|                      | 1.43                |                       |                      |
|                      | 1.43                |                       |                      |
|                      | 1.44                |                       |                      |
|                      | 1.44                |                       |                      |
|                      | 1.45                |                       |                      |
|                      | 1.45                |                       |                      |
|                      | 1.45                |                       |                      |
|                      | 1.46                |                       |                      |
|                      | 1.46                |                       |                      |
|                      | 1.46                |                       |                      |
|                      | 1.47                |                       |                      |
|                      | 1.47                |                       |                      |
|                      | 1.48                |                       |                      |
|                      | 1.49                |                       |                      |
|                      | 1.49                |                       |                      |
|                      | 1.49                |                       |                      |
|                      | 1.49                |                       |                      |
|                      | 1.49                |                       |                      |
|                      | 1.5                 |                       |                      |
|                      |                     |                       |                      |
|                      | 1.51                |                       |                      |
|                      | 1.51                |                       |                      |
|                      | 1.51                |                       |                      |
|                      | 1.53                |                       |                      |
|                      | 1.53                |                       |                      |
|                      | 1.53                |                       |                      |
|                      | 1.55                |                       |                      |
|                      | 1.55                |                       |                      |
|                      | 1.55                |                       |                      |
|                      | 1.56                |                       |                      |
|                      | 1.56                |                       |                      |
|                      | 1.58                |                       |                      |

Attachment 4 to HEM-11-91 Page 127 of 139 & RESRAD Pages

Ra-226 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| BKG Ra-226 w/Unknown<br>Ingrowth | NI Ra-226 w/Unknown<br>Ingrowth | BKG Ra-226 w/Ingrowth | NI Ra-226 w/Ingrowth |
|----------------------------------|---------------------------------|-----------------------|----------------------|
| 5                                | 1.59                            | Ŭ                     | J                    |
|                                  | 1.59                            |                       |                      |
|                                  | 1.6                             |                       |                      |
|                                  | 1.6                             |                       |                      |
|                                  | 1.62                            |                       |                      |
|                                  | 1.63                            |                       |                      |
|                                  | 1.65                            |                       |                      |
|                                  | 1.65                            |                       |                      |
|                                  | 1.66                            |                       |                      |
|                                  | 1.7                             |                       |                      |
|                                  | 1.71                            |                       |                      |
|                                  | 1.72                            |                       |                      |
|                                  | 1.97                            |                       |                      |
|                                  | 1.97                            |                       |                      |
|                                  | 2.1                             |                       |                      |
|                                  | 2.29                            |                       |                      |
|                                  | 2.55                            |                       |                      |
|                                  | 2.6                             |                       |                      |
|                                  | 4.3                             |                       |                      |

Background Th-232 via Gamma Spectroscopy

| Sample ID   | Sample_Date | Units | Th_232_Gamma_Spec |
|-------------|-------------|-------|-------------------|
| BG-01-00-SL | 1/6/2005    | pCi/g | 1                 |
| BG-02-00-SL | 1/6/2005    | pCi/g | 1.01              |
| BG-03-00-SL | 1/6/2005    | pCi/g | 0.53              |
| BG-04-00-SL | 1/6/2005    | pCi/g | 0.532             |
| BG-05-00-SL | 1/6/2005    | pCi/g | 0.814             |
| BG-06-00-SL | 1/6/2005    | pCi/g | 0.82              |
| BG-07-00-SL | 1/6/2005    | pCi/g | 0.767             |
| BG-08-00-SL | 1/6/2005    | pCi/g | 1.38              |
| BG-09-00-SL | 1/6/2005    | pCi/g | 1.43              |
| BG-10-00-SL | 1/6/2005    | pCi/g | 1.14              |
| BG-11-00-SL | 1/6/2005    | pCi/g | 1.43              |
| BG-12-00-SL | 1/6/2005    | pCi/g | 1.38              |
| BG-13-00-SL | 1/6/2005    | pCi/g | 1.17              |
| BG-14-00-SL | 1/6/2005    | pCi/g | 0.997             |
| BG-15-00-SL | 1/6/2005    | pCi/g | 0.802             |
| BG-16-00-SL | 1/6/2005    | pCi/g | 1.04              |
| BG-01-03-SL | 1/6/2005    | pCi/g | 0.774             |
| BG-02-03-SL | 1/6/2005    | pCi/g | 0.68              |
| BG-03-03-SL | 1/6/2005    | pCi/g | 0.877             |
| BG-04-03-SL | 1/6/2005    | pCi/g | 0.834             |
| BG-05-03-SL | 1/6/2005    | pCi/g | 0.978             |
| BG-06-03-SL | 1/6/2005    | pCi/g | 0.806             |
| BG-07-03-SL | 1/6/2005    | pCi/g | 0.931             |
| BG-08-03SL  | 1/6/2005    | pCi/g | 1.83              |
| BG-09-03-SL | 1/6/2005    | pCi/g | 1.19              |
| BG-10-03-SL | 1/6/2005    | pCi/g | 1.17              |
| BG-11-03-SL | 1/6/2005    | pCi/g | 1.17              |
| BG-12-03-SL | 1/6/2005    | pCi/g | 1.49              |
| BG-13-03-SL | 1/6/2005    | pCi/g | 1.18              |
| BG-14-03-SL | 1/6/2005    | pCi/g | 1.55              |
| BG-15-03-SL | 1/6/2005    | pCi/g | 1.46              |
| BG-16-03-SL | 1/6/2005    | pCi/g | 0.758             |

BKG

Non-Impacted Th-232 via Gamma Spectroscopy

| Sample ID      | Sample_Date | Units | Th_232_Gamma_Spec |
|----------------|-------------|-------|-------------------|
| GS-01-00-SL    | 4/30/2004   | pCi/g | 0.735             |
| GS-01-00-SL-FD | 4/30/2004   | pCi/g | 1                 |
| GS-02-00-SL    | 5/3/2004    | pCi/g | 0.962             |
| GS-03-00-SL    | 4/30/2004   | pCi/g | 0.226             |
| GS-04-00-SL    | 5/3/2004    | pCi/g | 0.993             |
| GS-05-00-SL    | 5/3/2004    | pCi/g | 0.726             |
| NB-01-00-SL    | 4/29/2004   | pCi/g | 0.743             |
| NB-02-00-SL    | 4/29/2004   | pCi/g | 0.121             |
| NB-03-00-SL    | 4/29/2004   | pCi/g | 0.384             |
| NB-04-00-SL    | 4/30/2004   | pCi/g | 1.5               |
| NB-05-00-SL    | 4/30/2004   | pCi/g | 0.82              |
| NB-06-00-SL    | 4/30/2004   | pCi/g | 1.33              |
| NB-07-00-SL    | 4/30/2004   | pCi/g | 1.12              |
| NB-07-00-SL-FD | 4/30/2004   | pCi/g | 0.919             |
| NB-08-00-SL    | 4/30/2004   | pCi/g | 0.784             |
| NB-09-00-SL    | 4/30/2004   | pCi/g | 1.37              |
| NB-114-0.5-SL  | 11/16/2007  | pCi/g | 0.05              |
| NB-121-0.5-SL  | 11/16/2007  | pCi/g | 0.05              |
| NB-16-00-SL    | 4/30/2004   | pCi/g | 0.959             |
| NB-17-00-SL    | 4/30/2004   | pCi/g | 1.46              |
| NB-18-00-SL    | 4/30/2004   | pCi/g | 1.09              |
| NB-19-00-SL    | 5/3/2004    | pCi/g | 1.21              |
| NB-22-00-SL    | 5/3/2004    | pCi/g | 0.915             |
| NB-23-00-SL    | 5/3/2004    | pCi/g | 1                 |
| NB-24-00-SL    | 5/3/2004    | pCi/g | 0.791             |
| NB-25-00-SL    | 5/3/2004    | pCi/g | 0.632             |
| NB-26-00-SL    | 4/29/2004   | pCi/g | 0.134             |
| NB-27-00-SL    | 4/29/2004   | pCi/g | 0.584             |
| NB-27-00-SL-FD | 4/29/2004   | pCi/g | 0.509             |
| NB-100-4.5-SL  | 11/9/2007   | pCi/g | 0.42              |
| NB-100-7-SL    | 11/9/2007   | pCi/g | 0.99              |
| NB-114-10-SL   | 11/16/2007  | pCi/g | 0.89              |
| NB-114-2.5-SL  | 11/16/2007  | pCi/g | 0.14              |
| NB-114-4.5-SL  | 11/16/2007  | pCi/g | 0.96              |
| NB-121-12.5-SL | 11/16/2007  | pCi/g | 0.95              |
| NB-121-2.5-SL  | 11/16/2007  | pCi/g | 0.08              |
| NB-121-4.5-SL  | 11/16/2007  | pCi/g | 0.69              |
| NB-28-04-SL    | 5/25/2004   | pCi/g | 1.49              |
| NB-28-14-SL    | 5/25/2004   | pCi/g | 0.996             |
| NB-28-24-SL    | 5/25/2004   | pCi/g | 0.682             |

Non-Impacted Th-232 via Gamma Spectroscopy

| Sample ID      | Sample_Date | Units | Th_232_Gamma_Spec |
|----------------|-------------|-------|-------------------|
| NB-28-35-SL    | 5/27/2004   | pCi/g | 0.345             |
| NB-29-05-SL    | 5/25/2004   | pCi/g | 1.12              |
| NB-29-14-SL    | 5/25/2004   | pCi/g | 0.12              |
| NB-29-22-SL    | 5/27/2004   | pCi/g | 0.327             |
| NB-30-05-SL    | 6/3/2004    | pCi/g | 1.41              |
| NB-30-15-SL    | 6/3/2004    | pCi/g | 0.875             |
| NB-30-25-SL    | 6/3/2004    | pCi/g | 1.07              |
| NB-30-33-SL    | 6/3/2005    | pCi/g | 0.32              |
| NB-31-05-SL    | 6/3/2002    | pCi/g | 0.854             |
| NB-31-15-SL    | 6/3/2003    | pCi/g | 0.694             |
| NB-31-27-SL    | 6/3/2004    | pCi/g | 0.742             |
| NB-31-32-SL    | 6/3/2004    | pCi/g | 0.771             |
| NB-32-05-SL    | 6/4/2004    | pCi/g | 1.02              |
| NB-32-15-SL    | 6/4/2004    | pCi/g | 0.951             |
| NB-32-27-SL    | 6/4/2004    | pCi/g | 1.06              |
| NB-32-33-SL    | 6/4/2004    | pCi/g | 0.818             |
| NB-33-05-SL    | 6/4/2004    | pCi/g | 0.99              |
| NB-33-15-SL    | 6/4/2004    | pCi/g | 1.2               |
| NB-33-27-SL    | 6/4/2004    | pCi/g | 0.401             |
| NB-34-05-SL    | 6/4/2004    | pCi/g | 1.07              |
| NB-34-15-SL    | 6/4/2004    | pCi/g | 0.331             |
| NB-34-25-SL    | 6/4/2004    | pCi/g | 0.546             |
| NB-35-01-SL    | 6/7/2004    | pCi/g | 0.906             |
| NB-35-15-SL    | 6/7/2004    | pCi/g | 0.774             |
| NB-35-25-SL    | 6/7/2004    | pCi/g | 0.987             |
| NB-36-05-SL    | 6/7/2004    | pCi/g | 0.711             |
| NB-36-15-SL    | 6/7/2004    | pCi/g | 1.17              |
| NB-36-27-SL    | 6/7/2004    | pCi/g | 1.33              |
| NB-37-05-SL    | 6/8/2004    | pCi/g | 1.16              |
| NB-37-15-SL    | 6/8/2004    | pCi/g | 0.632             |
| NB-37-25-SL    | 6/8/2004    | pCi/g | 1.37              |
| NB-38-09-SL    | 6/8/2004    | pCi/g | 0.862             |
| NB-38-15-SL    | 6/8/2004    | pCi/g | 0.719             |
| NB-38-25-SL    | 6/8/2004    | pCi/g | 0.682             |
| NB-40-05-SL    | 6/10/2004   | pCi/g | 0.846             |
| NB-40-05-SL-FD | 6/10/2004   | pCi/g | 0.478             |
| NB-40-17-SL    | 6/10/2004   | pCi/g | 1.07              |
| NB-40-25-SL    | 6/10/2004   | pCi/g | 0.807             |
| NB-40-31-SL    | 6/10/2004   | pCi/g | 0.579             |
| NB-41-05-SL    | 6/11/2004   | pCi/g | 0.878             |

Non-Impacted Th-232 via Gamma Spectroscopy

| Sample ID      | Sample Date | Units | Th_232_Gamma_Spec |
|----------------|-------------|-------|-------------------|
| NB-41-13-SL    | 6/11/2004   | pCi/g | 0.425             |
| NB-41-19-SL    | 6/11/2004   | pCi/g | 0.253             |
| NB-42-05-SL    | 6/11/2004   | pCi/g | 0.526             |
| NB-42-13-SL    | 6/11/2004   | pCi/g | 0.358             |
| NB-42-23-SL    | 6/11/2004   | pCi/g | 0.208             |
| NB-43-05-SL    | 6/11/2004   | pCi/g | 0.638             |
| NB-43-13-SL    | 6/11/2004   | pCi/g | 0.117             |
| NB-44-05-SL    | 6/11/2004   | pCi/g | 0.363             |
| NB-44-05-SL-FD | 6/11/2004   | pCi/g | -0.00504          |
| NB-44-11-SL    | 6/11/2004   | pCi/g | 0.308             |
| NB-44-18-SL    | 6/11/2004   | pCi/g | 0.537             |
| NB-45-05-SL    | 6/16/2004   | pCi/g | 1.3               |
| NB-45-05-SL-FD | 6/16/2004   | pCi/g | 1.34              |
| NB-45-13-SL    | 6/16/2004   | pCi/g | 1.01              |
| NB-45-25-SL    | 6/16/2004   | pCi/g | 1.18              |
| NB-45-33-SL    | 6/16/2004   | pCi/g | 0.377             |
| NB-46-09-SL    | 6/15/2004   | pCi/g | 1.07              |
| NB-46-17-SL    | 6/15/2004   | pCi/g | 0.824             |
| NB-46-25-SL    | 6/15/2004   | pCi/g | 0.816             |
| NB-46-29-SL    | 6/15/2004   | pCi/g | 0.913             |
| NB-62-05-SL    | 7/2/2004    | pCi/g | 0.859             |
| NB-62-12-SL    | 7/2/2004    | pCi/g | 0.103             |
| NB-62-22-SL    | 7/2/2004    | pCi/g | -0.0536           |
| NB-63-05-SL    | 7/13/2004   | pCi/g | 0.992             |
| NB-63-13-SL    | 7/13/2004   | pCi/g | 0.595             |
| NB-63-19-SL    | 7/13/2004   | pCi/g | 0.258             |
| NB-64-05-SL    | 7/12/2004   | pCi/g | 0.854             |
| NB-64-13-SL    | 7/12/2004   | pCi/g | 0.343             |
| NB-64-17-SL    | 7/12/2004   | pCi/g | 0.257             |
| NB-65-05-SL    | 7/12/2004   | pCi/g | 0.692             |
| NB-65-13-SL    | 7/12/2004   | pCi/g | 0.66              |
| NB-65-17-SL    | 7/12/2004   | pCi/g | 0.54              |
| NB-66-05-SL    | 7/13/2004   | pCi/g | 0.024             |
| NB-66-05-SL-FD | 7/13/2004   | pCi/g | 1.45              |
| NB-66-15-SL    | 7/13/2004   | pCi/g | 1.42              |
| NB-66-19-SL    | 7/13/2004   | pCi/g | 0.377             |
| NB-67-05-SL    | 7/13/2004   | pCi/g | 0.865             |
| NB-67-11-SL    | 7/13/2004   | pCi/g | 0.399             |
| NB-67-21-SL    | 7/13/2004   | pCi/g | 0.404             |
| NB-68-05-SL    | 7/14/2004   | pCi/g | 1.23              |

Non-Impacted Th-232 via Gamma Spectroscopy

| Sample ID      | Sample Date | Units | Th_232_Gamma_Spec |
|----------------|-------------|-------|-------------------|
| NB-68-13-SL    | 7/14/2004   | pCi/g | 1.23              |
| NB-68-17-SL    | 7/14/2004   | pCi/g | 1.06              |
| NB-68-25-SL    | 7/14/2004   | pCi/g | 1.62              |
| NB-68-33-SL    | 7/14/2004   | pCi/g | 0.142             |
| NB-69-05-SL    | 7/14/2004   | pCi/g | 0.708             |
| NB-69-15-SL    | 7/14/2004   | pCi/g | 0.651             |
| NB-69-22-SL    | 7/14/2004   | pCi/g | 1.04              |
| NB-69-34-SL    | 7/14/2004   | pCi/g | 0.627             |
| NB-70-05-SL    | 7/14/2004   | pCi/g | 1.28              |
| NB-70-15-SL    | 7/14/2004   | pCi/g | 1.3               |
| NB-70-23-SL    | 7/14/2004   | pCi/g | 0.883             |
| NB-70-33-SL    | 7/14/2004   | pCi/g | 0.793             |
| NB-71-01-SL    | 7/15/2004   | pCi/g | 0.846             |
| NB-71-01-SL-FD | 7/15/2004   | pCi/g | 0.974             |
| NB-71-11-SL    | 7/15/2004   | pCi/g | 1.47              |
| NB-71-27-SL    | 7/15/2004   | pCi/g | 0.574             |
| NB-72-05-SL    | 7/15/2004   | pCi/g | 0.65              |
| NB-72-11-SL    | 7/15/2004   | pCi/g | 0.261             |
| NB-72-19-SL    | 7/15/2004   | pCi/g | 0.342             |
| NB-72-22-SL    | 7/15/2004   | pCi/g | 0.35              |
| NB-73-05-SL    | 7/15/2004   | pCi/g | 0.304             |
| NB-73-13-SL    | 7/15/2004   | pCi/g | 0.0204            |
| NB-73-23-SL    | 7/15/2004   | pCi/g | 0.0184            |
| NB-75-08-SL    | 7/19/2004   | pCi/g | 0.852             |
| NB-75-15-SL    | 7/19/2004   | pCi/g | 0.647             |
| NB-75-19-SL    | 7/19/2004   | pCi/g | 0.216             |
| NB-76-06-SL    | 7/21/2004   | pCi/g | -0.0767           |
| NB-76-10-SL    | 7/21/2004   | pCi/g | -0.0347           |
| NB-76-24-SL    | 7/21/2004   | pCi/g | 0.218             |
| NB-77-05-SL    | 7/21/2004   | pCi/g | 0.376             |
| NB-77-13-SL    | 7/21/2004   | pCi/g | 0.205             |
| NB-77-24-SL    | 7/21/2004   | pCi/g | 0.14              |
| NB-78-07-SL    | 7/21/2004   | pCi/g | 0.94              |
| NB-78-11-SL    | 7/21/2004   | pCi/g | 0.533             |
| NB-78-18-SL    | 7/21/2004   | pCi/g | 0.74              |
| NB-81-09-SL    | 7/26/2004   | pCi/g | 0.828             |
| NB-81-11-SL    | 7/26/2004   | pCi/g | 1.03              |
| NB-81-31-SL    | 7/26/2004   | pCi/g | 0.374             |
| NB-82-05-SL    | 7/27/2004   | pCi/g | 0.865             |
| NB-82-11-SL    | 7/27/2004   | pCi/g | 0.109             |

Non-Impacted Th-232 via Gamma Spectroscopy

| Sample ID     | Sample_Date | Units | Th_232_Gamma_Spec |
|---------------|-------------|-------|-------------------|
| NB-82-20-SL   | 7/27/2004   | pCi/g | 0.0776            |
| NB-83-05-SL   | 7/27/2004   | pCi/g | 1.4               |
| NB-83-11-SL   | 7/27/2004   | pCi/g | 0.185             |
| NB-83-23-SL   | 7/27/2004   | pCi/g | -0.0743           |
| NB-84-05-SL   | 7/28/2004   | pCi/g | 0.0546            |
| NB-84-15-SL   | 7/28/2004   | pCi/g | 0.573             |
| NB-84-23-SL   | 7/28/2004   | pCi/g | 0.304             |
| NB-84-33-SL   | 7/28/2004   | pCi/g | 0.432             |
| NB-85-05-SL   | 8/24/2004   | pCi/g | 0.607             |
| NB-85-15-SL   | 8/24/2004   | pCi/g | 1.1               |
| NB-85-25-SL   | 8/24/2004   | pCi/g | 1.33              |
| NB-85-35-SL   | 8/24/2004   | pCi/g | -0.0859           |
| NB-86-05-SL   | 8/24/2004   | pCi/g | 0.443             |
| NB-86-15-SL   | 8/24/2004   | pCi/g | 1.35              |
| NB-86-19-SL   | 8/24/2004   | pCi/g | 0.425             |
| NB-87-18-SL   | 11/9/2007   | pCi/g | 0.83              |
| NB-87-4.5-SL  | 11/9/2007   | pCi/g | 0.6               |
| NB-90-11.5-SL | 11/9/2007   | pCi/g | 0.97              |
| NB-90-4.5-SL  | 11/9/2007   | pCi/g | 0.75              |
| NB-92-11-SL   | 11/9/2007   | pCi/g | 1.28              |
| NB-92-4.5-SL  | 11/9/2007   | pCi/g | 0.58              |
| NB-94-15-SL   | 11/9/2007   | pCi/g | 0.86              |
| NB-94-4.5-SL  | 11/9/2007   | pCi/g | 0.64              |
| NB-95-16.5-SL | 11/9/2007   | pCi/g | 1.16              |
| NB-95-4.5-SL  | 11/9/2007   | pCi/g | 0.91              |
| NB-99-13-SL   | 11/9/2007   | pCi/g | 1.13              |
| NB-99-4.5-SL  | 11/9/2007   | pCi/g | 0.48              |

Attachment 4 to HEM-11-91 Page 134 of 139 & RESRAD Pages

Th-232 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| Th-232 GS BKG | <b>Th-232 GS NI</b> |
|---------------|---------------------|
| 0.53          | -0.0859             |
| 0.532         | -0.0767             |
| 0.68          | -0.0743             |
| 0.758         | -0.0536             |
| 0.767         | -0.0347             |
| 0.774         | -0.00504            |
| 0.802         | 0.0184              |
| 0.806         | 0.0204              |
| 0.814         | 0.024               |
| 0.82          | 0.05                |
| 0.834         | 0.05                |
| 0.877         | 0.0546              |
| 0.931         | 0.0776              |
| 0.978         | 0.08                |
| 0.997         | 0.103               |
| 1             | 0.109               |
| 1.01          | 0.117               |
| 1.04          | 0.12                |
| 1.14          | 0.121               |
| 1.17          | 0.134               |
| 1.17          | 0.14                |
| 1.17          | 0.14                |
| 1.18          | 0.142               |
| 1.19          | 0.185               |
| 1.38          | 0.205               |
| 1.38          | 0.208               |
| 1.43          | 0.216               |
| 1.43          | 0.218               |
| 1.46          | 0.226               |
| 1.49          | 0.253               |
| 1.55          | 0.257               |
| 1.83          | 0.258               |
|               | 0.261               |
|               | 0.304               |
|               | 0.304               |
|               | 0.308               |
|               | 0.32                |
|               | 0.327               |

0.331 0.342 0.343 0.345

Attachment 4 to HEM-11-91 Page 135 of 139 & RESRAD Pages

Th-232 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

Th-232 GS BKG Th-232 GS NI 0.35 0.358 0.363 0.374 0.376 0.377 0.377 0.384 0.399 0.401 0.404 0.42 0.425 0.425 0.432 0.443 0.478 0.48 0.509 0.526 0.533 0.537 0.54 0.546 0.573 0.574 0.579 0.58 0.584 0.595 0.6 0.607 0.627 0.632 0.632 0.638 0.64 0.647 0.65 0.651 0.66 0.682

Attachment 4 to HEM-11-91 Page 136 of 139 & RESRAD Pages

Th-232 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

Th-232 GS BKG Th-232 GS NI 0.682 0.69 0.692 0.694 0.708 0.711 0.719 0.726 0.735 0.74 0.742 0.743 0.75 0.771 0.774 0.784 0.791 0.793 0.807 0.816 0.818 0.82 0.824 0.828 0.83 0.846 0.846 0.852 0.854 0.854 0.859 0.86 0.862 0.865 0.865 0.875 0.878 0.883 0.89 0.906 0.91 0.913

Attachment 4 to HEM-11-91 Page 137 of 139 & RESRAD Pages

Th-232 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| Th-232 GS BKG  |              |  |
|----------------|--------------|--|
| 111-232 GS DKG | 0.915        |  |
|                | 0.919        |  |
|                | 0.94         |  |
|                | 0.95         |  |
|                | 0.951        |  |
|                | 0.959        |  |
|                | 0.96         |  |
|                | 0.962        |  |
|                | 0.97         |  |
|                | 0.974        |  |
|                | 0.987        |  |
|                | 0.99         |  |
|                | 0.99         |  |
|                | 0.992        |  |
|                | 0.993        |  |
|                | 0.996<br>1   |  |
|                | 1            |  |
|                | 1.01         |  |
|                | 1.02         |  |
|                | 1.03         |  |
|                | 1.04         |  |
|                | 1.06         |  |
|                | 1.06         |  |
|                | 1.07         |  |
|                | 1.07         |  |
|                | 1.07         |  |
|                | 1.07         |  |
|                | 1.09         |  |
|                | 1.1          |  |
|                | 1.12<br>1.12 |  |
|                | 1.12         |  |
|                | 1.15         |  |
|                | 1.16         |  |
|                | 1.17         |  |
|                | 1.18         |  |
|                | 1.2          |  |
|                | 1.21         |  |
|                | 1.23         |  |
|                | 1.23         |  |
|                | 1.28         |  |

Attachment 4 to HEM-11-91 Page 138 of 139 & RESRAD Pages

Th-232 Bkgrd & non-impacted Data for ProUCL.xls DRAFT

| Th-232 GS BKG | Th-232 GS NI |
|---------------|--------------|
|               | 1.28         |
|               | 1.3          |
|               | 1.3          |
|               | 1.33         |
|               | 1.33         |
|               | 1.33         |
|               | 1.34         |
|               | 1.35         |
|               | 1.37         |
|               | 1.37         |
|               | 1.4          |
|               | 1.41         |
|               | 1.42         |
|               | 1.45         |
|               | 1.46         |
|               | 1.47         |
|               | 1.49         |
|               | 1.5          |
|               | 1.62         |
|               |              |

## Appendix N. RESRAD Print-outs

Since there are nearly 3000 pages of RESRAD print-outs, they have not been placed directly into this file. The file with these RESRAD printouts will be submitted to NRC via Electronic Information Exchange as a multi-part bundle set of file documents with letter HEM-11-91.

# **ATTACHMENT 5**

# Draft Supplemental Response to NRC Requests for Additional Information on Decommissioning Plan Chapter 8

Westinghouse Electric Company LLC, Hematite Decommissioning Project

Docket No. 070-00036

© 2011 Westinghouse Electric Company LLC All Rights Reserved

| RAI<br>No. | Issues                                                                | Path Forward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Discussion Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |
|------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 8-2a       | Disposal of resin                                                     | Clarify how the resin will be disposed of and the<br>amount expected to be disposed.<br>If NCS is a potential concern, then it would seem<br>appropriate to be monitoring the resin content prior to<br>the time of transport of the resin. Periodic sampling<br>and analysis of the resin would seem appropriate.<br>Also, it does not seem appropriate to develop a<br>disposition plan after it is determined that NCS controls<br>are required. Rather such a plan should be in place<br>prior to the system operating.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | During Water Treatment System (WTS) operation a weekly survey and/or sampling is performed of the ion exchange beds to determine the amount of U-235 loading. Surveys and/or sampling are also performed prior to clean out of ion exchange beds. The sample or survey results are used to determine whether NCS controls are required or not, and to determine the actions that are required to prepare the resin for disposal Site requirements for NCS during handling are in place for either situation. For example, resin that does not require NCS controls will be transferred to the material loading pad for disposition. Resin requiring NCS controls will be recovered into a collared drum, transferred to the Waste Evaluation Area and/or Material Assay Area for radiological assay. Based on assay data, the requirements to ensure NCS will be prepared for disposal under a pre-existing disposition plan.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Westin<br>inform<br>require |
|            |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The system as designed has two ion columns, both containing ~2000 lbs (or ~45 ft3) of Type 1<br>Resin. It is expected that the resin installed in these columns will not become depleted by HDP<br>activities and should last the lifetime of the project (nominally 2+ years). Subsequently,<br>Westinghouse anticipates that ~4,000 lbs of radiologically contaminated resin from this system will<br>be disposed of as Class A radioactive waste.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| 8-2b       | Expected<br>Decontamination<br>Factors for Uranium<br>and Technetium. | <ul> <li>Provide the range of removal efficiencies possible.</li> <li>Provide information on how the HDP process is comparable to the experimental conditions cited.</li> <li>Provide information on the initiating parameter or condition which will result in the replacement of the resin.</li> <li>Since only a removal efficiency of up to 99% can be claimed for Tc-99 then similarly, only a DF of up to 100 can be claimed.</li> <li>Why is there a discussion about continuous discharge?</li> <li>Previous discussions had indicated that such discharges would only occur during the 25 year rainfall event. Is there now a plan for continuous releases from the WTS?</li> <li>It is stated under Resin Replacement that the removal efficiency of the WTS will be monitored in accordance with the EEMP. Where in the EEMP is this commitment?</li> <li>Also under Resin Replacement, it would also seem appropriate for HDP management to monitor the resin for NCS concerns based upon the response to 2a.</li> <li>Was the previous statement under Resin Replacement that "the removal efficiency of the WTS will be monitored in accordance with the EEMP is the removal efficiency of the WTS will be monitor the resin for NCS concerns based upon the response to 2a.</li> </ul> | Removal Efficiencies. HDP reviewed available documentation that considered historical efficiencies of comparable systems in similar environments to determine the removal efficiencies for Waste Water Treatment System (WTS). From this documentation, the removal efficiencies for U-235 and U-238 range from 99.27% to 99.94%, with an average of 99.8%. For Tc-99 this documentation states "demonstrated effectiveness at Tc-99 removal (up to 99%)" without a range. These removal efficiencies would produce expected decontamination factors of approximately 500 for U-235 and U-238, and 99 for Tc-99. Once operational, actual decontamination factors based upon laboratory analytical data will be determined for this system. (Note: There was a misunderstanding on sampling of WTS discharges. Westinghouse's plan has always been to sample batches prior to batch discharge or to continuously sample, via composite sampler, continuous discharges. There was not an intention to limit continuous discharges to the 25 year rainfall event.) Design Conditions. The capacity of the WTS (including the holding tanks) should accommodate a hypothetical condition involving 5.5 inches of rain within a 24-hr period, assuming collection of 75% of the water over a 2-acre excavation. This design is based on the 25 year rain event, which is a common design practice for short duration projects (less than 5 years). The 2 acre assumption is based on a conservative estimate of the largest open excavation that may be present in the burial pit area at any given time. This capacity does not include the volume of water that could be temporarily retained in these columns will not become depleted by HDP activities and should last the lifetime of the project (nominally 2+ years). HDP management will monitor the decontamination factor for the system to determine the removal efficiency of the system site the lifetime of the project (nominally 2+ years). HDP management will monitor the decontamination factor for the system to determine when resin replacement is necessar | 7                           |

# **Proposed Resolution**

stinghouse has provided the requested clarifying ormation in the Discussion Points. No further action uired.

stinghouse has provided the requested clarifying prmation in the Discussion Points. No further action uired.

| RAI<br>No. | Issues                                      | Path Forward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Discussion Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                         |
|------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
|            |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | determine whether NCS controls are required or not during media change out.<br>The previous statement "the removal efficiency of the WTS will be monitored in accordance with the EEMP" required revision since the EEMP did not specifically address how to monitor the removal efficiency.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                         |
| 8-2c       | Batch sampling versus<br>composite sampling | Modify the DP and the response to the RAI to indicate<br>that prior to a batch release, a batch sample will be<br>taken and analyzed prior to the release of the batch tank<br>contents. Also, modify both the RAI and the DP to<br>indicate that a continuous composite sample will be<br>obtained from continuous releases and the effluent line.<br>Is the Westinghouse commitment to Revision 2 of RG<br>4.16? There is no Reference 11-7 in the DP.<br>WEC's proposal to have continuous releases following<br>a period of operational experience with only a grab<br>sample of the release and laboratory analysis of the<br>sample occurring later has questionable merit. Such an<br>approach is for situations where the process is well<br>defined and effluents show consistency in quantities<br>and types of radionuclides. The WTS is handling<br>liquids extracted from the burial pits. It is very | of WTS effluent, Westinghouse and NRC are assured of having the data to determine whether<br>effluent limits and ALARA considerations are followed. This Regulatory Guide states the<br>following:<br>Representative samples should be collected at each liquid release point for the subsequent<br>determination of the quantities and average concentrations of radionuclides discharged in<br>any liquid effluents that could reach an unrestricted area, including discharges to a sanitary<br>sewerage system. For continuous releases, representative samples should be continually<br>collected at each release point. For batch releases, a representative sample of each batch<br>should be collected                                                        | DP Se<br>Nucle<br>"Mon<br>Radio<br>from I<br>Urani<br>Decer<br>Westi<br>11.2.3<br>the las<br>Westi<br>T<br>co<br>w<br>e |
|            |                                             | uncertain that each of the pits will have the<br>homogenous nature that WEC is suggesting.<br>There is no March 1987 version of RG 4.16. Rev 2 is<br>December 2010 and Rev 1 is December 1985.<br>RG 4.16 was developed for operating facilities with<br>processes which have some consistency in effluents.<br>The decommissioning effort at Hematite involves the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>chese samples are representative of actual releases. For the purposes of this guide, a liquid effluent release is significant if the concentration averaged over a calendar quarter is equal to 10% or more of the appropriate concentration listed in Table II of Appendix B to 10 CFR Part 20.</li> <li>The sampling program should be sufficient to permit a determination of the quantities of radionuclides and the average concentration of radio nuclides being discharged from the plant. The sampling rate at each release point should be such that a representative sample of the effluent is collected. The volumes of liquid effluents should be reported so the NRC staff can calculate the quantities of radionuclides discharged.</li> </ul> | Common R<br>R<br>S<br>Common Common<br>the<br>and<br>d<br>and                                                           |
|            |                                             | remediation of burial pit material which may have<br>varying liquid and gaseous constituents. Therefore,<br>some of the guidance in RG 4.16 may not apply since<br>the streams may not have the homogeneity that is<br>assumed by the RG. Therefore, reductions in sampling<br>and analysis of effluents are only appropriate when it is<br>demonstrated a consistent makeup of the material being<br>processed and discharged.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Westinghouse considers that the timing of sample results with respect to the timing of the releases, as discussed in the proposed resolution, is not inconsistent with Regulatory Guide 4.16 since the guidance does not indicate that the data obtained from laboratory analysis must in all cases be evaluated prior to discharge. This preceding statement is not intended to discount Westinghouse's obligations for meeting the release limits and following ALARA. Rather, that statement is meant to                                                                                                                                                                                                                                                           | fi<br>c<br>re<br>o                                                                                                      |
|            |                                             | The utilization of the results of batch sampling and<br>analysis as a basis for justifying operation of the waste<br>treatment system in a continuous release mode is<br>curious. The results of the batch sample and analysis<br>only demonstrate whether, for the previous operation,<br>sufficient treatment has occurred to permit the release<br>of the material. It is not a demonstration of the waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Regulatory Guide 4.16 also discusses more frequent sample analysis where consistency of radionuclide composition may not be predictable, as follows:<br>Radionuclide analyses should be made more often (1) at the beginning of the monitoring program until a predictable radio nuclide composition of effluents is established, (2) whenever there is a significant unexplained increase in gross radioactivity, or (3) whenever a process change or other circumstance might cause a significant variation in the radionuclide                                                                                                                                                                                                                                     | •                                                                                                                       |

#### **Proposed Resolution**

Section 11.4 will be revised to add: "11-6 <u>U.S.</u> lear Regulatory Commission Regulatory Guide 4.16, nitoring and Reporting Radioactivity in Releases of loactive Materials in Liquid and Gaseous Effluents a Nuclear Fuel Processing and Fabrication Plants and nium Hexafluoride Production Plants," Revision 1, ember 1985.

tinghouse will revise the last paragraph in Section .3.4.of DP Chapter 11, which also revises the second to ast paragraph of the response to the RAI HDP-8-Q2 in tinghouse letter HEM-10-137, to read as follows:

To accurately measure and report the concentration in effluent releases, Westinghouse will collect representative samples of the WTS effluent to determine the quantities and average concentrations of radionuclides discharged using methods based on Regulatory Guide 4.16, Revision 1, December 1985. (Reference 11-7).

Specifically, representative samples will be collected of the liquid release from the WTS for the subsequent determination of the quantities and average concentrations of radionuclides discharged in any liquid effluents that could reach an unrestricted area. For continuous releases from the WTS, representative samples will be continually collected from the release. For batch releases from the WTS, a representative sample of each batch will be collected.

- Batch sampling: Prior to discharge of the liquid effluent a sample is obtained from the WTS tank. The sample, or portion of it, is analyzed on-site and/or sent for laboratory analysis.
- Continuous sampling: During continuous discharge of the liquid effluent a composite sampler is used to obtain a sample that is

| RAI<br>No. | Issues                                                                              | Path Forward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Discussion Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
|            |                                                                                     | treatment system's capability while operating in a<br>continuous mode of operation. There are a number of<br>reasons why this is so. For one, resin removal<br>capability will become exhausted (reduced) with time<br>as material is treated. Another is that resin regeneration<br>may not be equally effective due to the chemical and<br>physical qualities and attributes of the material which<br>has been treated. Third, the effectiveness of the<br>treatment system may be a function of the physical and<br>chemical characteristics of the material being treated.<br>No discussion has been provided which describes<br>actions taken to ensure that these characteristics are<br>consistent. | composition.<br>As an additional confirmation on the predictability of the WTS effluent given the nature of<br>remediation work, a daily grab sample will be taken during WTS continuous discharge and analyzed<br>for gross alpha and gross beta radioactivity to ensure there is not an elevated result requiring<br>attention prior to the more detailed results of the weekly composite sample.<br>Resin will be replaced, not regenerated.                                                                                                                                                                                                  |                        |
| 8-3a       | Reapplication of<br>fixatives to slabs to<br>ensure sufficient<br>protective layer. | Provide the criteria for applying additional fixative as<br>the demolition process proceeds and surfaces are no<br>longer subject to disturbance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Westinghouse believes that the fourth bullet in the response to RAI HDP-8-Q3 (HEM-10-137) contained the requested criteria, as follows:<br>"Post-demolition, if routine surveys determine that removable activity is greater than 200 dpm/100 cm2 for either alpha or beta contamination, decontamination activities and application of additional fixative will occur to maintain removable contamination below acceptable levels."<br>During the demolition process, the area will be posted as a contaminated area and a combination of professional judgment using visual observations and radiological survey results (increasing levels of | West<br>infor<br>requi |
| 8-3b       | Collection of surface<br>run-off & run-on & its<br>treatment.                       | Describe the manner for the collection & treatment of<br>run-off & run-on so as to prevent the spread of<br>contamination and how the water will be handled,<br>sampled, and analyses performed on it.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | loose surface contamination) will be used to determine if the application of additional fixative is necessary during demolition.<br>The perimeter of contaminated areas will be sloped inward or curbed to contain and direct potentially contaminated surface water to sumps or other low-lying areas that will be used as collection points within the contaminated area. All impacted water encountered during the remedial actions will be sampled and discharged providing effluent release criteria are met with due                                                                                                                       | The f<br>8.6:<br>T     |
|            |                                                                                     | RAI response addressed the containment, monitoring,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | consideration of maintaining release concentrations ALARA, or will be collected and processed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ir<br>co               |

#### **Proposed Resolution**

representative of the effluent and proportional to the volume of the discharge over time. During WTS operations involving continuous releases, this sample will be submitted for laboratory analysis on a weekly frequency. In addition, a daily grab sample will be taken during WTS continuous discharges and analyzed for gross alpha and gross beta radioactivity to ensure the WTS is operating as expected.

Batch sampling will be the primary sampling method during the initial operational phase of the WTS while its performance characteristics (e.g., decontamination factors) are being established. This will allow the retention of effluent until sample results are obtained for comparison against release limits and ALARA goals.

Continuous sampling will be the primary sampling method once batch sampling has demonstrated that the WTS system performs in a consistent manner and produces liquid effluent of known quality even when challenged by a range of concentrations. This is a reasonable approach for potentially variable influent concentrations based on a large decontamination factor that will be validated during initial system operation.

estinghouse has provided the requested clarifying formation in the Discussion Points. No further action juired.

e following text will be added to the end of DP Section

The perimeter of contaminated areas will be sloped inward or curbed to contain and direct potentially contaminated surface water to sumps or other low-

| RAI<br>No. Issue | 5                                                                                                                                                                                                 | Path Forward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Discussion Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                        |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | remed<br>surfac<br>ditche<br>surfac<br>found<br>durin<br>by "to<br>The a<br>shoul<br>What<br>remed<br>Westi<br>avera<br>freque<br>assoc<br>was u<br>value<br>itself,<br>be ind<br>freque<br>assoc | controlling of contamination associated with soil<br>diation activities from surface water run-off, and<br>ice water run-on using berms, temporary drainage<br>ees and silt fences. The discussion points address<br>ice water run-off when building slabs and<br>dations are undergoing demolition. What about<br>goil remediation activities? Also, what is meant<br>to the extent practicable"?<br>additional information in the discussion points<br>ld be put in the DP.<br>t is the risk of a 10-year rainfall occurring during<br>diation?<br>inghouse has based their drain design on an<br>age reoccurrence event of once in 10 years. This<br>ency of occurrence and the amount of rainfall<br>cited with the event is based upon the area which<br>attilized to determine the 10 year value. If the<br>e was not based upon data from the Hematite site<br>7, the amount of rainfall and the frequency may not<br>dicative of the Hematite site. Considering the<br>tency of thunderstorms in the Hematite area, the<br>attil for the decommissioning process to extend for<br>er than two years, and other site specific factors, it<br>d seem appropriate for Westinghouse to commit to<br>sessing the adequacy of the drain design as<br>mstances require. Presently, no such commitment<br>s. | through the Water Treatment System, as appropriate.<br>To reduce the amount of surface water run-on into contaminated areas (which would create additional water requiring collection and processing), diversion features (e.g., curbs) will be constructed at up gradient locations to direct precipitation around contaminated areas. Berms, either soil or other impermeable material, will be installed along the eastern side of the waste handling area to control suspended solids associated with sheet flow in this direction. The berm will be used to direct surface water flow to the french drain associated with the loading pad. Storm sewer inlets in the areas of active remediation will be protected with a combination of straw bales and/or silt fencing. Storm sever inlets may also be blocked with impermeable material (e.g., neoprenc/EDPM and balast material). Water collected will be pumped to the WTS, or discharged through a permitted outfall depending on the results of sample analysis. Batch sampling or composite sampling of the effluent will be performed.<br>The loading pad drain was designed for a 10-year rainfall for Jefferson County, MO, which is 5 inches in 24 hours per the U.S. Department of Agriculture's "Urban Hydrology for Small Watersheds," TR-55, June 1986. The applicable equation is $p_N = 1 - (1 - p)^N$ where N=2 (number of years for remediation from DP Figure 1-1) and p=1/10 (inverse of 10 year period of return). This risk is addressed in the proposed resolution. | lying<br>with<br>enco<br>samp<br>crite<br>main<br>be c<br>Trea<br>To r<br>cont<br>wate<br>featu<br>grad<br>cont<br>Spec<br>mate<br>the v<br>asso<br>bern<br>subs<br>drain<br>whice<br>now<br>drain<br>rain<br>the r<br>subs<br>limit<br>plan<br>remo<br>impa<br>In ac<br>prec<br>time<br>Stor<br>will<br>and/<br>bloc<br>neop<br>colle |

#### **Proposed Resolution**

ying areas that will be used as collection points within the contaminated area. All impacted water incountered during the remedial actions will be ampled and discharged providing effluent release riteria are met with due consideration of maintaining release concentrations ALARA, or will be collected and processed through the Water Creatment System, as appropriate.

To reduce the amount of surface water run-on into contaminated areas (which would create additional vater requiring collection and processing), diversion features (e.g., curbs) will be constructed at up gradient locations to direct precipitation around contaminated areas.

becifically, berms, either soil or other impermeable aterial, will be installed along the eastern side of waste handling area to control suspended solids sociated with sheet flow in this direction. The rm will be used to direct surface water flow to the bsurface drain at the loading pad. The subsurface ain discharges to the former evaporation pond, hich has been lined with impermeable material and w serves as a collection sump. The subsurface ain was designed to handle a nominal 10 year infall event. If a larger rainfall event occurs during remediation of the site, the area surrounding the bsurface drain would have minor ponding, but be nited to the impacted area of the site. This area is anned to be excavated near the end of the mediation work so remediated areas are not repacted by potentially contaminated surface water. addition, the drain design will be re-evaluated if ecipitation overwhelms the drain capacity three nes during remediation work.

Storm sewer inlets in the areas of active remediation will be protected with a combination of straw bales ind/or silt fencing. Storm sewer inlets may also be blocked with impermeable material (e.g., reoprene/EDPM and ballast material). Water ollected will be pumped to the WTS, or discharged hrough a permitted outfall depending on the results of sample analysis. Batch sampling or composite ampling of the effluent will be performed.

| RAI<br>No. | Issues                                                     | Path Forward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Discussion Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |
|------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 8-5a       | Change in approach<br>with respect to area<br>factors.     | Provide NRC with additional details on the revised<br>approach for area factors. This is an open item for<br>associated with RAI No. 9 of Chapter 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | The discussion regarding area factors in response to DP Chapter 5, RAI HDP-5-Q9, pertains to those derived using the DCGLs defined by the Excavation Conceptual Site Model (CSM) for soils greater than 1.5 meters below grade. Westinghouse is not proposing an alternate approach on the application of area factors. Area factors will be applied in accordance with DP Chapter 14, Section 14.4.5.6 which is based on Section 8.5.1 of NUREG-1575. Subsequently, if the Final Status Survey of the soils surrounding the natural gas line pipeline indicates the presence of residual radioactive material in excess of the Elevated Measurement Comparison using the approved area factors, then all necessary steps will be taken to remediate the elevated concentrations so that the survey unit complies with the unrestricted release criteria.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e Westi<br>inforr<br>requir |
| 8-5b       | Remediation/<br>excavation sampling<br>near pipeline.      | Provide additional information on how sampling will<br>be done in the vicinity of the pipeline.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The methods that will be used for soil sampling in the vicinity of the natural gas pipeline will use the same techniques as the balance of the site. (e.g., trowel, hand-auger, geo-probe,). Westinghouse has already used air-knife equipment to unearth and positively identify the precise location and depth of the natural gas pipeline based on visual identification at intervals of approximately 40 feet. The civil survey coordinates and the depth of the natural gas pipeline at each interval have been documented for future reference during excavation. Missouri Natural Gas will be contacted in advance of excavation and/or sampling with within five feet of the natural gas pipeline, and will prescribe any necessary precautions or controls.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |
| 8-6        | Basis for no<br>remediation of ground<br>or surface water. | <ul> <li>Will be reviewed as part of resolution associated with Chapters 1, 3 &amp; 4.</li> <li>The point in the first paragraph that if the soil meets the DCGL, then the groundwater will meet the 25 mrem limit is not entirely accurate. The water in the vicinity of soil that meets the DCGL will meet 25 mrem, but it is possible for there to be a plume that is deeper than the remediated soil that has a higher concentration</li> <li>It is still unclear as to whether Westinghouse has a mechanism for verifying that the above noted situation isn't present.</li> <li>It appears that Westinghouse does not intend to remediate the soil in the vicinity of the hybrid wells. This is surprising because it was the staff's observation that the source of the contamination in the hybrid well was the soil in the vicinity of it.</li> <li>With respect to the elevated activity observed in wells screened in the aquitard overburden that are located in impacted soil areas and that are not scheduled for remediation, if elevated activity in unremediated wells did increase rather than decrease, the dose impact represented by the residual activity represented by these wells may not be minimal as stated by Westinghouse.</li> <li>Agree that the "Evaluation of Tc-99 under the Process</li> </ul> | The dose modeling presented in DP Chapter 5 demonstrates that the residual radioactivity concentration in pore space water in soil that is less than DCGL is acceptable and by definition, if the soil meets the DCGL, there will not be groundwater activity concentrations in the future that will cause the 25 mrem/yr to be exceeded.<br>Any standing liquid from within the excavation (e.g., either draining from the contaminated soil during excavation, or from infiltration into the excavation) will be pumped from the excavation and treated and/or sampled prior to its release in accordance with NRC and MDNR effluent discharge requirements. Once remediated, the remaining soils will be surveyed to demonstrate compliance with the dose-based release criteria represented by the soils DCGLs. In addition to surface soil samples taken at grade and from the surface of the soil asposed by excavation, sub surface soil sampling will also be performed in open excavations and soil associated with hybrid wells that are not fully excavated in accordance with DP Chapter 14, Sections 14.4.1.6.2 and 14.4.3.5 (as revised by Westinghouse letter HEM-11-25). Westinghouse also understands that any elevated activity observed in wells screened in the aquitard overburden that are located in impacted soil areas that are not scheduled for remediation is due to the lateral transport of contaminated leachate through the overburden from the radioactive contaminated soil source. It is postulated that once the source of leachate contamination has been removed, the elevated activity observed in these wells will diminish. However, in the unlikely event that elevated activity represented by these wells is minimal as discussed below. As an illustration, Wells GW-NB31 and GW-PL06 represent wells screened in the aquitard overburden that are located in impacted soil areas. These wells are hybrid wells that monitor both the Silty Clay Aquitard HSU and the Sand/Gravel HSU. These wells are scheduled to be abandoned, but the surrounding soil is not scheduled for reme | Westi<br>requir             |

## **Proposed Resolution**

estinghouse has provided the requested clarifying formation in the Discussion Points. No further action puired.

estinghouse has provided the requested clarifying formation in the Discussion Points. No further action puired.

estinghouse has provided the requested clarifying ormation in the Discussion Points and the "Evaluation of -99 under the Process Buildings" submitted by estinghouse letter Hem-11-56. No further action juired.

| RAI<br>No. | Issues | Path Forward                                    | Discussion Points                                                                                                                                                                                                                                                          |                                       |                                       |                            |                                                        |                                                        |  |
|------------|--------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------|----------------------------|--------------------------------------------------------|--------------------------------------------------------|--|
|            |        | Buildings" addresses the 5/13 discussion above. | continue to be monitored. Wells GW-NB31 and GW-PL06 have consistently presented sample results showing elevated activity. The average and maximum radionuclide activity observed in these wells over the last eight calendar quarters is presented in the following table: |                                       |                                       |                            |                                                        |                                                        |  |
|            |        |                                                 | GW-N                                                                                                                                                                                                                                                                       | Average<br>Quarterly<br>Concentration | Maximum<br>Quarterly<br>Concentration | Dose to<br>Source<br>Ratio | Dose Based<br>on Average<br>Quarterly<br>Concentration | Dose Based<br>on Maximum<br>Quarterly<br>Concentration |  |
|            |        |                                                 |                                                                                                                                                                                                                                                                            | pCi/L                                 | pCi/L                                 | mrem/yr<br>per pCi/L       | mrem/yr                                                | mrem/yr                                                |  |
|            |        |                                                 | U-234                                                                                                                                                                                                                                                                      | 0.151                                 | 0.220                                 | 0.153                      | 0.023                                                  | 0.034                                                  |  |
|            |        |                                                 | U-235                                                                                                                                                                                                                                                                      | 0.012                                 | 0.044                                 | 0.145                      | 0.002                                                  | 0.006                                                  |  |
|            |        |                                                 | U-238                                                                                                                                                                                                                                                                      | 0.091                                 | 0.160                                 | 0.146                      | 0.013                                                  | 0.023                                                  |  |
|            |        |                                                 | Tc-99                                                                                                                                                                                                                                                                      | 126.725                               | 231.0                                 | 9.374E-04                  | 0.119                                                  | 0.217                                                  |  |
|            |        |                                                 | Total D                                                                                                                                                                                                                                                                    | ose                                   |                                       |                            | 0.157                                                  | 0.280                                                  |  |
|            |        |                                                 | GW-P                                                                                                                                                                                                                                                                       | L06                                   |                                       |                            |                                                        |                                                        |  |
|            |        |                                                 |                                                                                                                                                                                                                                                                            | Average<br>Quarterly<br>Concentration | Maximum<br>Quarterly<br>Concentration | Dose to<br>Source<br>Ratio | Dose Based<br>on Average<br>Quarterly<br>Concentration | Dose Based<br>on Maximum<br>Quarterly<br>Concentration |  |
|            |        |                                                 |                                                                                                                                                                                                                                                                            | pCi/L                                 | pCi/L                                 | mrem/yr<br>per pCi/L       | mrem/yr                                                | mrem/yr                                                |  |
|            |        |                                                 | U-234                                                                                                                                                                                                                                                                      | 0.293                                 | 1.630                                 | 0.153                      | 0.045                                                  | 0.250                                                  |  |
|            |        |                                                 | U-235                                                                                                                                                                                                                                                                      | 0.016                                 | 0.090                                 | 0.145                      | 0.002                                                  | 0.013                                                  |  |
|            |        |                                                 | U-238                                                                                                                                                                                                                                                                      | 0.221                                 | 1.220                                 | 0.146                      | 0.031                                                  | 0.178                                                  |  |
|            |        |                                                 | Tc-99                                                                                                                                                                                                                                                                      | 141.063                               | 170.0                                 | 9.374E-04                  | 0.132                                                  | 0.159                                                  |  |
|            |        |                                                 | Total D                                                                                                                                                                                                                                                                    | ose                                   | 1                                     | 1                          | 0.210                                                  | 0.600                                                  |  |

# **Proposed Resolution**

| RAI<br>No. | Issues                                         | Path Forward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Discussion Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                              |
|------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | To demonstrate the minimal impact on dose, a nominal dose check calculation was performed as if<br>the overburden water could be ingested, which it cannot since water in the aquitard overburden (clay<br>overburden and hybrid well screen) is considered leachate from precipitation and recharge<br>interaction with the contaminated soil and buried waste materials, as explained in detail in DP<br>Chapter 4, Section 4.5.3 and DP Chapter 5, Section 5.3.3.2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                              |
|            |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | This example calculation applies the dose-to-source ratios for groundwater presented in DP Table 5-<br>14 to the average leachate concentrations for each radionuclide of concern as if the leachate were<br>groundwater. The calculation for water from these two monitoring wells results in a dose of 0.157<br>mrem/yr and 0.210 mrem/yr using the average radionuclide concentration and a dose of 0.280<br>mrem/yr and 0.600 mrem/yr using the maximum observed radionuclide concentrations. The<br>theoretical dose impact from the elevated leachate is minimal and less than the current EPA<br>radionuclide standards for drinking water.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                              |
| 8-10a      | Control of<br>contamination on<br>loading pad. | Provide a description of the manner to be utilized to<br>prevent the spread of contamination from wind and<br>precipitation.<br>Doesn't the area in the vicinity of the loading pad have<br>some contamination? Therefore, isn't essential that the<br>run-off and surface water are directed to the drain for<br>collection? Even if there is not contamination in the<br>vicinity of the loading pad, , shouldn't berms be in<br>place at the beginning of the operations to direct run-<br>off and surface water from the loading pad to the drain?<br>Does the drain have adequate capability to handle a 5<br>yr, 10yr or 25 yr rainfall? As noted above, it would<br>seem appropriate that such diversions be in place prior<br>to decommissioning starting. | With respect to wind.The primary method that will be employed to prevent the spread of<br>contamination during material handling will be the use of water mist. After application of water<br>mist, temporary stockpiles (e.g., those that remain until the next workday) may also be tamped using<br>the flat side of the excavator bucket or similar piece of heavy equipment to consolidate the surface<br>of the material thus reducing the potential for erosion. Additives may also be added with the water<br>mist that form a thin crust-like layer, (e.g., a dilute non-hazardous adhesive), or those that posses<br>hygroscopic properties to sustain the effectiveness of water application. (e.g., calcium chloride).To gauge the effectiveness of contamination control measures, the results of general area and<br>breathing zone air samplers will be evaluated to identify outliers or trends in concentration that<br>suggest appropriate actions be taken to mitigate airborne radioactivity.With respect to precipitation:A subsurface drain has been installed to collect surface water and<br>runoff from the loading pad.The subsurface drain was designed to handle a nominal 10 year rainfall<br>event.If a larger rainfall event occurs during the remediation of the site, the area surrounding the<br>subsurface drain would have minor ponding, but be limited to the impacted area of the site. This<br>area is planned to be excavated near the end of the remediation activities commencing, best<br>management practices (BMPs), including additional berms, will be implemented to improve the<br>direction of flow into this drain.During the contractor mobilization and prior to remediation activities context on pond,<br>which has been lined with impermeable material and now serves as a collection sump. Water<br>collected here will be sampled and discharged providing effluent release criteria are met with due<br>consideration of maint | The f<br>will b<br>With<br>the will<br>preve<br>handl<br>water<br>until t<br>side o<br>equip<br>reduc<br>added<br>(e.g.,<br>hygro<br>applic<br>effect<br>of ger<br>evalue<br>sugge<br>radioa |
| 8-10b      | Surface water barriers                         | Provide a description of the surface water barriers to be<br>provided for the waste consolidation area and the waste<br>holding area as the laydown area incorporates such<br>barriers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Erosion controls will be used in the laydown and waste staging areas.<br>In the laydown area, a combination of berms, silt fence, straw bales and/or waddles will be used<br>along the drainage channel to control sediment in stormwater runoff and to minimize soil erosion.<br>The stormwater will be direct to Outfall #006.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | West<br>inform<br>resolut                                                                                                                                                                    |
|            |                                                | As noted above, it would seem appropriate that the run-<br>off and surface water are directed to the drain.<br>Otherwise, contamination could be spread. It would                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | The waste handling and staging areas are adjacent to the loading pad. The BMPs, including additional berms, to be implemented for the loading pad will also divert water from the waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                              |

#### **Proposed Resolution**

e following new fourth paragraph of DP Section 8.4.3 l be added:

h respect to preventing the spread of contamination by wind, the primary method that will be employed to vent the spread of contamination during material dling will be the use of water mist. After application of ter mist, temporary stockpiles (e.g., those that remain il the next workday) may also be tamped using the flat e of the excavator bucket or similar piece of heavy ipment to consolidate the surface of the material thus ucing the potential for erosion. Additives may also be ed with the water mist that form a thin crust-like layer, , a dilute non-hazardous adhesive), or those that posses roscopic properties to sustain the effectiveness of water lication. (e.g., calcium chloride). To gauge the ectiveness of contamination control measures, the results general area and breathing zone air samplers will be luated to identify outliers or trends in concentration that gest appropriate actions be taken to mitigate airborne oactivity. With respect preventing the spread of tamination by precipitation, see Section 8.6.

stinghouse has provided the requested clarifying ormation in the Discussion Points and DP proposed olutions in rows 3b and 10a. No further action required.

| RAI<br>No. | Issues                                                   | Path Forward                                                                                                                                                                                                                                                                             | Discussion Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |
|------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|            |                                                          | seem appropriate that such diversions be in place prior<br>to decommissioning starting. Does the drain have<br>adequate capability to handle a 5 yr, 10yr or 25 yr<br>rainfall?                                                                                                          | staging area to the subsurface drain. The subsurface drain was designed to handle a nominal 10 year rainfall event. During the contractor mobilization and prior to remediation activities commencing, best management practices (BMPs), including additional berms, will be implemented to improve the direction of flow into this drain. The subsurface drain discharges to the former evaporation pond, which has been lined with impermeable material and now serves as a collection sump. Water collected here will be sampled and discharged providing effluent release criteria are met with due consideration of maintaining release concentrations ALARA, or will be collected and processed through the Water Treatment System as necessary. |                            |
| 8-10c      | Effluent Monitoring of<br>the Soil Treatment<br>Facility | Types & frequency of monitoring and the locations<br>needs to be provided. Reference may be made to the<br>appropriate Sections in Chapter 11 & in the Effluent &<br>Environmental Monitoring Plan if incorporated.<br>Agree that resolution will occur under RAI No.3 of<br>Chapter 12. | The treatment of effluent and the types, and the frequency and location of effluent monitoring of the soil treatment facility are being addressed in response to NRC comments on DP Chapter 12, RAI No. 3. This response was provided to NRC on 4/19/11, and was discussed with NRC on 4/20/11. Since the issue is already in discussions on this other RAI, duplication here is not necessary.                                                                                                                                                                                                                                                                                                                                                        | Resol<br>3, wil<br>requir  |
|            | Definition of NCS<br>exempt                              |                                                                                                                                                                                                                                                                                          | Westinghouse is modifying the previously submitted definition of "NCS-Exempt", replacing the words "Nuclear Criticality Safety Assessment (NCSA)" with the words, "nuclear criticality safety evaluation" to allow more flexibility in evaluation documentation when a formal NCSA is not otherwise warranted.                                                                                                                                                                                                                                                                                                                                                                                                                                         | Westi<br>Sectio            |
| 8-14       |                                                          |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | "Unle<br>critica<br>conset |
|            |                                                          |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | averag                     |
|            |                                                          |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | and is 5 liter             |

## **Proposed Resolution**

solution of NRC comments on DP Chapter 12, RAI No. will also resolve this comment. This comment does not uire its own resolution.

estinghouse will add the following definition to DP etions 8.5.2.1 and 10.9.2.1.1

Inless otherwise defined and justified within a nuclear ticality safety evaluation, NCS Exempt Material is nservatively defined as material containing  $^{235}$ U with an erage nuclide fissile concentration not exceeding 0.1 g U/L, or material that comprises no greater than 15 g $^{235}$ U d is enclosed within a container with a volume of at least iters."

# **ATTACHMENT 6**

# Draft Supplemental Response to NRC Requests for Additional Information on Decommissioning Plan Chapter 9

Westinghouse Electric Company LLC, Hematite Decommissioning Project

Docket No. 070-00036

© 2011 Westinghouse Electric Company LLC All Rights Reserved

| RAI<br>No. | Issues                                                                                                                                                                                                                                                                                                                                                                      | Path Forward                                                                                                                                                                                                                                                                                                                                                                                                                                              | Discussion Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pro                                                                                       |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 9-1        | We have an issue with<br>Westinghouse's response<br>dated 3/28/11 for<br>Chapter 9, Question 1.<br>After the qualification<br>table, it is stated<br>Westinghouse is going to<br>revise the NCS specialist<br>qualification to a BS in<br>science or engineering,<br>or equivalent with 1 year<br>experience in NCS OR a<br>BS in nuclear<br>engineering, or<br>equivalent. | In Westinghouse's RAI<br>response dated 1/28/11,<br>regarding the difference, if<br>any between an NCS<br>engineer and NCS specialist<br>(RAI # 11 for chapter 10),<br>the qualification was the<br>same except for 3 years<br>experience if the degree is in<br>science or engineering (vs. a<br>nuclear engineer).<br>We do not agree with the<br>March 28, 2011 revision. It<br>is unacceptable and left<br>unchanged will be stated so<br>in the SER. | Westinghouse will retain the requirement for 3 years of experience for the NCS Specialist.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The changes for the NCS Specialist qu<br>Westinghouse letter HEM-11-37, date<br>revision. |
| 9-3        | Management positions<br>meeting ANSI/ANS3.1-<br>1993. WEC indicating<br>that RG1.8 is NA for<br>Hematite. WEC QA<br>program not meeting<br>experience requirements<br>of ANSI/ASME NQA-1-<br>1983                                                                                                                                                                           | WEC needs to meet the<br>requirements of<br>ANSI/ANS3.1-1993 with<br>respect to management<br>positions, meet RG 1.8 and<br>meet the experience<br>requirements of ANSI/ASME<br>NQA-1-1983,                                                                                                                                                                                                                                                               | <ul> <li>ANSI/ANS-3.1-1993, "Selection, Qualification, and Training of Personnel for Nuclear Power Plants," provides criteria for the selection, qualification, and training of personnel for nuclear power plants. These criteria, with the following additions, exceptions, and clarifications, are acceptable to the NRC staff for complying with the qualifications and training requirements of 10 CFR Parts 50 and 55 and with the guidance regarding the shift technical advisor (STA) function provided in the Commission's "Policy Statement on Engineering Expertise on Shift."</li> <li>ANSI/ANS3.1 and NRC Regulatory Guide 1.8 are not included as guidance for the NRC</li> </ul> | The second bullet in the qualification<br>Officer will be revised to read, "At lea        |
|            |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Standard Review Plan for operating fuel cycle facilities; NUREG 1520, Revision 1, issued May of 2010 states:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                           |
|            |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                           | " 2.4.2 Regulatory Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                           |
|            |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                           | There are no regulatory guides specific to the organization and administration description of fuel cycle facilities."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                           |
|            |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Also neither document is included as guidance in NUREG 1757 for materials licensees in decommissioning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                           |
|            |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ANSI/ASME NQA-1 does not invoke the guidance of ANSI/ANS 3.1. Nor does it include management experience requirements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                           |

## Proposed Resolution

t qualifications identified to DP Section 10.9.1.1.2 in lated March 21, 2011, will not be made in the DP

on portion of DP Section 9.3.5 for the Radiation Safety least three years of work experience...."

| RAI<br>No. | Issues                       | Path Forward                                                                                                                                                                                                                                                                                                                       | Discussion Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pro                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                              |                                                                                                                                                                                                                                                                                                                                    | With respect to RAI HDP-9-Q3, the focus was on the RSO, and the RSO qualifications are substantially unchanged from the current NRC SNM-33 license. In response to RAI HDP-9-Q1 Westinghouse provided the following:                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                     |
|            |                              |                                                                                                                                                                                                                                                                                                                                    | "This section provides a description of the minimum qualifications and responsibilities of the key functional positions of Hematite Decommissioning Project Director and Radiation Safety Officer. Within 30 days after a change of any individual in one of these positions the licensee shall submit to the NRC written notification of the change. This notification shall include a summary of the new individual's experience and qualifications, and an evaluation that verifies that the individual's experience and qualifications meet the minimum requirements for the position." |                                                                                                                                                                                                                                                                                                                                                                                                     |
|            |                              |                                                                                                                                                                                                                                                                                                                                    | This requirement within the Decommissioning Plan provides the NRC the necessary information to determine if the RSO has met the education, experience and other qualification requirements.                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                     |
| 9-5        | Proposed revision to         | WEC to clarify process as to                                                                                                                                                                                                                                                                                                       | Differing terms were used even though the same concept was intended to be conveyed. In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The first paragraph of Section 9.1.2 w                                                                                                                                                                                                                                                                                                                                                              |
|            | Section 9.2.1 lacks clarity. | <ul> <li>who is the "responsible HDP manager", the "Supervisor or Manager responsible for the work" and the "responsible HDP Manager" in the proposed revision to Section 9.1.2.</li> <li>Proposed revision to DP Section 9.2.1 does not seem to clarify the stop work issue which needs clarification in Section 9.1.2</li> </ul> | <ul> <li>addition to the cited terms, the term "functional area manager" was also used in DP Chapter</li> <li>9. To improve clarity, the single term "functional area manager" will be used in DP Chapter</li> <li>9. The functional area manager is responsible for the organizational group that has the primary responsibility for a particular aspect of the work.</li> <li>The cited section in the Issue/comment and the path forward description led us to focus on Section 9.2.1. The change to Section 9.1.2 has been added to the Proposed Resolution.</li> </ul>                 | After a person declares Stop Work<br>work in a safe condition and stop w<br>informs the Supervisor or Manager<br>work (typically Operations or Proj-<br>or Manager informs the Project Dir<br>discipline (e.g., EH&S, NCS, radia<br>HDP Manager shall:<br>Section 9.2.1. will be revised as follow<br>"9.2.1 PROCEDURES<br>Decommissioning activities are ma<br>establish the constraints under whi |
|            |                              |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Protection Plan) will operate. Wor<br>the requirements of regulations and                                                                                                                                                                                                                                                                                                                           |
|            |                              |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Functional area managers are resp<br>program or plan. The functional a<br>other organizations impacted by th<br>them, and any revisions, before iss<br>following classifications of docum<br>management approvals indicated:                                                                                                                                                                        |
|            |                              |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Radiation Protection – Radiati                                                                                                                                                                                                                                                                                                                                                                      |
|            |                              |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • Environmental, Health and Sat                                                                                                                                                                                                                                                                                                                                                                     |
|            |                              |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Material Control and Account                                                                                                                                                                                                                                                                                                                                                                        |
|            |                              |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>Criticality Control – Criticality<br/>Director;</li> </ul>                                                                                                                                                                                                                                                                                                                                 |
|            |                              |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Waste Management – Waste M                                                                                                                                                                                                                                                                                                                                                                          |

### roposed Resolution

will be revised as follows:

rk, personnel in the area immediately put their o work. The individual declaring the Stop Work ger in the Department that has overall lead for the oject Engineering Departments). That Supervisor Director and the Manager of the appropriate safety diation safety) of the Stop Work. The responsible

ows:

managed through policies and procedures which hich a specific program or plan (e.g., Radiation York is accomplished by procedures that implement and License SNM-33 (Reference 9-1).

sponsible for the subject matter covered by a area manager is responsible for ensuring that the document are given the opportunity to review issuance. Prior to issuance or revision, the iments require the minimum functional d:

ation Protection and Project Director;

Safety – EH&S and Project Director;

nting (MC&A) – Licensing and Project Director;

ity Safety, Radiation Protection and Project

e Management, Radiation Protection and Project

| RAI<br>No. | Issues                                         | Path Forward                                                                                                                             | Discussion Points                                                                                                                                                                                                                                                                                                          | Pr                                                                                                                   |
|------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
|            |                                                |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                            | Director;                                                                                                            |
|            |                                                |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                            | • Quality Assurance – Quality                                                                                        |
|            |                                                |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                            | • Physical Security – Security,                                                                                      |
| 9-8a       | Operations functional<br>area manager training | Describe "Fissile Worker<br>Training" which is noted in<br>Section 10.9.2.1.                                                             | At the time of DP submittal "Fissile Worker Training" was required for personnel engaged in activities in which the job function required them to handle fissile material.                                                                                                                                                 | DP Chapter 10 section 10.9.1.2.1 NC as follows;                                                                      |
|            |                                                |                                                                                                                                          | Since the time of DP submittal, Westinghouse has enhanced training related to fissile material and developed training for three distinct levels of employees as follows:                                                                                                                                                   | "The NCS training shall be appropria<br>following three levels: Basic Concept                                        |
|            |                                                |                                                                                                                                          | General Employee Training for all workers contains instruction on the basic concepts of criticality control measures.                                                                                                                                                                                                      | Handler Training (FMHT); and Fissil<br>The Basic Concept training provided<br>all project personnel to ensure unders |
|            |                                                |                                                                                                                                          | The Fissile Material Handler Training (FMHT) training course is for Personnel at the project whose job function requires them to handle fissile material in quantities requiring Nuclear Criticality Safety control measures.                                                                                              | FMHT would be provided to Personn<br>handle fissile material in quantities re<br>FMTSM would be provided to Super-   |
|            |                                                |                                                                                                                                          | FMHT contains the following topics:                                                                                                                                                                                                                                                                                        | perform work and all persons involve<br>in quantities requiring Nuclear Critica                                      |
|            |                                                |                                                                                                                                          | Basic fundamentals of nuclear criticality                                                                                                                                                                                                                                                                                  | in quantities requiring reacted entity                                                                               |
|            |                                                |                                                                                                                                          | Key factors affecting criticality                                                                                                                                                                                                                                                                                          |                                                                                                                      |
|            |                                                |                                                                                                                                          | HDP Nuclear Criticality Safety Policies and Procedures                                                                                                                                                                                                                                                                     |                                                                                                                      |
|            |                                                |                                                                                                                                          | Utilization of "Double Contingency" principle for criticality control                                                                                                                                                                                                                                                      |                                                                                                                      |
|            |                                                |                                                                                                                                          | The Fissile Material Training for Supervisors and Managers (FMTSM) training course is for<br>Supervisors and Managers of personnel assigned to plan or perform work and all persons<br>involved in planning work associated with fissile materials in quantities requiring Nuclear<br>Criticality Safety control measures. |                                                                                                                      |
|            |                                                |                                                                                                                                          | FMTSM contains the following topics:                                                                                                                                                                                                                                                                                       |                                                                                                                      |
|            |                                                |                                                                                                                                          | Basic fundamentals of Nuclear Criticality                                                                                                                                                                                                                                                                                  |                                                                                                                      |
|            |                                                |                                                                                                                                          | • Terms and Definitions                                                                                                                                                                                                                                                                                                    |                                                                                                                      |
|            |                                                |                                                                                                                                          | Use of Criticality Safety Parameters                                                                                                                                                                                                                                                                                       |                                                                                                                      |
|            |                                                |                                                                                                                                          | Criticality Safety Controls and Defense in Depth                                                                                                                                                                                                                                                                           |                                                                                                                      |
|            |                                                |                                                                                                                                          | • Use of CSCs and preferred hierarchy for their application                                                                                                                                                                                                                                                                |                                                                                                                      |
|            |                                                |                                                                                                                                          | Incorporating CSCs and DinDs into Work Planning                                                                                                                                                                                                                                                                            |                                                                                                                      |
| 9-8b       | Operations functional<br>area manager training | Distinguish between of<br>"Fissile Worker Training" in<br>Section 10.9.2.1 and "Fissile<br>Material Handler Training"<br>in Section 9.4. | The change to DP Section 10.9.2.1 in the preceding row resolves the inconsistency.                                                                                                                                                                                                                                         | See above.                                                                                                           |
| 9-9        | Licensing functional area                      | •                                                                                                                                        | Westinghouse will revise the Licensing Manager position qualifications to include years of                                                                                                                                                                                                                                 | Section 9.3.4 will be revised as follow                                                                              |
|            | manager qualifications                         | area manager qualifications                                                                                                              | experience.                                                                                                                                                                                                                                                                                                                | "Licensing responsibilities include the                                                                              |

## **Proposed Resolution**

ty Assurance and Project Director; and

y, Licensing and Project Director."

NCS Training second paragraph will be revised to read

riate to the work conducted by the person, such as the epts in General Employee Training; Fissile Material ssile Material Training for Supervisors and Managers. ed in General Employee Training would be provided to erstanding of criticality safety controls and postings. onnel at the project whose job function requires them to s requiring Nuclear Criticality Safety control measures. pervisors and Managers of personnel assigned to plan or lved in planning work associated with fissile materials ticality Safety control measures."

ows;

those site activities necessary to ensure compliance

| RAI<br>No. | Issues | Path Forward                                                                                                                                                                                                                                                                | Discussion Points                                                                                                                                      | Pro                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |        | to include the years of<br>experience in the field they<br>are managing. LicenseIn addition, Westinghouse will revise the DP to place responsibility for the management of<br>Nuclear Criticality Safety with the Radiation Safety Officer verses the Licensing Manager<br> | with the License SNM-33 (Reference NRC and other regulators as assigned planned work activities to ensure com                                          |                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            |        | commitments should be objective and inspectable.                                                                                                                                                                                                                            | effectively manage criticality safety are more prevalent with a person having a radiation safety background than a person with a licensing background. | At a minimum, the Licensing function qualifications:                                                                                                                                                                                                                                                                                                                                                                 |
|            |        |                                                                                                                                                                                                                                                                             |                                                                                                                                                        | • Bachelor's degree in an appropria education and experience;                                                                                                                                                                                                                                                                                                                                                        |
|            |        |                                                                                                                                                                                                                                                                             |                                                                                                                                                        | • Previous managerial experience i                                                                                                                                                                                                                                                                                                                                                                                   |
|            |        |                                                                                                                                                                                                                                                                             |                                                                                                                                                        | • Two years of experience in licens                                                                                                                                                                                                                                                                                                                                                                                  |
|            |        |                                                                                                                                                                                                                                                                             |                                                                                                                                                        | and                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            |        |                                                                                                                                                                                                                                                                             |                                                                                                                                                        | • Strong skills in written and oral c                                                                                                                                                                                                                                                                                                                                                                                |
|            |        |                                                                                                                                                                                                                                                                             |                                                                                                                                                        | In addition, Section 9.3.6 will be revis                                                                                                                                                                                                                                                                                                                                                                             |
|            |        |                                                                                                                                                                                                                                                                             |                                                                                                                                                        | "The RSO is responsible for the estable<br>programs. As such, the RSO is responsation requirements. The RSO also evaluate<br>establishes appropriate control measure<br>compliance with pertinent procedures<br>physics personnel collect samples, per<br>and assist in performing the technical<br>Project Director has also assigned the<br><i>Criticality Safety</i> , the radiological asput<br>transportation." |
|            |        |                                                                                                                                                                                                                                                                             |                                                                                                                                                        | Figure 9-1 will also be revised to refle<br>Criticality Safety.                                                                                                                                                                                                                                                                                                                                                      |
|            |        |                                                                                                                                                                                                                                                                             |                                                                                                                                                        | The last sentence of DP Section 10.9. 9.3.6.                                                                                                                                                                                                                                                                                                                                                                         |
|            |        |                                                                                                                                                                                                                                                                             |                                                                                                                                                        | The second paragraph of DP Section<br>area manager for the NCS organization<br>direct activities for the NCS function.<br>revised to state, "NCS Specialists hav<br>activities assigned to the NCS function                                                                                                                                                                                                          |
|            |        |                                                                                                                                                                                                                                                                             |                                                                                                                                                        | The last sentence of the subsection "1 revised to state: "The functional area regarding follow-up for recommendat                                                                                                                                                                                                                                                                                                    |
|            |        |                                                                                                                                                                                                                                                                             |                                                                                                                                                        | The last sentence of the first paragrap<br>"The NCS organization shall maintain                                                                                                                                                                                                                                                                                                                                      |

### roposed Resolution

ce 9-1). Licensing activities include interacting with the ed, preparing license amendments, and reviewing mpliance with License SNM-33 (Reference 9-1).

onal area manager will meet the following

riate discipline or an equivalent combination of

e in the environmental and safety discipline;

nsing, or regulatory affairs, or equivalent;

communication and organizational management."

vised as indicated in *Italics*:

ablishment and guidance of radiation protection bonsible for ensuring that activities involving the use of aafely and in accordance with applicable regulatory ites potential and/or actual radiation exposures, sures, approves written procedures, and assures es and regulations. Under the RSO's direction, health berform analyses, take measurements, maintain records, al aspects of the radiation protection program. The ne RSO responsibilities for *managing Nuclear* spects of waste management and hazardous material

flect that the RSO responsibilities include Nuclear

9.1.1 will be deleted since it is redundant to Section

n 10.9.1.1.2 will be revised to state: "The functional ion has the authority and responsibility to assign and n." The first sentence of the next paragraph will be ave the authority and responsibility to conduct ion."

'1. Annual Audits" in DP Section 10.9.1.2.2 will be ea manager for NCS shall assign responsibility ations made by the audit team."

aph of DP Section 10.9.1.2.4 will be revised to state: in the current list and control distribution of NCSS."

# **ATTACHMENT 7**

# Draft Supplemental Response to NRC Requests for Additional Information on Decommissioning Plan Chapter 10

Westinghouse Electric Company LLC, Hematite Decommissioning Project

Docket No. 070-00036

© 2011 Westinghouse Electric Company LLC All Rights Reserved

| RAI<br>No. | Issues                                                                                                       | Path Forward                                                                                                                                                                                                                                                                                                | Discussion Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Proposed                                                                                                                                                                                        |
|------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10-1a      | Practicality of<br>moving and<br>maintaining a<br>portable air<br>sampler within<br>12 inches of a<br>worker | WEC to re- confirm their<br>commitment. (Refer to NUREG-<br>1400, Chapter 3 & RG 8.25)                                                                                                                                                                                                                      | The potential difficulty of maintaining a portable air sampler within 12 inches of a worker's head is understood by the Westinghouse staff. The use of a portable air sampler for occupational monitoring within 12 inches of a worker's head would likely only be used when in a stationary situation, or when a short duration activity would require a greater sample volume than could be obtained using a lapel pump. Westinghouse has an adequate inventory of lapel air samplers to ensure a sufficient quantity is available for occupational monitoring to ensure concentrations representative of the breathing zone are obtained.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Westinghouse confirms the commitment to perform<br>the worker's head when estimated or known conce<br>DAC value in the breathing zone of a worker or ex-<br>zone of a declared pregnant female. |
| 10-1b      | Performance of<br>intermittent or<br>grab samples<br>when air<br>concentration<br>below 10% of<br>DAC.       | Clarify frequency and events<br>which would trigger obtaining<br>intermittent or grab sample.<br>Don't agree that the two terms<br>"intermittent" and "grab" are<br>synonymous. In addition,<br>intermittent is a term which<br>denotes frequency of a sample<br>while grab designates a type of<br>sample. | Westinghouse will ensure that the DP exclusively use the term "grab" sample to denote a type of sample. In the RAI response, Westinghouse intended for the terms "intermittent' and 'grab' to be interchangeable for the purposes of workplace air sampling for radioactivity. Westinghouse had gotten that impression from Regulatory Guide 4.16 Section 1.3, which states "Air sampling may be continuous during work hours or intermittent (grab samples taken during part of the work)." Events that trigger a grab sample are work activities with the potential to generate between 2 and 10 percent of the DAC (derived from requirements stated in paragraph 3 of DP Section 10.2). Such events are determined by prospective estimates of air concentrations based on expected work area conditions, including expected removable contamination levels. The response to RAI HDP-10-Q1 provided an example of such a prospective estimate. If subsequent to the prospective estimate contamination surveys show removable contamination levels that invalidate the prospective estimate, then the Radiation Work Permit and the prospective estimate would be revised to ensure adequate air samples are taken and/or personnel monitoring is initiated. The frequency of grab samples during for such events is daily when the work activities occur, as stated in the response to RAI HDP-10-Q2: "operational grab or continuous air samples will be collected daily during any work activities for which the projected air concentrations are estimated to exceed 2 percent of the occupational DAC values." The grab method of sampling is the minimum to be used, but since work activities are primarily outdoors, lapel samplers may be utilized rather than grab samples when estimated air concentrations exceed 2 percent of the occupational DAC values. In addition, Westinghouse routinely performs air sampling for work activities in which the estimated DAC value is below 2 percent to provide added assurance that the conditions are as expected during planning. | Westinghouse will ensure that the DP exclusively sample.                                                                                                                                        |
| 10-2       | Basis for default filter efficiency of 99% for $\epsilon_f$                                                  | Filter efficiency is based upon<br>particle size of material be<br>captured and filter media.<br>Considering the likely airborne<br>material to be sampled, what it<br>the basis for the 99%?                                                                                                               | <ul> <li>Air sampler characteristics, filter characteristics, and the filter efficiency are provided below. Discussions with M.D. Hoover confirmed that these filters are appropriate for the intended application.</li> <li>Low volume air samplers:</li> <li>Nominal sample flow rate of 50 lpm.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Westinghouse has provided the requested clarifyin action required.                                                                                                                              |

### sed Resolution

forming air samples within approximately 12 inches of oncentrations exceed 10 percent of the occupational or exceeds 2 percent of a DAC value in the breathing

ely uses the term "grab" sample to denote a type of

ying information in the Discussion Points. No further

## Attachment 7 to HEM-11-91 June 21, 2011 Page 3 of 6

# DRAFT

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Proposed |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| micrometers (µm), of filter media<br>is defined by the diameter of<br>particles retained by the filter<br>matrix. Pore size ratings, which<br>can be either nominal or absolute,<br>refer to the size of organisms or<br>particles retained by the filter<br>media. The collection or<br>retention capability of filter<br>media is also a function of flow<br>rate through the media.<br>Westinghouse has not<br>demonstrated that the material to<br>be collected has a particle size of<br>1 µm for which they claim a 99%<br>efficiency nor has Westinghouse<br>statements clearly articulated that<br>the 99% efficiency applies at the<br>flow rates given for the portable<br>and lapel samplers.<br>Met | <ul> <li>Filter face velocity of 78 cm/s.</li> <li>47mm diameter mixed cellulose ester membrane filter (Metricel® GN-6). el air samplers:</li> <li>Nominal sample flow rate of 2 lpm.</li> <li>Filter face velocity of 3.1 cm/s.</li> <li>37mm diameter, mixed cellulose ester membrane filter (Metricel® GN-4). tricel GN-6 filter:</li> <li>Pore size of 0.45µm (absolute).</li> <li>Greater than 99.8% – 99.99% collection efficiency. This collection efficiency is the lowest reported efficiency and is for a particle diameter range of 0.035 to 1 micron with a face velocity range of 1 to 100 cm/s.</li> <li>Efficiency based on relevant sources including: Filtration in "Radioactive Air Sampling Methods" (M.L. Maiello and M.D. Hoover); and Characteristics of Air Sampling Filter Media in "Aerosols in the Mining and Industrial Work Environments" (Liu B.Y.H., D. Y. H Pui and K. L. Rubow). Note that HDP has verified with the manufacturer that the GM-6 model filter cited in this reference is equivalent to the GN-6 which is currently in use.</li> <li>tricel GN-4 filter:</li> <li>Pore size of 0.8µm (absolute),</li> <li>Greater than 99.8% – 99.99% collection efficiency.</li> <li>Efficiency based on Metricel GN-6 filter due to equivalent specifications as the GN-6, with the exception of 0.8 micron versus 0.45 micron pore size. Section 6.6.2 of ANSI-N13-1999 confirms that this difference in pore size would not cause degradation of efficiency, as follows:</li> <li>ers are porous structures with controlled external dimensions such as thickness cross sectional area normal to the flow. Filtration is the most widely used mique for collection of aerosol particles because of its low cost and simplicity. ers capture particles by a combination of physical processes, which include text interception, inertial deposition, Brownian diffusion, electrical attraction, gravitational sedimentation. As shown in figure 3, filters typically have a ainuun collection efficiency for particles that are approximately 0.2 - 0.5 µm neter Above about 0.3 µm diameter</li></ul> |          |

### d Resolution

| RAI<br>No. | Issues                                         | Path Forward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Discussion Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Proposed F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mechanisms, filters with nominal pore sizes larger than 1 $\mu$ m can be very efficient collectors of sub-micrometer particles. As demonstrated by Lindeken et al. (1964), membrane filters show no serious degradation of collection efficiency until the pore diameters exceed 5 $\mu$ m. In fact, filters with a 5- $\mu$ m pore size are often preferred because they have lower pressure drops than smaller pore-size filters, yet retain high efficiency values.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10-10      | Definition of all<br>constants in<br>equations | Provide definition<br>In the resolution table response to<br>RAI 10-Q10, there is an updated<br>Equation 14-29 which includes a<br>total $4\pi$ weighted efficiency. In<br>the original RAI response, it was<br>indicated that this MDC was for<br>the "Static MDC for FSS of<br>Building and Structural<br>Surfaces." In order to be<br>consistent with ISO-7503-1, a $2\pi$<br>efficiency would be used during<br>the FSS. In the WEC response to<br>RA 14-Q16, it was also stated<br>that "for the measurements to be<br>conducted during final status<br>survey, HDP will implement the<br>recommendations of ISO 7503-<br>1." Clarification should be<br>provided on the usage of $2\pi$ vs.<br>$4\pi$ in this equation, and if this<br>equation is intended for use<br>during the FSS. | Westinghouse will provide definitions for the constants in the equations as requested.<br>The cited equation (14-29) will be used for FSS of Building and Structural Surfaces. For clarity, Equation 14-29 and the definition of $\varepsilon_i$ were not changed from the RAI response. The variable $\varepsilon_i$ represents the total weighted efficiency and incorporates consideration of both the instrument efficiency ( $\varepsilon_i$ ) and surface efficiency ( $\varepsilon_i$ ). The instrument efficiency component ( $\varepsilon_i$ ) is calculated using the surface emission rate (i.e., $2\pi$ particle fluence). This methodology for calculation of the total weighted efficiency is described in DP Section 14.4.4.2.4, second paragraph, first sentence:<br>A weighted efficiency is calculated for each contaminant, including progeny, as the product of the instrument efficiency for detection, surface (source) efficiency, radiation yield, and radioactivity fraction.<br>An example calculation is provided in Table 14-19.<br>The definition of $\varepsilon_i$ in Equation 14-29, DP Section 14.4.4.2.4, and Table 14-19 will be revised to identify that the instrument efficiency is $2\pi$ . | DP Chapter 10, Section 10.8.4. Equation 10-1 will be<br>Air Sample MDC (uCi/ml) = $\frac{3 + 3.29 \sqrt{(R_b)(T_g)(V_s)}}{(\varepsilon_i)(\varepsilon_c)(T_g)(V_s)}$<br>Where; V <sub>s</sub> = sample volume (liters)<br>$\varepsilon_i$ = instrument efficiency-intra-<br>$\varepsilon_c$ = collection efficiency (defaul<br>R <sub>b</sub> = background count rate (cpm<br>T <sub>b</sub> = background count time (minutes)<br>2.22E <sup>9</sup> = conversion factor (dpm to ud<br>3 = derived constant based on Ty<br>Sect 3.1)<br>DP Chapter 10, Section 10.8.4. Equation 10-2 will be<br>MDC for a Portable Counter (timed count)<br>MDC (dpm/100cm <sup>2</sup> ) = $\frac{3 + 3.29 \sqrt{(R_b)(T_g)(1 + \frac{T_g}{T_b})}}{\frac{DA}{100}(\varepsilon_i)(T_g)}$<br>Where; DA = detector area (cm <sup>2</sup> )<br>$\varepsilon_i$ = instrument efficiency (c/d)<br>R <sub>b</sub> = background count time (minutes)<br>3 = derived constant based on the<br>sect 3.1)<br>DP Chapter 10, Section 10.8.4. Equation 10-2 will be<br>MDC for a Portable Counter (timed count) |

### d Resolution

ll be revised as follows:

$$\frac{\left(T_g\left(1+\frac{T_g}{T_b}\right)\right)}{\left(Y_s\right)\left(2.22E^9\right)}$$

trafault 0.99) cpm) (minutes) es) to uCi and liters to ml) on Type I and Type II errors of 0.05 (NUREG-1507,

n the 95 percent confidence level (NUREG-1507,

ll be revised as follows:

$$+\frac{T_g}{T_b}$$

d) spm) minutes) ss) based on Type I and Type II errors of 0.05 (NUREGn the 95 percent confidence level (NUREG-1507, for area (cm<sup>2</sup>) to 100 cm<sup>2</sup>) Attachment 7 to HEM-11-91 June 21, 2011 Page 5 of 6

# DRAFT

| RAI<br>No. Issues | Path Forward | <b>Discussion Points</b> | Proposed                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------|--------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |              |                          | DP Chapter 10, Section 10.8.4. Equation 10-3 will                                                                                                                                                                                                                                                                                                                                                                                                        |
|                   |              |                          | Bench Counter Smear MDC                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                   |              |                          | Smear MDC (dpm/100cm <sup>2</sup> ) = $\frac{3 + 3.29 \sqrt{(R_b)(T_b)}}{(\varepsilon_i)(T_b)}$                                                                                                                                                                                                                                                                                                                                                          |
|                   |              |                          | Where; $\varepsilon_i$ =instrument efficiency (c/d) $R_b$ =background count rate (cp $T_b$ =background count time (minutes) $T_g$ =gross count time (minutes) $3$ =derived constant based onSect 3.1)3.29=Sect 3.1)                                                                                                                                                                                                                                      |
|                   |              |                          | DP Chapter 14, Section 14.4.4.2.5, Equation 14-29<br>MDC (dpm/100cm <sup>2</sup> ) = $\frac{3 + 3.29 \sqrt{(R_b)(T_s)(1 + \frac{T_s}{T_s})}}{\frac{A}{100cm^2}(\varepsilon_t)(T_s)}$                                                                                                                                                                                                                                                                     |
|                   |              |                          | Where; $A = \text{probe area }(\text{cm}^2)$<br>$\varepsilon_t = \text{total weighted efficiency }(\text{radionuclide weighted efficiencies. The weighted efficiency }(\varepsilon_i), surface (source) efficiency (\varepsilon_s), radii R_b = \text{background count rate }(\text{cp})T_b = \text{background count time }(\text{m})T_s = \text{sample or measurement colds}3 = derived constant based on  Sect  3.1100 = conversion factor (detector)$ |
|                   |              |                          | DP Chapter 14, Section 14.4.4.2.6, Equation 14-31<br>MDC $(pCi/g) = \frac{3+4.65\sqrt{B}}{(K)(W)(t)}$<br>Where; $B =$ Number of background co<br>K = Proportionality constant the<br>level in a sample for a given set of measurement co                                                                                                                                                                                                                 |

### sed Resolution

ill be revised as follows:

$$\frac{\left(T_g \left(1 + \frac{T_g}{T_b}\right)\right)}{\Gamma_g}$$
d)  
ppm)  
minutes)  
ss)  
n Type I and Type II errors of 0.05 (NUREG-1507,  
n the 95 percent confidence level (NUREG-1507,  
29 will be revised as follows:  

$$\frac{\overline{T_s}}{\overline{T_b}}$$

$$\frac{r_s(c/d; 4\pi), \text{ is the product of the individual d efficiency is the product of the 2\pi instrument diation yield, and radioactivity fraction.
pm)
minutes)
count time (minutes)
n Type I and Type II errors of 0.05 (NUREG-1507,
n the 95 percent confidence level (NUREG-1507,
n the 95 percent confidence level (NUREG-1507,
n the 95 percent confidence level (NUREG-1507,
tor area (cm2) to 100 cm2)
81 will be revised as follows:$$

conditions

Attachment 7 to HEM-11-91 June 21, 2011 Page 6 of 6

# DRAFT

| RAI<br>No. | Issues | Path Forward | Discussion Points | Proposed                                                                                                                                                                                                                                                                          |
|------------|--------|--------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |        |              |                   | $W = Sample weight (dry grams)$ $t = Count time (minutes)$ $3 = derived constant based on T Sect 3.1)$ $4.65 = derived constant based on T Sect 3.1)$ $DP Chapter 14, Section 14.4.4.2.8, Equation 14-34$ $Scan MDC = \frac{MDCR}{(\sqrt{p})(\varepsilon_t) (\frac{A}{100cm^2})}$ |
|            |        |              |                   | $(\sqrt{P})(\varepsilon_{t})(\frac{100cm^{2}}{100cm^{2}})$ Where; $MDCR =$ minimum detectable count<br>$\varepsilon_{t} =$ total efficiency (c/d)<br>p = surveyor efficiency (unitles)<br>A = detector area (cm <sup>2</sup> )<br>100 = conversion factor (detector)              |
|            |        |              |                   | Footnote 'b' to Table 14-19 will be revised as follo<br><sup>b</sup> Nominal $2\pi$ efficiency value for a 126 cm2 gas flo<br>in the $\alpha + \beta$ mode.                                                                                                                       |
|            |        |              |                   | Section 14.4.4.2.4, second paragraph, first sentence<br>A weighted efficiency is calculated for each contaminstrument efficiency for detection, surface (source)<br>fraction.                                                                                                     |

### ed Resolution

ns)

on Type I and Type II errors of 0.05 (NUREG-1507,

on the 95 percent confidence level (NUREG-1507,

34 will be revised as follows:

int rate (cpm)

tless – typically assumed to be 0.5)

tor area  $(cm^2)$  to  $100 cm^2$ )

lows:

flow proportional detector with a 0.8 mg/cm2 window

ce will be revised as follows:

aminant, including progeny, as the product of the  $2\pi$  ce) efficiency, radiation yield, and radioactivity

# **ATTACHMENT 8**

## Draft Supplemental Response to NRC Requests for Additional Information on Decommissioning Plan Chapter 12

Westinghouse Electric Company LLC, Hematite Decommissioning Project

Docket No. 070-00036

© 2011 Westinghouse Electric Company LLC All Rights Reserved

| RAI<br>No. | Issues                                                                             | Path Forward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Discussion Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                |
|------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12-1       | NCS                                                                                | Provide clarification on what is meant by the statement in the RAI<br>response that "If elevated radioactivity measurements in excess of the<br>NCS Exempt Material Limit are encountered prior to or during<br>excavation, the detector response will be evaluated and the appropriate<br>excavation depth determined." Describe the relationship between the<br>detector response, the excavation depth, and maintaining criticality<br>safety.                                                                                                                                                     | In order to support the remediation activities a calibration analysis was performed on the gamma scintillation detector intended for use in conducting surveys of possibly contaminated soils prior to their exhumation. The analysis is performed for a variety of soil and waste matrix model conditions, accounting for underestimation effects due to attenuation of the photon intensity in the surrounding medium. The calibration results provide maximum observed net count rates for a given prospective depth and waste matrix density. Two independent individuals will perform an in-situ radiological survey, each with independent (i.e., physically separate) equipment. Equally important to the screening criteria discussed above is the need to limit the thickness of exhumed layers of contaminated soils and buried wastes to a value consistent with the calibration basis of the equipment. Moreover, the basis for the NCS Performance Requirement is dependent upon the observed net count rate adequately resulting in a detector response easily identified by a technician. Because the amount of attenuation provided by the soil/waste, the maximum cut depth permitted to be exhumed at any one time is conservatively restricted to 12" or less. This conservative prescribed maximum cut depth provides an ample detector response of 19,527 counts per minute corresponding to the most restrictive screening limit for a waste matrix of 1.73 g/cc. Therefore, the calibration results ensure objects/regions of soil/waste will be identified. Once these areas are identified to result in a detector response exceeding the limit corresponding to the NCS performance requirement defined above the observed net count rates will be consulted and an appropriate cut depth (e.g., 2", 4", 6", 8", 10", or 12") determined in accordance with the derived calibration s. | As identified<br>involves char<br>will be revise<br>"Soil will be<br>(Photo-Ioniza<br>surface, reper<br>radioactivity<br>NCS Exempt<br>excavation, th<br>appropriate e<br>performed th<br>the NCS Exe<br>The last para<br>"Unless other<br>safety evalua<br>as material co<br>concentration<br>no greater that<br>volume of at<br>on NCS and 1 |
| 12.3       | Treatment                                                                          | Provide a description of the exhaust air treatment methods associated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HDP-8-Q14, the definition of NCS Exempt Material will be placed in Section<br>8.5.2.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | The second p                                                                                                                                                                                                                                                                                                                                   |
| 12-3       | Treatment<br>of exhaust<br>air from<br>soil vapor<br>extraction<br>(SVE)<br>system | <ul> <li>Provide a description of the exhaust air treatment methods associated with the SVE system.</li> <li>Is the HEPA filter after the activated carbon? If it is, what is the basis for having it after rather than before?</li> <li>The 1999 Revision to ANSI N13.1 states in Section 6.3.1 of the standard that "the ANSI N13.1-1969 recommendation for isokinetic sampling is no longer required," and that "studies have shown that isokinetic operation is not a prerequisite for obtaining representative samples (McFarland and Rodgers 1993)." The standard goes on to discuss</li> </ul> | <ul> <li>The exhaust air from the soil vapor extraction system (SVES) will be treated using the following equipment. The equipment is listed in sequence with the exhaust airflow. A description of the SVES and its parameters are included in Appendix A.</li> <li>Condensate trap</li> <li>Heat exchanger</li> <li>Condensate filter separator</li> <li>HEPA filter</li> <li>Vapor phase activated carbon filter</li> <li>Sampling for Radioactive Emissions. During SVE operations, a representative sample will be collected using a continuous sampler and a method consistent with on</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | The second p<br>Westinghouse<br>the following<br>VOC tre<br><i>ex-situ</i> s<br>mechan<br>the VOO<br>stream.<br>particul<br>atmospl                                                                                                                                                                                                            |

### **Proposed Resolution**

ed in the original RAI 12-Q1, the proposed resolution hanges to DP Chapter 8. The first bullet in Section 8.5.1 ised as follows:

be evaluated using in-situ GWS, VOC monitoring hization detector) and visual inspection of the exposed peated for each newly exposed surface. If elevated ity measurements indicating amounts in excess of the npt Material Limit are encountered prior to or during a, the detector response will be evaluated and the e excavation depth determined. An analysis shall be that establishes the detector response that corresponds to exempt Material Limit (defined in Section 8.5.2.1)."

ragraph of DP Section 8.5.2.1 will be revised as follows:

therwise defined and justified within a nuclear criticality iluation, NCS Exempt Material is conservatively defined al containing  $^{235}$ U with an average nuclide fissile tion not exceeding 0.1 g $^{235}$ U/L, or material that comprises than 15 g $^{235}$ U and is enclosed within a container with a f at least 5 liters. Refer to Chapter 10 for further details nd handling of fissile material."

d paragraph of DP Section 12.4.3.4, as revised in the use response to RAI HDP-12-Q3, will be replaced with ing paragraphs:

treatment will be conducted in treatment tanks by tu soil vapor extraction (SVE). SVE uses a nanical blower to induce a vacuum, which causes VOCs to be stripped and volatilized into the air m. The exhaust air is then treated to remove culates and VOCs before it is emitted to the sphere. The exhaust air treatment consists of

| RAI<br>No. | Issues | Path Forward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Discussion Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                        |
|------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |        | sampling nozzle design and some of the considerations for designing a representative sampling point. The resolution table response from WEC indicates that isokinetic sampling will always be used and that methodology will be in accordance with ANSI N13.1-1999. It may be a bit arbitrary to state that isokinetic sampling will always be used, as N13.1-1999 has differing guidance than the 1969 revision. It is suggested that WEC reword this to indicate that representative sampling will be performed in accordance with ANSI N13.1-1999 (which means they will be performed in accordance with ANSI N13.1-1999 (which means they will have to determine the appropriate air velocity, which might not arbitrarily be isokinetic). Why wouldn't the weekly sample be analyzed for Tc-99 and isotopes of uranium? There is no discussion of composite samples as discussed in Item 2 below. Proposed revision to DP Section 12.4.3.4 still does not meet recommendations from 4/20/11. The discussion points indicate that "methodology will follow ANSI N13.1-1069, 'Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities'." Based upon the stated title, this document is presumably referring to ANSI N13.1 (1999), and the "1069" designation appears to be a misprint. There are two versions of N13.1 (1969 and 1999), and clarification should be provided on whether the 1969 or 1999 version of N13.1 is actually being used. The selection of this document should also be described in the DP. Since this is a newly constructed process, it would seem that the 1999 revision is appropriate. Usage of an older standard (1969) would necessitate some discussion on why that version was deemed acceptable instead of the revised (1999) version. I. There needs to be a particulate removal device prior to the charcoal. Otherwise, the charcoal adsorber and both need to be analyzed to release from the exhaust. It is not clear to me that performance of a gross beta will result in a determination of the amount of Tc-99. No | ANSI N13.1-1999. The inlet to the sampler will be located after air treatment is complete.<br>A portion of the soil requiring SVE treatment will require heating the soil. To confirm that that heating does not volatilize radionuclides, the sampling will include a charcoal adsorber sampler to account for gaseous radioactivity until sufficient data is gathered to confirm no gaseous radiological releases. This charcoal absorber sample will be in addition to the particulate sample.<br>The frequency of changing the sample media is weekly when the SVES is in operation to allow for actions to be taken as necessary to ensure the annual limit and annual ALARA constraint per 10 CFR 20.1101(d) are met. The following analysis of air samples will be analyzed for gross alpha and beta radioactivity for operations without added heat and isotopic analysis for operation with added heat. If a gross alpha or beta radioactivity result exceeds an Investigation Level, then the same sample will also be sent for laboratory analysis for isotopic analysis. The effluent release limits in DP Chapter 11 are based on Column 1 of Table 2 of Appendix B of 10 CFR 20, using Th-234 for beta radioactivity and uranium for alpha radioactivity; Th-234 is conservative for Tc-99 and accounts for uranium daughters. Results of sampling will be used to demonstrate compliance with the effluent limits of Chapter 11 of the Decommissioning Plan.<br>See the additional information for RAI 11 in the matrix for DP Chapter 11 on how Pb-210 is addressed by the air effluent (PDI) for volatile organics (perchloroethylene, trichloroethylene and will be used to collect air samples will be analyzed by a photo-ionization detector (PDI) for volatile organics (perchloroethylene, trichloroethylene and will be used to collect air samples on a daily basis for analysis during operation of the SVE System. The samples will be analyzed by a photo-ionization detector (PDI) for volatile organics (perchloroethylene, trichloroethylene and wild bendfromed according to the bethed Tc-11 Method fo | <ul> <li>condet separa<br/>HEPA</li> <li>Sampl</li> <li>Dur<br/>be coll<br/>consist</li> <li>The<br/>in addi<br/>radioac<br/>charco<br/>compil<br/>a form</li> <li>The<br/>for gro<br/>during<br/>analys<br/>gross a<br/>Investi<br/>submit</li> <li>Dai<br/>downs<br/>operat</li> <li>Ana<br/>volatil<br/>and vin<br/>from tl<br/>concer<br/>effluer<br/>volatil<br/>Metho</li> </ul> |

### **Proposed Resolution**

densate trap, heat exchanger, condensate filter rator (condensate set to water treatment system), PA filter, and vapor phase activated carbon filter.

### pling for Radioactive Emissions.

buring SVE operations, a representative sample will ollected using a continuous sampler and a method sistent with ANSI N13.1-1999.

he sampling media will include a charcoal adsorber ddition to the particulate filter to account for any pactivity not collected on the particulate filter. The coal medium will be used until sufficient data are piled to conclude that airborne radioactivity is not in rm requiring collection on a charcoal filter.

he sample media will be analyzed weekly. Analysis gross alpha and beta radioactivity will be used ng for operations without added heat and isotopic ysis will be used for operation with added heat. If a s alpha or beta radioactivity result exceeds an estigation Level, then the same sample will also be nitted for isotopic analysis.

pling for VOC Emissions.

Paily grab samples at ports upstream and nstream of the activated carbon filter during ration of the SVE System.

analyzed by a photo-ionization detector (PID) for tile organics (perchloroethylene, trichloroethylene vinyl chloride). If the PID indicates the sample in the post-activated carbon sample port has centrations of VOCs at 50 percent or more of the tent release limits, then additional analysis for tile organics will be performed according to, EPA hod TO-1 Method for the Determination of VOC in pient Air Using TENAX Adsorption and Gas pmotography/Mass Spectrometry (GC/MS). Attachment 8 to HEM-11-91 June 21, 2011 Page 4 of 5

# DRAFT

### Appendix A

The construction and design of the Soil Vapor Extraction System (SVES) is intended to meet the requirements of accumulation units. The accumulation units are specifically designed to meet the regulatory definition of a tank as a condition of the exemptions under 40 CFR 266.230 for LLMW and under 40 CFR 262.34 for hazardous waste. The soil accumulation/treatment units will be designed, constructed, and operated to meet the applicable requirements for tanks and tank systems under 40 CFR 265.

Soil treatment will be conducted in specially constructed cells that meet the regulatory definition of a tank, with existing concrete or asphalt pavement serving as the base (and secondary liner) and concrete barriers serving as the structural sidewalls. The tanks will be lined and covered with flexible membrane liner material and outfitted for collection of liquids. A soil pile will be constructed in the tank using a series of three soil lifts that will be between 2-3 feet in thickness. Air distribution piping will be placed between the lifts as the soil pile is created.

Soil for treatment will be identified and segregated during excavation activities. Identification of VOC impacted soil will be through the use of photoionization detectors (PIDs) or flame ionization detectors (FIDs). The VOC impacted areas will be demarcated with flagging or other visual markers. The soil will then be excavated and accumulated separately from the non-VOC impacted soils. This soil will then be transported to the SVES where the soil pile will be constructed.

Treatment of soil for VOCs is by air and negative pressure that draws off the VOCs. VOCimpacted soils that are determined to be hazardous or Low Level Mixed Waste, the SVES will be operated by blowing ambient air through the pile, while pulling a sufficient volume of air to maintain a vacuum on the system. The purpose of this treatment is to achieve waste acceptance criteria for the disposal of materials offsite. VOC-impacted soils that meet the reuse DCGL and are determined not to be RCRA hazardous, heated air may be used to remove the VOCs. The purpose of this treatment is to reduce the levels of VOC impacts to below the Remediation Goals (RGs) so the soil can be reused as backfill material.

To operate the system using heat, treatment air is injected into the soil pile at a temperature ranging from ambient to 750 degrees Fahrenheit (°F). Depending on the soil conditions, the soil temperature will vary, with a range of 150°F and 450°F. The soil is treated at these conditions until the levels of volatile contaminates are reduced to the RGs. It is anticipated that the RGs will be accomplished in 4 to 7 days during typical spring through fall temperatures. If treatment is done during winter months the time may increase to 14 days. The system is operated 24 hours a day until treatment is complete.

Treatment air exiting the soil pile will be moist, contain VOCs, and have a maximum of ~250 °F. A high performance centrifugal blower is used to draw the treatment air through its process pathway. This centrifugal blower has a manually-adjusted inlet damper that varies the air flow from 1000 to 3500 cfm, as needed.

The initial stage of processing the treatment air is a Condensate Separator. This Condensate Separator consists of two 10" corrosion-resistant hose and galvanized pipe runs to result in VOC bearing condensate from the treatment air, and initial cooling to  $\sim$ 150 °F of the treatment air. The VOC bearing condensate is drained to a collection tote or drum.

Attachment 8 to HEM-11-91 June 21, 2011 Page 5 of 5

# DRAFT

The next stage of processing the treatment air is the Air-to-Air Heat Exchanger. The treatment air is cooled to  $\sim 100$  °F and the additional VOC bearing condensate is drained to a collection tote or drum. The secondary side of the Air-to-Air Heat Exchanger is cooled by an ambient air blown through it. The secondary side air has no direct contact with the treatment air. The secondary side air is discharged to atmosphere.

The next stage of processing the treatment air is a condensate filter separator. This condensate filter separator is partially filled with packing material, such as glass spheres, to provide significantly increased surface area that further improves the removal of the VOC contaminants. The VOC bearing condensate is drained to a collection tote or drum. All collected condensate will be processed through the Water Treatment System prior to discharge.

The next stage of processing the treatment air is filtered by HEPA Filters. The HEPA filters are 24"x30" in size with efficiency of 99.97 percent for 0.3 micron particles. One filter is used for air flows up to 1750 cfm and two are used in parallel for flows 1750-3000 cfm. Pressure gauges either side of the HEPA Filters provide indication of the need for replacement due to loading.

The final stage of processing the treatment air is through the vapor phase activated carbon. The activated carbon is the final polishing of the effluent and will remove remaining VOC is the exhaust air.

# **ATTACHMENT 9**

## Draft Supplemental Response to NRC Requests for Additional Information on Decommissioning Plan Chapter 13

Westinghouse Electric Company LLC, Hematite Decommissioning Project

Docket No. 070-00036

© 2011 Westinghouse Electric Company LLC All Rights Reserved

| RAI<br>No. | Issues                                                                                    | Path Forward                                                                                                | Discussion Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                 |
|------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 13-1a      | Flow of Hematite<br>QA/QC<br>Requirements<br>into Vendor<br>Laboratory QA<br>Requirements | Provide explanation of how WEC<br>requirements flow through to the<br>vendor laboratory.                    | Through the Purchase Order to vendor laboratories, Westinghouse imposes flow through requirements on the vendor laboratory to assure analysis of sampled material results in acceptable quality data packages.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Westinghouse has provi<br>Discussion Points. No |
| 13-1b      | 1                                                                                         | Provide explanation of how WEC<br>determines the acceptability of the<br>vendor laboratory's data packages. | The contract laboratory performs data review, verification, and reporting in accordance with approved standard operating procedures (SOPs). In accordance with these SOPs, analytical data is reviewed by the analyst performing the task, followed by a secondary review by a department supervisor/lead analyst or their designee, and then review by the associated project manager. The vendor QA department performs an independent random review as oversight of the process. This review is documented on a data review checklist specific to each analytical method. Following receipt of laboratory data, HDP staff perform a data review to assess the validity of the data for use in the final status survey. This review includes an evaluation of the data to ensure that that all of the | Westinghouse has provi<br>Discussion Points. No |

# **Proposed Resolution**

ovided the requested clarifying information in the lo further action required.

ovided the requested clarifying information in the lo further action required.

# **ATTACHMENT 10**

## Draft Supplemental Response to NRC Requests for Additional Information on Decommissioning Plan Chapter 14

Westinghouse Electric Company LLC, Hematite Decommissioning Project

Docket No. 070-00036

© 2011 Westinghouse Electric Company LLC All Rights Reserved

| RAI<br>No. | Issues                                                                                                                                                                                             | Path Forward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Discussion Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Prop                                                                              |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 14-1a      | Exclusion of Np-237 as<br>a significant<br>radionuclide and<br>utilization of the<br>Excavation DCGL as<br>opposed to the Deep or<br>Uniform in<br>determining the<br>contribution for Np-<br>237. | Addressed by Chapter 5, RAI<br>No. 9. "Westinghouse will<br>provide formal transmittal of<br>the Attachment 14 revision to<br>RAI HDPC-14-1."                                                                                                                                                                                                                                                                                                                                                                                                                                               | Addressed by the Westinghouse response to Chapter 5, RAI No. 9. "Westinghouse will provide formal transmittal of the Attachment 14 revision to RAI HDPC-14-1."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Resolution of NRC comments on DP C comment. This comment does not requ            |
| 14-1b      | Utilization of negative<br>values in determining<br>the average value for<br>Np-237.                                                                                                               | Provide additional details on<br>the calculation of the mean<br>values presented in the Table<br>of the RAI response. Explain<br>whether the mean values<br>were determined from results<br>greater than MDC only or did<br>they include all samples<br>analyzed. If the latter,<br>discuss what values were<br>used for measurements below<br>MDC. Confirm if negative<br>values were used in<br>determining the average.<br>Justify the use of negative<br>values in determining the<br>average by clarifying the<br>guidance that was followed<br>to incorporate the negative<br>values. | <ul> <li>Westinghouse will provide a copy of the spread sheet used to develop the mean values. This spreadsheet was recently revised in response to the initial set of RAIs.</li> <li>Westinghouse used all reported analytical values in this calculation (including negative and &lt; MDC values). Since the concentration of Np-237 is near zero, values reported as negative are not unexpected. Inclusion of these values provides an accurate measure of the central tendency of the Np-237 distribution. It should be noted that when calculating the necessary adjustment to account for the dose of this insignificant radionuclide, the difference between including and excluding the negative values is 0.93 versus 0.92.</li> <li>Guidance which addresses the inclusion of negative values are as follows:</li> <li>Section 2.3.5 of MARSSIM addresses the use of &lt; MDC and negative data and indicates that such data can be used in statistical tests.</li> <li>Even negative results and results with large uncertainties can be used in the statistical tests to demonstrate compliance.</li> <li>Section 18.6.5 of MARLAP also addresses the reporting of negative results. In this section it is stated:</li> <li>Many factors influence the evaluation of negative results. The simplest case occurs when the background measurement is unbiased and both the gross counts and background counts are high enough that the distribution of the net count rate is approximately normal. In this case, normal statistics can be used to determine whether a negative result indicates a problem. For example, if a sample contains zero activity, there is a very small probability of obtaining a net count rate more than two-and-a-half or three standard deviations below zero (i.e., negative value). Since the combined standard uncertainty is an estimate of the standard ducertainty should be investigated. In fact, if a blank sample is analyzed using an unbiased measurement process, negative results can be expected about 50 percent of the time. As long as the magnitudes of negative values</li></ul> | In conjunction with this matrix table, W<br>used to develop mean values used to d |

### roposed Resolution

P Chapter 5, RAI No. 9, will also resolve this equire its own resolution.

e, Westinghouse provides a copy of the spreadsheet o determine insignificant radionuclide contribution.

DRAFT

| RAI<br>No. | Issues                                                                             | Path Forward                                                                                                                                | Discussion Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pro                                                                                                                                                                                                                                                                                                  |
|------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                                    |                                                                                                                                             | below zero, there may be a reason to investigate the result. A large percentage of<br>negative results may also indicate a problem, even if all of the results are near zero.<br>When instrument backgrounds are extremely low, statistics based on a normal<br>distribution may not be appropriate (Chapter 19).                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                      |
|            |                                                                                    |                                                                                                                                             | Section 3.2.2.2 of EPA G-9 (Data Quality Assessment, Statistical Methods for Practitioners), also provides guidance on the use of negative data:                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                      |
|            |                                                                                    |                                                                                                                                             | If possible, results should be recorded with sufficient accuracy so that a large<br>number of tied values do not occur. Estimated concentrations should be reported for<br>data below the detection limit, even if these estimates are negative, as their relative<br>magnitude to the rest of the data is of importance. If this is not possible, substitute<br>the value DL/2 for each value below the detection limit providing all the data have<br>the same detection limit.                                                                                                                    |                                                                                                                                                                                                                                                                                                      |
|            |                                                                                    |                                                                                                                                             | Section 6.2 (footnote 2) of NUREG 1505 (A Nonparametric Statistical Methodology for<br>the Design and Analysis of Final Status Decommissioning Surveys) provides the<br>following guidance on the use of negative values:                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                      |
|            |                                                                                    |                                                                                                                                             | All actual measurement results (with an associated uncertainty) should be reported, even if they are negative, so that unbiased estimates of averages can be calculated.                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                      |
| 14-2       | Lack of concrete core<br>samples from the<br>buildings which will<br>remain.       | Westinghouse has committed<br>to develop volumetric<br>DCGLs if the need arises in<br>response to Chapter 5 RAI<br>No. 17 Resolution Table. | This issue is addressed in the Westinghouse response to Chapter 5 RAI additional question No. 17.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Resolution of NRC comments on DP C comment. This comment does not requ                                                                                                                                                                                                                               |
| 14-3a      | Use of U-235 as a<br>surrogate for Tc-99.<br>(Same issue as burial<br>pit 20.2002) | Revise response with a commitment to sample for Tc-99.                                                                                      | Westinghouse has addressed this issue in correspondence HEM-10-80, "Response to Request for Additional Information Concerning Hematite Decommissioning Plan: Characterization Report and Surrogate Report", submitted to the NRC on July 30, 2010. Westinghouse states the following in the last sentence of the response to RAI Question No. 3:<br><i>"To confirm that the amount of Tc-99 as residual radioactivity is accurately quantified, HDP intends to analyze for Tc-99 in all samples taken for demonstrating compliance with the dosebased unrestricted release criteria during FSS."</i> | Westinghouse will add the following to<br>Surrogate relationships have been<br>presented in Sections 14.1.4.3.2 a<br>surrogate relationship is prohibit<br>results to determine compliance w<br>of a surrogate relationship, labor<br>all FSS samples.                                               |
|            |                                                                                    |                                                                                                                                             | Westinghouse will revise the DP to clarify that the U-235 adjusted DCGLs are prohibited from use during final status survey to demonstrate compliance with the dose criteria.                                                                                                                                                                                                                                                                                                                                                                                                                        | Westinghouse will add the following to<br>The application of the modified U<br>values) from Table 4-19 is restric<br>sensitivity) and excavation contro<br>Laboratory analysis for Tc-99 wi<br>samples and as such, the adjusted<br>9, and 14-10 are prohibited from<br>status survey dose criteria. |
|            |                                                                                    |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Westinghouse will delete DP Section 1                                                                                                                                                                                                                                                                |
|            |                                                                                    |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Westinghouse will revised the third pa                                                                                                                                                                                                                                                               |

## roposed Resolution

P Chapter 5, RAI No. 179, has also resolved this equire its own resolution.

g to the end of DP Section 14.1.4.3.1:

been developed for Tc-99 and U-234 and are 2 and 14.1.4.3.3, respectively. However, the Tc-99 ibited from use in the evaluation of analytical ce with the final status survey dose criteria Instead boratory analysis for Tc-99 will be performed for

g to the beginning of DP Section 14.1.4.3.5:

d U-235 values (and associated total uranium tricted to survey design (evaluation of scan atrol (remedial action support surveys). will be performed on all final status survey sted U-235 DCGL values shown in Tables14-4, 14om use to demonstrate compliance with the final

n 14.1.5.1.3.

paragraph of Section 14.4.3.1.10 as follows:

| RAI<br>No. | Issues              | Path Forward                                                                                                               |                                                                                                                           | Discus                                                                                                                    | ssion Points                                                                                                                                                                                                          |                                                                                        | Pro                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------|---------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                     |                                                                                                                            |                                                                                                                           |                                                                                                                           |                                                                                                                                                                                                                       |                                                                                        | First, a modification to the shift<br>the $DCGL_W$ will simply be equa<br>When it is desired to set the value<br>survey unit, Equation 14-22 will<br>to unity, by using the average co-<br>areas of the survey unit at Root a<br>equal and therefore the average<br>weighted. Also, if actual Tc-99<br>that will be used to determine sa<br>values (Table 14-9), which acco-<br>following equation defines this of |
|            |                     |                                                                                                                            |                                                                                                                           |                                                                                                                           |                                                                                                                                                                                                                       |                                                                                        | Westinghouse will add to footnote 'b<br>the following: "Values of U-235 DCC<br>demonstrate compliance with the fina                                                                                                                                                                                                                                                                                                |
|            |                     |                                                                                                                            |                                                                                                                           |                                                                                                                           |                                                                                                                                                                                                                       |                                                                                        | Westinghouse will revise the title of and Remedial Action Support."                                                                                                                                                                                                                                                                                                                                                |
| 14-3b      | Sampling for Tc-99. | pling for Tc-99. Provide a flow chart<br>depicting when & where<br>sampling for Tc-99 will<br>occur and describe if or how |                                                                                                                           |                                                                                                                           | house provides the followin<br>sted is better suited to a table                                                                                                                                                       |                                                                                        | Westinghouse has provided clarifying action required.                                                                                                                                                                                                                                                                                                                                                              |
|            |                     |                                                                                                                            | Minimum                                                                                                                   | Laboratory Analysis                                                                                                       | 7                                                                                                                                                                                                                     |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            |                     | Westinghouse will be                                                                                                       | Work Activity                                                                                                             | Sample Purpose                                                                                                            | Analysis Method                                                                                                                                                                                                       |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            |                     | performing scans to identify the presence of Tc-99.                                                                        |                                                                                                                           | NCS Samples                                                                                                               | Gamma Spec                                                                                                                                                                                                            | _                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            |                     | the presence of 10-99.                                                                                                     |                                                                                                                           | Remedial Action<br>Support Survey                                                                                         | Gamma Spec                                                                                                                                                                                                            |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            |                     |                                                                                                                            | Remediation Phase                                                                                                         | Reuse Material<br>Sample                                                                                                  | Gamma Spec and Tc-99                                                                                                                                                                                                  |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            |                     |                                                                                                                            |                                                                                                                           | USEI Waste Sample                                                                                                         | Gamma Spec and Tc-99                                                                                                                                                                                                  | _                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            |                     |                                                                                                                            |                                                                                                                           | Waste Sample (other disposal facility)                                                                                    | Gamma Spec                                                                                                                                                                                                            |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            |                     |                                                                                                                            | Supplemental<br>Characterization<br>(as needed)                                                                           | Characterization<br>Sample                                                                                                | Gamma Spec<br>Or<br>Gamma Spec and Tc-99                                                                                                                                                                              |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            |                     |                                                                                                                            | Final Status Survey<br>Phase                                                                                              | FSS Sample                                                                                                                | Gamma Spec and Tc-99                                                                                                                                                                                                  |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            |                     |                                                                                                                            | outlined in Westingh<br>relationship betwee<br>instrumentation to p<br>rely on the use of a co<br>$DCGL_{EMC}$ to account | ouse letter HEM-10-80<br>on U-235 and Tc-99 all<br>perform scan surveys<br>onservative U-235: Tc-<br>for Tc-99. Where the | e of Tc-99, Westinghouse w<br>, dated July 30, 2010. The s<br>llows conventional radiolo<br>during Final Status Surve<br>99 ratio from DO-08-008 to<br>scan sensitivity based on the<br>ple size will be made in acco | urrogate<br>ogical<br>y. These scans will<br>adjust the U-235<br>ratio is insufficient |                                                                                                                                                                                                                                                                                                                                                                                                                    |

### roposed Resolution

ift ( $\Delta$ ) is required (Equation 14-20). In all cases, ual to unity (1) due to measuring multiple ROCs. alue of the LBGR to the mean concentration in the vill be used to calculate the LBGR<sub>SOF</sub>, normalized concentration for each ROC. It is unlikely that the ot stratum and Deep stratum conditions will be ge concentration level in each area will need to be 09 concentrations are not included in the data set sample size, then the modified U-235 soil DCGL<sub>W</sub> count for the presence of Tc-99, will be used. The is calculation of LBGR<sub>SOF</sub>.

'b' of Table 14-4 and to footnote 'a' of Table 14-9 CGLs adjusted for Tc-99 are prohibited from use to inal status survey dose criteria.''

f DP Table 14-10 to read, "...for Survey Design

ing information in the Discussion Points. No further

| RAI<br>No. | Issues                                                                                                                                                                                                                                                                | Path Forward                                                                                                                                  | Discussion Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pro                                                                          |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
|            |                                                                                                                                                                                                                                                                       |                                                                                                                                               | MARSSIM protocol (as described in Section 14.4.3.1.11).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                              |
| 14-4a      | ProUCL tests used to<br>classify areas as non-<br>impacted for certain<br>nuclides and<br>measurements of<br>nuclides for<br>compliance purposes.                                                                                                                     | Resolution of Chapter 5, RAI<br>No. 1 should address this<br>issue.                                                                           | This issue is being addressed in the Westinghouse response to Chapter 5 RAI additional question No. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Resolution of NRC comments on DP of<br>This comment does not require its own |
| 14-4b      | Failure to categorize<br>areas downstream of<br>Joachim Creek with<br>activities > background<br>as impacted area<br>subject to Class 3<br>considerations, as a<br>minimum and the<br>failure to extend the<br>impacted area of the<br>creek to the site<br>boundary. | Include downstream areas of<br>Joachim Creek as impacted,<br>Class 3 areas or provide<br>justification for not including<br>them as impacted. | <ul> <li>Westinghouse re-evaluated the data in Table 4-12 of the Hematite Radiological<br/>Characterization Report (HRCR), HRCR Figure 4-6, and Figure 14-11 from the<br/>Decommissioning Plan (DP) and. For convenience, the attached Figure1 superimposes these<br/>two figures together.</li> <li>The review of Joachim Creek for potential impacts starts where the Site Creek enters Joachim<br/>Creek. This is because of Site discharges into the Site Pond and the Site Creek. There are no<br/>mechanisms for Site impacts to Joachim Creek upstream of where the Site Creek enters<br/>Joachim Creek.</li> <li>In reviewing the sample data in HRCR Table 4-12, Westinghouse identified that two<br/>sediment/soil samples from Joachim Creek are upstream of where the Site Creek enters<br/>Joachim Creek. These two sediment/soil samples are US-05-SS and SW-15-SS. The data for<br/>Sample SW-15-SS should be moved to the "Surface – Background Stream Sediment" part of<br/>HRCR Table 4-12. Based on these two upstream background values, the downstream<br/>sediment/soil sample results do not indicate the presence of residual contamination in the<br/>downstream areas of Joachim Creek.</li> <li>Westinghouse understands the potential effect of the Site Creek and Site Pond on Joachim<br/>Creek downstream of where the Site Creek enters Joachim Creek. It is for that reason in the<br/>HSA Westinghouse provided the following in section 6.2.1.7:</li> <li><i>"Joachim Creek would be classified as non-impacted based on historical and characterization<br/>data; however, as described in the Hematite Radiological Characterization Report (Reference<br/>4-4), an impacted (Class 3) buffer zone will be conservatively established along a short<br/>distance of the Joachim Creek. Up to the first radiological characterization sample location<br/>east of the confluence of the Site Creek."</i></li> <li>It is also why DP Figure 14-12 shows the impacted area of the site extending from the Site<br/>Pond, along the Site Creek, and continuing downstream along Joachim Creek for a short<br/>distance.</li> </ul> |                                                                              |
| 14-4c      | Dismissing Quantile<br>test results for uranium<br>when assessing for<br>impacted areas.                                                                                                                                                                              | Provide detailed data used in<br>the uranium comparison of<br>non-impacted area to<br>background.                                             | This issue is being addressed in the Westinghouse response to Chapter 5 RAI additional question No. 1. Westinghouse has provided the requested data via an email (Davis to Hayes) dated 04/6/11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Resolution of NRC comments on DP<br>this comment. This comment does no       |
| 14-4d      | Dissimilar<br>characteristics for                                                                                                                                                                                                                                     | Perform appropriate<br>additional characterization to                                                                                         | Westinghouse has reviewed the analytical data from the surface and subsurface background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Westinghouse has provided clarifying                                         |

### roposed Resolution

P Chapter 5, RAI No. 1, will also resolve this comment.

l be moved to the "Surface – Background Stream 2.

P Chapter 5, RAI No. 1, and 4d below will also resolve not require its own resolution.

ng information in the Discussion Points. No further

### Attachment 10 to HEM-11-91 June 21, 2011 Page 6 of 43

# DRAFT

| RAI<br>No. | Issues                                                                                                                              | Path Forward                                                                                                                                                             |                                                                                                                                                                                                                    | D                                                                                    | iscussion P                                                                     | Points                                                                              |                                                               |                                                                  | Pro                                                                                                                                                                                                              |
|------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | and subsurface<br>inconsistent).<br>Utilization of a limited                                                                        | provide smaller geographic-<br>sized areas and to allow<br>comparison of surface results<br>to surface background and<br>subsurface results to<br>subsurface background. | studies and has concluded<br>A summary of the two dat<br>believes that the current cl<br>not necessary.                                                                                                            | a sets is prov<br>haracterizatio                                                     | ided below.<br>n data is suf                                                    | Based on this                                                                       | conclusion,<br>itional char                                   | Westinghouse                                                     | action required.                                                                                                                                                                                                 |
|            | number of samples to<br>evaluate a large non-                                                                                       | There are numerous gamma                                                                                                                                                 | Variable                                                                                                                                                                                                           | Mean                                                                                 | StDev                                                                           | Minimum                                                                             | Median                                                        | Maximum                                                          |                                                                                                                                                                                                                  |
|            | impacted area.                                                                                                                      | spec samples showing<br>activities above the proposed<br>2.4 pCi/g uranium threshold                                                                                     | U-234 surface                                                                                                                                                                                                      | pCi/g<br>0.77                                                                        | pCi/g<br>0.14                                                                   | pCi/g<br>0.53                                                                       | pCi/g<br>0.71                                                 | pCi/g<br>0.97                                                    |                                                                                                                                                                                                                  |
|            |                                                                                                                                     | value. The MDC values are,<br>in many cases, above this                                                                                                                  | U-234 subsurface                                                                                                                                                                                                   | 0.81                                                                                 | 0.088                                                                           | 0.66                                                                                | 0.83                                                          | 0.92                                                             |                                                                                                                                                                                                                  |
|            |                                                                                                                                     | value as well. How are these gamma spec data useful in a                                                                                                                 | U-235 surface<br>U-235 subsurface                                                                                                                                                                                  | 0.043 0.052                                                                          | 0.020 0.017                                                                     | 0.017 0.025                                                                         | 0.041                                                         | 0.070 0.081                                                      |                                                                                                                                                                                                                  |
|            |                                                                                                                                     | comparison to the threshold<br>value and in ultimately<br>defining non-impacted areas?                                                                                   | U-238 surface<br>U-238 subsurface                                                                                                                                                                                  | 0.79                                                                                 | 0.15                                                                            | 0.55                                                                                | 0.81                                                          | 1.00<br>0.99                                                     |                                                                                                                                                                                                                  |
|            |                                                                                                                                     | It is not clear that, as stated,<br>"gamma spectroscopy data<br>supports the same conclusion                                                                             | U <sub>tot</sub> surface                                                                                                                                                                                           | 1.6                                                                                  | 0.30                                                                            | 1.1                                                                                 | 1.5                                                           | 2.0                                                              |                                                                                                                                                                                                                  |
|            |                                                                                                                                     | as that reached by the statistical evaluation                                                                                                                            | U <sub>tot</sub> subsurface                                                                                                                                                                                        | 1.7                                                                                  | 0.20                                                                            | 1.3                                                                                 | 1.8                                                           | 1.9                                                              |                                                                                                                                                                                                                  |
|            |                                                                                                                                     | performed on the alpha<br>spectroscopy dataset."                                                                                                                         | This dataset used both alp<br>determining the statistical<br>were a relatively small sul<br>impacted area, there were<br>238) is available for all 14<br>of these locations. Westir<br>spectroscopy results via an | parameters for<br>oset of the mu<br>148 sample lo<br>8 locations, w<br>nghouse has p | or the popula<br>ich larger ga<br>ocations. Ga<br>while alpha s<br>rovided both | ations. The alg<br>mma spectros<br>amma spectros<br>pectroscopy da<br>alpha spectro | bha spectros<br>copy dataset<br>copy data (l<br>ata is availa | copy results<br>. For the non<br>U-235 and U-<br>ble for only 16 |                                                                                                                                                                                                                  |
|            |                                                                                                                                     |                                                                                                                                                                          | The nature of the gamma a<br>uranium concentration (du<br>with each individual samp<br>the total uranium concentr<br>spectroscopy data support<br>performed on the alpha sp                                        | the to uncertain<br>the) and as successful as comp<br>the same co                    | nty in the pro-<br>ch, this data<br>pared to the<br>nclusion as t               | edicted U-234<br>cannot be used<br>background ar                                    | concentratio<br>in a statisti<br>ea. Howeve                   | on associated<br>cal evaluation of<br>er, the gamma              |                                                                                                                                                                                                                  |
|            |                                                                                                                                     |                                                                                                                                                                          | 5/19/2011 Discussion<br>See additional information                                                                                                                                                                 | n in item 4e h                                                                       | pelow                                                                           |                                                                                     |                                                               |                                                                  |                                                                                                                                                                                                                  |
| 14-4e      | Westinghouse's<br>premise that the source<br>of uranium in soil is<br>due to airborne<br>deposition and<br>excludes the possibility | Provide the basis for<br>excluding the potential burial<br>of uranium materials.<br>It appears that all gamma<br>spec data were excluded<br>from the non-impacted area   | The source of this comme<br>14-Q5 in Westinghouse le<br>confusing analysis of data<br>contamination.<br>That paragraph was to be<br>total Uranium activity c                                                       | nt is the secon<br>otter HEM-10-<br>that resulted<br>part of DP Se                   | nd to the last<br>-80, dated Ju<br>in an uninte                                 | ily 30, 2010. T<br>nded implicati<br>, and states: "]                               | That paragra<br>on about sul<br>Lastly, the                   | ph contained a<br>osurface<br>highest four                       | Westinghouse will replace the paragra<br>Points with the following:<br>Lastly, analysis of the uranium of<br>was detected outside the error ba<br>NB-71-01-SL, exceeded the b<br>pCi/g established in DP Section |

## **Proposed Resolution**

graph of DP Section 14.2.6 quoted in Discussions

m data from the non-impacted area where uranium r band of the MDC shows that only one sample, the background threshold value (BTV) of 2.4 ction 4.3.5. Sample NB-71-01-SL had a result

| RAI<br>No. | Issues                                                                          | Path Forward                                                                                                                                                                                                                                                                                         | Discussion Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Proposed Resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | being buried state<br>sam<br>the<br>grea<br>tota<br>com<br>bacl<br>valu<br>esta | evaluation based upon the<br>statement that "for any<br>sample with at least one of<br>the uranium isotopes<br>greater than MDC+2σ, the<br>total uranium result was<br>compared to the<br>background threshold<br>value (BTV) of 2.4 pCi/g<br>established in DP Section<br>4.3.5." This point should | <ul> <li>ground surface. Therefore it is doubtful that the Uranium activity observed in these samples can be attributed to licensed activities."</li> <li>To provide a clearer analysis of data, the spreadsheet file "Uranium Non-impacted Data" (in Attachment 4 to this letter) was reviewed in preparing these discussion points. This spreadsheet data reflected responses to other NRC comments since the preparation of Westinghouse letter HEM-10-80 in July 30, 2010. To evaluate this data, each sample result for U-234, U-235 and U-238 was compared against that</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>point at the surface that exceeds the BTV is reasonable considering the BTV is selected such that some non-impacted total uranium rest would exceed it.</li> <li>DP Figure 14-14 will be revised as attached. Other related DP figures shimpacted areas will be revised to be consistent with the attached figure.</li> <li>In DP Table 14-16, the row for LSA-11 will be replaced with the following for LSA-11.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            |                                                                                 | be considered along with                                                                                                                                                                                                                                                                             | sample's minimum detectable concentration plus its error (MDC+ $2\sigma$ ). For any sample with at least one of the uranium isotopes greater than MDC+ $2\sigma$ , the total uranium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Area Code Code Code Code Code Code Code Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |                                                                                 | the previous 4a issue that<br>gamma spec MDCs were<br>above the proposed                                                                                                                                                                                                                             | result was compared to the background threshold value (BTV) of 2.4 pCi/g established<br>in DP Section 4.3.5. Only one sample, NB-71-01-SL, exceeded the BTV. Sample<br>NB-71-01-SL had a result of 2.6 pCi/g and was taken within the top 1 foot of soil.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            |                                                                                 | threshold.                                                                                                                                                                                                                                                                                           | Thus, there is no data that implies the potential for burial of uranium materials. This single data point at the surface that exceeds the BTV is reasonable considering that the BTV is selected such that some non-impacted total uranium results would exceed it.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 02         Section 2         3         N/A         5,394         14-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            |                                                                                 |                                                                                                                                                                                                                                                                                                      | BTV is selected such that some non-impacted total uranium results would exceed it.<br>From the 5/19/11 conference call, it was understood that the underlying concern for RAI 14-4 is related to the amount and type of uranium data within a portion of the area designated as non-impacted, To resolve this concern, HDP will expand the size of the impacted area.<br>The boundary of the existing survey unit LSA-11-01 will be modified as illustrated in Attachment 2, and the size increased from 14,885 m <sup>2</sup> to 24,715 m <sup>2</sup> . This will include fully encompass the area of characterization sample NB-71-01 which was noted in the NRC path forward, as well as the land area further to the northeast.<br>Additionally, a new Class 3 survey unit (LSA-11-02) will be defined along the southern edge of the active rail line as illustrated in Attachment 2. The included surface area of this survey unit will be 5,394 square meters.<br>While the boundary of LSA-11-02 will encompass the active rail line, the active rail line will not be surveyed or sampled as justified below; surveys and sampling will be limited to the 20 foot section of ground between the southern edge of the active rail line and the southern boundary of this survey unit. The random sampling locations that fall on the active rail line during survey design will be relocated to the southern edge of the railroad bed.<br>This approach for survey and sampling in this newly-defined survey unit is reasonable given the history, nature, and safety considerations of the active rail line. First, the rail has been in existence prior to the initial construction of the facility, thus the potential for subsurface contamination is very small. Second, the use of the rail line over time has served to fracture and compact the rail bed, resulting in a relatively impermeable surface. This compaction results in drainage of any precipitation (and radioactivity that may have been deposited by air deposition) to the edges of the rail bed. This is the area where the relocated samples will be collected, and thus these | <ul> <li>DP Section 14.2.5 will be revised as follows:</li> <li>Activities with special nuclear materials (SNM) were conducted within an approximately 10-acre Central Tract area of the site. The Central Tract area bounded by State Road P to the north, the land adjacent to east bank of the Northeast Site Creek, the Union-Pacific Railroad to the south and the Site P the west. Approximately 3.8 acres along the Site Creek downstream to Joad creek and along Joachim Creek to the location of sample SW-14-SS are compotentially impacted based on site characterization data; and 7.1 acres to be a soil staging area near the Northeast Site Creek are expected to become impresult of the decommissioning activities. Additionally, a 20 foot wide area immediately south of the railroad in the central tract, an area west of the Sit and an area between the Northeast site creek and the soil staging area are als considered as impacted (total of about 10.1 acres). The remaining portions 228-acre Hematite Site are considered to be non-impacted as illustrated on Figure 14-11.</li> <li>A new DP Section 14.4.4.1.6.6 will be added as follows:</li> <li>14.4.4.1.6.6 Active Rail Line</li> <li>While the boundary of conceptual survey unit LSA-11-02 (Figure 14-14) w encompass the active rail line, the active rail line will not be surveyed or san as justified below; surveys and sampling will be limited to the 20 foot sectio ground between the southern edge of the active rail line and the southern bo of this survey unit. The random sampling locations that fall on the active rail</li> </ul> |

ngle data ring that results

s showing e.

lowing 2 rows

an area is the ite Pond to Joachim e considered o be used as e impacted as urea e Site Pond, e also ons of the on

4) will or sampled ection of n boundary we rail line

Attachment 10 to HEM-11-91 June 21, 2011 Page 8 of 43

# DRAFT

| RAI<br>No. | Issues                                                                                                                                                                   | Path Forward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Discussion Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | potential for contamination.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | during survey design will be reloca<br>This approach for survey and samp<br>reasonable given the history, natur<br>line. First, the rail has been in exis<br>facility, thus the potential for subs<br>use of the rail line over time has se<br>resulting in a relatively impermeat<br>of any precipitation (and radioactiv<br>deposition) to the edges of the rail<br>samples will be collected, and thus<br>location of the greatest potential for |
| 14-6       | Incomplete information<br>on Westinghouse's<br>buried piping<br>calculation, and their<br>intentions to perform<br>further characterization<br>during<br>decommissioning | methods and technologies to<br>be used for characterizing<br>buried pipes during the<br>decommissioning process<br>and prior to the Final Status<br>Survey.<br>This question was meant as a<br>follow up to the original RAI<br>commitment that "HDP will<br>provide buried piping survey<br>methodology and technical<br>support documentation for<br>buried piping that is<br>consistent with MARSSIM<br>and NUREG-1757 guidance<br>for NRC review and approval<br>prior to Final Status Survey<br>of buried piping." Please | Sanitary/Gray Water/Storm Drain Systems: Characterization surveys and sampling were performed in early 2010 (subsequent to DP submittal) via 14 manholes that are a part of the sanitary/gray water and storm drain lines, and also via a drain located in the southwest corner within Building 230 that ties into the storm drain system located south of Building 230. Removable contamination surveys and gamma radiation surveys were performed using a calibrated NaI 2 x 2 gamma detector or a calibrated Ludlum Model 19 micro-R meter. In 2 manholes, alpha/beta scintillation detectors were also used to obtain measurements of total contamination in pipes within the manholes. Sediment samples were collected in 6 of the 14 the manholes where sufficient sediment was present for sample collection. These samples were analyzed by gamma spectroscopy. Process Building Underground Piping: In late 2010, the Process Building underground piping was characterized by survey and sampling to support a determination of the appropriate nuclear criticality safety controls for removal or in-situ remediation, and to be used in developing safety requirements for the associated work plans. The investigation of the piping included the use of robotic crawlers, video scopes and push cameras to provide video of the piping included the use of robotic crawlers, video scopes and push cameras to provide video of the piping internals, and provide a delivery mechanism for a gamma radiation detector for radiological surveys. The radiological surveys were performed using a calibrated DCA-3096-3 with an external probe option connected by 300 feet of cable. The DCA-3096-3 measures radiation field intensities of X-ray and gamma radiation levels. The results of these surveys were used to estimate the amount of U-235 and will serve as the basis for NCS control measures. The characterization of the piping also included collection of removable activity and/or sediments from the piping for analysis. The surveys and sampling were also performed in large sections of gray | Westinghouse has provided the reques<br>The remaining Westinghouse action is<br>method for final status surveys of pipi<br>surveys of piping. To reflect this com<br>to the end of Section 14.4: "The meth<br>submitted for NRC review and approv<br>final surveys of piping."                                                                                                                                                                      |

## roposed Resolution

ocated to the southern edge of the railroad bed.

ampling in this newly-defined survey unit is ture, and safety considerations of the active rail existence prior to the initial construction of the absurface contamination is very small. Second, the a served to fracture and compact the rail bed, eable surface. This compaction results in drainage ctivity that may have been deposited by air ail bed. This is the area where the relocated hus these samples should actually be biased to the l for contamination.

uested clarifying information in the Discussion Points. n is to submit for NRC review and approval of the iping as a prerequisite to implementation of final ommitment, the following new sentence will be added ethod for final status surveys of piping will be roval, with approval received prior to implementation of

| RAI<br>No. | Issues                                                                                                                                     | Path Forward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Discussion Points                                                                                                                                                                                                                                      | Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | designated as Class 1, with the exception of Public and Raw Water systems that have a negligible potential for contamination and have been designated as Class 3 for Final Status Survey.                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14-7       | Westinghouse's basis<br>for not reclassifying<br>areas consistent with<br>MARSSIM when<br>survey data shows<br>elevated<br>concentrations. | Revise the RAI response and<br>Chapter 14 of the DP to<br>indicate that when a survey<br>unit is misclassified in Class<br>2 or Class 3 areas, the area<br>would be reclassified and a<br>sufficient number of<br>additional surveys will be<br>completed in order to comply<br>with the appropriate survey<br>classification. If either a re-<br>classification of the survey<br>unit or the affected area of<br>the unit occurs, then the<br>release record should indicate<br>such changes. | Westinghouse will revise DP Sections 14.4.1, 14.4.3.1.11, 14.4.3.6, and 14.6.1 to use words<br>from MARSSIM. These text changes supersede the changes identified in the response to RAI<br>HDPC-14-Q7 in Westinghouse letter HEM-10-80, dated 6/30/10. | As a survey progresses, reevalue<br>necessary based on newly acqui<br>contamination is identified in a<br>reevaluation of that area should<br>area classification is appropriate<br>part or all of the area being recu-<br>results identify residual contami<br>DCGL <sub>W</sub> or suggest that there ma<br>contamination is present in exce-<br>should be initiated to determine<br>reclassified to Class 1 (see DP S<br>The last sentence of the first paragr<br>with: "Instances where a measurent<br>the DCGL <sub>W</sub> or a measurement obta<br>of the DCGL <sub>W</sub> will be evaluated for<br>The second paragraph of DP Section<br>As a survey progresses, reevalue<br>necessary based on newly acqui<br>initiated to determine if all or pa-<br>survey results identify resida<br>exceeding the DCGL <sub>W</sub> or su-<br>potential that contamination                                       |
|            |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                        | <ul> <li>Survey results identify resident exceeding 50 percent of the Typically, the investigation will sampling and result in part or a or Class 2. If the investigation Class 2 or Class 3, then the survey unit to Class less than the DCGL<sub>W</sub> but greated survey unit, then the survey unit the survey unit to Class 2. If the variability in population of the survey of the survey unit to Class 2. If the survey unit to Class 3.</li> </ul> |

### roposed Resolution

counting bullets) in DP Section 14.4.1 will be

luation of a survey unit classification may be nuired survey data. For example, if a Class 3 area, an investigation and uld be performed to determine if the Class 3 iate. Typically, the investigation will result in eclassified as Class 1 or Class 2. If survey mination in a Class 2 area exceeding the may be a reasonable potential that excess of the DCGL<sub>W</sub>, then an investigation me if all or part of the area should be P Section 14.4.3.6 for details).

graph in DP Section 14.4.3.1.11 will be replaced rement obtained in a Class 2 survey unit exceeds otained in a Class 3 survey unit exceeds 50 percent for reclassification per DP Section 14.4.3.6."

tion 14.4.3.6 will be replaced with:

luation of a survey unit classification may be uired survey data. An investigation should be part of the area should be reclassified when:

sidual contamination in a Class 2 area suggest that there may be a reasonable ion is present in excess of the DCGL<sub>W</sub>.

sidual contamination in a Class 3 area he  $DCGL_W$ .

ill involve additional scan surveys and/or all of the area being reclassified as Class 1 n verifies a result exceeds the DCGL<sub>W</sub> in a urvey unit will require reclassification of all or s 1. If the investigation verifies a result to be uter than 50 percent of the DCGL<sub>W</sub> in a Class 3 nit will require reclassification of all or part of the investigation fails to verify a result and the e individual and average measurement results Attachment 10 to HEM-11-91 June 21, 2011 Page 10 of 43

# DRAFT

| RAI<br>No. | Issues                                                                                                                                                                                                                                                                                                                                                                                 | Path Forward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Discussion Points                                                                                                                                                                                                                                                                                                                                                                                                                    | Pro                                                                                                                                       |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                      | with respect to the DCGL do no<br>inappropriate, then the survey i                                                                        |
|            |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                      | The investigation and the evalu-<br>thoroughly documented in the r<br>is reclassified, then the reasons<br>documented in the release reco |
|            |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                      | Westinghouse will replace the tenth b<br>FSS survey design including, but not<br>reclassification (and the reasons for t                  |
| 14-9a      | Apparent utilization of<br>the indistinguishable<br>from background tests<br>as the primary, if not<br>only, criterion for<br>determining that<br>certain areas are non-<br>impacted (utilization<br>for compliance<br>purposes) when the<br>utilization of the<br>MARSSIM guidance<br>in some areas would<br>have resulted in these<br>areas as being<br>classified as<br>"impacted". | If the results from the<br>indistinguishable from<br>background tests are actually<br>used for compliance<br>purposes, they are effectively<br>being used for FSS purposes.<br>NRC does allow the usage of<br>characterization data for FSS<br>purposes, but they must<br>satisfy the quality objectives<br>of the FSS. NUREG-1757,<br>Vol. 2, Section 2.3 and<br>Appendix O.2.<br>To be addressed in the<br>Resolution Table DP Chapter<br>5, RAI No. 1 to indicate that<br>"the presence of both Ra-226<br>and Th-232 would be<br>accounted for in all impacted<br>areas during final status<br>survey to demonstrate<br>compliance with the dose<br>criteria." | Westinghouse believes that this issue was addressed by Westinghouse's commitment to<br>considering Ra-226 and Th-232 as radionuclides of concern in the identified impacted area at<br>HDP (DP Figure 14-11). Westinghouse will revise the DP to clarify that the presence of both<br>Ra-226 and Th-232 would be accounted for in all impacted areas during final status survey to<br>demonstrate compliance with the dose criteria. | Resolution of NRC comments on DP<br>This comment does not require its ow                                                                  |
| 14-9b      | Westinghouse's<br>apparent utilization of<br>Scenario B via the use<br>of the<br>"indistinguishable from<br>background"<br>methodology.                                                                                                                                                                                                                                                | Westinghouse needs to re-<br>evaluate their approach and<br>possibly take more<br>background samples to be<br>consistent with Scenario B.<br>If Scenario B is not going to<br>be used, then sufficient<br>justification must be in place<br>to call areas non-impacted.                                                                                                                                                                                                                                                                                                                                                                                           | Westinghouse believes that this issue was addressed by Westinghouse's commitment to considering Ra-226 and Th-232 as radionuclides of concern in the identified impacted area at HDP (DP Figure 14-11). Westinghouse will revise the DP to clarify that the presence of both Ra-226 and Th-232 would be accounted for in all impacted areas during final status survey to demonstrate compliance with the dose criteria.             | Resolution of NRC comments on DP<br>This comment does not require its ow                                                                  |

### roposed Resolution

not suggest the initial classification was ey unit will not be reclassified.

aluation of the additional information will be e release record. If all or part of a survey unit ons for the initial misclassification will be cord.

a bullet in DP Section 14.6.1 with: "Changes from the ot limited to field changes, and reasons for survey unit r the initial misclassification)."

DP Chapter 5, RAI No. 1, will also resolve this comment. own resolution.

DP Chapter 5, RAI No. 1, will also resolve this comment. own resolution.

Attachment 10 to HEM-11-91 June 21, 2011 Page 11 of 43

# DRAFT

| RAI<br>No. | Issues                                                                                              | Path Forward                                                                                                                                                                                                                                                                                                                                                                                                                                    | Discussion Points                                                                                                                                                                                                                                                                                                                                                                                                        | Proj                                                                        |
|------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 14-9c      | Consideration of<br>impacted areas on an<br>area by area basis<br>versus a point to point<br>basis. | Westinghouse should clarify<br>their intentions as there are<br>statements in the response to<br>RAI 5-Q1 stating that<br>"Thorium-232 will only be<br>included for demonstrating<br>compliance in areas<br>distinguishable from<br>background or when an<br>individual result exceeds the<br>BTV." Once areas impacted<br>by Th-232 are identified, Th-<br>232 should be analyzed for<br>compliance purposes in all<br>samples from that area. | Westinghouse believes that this issue was addressed by Westinghouse's commitment to considering Ra-226 and Th-232 as radionuclides of concern in the identified impacted area at HDP (DP Figure 14-11). Westinghouse will revise the DP to clarify that the presence of both Ra-226 and Th-232 would be accounted for in all impacted areas during final status survey to demonstrate compliance with the dose criteria. | Resolution of NRC comments on DP C<br>This comment does not require its own |

## roposed Resolution

P Chapter 5, RAI No. 1, will also resolve this comment. own resolution.

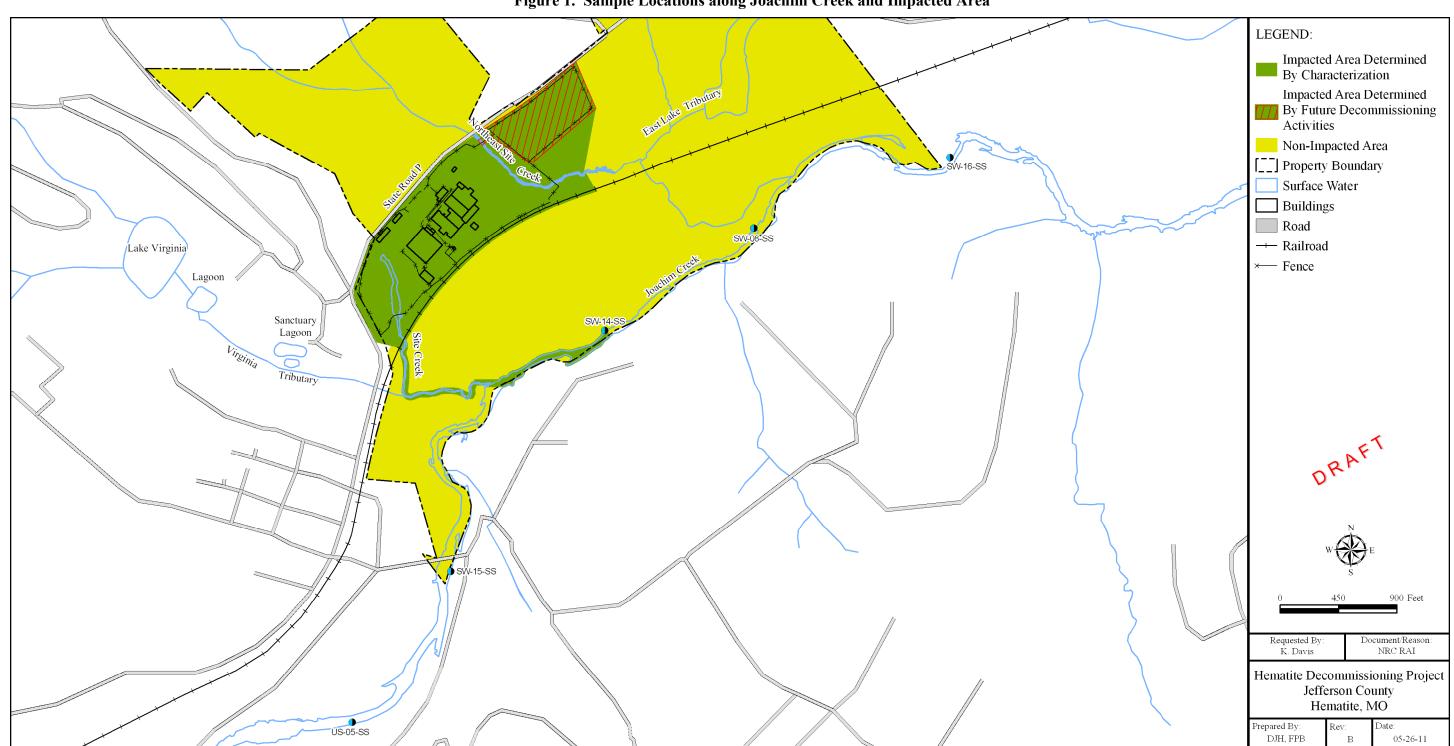



Figure 1. Sample Locations along Joachim Creek and Impacted Area



Attachment 10 to HEM-11-91 Page 14 of 43

Insignificant Radionulides - 20110223 R2.xlsx

| Insignificant Radionuclide | <b>Average Concentration</b> | DCGL    | <b>Average SOF</b> | <b>Dose Contribution</b> |  |
|----------------------------|------------------------------|---------|--------------------|--------------------------|--|
|                            | (pCi/g)                      |         |                    | (mrem)                   |  |
| Am-241                     | 5.1E-03                      | 7.9E+01 | 6.4E-05            | 1.6E-03                  |  |
| Np-237 + D                 | 2.0E-02                      | 3.0E-01 | 6.8E-02            | 1.7E+00                  |  |
| Pu-239/240                 | 1.6E-03                      | 8.3E+01 | 2.0E-05            | 4.9E-04                  |  |
|                            |                              | Total   | 6.8E-02            | 1.7E+00                  |  |

table 2-2

DRAFT

Attachment 10 to HEM-11-91 Page 15 of 43

Insignificant Radionulides - 20110223 R2.xlsx DRAFT

| Insignificant |                              |
|---------------|------------------------------|
| Radionuclide  | <b>Average Concentration</b> |
| Am-241        | 5.1E-03                      |
| Np-237        | 2.0E-02                      |
| Pu-239/240    | 1.6E-03                      |

### Attachment 10 to HEM-11-91 Page 16 of 43

# Insignificant Radionulides - 20110223 R2.xlsx DRAFT

|                            |                    | Am-241                | Np-237   | Pu-239/240 | Am-241                | Np-237    | Pu-239/240      |
|----------------------------|--------------------|-----------------------|----------|------------|-----------------------|-----------|-----------------|
| Sample ID                  | CSM                | (pCi/g)               | (pCi/g)  | (pCi/g)    | (pCi/g)               | (pCi/g)   | (pCi/g)         |
| BD-09-00-SL                | Surface            | 3.17E-02 <sup>a</sup> | 1.0E-02  | 2.1E-03    | 3.17E-02              | 1.02E-02  | 2.11E-03        |
| BD-10-00-SL                | Surface            | 3.8E+00               | b        | _          | 3.80E+00              | b         | _               |
| BD-11-00-SL                | Surface            | 1.7E+00               |          | _          | 1.66E+00              |           |                 |
| BD-12-00-SL                | Surface            | 1.9E+00               | 5.7E-02  | 7.9E-03    | 1.94E+00              | 5.66E-02  | 7.94E-03        |
|                            |                    |                       |          |            |                       |           |                 |
| BD-19-0.5-SL               | Surface            | 1.0E-03               | -6.7E-03 | -1.8E-02   | 1.00E-03              | -6.70E-03 | -1.80E-02       |
| BD-24-0.5-SL               | Surface            | 5.0E-02               | -6.0E-03 | -3.0E-03   | 5.00E-02              | -6.00E-03 | -3.00E-03       |
| BD-28-0.5-SL               | Surface            | -5.0E-03              | 1.7E-02  | -8.0E-02   | -5.00E-03             | 1.70E-02  | -8.00E-02       |
| BLD240-01-Fill             | Surface            | 1.6E-01               |          | —          | 1.60E-01              |           |                 |
| BLD240-03-Fill             | Surface            | 7.0E-01               |          | _          | 7.00E-01              |           |                 |
| BLD240-04-Fill             | Surface            | -1.0E-03              |          | —          | -1.00E-03             |           |                 |
| BLD253-02-Fill             | Surface            | 6.0E-02               |          | —          | 6.00E-02              |           | —               |
| BLD255-05-Fill             | Surface            | 5.0E-01               |          | —          | 5.00E-01              |           |                 |
| BLD260-06-Fill             | Surface            | 0.0E+00               |          | —          | 0.00E+00              | —         | —               |
| BP-01-00-SL                | Surface            | 4.5E-02               |          |            | 4.49E-02              |           |                 |
| BP-02-00-SL                | Surface            | -7.7E-02              | _        |            | -7.68E-02             |           |                 |
| BP-03-00-SL                | Surface            | 2.6E-01               | 4.2E-02  | 7.1E-03    | 2.60E-01              | 4.21E-02  | 7.06E-03        |
| BP-04-00-SL                | Surface            | 1.0E-02               | -8.8E-04 | 2.1E-03    | 1.04E-02              | -8.83E-04 | 2.07E-03        |
| BP-05-00-SL                | Surface            | -4.2E-02              |          | —          | -4.18E-02             |           | —               |
| BP-06-00-SL                | Surface            | 7.8E-02               | _        |            | 7.81E-02              | _         | —               |
| BP-07-00-SL                | Surface            | 5.7E-01               | 6.6E-02  | 6.8E-03    | 5.66E-01              | 6.60E-02  | 6.76E-03        |
| BP-08-00-SL                | Surface            | -8.9E-02              |          | —          | -8.90E-02             | —         | —               |
| BP-09-00-SL                | Surface            | 1.4E-01               |          | —          | 1.36E-01              | —         | —               |
| BP-10-00-SL                | Surface            | 1.7E-01               |          | —          | 1.68E-01              | —         | —               |
| BP-11-00-SL                | Surface            | -1.9E-01              |          | —          | -1.88E-01             |           | —               |
| BP-12-00-SL                | Surface            | -1.4E-01              |          | —          | -1.43E-01             |           | —               |
| CB-01-00-SL                | Surface            | -1.4E-01              | 1.2E-02  | 1.6E-03    | -1.42E-01             | 1.21E-02  | 1.63E-03        |
| DM-02-00-SL                | Surface            | 2.9E+00               | —        | —          | 2.94E+00              |           | _               |
| DM-02-05-SL                | Surface            | 1.3E-01               | 2.2E-02  | -2.1E-03   | 1.26E-01              | 2.15E-02  | -2.08E-03       |
| DM-02-17-SL                | Surface            | -6.8E-01              |          | —          | -6.77E-01             |           | —               |
| DM-02-22-SL                | Surface            | 1.0E-01               |          |            | 1.01E-01              |           | —               |
| DM-02-33-SL                | Surface            | 5.3E-01               | 5.9E-03  | -2.3E-03   | 5.26E-01              | 5.90E-03  | -2.26E-03       |
| DM-03-05-SL                | Surface            | 1.6E-01               |          |            | 1.58E-01              |           |                 |
| DM-03-13-SL                | Surface            | 4.0E-03               |          | _          | 4.03E-03              |           |                 |
| DM-03-25-SL<br>DM-03-34-SL | Surface<br>Surface | -1.9E-02<br>2.3E-01   |          |            | -1.85E-02<br>2.29E-01 |           |                 |
| EP-01-00-SL                | Surface            | 2.3E-01<br>8.6E-01    |          |            | 2.29E-01<br>8.59E-01  |           |                 |
| EP-02-00-SL                | Surface            | 9.1E-01               | 5.8E-01  | 3.0E-02    | 9.10E-01              | 5.84E-01  | 2.97E-02        |
| EP-03-00-SL                | Surface            | 2.3E-01               | 4.0E-02  | 4.0E-02    | 2.26E-01              | 4.03E-02  | <b>4.00E-05</b> |
| EP-04-00-SL                | Surface            | 3.1E+00               | 4.012-02 | 4.0E-05    | 3.12E+00              | 4.05E-02  | 4.00E-03        |
| EP-05-00-SL                | Surface            | 5.7E-02               |          |            | 5.73E-02              |           |                 |
| EP-06-00-SL                | Surface            | 1.0E+00               |          |            | 1.04E+00              |           |                 |
| EP-07-00-SL                | Surface            | 9.2E-02               |          |            | 9.15E-02              |           |                 |
| EP-08-00-SL                | Surface            | 1.2E-02               |          |            | 1.19E-02              |           |                 |
| EP-09-00-SL                | Surface            | 3.0E-02               | -6.2E-03 | 8.0E-03    | 3.01E-02              | -6.18E-03 | 7.98E-03        |
| EP-10-00-SL                | Surface            | 1.8E+00               | 1.0E-01  | 4.5E-03    | 1.80E+00              | 1.03E-01  | 4.50E-03        |
| EP-11-00-SL                | Surface            | -6.2E-02              | 5.3E-03  | 1.1E-02    | -6.15E-02             | 5.28E-03  | 1.05E-02        |
| EP-12-00-SL                | Surface            | 3.9E-01               | 1.1E-02  | 4.5E-03    | 3.89E-01              | 1.13E-02  | 4.53E-03        |

### Attachment 10 to HEM-11-91 Page 17 of 43

# Insignificant Radionulides - 20110223 R2.xlsx DRAFT

|                                            |                    | Am-241              | Np-237  | Pu-239/240 | Am-241                | Np-237  | Pu-239/240 |
|--------------------------------------------|--------------------|---------------------|---------|------------|-----------------------|---------|------------|
| Sample ID                                  | CSM                | (pCi/g)             | (pCi/g) | (pCi/g)    | (pCi/g)               | (pCi/g) | (pCi/g)    |
| FS-19-1-BIA-1-SO-1                         | Surface            | 4.0E-04             |         | —          | 4.00E-04              |         |            |
| FS-19-1-BIA-2-SO-1                         | Surface            | 4.9E-02             | —       | —          | 4.90E-02              |         | —          |
| FS-19-1-BIA-3-SO-1                         | Surface            | -7.0E-02            |         | —          | -7.00E-02             |         | —          |
| FS-19-1-BIA-4-SO-1                         | Surface            | -1.5E-02            |         | —          | -1.50E-02             |         |            |
| FS-19-1-BIA-5-SO-1                         | Surface            | -1.3E-01            |         | —          | -1.30E-01             |         | —          |
| FS-19-1-SYS-10-SO-1                        | Surface            | -6.0E-03            |         | —          | -6.00E-03             |         | —          |
| FS-19-1-SYS-11-SO-1                        | Surface            | 4.0E-03             | _       | —          | 4.00E-03              |         | —          |
| FS-19-1-SYS-12-SO-1                        | Surface            | 3.2E-02             | _       | —          | 3.20E-02              | —       | —          |
| FS-19-1-SYS-13-SO-1                        | Surface            | 8.0E-04             | _       | —          | 8.00E-04              |         | —          |
| FS-19-1-SYS-14-SO-1                        | Surface            | -1.4E-02            |         | —          | -1.40E-02             |         | —          |
| FS-19-1-SYS-15-SO-1<br>FS-19-1-SYS-16-SO-1 | Surface<br>Surface | 9.0E-03<br>-5.4E-02 |         |            | 9.00E-03<br>-5.40E-02 |         |            |
| FS-19-1-SYS-17-SO-1                        | Surface            | -3.4E-02<br>1.2E-02 |         |            | -3.40E-02<br>1.20E-02 |         |            |
| FS-19-1-SYS-18-SO-1                        | Surface            | 3.6E-02             |         |            | 3.60E-02              |         |            |
| FS-19-1-SYS-19-SO-1                        | Surface            | -4.0E-02            |         |            | -4.00E-02             |         |            |
| FS-19-1-SYS-1-SO-1                         | Surface            | 1.1E-02             |         |            | 1.10E-02              |         |            |
| FS-19-1-SYS-20-SO-1                        | Surface            | 4.0E-03             |         |            | 4.00E-03              |         |            |
| FS-19-1-SYS-21-SO-1                        | Surface            | -1.3E-02            |         |            | -1.30E-02             |         |            |
| FS-19-1-SYS-22-SO-1                        | Surface            | 6.0E-03             |         |            | 6.00E-02              |         |            |
| FS-19-1-SYS-2-SO-1                         | Surface            | 0.0E-03<br>1.4E-02  |         |            | 0.00E-03<br>1.40E-02  |         |            |
| FS-19-1-SYS-3-SO-1                         |                    | 1.4E-02<br>1.5E-02  |         |            | 1.40E-02<br>1.50E-02  |         | —          |
| FS-19-1-SYS-4-SO-1                         | Surface            |                     |         | —          |                       |         | —          |
|                                            | Surface            | 1.6E-02             |         |            | 1.60E-02              |         |            |
| FS-19-1-SYS-5-SO-1                         | Surface            | -5.0E-03            |         | —          | -5.00E-03             |         | —          |
| FS-19-1-SYS-6-SO-1                         | Surface            | 1.2E-02             |         | —          | 1.20E-02              |         | —          |
| FS-19-1-SYS-7-SO-1                         | Surface            | -5.0E-05            | _       | —          | -5.00E-05             |         | —          |
| FS-19-1-SYS-8-SO-1                         | Surface            | -4.9E-02            | _       | —          | -4.90E-02             |         | —          |
| FS-19-1-SYS-9-SO-1                         | Surface            | 3.5E-02             | _       | —          | 3.50E-02              |         | —          |
| FS-19-2-SYS-01-SO-1                        | Surface            | -4.0E-02            | _       | —          | -4.00E-02             |         | —          |
| FS-19-2-SYS-02-SO-1                        | Surface            | 3.0E-04             |         | —          | 3.00E-04              |         |            |
| FS-19-2-SYS-03-SO-1                        | Surface            | 8.0E-03             | _       | —          | 8.00E-03              |         | —          |
| FS-19-2-SYS-04-SO-1                        | Surface            | 2.5E-02             | _       | —          | 2.50E-02              |         | —          |
| FS-19-2-SYS-05-SO-1                        | Surface            | 1.6E-02             | _       | —          | 1.60E-02              | —       | —          |
| FS-19-2-SYS-06-SO-1                        | Surface            | -1.2E-02            |         |            | -1.20E-02             | _       | —          |
| FS-19-2-SYS-09-SO-1                        | Surface            | 9.0E-03             |         |            | 9.00E-03              |         |            |
| FS-19-2-SYS-10-SO-1                        | Surface            | 6.0E-04             |         |            | 6.00E-04              |         |            |
| FS-19-2-SYS-11-SO-1                        | Surface            | 9.0E-03             |         | —          | 9.00E-03              | _       | —          |
| FS-19-2-SYS-12-SO-1                        | Surface            | 8.0E-03             | _       | —          | 8.00E-03              | _       |            |
| FS-19-2-SYS-13-SO-1                        | Surface            | 3.8E-02             | _       | —          | 3.80E-02              |         |            |
| FS-19-2-SYS-14-SO-1                        | Surface            | 3.0E-03             |         | —          | 3.00E-03              |         |            |
| FS-19-2-SYS-15-SO-1                        | Surface            | 9.0E-03             |         | —          | 9.00E-03              | _       |            |
| FS-19-2-SYS-16-SO-1                        | Surface            | -1.4E-02            |         | —          | -1.40E-02             |         |            |
| FS-19-2-SYS-17-SO-1                        | Surface            | -1.4E-02            | _       |            | -1.40E-02             |         | —          |
| FS-19-2-SYS-18-SO-1                        | Surface            | 2.5E-02             | _       |            | 2.50E-02              |         | —          |
| FS-19-2-SYS-19-SO-1                        | Surface            | -1.8E-02            | _       |            | -1.80E-02             |         |            |
| FS-19-2-SYS-20-SO-1                        | Surface            | -1.5E-02            |         |            | -1.50E-02             |         |            |
| FS-19-2-SYS-21-SO-1                        | Surface            | 1.1E-02             |         |            | 1.10E-02              |         |            |
| FS-19-2-SYS-22-SO-1                        | Surface            | 1.5E-02             |         | _          | 1.50E-02              |         |            |
| FS-19-2-SYS-7-SO-1                         | Surface            | -1.4E-02            |         |            | -1.40E-02             |         |            |
| FS-19-2-SYS-8-SO-1                         | Surface            | -4.0E-03            |         |            | -4.00E-02             |         |            |
| LF-01-00-SL                                | Surface            | -4.0E-03            |         |            | -4.00E-05             |         | _          |
| L1-01-00-SL                                | Surface            | -1.1E-01            |         |            | -1.10E-01             |         |            |

## Attachment 10 to HEM-11-91 Page 18 of 43

# Insignificant Radionulides - 20110223 R2.xlsx DRAFT

|               |         | Am-241   | Np-237   | Pu-239/240 | Am-241    | Np-237    | Pu-239/240 |
|---------------|---------|----------|----------|------------|-----------|-----------|------------|
| Sample ID     | CSM     | (pCi/g)  | (pCi/g)  | (pCi/g)    | (pCi/g)   | (pCi/g)   | (pCi/g)    |
| LF-02-00-SL   | Surface | 1.4E-02  |          |            | 1.43E-02  |           | —          |
| LF-03-00-SL   | Surface | 4.0E-02  |          |            | 4.03E-02  |           | —          |
| LF-04-00-SL   | Surface | 3.0E-01  |          |            | 2.99E-01  |           | —          |
| LF-05-00-SL   | Surface | 2.6E-02  |          |            | 2.59E-02  |           | —          |
| NB-10-00-SL   | Surface | -9.8E-02 | —        |            | -9.80E-02 | ·         |            |
| NB-102-0.5-SL | Surface | -1.5E-02 | 3.5E-02  | -5.8E-03   | -1.50E-02 | 3.50E-02  | -5.80E-03  |
| NB-104-0.5-SL | Surface | 1.5E-01  | 2.4E-02  | 3.4E-02    | 1.50E-01  | 2.40E-02  | 3.40E-02   |
| NB-107-0.5-SL | Surface | -6.0E-02 | 7.0E-04  | -2.4E-02   | -6.00E-02 | 7.00E-04  | -2.40E-02  |
| NB-108-0.5-SL | Surface | 5.0E-02  | 6.0E-03  | 1.1E-02    | 5.00E-02  | 6.00E-03  | 1.10E-02   |
| NB-109-0.5-SL | Surface | 7.0E-02  | 3.9E-02  | 6.0E-04    | 7.00E-02  | 3.90E-02  | 6.00E-04   |
| NB-110-0.5-SL | Surface | 7.0E-02  | -1.4E-02 | 3.0E-03    | 7.00E-02  | -1.40E-02 | 3.00E-03   |
| NB-11-00-SL   | Surface | 6.4E-02  | 2.6E-03  | 1.2E-02    | 6.38E-02  | 2.56E-03  | 1.20E-02   |
| NB-111-0.5-SL | Surface | 1.0E-02  | -1.0E-02 | -9.0E-03   | 1.00E-02  | -1.00E-02 | -9.00E-03  |
| NB-116-0.5-SL | Surface | 9.0E-02  | -1.1E-02 | -2.0E-03   | 9.00E-02  | -1.10E-02 | -2.00E-03  |
| NB-118-0.5-SL | Surface | 3.0E-02  | -6.0E-03 | 5.0E-03    | 3.00E-02  | -6.00E-03 | 5.00E-03   |
| NB-119-0.5-SL | Surface | 3.0E-02  | 1.5E-02  | -9.0E-03   | 3.00E-02  | 1.50E-02  | -9.00E-03  |
| NB-120-0.5-SL | Surface | -2.0E-02 | 0.0E+00  | 4.4E-02    | -2.00E-02 | 0.00E+00  | 4.40E-02   |
| NB-12-00-SL   | Surface | 1.3E-02  | -2.9E-03 | 7.1E-03    | 1.33E-02  | -2.92E-03 | 7.12E-03   |
| NB-122-0.5-SL | Surface | 1.1E-02  | 7.0E-03  | -1.2E-02   | 1.10E-02  | 7.00E-03  | -1.20E-02  |
| NB-123-0.5-SL | Surface | 1.0E-01  | 7.0E-03  | -4.0E-03   | 1.00E-01  | 7.00E-03  | -4.00E-03  |
| NB-124-0.5-SL | Surface | -1.0E-02 | 1.0E-03  | 2.1E-02    | -1.00E-02 | 1.00E-03  | 2.10E-02   |
| NB-125-0.5-SL | Surface | 5.0E-02  | 1.0E-02  | -4.0E-03   | 5.00E-02  | 1.00E-02  | -4.00E-03  |
| NB-126-0.5-SL | Surface | -6.0E-02 | 8.0E-03  | -1.5E-02   | -6.00E-02 | 8.00E-03  | -1.50E-02  |
| NB-128-0.5-SL | Surface | 1.6E-02  | 1.0E-02  | 1.7E-02    | 1.63E-02  | 1.00E-02  | 1.70E-02   |
| NB-129-0.5-SL | Surface | -2.0E-02 | 2.7E-02  | -1.0E-02   | -2.00E-02 | 2.70E-02  | -1.00E-02  |
| NB-130-0.5-SL | Surface | -4.0E-02 | -1.0E-02 | 0.0E+00    | -4.00E-02 | -1.00E-02 | 0.00E+00   |
| NB-13-00-SL   | Surface | 6.9E-02  | _        |            | 6.86E-02  |           |            |
| NB-131-0.5-SL | Surface | 1.8E-02  | 1.1E-02  | -2.0E-03   | 1.80E-02  | 1.10E-02  | -2.00E-03  |
| NB-134-0.5-SL | Surface | 1.0E-02  | 1.1E-02  | 2.8E-02    | 1.00E-02  | 1.10E-02  | 2.80E-02   |
| NB-135-0.5-SL | Surface | -3.0E-02 | 6.0E-04  | 1.8E-02    | -3.00E-02 | 6.00E-04  | 1.80E-02   |
| NB-136-0.5-SL | Surface | 2.0E-02  | -3.6E-03 | 1.1E-02    | 2.00E-02  | -3.60E-03 | 1.10E-02   |
| NB-137-0.5-SL | Surface | 1.0E-02  | 5.0E-03  | -1.3E-02   | 1.00E-02  | 5.00E-03  | -1.30E-02  |
| NB-138-0.5-SL | Surface | -1.2E-02 | -5.0E-03 | -5.0E-03   | -1.20E-02 | -5.00E-03 | -5.00E-03  |
| NB-139-0.5-SL | Surface | 1.0E-01  | 5.0E-03  | -3.0E-03   | 1.00E-01  | 5.00E-03  | -3.00E-03  |
| NB-140-0.5-SL | Surface | 3.0E-02  | 6.0E-04  | 1.5E-02    | 3.00E-02  | 6.00E-04  | 1.50E-02   |
| NB-14-00-SL   | Surface | -6.3E-01 | 1.6E-03  | -1.7E-03   | -6.27E-01 | 1.56E-03  | -1.73E-03  |
| NB-141-0.5-SL | Surface | 8.0E-03  | -9.6E-03 | -7.2E-03   | 8.00E-03  | -9.60E-03 | -7.20E-03  |
| NB-142-0.5-SL | Surface | 5.0E-02  | -8.8E-03 | 2.0E-02    | 5.00E-02  | -8.80E-03 | 2.00E-02   |
| NB-143-0.5-SL | Surface | 8.0E-02  | 1.3E-02  | 1.3E-02    | 8.00E-02  | 1.30E-02  | 1.30E-02   |
| NB-144-0.5-SL | Surface | -8.0E-03 | 6.8E-02  | -2.6E-02   | -8.00E-03 | 6.80E-02  | -2.60E-02  |
| NB-15-00-SL   | Surface | 3.7E-01  |          |            | 3.68E-01  |           | —          |
| NB-20-00-SL   | Surface | 1.2E-02  |          |            | 1.18E-02  | —         | —          |
| NB-21-00-SL   | Surface | 9.3E-02  |          |            | 9.26E-02  |           | —          |
| NB-88-0.5-SL  | Surface | -4.0E-03 | 9.0E-04  | 1.1E-02    | -4.00E-03 | 9.00E-04  | 1.10E-02   |
| NB-89-0.5-SL  | Surface | 6.9E-02  | 3.6E-02  | 6.0E-03    | 6.90E-02  | 3.60E-02  | 6.00E-03   |
| NB-91-0.5-SL  | Surface | -4.0E-03 | 2.1E-02  | -3.7E-03   | -4.00E-03 | 2.10E-02  | -3.70E-03  |
| NB-93-0.5-SL  | Surface | 3.5E-02  | 5.0E-03  | 6.0E-04    | 3.50E-02  | 5.00E-03  | 6.00E-04   |
| NB-96-0.5-SL  | Surface | 3.0E-03  | -5.0E-03 | 6.0E-04    | 3.00E-03  | -5.00E-03 | 6.00E-04   |
| NB-97-0.5-SL  | Surface | -9.0E-02 | -7.5E-03 | 9.0E-03    | -9.00E-02 | -7.50E-03 | 9.00E-03   |

## Attachment 10 to HEM-11-91 Page 19 of 43

# Insignificant Radionulides - 20110223 R2.xlsx DRAFT

|              |         | Am-241   | Np-237   | Pu-239/240 | Am-241    | Np-237    | Pu-239/240 |
|--------------|---------|----------|----------|------------|-----------|-----------|------------|
| Sample ID    | CSM     | (pCi/g)  | (pCi/g)  | (pCi/g)    | (pCi/g)   | (pCi/g)   | (pCi/g)    |
| NB-98-0.5-SL | Surface | -6.0E-02 | -7.5E-03 | 2.9E-02    | -6.00E-02 | -7.50E-03 | 2.90E-02   |
| OA-01-00-SL  | Surface | -2.5E-02 | 1.6E-02  | 1.4E-02    | -2.46E-02 | 1.60E-02  | 1.44E-02   |
| OA-02-00-SL  | Surface | 1.4E-01  | 1.0E-02  | 5.0E-03    | 1.35E-01  | 1.01E-02  | 5.03E-03   |
| OA-03-00-SL  | Surface | -2.9E-01 |          | —          | -2.92E-01 |           | —          |
| OA-04-00-SL  | Surface | -1.8E+00 |          | —          | -1.77E+00 |           | —          |
| OA-05-00-SL  | Surface | 6.2E-02  |          | —          | 6.24E-02  |           | —          |
| OA-06-00-SL  | Surface | -1.8E-02 |          | —          | -1.76E-02 |           | —          |
| OA-07-00-SL  | Surface | 1.0E-01  | 3.3E-03  | 1.1E-03    | 1.03E-01  | 3.31E-03  | 1.13E-03   |
| OA-08-00-SL  | Surface | 9.8E-01  | 1.8E-02  | 6.3E-03    | 9.80E-01  | 1.84E-02  | 6.29E-03   |
| OA-09-00-SL  | Surface | -2.4E-01 |          |            | -2.35E-01 |           | —          |
| OA-10-00-SL  | Surface | -4.2E-01 |          | —          | -4.17E-01 |           | —          |
| OA-11-00-SL  | Surface | -1.0E-01 | 6.9E-03  | 8.4E-03    | -1.01E-01 | 6.94E-03  | 8.44E-03   |
| OA-12-00-SL  | Surface | -5.5E-01 |          | —          | -5.52E-01 |           | —          |
| OA-13-00-SL  | Surface | 8.1E-02  |          |            | 8.06E-02  |           | —          |
| OA-14-00-SL  | Surface | 3.7E-01  |          |            | 3.67E-01  |           | —          |
| OA-15-00-SL  | Surface | -2.4E-01 |          | — I        | -2.36E-01 |           | —          |
| OA-16-00-SL  | Surface | -1.9E-01 | 6.1E-03  | 2.0E-03    | -1.86E-01 | 6.14E-03  | 2.03E-03   |
| OA-20-00-SL  | Surface | 2.8E-01  |          |            | 2.79E-01  |           | _          |
| OA-21-00-SL  | Surface | 3.3E-01  |          |            | 3.34E-01  |           | —          |
| OA-22-00-SL  | Surface | 8.3E-02  | 2.7E-03  | 3.2E-03    | 8.27E-02  | 2.72E-03  | 3.22E-03   |
| OA-23-00-SL  | Surface | -5.1E-02 |          |            | -5.07E-02 |           | —          |
| OA-24-00-SL  | Surface | -4.6E-01 |          |            | -4.62E-01 |           | _          |
| OA-25-00-SL  | Surface | -1.3E-01 |          |            | -1.29E-01 |           | —          |
| OA-26-00-SL  | Surface | -1.1E-01 | 1.2E-01  | 3.4E-03    | -1.12E-01 | 1.19E-01  | 3.38E-03   |
| OA-27-00-SL  | Surface | 1.4E-01  |          |            | 1.39E-01  |           | —          |
| OA-28-00-SL  | Surface | 2.9E-02  |          |            | 2.92E-02  |           | —          |
| OA-29-00-SL  | Surface | -1.4E-01 |          | — I        | -1.39E-01 |           | —          |
| OA-30-00-SL  | Surface | -7.4E-02 |          |            | -7.44E-02 |           | _          |
| OA-31-00-SL  | Surface | 1.0E-01  |          |            | 1.01E-01  |           | _          |
| OA-32-00-SL  | Surface | -3.6E-02 |          |            | -3.58E-02 |           |            |
| OA-33-00-SL  | Surface | 4.7E-02  |          |            | 4.67E-02  |           | —          |
| OA-34-00-SL  | Surface | -2.6E-01 |          |            | -2.64E-01 |           | _          |
| OA-35-00-SL  | Surface | -4.3E-01 |          |            | -4.32E-01 |           | —          |
| OA-36-00-SL  | Surface | -5.7E-02 |          | — I        | -5.73E-02 |           | —          |
| OA-37-00-SL  | Surface | -7.0E-02 | 0.0E+00  | 8.7E-03    | -6.97E-02 | 0.00E+00  | 8.72E-03   |
| OA-38-00-SL  | Surface | 3.4E-03  |          | — I        | 3.41E-03  |           | —          |
| OA-39-00-SL  | Surface | 7.7E-03  |          |            | 7.69E-03  |           | —          |
| OA-40-00-SL  | Surface | 2.8E-02  |          |            | 2.81E-02  |           | _          |
| PL-01-00-SL  | Surface | 7.1E-02  | 1.0E-03  | 8.3E-03    | 7.09E-02  | 1.01E-03  | 8.26E-03   |
| PL-02-00-SL  | Surface | -8.2E-02 |          | _          | -8.18E-02 | _         |            |
| PL-03-00-SL  | Surface | 6.0E-02  |          |            | 6.02E-02  |           |            |
| RR-01-00-SL  | Surface | 8.6E-01  | 1.1E-01  | 8.0E-05    | 8.62E-01  | 1.08E-01  | 8.00E-05   |
| RR-02-00-SL  | Surface | 2.5E-01  | _        |            | 2.49E-01  |           |            |
| RR-03-00-SL  | Surface | 1.8E-01  |          |            | 1.82E-01  |           |            |
| SS-BP-001-SF | Surface | 3.0E-03  |          |            | 3.00E-03  |           |            |
| SS-BP-002-SF | Surface | 2.0E-03  |          |            | 2.00E-03  |           |            |
| SS-BP-002-SF | Surface | 3.0E-03  |          |            | 3.00E-03  |           |            |
| SS-BP-004-SF | Surface | 9.0E-02  |          |            | 9.00E-02  |           |            |
| SS-BP-005-SF | Surface | 2.1E-02  |          |            | 2.10E-02  |           |            |

### Attachment 10 to HEM-11-91 Page 20 of 43

# Insignificant Radionulides - 20110223 R2.xlsx DRAFT

| SS-BP-008-SF         Su           SS-BP-009-SF         Su           SS-BP-010-SF         Su           SS-BP-011-SF         Su           SS-BP-011-SF         Su           SS-BP-012-SF         Su           SS-BP-014-SF         Su           SS-BP-014-SF         Su           SS-BP-015-SF         Su           SS-BP-016-SF         Su           SS-BP-017-SF         Su           SS-BP-018-SF         Su           SS-BP-018-SF         Su           SS-BP-023-SF         Su           SS-BP-023-SF         Su           SS-BP-024-SF         Su           SS-BP-025-SF         Su           SS-BP-026-SF         Su           SS-BP-028A-SF         Su           SS-BP-028A-SF         Su           SS-BP-028A-SF         Su           SS-BP-028A-SF         Su           SS-BP-028B-SF         Su           SS-BP-028C-SF         Su | CSM<br>urface<br>urface<br>urface<br>urface<br>urface<br>urface<br>urface<br>urface<br>urface<br>urface<br>urface<br>urface<br>urface<br>urface<br>urface | (pCi/g)<br>1.8E-01<br>5.0E-02<br>-1.0E-02<br>4.6E-02<br>4.0E-02<br>9.0E-04<br>2.0E-02<br>-1.6E-02<br>1.1E-01<br>-1.0E-02<br>5.0E-02 | (pCi/g)<br> | (pCi/g)<br>—<br>—<br>—<br>—<br>—<br>—<br>—<br>—<br>— | (pCi/g)<br>1.80E-01<br>5.00E-02<br>-1.00E-02<br>4.60E-02<br>4.00E-02<br>9.00E-04<br>2.00E-02 | (pCi/g)<br> | (pCi/g)<br>—<br>—<br>—<br>—<br>—<br>— |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------|---------------------------------------|
| SS-BP-008-SF         Su           SS-BP-009-SF         Su           SS-BP-010-SF         Su           SS-BP-011-SF         Su           SS-BP-011-SF         Su           SS-BP-012-SF         Su           SS-BP-014-SF         Su           SS-BP-014-SF         Su           SS-BP-015-SF         Su           SS-BP-016-SF         Su           SS-BP-017-SF         Su           SS-BP-018-SF         Su           SS-BP-018-SF         Su           SS-BP-021-SF         Su           SS-BP-022-SF         Su           SS-BP-023-SF         Su           SS-BP-024-SF         Su           SS-BP-025-SF         Su           SS-BP-026-SF         Su           SS-BP-028A-SF         Su           SS-BP-028B-SF         Su           SS-BP-028B-SF         Su           SS-BP-028C-SF         Su                                     | urface<br>urface<br>urface<br>urface<br>urface<br>urface<br>urface<br>urface<br>urface<br>urface<br>urface<br>urface<br>urface<br>urface                  | 5.0E-02<br>-1.0E-02<br>4.6E-02<br>4.0E-02<br>9.0E-04<br>2.0E-02<br>-1.6E-02<br>1.1E-01<br>-1.0E-02                                  |             |                                                      | 5.00E-02<br>-1.00E-02<br>4.60E-02<br>4.00E-02<br>4.00E-02<br>9.00E-04                        |             |                                       |
| SS-BP-009-SF         Su           SS-BP-010-SF         Su           SS-BP-011-SF         Su           SS-BP-012-SF         Su           SS-BP-014-SF         Su           SS-BP-015-SF         Su           SS-BP-015-SF         Su           SS-BP-016-SF         Su           SS-BP-017-SF         Su           SS-BP-018-SF         Su           SS-BP-021-SF         Su           SS-BP-022-SF         Su           SS-BP-023-SF         Su           SS-BP-025-SF         Su           SS-BP-026-SF         Su           SS-BP-027-SF         Su           SS-BP-028A-SF         Su           SS-BP-028A-SF         Su           SS-BP-028C-SF         Su                                                                                                                                                                              | urface<br>urface<br>urface<br>urface<br>urface<br>urface<br>urface<br>urface<br>urface<br>urface<br>urface<br>urface                                      | -1.0E-02<br>4.6E-02<br>4.0E-02<br>9.0E-04<br>2.0E-02<br>-1.6E-02<br>1.1E-01<br>-1.0E-02                                             |             |                                                      | -1.00E-02<br>4.60E-02<br>4.00E-02<br>4.00E-02<br>9.00E-04                                    |             |                                       |
| SS-BP-010-SF         Su           SS-BP-011-SF         Su           SS-BP-012-SF         Su           SS-BP-014-SF         Su           SS-BP-015-SF         Su           SS-BP-015-SF         Su           SS-BP-016-SF         Su           SS-BP-016-SF         Su           SS-BP-017-SF         Su           SS-BP-018-SF         Su           SS-BP-021-SF         Su           SS-BP-022-SF         Su           SS-BP-023-SF         Su           SS-BP-025-SF         Su           SS-BP-026-SF         Su           SS-BP-027-SF         Su           SS-BP-028A-SF         Su           SS-BP-028A-SF         Su           SS-BP-028C-SF         Su                                                                                                                                                                              | urface<br>urface<br>urface<br>urface<br>urface<br>urface<br>urface<br>urface<br>urface<br>urface<br>urface                                                | 4.6E-02<br>4.0E-02<br>9.0E-04<br>2.0E-02<br>-1.6E-02<br>1.1E-01<br>-1.0E-02                                                         |             |                                                      | 4.60E-02<br>4.00E-02<br>4.00E-02<br>9.00E-04                                                 |             |                                       |
| SS-BP-011-SF         Su           SS-BP-012-SF         Su           SS-BP-014-SF         Su           SS-BP-015-SF         Su           SS-BP-016-SF         Su           SS-BP-016-SF         Su           SS-BP-017-SF         Su           SS-BP-018-SF         Su           SS-BP-018-SF         Su           SS-BP-021-SF         Su           SS-BP-023-SF         Su           SS-BP-023-SF         Su           SS-BP-025-SF         Su           SS-BP-026-SF         Su           SS-BP-027-SF         Su           SS-BP-028A-SF         Su           SS-BP-028B-SF         Su           SS-BP-028C-SF         Su                                                                                                                                                                                                                | urface<br>urface<br>urface<br>urface<br>urface<br>urface<br>urface<br>urface<br>urface<br>urface                                                          | 4.0E-02<br>4.0E-02<br>9.0E-04<br>2.0E-02<br>-1.6E-02<br>1.1E-01<br>-1.0E-02                                                         |             | —                                                    | 4.00E-02<br>4.00E-02<br>9.00E-04                                                             |             | <br>                                  |
| SS-BP-012-SF         Su           SS-BP-014-SF         Su           SS-BP-015-SF         Su           SS-BP-015-SF         Su           SS-BP-016-SF         Su           SS-BP-017-SF         Su           SS-BP-018-SF         Su           SS-BP-018-SF         Su           SS-BP-021-SF         Su           SS-BP-022-SF         Su           SS-BP-023-SF         Su           SS-BP-024-SF         Su           SS-BP-025-SF         Su           SS-BP-026-SF         Su           SS-BP-027-SF         Su           SS-BP-028A-SF         Su           SS-BP-028B-SF         Su           SS-BP-028C-SF         Su                                                                                                                                                                                                                | urface<br>urface<br>urface<br>urface<br>urface<br>urface<br>urface<br>urface<br>urface                                                                    | 4.0E-02<br>9.0E-04<br>2.0E-02<br>-1.6E-02<br>1.1E-01<br>-1.0E-02                                                                    |             | —                                                    | 4.00E-02<br>9.00E-04                                                                         |             |                                       |
| SS-BP-014-SF       Su         SS-BP-015-SF       Su         SS-BP-016-SF       Su         SS-BP-017-SF       Su         SS-BP-018-SF       Su         SS-BP-018-SF       Su         SS-BP-021-SF       Su         SS-BP-022-SF       Su         SS-BP-023-SF       Su         SS-BP-024-SF       Su         SS-BP-026-SF       Su         SS-BP-027-SF       Su         SS-BP-028A-SF       Su         SS-BP-028B-SF       Su         SS-BP-028C-SF       Su                                                                                                                                                                                                                                                                                                                                                                                | urface<br>urface<br>urface<br>urface<br>urface<br>urface<br>urface<br>urface                                                                              | 9.0E-04<br>2.0E-02<br>-1.6E-02<br>1.1E-01<br>-1.0E-02                                                                               |             | —                                                    | 9.00E-04                                                                                     |             |                                       |
| SS-BP-015-SF         Su           SS-BP-016-SF         Su           SS-BP-017-SF         Su           SS-BP-018-SF         Su           SS-BP-021-SF         Su           SS-BP-022-SF         Su           SS-BP-023-SF         Su           SS-BP-023-SF         Su           SS-BP-024-SF         Su           SS-BP-025-SF         Su           SS-BP-026-SF         Su           SS-BP-027-SF         Su           SS-BP-028A-SF         Su           SS-BP-028B-SF         Su           SS-BP-028C-SF         Su                                                                                                                                                                                                                                                                                                                      | urface<br>urface<br>urface<br>urface<br>urface<br>urface<br>urface                                                                                        | 2.0E-02<br>-1.6E-02<br>1.1E-01<br>-1.0E-02                                                                                          |             | —                                                    |                                                                                              |             |                                       |
| SS-BP-016-SF         Su           SS-BP-017-SF         Su           SS-BP-018-SF         Su           SS-BP-021-SF         Su           SS-BP-022-SF         Su           SS-BP-023-SF         Su           SS-BP-023-SF         Su           SS-BP-023-SF         Su           SS-BP-024-SF         Su           SS-BP-025-SF         Su           SS-BP-026-SF         Su           SS-BP-027-SF         Su           SS-BP-028A-SF         Su           SS-BP-028B-SF         Su           SS-BP-028C-SF         Su                                                                                                                                                                                                                                                                                                                      | urface<br>urface<br>urface<br>urface<br>urface<br>urface                                                                                                  | -1.6E-02<br>1.1E-01<br>-1.0E-02                                                                                                     |             | —                                                    | 2.00E-02                                                                                     |             | —                                     |
| SS-BP-017-SF         Su           SS-BP-018-SF         Su           SS-BP-021-SF         Su           SS-BP-022-SF         Su           SS-BP-023-SF         Su           SS-BP-023-SF         Su           SS-BP-023-SF         Su           SS-BP-024-SF         Su           SS-BP-026-SF         Su           SS-BP-026-SF         Su           SS-BP-027-SF         Su           SS-BP-028A-SF         Su           SS-BP-028B-SF         Su           SS-BP-028C-SF         Su                                                                                                                                                                                                                                                                                                                                                        | urface<br>urface<br>urface<br>urface<br>urface                                                                                                            | 1.1E-01<br>-1.0E-02                                                                                                                 |             |                                                      |                                                                                              |             |                                       |
| SS-BP-018-SF         Su           SS-BP-021-SF         Su           SS-BP-022-SF         Su           SS-BP-023-SF         Su           SS-BP-023-SF         Su           SS-BP-023-SF         Su           SS-BP-023-SF         Su           SS-BP-024-SF         Su           SS-BP-026-SF         Su           SS-BP-026-SF         Su           SS-BP-027-SF         Su           SS-BP-028A-SF         Su           SS-BP-028B-SF         Su           SS-BP-028C-SF         Su                                                                                                                                                                                                                                                                                                                                                        | ourface<br>ourface<br>ourface<br>ourface                                                                                                                  | -1.0E-02                                                                                                                            |             |                                                      | -1.60E-02                                                                                    |             |                                       |
| SS-BP-021-SF         Su           SS-BP-022-SF         Su           SS-BP-023-SF         Su           SS-BP-024-SF         Su           SS-BP-025-SF         Su           SS-BP-026-SF         Su           SS-BP-027-SF         Su           SS-BP-028A-SF         Su           SS-BP-028B-SF         Su           SS-BP-028C-SF         Su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | urface<br>burface<br>burface                                                                                                                              |                                                                                                                                     |             | _                                                    | 1.10E-01                                                                                     |             |                                       |
| SS-BP-021-SF         Su           SS-BP-022-SF         Su           SS-BP-023-SF         Su           SS-BP-024-SF         Su           SS-BP-025-SF         Su           SS-BP-026-SF         Su           SS-BP-027-SF         Su           SS-BP-028A-SF         Su           SS-BP-028B-SF         Su           SS-BP-028B-SF         Su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | urface<br>burface<br>burface                                                                                                                              | 5.0E-02                                                                                                                             |             | _                                                    | -1.00E-02                                                                                    |             |                                       |
| SS-BP-022-SF         Su           SS-BP-023-SF         Su           SS-BP-024-SF         Su           SS-BP-025-SF         Su           SS-BP-026-SF         Su           SS-BP-027-SF         Su           SS-BP-028A-SF         Su           SS-BP-028B-SF         Su           SS-BP-028C-SF         Su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | urface<br>urface                                                                                                                                          |                                                                                                                                     |             | _                                                    | 5.00E-02                                                                                     |             |                                       |
| SS-BP-023-SF         Su           SS-BP-024-SF         Su           SS-BP-025-SF         Su           SS-BP-026-SF         Su           SS-BP-027-SF         Su           SS-BP-027-SF         Su           SS-BP-028A-SF         Su           SS-BP-028B-SF         Su           SS-BP-028C-SF         Su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | urface                                                                                                                                                    | 6.0E-02                                                                                                                             |             | _                                                    | 6.00E-02                                                                                     |             |                                       |
| SS-BP-024-SF         Su           SS-BP-025-SF         Su           SS-BP-026-SF         Su           SS-BP-027-SF         Su           SS-BP-028A-SF         Su           SS-BP-028B-SF         Su           SS-BP-028C-SF         Su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                           | 6.0E-02                                                                                                                             |             | _                                                    | 6.00E-02                                                                                     |             |                                       |
| SS-BP-025-SF         Su           SS-BP-026-SF         Su           SS-BP-027-SF         Su           SS-BP-028A-SF         Su           SS-BP-028B-SF         Su           SS-BP-028C-SF         Su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                           | 4.0E-03                                                                                                                             | _           |                                                      | 4.00E-03                                                                                     |             |                                       |
| SS-BP-026-SF         Su           SS-BP-027-SF         Su           SS-BP-028A-SF         Su           SS-BP-028B-SF         Su           SS-BP-028C-SF         Su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | urface                                                                                                                                                    | 1.2E-02                                                                                                                             |             |                                                      | 1.20E-02                                                                                     |             |                                       |
| SS-BP-027-SF         Su           SS-BP-028A-SF         Su           SS-BP-028B-SF         Su           SS-BP-028C-SF         Su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | urface                                                                                                                                                    | 2.0E-02                                                                                                                             |             |                                                      | 2.00E-02                                                                                     |             |                                       |
| SS-BP-028A-SF Su<br>SS-BP-028B-SF Su<br>SS-BP-028C-SF Su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | urface                                                                                                                                                    | 9.2E-02                                                                                                                             | _           |                                                      | 9.20E-02                                                                                     |             |                                       |
| SS-BP-028B-SF Su<br>SS-BP-028C-SF Su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | urface                                                                                                                                                    | 1.3E-02                                                                                                                             | _           |                                                      | 1.30E-02                                                                                     |             |                                       |
| SS-BP-028C-SF Su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | urface                                                                                                                                                    | -7.0E-03                                                                                                                            |             |                                                      | -7.00E-03                                                                                    |             |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | urface                                                                                                                                                    | 1.0E-04                                                                                                                             | _           |                                                      | 1.00E-04                                                                                     |             |                                       |
| 00-DF-028-8F St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | urface                                                                                                                                                    | -5.0E-02                                                                                                                            | _           |                                                      | -5.00E-02                                                                                    |             |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | urface                                                                                                                                                    | 4.0E-02                                                                                                                             | _           |                                                      | 4.00E-02                                                                                     |             |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | urface                                                                                                                                                    | -4.0E-02                                                                                                                            |             |                                                      | -4.00E-02                                                                                    |             |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | urface                                                                                                                                                    | 4.0E-03                                                                                                                             | _           |                                                      | 4.00E-03                                                                                     |             |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | urface                                                                                                                                                    | -3.0E-02                                                                                                                            | _           |                                                      | -3.00E-02                                                                                    |             |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | urface                                                                                                                                                    | -4.0E-02                                                                                                                            | _           |                                                      | -4.00E-02                                                                                    |             |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | urface                                                                                                                                                    | -2.0E-03                                                                                                                            | _           |                                                      | -2.00E-03                                                                                    |             |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | urface                                                                                                                                                    | 0.0E+00                                                                                                                             |             |                                                      | 0.00E+00                                                                                     |             |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | urface                                                                                                                                                    | 0.0E+00                                                                                                                             | _           |                                                      | 0.00E+00                                                                                     |             |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | urface                                                                                                                                                    | 6.0E-02                                                                                                                             |             |                                                      | 6.00E-02                                                                                     |             |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | urface                                                                                                                                                    | -7.0E-03                                                                                                                            |             |                                                      | -7.00E-03                                                                                    |             |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | urface                                                                                                                                                    | 9.0E-02                                                                                                                             |             |                                                      | 9.00E-02                                                                                     |             |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | urface                                                                                                                                                    | 6.0E-02                                                                                                                             |             |                                                      | 6.00E-02                                                                                     |             |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | urface                                                                                                                                                    | 1.5E-02                                                                                                                             |             |                                                      | 1.50E-02                                                                                     |             | <u> </u>                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | urface                                                                                                                                                    | 1.5E-02                                                                                                                             |             |                                                      | 1.50E-02                                                                                     |             |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | urface                                                                                                                                                    | 0.0E+00                                                                                                                             |             |                                                      | 0.00E+00                                                                                     |             | <u> </u>                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | urface                                                                                                                                                    | -7.0E-02                                                                                                                            |             |                                                      | -7.00E-02                                                                                    |             |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | urface                                                                                                                                                    | 1.3E-01                                                                                                                             |             |                                                      | 1.30E-02                                                                                     |             |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | urface                                                                                                                                                    | 0.0E+00                                                                                                                             |             |                                                      | 0.00E+00                                                                                     |             |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | urface                                                                                                                                                    | 1.1E-02                                                                                                                             |             |                                                      | 0.00E+00<br>1.10E-02                                                                         |             | ╉─────┤                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | urface                                                                                                                                                    | -2.4E-02                                                                                                                            |             |                                                      | -2.40E-02                                                                                    |             | <u>+</u>                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | urface                                                                                                                                                    | 1.0E-03                                                                                                                             |             |                                                      | -2.40E-02<br>1.00E-03                                                                        |             | ╉────┤                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | urface                                                                                                                                                    | 8.0E-02                                                                                                                             |             |                                                      | 1.00E-03<br>8.00E-02                                                                         |             | ╉─────┤                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | urface                                                                                                                                                    | -9.0E-02                                                                                                                            |             |                                                      | -9.00E-02                                                                                    |             |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | urface                                                                                                                                                    | -9.0E-03<br>2.7E-01                                                                                                                 |             |                                                      | -9.00E-03<br>2.70E-01                                                                        |             | ╉────┤                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | urface                                                                                                                                                    | -3.0E-02                                                                                                                            |             |                                                      | -3.00E-01                                                                                    |             |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | undut                                                                                                                                                     | -3.0E-02<br>2.0E-02                                                                                                                 |             |                                                      |                                                                                              |             |                                       |
| SS-BP-061-SF St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | urface                                                                                                                                                    | 7 DE-07                                                                                                                             |             |                                                      | 2.00E-02                                                                                     |             | I I                                   |

### Attachment 10 to HEM-11-91 Page 21 of 43

# Insignificant Radionulides - 20110223 R2.xlsx DRAFT

|                              |         | Am-241              | Np-237  | Pu-239/240 | Am-241                 | Np-237  | Pu-239/240 |
|------------------------------|---------|---------------------|---------|------------|------------------------|---------|------------|
| Sample ID                    | CSM     | (pCi/g)             | (pCi/g) | (pCi/g)    | (pCi/g)                | (pCi/g) | (pCi/g)    |
| SS-BP-062-SF                 | Surface | 1.0E-03             | —       |            | 1.00E-03               |         |            |
| SS-BP-063-SF                 | Surface | -1.8E-02            |         | —          | -1.80E-02              |         | —          |
| SS-BP-064-SF                 | Surface | 5.0E-03             |         | —          | 5.00E-03               |         | —          |
| SS-BP-065-SF                 | Surface | 6.0E-03             |         | —          | 6.00E-03               |         | —          |
| SS-BP-066-SF                 | Surface | -1.5E-02            | _       | —          | -1.50E-02              |         | —          |
| SS-BP-067-SF                 | Surface | -9.0E-03            |         | —          | -9.00E-03              |         | —          |
| SS-BP-068-SF                 | Surface | -1.6E-02            | _       | —          | -1.60E-02              |         | —          |
| SS-BP-069-SF                 | Surface | -4.0E-03            | _       | —          | -4.00E-03              |         | —          |
| SS-BP-070-SF                 | Surface | 2.2E-02             |         | —          | 2.20E-02               |         | —          |
| SS-BP-071-SF                 | Surface | -2.8E-02            |         | —          | -2.80E-02              |         | —          |
| SS-BP-072-SF                 | Surface | 1.1E-02             |         | _          | 1.10E-02               |         |            |
| SS-BP-073-SF                 | Surface | -2.3E-02            |         | _          | -2.30E-02              |         | _          |
| SS-BP-074-SF                 | Surface | 5.0E-04             |         | _          | 5.00E-04               |         |            |
| SS-BP-075-SF                 | Surface | 4.0E-03             |         |            | 4.00E-03               |         |            |
| SS-BP-076-SF                 | Surface | 5.3E-02             |         | _          | 5.30E-02               |         |            |
| SS-BP-077-SF                 | Surface | 2.9E-02             | _       |            | 2.90E-02               |         |            |
| SS-BP-078-SF                 | Surface | -2.0E-02            | _       |            | -2.00E-02              |         |            |
| SS-BP-079-SF                 | Surface | 4.3E-02             | _       |            | 4.30E-02               |         |            |
| SS-BP-080-SF                 | Surface | -2.0E-02            | _       |            | -2.00E-02              |         |            |
| SS-BP-106-SF                 | Surface | 2.2E-02             |         |            | 2.20E-02               |         |            |
| SS-BP-107-SF                 | Surface | 1.1E-01             | _       |            | 1.10E-01               |         |            |
| SS-BP-108B-SF                | Surface | 0.0E+00             | _       |            | 0.00E+00               |         |            |
| SS-BP-108-SF                 | Surface | -3.0E-02            | _       |            | -3.00E-02              |         |            |
| SS-BP-109-SF                 | Surface | 2.0E-02             | _       |            | 2.00E-02               |         |            |
| SS-BP-110-SF                 | Surface | 7.0E-02             | _       |            | 7.00E-02               |         |            |
| SS-BP-111-SF                 | Surface | -5.0E-02            | _       |            | -5.00E-02              |         |            |
| SS-E.EVAP-001-SF             | Surface | -6.0E-02            | _       |            | -6.00E-02              |         |            |
| SS-GA-001-SF                 | Surface | 4.0E-03             | _       |            | 4.00E-03               |         |            |
| SS-GA-002-SF                 | Surface | 5.0E-02             |         |            | 5.00E-02               |         |            |
| SS-GA-004-SF                 | Surface | 2.2E-02             | _       |            | 2.20E-02               |         |            |
| SS-GA-005-SF                 | Surface | -2.5E-02            |         |            | -2.50E-02              |         |            |
| SS-GB-002-SF                 | Surface | -4.0E-03            |         |            | -4.00E-03              |         |            |
| SS-GB-003-SF                 | Surface | 1.4E-02             |         |            | 1.40E-02               |         |            |
| SS-GB-004-SF                 | Surface | -3.7E-02            |         |            | -3.70E-02              |         |            |
| SS-GB-006-SF                 | Surface | -5.0E-03            |         |            | -5.00E-03              |         | <u> </u>   |
| SS-GB-007-SF                 | Surface | 6.0E-03             |         |            | 6.00E-03               |         |            |
| SS-GB-009-SF                 | Surface | -8.0E-03            |         |            | -8.00E-03              |         |            |
| SS-GB-010-SF                 | Surface | 8.0E-03             |         |            | 8.00E-03               |         |            |
| SS-GB-012-SF                 | Surface | 2.9E-02             |         |            | 2.90E-02               |         |            |
| SS-GB-012-SF                 | Surface | 3.0E-03             |         |            | 2.90E-02<br>3.00E-03   |         | _          |
| SS-GB-015-SF                 | Surface | 7.0E-03             |         |            | 5.00E-03<br>7.00E-04   |         |            |
| SS-GB-016-SF                 | Surface | -1.4E-02            |         |            | -1.40E-04              |         |            |
| SS-GB-018-SF                 | Surface | -9.0E-03            |         |            | -1.40E-02<br>-9.00E-03 |         |            |
| SS-GB-019-SF                 | Surface | -9.0E-03            |         |            | -9.00E-03<br>-1.40E-02 |         |            |
| SS-GB-020-SF                 | Surface | -1.4E-02<br>2.6E-02 |         |            | -1.40E-02<br>2.60E-02  |         |            |
| SS-GB-020-SF                 | Surface | 5.1E-02             |         |            | 2.00E-02<br>5.10E-02   |         |            |
| SS-GB-021-SF                 | Surface | -9.0E-04            |         |            | -9.00E-04              |         |            |
| SS-GB-022-SF<br>SS-GB-023-SF | Surface | -9.0E-04<br>4.0E-03 |         |            | -9.00E-04<br>4.00E-03  |         |            |
| SS-GC-001-SF                 | Surface | -5.0E-03            |         |            | 4.00E-03               |         |            |

### Attachment 10 to HEM-11-91 Page 22 of 43

# Insignificant Radionulides - 20110223 R2.xlsx DRAFT

|                  |         | Am-241   | Np-237  | Pu-239/240 | Am-241    | Np-237  | Pu-239/240 |
|------------------|---------|----------|---------|------------|-----------|---------|------------|
| Sample ID        | CSM     | (pCi/g)  | (pCi/g) | (pCi/g)    | (pCi/g)   | (pCi/g) | (pCi/g)    |
| SS-GC-002-SF     | Surface | -7.0E-03 | _       |            | -7.00E-03 |         |            |
| SS-GC-004-SF     | Surface | -6.0E-03 | _       | —          | -6.00E-03 |         | —          |
| SS-GC-005-SF     | Surface | 5.0E-05  |         | —          | 5.00E-05  |         | —          |
| SS-GC-007-SF     | Surface | -9.0E-03 |         | —          | -9.00E-03 |         | —          |
| SS-GC-008-SF     | Surface | 7.0E-03  |         | —          | 7.00E-03  |         | —          |
| SS-GC-010-SF     | Surface | 4.0E-03  |         | —          | 4.00E-03  |         | —          |
| SS-GC-011-SF     | Surface | 8.0E-03  |         | —          | 8.00E-03  |         | —          |
| SS-GL-001-SF     | Surface | 2.0E-03  | _       | —          | 2.00E-03  |         | —          |
| SS-GL-002-SF     | Surface | -2.0E-03 |         | —          | -2.00E-03 |         | —          |
| SS-GL-003-SF     | Surface | -5.0E-03 |         | —          | -5.00E-03 |         | —          |
| SS-GL-004-SF     | Surface | -9.0E-04 |         | —          | -9.00E-04 |         | —          |
| SS-GL-005-SF     | Surface | -6.0E-03 |         |            | -6.00E-03 |         | —          |
| SS-GL-006-SF     | Surface | -3.0E-04 |         |            | -3.00E-04 |         | —          |
| SS-GL-007-SF     | Surface | 1.9E-02  |         |            | 1.90E-02  |         | —          |
| SS-GL-008-SF     | Surface | -1.1E-02 |         |            | -1.10E-02 |         | —          |
| SS-GL-009-SF     | Surface | 8.0E-03  |         |            | 8.00E-03  |         | —          |
| SS-GL-010-SF     | Surface | -1.5E-02 |         |            | -1.50E-02 |         | —          |
| SS-GL-011-SF     | Surface | -4.0E-02 |         |            | -4.00E-02 |         | —          |
| SS-GL-012-SF     | Surface | -2.1E-02 |         |            | -2.10E-02 |         | —          |
| SS-GL-013-SF     | Surface | -4.0E-03 |         |            | -4.00E-03 |         | —          |
| SS-GL-014-SF     | Surface | 5.0E-03  |         |            | 5.00E-03  |         | —          |
| SS-GL-015-SF     | Surface | -1.5E-02 |         |            | -1.50E-02 |         | —          |
| SS-GL-016-SF     | Surface | -3.2E-02 |         |            | -3.20E-02 |         | —          |
| SS-GL-017-SF     | Surface | 7.0E-03  |         |            | 7.00E-03  |         | —          |
| SS-GL-018-SF     | Surface | 2.0E-04  |         |            | 2.00E-04  |         | —          |
| SS-GL-019-SF     | Surface | 4.0E-03  |         | —          | 4.00E-03  |         | —          |
| SS-GL-020-SF     | Surface | -4.0E-03 |         |            | -4.00E-03 |         | —          |
| SS-GL-021-SF     | Surface | 2.0E-03  |         |            | 2.00E-03  |         | —          |
| SS-GL-022-SF     | Surface | 3.0E-04  |         |            | 3.00E-04  |         |            |
| SS-GL-023-SF     | Surface | -7.0E-03 |         |            | -7.00E-03 |         | —          |
| SS-GL-024-SF     | Surface | 1.1E-02  |         |            | 1.10E-02  |         | —          |
| SS-GL-025-SF     | Surface | -1.8E-02 |         |            | -1.80E-02 |         | —          |
| SS-GL-026-SF     | Surface | 3.0E-03  |         | —          | 3.00E-03  |         | —          |
| SS-GL-027-SF     | Surface | -3.0E-02 |         |            | -3.00E-02 |         | —          |
| SS-GL-028-SF     | Surface | -1.2E-02 |         |            | -1.20E-02 |         | —          |
| SS-GL-029-SF     | Surface | -1.5E-02 |         |            | -1.50E-02 |         |            |
| SS-GL-030-SF     | Surface | -1.0E-03 |         |            | -1.00E-03 |         | _          |
| SS-GL-031-SF     | Surface | -2.0E-03 |         | _          | -2.00E-03 |         |            |
| SS-GL-032-SF     | Surface | -5.0E-03 |         | _          | -5.00E-03 |         | _          |
| SS-GL-033-SF     | Surface | -3.3E-02 |         | _          | -3.30E-02 |         |            |
| SS-GL-034-SF     | Surface | 2.0E-03  |         | _          | 2.00E-03  | _       |            |
| SS-GL-035-SF     | Surface | 3.9E-02  |         | _          | 3.90E-02  |         | _          |
| SS-HS-001-SF     | Surface | 8.0E-03  |         | _          | 8.00E-03  |         |            |
| SS-HS-002-EL-0.5 | Surface | 8.0E-01  |         |            | 8.00E-01  | _       |            |
| SS-HS-002-SF     | Surface | -1.5E-01 |         |            | -1.50E-01 |         |            |
| SS-HS-003-SF     | Surface | -1.0E-02 |         | _          | -1.00E-01 |         |            |
| SS-HS-004-SF     | Surface | -2.8E-02 |         |            | -2.80E-02 |         |            |
| SS-HS-005-SF     | Surface | -2.0E-02 |         |            | -2.00E-02 |         |            |
| SS-HS-006-SF     | Surface | 8.0E-02  |         |            | 8.00E-02  |         |            |

## Attachment 10 to HEM-11-91 Page 23 of 43

# Insignificant Radionulides - 20110223 R2.xlsx DRAFT

|                      |         | Am-241   | Np-237   | Pu-239/240 | Am-241    | Np-237    | Pu-239/240 |
|----------------------|---------|----------|----------|------------|-----------|-----------|------------|
| Sample ID            | CSM     | (pCi/g)  | (pCi/g)  | (pCi/g)    | (pCi/g)   | (pCi/g)   | (pCi/g)    |
| SS-LA-006-SF         | Surface | 4.0E-02  | _        | —          | 4.00E-02  |           | —          |
| SS-LA-019-SF         | Surface | 1.5E-02  | _        |            | 1.50E-02  |           | —          |
| SS-LA-020-SF         | Surface | -7.0E-02 |          | —          | -7.00E-02 |           | —          |
| SS-LA-029-SF         | Surface | 2.0E-02  |          |            | 2.00E-02  |           | —          |
| SS-LA-035-SF         | Surface | -3.0E-02 |          | —          | -3.00E-02 |           | —          |
| SS-LA-036-SF         | Surface | 3.5E-02  | _        |            | 3.50E-02  |           | —          |
| SS-LA-050-SF         | Surface | 9.0E-02  |          | —          | 9.00E-02  |           | —          |
| SS-LA-059-SF         | Surface | 1.0E-01  |          |            | 1.00E-01  |           | —          |
| SS-LA-081-SF         | Surface | 7.0E-02  | _        | _          | 7.00E-02  |           | —          |
| SS-LA-082-SF         | Surface | 2.7E-02  | _        | _          | 2.70E-02  |           | —          |
| SS-LA-083-SF         | Surface | 8.0E-02  | _        |            | 8.00E-02  | _         | —          |
| SS-LA-084-SF         | Surface | -1.1E-02 |          |            | -1.10E-02 | _         | —          |
| SS-LA-085-SF         | Surface | 2.0E-02  |          |            | 2.00E-02  |           | —          |
| SS-LA-086-SF         | Surface | 3.8E-02  | _        |            | 3.80E-02  |           |            |
| SS-LA-087-SF         | Surface | -1.0E-01 |          | —          | -1.00E-01 |           | —          |
| SS-LA-089-SF         | Surface | -9.0E-02 | —        |            | -9.00E-02 | —         |            |
| SS-LA-090-SF         | Surface | 6.0E-04  | _        | _          | 6.00E-04  |           |            |
| SS-LA-091-SF         | Surface | -5.0E-02 |          | _          | -5.00E-02 |           | _          |
| SS-LA-092-SF         | Surface | 8.0E-02  |          | —          | 8.00E-02  |           | —          |
| SS-LA-093-SF         | Surface | 2.0E-02  |          | _          | 2.00E-02  |           |            |
| SS-LA-094-SF         | Surface | 1.2E-01  |          | —          | 1.20E-01  |           | —          |
| SS-LA-095-SF         | Surface | 1.4E-02  |          | _          | 1.40E-02  |           |            |
| SS-LA-096-SF         | Surface | 3.2E-02  |          | —          | 3.20E-02  |           | —          |
| SS-LA-097-SF         | Surface | 8.0E-03  |          | _          | 8.00E-03  |           | _          |
| SS-LA-098-SF         | Surface | -7.0E-03 |          | —          | -7.00E-03 |           | —          |
| SS-LA-099-SF         | Surface | -6.0E-02 |          | —          | -6.00E-02 |           | —          |
| SS-LA-100-SF         | Surface | -1.0E-02 |          | —          | -1.00E-02 |           | —          |
| SS-LF-101-SF         | Surface | 5.0E-03  |          | _          | 5.00E-03  |           | _          |
| SS-LF-102-SF         | Surface | 2.0E-04  |          | _          | 2.00E-04  |           |            |
| SS-LF-103-SF         | Surface | -2.0E-03 | _        |            | -2.00E-03 |           |            |
| SS-LF-104-SF         | Surface | -6.0E-04 |          |            | -6.00E-04 |           |            |
| SS-LF-105-SF         | Surface | 4.7E-02  | _        |            | 4.70E-02  |           |            |
| SS-W.EVAP-001-SF     | Surface | -4.0E-03 | _        |            | -4.00E-03 |           |            |
| SW-01-00-SL          | Surface | -2.8E-01 | 2.1E-02  | 9.2E-03    | -2.81E-01 | 2.11E-02  | 9.16E-03   |
| SW-01-SS             | Surface | 1.3E-01  | 3.3E-02  | 6.3E-03    | 1.28E-01  | 3.31E-02  | 6.25E-03   |
| SW-02-00-SL          | Surface | 1.4E-02  |          | _          | 1.38E-02  |           |            |
| SW-02-SS             | Surface | -1.2E-01 | 0.0E+00  | 1.8E-03    | -1.24E-01 | 0.00E+00  | 1.81E-03   |
| SW-03-00-SL          | Surface | -2.9E-01 |          |            | -2.85E-01 |           |            |
| SW-03-SS             | Surface | -2.0E-02 |          | —          | -2.02E-02 |           | —          |
| SW-04-00-SL          | Surface | -6.7E-02 |          | —          | -6.65E-02 |           |            |
| SW-04-SS             | Surface | -1.1E-01 |          |            | -1.07E-01 |           |            |
| SW-05-SS             | Surface | -4.9E-01 |          |            | -4.91E-01 |           |            |
| SW-06-SS             | Surface | 2.2E-01  | _        | _          | 2.23E-01  |           |            |
| SW-00-55<br>SW-07-SS | Surface | -1.8E-01 | 2.6E-02  | 3.0E-05    | -1.81E-01 | 2.63E-02  | 3.00E-05   |
| SW-11-SS             | Surface | 2.6E-02  |          | <u> </u>   | 2.56E-02  |           | —          |
| SW-11-55<br>SW-12-SS | Surface | -9.4E-02 | _        |            | -9.43E-02 |           |            |
| SW-12-55<br>SW-13-SS | Surface | 1.4E-01  | -8.6E-04 | 6.1E-03    | 1.42E-01  | -8.64E-04 | 6.10E-03   |
| SW-19-55<br>SW-14-SS | Surface | -3.5E-03 | 5.0E VY  |            | -3.53E-03 |           |            |
| BD-14-05-SL          | Root    | 4.8E-02  |          |            | 4.79E-02  |           |            |

## Attachment 10 to HEM-11-91 Page 24 of 43

# Insignificant Radionulides - 20110223 R2.xlsx DRAFT

| Sample ID           BD-15-05-SL           BD-16-05-SL           BD-17-2.5-SL           BD-17-4.5-SL           BD-17-4.5-SL | CSM<br>Root<br>Root<br>Root | <b>(pCi/g)</b><br>-1.8E-01 | (pCi/g)  | (pCi/g)  | $(\mathbf{n}\mathbf{C}; l_{\mathbf{c}})$ | ( ( ) )   |           |
|----------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------|----------|----------|------------------------------------------|-----------|-----------|
| BD-16-05-SL<br>BD-17-2.5-SL<br>BD-17-4.5-SL                                                                                | Root                        | -1.8E-01                   |          | (perg)   | (pCi/g)                                  | (pCi/g)   | (pCi/g)   |
| BD-17-2.5-SL<br>BD-17-4.5-SL                                                                                               |                             |                            |          | —        | -1.77E-01                                |           | —         |
| BD-17-4.5-SL                                                                                                               | Root                        | 2.2E-02                    | 1.1E-02  | 2.8E-03  | 2.15E-02                                 | 1.13E-02  | 2.78E-03  |
|                                                                                                                            |                             | -6.0E-02                   | 1.5E-02  | -1.0E-02 | -6.00E-02                                | 1.50E-02  | -1.00E-02 |
|                                                                                                                            | Root                        | -6.0E-02                   | 3.4E-02  | 3.0E-03  | -6.00E-02                                | 3.40E-02  | 3.00E-03  |
| BD-18-2.5-SL                                                                                                               | Root                        | 7.0E-02                    | -7.0E-03 | 1.5E-02  | 7.00E-02                                 | -7.00E-03 | 1.50E-02  |
| BD-18-4.5-SL                                                                                                               | Root                        | 3.0E-02                    |          | —        | 3.00E-02                                 |           | —         |
| BD-19-4.5-SL                                                                                                               | Root                        | 4.0E-03                    | _        | —        | 4.00E-03                                 |           | —         |
| BD-20-2.5-SL                                                                                                               | Root                        | 5.0E-02                    | -1.1E-02 | 9.0E-03  | 5.00E-02                                 | -1.10E-02 | 9.00E-03  |
| BD-20-4.5-SL                                                                                                               | Root                        | 5.0E-02                    |          | —        | 5.00E-02                                 |           | —         |
| BD-21-2.5-SL                                                                                                               | Root                        | 3.1E-02                    |          | —        | 3.14E-02                                 |           | —         |
| BD-21-4.5-SL                                                                                                               | Root                        | 5.0E-02                    | -1.0E-03 | -3.0E-03 | 5.00E-02                                 | -1.00E-03 | -3.00E-03 |
| BD-22-2.5-SL                                                                                                               | Root                        | -1.3E-02                   | 3.0E-03  | 1.7E-02  | -1.30E-02                                | 3.00E-03  | 1.70E-02  |
| BD-22-4.5-SL                                                                                                               | Root                        | 6.0E-02                    |          |          | 6.00E-02                                 |           | —         |
| BD-23-2.5-SL                                                                                                               | Root                        | 6.0E-02                    | 1.4E-02  | 9.0E-03  | 6.00E-02                                 | 1.40E-02  | 9.00E-03  |
| BD-23-4.5-SL                                                                                                               | Root                        | 2.0E-02                    |          |          | 2.00E-02                                 | —         | —         |
| BD-23-5-SL                                                                                                                 | Root                        | 9.0E-02                    |          |          | 9.00E-02                                 |           |           |
| BD-24-2.5-SL                                                                                                               | Root                        | -1.0E-02                   |          |          | -1.00E-02                                |           |           |
| BD-24-4.5-SL                                                                                                               | Root                        | 6.0E-02                    |          |          | 6.00E-02                                 |           | —         |
| BD-25-2.5-SL                                                                                                               | Root                        | 4.0E-03                    | 1.3E-02  | -3.9E-03 | 4.00E-03                                 | 1.30E-02  | -3.90E-03 |
| BD-25-4.5-SL                                                                                                               | Root                        | 1.0E-02                    |          |          | 1.00E-02                                 |           | —         |
| BD-26-2.5-SL                                                                                                               | Root                        | -6.0E-02                   | -1.7E-02 | -3.8E-03 | -6.00E-02                                | -1.70E-02 | -3.80E-03 |
| BD-26-4.5-SL                                                                                                               | Root                        | 8.0E-02                    | 2.9E-02  | -1.1E-02 | 8.00E-02                                 | 2.90E-02  | -1.13E-02 |
| BD-27-2.5-SL                                                                                                               | Root                        | -1.7E-02                   | -1.1E-02 | -5.4E-03 | -1.70E-02                                | -1.10E-02 | -5.40E-03 |
| BD-27-4.5-SL                                                                                                               | Root                        | 2.0E-02                    |          |          | 2.00E-02                                 |           | —         |
| BD-28-2.5-SL                                                                                                               | Root                        | -7.0E-02                   | _        |          | -7.00E-02                                |           | —         |
| BD-28-4.5-SL                                                                                                               | Root                        | 6.0E-02                    |          |          | 6.00E-02                                 |           |           |
| BD-29-2.5-SL                                                                                                               | Root                        | -6.0E-02                   | -1.2E-02 | -3.9E-03 | -6.00E-02                                | -1.19E-02 | -3.90E-03 |
| BD-29-4.5-SL                                                                                                               | Root                        | 2.0E-02                    | _        |          | 2.00E-02                                 |           | —         |
| BD-30-2.5-SL                                                                                                               | Root                        | 4.0E-02                    |          | _        | 4.00E-02                                 |           | —         |
| BD-30-4.5-SL                                                                                                               | Root                        | 3.8E-02                    | -6.0E-03 | -1.0E-02 | 3.80E-02                                 | -6.00E-03 | -1.02E-02 |
| BD-31-2.5-SL                                                                                                               | Root                        | 2.4E-02                    | -1.1E-02 | -5.0E-03 | 2.40E-02                                 | -1.07E-02 | -5.00E-03 |
| BD-31-4.5-SL                                                                                                               | Root                        | 5.0E-02                    |          |          | 5.00E-02                                 |           |           |
| BD-32-2.5-SL                                                                                                               | Root                        | 4.0E-02                    | -1.1E-02 | -1.8E-03 | 4.00E-02                                 | -1.07E-02 | -1.80E-03 |
| BD-32-4.5-SL                                                                                                               | Root                        | 7.0E-02                    |          |          | 7.00E-02                                 |           | —         |
| BD-33-2.5-SL                                                                                                               | Root                        | 1.0E-02                    | -9.5E-03 | 6.0E-03  | 1.00E-02                                 | -9.50E-03 | 6.00E-03  |
| BD-33-4.5-SL                                                                                                               | Root                        | 9.0E-02                    | _        | _        | 9.00E-02                                 | _         |           |
| BD-34-2.5-SL                                                                                                               | Root                        | 2.0E-02                    | 4.2E-01  | 2.7E-02  | 2.00E-02                                 | 4.20E-01  | 2.70E-02  |
| BD-34-4.5-SL                                                                                                               | Root                        | 2.0E-02                    | _        |          | 2.00E-02                                 |           |           |
| BD-35-2.5-SL                                                                                                               | Root                        | 2.8E-02                    | 6.0E-03  | 6.0E-03  | 2.80E-02                                 | 6.00E-03  | 6.00E-03  |
| BD-35-4.5-SL                                                                                                               | Root                        | -2.0E-02                   |          |          | -2.00E-02                                | _         |           |
| BD-36-4.5-SL                                                                                                               | Root                        | -6.0E-02                   | 1.2E-02  | 5.0E-03  | -6.00E-02                                | 1.20E-02  | 5.00E-03  |
| BD-37-2.5-SL                                                                                                               | Root                        | -3.0E-02                   | 5.0E-03  | 8.0E-03  | -3.00E-02                                | 5.00E-03  | 8.00E-03  |
| BD-37-4.5-SL                                                                                                               | Root                        | -2.0E-02                   |          |          | -2.00E-02                                |           |           |
| BD-37-5-SL                                                                                                                 | Root                        | -8.0E-02                   |          | _        | -8.00E-02                                | _         |           |
| BD-38-2.5-SL                                                                                                               | Root                        | 6.2E-02                    | -5.4E-03 | -3.9E-03 | 6.20E-02                                 | -5.40E-03 | -3.90E-03 |
| BD-38-4.5-SL                                                                                                               | Root                        | 3.0E-04                    |          |          | 3.00E-04                                 |           |           |
| BD-38-5-SL                                                                                                                 | Root                        | -3.0E-02                   | -5.0E-03 | -3.8E-03 | -3.00E-04                                | -5.00E-03 | -3.80E-03 |
| BD-39-2.5-SL                                                                                                               | Root                        | -5.0E-02                   | 5.0E-03  | -3.8E-03 | -5.00E-02                                | -3.00E-03 | -3.60E-03 |
| BD-39-4.5-SL                                                                                                               | Root                        | 5.0E-03                    | <u> </u> | 1.01.02  | -5.00E-03                                |           |           |

## Attachment 10 to HEM-11-91 Page 25 of 43

## Insignificant Radionulides - 20110223 R2.xlsx DRAFT

| Sample ID<br>BD-40-2.5-SL |      |          |          | Pu-239/240 | Am-241    | Np-237    | Pu-239/240 |
|---------------------------|------|----------|----------|------------|-----------|-----------|------------|
| BD-40-2.5-SL              | CSM  | (pCi/g)  | (pCi/g)  | (pCi/g)    | (pCi/g)   | (pCi/g)   | (pCi/g)    |
|                           | Root | 4.2E-02  | 6.0E-03  | 2.9E-02    | 4.20E-02  | 6.00E-03  | 2.90E-02   |
| BD-40-4.5-SL              | Root | 3.0E-02  | -1.1E-02 | -3.8E-02   | 3.00E-02  | -1.10E-02 | -3.80E-02  |
| BD-41-2.5-SL              | Root | 1.7E-02  | 8.0E-04  | -8.0E-03   | 1.70E-02  | 8.00E-04  | -8.00E-03  |
| BD-41-4.5-SL              | Root | 2.0E-02  |          | —          | 2.00E-02  |           | —          |
| BD-42-2.5-SL              | Root | 1.6E-02  |          | —          | 1.60E-02  |           | —          |
| BD-42-4.5-SL              | Root | 1.9E-02  | -5.0E-03 | 4.0E-03    | 1.90E-02  | -5.00E-03 | 4.00E-03   |
| BD-43-2.5-SL              | Root | 3.0E-02  | -1.1E-02 | -1.4E-02   | 3.00E-02  | -1.08E-02 | -1.40E-02  |
| BD-43-4.5-SL              | Root | 1.0E-02  |          | —          | 1.00E-02  |           | —          |
| BD-43-5-SL                | Root | -4.0E-02 |          | —          | -4.00E-02 |           | —          |
| BD-44-2.5-SL              | Root | 3.0E-02  | 7.0E-04  | -5.6E-03   | 3.00E-02  | 7.00E-04  | -5.60E-03  |
| BD-44-4.5-SL              | Root | 4.0E-03  |          | —          | 4.00E-03  |           | —          |
| BD-45-2.5-SL              | Root | 4.0E-03  | 3.0E-03  | -7.0E-03   | 4.00E-03  | 3.00E-03  | -7.00E-03  |
| BD-45-4.5-SL              | Root | -7.0E-02 |          |            | -7.00E-02 | _         |            |
| BD-46-2.5-SL              | Root | 2.0E-02  | 3.0E-03  | -5.0E-03   | 2.00E-02  | 3.00E-03  | -5.00E-03  |
| BD-46-4.5-SL              | Root | -1.1E-01 | _        |            | -1.10E-01 |           | —          |
| BD-46-5-SL                | Root | 9.0E-03  | _        |            | 9.00E-03  |           |            |
| BD-47-2.5-SL              | Root | 3.0E-02  | -6.0E-03 | 6.0E-04    | 3.00E-02  | -6.00E-03 | 6.00E-04   |
| BD-47-4.5-SL              | Root | 0.0E+00  |          |            | 0.00E+00  |           |            |
| BD-48-2.5-SL              | Root | 3.0E-04  | 0.0E+00  | 8.0E-03    | 3.00E-04  | 0.00E+00  | 8.00E-03   |
| BD-48-4.5-SL              | Root | 5.0E-02  |          |            | 5.00E-02  | _         |            |
| BLD240-01-01              | Root | 6.9E-03  | 2.2E-03  | 2.9E-03    | 6.92E-03  | 2.19E-03  | 2.92E-03   |
| BLD240-03-04              | Root | 2.1E-03  | 5.1E-03  | -1.1E-03   | 2.05E-03  | 5.07E-03  | -1.09E-03  |
| BLD240-04-02              | Root | 9.1E-03  | 1.4E-03  | 1.0E-03    | 9.12E-03  | 1.38E-03  | 1.03E-03   |
| BLD240-04-04              | Root | -2.9E-01 |          |            | -2.90E-01 |           |            |
| BLD240-05-01              | Root | -8.0E-02 |          |            | -8.00E-02 |           | —          |
| BLD240-05-02              | Root | 0.0E+00  | _        |            | 0.00E+00  |           | —          |
| BLD253-02-01              | Root | -6.0E-02 |          | —          | -6.00E-02 |           |            |
| BLD253-02-04              | Root | 3.2E-03  | 7.7E-03  | 9.6E-04    | 3.23E-03  | 7.72E-03  | 9.60E-04   |
| BLD255-07-02              | Root | 4.1E-03  | 1.8E-03  | 3.8E-03    | 4.08E-03  | 1.76E-03  | 3.80E-03   |
| BLD255-08-01              | Root | 4.1E-03  | 1.9E-02  | 5.1E-03    | 4.14E-03  | 1.92E-02  | 5.14E-03   |
| BLD260-06-01              | Root | 3.0E-03  | 2.0E-03  | 2.8E-03    | 2.95E-03  | 1.97E-03  | 2.77E-03   |
| BLD260-06-03              | Root | 1.0E-02  |          |            | 1.00E-02  |           | —          |
| BP-13-05-SL               | Root | 1.0E-02  |          |            | 1.01E-02  | _         | _          |
| BP-17-05-SL               | Root | -3.3E-02 |          | —          | -3.25E-02 |           |            |
| BP-18-05-SL               | Root | -3.0E-01 |          |            | -3.01E-01 |           |            |
| BP-19-05-SL               | Root | -3.6E-01 |          |            | -3.60E-01 |           | —          |
| BP-20-03-SL               | Root | -1.0E-01 |          |            | -9.97E-02 |           |            |
| BP-22-05-SL               | Root | 2.4E-01  |          |            | 2.44E-01  |           | _          |
| CB-02-05-SL               | Root | 1.7E-01  |          |            | 1.72E-01  |           |            |
| EP-13-03-SL               | Root | 7.5E-01  |          |            | 7.47E-01  |           |            |
| EP-14-05-SL               | Root | 6.3E-02  |          | _ 1        | 6.34E-02  |           | _          |
| EP-15-05-SL               | Root | 4.6E-01  |          |            | 4.63E-01  |           |            |
| EP-16-05-SL               | Root | -2.0E-02 |          |            | -2.03E-02 |           |            |
| EP-17-05-SL               | Root | -1.5E-03 | 1.2E-02  | 4.8E-03    | -1.46E-03 | 1.22E-02  | 4.79E-03   |
| EP-19-05-SL               | Root | -1.4E-01 |          |            | -1.44E-01 |           |            |
| EP-20-05-SL               | Root | 2.2E-02  |          |            | 2.16E-02  |           |            |
| FS-19-1-BIA-1-SO-2        | Root | 1.7E-02  |          | _          | 1.70E-02  |           | _          |
| FS-19-1-BIA-2-SO-2        | Root | -5.0E-03 |          |            | -5.00E-03 | _         | _          |
| FS-19-1-BIA-3-SO-2        | Root | -2.3E-02 |          |            | -2.30E-02 |           |            |

## Attachment 10 to HEM-11-91 Page 26 of 43

## Insignificant Radionulides - 20110223 R2.xlsx DRAFT

| Sample ID         C           FS-19-1-BIA-4-SO-2         Roo           FS-19-1-BIA-5-SO-2         Roo           FS-19-1-SYS-10-SO-2         Roo           FS-19-1-SYS-10-SO-2         Roo           FS-19-1-SYS-11-SO-2         Roo           FS-19-1-SYS-11-SO-2         Roo           FS-19-1-SYS-13-SO-2         Roo           FS-19-1-SYS-13-SO-2         Roo           FS-19-1-SYS-13-SO-2         Roo           FS-19-1-SYS-13-SO-2         Roo           FS-19-1-SYS-15-SO-2         Roo           FS-19-1-SYS-16-SO-2         Roo           FS-19-1-SYS-17-SO-2         Roo           FS-19-1-SYS-18-SO-2         Roo           FS-19-1-SYS-18-SO-2         Roo           FS-19-1-SYS-19-SO-2         Roo           FS-19-1-SYS-19-SO-2         Roo           FS-19-1-SYS-20-SO-2         Roo           FS-19-1-SYS-20-SO-2         Roo           FS-19-1-SYS-20-SO-2         Roo           FS-19-1-SYS-20-SO-2         Roo           FS-19-1-SYS-20-SO-2         Roo           FS-19-1-SYS-20-SO-2         Roo           FS-19-1-SYS-3-SO-2         Roo           FS-19-1-SYS-3-SO-2         Roo           FS-19-1-SYS-4-SO-2         R | t       9.0E         t       -3.5E         t       -3.0E         t       1.2E         t       9.0E         t       1.2E         t       9.0E         t       1.2E         t       1.8E         t       1.8E         t       1.5E         t       1.4E         t       2.2E         t       6.0E         t       -1.0E         t       -2.0E         t       9.0E         t       9.0E         t       8.0E | -02<br>-03<br>-02<br>-03<br>-02<br>-03<br>-02<br>-03<br>-02<br>-02<br>-02<br>-02<br>-02<br>-02<br>-02<br>-02<br>-03<br>-03<br>-03<br>-02<br>-03<br>-03<br>-02<br>-03<br>-02<br>-03<br>-02<br>-03                                                                                                        | (pCi/g)        | (pCi/g) | (pCi/g)<br>-1.50E-02<br>9.00E-03<br>-3.50E-02<br>-3.00E-03<br>1.20E-02<br>9.00E-03<br>-8.00E-03<br>1.80E-02<br>1.50E-02<br>1.40E-02<br>2.20E-02<br>6.00E-03<br>-1.00E-03 | (pCi/g)<br> | (pCi/g)  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|
| FS-19-1-BIA-5-SO-2         Roo           FS-19-1-SYS-10-SO-2         Roo           FS-19-1-SYS-11-SO-2         Roo           FS-19-1-SYS-11-SO-2         Roo           FS-19-1-SYS-12-SO-2         Roo           FS-19-1-SYS-13-SO-2         Roo           FS-19-1-SYS-13-SO-2         Roo           FS-19-1-SYS-13-SO-2         Roo           FS-19-1-SYS-14-SO-2         Roo           FS-19-1-SYS-15-SO-2         Roo           FS-19-1-SYS-16-SO-2         Roo           FS-19-1-SYS-17-SO-2         Roo           FS-19-1-SYS-18-SO-2         Roo           FS-19-1-SYS-19-SO-2         Roo           FS-19-1-SYS-19-SO-2         Roo           FS-19-1-SYS-19-SO-2         Roo           FS-19-1-SYS-20-SO-2         Roo           FS-19-1-SYS-21-SO-2         Roo           FS-19-1-SYS-20-SO-2         Roo           FS-19-1-SYS-20-SO-2         Roo           FS-19-1-SYS-20-SO-2         Roo           FS-19-1-SYS-20-SO-2         Roo           FS-19-1-SYS-3-SO-2         Roo           FS-19-1-SYS-4-SO-2         Roo                                                                                                               | t       9.0E.         t       -3.5E         t       -3.0E         t       1.2E.         t       9.0E.         t       1.2E.         t       9.0E.         t       1.8E.         t       1.8E.         t       1.5E.         t       1.4E.         t       2.2E.         t       6.0E.         t       -1.0E.         t       -2.0E.         t       9.0E.         t       9.0E.         t       8.0E.      | -03<br>-02<br>-03<br>-02<br>-03<br>-03<br>-03<br>-02<br>-02<br>-02<br>-02<br>-02<br>-02<br>-02<br>-02                                                                                                                                                                                                   | <br> <br> <br> |         | 9.00E-03<br>-3.50E-02<br>-3.00E-03<br>1.20E-02<br>9.00E-03<br>-8.00E-03<br>1.80E-02<br>1.50E-02<br>1.40E-02<br>2.20E-02<br>6.00E-03<br>-1.00E-03                         |             |          |
| FS-19-1-SYS-10-SO-2         Roo           FS-19-1-SYS-11-SO-2         Roo           FS-19-1-SYS-12-SO-2         Roo           FS-19-1-SYS-12-SO-2         Roo           FS-19-1-SYS-13-SO-2         Roo           FS-19-1-SYS-14-SO-2         Roo           FS-19-1-SYS-15-SO-2         Roo           FS-19-1-SYS-16-SO-2         Roo           FS-19-1-SYS-16-SO-2         Roo           FS-19-1-SYS-17-SO-2         Roo           FS-19-1-SYS-18-SO-2         Roo           FS-19-1-SYS-19-SO-2         Roo           FS-19-1-SYS-19-SO-2         Roo           FS-19-1-SYS-19-SO-2         Roo           FS-19-1-SYS-20-SO-2         Roo           FS-19-1-SYS-21-SO-2         Roo           FS-19-1-SYS-22-SO-2         Roo           FS-19-1-SYS-3-SO-2         Roo           FS-19-1-SYS-3-SO-2         Roo           FS-19-1-SYS-3-SO-2         Roo           FS-19-1-SYS-3-SO-2         Roo           FS-19-1-SYS-4-SO-2         Roo                                                                                                                                                                                                     | t     -3.5E       t     -3.0E       t     -3.0E       t     1.2E       t     9.0E       t     -8.0E       t     1.8E       t     1.5E       t     1.4E       t     2.2E       t     6.0E       t     -1.0E       t     -1.7E       t     -2.0E       t     9.0E       t     8.0E                                                                                                                           | 02          03          03          03          03          02          02          02          02          02          02          02          02          02          02          02          03          03          03          03          03          03          03                              | <br> <br> <br> |         | -3.50E-02<br>-3.00E-03<br>1.20E-02<br>9.00E-03<br>-8.00E-03<br>1.80E-02<br>1.50E-02<br>1.40E-02<br>2.20E-02<br>6.00E-03<br>-1.00E-03                                     |             |          |
| FS-19-1-SYS-11-SO-2         Roo           FS-19-1-SYS-12-SO-2         Roo           FS-19-1-SYS-13-SO-2         Roo           FS-19-1-SYS-13-SO-2         Roo           FS-19-1-SYS-14-SO-2         Roo           FS-19-1-SYS-15-SO-2         Roo           FS-19-1-SYS-16-SO-2         Roo           FS-19-1-SYS-16-SO-2         Roo           FS-19-1-SYS-17-SO-2         Roo           FS-19-1-SYS-18-SO-2         Roo           FS-19-1-SYS-19-SO-2         Roo           FS-19-1-SYS-19-SO-2         Roo           FS-19-1-SYS-20-SO-2         Roo           FS-19-1-SYS-21-SO-2         Roo           FS-19-1-SYS-22-SO-2         Roo           FS-19-1-SYS-2-SO-2         Roo           FS-19-1-SYS-3-SO-2         Roo           FS-19-1-SYS-3-SO-2         Roo           FS-19-1-SYS-3-SO-2         Roo                                                                                                                                                                                                                                                                                                                                  | t     -3.0E       t     1.2E       t     9.0E       t     -8.0E       t     1.8E       t     1.5E       t     1.4E       t     2.2E       t     6.0E       t     -1.0E       t     -2.0E       t     9.0E       t     8.0E                                                                                                                                                                                 | -03         -02         -03         -03         -02         -02         -02         -02         -02         -02         -03         -04         -05         -06         -07         -08         -09         -01         -02         -03         0-03         0-02         -03         0-03         0-03 | <br> <br> <br> |         | -3.00E-03<br>1.20E-02<br>9.00E-03<br>-8.00E-03<br>1.80E-02<br>1.50E-02<br>1.40E-02<br>2.20E-02<br>6.00E-03<br>-1.00E-03                                                  |             |          |
| FS-19-1-SYS-12-SO-2         Roo           FS-19-1-SYS-13-SO-2         Roo           FS-19-1-SYS-13-SO-2         Roo           FS-19-1-SYS-14-SO-2         Roo           FS-19-1-SYS-15-SO-2         Roo           FS-19-1-SYS-16-SO-2         Roo           FS-19-1-SYS-16-SO-2         Roo           FS-19-1-SYS-17-SO-2         Roo           FS-19-1-SYS-18-SO-2         Roo           FS-19-1-SYS-19-SO-2         Roo           FS-19-1-SYS-19-SO-2         Roo           FS-19-1-SYS-20-SO-2         Roo           FS-19-1-SYS-21-SO-2         Roo           FS-19-1-SYS-22-SO-2         Roo           FS-19-1-SYS-3-SO-2         Roo           FS-19-1-SYS-3-SO-2         Roo           FS-19-1-SYS-3-SO-2         Roo                                                                                                                                                                                                                                                                                                                                                                                                                     | t     1.2E       t     9.0E       t     -8.0E       t     1.8E       t     1.5E       t     1.4E       t     2.2E       t     6.0E       t     -1.0E       t     -2.0E       t     9.0E       t     8.0E                                                                                                                                                                                                   | -02<br>-03<br>-03<br>-02<br>-02<br>-02<br>-02<br>-02<br>-02<br>-02<br>-03<br>-03<br>-03<br>-03<br>-03<br>-03<br>-03<br>-03                                                                                                                                                                              |                |         | 1.20E-02         9.00E-03         -8.00E-03         1.80E-02         1.50E-02         1.40E-02         2.20E-02         6.00E-03         -1.00E-03                       |             |          |
| FS-19-1-SYS-13-SO-2         Roo           FS-19-1-SYS-14-SO-2         Roo           FS-19-1-SYS-15-SO-2         Roo           FS-19-1-SYS-15-SO-2         Roo           FS-19-1-SYS-16-SO-2         Roo           FS-19-1-SYS-17-SO-2         Roo           FS-19-1-SYS-17-SO-2         Roo           FS-19-1-SYS-18-SO-2         Roo           FS-19-1-SYS-19-SO-2         Roo           FS-19-1-SYS-19-SO-2         Roo           FS-19-1-SYS-20-SO-2         Roo           FS-19-1-SYS-21-SO-2         Roo           FS-19-1-SYS-22-SO-2         Roo           FS-19-1-SYS-3-SO-2         Roo           FS-19-1-SYS-3-SO-2         Roo           FS-19-1-SYS-3-SO-2         Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t     9.0E       t     -8.0E       t     1.8E       t     1.5E       t     1.4E       t     2.2E       t     6.0E       t     -1.0E       t     -2.0E       t     9.0E       t     8.0E                                                                                                                                                                                                                    | -03<br>-03<br>-02<br>-02<br>-02<br>-02<br>-02<br>-02<br>-03<br>-03<br>-03<br>-02<br>-03<br>-02<br>-03<br>-02                                                                                                                                                                                            |                |         | 9.00E-03<br>-8.00E-03<br>1.80E-02<br>1.50E-02<br>1.40E-02<br>2.20E-02<br>6.00E-03<br>-1.00E-03                                                                           |             |          |
| FS-19-1-SYS-14-SO-2         Roo           FS-19-1-SYS-15-SO-2         Roo           FS-19-1-SYS-16-SO-2         Roo           FS-19-1-SYS-16-SO-2         Roo           FS-19-1-SYS-17-SO-2         Roo           FS-19-1-SYS-18-SO-2         Roo           FS-19-1-SYS-19-SO-2         Roo           FS-19-1-SYS-19-SO-2         Roo           FS-19-1-SYS-19-SO-2         Roo           FS-19-1-SYS-20-SO-2         Roo           FS-19-1-SYS-21-SO-2         Roo           FS-19-1-SYS-22-SO-2         Roo           FS-19-1-SYS-3-SO-2         Roo           FS-19-1-SYS-3-SO-2         Roo           FS-19-1-SYS-4-SO-2         Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t     -8.0E       t     1.8E       t     1.5E       t     1.4E       t     2.2E       t     6.0E       t     -1.0E       t     -1.7E       t     -2.0E       t     9.0E       t     8.0E                                                                                                                                                                                                                   | -03<br>-02<br>-02<br>-02<br>-02<br>-03<br>-03<br>-03<br>-03<br>-02<br>-03<br>-02                                                                                                                                                                                                                        |                |         | -8.00E-03<br>1.80E-02<br>1.50E-02<br>1.40E-02<br>2.20E-02<br>6.00E-03<br>-1.00E-03                                                                                       |             |          |
| FS-19-1-SYS-15-SO-2         Roo           FS-19-1-SYS-16-SO-2         Roo           FS-19-1-SYS-17-SO-2         Roo           FS-19-1-SYS-17-SO-2         Roo           FS-19-1-SYS-18-SO-2         Roo           FS-19-1-SYS-19-SO-2         Roo           FS-19-1-SYS-19-SO-2         Roo           FS-19-1-SYS-1-SO-2         Roo           FS-19-1-SYS-20-SO-2         Roo           FS-19-1-SYS-21-SO-2         Roo           FS-19-1-SYS-22-SO-2         Roo           FS-19-1-SYS-2-SO-2         Roo           FS-19-1-SYS-3-SO-2         Roo           FS-19-1-SYS-4-SO-2         Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t     1.8E       t     1.5E       t     1.4E       t     2.2E       t     6.0E       t     -1.0E       t     -1.7E       t     -2.0E       t     9.0E       t     8.0E                                                                                                                                                                                                                                     | -02<br>-02<br>-02<br>-02<br>-03<br>2-03<br>2-03<br>2-02<br>2-03                                                                                                                                                                                                                                         |                |         | 1.80E-02           1.50E-02           1.40E-02           2.20E-02           6.00E-03           -1.00E-03                                                                 |             |          |
| FS-19-1-SYS-16-SO-2         Roo           FS-19-1-SYS-17-SO-2         Roo           FS-19-1-SYS-17-SO-2         Roo           FS-19-1-SYS-18-SO-2         Roo           FS-19-1-SYS-19-SO-2         Roo           FS-19-1-SYS-19-SO-2         Roo           FS-19-1-SYS-1-SO-2         Roo           FS-19-1-SYS-20-SO-2         Roo           FS-19-1-SYS-21-SO-2         Roo           FS-19-1-SYS-22-SO-2         Roo           FS-19-1-SYS-2-SO-2         Roo           FS-19-1-SYS-3-SO-2         Roo           FS-19-1-SYS-4-SO-2         Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t     1.5E       t     1.4E       t     2.2E       t     6.0E       t     -1.0E       t     -1.7E       t     -2.0E       t     9.0E       t     8.0E                                                                                                                                                                                                                                                      | -02<br>-02<br>-02<br>-03<br>2-03<br>2-03<br>2-02<br>2-03                                                                                                                                                                                                                                                |                |         | 1.50E-02           1.40E-02           2.20E-02           6.00E-03           -1.00E-03                                                                                    |             |          |
| FS-19-1-SYS-17-SO-2         Roo           FS-19-1-SYS-18-SO-2         Roo           FS-19-1-SYS-19-SO-2         Roo           FS-19-1-SYS-19-SO-2         Roo           FS-19-1-SYS-1-SO-2         Roo           FS-19-1-SYS-20-SO-2         Roo           FS-19-1-SYS-21-SO-2         Roo           FS-19-1-SYS-22-SO-2         Roo           FS-19-1-SYS-22-SO-2         Roo           FS-19-1-SYS-3-SO-2         Roo           FS-19-1-SYS-3-SO-2         Roo           FS-19-1-SYS-4-SO-2         Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t 1.4E<br>t 2.2E<br>t 6.0E<br>t -1.0E<br>t -1.7E<br>t -2.0E<br>t 9.0E<br>t 8.0E                                                                                                                                                                                                                                                                                                                            | -02<br>-02<br>-03<br>2-03<br>2-02<br>2-03                                                                                                                                                                                                                                                               |                |         | 1.40E-02<br>2.20E-02<br>6.00E-03<br>-1.00E-03                                                                                                                            |             |          |
| FS-19-1-SYS-18-SO-2         Roo           FS-19-1-SYS-19-SO-2         Roo           FS-19-1-SYS-1-SO-2         Roo           FS-19-1-SYS-20-SO-2         Roo           FS-19-1-SYS-21-SO-2         Roo           FS-19-1-SYS-22-SO-2         Roo           FS-19-1-SYS-22-SO-2         Roo           FS-19-1-SYS-2-SO-2         Roo           FS-19-1-SYS-2-SO-2         Roo           FS-19-1-SYS-3-SO-2         Roo           FS-19-1-SYS-3-SO-2         Roo           FS-19-1-SYS-4-SO-2         Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t 2.2E<br>t 6.0E<br>t -1.0E<br>t -1.7E<br>t -2.0E<br>t 9.0E<br>t 8.0E                                                                                                                                                                                                                                                                                                                                      | -02<br>-03<br>C-03<br>C-02<br>C-03                                                                                                                                                                                                                                                                      |                |         | 2.20E-02<br>6.00E-03<br>-1.00E-03                                                                                                                                        |             |          |
| FS-19-1-SYS-19-SO-2         Roo           FS-19-1-SYS-1-SO-2         Roo           FS-19-1-SYS-20-SO-2         Roo           FS-19-1-SYS-21-SO-2         Roo           FS-19-1-SYS-22-SO-2         Roo           FS-19-1-SYS-2-SO-2         Roo           FS-19-1-SYS-2-SO-2         Roo           FS-19-1-SYS-2-SO-2         Roo           FS-19-1-SYS-3-SO-2         Roo           FS-19-1-SYS-3-SO-2         Roo           FS-19-1-SYS-4-SO-2         Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t 6.0E<br>t -1.0E<br>t -1.7E<br>t -2.0E<br>t 9.0E<br>t 8.0E                                                                                                                                                                                                                                                                                                                                                | -03<br>2-03<br>2-02<br>2-03                                                                                                                                                                                                                                                                             |                |         | 6.00E-03<br>-1.00E-03                                                                                                                                                    |             |          |
| FS-19-1-SYS-1-SO-2         Roo           FS-19-1-SYS-20-SO-2         Roo           FS-19-1-SYS-21-SO-2         Roo           FS-19-1-SYS-22-SO-2         Roo           FS-19-1-SYS-2-SO-2         Roo           FS-19-1-SYS-3-SO-2         Roo           FS-19-1-SYS-3-SO-2         Roo           FS-19-1-SYS-3-SO-2         Roo           FS-19-1-SYS-3-SO-2         Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t -1.0E<br>t -1.7E<br>t -2.0E<br>t 9.0E<br>t 8.0E                                                                                                                                                                                                                                                                                                                                                          | 2-03<br>2-02<br>2-03                                                                                                                                                                                                                                                                                    |                |         | -1.00E-03                                                                                                                                                                |             |          |
| FS-19-1-SYS-20-SO-2         Roo           FS-19-1-SYS-21-SO-2         Roo           FS-19-1-SYS-22-SO-2         Roo           FS-19-1-SYS-2-SO-2         Roo           FS-19-1-SYS-3-SO-2         Roo           FS-19-1-SYS-3-SO-2         Roo           FS-19-1-SYS-4-SO-2         Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t -1.7E<br>t -2.0E<br>t 9.0E<br>t 8.0E                                                                                                                                                                                                                                                                                                                                                                     | E-02<br>E-03                                                                                                                                                                                                                                                                                            |                |         |                                                                                                                                                                          |             |          |
| FS-19-1-SYS-21-SO-2         Roo           FS-19-1-SYS-22-SO-2         Roo           FS-19-1-SYS-2-SO-2         Roo           FS-19-1-SYS-3-SO-2         Roo           FS-19-1-SYS-3-SO-2         Roo           FS-19-1-SYS-4-SO-2         Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t -2.0E<br>t 9.0E<br>t 8.0E                                                                                                                                                                                                                                                                                                                                                                                | 2-03                                                                                                                                                                                                                                                                                                    | —              |         |                                                                                                                                                                          |             | a — I    |
| FS-19-1-SYS-22-SO-2         Roo           FS-19-1-SYS-2-SO-2         Roo           FS-19-1-SYS-3-SO-2         Roo           FS-19-1-SYS-4-SO-2         Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t 9.0E<br>t 8.0E                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                         |                |         | -1.70E-02                                                                                                                                                                |             |          |
| FS-19-1-SYS-2-SO-2         Roo           FS-19-1-SYS-3-SO-2         Roo           FS-19-1-SYS-4-SO-2         Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | t 8.0E                                                                                                                                                                                                                                                                                                                                                                                                     | -03                                                                                                                                                                                                                                                                                                     |                |         | -2.00E-03                                                                                                                                                                |             |          |
| FS-19-1-SYS-3-SO-2 Roo<br>FS-19-1-SYS-4-SO-2 Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         |                | —       | 9.00E-03                                                                                                                                                                 |             |          |
| FS-19-1-SYS-4-SO-2 Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                            | -03                                                                                                                                                                                                                                                                                                     |                |         | 8.00E-03                                                                                                                                                                 |             |          |
| FS-19-1-SYS-4-SO-2 Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -2.0E                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                         |                |         | -2.00E-02                                                                                                                                                                |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         |                |         | 5.00E-03                                                                                                                                                                 |             | _        |
| $10^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         |                |         | -1.00E-02                                                                                                                                                                |             |          |
| FS-19-1-SYS-6-SO-2 Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         |                |         | -1.00E-02                                                                                                                                                                |             | _        |
| FS-19-1-SYS-7-SO-2 Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         |                |         | -1.00E-02                                                                                                                                                                |             |          |
| FS-19-1-SYS-8-SO-2 Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         |                |         | -2.00E-04                                                                                                                                                                |             | _        |
| FS-19-1-SYS-9-SO-2 Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         |                |         | 6.00E-03                                                                                                                                                                 |             |          |
| FS-19-2-SYS-01-SO-2 Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         |                |         | 2.00E-02                                                                                                                                                                 |             | _        |
| FS-19-2-SYS-02-SO-2 Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         |                |         | -5.00E-03                                                                                                                                                                |             |          |
| FS-19-2-SYS-03-SO-2 Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         |                |         | 4.00E-03                                                                                                                                                                 |             |          |
| FS-19-2-SYS-04-SO-2 Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         |                |         | 2.10E-02                                                                                                                                                                 |             | _        |
| FS-19-2-SYS-05-SO-2 Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                            | 2-04                                                                                                                                                                                                                                                                                                    |                |         | -6.00E-04                                                                                                                                                                |             |          |
| FS-19-2-SYS-06-SO-2 Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         |                |         | 1.80E-02                                                                                                                                                                 |             |          |
| FS-19-2-SYS-09-SO-2 Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         |                |         | -1.10E-02                                                                                                                                                                |             |          |
| FS-19-2-SYS-10-SO-2 Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         |                |         | 1.10E-02                                                                                                                                                                 |             |          |
| FS-19-2-SYS-11-SO-2 Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         |                |         | -3.20E-02                                                                                                                                                                |             |          |
| FS-19-2-SYS-12-SO-2 Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         | _              |         | 2.00E-03                                                                                                                                                                 |             |          |
| FS-19-2-SYS-13-SO-2 Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         |                |         | 1.30E-02                                                                                                                                                                 |             |          |
| FS-19-2-SYS-14-SO-2 Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         | _              | _       | 6.00E-03                                                                                                                                                                 | _           | _        |
| FS-19-2-SYS-15-SO-2 Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         | _              | _       | 2.00E-03                                                                                                                                                                 | _           |          |
| FS-19-2-SYS-16-SO-2 Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         | _              | _       | 1.30E-02                                                                                                                                                                 | _           |          |
| FS-19-2-SYS-17-SO-2 Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         | _              |         | -2.20E-02                                                                                                                                                                |             |          |
| FS-19-2-SYS-18-SO-2 Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         | _              | _       | 3.00E-03                                                                                                                                                                 | _           |          |
| FS-19-2-SYS-19-SO-2 Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         |                |         | -6.00E-03                                                                                                                                                                |             |          |
| FS-19-2-SYS-20-SO-2 Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         |                |         | 1.30E-02                                                                                                                                                                 |             |          |
| FS-19-2-SYS-21-SO-2 Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         |                |         | -1.00E-02                                                                                                                                                                |             |          |
| FS-19-2-SYS-22-SO-2 Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         |                |         | -1.00E-02<br>-2.40E-02                                                                                                                                                   |             | <b> </b> |
| FS-19-2-SYS-7-SO-2 Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         |                | _       | 1.00E-02                                                                                                                                                                 |             |          |
| FS-19-2-SYS-8-SO-2 Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         |                |         | 5.00E-03                                                                                                                                                                 |             | ┢━━━━┩   |
| LF-06-05-SL Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         | 4.1E-03        | 4.0E-03 | -8.55E-02                                                                                                                                                                | 4.12E-03    | 3.98E-03 |
| LF-08-05-SL Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         |                | 1.0L 0J | -0.33E-02<br>-9.02E-02                                                                                                                                                   |             |          |
| LF-09-03-SL Roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         |                |         | -7.05E-01                                                                                                                                                                |             |          |

#### Attachment 10 to HEM-11-91 Page 27 of 43

## Insignificant Radionulides - 20110223 R2.xlsx DRAFT

|               |      | Am-241   | Np-237   | Pu-239/240 | Am-241    | Np-237    | Pu-239/240 |
|---------------|------|----------|----------|------------|-----------|-----------|------------|
| Sample ID     | CSM  | (pCi/g)  | (pCi/g)  | (pCi/g)    | (pCi/g)   | (pCi/g)   | (pCi/g)    |
| NB-101-2.5-SL | Root | -2.0E-02 |          | —          | -2.00E-02 | _         | —          |
| NB-101-4.5-SL | Root | -1.1E-01 |          | —          | -1.10E-01 |           | —          |
| NB-102-4.5-SL | Root | 2.0E-02  |          | —          | 2.00E-02  |           | —          |
| NB-102-5-SL   | Root | 4.1E-02  |          | —          | 4.10E-02  |           | —          |
| NB-103-2.5-SL | Root | 8.0E-05  |          | —          | 8.00E-05  |           | —          |
| NB-103-4.5-SL | Root | 1.0E-02  | 3.0E-03  | -2.0E-03   | 1.00E-02  | 3.00E-03  | -2.00E-03  |
| NB-104-4.5-SL | Root | 2.0E-03  |          | —          | 2.00E-03  |           | —          |
| NB-105-4.5-SL | Root | 8.0E-02  |          |            | 8.00E-02  |           |            |
| NB-106-2.5-SL | Root | -1.4E-02 |          | —          | -1.40E-02 |           | —          |
| NB-106-4.5-SL | Root | 7.0E-02  | 2.0E-02  | -2.0E-02   | 7.00E-02  | 2.00E-02  | -2.00E-02  |
| NB-107-4.5-SL | Root | 2.6E-02  |          |            | 2.60E-02  |           |            |
| NB-108-4.5-SL | Root | 1.9E-01  |          |            | 1.90E-01  |           |            |
| NB-109-4.5-SL | Root | 3.0E-04  |          |            | 3.00E-04  |           |            |
| NB-109-5-SL   | Root | 3.0E-03  |          | _          | 3.00E-03  |           |            |
| NB-110-4.5-SL | Root | -3.0E-02 |          | _          | -3.00E-02 | _         | —          |
| NB-110-5-SL   | Root | -6.0E-02 |          | —          | -6.00E-02 | _         | —          |
| NB-111-4.5-SL | Root | 4.0E-02  |          |            | 4.00E-02  |           |            |
| NB-112-4.5-SL | Root | 2.0E-02  |          |            | 2.00E-02  |           | —          |
| NB-113-2.5-SL | Root | -2.0E-03 | -1.1E-02 | -6.0E-03   | -2.00E-03 | -1.10E-02 | -6.00E-03  |
| NB-113-4.5-SL | Root | -2.0E-02 |          |            | -2.00E-02 | _         |            |
| NB-115-2.5-SL | Root | 2.2E-02  | -8.0E-03 | -4.0E-03   | 2.20E-02  | -8.00E-03 | -4.00E-03  |
| NB-115-4.5-SL | Root | 7.0E-02  |          |            | 7.00E-02  | _         |            |
| NB-116-4.5-SL | Root | 5.0E-02  |          |            | 5.00E-02  |           | —          |
| NB-117-4.5-SL | Root | 9.0E-02  | 2.8E-02  | 1.4E-02    | 9.00E-02  | 2.80E-02  | 1.40E-02   |
| NB-118-4.5-SL | Root | 5.7E-02  |          |            | 5.70E-02  | _         |            |
| NB-119-2.5-SL | Root | 5.0E-02  |          |            | 5.00E-02  |           |            |
| NB-119-4.5-SL | Root | -5.0E-02 |          |            | -5.00E-02 |           | —          |
| NB-120-2.5-SL | Root | -3.0E-02 |          | —          | -3.00E-02 |           | —          |
| NB-120-4.5-SL | Root | -3.0E-02 | 1.3E-02  | 1.0E-02    | -3.00E-02 | 1.30E-02  | 1.00E-02   |
| NB-122-4.5-SL | Root | 7.0E-03  |          | _          | 7.00E-03  | _         | _          |
| NB-123-2.5-SL | Root | -2.0E-02 |          |            | -2.00E-02 |           | —          |
| NB-123-4.5-SL | Root | -2.0E-03 |          | —          | -2.00E-03 |           | —          |
| NB-124-4.5-SL | Root | 2.0E-02  |          |            | 2.00E-02  |           |            |
| NB-125-4.5-SL | Root | 1.3E-01  |          |            | 1.30E-01  | _         |            |
| NB-126-4.5-SL | Root | -3.0E-03 |          |            | -3.00E-03 |           |            |
| NB-127-4.5-SL | Root | 1.0E-02  | -1.1E-02 | 4.0E-03    | 1.00E-02  | -1.10E-02 | 4.00E-03   |
| NB-127-5-SL   | Root | 2.7E-02  |          | _          | 2.70E-02  |           | _          |
| NB-128-2.5-SL | Root | 3.0E-02  |          | _          | 3.00E-02  |           | _          |
| NB-128-4.5-SL | Root | 6.0E-02  | 5.0E-03  | -4.0E-03   | 6.00E-02  | 5.00E-03  | -4.00E-03  |
| NB-129-2.5-SL | Root | 3.0E-02  |          |            | 3.00E-02  |           |            |
| NB-129-4.5-SL | Root | -5.0E-03 |          |            | -5.00E-03 |           |            |
| NB-130-4.5-SL | Root | -3.0E-02 |          | _          | -3.00E-02 |           | _          |
| NB-131-4.5-SL | Root | 8.0E-03  |          |            | 8.00E-03  |           | _          |
| NB-132-4.5-SL | Root | -6.0E-03 |          | _          | -6.00E-03 |           | _          |
| NB-133-2.5-SL | Root | -1.0E-02 | -6.0E-03 | -5.0E-03   | -1.00E-02 | -6.00E-03 | -5.00E-03  |
| NB-133-4.5-SL | Root | 5.0E-02  |          |            | 5.00E-02  |           |            |
| NB-134-2.5-SL | Root | 6.0E-02  |          |            | 6.00E-02  |           |            |
| NB-134-4.5-SL | Root | -1.2E-01 |          |            | -1.20E-01 |           | _          |
| NB-135-4.5-SL | Root | 1.1E-01  |          | _          | 1.10E-01  | _         | _          |

## Attachment 10 to HEM-11-91 Page 28 of 43

## Insignificant Radionulides - 20110223 R2.xlsx DRAFT

|               |      | Am-241   | Np-237   | Pu-239/240 | Am-241    | Np-237    | Pu-239/240 |
|---------------|------|----------|----------|------------|-----------|-----------|------------|
| Sample ID     | CSM  | (pCi/g)  | (pCi/g)  | (pCi/g)    | (pCi/g)   | (pCi/g)   | (pCi/g)    |
| NB-136-4.5-SL | Root | 9.0E-02  | —        |            | 9.00E-02  |           |            |
| NB-137-4.5-SL | Root | 2.0E-02  | -1.2E-02 | 4.0E-03    | 2.00E-02  | -1.18E-02 | 4.00E-03   |
| NB-138-4.5-SL | Root | -2.0E-02 | _        |            | -2.00E-02 |           | —          |
| NB-139-4.5-SL | Root | 0.0E+00  | —        |            | 0.00E+00  |           | —          |
| NB-140-4.5-SL | Root | -2.0E-02 | —        |            | -2.00E-02 |           | —          |
| NB-141-4.5-SL | Root | 1.0E-02  | —        |            | 1.00E-02  |           | —          |
| NB-142-4.5-SL | Root | -4.0E-02 | —        |            | -4.00E-02 |           | —          |
| NB-143-4.5-SL | Root | 1.0E-02  | —        | —          | 1.00E-02  |           | —          |
| NB-144-4.5-SL | Root | -3.0E-02 | -9.1E-03 | -3.0E-03   | -3.00E-02 | -9.10E-03 | -3.00E-03  |
| NB-39-05-SL   | Root | 3.6E-01  | —        |            | 3.64E-01  |           | —          |
| NB-47-05-SL   | Root | -8.2E-02 |          | —          | -8.15E-02 |           | —          |
| NB-48-05-SL   | Root | 6.6E-01  |          | —          | 6.55E-01  |           | —          |
| NB-49-05-SL   | Root | 0.0E+00  |          | —          | 0.00E+00  |           | —          |
| NB-50-05-SL   | Root | -2.2E-01 | —        | _          | -2.21E-01 |           | —          |
| NB-51-05-SL   | Root | -2.6E-01 |          |            | -2.63E-01 |           | —          |
| NB-52-05-SL   | Root | -2.9E-02 | —        |            | -2.93E-02 |           | —          |
| NB-53-05-SL   | Root | -1.0E-01 |          |            | -1.02E-01 |           | —          |
| NB-54-05-SL   | Root | 1.6E-01  |          |            | 1.55E-01  |           | —          |
| NB-55-05-SL   | Root | -8.3E-03 | —        |            | -8.28E-03 |           | —          |
| NB-56-05-SL   | Root | -1.4E-01 |          |            | -1.42E-01 |           | —          |
| NB-57-05-SL   | Root | -5.1E-01 | —        |            | -5.12E-01 |           | —          |
| NB-58-05-SL   | Root | -5.0E-01 |          |            | -5.03E-01 |           | —          |
| NB-59-05-SL   | Root | 1.2E-01  | —        |            | 1.20E-01  |           | —          |
| NB-60-05-SL   | Root | -1.0E-01 |          |            | -1.02E-01 |           | —          |
| NB-61-05-SL   | Root | -4.3E-01 |          |            | -4.33E-01 |           | —          |
| NB-74-05-SL   | Root | -1.7E-01 |          |            | -1.66E-01 |           | —          |
| NB-79-05-SL   | Root | 1.2E-02  |          |            | 1.23E-02  |           | —          |
| NB-80-05-SL   | Root | 1.2E-02  |          |            | 1.19E-02  |           | —          |
| NB-88-4.5-SL  | Root | 4.0E-02  |          |            | 4.00E-02  |           | —          |
| NB-89-4.5-SL  | Root | -4.0E-02 | —        |            | -4.00E-02 |           | —          |
| NB-91-4.5-SL  | Root | 4.0E-02  |          |            | 4.00E-02  |           | —          |
| NB-93-4.5-SL  | Root | 4.0E-02  |          |            | 4.00E-02  |           | —          |
| NB-96-4.5-SL  | Root | -6.0E-02 |          |            | -6.00E-02 |           | —          |
| NB-96-5-SL    | Root | -5.0E-02 |          |            | -5.00E-02 |           | —          |
| NB-97-4.5-SL  | Root | 1.3E-01  |          |            | 1.30E-01  |           | —          |
| NB-98-4.5-SL  | Root | 8.0E-02  |          |            | 8.00E-02  |           | —          |
| OA-18-03-SL   | Root | -6.7E-02 | —        |            | -6.70E-02 |           | —          |
| OA-19-05-SL   | Root | 1.2E-01  | —        | _          | 1.18E-01  | —         | —          |
| PL-04-05-SL   | Root | -3.6E-01 | 5.1E-03  | -3.4E-04   | -3.62E-01 | 5.06E-03  | -3.40E-04  |
| PL-05-05-SL   | Root | 3.3E-01  | —        | —          | 3.34E-01  |           | —          |
| RR-05-05-SL   | Root | 5.2E-01  | —        | _          | 5.18E-01  |           | —          |
| SO-BP4A-04    | Root | <u> </u> | —        | _          |           |           | _          |
| SO-PB5-04     | Root | 1.0E-03  | 8.1E-02  | 1.0E-02    | 1.00E-03  | 8.10E-02  | 1.00E-02   |
| SO-RR6-01     | Root | _        |          |            |           |           |            |
| SO-RR7-01     | Root |          |          | _          |           |           | —          |
| SO-RR8-05     | Root | <u> </u> | —        | _          |           |           |            |
| SO-RR9-01     | Root | _        | _        | _          |           |           |            |
| SS-BP-001-SV  | Root | 1.0E-01  |          | _          | 1.00E-01  | _         | _          |
| SS-BP-002-SV  | Root | 1.9E-02  | _        | _          | 1.90E-02  | _         | _          |

## Attachment 10 to HEM-11-91 Page 29 of 43

## Insignificant Radionulides - 20110223 R2.xlsx DRAFT

|                              |      | Am-241              | Np-237  | Pu-239/240 | Am-241                | Np-237  | Pu-239/240 |
|------------------------------|------|---------------------|---------|------------|-----------------------|---------|------------|
| Sample ID                    | CSM  | (pCi/g)             | (pCi/g) | (pCi/g)    | (pCi/g)               | (pCi/g) | (pCi/g)    |
| SS-BP-003-SV                 | Root | 1.3E-02             | —       |            | 1.30E-02              |         |            |
| SS-BP-004-SV                 | Root | -8.0E-02            |         |            | -8.00E-02             |         | —          |
| SS-BP-005-SV                 | Root | -5.0E-02            |         |            | -5.00E-02             |         |            |
| SS-BP-007-SV                 | Root | -1.1E-01            |         |            | -1.10E-01             |         |            |
| SS-BP008-SV                  | Root | -1.0E-03            |         |            | -1.00E-03             |         |            |
| SS-BP-009-SV                 | Root | 9.0E-02             |         |            | 9.00E-02              |         |            |
| SS-BP-010-SV                 | Root | -6.0E-03            | _       |            | -6.00E-03             |         |            |
| SS-BP-011-SV                 | Root | -6.0E-04            | _       | —          | -6.00E-04             |         |            |
| SS-BP-012-SV                 | Root | 0.0E+00             |         | —          | 0.00E+00              |         |            |
| SS-BP-014-SV                 | Root | 2.3E-02             |         | —          | 2.30E-02              |         |            |
| SS-BP-015-SV                 | Root | 6.0E-02             |         | _          | 6.00E-02              |         |            |
| SS-BP-016-SV                 | Root | -5.0E-02            |         | _          | -5.00E-02             |         |            |
| SS-BP-017-SV                 | Root | -2.0E-02            |         |            | -2.00E-02             |         |            |
| SS-BP-018-SV                 | Root | -1.0E-01            | _       |            | -1.00E-01             |         |            |
| SS-BP-021-SV                 | Root | 6.0E-03             |         |            | 6.00E-03              |         |            |
| SS-BP-022-SV                 | Root | 8.0E-02             | _       |            | 8.00E-02              |         |            |
| SS-BP-023-SV                 | Root | -6.0E-02            | _       |            | -6.00E-02             |         |            |
| SS-BP-024-SV                 | Root | 2.0E-02             | _       |            | 2.00E-02              |         |            |
| SS-BP-025-SV                 | Root | 2.0E-03             | _       |            | 2.00E-03              |         |            |
| SS-BP-026-SV                 | Root | 4.0E-03             |         |            | 4.00E-03              |         |            |
| SS-BP-027-SV                 | Root | 2.0E-03             | _       |            | 2.00E-03              |         |            |
| SS-BP-028A-SV                | Root | 1.2E-02             | _       |            | 1.20E-02              |         |            |
| SS-BP-028B-SV                | Root | -5.0E-04            | _       |            | -5.00E-04             |         |            |
| SS-BP-028C-SV                | Root | -2.0E-02            | _       |            | -2.00E-02             |         |            |
| SS-BP-028-SV                 | Root | 3.0E-02             | _       |            | 3.00E-02              |         |            |
| SS-BP-030-SV                 | Root | -5.0E-02            | _       |            | -5.00E-02             |         |            |
| SS-BP-031-SV                 | Root | 6.0E-03             | _       |            | 6.00E-03              |         |            |
| SS-BP-032-SV                 | Root | -9.0E-03            | _       | _          | -9.00E-03             |         |            |
| SS-BP-033-SV                 | Root | -4.0E-03            |         |            | -4.00E-03             |         |            |
| SS-BP-034-SV                 | Root | -5.0E-02            | _       |            | -5.00E-02             |         |            |
| SS-BP-037-SV                 | Root | 0.0E+00             |         |            | 0.00E+00              |         |            |
| SS-BP-038-SV                 | Root | -4.0E-02            |         |            | -4.00E-02             |         |            |
| SS-BP-039-SV                 | Root | 3.0E-03             |         |            | 3.00E-03              |         |            |
| SS-BP-040-SV                 | Root | 4.0E-02             |         |            | 4.00E-02              |         |            |
| SS-BP-041-SV                 | Root | 3.0E-02             |         |            | 3.00E-02              |         |            |
| SS-BP-042-SV                 | Root | 6.0E-03             |         |            | 6.00E-03              |         |            |
| SS-BP-043-SV                 | Root | -1.0E-03            |         |            | -1.00E-02             |         |            |
| SS-BP-044-SV                 | Root | -6.0E-02            |         |            | -6.00E-02             |         |            |
| SS-BP-045-SV                 | Root | 7.0E-03             |         |            | -0.00E-02<br>7.00E-03 |         | _          |
| SS-BP-046-SV                 | Root | 1.7E-02             |         |            | 1.70E-02              |         |            |
| SS-BP-047-SV                 | Root | 7.0E-02             |         |            | 7.00E-02              |         |            |
| SS-BP-048-SV                 | Root | 4.0E-02             |         |            | 4.00E-02              |         |            |
| SS-BP-049-SV                 | Root | 4.0E-02<br>2.4E-01  |         |            | 4.00E-02<br>2.40E-01  |         |            |
| SS-BP-049-SV                 | Root | -2.0E-03            |         |            | -2.00E-01             |         |            |
| SS-BP-052-SV                 | Root | -2.0E-03<br>0.0E+00 |         |            | -2.00E-03             |         |            |
| SS-BP-052-SV                 | Root | 0.0E+00<br>7.0E-04  |         |            | 0.00E+00<br>7.00E-04  |         |            |
| SS-BP-055-SV<br>SS-BP-054-SV | Root | 2.0E-04             |         |            | 7.00E-04<br>2.00E-04  |         |            |
| SS-BP-055-SV                 | Root | -2.0E-04            |         |            | -2.00E-04             |         |            |
| SS-BP-055-SV<br>SS-BP-056-SV | Root | -2.0E-02<br>1.1E-02 |         |            | -2.00E-02<br>1.10E-02 |         |            |

## Attachment 10 to HEM-11-91 Page 30 of 43

## Insignificant Radionulides - 20110223 R2.xlsx DRAFT

|                  |      | Am-241   | Np-237  | Pu-239/240 | Am-241                 | Np-237  | Pu-239/240 |
|------------------|------|----------|---------|------------|------------------------|---------|------------|
| Sample ID        | CSM  | (pCi/g)  | (pCi/g) | (pCi/g)    | (pCi/g)                | (pCi/g) | (pCi/g)    |
| SS-BP-057-SV     | Root | 8.0E-03  |         | —          | 8.00E-03               |         | —          |
| SS-BP-058-SV     | Root | -7.0E-02 |         | —          | -7.00E-02              |         | —          |
| SS-BP-060-SV     | Root | -3.0E-02 | _       | —          | -3.00E-02              |         | —          |
| SS-BP-061-SV     | Root | 7.0E-03  |         | —          | 7.00E-03               |         | —          |
| SS-BP-062-SV     | Root | -6.0E-03 | _       | —          | -6.00E-03              |         | —          |
| SS-BP-063-SV     | Root | 5.0E-03  |         |            | 5.00E-03               |         | —          |
| SS-BP-064-SV     | Root | 1.2E-02  |         | —          | 1.20E-02               |         | —          |
| SS-BP-065-SV     | Root | 9.0E-03  |         | —          | 9.00E-03               |         | —          |
| SS-BP-066-SV     | Root | 1.5E-02  |         |            | 1.50E-02               |         | —          |
| SS-BP-067-SV     | Root | 3.8E-02  |         |            | 3.80E-02               |         | —          |
| SS-BP-068-SV     | Root | 2.5E-02  |         | —          | 2.50E-02               |         | —          |
| SS-BP-069-SV     | Root | 6.0E-02  | _       | —          | 6.00E-02               |         | —          |
| SS-BP-070-SV     | Root | 2.4E-02  |         |            | 2.40E-02               |         |            |
| SS-BP-071-SV     | Root | 2.9E-02  |         | —          | 2.90E-02               |         | —          |
| SS-BP-072-SV     | Root | 2.0E-03  |         |            | 2.00E-03               |         |            |
| SS-BP-073-SV     | Root | -1.0E-03 |         | —          | -1.00E-03              |         | —          |
| SS-BP-074-SV     | Root | 5.3E-02  |         | —          | 5.30E-02               |         | —          |
| SS-BP-075-SV     | Root | 1.5E-02  |         |            | 1.50E-02               |         |            |
| SS-BP-076-SV     | Root | -5.4E-02 |         |            | -5.40E-02              |         | _          |
| SS-BP-077-SV     | Root | 3.1E-02  |         |            | 3.10E-02               |         |            |
| SS-BP-078-SV     | Root | -5.0E-02 |         |            | -5.00E-02              |         | _          |
| SS-BP-079-SV     | Root | -1.0E-02 |         |            | -1.00E-02              |         |            |
| SS-BP-080-SV     | Root | 1.7E-02  |         |            | 1.70E-02               |         | _          |
| SS-BP-106-SV     | Root | -2.0E-03 |         |            | -2.00E-03              |         |            |
| SS-BP-107-SV     | Root | -8.0E-02 |         |            | -8.00E-02              |         | _          |
| SS-BP-108B-SV    | Root | 4.0E-02  |         | —          | 4.00E-02               | _       |            |
| SS-BP-108-SV     | Root | 4.0E-02  |         |            | 4.00E-02               |         |            |
| SS-BP-109-SV     | Root | 5.0E-03  |         |            | 5.00E-03               |         |            |
| SS-BP-110-SV     | Root | -4.0E-02 |         |            | -4.00E-02              |         |            |
| SS-BP-111-SV     | Root | 2.0E-02  |         |            | 2.00E-02               |         |            |
| SS-E.EVAP-001-SV | Root | -2.0E-02 |         |            | -2.00E-02              |         |            |
| SS-GA-001-SV     | Root | 1.8E-02  |         |            | 1.80E-02               |         |            |
| SS-GA-002-SV     | Root | -2.0E-03 |         |            | -2.00E-03              |         |            |
| SS-GA-003-SV     | Root | -1.6E-02 |         |            | -1.60E-02              |         |            |
| SS-GA-004-SV     | Root | -1.7E-02 |         |            | -1.70E-02              |         |            |
| SS-GA-005-SV     | Root | 3.0E-03  |         |            | 3.00E-03               |         |            |
| SS-GB-002-SV     | Root | 1.5E-01  |         |            | 1.50E-01               |         |            |
| SS-GB-003-SV     | Root | 7.0E-03  |         |            | 7.00E-03               |         |            |
| SS-GB-004-SV     | Root | -9.0E-03 |         |            | -9.00E-03              |         |            |
| SS-GB-006-SV     | Root | 2.0E-03  | _       |            | 2.00E-03               |         |            |
| SS-GB-007-SV     | Root | 5.0E-03  |         |            | 5.00E-03               |         |            |
| SS-GB-009-SV     | Root | -8.0E-04 |         |            | -8.00E-04              |         |            |
| SS-GB-010-SV     | Root | 3.6E-02  |         |            | 3.60E-02               | _       |            |
| SS-GB-012-SV     | Root | 7.0E-03  |         |            | 7.00E-03               |         |            |
| SS-GB-012-SV     | Root | 1.8E-02  |         | _          | 1.80E-02               |         |            |
| SS-GB-015-SV     | Root | -1.9E-02 |         |            | -1.90E-02              |         |            |
| SS-GB-016-SV     | Root | -6.0E-03 |         |            | -6.00E-03              |         |            |
| SS-GB-018-SV     | Root | -1.0E-04 |         | _          | -0.00E-03              |         |            |
| SS-GB-019-SV     | Root | -3.0E-03 |         |            | -1.00E-04<br>-3.00E-03 |         |            |

## Attachment 10 to HEM-11-91 Page 31 of 43

## Insignificant Radionulides - 20110223 R2.xlsx DRAFT

|              |      | Am-241   | Np-237  | Pu-239/240 | Am-241    | Np-237  | Pu-239/240 |
|--------------|------|----------|---------|------------|-----------|---------|------------|
| Sample ID    | CSM  | (pCi/g)  | (pCi/g) | (pCi/g)    | (pCi/g)   | (pCi/g) | (pCi/g)    |
| SS-GB-020-SV | Root | 6.0E-02  |         | —          | 6.00E-02  |         |            |
| SS-GB-021-SV | Root | -1.5E-02 | _       | —          | -1.50E-02 |         |            |
| SS-GB-022-SV | Root | -7.0E-03 |         | —          | -7.00E-03 |         |            |
| SS-GB-023-SV | Root | 2.6E-02  |         | —          | 2.60E-02  |         |            |
| SS-GC-001-SV | Root | 1.1E-02  |         | —          | 1.10E-02  |         |            |
| SS-GC-002-SV | Root | -2.2E-02 |         | —          | -2.20E-02 |         |            |
| SS-GC-004-SV | Root | 2.1E-02  |         | —          | 2.10E-02  |         |            |
| SS-GC-005-SV | Root | 1.3E-02  |         | —          | 1.30E-02  |         |            |
| SS-GC-007-SV | Root | -2.0E-02 |         | —          | -2.00E-02 |         |            |
| SS-GC-008-SV | Root | 5.0E-03  |         | —          | 5.00E-03  |         |            |
| SS-GC-010-SV | Root | 1.0E-02  |         | —          | 1.00E-02  |         |            |
| SS-GC-011-SV | Root | 1.5E-02  | _       | —          | 1.50E-02  |         |            |
| SS-GL-001-SV | Root | -2.0E-04 |         | —          | -2.00E-04 |         |            |
| SS-GL-002-SV | Root | 2.7E-02  | _       | —          | 2.70E-02  |         |            |
| SS-GL-003-SV | Root | 1.3E-02  |         | —          | 1.30E-02  |         | —          |
| SS-GL-004-SV | Root | -3.0E-03 | —       |            | -3.00E-03 |         |            |
| SS-GL-005-SV | Root | 1.4E-02  |         | —          | 1.40E-02  |         |            |
| SS-GL-006-SV | Root | 2.0E-03  |         | _          | 2.00E-03  |         |            |
| SS-GL-007-SV | Root | -2.4E-02 |         |            | -2.40E-02 |         |            |
| SS-GL-008-SV | Root | 2.6E-02  | _       |            | 2.60E-02  |         |            |
| SS-GL-009-SV | Root | -6.0E-04 |         |            | -6.00E-04 |         |            |
| SS-GL-010-SV | Root | 4.0E-03  | _       |            | 4.00E-03  |         |            |
| SS-GL-011-SV | Root | -3.0E-03 |         |            | -3.00E-03 |         |            |
| SS-GL-012-SV | Root | -1.4E-02 |         | _          | -1.40E-02 |         |            |
| SS-GL-013-SV | Root | -2.0E-04 | _       |            | -2.00E-04 |         |            |
| SS-GL-014-SV | Root | -4.0E-03 |         | _          | -4.00E-03 |         |            |
| SSGL-015-SV  | Root | 2.0E-02  | _       |            | 2.00E-02  |         |            |
| SS-GL-016-SV | Root | 7.0E-03  | _       |            | 7.00E-03  |         |            |
| SS-GL-017-SV | Root | -2.4E-02 | _       |            | -2.40E-02 |         |            |
| SS-GL-018-SV | Root | 2.8E-02  | _       |            | 2.80E-02  |         |            |
| SS-GL-019-SV | Root | 7.0E-03  | _       |            | 7.00E-03  |         |            |
| SS-GL-020-SV | Root | -9.0E-03 | _       |            | -9.00E-03 |         |            |
| SS-GL-021-SV | Root | 6.0E-03  | _       |            | 6.00E-03  |         |            |
| SS-GL-022-SV | Root | -5.0E-04 |         |            | -5.00E-04 |         |            |
| SS-GL-023-SV | Root | 9.0E-04  | _       |            | 9.00E-04  |         |            |
| SS-GL-024-SV | Root | 1.6E-02  |         |            | 1.60E-02  |         |            |
| SS-GL-025-SV | Root | -1.7E-02 | _       |            | -1.70E-02 |         |            |
| SS-GL-026-SV | Root | -2.4E-02 |         |            | -2.40E-02 |         |            |
| SS-GL-027-SV | Root | -2.3E-02 |         | _          | -2.30E-02 |         |            |
| SS-GL-028-SV | Root | -5.0E-03 |         | _          | -5.00E-03 |         |            |
| SS-GL-029-SV | Root | -1.1E-02 |         |            | -1.10E-02 |         |            |
| SS-GL-030-SV | Root | 6.0E-03  |         |            | 6.00E-03  |         |            |
| SS-GL-031-SV | Root | 5.0E-03  |         |            | 5.00E-03  |         |            |
| SS-GL-032-SV | Root | 4.0E-03  |         |            | 4.00E-03  |         |            |
| SS-GL-032-SV | Root | 1.1E-02  |         |            | 4.00E-03  |         |            |
| SS-GL-034-SV | Root | -1.0E-02 |         |            | -1.00E-02 |         |            |
| SS-GL-035-SV | Root | 0.0E+00  |         |            | 0.00E+00  |         |            |
| SS-HS-001-SV | Root | -1.5E-01 |         |            | -1.50E-01 |         |            |
| SS-HS-002-SV | Root | 6.0E-02  |         |            | 6.00E-02  |         |            |

#### Attachment 10 to HEM-11-91 Page 32 of 43

## Insignificant Radionulides - 20110223 R2.xlsx DRAFT

|                                  |      | Am-241               | Np-237      | Pu-239/240 | Am-241                 | Np-237    | Pu-239/240   |
|----------------------------------|------|----------------------|-------------|------------|------------------------|-----------|--------------|
| Sample ID                        | CSM  | (pCi/g)              | (pCi/g)     | (pCi/g)    | (pCi/g)                | (pCi/g)   | (pCi/g)      |
| SS-HS-003-SV                     | Root | -3.0E-02             |             | —          | -3.00E-02              |           |              |
| SS-HS-004-EL-1.0                 | Root | -1.3E+00             | _           | —          | -1.30E+00              |           | —            |
| SS-HS-004-SV                     | Root | 1.2E-01              | _           |            | 1.20E-01               | _         | —            |
| SS-HS-005EL-0.75-1.0             | Root | -2.5E+00             | _           | —          | -2.50E+00              |           | —            |
| SS-HS-005-EL-1.0-1.5             | Root | -1.4E+00             | _           | —          | -1.40E+00              |           | —            |
| SS-HS-005-EL-4.5-5.0             | Root | -1.2E-01             | _           | —          | -1.20E-01              |           | —            |
| SS-HS-005-SV                     | Root | -1.7E-01             | _           | —          | -1.70E-01              |           | —            |
| SS-HS-006-EL-0.5-1.0             | Root | -1.2E+01             | _           | —          | -1.15E+01              |           | —            |
| SS-LA-006-SV                     | Root | 2.0E-03              | _           | —          | 2.00E-03               |           | —            |
| SS-LA-019-SV                     | Root | 1.9E-01              | _           | —          | 1.90E-01               |           | —            |
| SS-LA-020-SV                     | Root | -3.0E-02             |             | —          | -3.00E-02              |           |              |
| SS-LA-029-SV                     | Root | -5.0E-02             |             | —          | -5.00E-02              |           |              |
| SS-LA-035-SV                     | Root | 1.0E-02              |             | —          | 1.00E-02               |           | —            |
| SS-LA-036-SV                     | Root | -6.0E-04             | _           | —          | -6.00E-04              |           | —            |
| SS-LA-050-SV                     | Root | 6.0E-02              | _           | —          | 6.00E-02               |           | —            |
| SS-LA-059-SV                     | Root | 1.0E-01              | _           | —          | 1.00E-01               |           |              |
| SS-LA-081-SV                     | Root | -7.0E-02             |             | _          | -7.00E-02              |           | —            |
| SS-LA-082-SV                     | Root | -2.0E-02             |             | _          | -2.00E-02              |           |              |
| SS-LA-083-SV                     | Root | 5.0E-02              |             |            | 5.00E-02               |           |              |
| SS-LA-084-SV                     | Root | 8.0E-02              |             |            | 8.00E-02               |           |              |
| SS-LA-085-SV                     | Root | 2.0E-02              | _           |            | 2.00E-02               |           |              |
| SS-LA-086-SV                     | Root | 1.2E-01              |             |            | 1.20E-01               |           |              |
| SS-LA-087-SV                     | Root | 3.0E-02              |             |            | 3.00E-02               |           |              |
| SS-LA-088-SV                     | Root | -1.0E-02             |             |            | -1.00E-02              |           |              |
| SS-LA-089-SV                     | Root | -5.0E-03             |             |            | -5.00E-03              |           |              |
| SS-LA-090-SV                     | Root | -5.0E-02             |             |            | -5.00E-02              |           |              |
| SS-LA-091-SV                     | Root | -2.0E-02             |             |            | -2.00E-02              |           |              |
| SS-LA-092-SV                     | Root | 2.0E-02              |             |            | 2.00E-02               |           |              |
| SS-LA-093-SV                     | Root | -6.0E-02             |             |            | -6.00E-02              |           |              |
| SS-LA-094-SV                     | Root | -0.0E-02<br>3.0E-02  |             |            | 3.00E-02               |           |              |
| SS-LA-095-SV                     | Root | -5.0E-02             |             |            | -5.00E-02              |           |              |
| SS-LA-096-SV                     | Root | -3.0E-03             |             |            | -3.00E-03              |           |              |
| SS-LA-098-SV                     | Root | -3.6E-03             |             |            | -3.00E-03              |           |              |
| SS-LA-098-SV<br>SS-LA-099-SV     | Root | -4.0E-02             |             |            | -1.30E-02<br>-4.00E-02 |           |              |
| SS-LA-100-SV                     | Root | -4.0E-02<br>-1.4E-02 |             |            | -4.00E-02<br>-1.40E-02 |           |              |
| SS-LA-100-SV<br>SS-LF-101-SV     | Root | -1.4E-02<br>3.0E-03  |             |            | -1.40E-02<br>3.00E-03  |           |              |
| SS-LF-101-SV<br>SS-LF-102-SV     | Root | -3.1E-02             |             |            | -3.10E-02              |           |              |
| SS-LF-102-SV                     |      | -3.1E-02<br>2.2E-02  |             |            | -3.10E-02<br>2.20E-02  |           |              |
| SS-LF-103-SV<br>SS-LF-104-SV     | Root | 2.2E-02<br>2.3E-02   |             |            | 2.20E-02<br>2.30E-02   |           |              |
| SS-LF-104-SV<br>SS-LF-105-SV     | Root | 2.3E-02<br>1.1E-02   |             | —          | 2.30E-02<br>1.10E-02   |           |              |
| SS-LF-105-SV<br>SS-W.EVAP-001-SV | Root | 1.1E-02<br>2.0E-02   |             | —          | 1.10E-02<br>2.00E-02   |           | —            |
| SS-W.EVAP-001-SV<br>SW-02-01-SL  | Root | 2.0E-02<br>3.1E-01   | <br>1.5E-01 | 7.5E-03    | 2.00E-02<br>3.06E-01   | 1 5 AE 01 | <br>7.53E-03 |
|                                  | Root |                      | 1.3E-01     | 1.3E-03    |                        | 1.54E-01  | 1.55E-05     |
| SW-06-05-SL                      | Root | 2.4E-01              |             |            | 2.35E-01               |           |              |
| SW-07-05-SL                      | Root | -4.7E-01             |             |            | -4.70E-01              | —         |              |
| SW-08-03-SL                      | Root | -5.9E-02             |             |            | -5.87E-02              |           |              |
| SW-08-05-SL                      | Root | 9.4E-02              | —           | —          | 9.42E-02               |           | —            |
| BD-13-09-SL                      | Deep | -1.7E-01             |             |            | -1.74E-01              |           | —            |
| BD-13-15-SL                      | Deep | -1.4E-01             |             |            | -1.41E-01              |           |              |
| BD-13-23-SL                      | Deep | 1.9E-01              | —           | —          | 1.89E-01               | —         | —            |

## Attachment 10 to HEM-11-91 Page 33 of 43

## Insignificant Radionulides - 20110223 R2.xlsx DRAFT

|                              |      | Am-241               | Np-237   | Pu-239/240 | Am-241                 | Np-237    | Pu-239/240 |
|------------------------------|------|----------------------|----------|------------|------------------------|-----------|------------|
| Sample ID                    | CSM  | (pCi/g)              | (pCi/g)  | (pCi/g)    | (pCi/g)                | (pCi/g)   | (pCi/g)    |
| BD-13-30-SL                  | Deep | 1.5E-02              |          | —          | 1.51E-02               |           |            |
| BD-14-13-SL                  | Deep | 2.2E-01              |          | —          | 2.23E-01               |           | —          |
| BD-14-25-SL                  | Deep | -7.9E-02             |          | —          | -7.87E-02              |           | —          |
| BD-14-31-SL                  | Deep | -6.5E-03             |          |            | -6.52E-03              |           | —          |
| BD-15-17-SL                  | Deep | 2.7E-01              |          | —          | 2.65E-01               |           | —          |
| BD-15-25-SL                  | Deep | -2.9E-02             |          |            | -2.94E-02              |           | —          |
| BD-15-31-SL                  | Deep | -3.3E-02             |          |            | -3.28E-02              |           | —          |
| BD-16-15-SL                  | Deep | -1.5E-01             |          | —          | -1.46E-01              |           | —          |
| BD-16-19-SL                  | Deep | -1.2E-01             |          | —          | -1.22E-01              |           | —          |
| BD-16-25-SL                  | Deep | 8.9E-02              |          | —          | 8.90E-02               |           | —          |
| BD-16-34-SL                  | Deep | -3.7E-02             |          | —          | -3.68E-02              |           | —          |
| BD-17-8.5-SL                 | Deep | -4.0E-03             |          | —          | -4.00E-03              |           | —          |
| BD-18-8.5-SL                 | Deep | 4.0E-02              | 1.6E-02  | -5.0E-03   | 4.00E-02               | 1.60E-02  | -5.00E-03  |
| BD-19-10.5-SL                | Deep | 1.0E-02              |          | _          | 1.00E-02               |           | _          |
| BD-20-16.5-SL                | Deep | -9.0E-02             |          | _          | -9.00E-02              |           |            |
| BD-21-9-SL                   | Deep | 3.0E-02              |          |            | 3.00E-02               |           |            |
| BD-22-12.5-SL                | Deep | 3.0E-02              | 2.5E-02  | -5.6E-03   | 3.00E-02               | 2.50E-02  | -5.60E-03  |
| BD-24-13-SL                  | Deep | 1.0E-01              |          |            | 1.00E-01               |           |            |
| BD-25-16.5-SL                | Deep | 5.0E-02              | -1.1E-02 | -9.9E-03   | 5.00E-02               | -1.07E-02 | -9.90E-03  |
| BD-26-7.5-SL                 | Deep | -5.0E-02             |          | ).)E 05    | -5.00E-02              |           |            |
| BD-27-13-SL                  | Deep | -3.0E-02             | 1.7E-02  | -6.8E-03   | -3.00E-02              | 1.70E-02  | -6.80E-03  |
| BD-28-12.5-SL                | Deep | 1.2E-01              |          |            | 1.20E-01               |           |            |
| BD-29-8.5-SL                 | Deep | -1.0E-03             | -1.7E-02 | 7.0E-04    | -1.00E-03              | -1.70E-02 | 7.00E-04   |
| BD-30-9-SL                   | Deep | 7.8E-03              |          |            | 7.80E-03               |           |            |
| BD-31-8.5-SL                 | Deep | -3.0E-02             |          |            | -3.00E-02              |           |            |
| BD-32-13-SL                  | Deep | -7.0E-03             |          |            | -7.00E-03              |           |            |
| BD-33-12.5-SL                | Deep | 1.0E-02              |          |            | 1.00E-02               |           |            |
| BD-34-13-SL                  | Deep | -5.0E-02             |          |            | -5.00E-02              |           |            |
| BD-35-6.5-SL                 | Deep | -2.0E-03             |          |            | -2.00E-03              |           |            |
| BD-36-12.5-SL                | Deep | 9.0E-02              |          |            | 9.00E-02               |           |            |
| BD-39-8.5-SL                 | Deep | 4.0E-02              | 9.0E-03  | -1.0E-02   | 4.00E-02               | 9.00E-03  | -1.00E-02  |
| BD-40-18-SL                  | Deep | -5.0E-02             | 9.0E 05  | <u> </u>   | -5.00E-02              | <u> </u>  |            |
| BD-41-6-SL                   | Deep | 2.0E-02              |          |            | 2.00E-02               |           |            |
| BD-42-9-SL                   | Deep | 5.0E-02              |          |            | 5.00E-02               |           |            |
| BD-44-8.5-SL                 | Deep | 0.0E+00              |          |            | 0.00E+00               |           |            |
| BD-45-13-SL                  | Deep | 4.0E-02              |          |            | 4.00E-02               |           |            |
| BD-47-6.5-SL                 | Deep | -2.0E-02             |          |            | -2.00E-02              |           |            |
| BD-48-5.5-SL                 | Deep | -2.0E-02<br>-4.0E-02 | -1.0E-03 | 4.0E-03    | -2.00E-02<br>-4.00E-02 | -1.00E-03 | 4.00E-03   |
| BLD240-01-09                 | Deep | -4.0E-02<br>-2.3E-01 | -1.0E-03 | 4.0E-03    | -4.00E-02<br>-2.30E-01 | -1.00E-03 | 4.00E-05   |
| BLD240-01-09<br>BLD240-03-19 | Deep | -2.3E-01<br>-8.0E-02 |          |            | -2.30E-01<br>-8.00E-02 |           |            |
| BLD240-03-19<br>BLD255-07-15 | Deep | -8.0E-02<br>-4.0E-02 |          |            | -8.00E-02<br>-4.00E-02 |           |            |
| BLD255-08-08                 | Deep | 8.3E-03              | 3.6E-03  | 7.8E-03    | 8.27E-03               | 3.57E-03  | 7.83E-03   |
| BP-13-11-SL                  | Deep | 0.0E+00              | 5.01-05  | 7.012-03   | 0.00E+00               | 5.57E-05  | 7.051-05   |
| BP-13-15-SL<br>BP-13-15-SL   | Deep | 0.0E+00<br>5.0E-02   |          |            | 0.00E+00<br>5.03E-02   |           |            |
| BP-13-25-SL                  | Deep | -4.1E-01             |          |            | -4.05E-02              |           |            |
| BP-13-35-SL                  | Deep | -4.1E-01<br>1.4E-01  |          |            | -4.05E-01<br>1.35E-01  |           |            |
| BP-15-55-SL<br>BP-17-15-SL   | Deep | -2.0E-01             |          |            | -2.00E-01              |           |            |
| BP-17-23-SL                  | -    | -2.0E-01<br>-3.5E-01 |          |            | -2.00E-01<br>-3.48E-01 |           |            |
| BP-17-23-SL<br>BP-17-31-SL   | Deep |                      |          | <u> −</u>  | -3.48E-01<br>-4.77E-02 |           |            |
| Dr-1/-31-5L                  | Deep | -4.8E-02             |          | —          | -4.//E-02              |           | —          |

#### Attachment 10 to HEM-11-91 Page 34 of 43

## Insignificant Radionulides - 20110223 R2.xlsx DRAFT

|                     |      |                    | Np-237   | Pu-239/240 | Am-241                | Np-237    | Pu-239/240 |
|---------------------|------|--------------------|----------|------------|-----------------------|-----------|------------|
| Sample ID           | CSM  | (pCi/g)            | (pCi/g)  | (pCi/g)    | (pCi/g)               | (pCi/g)   | (pCi/g)    |
| BP-18-15-SL         | Deep | 3.0E-03            |          |            | 3.01E-03              |           | —          |
| BP-18-25-SL         | Deep | 4.5E-01            |          |            | 4.52E-01              |           | —          |
| BP-18-31-SL         | Deep | -1.7E-01           |          | —          | -1.73E-01             |           | —          |
| BP-19-13-SL         | Deep | 5.8E-01            |          |            | 5.77E-01              |           | —          |
| BP-19-25-SL         | Deep | -1.2E-01           |          |            | -1.23E-01             |           | —          |
| BP-19-29-SL         | Deep | -4.7E-02           |          |            | -4.67E-02             |           | —          |
| BP-20-19-SL         | Deep | -1.9E-01           |          |            | -1.88E-01             |           | —          |
| BP-20-27-SL         | Deep | -9.5E-02           |          | —          | -9.50E-02             |           | —          |
| BP-21-07-SL         | Deep | -9.2E-02           |          | —          | -9.20E-02             |           | —          |
| BP-21-13-SL         | Deep | 6.7E-02            |          | —          | 6.73E-02              |           | —          |
| BP-21-24-SL         | Deep | 5.6E-02            |          | _          | 5.59E-02              |           | —          |
| BP-21-34-SL         | Deep | 1.1E-01            |          | _          | 1.12E-01              |           | _          |
| BP-22-13-SL         | Deep | -4.1E-01           |          | _          | -4.14E-01             |           |            |
| BP-22-23-SL         | Deep | -3.7E-01           |          |            | -3.68E-01             |           |            |
| BP-22-33-SL         | Deep | 1.0E-02            |          | _          | 1.01E-02              |           | —          |
| CB-02-15-SL         | Deep | -1.6E-01           |          | _          | -1.55E-01             |           |            |
| CB-02-25-SL         | Deep | -9.7E-02           |          |            | -9.67E-02             |           |            |
| EP-13-13-SL         | Deep | -5.1E-02           |          |            | -5.06E-02             |           |            |
| EP-13-25-SL         | Deep | -9.4E-02           |          |            | -9.35E-02             |           |            |
| EP-13-30-SL         | Deep | 4.6E-02            |          |            | 4.63E-02              |           |            |
| EP-14-13-SL         | Deep | -4.2E-01           |          |            | -4.18E-01             |           |            |
| EP-14-25-SL         | Deep | -2.4E-01           |          |            | -2.38E-01             |           |            |
| EP-14-31-SL         | Deep | 0.0E+00            |          |            | 0.00E+00              |           |            |
| EP-15-13-SL         | Deep | 3.2E-02            |          |            | 3.23E-02              |           |            |
| EP-15-25-SL         | Deep | -1.7E-02           |          |            | -1.74E-02             |           |            |
| EP-15-29-SL         | Deep | -8.8E-02           |          |            | -8.84E-02             |           |            |
| EP-16-15-SL         | Deep | 5.9E-01            |          |            | 5.94E-01              |           |            |
| EP-16-27-SL         | Deep | 3.5E-01            |          |            | 3.45E-01              |           |            |
| EP-17-15-SL         | Deep | 5.1E-01            |          |            | 5.06E-01              |           |            |
| EP-17-25-SL         | Deep | -4.5E-02           |          |            | -4.51E-02             |           |            |
| EP-17-30-SL         | Deep | -1.1E-01           |          |            | -1.12E-01             |           |            |
| EP-18-09-SL         | Deep | -2.3E-02           | -2.8E-03 | 7.2E-03    | -2.32E-02             | -2.84E-03 | 7.15E-03   |
| EP-18-15-SL         | Deep | -4.5E-01           |          |            | -4.46E-01             |           |            |
| EP-18-29-SL         | Deep | 6.1E-02            |          |            | 6.07E-02              |           |            |
| EP-19-13-SL         | Deep | 1.7E-01            | 1.4E-03  | -1.2E-03   | 1.72E-01              | 1.40E-03  | -1.16E-03  |
| EP-19-25-SL         | Deep | 2.4E-01            |          |            | 2.38E-01              |           |            |
| EP-19-31-SL         | Deep | -1.6E-01           |          | <u> </u>   | -1.59E-01             |           |            |
| EP-20-15-SL         | Deep | 0.0E+00            |          |            | 0.00E+00              |           |            |
| EP-20-25-SL         | Deep | -2.1E-02           |          |            | -2.10E-02             |           |            |
| FS-19-1-BIA-1-SO-3  | Deep | 2.1E-02<br>2.1E-02 |          |            | 2.10E-02              |           |            |
| FS-19-1-BIA-2-SO-3  | Deep | -6.0E-03           |          |            | -6.00E-03             |           |            |
| FS-19-1-BIA-3-SO-3  | Deep | -2.0E-03           |          |            | -0.00E-03             |           |            |
| FS-19-1-BIA-4-SO-3  | Deep | 3.9E-02            |          |            | 3.90E-02              |           |            |
| FS-19-1-BIA-5-SO-3  | Deep | -8.0E-02           |          |            | -8.00E-03             |           |            |
| FS-19-1-QA-10-SO-3  | Deep | 3.2E-02            |          |            | -8.00E-03<br>3.20E-02 |           |            |
| FS-19-1-QA-1-SO-3   | Deep | 6.0E-03            |          |            | 6.00E-02              |           |            |
| FS-19-1-QA-21-SO-3  | Deep | -4.0E-03           |          |            | -4.00E-03             |           |            |
| FS-19-1-QA-9-SO-3   | Deep | -4.0E-03           |          |            | -4.00E-03             |           |            |
| FS-19-1-SYS-10-SO-3 | Deep | 1.2E-02            |          |            | -4.00E-03             |           |            |

## Attachment 10 to HEM-11-91 Page 35 of 43

## Insignificant Radionulides - 20110223 R2.xlsx DRAFT

|                     |      | Am-241   | Np-237  | Pu-239/240 | Am-241                | Np-237  | Pu-239/240 |
|---------------------|------|----------|---------|------------|-----------------------|---------|------------|
| Sample ID           | CSM  | (pCi/g)  | (pCi/g) | (pCi/g)    | (pCi/g)               | (pCi/g) | (pCi/g)    |
| FS-19-1-SYS-11-SO-3 | Deep | 5.9E-02  | —       |            | 5.90E-02              |         |            |
| FS-19-1-SYS-12-SO-3 | Deep | 0.0E+00  |         | —          | 0.00E+00              |         |            |
| FS-19-1-SYS-13-SO-3 | Deep | -1.0E-03 |         | —          | -1.00E-03             |         | —          |
| FS-19-1-SYS-14-SO-3 | Deep | 8.0E-03  |         | —          | 8.00E-03              |         |            |
| FS-19-1-SYS-15-SO-3 | Deep | -5.0E-03 |         |            | -5.00E-03             |         |            |
| FS-19-1-SYS-16-SO-3 | Deep | 2.0E-03  |         | —          | 2.00E-03              |         |            |
| FS-19-1-SYS-17-SO-3 | Deep | -1.0E-03 |         | —          | -1.00E-03             |         | —          |
| FS-19-1-SYS-18-SO-3 | Deep | -2.0E-03 |         | —          | -2.00E-03             |         | —          |
| FS-19-1-SYS-19-SO-3 | Deep | -1.7E-02 |         |            | -1.70E-02             |         | —          |
| FS-19-1-SYS-1-SO-3  | Deep | 1.2E-02  |         |            | 1.20E-02              |         | —          |
| FS-19-1-SYS-20-SO-3 | Deep | -2.0E-02 |         |            | -2.00E-02             |         |            |
| FS-19-1-SYS-21-SO-3 | Deep | 3.0E-04  |         |            | 3.00E-04              |         | —          |
| FS-19-1-SYS-22-SO-3 | Deep | 1.0E-03  |         |            | 1.00E-03              |         |            |
| FS-19-1-SYS-2-SO-3  | Deep | -3.1E-02 |         |            | -3.10E-02             |         |            |
| FS-19-1-SYS-3-SO-3  | Deep | -1.1E-02 |         | —          | -1.10E-02             |         | —          |
| FS-19-1-SYS-4-SO-3  | Deep | 1.2E-02  |         |            | 1.17E-02              |         |            |
| FS-19-1-SYS-5-SO-3  | Deep | 1.6E-02  |         |            | 1.60E-02              |         |            |
| FS-19-1-SYS-6-SO-3  | Deep | 1.4E-02  |         | _          | 1.40E-02              |         | _          |
| FS-19-1-SYS-7-SO-3  | Deep | -3.0E-02 |         | _          | -3.00E-02             |         | _          |
| FS-19-1-SYS-8-SO-3  | Deep | -2.1E-02 |         |            | -2.10E-02             |         |            |
| FS-19-1-SYS-9-SO-3  | Deep | -2.0E-03 |         |            | -2.00E-03             |         |            |
| FS-19-2-QA-06-SO-3  | Deep | 5.0E-05  |         |            | 5.00E-05              |         |            |
| FS-19-2-QA-17-SO-3  | Deep | 6.0E-03  |         |            | 6.00E-03              |         |            |
| FS-19-2-QA-8-SO-3   | Deep | -4.0E-04 |         |            | -4.00E-04             |         |            |
| FS-19-2-QC-04-SO-3  | Deep | 9.0E-04  |         |            | 9.00E-04              |         |            |
| FS-19-2-SYS-01-SO-3 | Deep | 1.0E-03  |         |            | 1.00E-03              |         |            |
| FS-19-2-SYS-02-SO-3 | Deep | 1.7E-02  |         | _          | 1.70E-02              |         |            |
| FS-19-2-SYS-03-SO-3 | Deep | 2.5E-02  |         |            | 2.50E-02              |         |            |
| FS-19-2-SYS-04-SO-3 | Deep | -7.0E-04 |         |            | -7.00E-04             |         |            |
| FS-19-2-SYS-05-SO-3 | Deep | 2.0E-02  | _       |            | 2.00E-02              |         |            |
| FS-19-2-SYS-06-SO-3 | Deep | 2.4E-02  |         |            | 2.40E-02              |         |            |
| FS-19-2-SYS-09-SO-3 | Deep | 1.9E-02  |         |            | 1.90E-02              |         |            |
| FS-19-2-SYS-10-SO-3 | Deep | 3.5E-02  |         |            | 3.50E-02              |         |            |
| FS-19-2-SYS-11-SO-3 | Deep | -1.2E-02 |         |            | -1.20E-02             |         |            |
| FS-19-2-SYS-12-SO-3 | Deep | -1.1E-02 | _       |            | -1.10E-02             |         |            |
| FS-19-2-SYS-13-SO-3 | Deep | 1.0E-03  |         |            | 1.00E-03              |         |            |
| FS-19-2-SYS-14-SO-3 | Deep | -1.8E-02 |         |            | -1.80E-02             |         |            |
| FS-19-2-SYS-15-SO-3 | Deep | 3.0E-03  |         |            | 3.00E-03              |         |            |
| FS-19-2-SYS-16-SO-3 | Deep | 6.0E-04  |         |            | 6.00E-04              |         |            |
| FS-19-2-SYS-17-SO-3 | Deep | 2.0E-03  |         |            | 2.00E-03              |         |            |
| FS-19-2-SYS-18-SO-3 | Deep | 2.7E-02  |         |            | 2.70E-02              |         |            |
| FS-19-2-SYS-19-SO-3 | Deep | -2.0E-03 |         |            | -2.00E-03             |         |            |
| FS-19-2-SYS-20-SO-3 | Deep | 5.0E-03  |         |            | 5.00E-03              |         |            |
| FS-19-2-SYS-21-SO-3 | Deep | 2.2E-02  |         |            | 2.20E-02              |         |            |
| FS-19-2-SYS-22-SO-3 | Deep | 5.0E-04  |         |            | 5.00E-02              |         |            |
| FS-19-2-SYS-7-SO-3  | Deep | -6.0E-03 |         |            | -6.00E-04             |         |            |
| FS-19-2-SYS-8-SO-3  | Deep | 2.1E-02  |         |            | -0.00E-03<br>2.10E-02 |         | _          |
| LF-06-13-SL         | Deep | 6.0E-02  |         |            | 2.10E-02<br>6.00E-02  |         |            |
| LF-06-27-SL         | Deep | -2.1E-01 |         |            | -2.14E-01             |         |            |
| L1-00-27-3L         | Deep | -2.1E-UI |         |            | -2.14E-VI             |         |            |

## Attachment 10 to HEM-11-91 Page 36 of 43

## Insignificant Radionulides - 20110223 R2.xlsx DRAFT

|                                  |      | Am-241              | Np-237  | Pu-239/240 | Am-241                | Np-237  | Pu-239/240 |
|----------------------------------|------|---------------------|---------|------------|-----------------------|---------|------------|
| Sample ID                        | CSM  | (pCi/g)             | (pCi/g) | (pCi/g)    | (pCi/g)               | (pCi/g) | (pCi/g)    |
| LF-06-32-SL                      | Deep | -1.8E-01            | —       |            | -1.82E-01             |         |            |
| LF-07-09-SL                      | Deep | -1.5E-01            |         |            | -1.48E-01             |         | —          |
| LF-07-15-SL                      | Deep | 2.3E-01             |         |            | 2.27E-01              |         | —          |
| LF-07-25-SL                      | Deep | -2.0E-01            |         |            | -1.97E-01             |         |            |
| LF-07-34-SL                      | Deep | -2.8E-03            |         |            | -2.82E-03             |         | —          |
| LF-08-15-SL                      | Deep | 1.2E-01             |         | —          | 1.23E-01              |         | —          |
| LF-08-21-SL                      | Deep | -5.9E-01            | _       |            | -5.90E-01             |         | —          |
| LF-08-37-SL                      | Deep | 6.1E-02             |         | —          | 6.09E-02              |         |            |
| LF-09-17-SL                      | Deep | -1.6E-01            | _       | —          | -1.62E-01             |         | —          |
| LF-09-25-SL                      | Deep | -1.5E-01            |         | —          | -1.49E-01             |         |            |
| LF-09-31-SL                      | Deep | 3.5E-02             |         | _          | 3.47E-02              |         |            |
| NB-101-7-SL                      | Deep | -3.0E-03            |         |            | -3.00E-03             |         |            |
| NB-103-13.5-SL                   | Deep | 5.0E-02             |         | _          | 5.00E-02              |         |            |
| NB-104-12.5-SL                   | Deep | 7.0E-03             |         | _          | 7.00E-03              |         |            |
| NB-105-15.5-SL                   | Deep | 8.0E-02             | _       |            | 8.00E-02              |         |            |
| NB-106-7.5-SL                    | Deep | 1.7E-02             | _       |            | 1.70E-02              |         |            |
| NB-107-17-SL                     | Deep | 1.2E-02             |         |            | 1.20E-02              |         |            |
| NB-108-9-SL                      | Deep | -2.0E-02            |         |            | -2.00E-02             |         |            |
| NB-111-8.5-SL                    | Deep | 1.0E-01             |         |            | 1.00E-02              |         |            |
| NB-112-8.5-SL                    | Deep | 3.0E-02             |         |            | 3.00E-01              |         |            |
| NB-112-8.5-SL<br>NB-113-19.5-SL  | Deep | 1.0E-02             |         |            | 1.00E-02              |         |            |
| NB-115-12.5-SL                   | Deep | -6.0E-02            |         |            | -6.00E-02             |         |            |
| NB-115-12.5-SL<br>NB-116-12.5-SL | Deep | -0.0E-02<br>9.0E-03 |         |            | -0.00E-02<br>9.00E-03 |         |            |
| NB-117-13.5-SL                   | _    | 9.0E-03<br>2.0E-02  |         |            | 9.00E-03<br>2.00E-02  |         |            |
| NB-117-13.3-SL<br>NB-118-10.5-SL | Deep |                     |         |            |                       |         |            |
|                                  | Deep | 2.0E-02             |         |            | 2.00E-02              |         | —          |
| NB-119-13.5-SL                   | Deep | 5.0E-02             |         |            | 5.00E-02              |         | —          |
| NB-120-16.5-SL                   | Deep | -4.0E-02            |         | —          | -4.00E-02             | —       | —          |
| NB-122-14.5-SL                   | Deep | -3.0E-02            |         | —          | -3.00E-02             |         | —          |
| NB-123-8.5-SL                    | Deep | 1.0E-02             |         | —          | 1.00E-02              |         |            |
| NB-124-8.5-SL                    | Deep | 3.0E-02             |         | —          | 3.00E-02              |         | —          |
| NB-125-7-SL                      | Deep | -2.0E-02            |         | —          | -2.00E-02             |         |            |
| NB-126-12.5-SL                   | Deep | 7.0E-03             | _       | —          | 7.00E-03              |         | —          |
| NB-128-18.5-SL                   | Deep | 1.1E-02             | _       | —          | 1.10E-02              |         | —          |
| NB-129-19-SL                     | Deep | -2.0E-02            |         | —          | -2.00E-02             |         | —          |
| NB-130-11-SL                     | Deep | -6.0E-04            | _       | —          | -6.00E-04             |         | —          |
| NB-131-6.5-SL                    | Deep | 2.0E-03             |         | —          | 2.00E-03              |         |            |
| NB-132-13-SL                     | Deep | -1.0E-02            |         | —          | -1.00E-02             |         | —          |
| NB-133-5.5-SL                    | Deep | 2.0E-02             |         | —          | 2.00E-02              |         | —          |
| NB-134-9-SL                      | Deep | 7.0E-02             | _       | —          | 7.00E-02              |         | —          |
| NB-135-15-SL                     | Deep | -1.0E-02            | _       | —          | -1.00E-02             |         | —          |
| NB-136-17.5-SL                   | Deep | 4.0E-02             | _       | —          | 4.00E-02              | _       | —          |
| NB-137-13.5-SL                   | Deep | -1.0E-02            |         |            | -1.00E-02             |         | —          |
| NB-138-14.5-SL                   | Deep | 1.0E-03             |         |            | 1.00E-03              |         |            |
| NB-139-15-SL                     | Deep | 1.0E-01             |         |            | 1.00E-01              |         |            |
| NB-140-12.5-SL                   | Deep | 6.0E-02             |         | —          | 6.00E-02              |         |            |
| NB-141-17.5-SL                   | Deep | 4.0E-03             |         | —          | 4.00E-03              | _       | —          |
| NB-142-9-SL                      | Deep | 8.0E-03             | _       |            | 8.00E-03              |         | —          |
| NB-143-6.5-SL                    | Deep | 7.9E-02             | —       |            | 7.90E-02              | —       | —          |
| NB-144-7-SL                      | Deep | 4.5E-02             | _       | —          | 4.50E-02              |         |            |

#### Attachment 10 to HEM-11-91 Page 37 of 43

## Insignificant Radionulides - 20110223 R2.xlsx DRAFT

|              |      | Am-241               | Np-237  | Pu-239/240 | Am-241                 | Np-237  | Pu-239/240 |
|--------------|------|----------------------|---------|------------|------------------------|---------|------------|
| Sample ID    | CSM  | (pCi/g)              | (pCi/g) | (pCi/g)    | (pCi/g)                | (pCi/g) | (pCi/g)    |
| NB-39-15-SL  | Deep | 1.3E-01              | _       |            | 1.28E-01               |         |            |
| NB-39-25-SL  | Deep | -1.1E-01             |         |            | -1.12E-01              |         |            |
| NB-39-30-SL  | Deep | 2.2E-01              | _       |            | 2.20E-01               |         |            |
| NB-47-15-SL  | Deep | 1.6E-01              | _       |            | 1.57E-01               |         |            |
| NB-47-25-SL  | Deep | 5.8E-02              | _       |            | 5.81E-02               |         |            |
| NB-47-31-SL  | Deep | -3.0E-01             |         |            | -2.96E-01              |         |            |
| NB-48-11-SL  | Deep | -1.1E-01             |         |            | -1.08E-01              |         |            |
| NB-48-15-SL  | Deep | -9.7E-02             |         |            | -9.70E-02              |         |            |
| NB-48-25-SL  | Deep | -4.5E-01             |         |            | -4.52E-01              |         |            |
| NB-48-35-SL  | Deep | 3.0E-02              |         |            | 3.00E-02               |         |            |
| NB-49-15-SL  | Deep | -6.0E-01             | _       |            | -5.96E-01              |         |            |
| NB-49-25-SL  | Deep | -1.5E-01             | _       |            | -1.49E-01              |         |            |
| NB-49-37-SL  | Deep | 1.5E-01              | _       |            | 1.50E-01               |         |            |
| NB-50-15-SL  | Deep | 1.2E-01              | _       |            | 1.17E-01               |         |            |
| NB-50-25-SL  | Deep | -4.9E-02             |         |            | -4.91E-02              |         |            |
| NB-50-37-SL  | Deep | 2.2E-01              |         |            | 2.21E-01               |         | —          |
| NB-51-13-SL  | Deep | -7.2E-01             |         |            | -7.16E-01              |         |            |
| NB-51-25-SL  | Deep | 4.7E-01              |         | _          | 4.73E-01               |         |            |
| NB-51-37-SL  | Deep | -9.0E-02             |         |            | -9.03E-02              |         |            |
| NB-52-13-SL  | Deep | 1.3E-01              | _       |            | 1.30E-01               |         |            |
| NB-52-25-SL  | Deep | -4.7E-02             |         | _          | -4.65E-02              |         | _          |
| NB-52-35-SL  | Deep | 2.3E-02              | _       |            | 2.25E-02               |         |            |
| NB-53-13-SL  | Deep | -4.3E-01             |         |            | -4.26E-01              |         |            |
| NB-53-23-SL  | Deep | 1.6E-02              |         | _          | 1.62E-02               |         |            |
| NB-53-33-SL  | Deep | 8.9E-02              |         |            | 8.91E-02               |         |            |
| NB-54-13-SL  | Deep | 6.8E-02              |         |            | 6.77E-02               |         |            |
| NB-54-25-SL  | Deep | -3.4E-02             | _       |            | -3.39E-02              |         |            |
| NB-54-31-SL  | Deep | 2.3E-02              |         |            | 2.34E-02               |         |            |
| NB-55-13-SL  | Deep | -9.4E-02             |         |            | -9.36E-02              |         |            |
| NB-55-25-SL  | Deep | 1.4E-01              | _       |            | 1.38E-01               |         |            |
| NB-55-33-SL  | Deep | -3.6E-01             | _       |            | -3.63E-01              |         |            |
| NB-56-13-SL  | Deep | -3.2E-02             | _       |            | -3.16E-02              |         |            |
| NB-56-25-SL  | Deep | -9.5E-02             |         |            | -9.46E-02              |         |            |
| NB-56-33-SL  | Deep | 5.4E-02              |         |            | 5.35E-02               |         |            |
| NB-57-15-SL  | Deep | -1.5E-01             |         |            | -1.54E-01              |         |            |
| NB-57-29-SL  | Deep | 8.0E-02              |         |            | 8.02E-02               |         |            |
| NB-57-34-SL  | Deep | 6.0E-02              |         |            | 6.04E-02               |         |            |
| NB-58-15-SL  | Deep | 7.3E-01              |         |            | 7.33E-01               |         |            |
| NB-58-29-SL  | Deep | 4.7E-01              |         |            | 4.71E-02               |         |            |
| NB-58-36-SL  | Deep | -1.5E-01             |         |            | -1.48E-01              |         |            |
| NB-59-13-SL  | Deep | -1.3E-01<br>-2.2E-01 |         |            | -1.48E-01<br>-2.19E-01 |         |            |
| NB-59-25-SL  | Deep | 7.0E-02              |         |            | 7.04E-01               |         |            |
| NB-59-31-SL  | Deep | 4.7E-02              |         |            | 4.68E-02               |         |            |
| NB-60-13-SL  | Deep | 4.7E-02<br>1.4E-02   |         |            | 4.08E-02<br>1.38E-02   |         |            |
| NB-60-23-SL  | Deep | -2.8E-02             |         |            | -2.81E-02              |         |            |
| NB-60-31-SL  | Deep | -2.8E-02<br>3.5E-02  |         |            | -2.81E-02<br>3.50E-02  |         |            |
| NB-61-13-SL  | Deep | -2.9E-03             |         |            | -2.88E-03              |         |            |
| NB-61-23-SL  | Deep | -2.9E-03<br>6.0E-02  |         |            | -2.88E-03<br>5.95E-02  |         |            |
| NB-61-28-SL  | Deep | -3.7E-02             |         |            | -3.72E-02              |         |            |
| 11D-01-20-0L | Deep | -3.7E-02             |         |            | -3.7412-04             |         |            |

## Attachment 10 to HEM-11-91 Page 38 of 43

## Insignificant Radionulides - 20110223 R2.xlsx DRAFT

|               |      | Am-241   | Np-237  | Pu-239/240 | Am-241    | Np-237   | Pu-239/240 |
|---------------|------|----------|---------|------------|-----------|----------|------------|
| Sample ID     | CSM  | (pCi/g)  | (pCi/g) | (pCi/g)    | (pCi/g)   | (pCi/g)  | (pCi/g)    |
| NB-74-17-SL   | Deep | 5.6E-01  |         |            | 5.58E-01  |          | —          |
| NB-74-25-SL   | Deep | 6.8E-02  |         | —          | 6.76E-02  |          | —          |
| NB-74-33-SL   | Deep | -6.2E-02 |         | —          | -6.22E-02 |          | —          |
| NB-79-11-SL   | Deep | 9.6E-03  |         |            | 9.56E-03  |          | —          |
| NB-79-24-SL   | Deep | 4.1E-01  |         |            | 4.14E-01  |          | —          |
| NB-80-11-SL   | Deep | -1.7E-01 |         | —          | -1.73E-01 |          | —          |
| NB-80-27-SL   | Deep | 3.1E-01  |         |            | 3.14E-01  |          | —          |
| NB-88-20-SL   | Deep | -2.0E-02 |         |            | -2.00E-02 |          | —          |
| NB-89-19.5-SL | Deep | -1.1E-01 |         |            | -1.10E-01 |          | —          |
| NB-91-6.5-SL  | Deep | 3.0E-03  |         |            | 3.00E-03  |          | —          |
| NB-93-15-SL   | Deep | 8.0E-02  |         |            | 8.00E-02  |          | —          |
| NB-97-9.5-SL  | Deep | -8.0E-02 | _       |            | -8.00E-02 |          | —          |
| NB-98-9-SL    | Deep | -2.0E-04 |         |            | -2.00E-04 |          | —          |
| OA-18-17-SL   | Deep | -1.5E-01 |         |            | -1.54E-01 |          |            |
| OA-18-25-SL   | Deep | 5.0E-02  |         |            | 4.95E-02  |          | —          |
| OA-18-33-SL   | Deep | -1.0E-01 |         |            | -1.04E-01 |          |            |
| OA-19-15-SL   | Deep | 6.7E-02  |         |            | 6.71E-02  |          | —          |
| OA-19-25-SL   | Deep | 3.3E-02  |         | _          | 3.29E-02  |          |            |
| OA-19-33-SL   | Deep | -4.9E-02 |         |            | -4.89E-02 |          | _          |
| PL-04-13-SL   | Deep | 3.9E-02  |         | _          | 3.92E-02  |          |            |
| PL-04-23-SL   | Deep | 2.9E-01  |         |            | 2.92E-01  |          | _          |
| PL-04-31-SL   | Deep | 1.0E-01  |         | _          | 1.03E-01  |          |            |
| PL-05-15-SL   | Deep | 1.2E-01  |         | _          | 1.17E-01  |          |            |
| PL-05-28-SL   | Deep | -1.0E-01 |         |            | -1.04E-01 |          |            |
| PL-06-07-SL   | Deep | -7.0E-02 |         |            | -6.96E-02 |          | —          |
| PL-06-13-SL   | Deep | -3.3E-01 |         |            | -3.28E-01 |          |            |
| PL-06-17-SL   | Deep | -6.3E-01 |         |            | -6.25E-01 |          |            |
| PL-06-29-SL   | Deep | -1.4E-01 |         |            | -1.37E-01 |          |            |
| PL-06-33-SL   | Deep | -1.9E-01 |         |            | -1.92E-01 |          |            |
| RR-04-07-SL   | Deep | 4.5E-02  | 6.2E-03 | -2.1E-03   | 4.53E-02  | 6.21E-03 | -2.08E-03  |
| RR-04-15-SL   | Deep | 3.3E-01  |         | _          | 3.31E-01  |          |            |
| RR-04-25-SL   | Deep | -3.5E-02 |         | _          | -3.53E-02 |          |            |
| RR-05-15-SL   | Deep | 5.7E-01  |         | _          | 5.69E-01  |          |            |
| RR-05-25-SL   | Deep | 1.0E-01  |         |            | 1.03E-01  |          |            |
| SO-BP1A-14    | Deep |          |         |            |           |          |            |
| SO-BP1B-09    | Deep |          |         |            |           |          |            |
| SO-BP1C-10    | Deep |          |         |            |           |          |            |
| SO-BP1D-12    | Deep |          |         |            |           |          | _          |
| SO-BP1E-07    | Deep | —        |         | —          |           |          |            |
| SO-BP1E-07    | Deep |          |         | _          |           |          |            |
| SO-BP2B-12    | Deep |          |         |            |           |          |            |
| SO-BP2C-12    | Deep |          |         |            |           |          |            |
| SO-BP2D-05    | Deep |          |         | _          |           |          |            |
| SO-BP2E-07    | Deep |          |         |            |           |          |            |
| SO-BP4B-08    | Deep |          |         |            |           |          |            |
| SO-BP4C-10    | Deep |          |         |            |           |          |            |
| SO-BP4D-08    | Deep |          |         |            |           |          |            |
| SO-BP4E-09    | Deep |          |         |            |           |          |            |
| SO-BP4F-08    | Deep |          |         |            |           |          |            |
| 00-11-10-00   | Deep |          |         | _          |           |          |            |

## Attachment 10 to HEM-11-91 Page 39 of 43

## Insignificant Radionulides - 20110223 R2.xlsx DRAFT

|                                   |              | Am-241               | Np-237  | Pu-239/240                            | Am-241                 | Np-237   | Pu-239/240 |
|-----------------------------------|--------------|----------------------|---------|---------------------------------------|------------------------|----------|------------|
| Sample ID                         | CSM          | (pCi/g)              | (pCi/g) | (pCi/g)                               | (pCi/g)                | (pCi/g)  | (pCi/g)    |
| SO-BP5B-10                        | Deep         | <u> </u>             |         | · · · · · · · · · · · · · · · · · · · |                        |          |            |
| SO-BP5C-08                        | Deep         |                      |         |                                       |                        |          |            |
| SO-BP5D-08                        | Deep         |                      |         |                                       |                        |          |            |
| SO-BP5E-10                        | Deep         |                      |         |                                       |                        |          |            |
| SO-BP6A-06                        | Deep         | -1.4E-02             | 5.5E-02 | 9.0E-03                               | -1.40E-02              | 5.50E-02 | 9.00E-03   |
| SO-BP6B-09                        | Deep         |                      | _       |                                       |                        |          |            |
| SO-BP6C-12                        | Deep         | 3.3E-02              | 1.7E-02 | -7.0E-03                              | 3.30E-02               | 1.70E-02 | -7.00E-03  |
| SO-BP6D-12                        | Deep         | -6.0E-03             | 1.7E-01 | 7.0E-03                               | -6.00E-03              | 1.65E-01 | 7.00E-03   |
| SO-BP6E-14                        | Deep         | 2.2E-02              | 6.0E-03 | 1.7E-02                               | 2.20E-02               | 6.00E-03 | 1.70E-02   |
| SO-BP6F-09                        | Deep         | 3.2E-02              | 2.2E-02 | -6.0E-03                              | 3.20E-02               | 2.20E-02 | -6.00E-03  |
| SO-BP6G-10                        | Deep         | 5.1E-02              | 7.9E-02 | -4.0E-03                              | 5.10E-02               | 7.90E-02 | -4.00E-03  |
| SO-BP7B-08                        | Deep         | 5.1E 02              | 7.9E 02 | 1.0E 05                               | 5.10E 02               | 7.90E 02 |            |
| SO-BP7C-12                        | Deep         |                      |         |                                       |                        |          |            |
| SO-BP9A-16                        | Deep         | -1.8E-02             | 8.2E-02 | 7.0E-03                               | -1.80E-02              | 8.20E-02 | 7.00E-03   |
| SS-BP-001-DV                      | Deep         | 4.0E-02              | 0.21 02 | ,. <u></u>                            | 4.00E-02               |          |            |
| SS-BP-002-DV                      | Deep         | 3.8E-02              |         |                                       | 3.80E-02               |          |            |
| SS-BP-002-DV                      | Deep         | 1.0E-03              |         |                                       | 1.00E-03               |          |            |
| SS-BP-004-DV                      | Deep         | -1.3E-01             |         |                                       | -1.30E-01              |          |            |
| SS-BP-005-DV                      | Deep         | -1.0E-02             |         |                                       | -1.00E-02              |          |            |
| SS-BP-007-DV                      | Deep         | 1.6E-01              |         |                                       | -1.00E-02<br>1.60E-01  |          |            |
| SS-BP-007-EL-10                   | Deep         | 1.0E+00              |         | _                                     | 1.00E+01<br>1.03E+00   |          |            |
| SS-BP-008-DV                      | Deep         | -4.0E-05             |         |                                       | -4.00E-05              |          |            |
| SS-BP-009-DV                      | Deep         | 2.0E-02              |         |                                       | 2.00E-02               |          |            |
| SS-BP-010-DV                      | Deep         | -1.5E-01             |         |                                       | -1.50E-02              |          |            |
| SS-BP-011-DV                      | Deep         | 8.0E-03              |         |                                       | 8.00E-03               |          |            |
| SS-BP-012-DV                      | Deep         | -2.0E-01             |         |                                       | -2.00E-01              |          |            |
| SS-BP-014-DV                      | Deep         | 2.2E-02              |         | _                                     | -2.00E-01<br>2.20E-02  |          |            |
| SS-BP-015-DV                      | Deep         | 1.0E-02              |         |                                       | 1.00E-02               |          |            |
| SS-BP-016-DV                      | Deep         | 5.0E-02              |         |                                       | 1.00E-02<br>5.00E-02   |          |            |
| SS-BP-017-DV                      | Deep         | -8.0E-02             |         |                                       | -8.00E-02              |          |            |
| SS-BP-017-DV-EL-11                | Deep         | -8.0E-02<br>4.0E-02  |         |                                       | -8.00E-02<br>4.00E-02  |          |            |
| SS-BP-017-DV-EL-11<br>SS-BP-018DV | Deep         | 4.0E-02<br>2.4E-01   |         |                                       | 4.00E-02<br>2.40E-01   |          |            |
| SS-BP-021-DV                      | Deep         | -6.0E-02             |         |                                       | -6.00E-01              |          |            |
| SS-BP-021-DV<br>SS-BP-022-DV      | Deep         | -0.0E-02<br>-2.0E-01 |         |                                       | -0.00E-02<br>-2.00E-01 |          |            |
| SS-BP-022-DV<br>SS-BP-022-DV-EL-6 | 1            | -2.0E-01<br>-6.0E-02 |         |                                       | -2.00E-01<br>-6.00E-02 |          |            |
| SS-BP-022-DV-EL-0                 | Deep<br>Deep | -6.0E-02<br>5.0E-02  |         |                                       | -6.00E-02<br>5.00E-02  |          |            |
| SS-BP-023-DV<br>SS-BP-024-DV      | 1            |                      |         |                                       |                        |          |            |
|                                   | Deep         | -1.0E-01             |         |                                       | -1.00E-01              |          |            |
| SS-BP-025-DV<br>SS-BP-026-DV      | Deep         | 7.0E-03<br>-1.1E-02  |         |                                       | 7.00E-03<br>-1.10E-02  |          |            |
| SS-BP-026-DV<br>SS-BP-027-DV      | Deep         |                      |         | —                                     |                        |          | —          |
| SS-BP-027-DV<br>SS-BP-028A-DV     | Deep         | 8.0E-02              |         | —                                     | 8.00E-02               |          |            |
| SS-BP-028A-DV<br>SS-BP-028B-DV    | Deep         | -2.0E-03             |         |                                       | -2.00E-03              |          |            |
|                                   | Deep         | -8.0E-03             |         |                                       | -8.00E-03              |          |            |
| SS-BP-028C-DV                     | Deep         | 3.5E-02              |         |                                       | 3.50E-02               |          |            |
| SS-BP-028-DV                      | Deep         | 6.0E-02              |         |                                       | 6.00E-02               |          |            |
| SS-BP-028-DV-EL-9                 | Deep         | 9.0E-02              |         | —                                     | 9.00E-02               |          | —          |
| SS-BP-030-DV                      | Deep         | 1.0E-01              |         | —                                     | 1.00E-01               |          |            |
| SS-BP-031-DV                      | Deep         | -6.0E-02             |         |                                       | -6.00E-02              |          |            |
| SS-BP-032-DV                      | Deep         | -1.6E-02             |         |                                       | -1.60E-02              |          |            |
| SS-BP-033-DV                      | Deep         | -9.0E-02             |         | —                                     | -9.00E-02              | —        | —          |

#### Attachment 10 to HEM-11-91 Page 40 of 43

## Insignificant Radionulides - 20110223 R2.xlsx DRAFT

|                    |      | Am-241   | Np-237  | Pu-239/240 | Am-241    | Np-237  | Pu-239/240 |
|--------------------|------|----------|---------|------------|-----------|---------|------------|
| Sample ID          | CSM  | (pCi/g)  | (pCi/g) | (pCi/g)    | (pCi/g)   | (pCi/g) | (pCi/g)    |
| SS-BP-034-DV       | Deep | 1.3E-01  | _       |            | 1.30E-01  |         | —          |
| SS-BP-037-DV       | Deep | -4.0E-02 |         |            | -4.00E-02 |         |            |
| SS-BP-038-DV       | Deep | 1.2E-01  | _       |            | 1.20E-01  |         |            |
| SS-BP-039-DV       | Deep | -9.0E-02 | _       |            | -9.00E-02 |         |            |
| SS-BP-040-DV       | Deep | -3.0E-02 | _       |            | -3.00E-02 |         |            |
| SS-BP-041-DV       | Deep | 2.0E-02  |         |            | 2.00E-02  |         |            |
| SS-BP-042-DV       | Deep | 9.0E-02  |         |            | 9.00E-02  |         |            |
| SS-BP-043-DV       | Deep | -9.0E-03 |         |            | -9.00E-03 |         |            |
| SS-BP-044-DV       | Deep | -1.0E-02 |         |            | -1.00E-02 |         |            |
| SS-BP-045-DV       | Deep | 1.8E-02  |         |            | 1.80E-02  |         |            |
| SS-BP-046-DV       | Deep | -2.0E-03 | _       |            | -2.00E-03 |         |            |
| SS-BP-047-DV       | Deep | 5.0E-02  | _       |            | 5.00E-02  |         |            |
| SS-BP-048-DV       | Deep | 6.0E-02  | _       |            | 6.00E-02  |         |            |
| SS-BP-049-DV       | Deep | -4.0E-02 | _       |            | -4.00E-02 |         |            |
| SS-BP-051-DV       | Deep | 2.0E-02  |         | —          | 2.00E-02  |         |            |
| SS-BP-052-DV       | Deep | 1.5E-02  |         | —          | 1.50E-02  |         | —          |
| SS-BP-052-EL-6     | Deep | -4.0E-02 |         |            | -4.00E-02 |         |            |
| SS-BP-053-DV       | Deep | -2.0E-03 |         | _          | -2.00E-03 |         |            |
| SS-BP-054-DV       | Deep | 1.0E-03  |         |            | 1.00E-03  |         |            |
| SS-BP-055-DV       | Deep | 8.0E-03  | _       |            | 8.00E-03  |         | _          |
| SS-BP-056-DV       | Deep | 7.0E-04  |         |            | 7.00E-04  |         |            |
| SS-BP-057-DV       | Deep | 0.0E+00  | _       |            | 0.00E+00  |         | _          |
| SS-BP-058-DV       | Deep | 1.4E-01  |         |            | 1.40E-01  |         |            |
| SS-BP-060-DV       | Deep | 2.0E-02  |         | _          | 2.00E-02  |         |            |
| SS-BP-061-DV       | Deep | 2.0E-03  |         |            | 2.00E-03  |         |            |
| SS-BP-062-DV       | Deep | 3.0E-03  |         |            | 3.00E-03  |         |            |
| SS-BP-062-DV-EL-10 | Deep | -1.2E-01 |         |            | -1.20E-01 |         | _          |
| SS-BP-063-DV       | Deep | 2.5E-02  |         |            | 2.50E-02  |         |            |
| SS-BP-064-DV       | Deep | -4.0E-03 |         | _          | -4.00E-03 |         |            |
| SS-BP-065-DV       | Deep | -6.0E-03 |         |            | -6.00E-03 |         | _          |
| SS-BP-065-DV-EL-5  | Deep | 1.1E-01  |         |            | 1.09E-01  |         |            |
| SS-BP-066-CUT-EL   | Deep | -1.7E-01 |         |            | -1.70E-01 |         | _          |
| SS-BP-066-DV       | Deep | 1.4E-02  |         | _          | 1.40E-02  |         |            |
| SS-BP-067-DV       | Deep | 4.0E-03  |         |            | 4.00E-03  |         |            |
| SS-BP-068-DV       | Deep | -1.0E-02 |         |            | -1.00E-02 |         |            |
| SS-BP-069-DV       | Deep | 3.6E-02  | _       |            | 3.60E-02  |         | _          |
| SS-BP-070-DV       | Deep | 2.0E-04  |         |            | 2.00E-04  |         |            |
| SS-BP-071-DV       | Deep | 1.2E-02  |         | _          | 1.20E-02  |         |            |
| SS-BP-072-DV       | Deep | 0.0E+00  |         |            | 0.00E+00  |         | _          |
| SS-BP-073-DV       | Deep | 1.1E-02  | _       |            | 1.10E-02  |         | _          |
| SS-BP-074-DV       | Deep | 3.0E-03  |         |            | 3.00E-03  | _       | _          |
| SS-BP-075-DV       | Deep | 6.0E-03  |         |            | 6.00E-03  |         | _          |
| SS-BP-075-DV-EL-7  | Deep | 5.0E-02  |         | _          | 5.00E-02  |         |            |
| SS-BP-076-DV       | Deep | 2.6E-02  |         |            | 2.60E-02  | _       |            |
| SS-BP-077-DV       | Deep | -6.0E-03 |         |            | -6.00E-03 |         |            |
| SS-BP-078-DV       | Deep | 5.0E-02  |         |            | 5.00E-02  |         |            |
| SS-BP-079-DV       | Deep | 4.0E-03  |         |            | 4.00E-03  |         |            |
| SS-BP-080-DV       | Deep | -2.0E-02 |         |            | -2.00E-02 |         |            |
| SS-BP-106-DV       | Deep | 1.0E-03  |         |            | 1.00E-02  |         |            |

#### Attachment 10 to HEM-11-91 Page 41 of 43

## Insignificant Radionulides - 20110223 R2.xlsx DRAFT

|                              |      | Am-241               | Np-237  | Pu-239/240 | Am-241                 | Np-237  | Pu-239/240 |
|------------------------------|------|----------------------|---------|------------|------------------------|---------|------------|
| Sample ID                    | CSM  | (pCi/g)              | (pCi/g) | (pCi/g)    | (pCi/g)                | (pCi/g) | (pCi/g)    |
| SS-BP-107-DV                 | Deep | 6.0E-05              | —       |            | 6.00E-05               |         |            |
| SS-BP-108B-DV                | Deep | -2.7E-01             |         |            | -2.70E-01              |         |            |
| SS-BP-108B-DV-EL-6           | Deep | 5.0E-01              |         |            | 5.00E-01               |         |            |
| SS-BP-109-DV                 | Deep | -2.0E-02             |         |            | -2.00E-02              | _       |            |
| SS-BP-110-DV                 | Deep | 2.0E-02              |         | _          | 2.00E-02               |         |            |
| SS-BP-111-DV                 | Deep | 4.0E-03              |         | —          | 4.00E-03               |         |            |
| SS-GA-001-DV                 | Deep | 2.0E-03              | _       |            | 2.00E-03               |         |            |
| SS-GA-002-DV                 | Deep | 2.4E-02              |         |            | 2.40E-02               | _       |            |
| SS-GA-003-DV                 | Deep | 2.6E-02              | _       | —          | 2.60E-02               |         |            |
| SS-GA-004-DV                 | Deep | 1.4E-02              | _       | —          | 1.40E-02               |         |            |
| SS-GA-005-DV                 | Deep | 2.0E-04              |         | —          | 2.00E-04               |         |            |
| SS-GB-002-DV                 | Deep | -3.8E-02             |         | _          | -3.80E-02              |         | _          |
| SS-GB-004-DV                 | Deep | 2.3E-02              |         |            | 2.30E-02               |         |            |
| SS-GB-006-DV                 | Deep | 3.0E-03              |         | _          | 3.00E-03               |         | _          |
| SS-GB-007-DV                 | Deep | 0.0E+00              |         | —          | 0.00E+00               |         |            |
| SS-GB-009-DV                 | Deep | 1.1E-02              | _       | _          | 1.10E-02               |         |            |
| SS-GB-010-DV                 | Deep | 5.3E-02              |         |            | 5.30E-02               |         |            |
| SS-GB-012-DV                 | Deep | 8.0E-04              |         |            | 8.00E-04               |         |            |
| SS-GB-012-DV                 | Deep | -2.2E-02             |         |            | -2.20E-02              |         |            |
| SS-GB-015-DV                 | Deep | 1.7E-02              |         |            | 1.70E-02               |         |            |
| SS-GB-016-DV                 | Deep | 2.0E-03              |         |            | 2.00E-03               |         |            |
| SS-GB-018-DV                 | Deep | -2.2E-02             |         |            | -2.20E-02              |         |            |
| SS-GB-019-DV                 | Deep | 3.0E-04              |         |            | 3.00E-02               |         |            |
| SS-GB-020-DV                 | Deep | -4.0E-03             |         |            | -4.00E-03              |         |            |
| SS-GB-021-DV                 | Deep | 1.1E-02              |         |            | 1.10E-02               |         |            |
| SS-GC-001-DV                 | Deep | 1.3E-02              |         |            | 1.30E-02               |         |            |
| SS-GC-001-DV<br>SS-GC-002-DV | Deep | -1.0E-02             |         | _          | -1.00E-02              |         |            |
| SS-GC-002-DV<br>SS-GC-004-DV | Deep | -4.0E-02             |         |            | -1.00E-02<br>-4.00E-03 |         |            |
| SS-GC-005-DV                 | Deep | -1.0E-03             |         |            | -4.00E-03              |         |            |
| SS-GC-007-DV                 | Deep | -1.4E-02             |         |            | -1.40E-02              |         |            |
| SS-GC-008-DV                 | Deep | 2.0E-02              |         |            | 2.00E-02               |         |            |
| SS-GC-010-DV                 | Deep | 1.8E-02              |         |            | 2.00E-02<br>1.80E-02   |         |            |
| SS-GC-010-DV                 | Deep | 3.1E-02              |         |            | 1.30E-02<br>3.10E-02   |         |            |
| SS-GL-008-DV                 | Deep | 2.4E-02              |         |            | 3.10E-02<br>2.40E-02   |         |            |
| SS-GL-009-DV                 | Deep | -6.0E-03             |         |            | -6.00E-02              |         |            |
| SS-GL-009-DV                 | Deep | -0.0E-03             |         |            | -0.00E-03              |         |            |
| SS-HS-005-DV                 |      | -1.0E-03<br>-5.0E-02 |         |            | -1.00E-03<br>-5.00E-02 |         |            |
| SS-LA-006-DV                 | Deep | -3.0E-02<br>4.0E-02  |         |            | -3.00E-02<br>4.00E-02  |         |            |
| SS-LA-000-DV<br>SS-LA-019-DV | Deep | 4.0E-02<br>9.0E-02   |         |            | 4.00E-02<br>9.00E-02   |         |            |
|                              | Deep | 9.0E-02              |         |            |                        |         |            |
| SS-LA-020-DV<br>SS-LA-029-DV | Deep | -4.0E-02<br>-2.0E-04 |         |            | -4.00E-02<br>-2.00E-04 |         |            |
| SS-LA-029-DV<br>SS-LA-035-DV | Deep | -2.0E-04<br>0.0E+00  |         |            | -2.00E-04<br>0.00E+00  |         |            |
|                              | Deep |                      |         |            |                        |         |            |
| SS-LA-036-DV                 | Deep | -2.4E-02             |         |            | -2.40E-02              |         |            |
| SS-LA-050-DV                 | Deep | -1.0E-02             |         |            | -1.00E-02              | —       |            |
| SS-LA-059-DV                 | Deep | -3.0E-02             |         |            | -3.00E-02              |         |            |
| SS-LA-081-DV                 | Deep | -1.0E-02             |         | —          | -1.00E-02              | _       | —          |
| SS-LA-082-DV                 | Deep | 3.0E-02              |         |            | 3.00E-02               |         | —          |
| SS-LA-083-DV                 | Deep | 6.0E-02              |         |            | 6.00E-02               |         | —          |
| SS-LA-084-DV                 | Deep | 1.0E-03              | —       | —          | 1.00E-03               | —       | —          |

#### Attachment 10 to HEM-11-91 Page 42 of 43

## Insignificant Radionulides - 20110223 R2.xlsx DRAFT

Table a-2

|                   |      | Am-241   | Np-237  | Pu-239/240 | Am-241    | Np-237   | Pu-239/240 |
|-------------------|------|----------|---------|------------|-----------|----------|------------|
| Sample ID         | CSM  | (pCi/g)  | (pCi/g) | (pCi/g)    | (pCi/g)   | (pCi/g)  | (pCi/g)    |
| SS-LA-085-DV      | Deep | -6.0E-03 |         | —          | -6.00E-03 |          |            |
| SS-LA-085-DV-EL-6 | Deep | 5.0E-02  |         | —          | 5.00E-02  |          |            |
| SS-LA-086-DV      | Deep | 5.0E-02  |         | —          | 5.00E-02  |          | —          |
| SS-LA-087-DV      | Deep | -6.0E-02 |         | —          | -6.00E-02 |          | —          |
| SS-LA-088-DV      | Deep | -5.0E-02 |         | —          | -5.00E-02 |          |            |
| SS-LA-089-DV      | Deep | 8.0E-02  |         | —          | 8.00E-02  |          | —          |
| SS-LA-090-DV      | Deep | 6.0E-02  |         | —          | 6.00E-02  |          | —          |
| SS-LA-091-DV      | Deep | 3.0E-02  |         | —          | 3.00E-02  |          | —          |
| SS-LA-092-DV      | Deep | -7.0E-02 |         | —          | -7.00E-02 |          | —          |
| SS-LA-093-DV      | Deep | -2.0E-02 |         | —          | -2.00E-02 |          | —          |
| SS-LA-094-DV      | Deep | 5.0E-02  |         |            | 5.00E-02  |          |            |
| SS-LA-095-DV      | Deep | -2.0E-02 |         | —          | -2.00E-02 |          |            |
| SS-LA-096-DV      | Deep | -2.0E-02 |         |            | -2.00E-02 |          |            |
| SS-LA-097-DV      | Deep | -3.2E-02 |         |            | -3.20E-02 |          |            |
| SS-LA-098-DV      | Deep | -1.0E-04 |         |            | -1.00E-04 |          |            |
| SS-LA-099-DV      | Deep | -8.0E-02 |         |            | -8.00E-02 |          |            |
| SS-LA-100-DV      | Deep | -2.0E-02 |         |            | -2.00E-02 |          |            |
| SS-LF-101-DV      | Deep | 3.2E-02  |         |            | 3.20E-02  |          |            |
| SS-LF-102-DV      | Deep | -1.0E-02 |         |            | -1.00E-02 |          |            |
| SS-LF-103-DV      | Deep | -2.0E-02 |         |            | -2.00E-02 |          |            |
| SS-LF-104-DV      | Deep | 1.3E-02  |         |            | 1.30E-02  |          |            |
| SS-LF-105-DV      | Deep | -2.1E-02 |         |            | -2.10E-02 |          |            |
| SW-02-09-SL       | Deep | -8.7E-02 | _       |            | -8.74E-02 |          |            |
| SW-02-15-SL       | Deep | -3.5E-01 |         |            | -3.47E-01 |          |            |
| SW-02-23-SL       | Deep | 1.3E-01  |         | —          | 1.34E-01  |          |            |
| SW-05-08-SL       | Deep | -6.6E-02 |         |            | -6.56E-02 |          |            |
| SW-05-12-SL       | Deep | 5.1E-02  |         |            | 5.11E-02  |          |            |
| SW-06-13-SL       | Deep | 4.3E-02  |         | —          | 4.29E-02  |          |            |
| SW-06-23-SL       | Deep | 1.5E-02  |         |            | 1.53E-02  |          |            |
| SW-07-15-SL       | Deep | -1.7E-01 |         |            | -1.65E-01 |          |            |
| SW-07-23-SL       | Deep | -5.3E-02 | _       |            | -5.33E-02 |          | —          |
| SW-08-15-SL       | Deep | 7.3E-02  |         | _          | 7.29E-02  |          |            |
| SW-08-25-SL       | Deep | -2.5E-01 |         | —          | -2.50E-01 |          |            |
| WS-BP2A-11        | Deep | —        |         | —          |           |          |            |
| WS-BP5A-07        | Deep | —        |         | —          |           |          |            |
| WS-BP7A-08        | Deep | —        |         | —          |           |          | _          |
| WS-BP8A-10        | Deep | 2.1E-02  | 2.2E-01 | -6.0E-04   | 2.10E-02  | 2.19E-01 | -6.00E-04  |
| Average           |      | -        | -       |            | 5.06E-03  | 2.03E-02 | 1.63E-03   |

Average

## Insignificant Radionulides - 20110223 R2.xlsx DRAFT

|              | DSR<br>(mrem/yr per | Year of<br>Maximum | DCGL <sup>a</sup> |
|--------------|---------------------|--------------------|-------------------|
| Radionuclide | pCi/g)              | Dose               | (pCi/g)           |
| U-234        | 1.19E-01            | 1,000              | 209.6             |
| U-235 + D    | 4.52E-01            | 1,000              | 55.3              |
| U-238 + D    | 1.38E-01            | 0                  | 181               |
| Tc-99        | 9.30E-01            | 0                  | 26.9              |
| Th-232 + C   | 1.20E+01            | 0.2543             | 2.1               |
| Ra-226 + C   | 1.12E+01            | 0                  | 2.2               |
| Np-237 + D   | 8.97E+01            | 595                | 0.3               |
| Pu-239/240   | 3.01E-01            | 0                  | 83.1              |
| Am-241       | 3.15E-01            | 0                  | 79.3              |

## June 21, 2011

## **ATTACHMENT 11**

## Draft Supplemental Response to NRC Requests for Additional Information on Historical Radiological Characterization Report

Westinghouse Electric Company LLC, Hematite Decommissioning Project

Docket No. 070-00036

© 2011 Westinghouse Electric Company LLC All Rights Reserved

| RAI<br>No.    | Issues                                                                                                                                                                                                                                                                           | Path Forward                                                                                                                                                                                                                                                                                                                 | Discussion Points                                                                                                                                                                                                                                                                                                              |                                                                                                            |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| RCR-<br>1 & 2 | Updated maps identifying 2003,<br>2007 and 2010 UBC sampling<br>locations and revised HRCR Tables<br>4-24 and 4-25 and DP Table 4-13.                                                                                                                                            | No further comment with respect to this issue.<br>Provide additional sampling of the Erbia room or<br>justify why such sampling is not needed.                                                                                                                                                                               | Westinghouse described the ERBIA area within Building 255, which was much<br>of the building, and how this was a dry process (only incidental water, such as for<br>mopping the floor). The locations of soil sampling under the ERBIA area within<br>Building 255 were also explained from the Westinghouse letter HEM-11-56. | Westinghouse<br>action required                                                                            |
|               | NRC staff reviewed the 4Q6<br>response along with information in<br>the "white paper" (HEM-11-56), and<br>it appears that 2003, 2007, and 2010<br>sampling locations have all been<br>provided. However, it is not clear if<br>sampling in the Erbia Room Area<br>was addressed. |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                |                                                                                                            |
|               | Sampling in the Erbia room.                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                |                                                                                                            |
| RCR-3         | Clarify that the corrections in<br>Attachment 8 will be added to the<br>DP.                                                                                                                                                                                                      | Clarify how the tables in DP will be corrected.<br>(Possible solution would be to add Attachment 8 as<br>an Appendix to Chapter).                                                                                                                                                                                            | As requested, Attachment 8 to Westinghouse letter HEM-10-80 will be added to<br>the DP Revision 1. Future revisions of the DP and the Historical Radiological<br>Characterization Report may readjust the location of this reported information to<br>better fit the organizational structure of the reports.                  | Westinghouse<br>last paragraph<br>Westinghouse                                                             |
| RCR-<br>5     | RSO approval of alternate release<br>criteria.<br>The "weighting the radionuclides"<br>as an acceptable method to<br>determine the effective criterion for<br>a mixture of radionuclides.                                                                                        | Revise discussion from 10.7.1 of HDP, quoted in<br>RAI response, to delete ability of RSO to approve<br>alternate release criteria.<br>Delete the discussion on "weighting the<br>radionuclides" as an acceptable method to<br>determine the effective criterion for a mixture.<br>Replace with the sum of fractions method. | The wording was not intended to give the RSO the ability to approve alternate release criteria. The sum of the fractions method will be used.                                                                                                                                                                                  | The last two se<br>"For a mixture<br>contamination<br>radionuclide p<br>relative contril<br>approve the su |

#### **Proposed Resolution**

use has provided requested confirmation. No further ired.

use will place the information in Attachment 8 and the ph of the response to RAI RCR-Q3 in Attachment 1 of use letter HEM-10-80 in a new DP Table 4-30.

o sentences of Section 10.7.1 will be revised to state: ture of radionuclides with differing limits, the effective ion limit may be derived by using the most conservative le present or by the sum of the fractions reflecting the ntributions of the radionuclides present. The RSO shall e sum of the fractions calculation.

## ATTACHMENT 12

Draft Supplemental Response to NRC Requests for Additional Information on Decommissioning Plan Information Relating to Summary Paper "Evaluation of Tc-99 Under the Process Buildings"

> Westinghouse Electric Company LLC, Hematite Decommissioning Project

> > Docket No. 070-00036

© 2011 Westinghouse Electric Company LLC All Rights Reserved

| Document supporting other RAI<br>Responses                                             | Issues & Path Forward                                                                                                                        | Discussion Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Westinghouse letter HEM-11-56,<br>"Evaluation of Tc-99 Under the<br>Process Buildings" | Figure 4: Why wasn't the Process<br>Bldg Investigative Area extended to<br>the Bldg 253 east and west walls?                                 | The Investigation Area identified on Figure 4 should have extended to the southeastern wall of Building 253. This Investigation Area extends to the northeast wall of Building 253 and extends beyond the southwest wall of Building 253.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | When placing F<br>extend to the so                                                          |
| Westinghouse letter HEM-11-56,<br>"Evaluation of Tc-99 Under the<br>Process Buildings" | What is the investigative process for<br>soil samples, including subsurface,<br>that contain radiological constituents<br>above their DCGLs? | Consistent with MARSSIM, DP Section 14.4.5.6, Elevated Measurement Comparison Evaluation, contains the investigative process for soil samples that contain radiological constituents above their DCGLs. This process would be applied to samples taken per Section 9.2 of the Evaluation of Tc-99 Under the Process Buildings.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | When placing to<br>Under the Proceed<br>the following be<br>samples are sub<br>comparison." |
| Westinghouse letter HEM-11-56,<br>"Evaluation of Tc-99 Under the<br>Process Buildings" | Basis for not increasing subsurface<br>sampling for radionuclides between<br>Bldgs 240 and 255 and 256?                                      | <ul> <li>Subsurface sampling was increased as follows in Westinghouse letter HEM-11-56:</li> <li>Appendix C to Attachment 1 of HEM-11-56 identified 26 locations where additional samples will be taken from archived soil corings. The corings are up to 20.5 ft long (representing a maximum depth of 20.5 ft bgs). Nine of the 26 locations are in the area between Buildings 240 and 255.</li> <li>Historically, the area between Buildings 240 and 255 initially consisted of Buildings 250/251, and open space. In 1989, Buildings 250/251 were dismantled and Buildings 253/254 were constructed in the space between Buildings 240/255. The Investigation Area, as extended per the resolution in the first row above, encompasses all of the open area that existed between Buildings 240 and 251; some wet processes/tanks had been located in this open area. The Investigation Area has increased subsurface sampling per Section 9.2 of Attachment 1 to HEM-11-56. The remaining open area that had existing between Buildings 240 and 255 did not involve wet processes/tanks, so the Investigation Area was not extended to cover this area.</li> </ul> |                                                                                             |

#### **Proposed Resolution**

g Figure 4 in the DP as new DP Figure 14-1, revise it to southeastern wall of Building 253.

g the text in Section 9.2 of the Evaluation of Tc-99 ocess Buildings as new DP subsection 14.4.3.4.2, add g before the bullets: "Results from the following subject to Section 14.4.5.6 for elevated measurement

se has provided the requested clarifying information in on Points. No further action required.

## **ATTACHMENT 13**

## Draft Supplemental Response to NRC Requests for Additional Information on Decommissioning Plan Reference to Effluent and Environmental Monitoring Plan

Westinghouse Electric Company LLC, Hematite Decommissioning Project

Docket No. 070-00036

© 2011 Westinghouse Electric Company LLC All Rights Reserved

| EEMP<br>Section | Issues                                   | Path Forward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Discussion Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T |
|-----------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 8.3.1<br>C1     | Location of<br>permanent air<br>samplers | <ul> <li>Provide details on how the location of the permanent air samplers account for releases from the work areas where remediation activities will occur and prevalent wind directions.</li> <li>The EEMP indicates in Section 8.3.1 (Airborne Sources) that "from on-site meteorological data, prevailing winds on-site are generally from the south-southwest or from north-northeast (essentially parallel to State Road P and the adjacent hill)." A review of EEMP Appendix A and Figure B-1 shows that 6 air monitoring locations (AS-A, AS-B, AS-C, AS-D, AS-F, and AS-G) will be in place around the decommissioning area perimeter. There appears to be an air sampling void in the south-southwest area of the site (west of the site pond), which is along the direction of the prevailing winds. This fact, coupled with statements in DP Section 11.2 and EEMP Section 8.4 that perimeter sampling of air effluents will only be performed when work activities could potentially generate at the perimeter of the work activities, airborne radioactivity concentrations in excess of 20 percent of annual limits specified in 10 CFR 20, Appendix B, raises concerns that adequate effluent air monitoring may not be performed when winds are blowing toward the southsouthwest.</li> <li>Since the loading pad is an area which will involve significant remediation activities associated with radioactive waste, it would also seem appropriate to include air samplers around the loading pad in the downwind locations from the prevailing winds.</li> <li>Information contained in the discussion points needs to be incorporated either into the DP or the EEMP. If the latter, a revised docketed EEMP needs to be provided.</li> <li>Will the portable air samples result in the detection levels at 10% the annual average effluent limit?</li> <li>Acceptability of air monitoring is strongly dependent upon the utilization of mobile samplers. Westinghouse did not seem to address whether such samplers were capable of measuring 10% of the annual limit.</li> </ul> | As stated in EEMP Section 8.3.1, from on-site meteorological data, prevailing winds on-site are generally from the south-southwest or from north-northeast (essentially parallel to State Road P and the adjacent hill). The locations of the permanent environmental samplers are based on the prevailing wind directions. Six of the eight permanent sampling locations are established downwind of both prevailing directions. Therefore, the number and arrangement of these permanent sampling locations are appropriate to determine the average annual concentration based on prevailing wind conditions. The four permanent environmental air samplers that are currently in operation at the perimeter of the site were identified in the Decommissioning Plan, Table 11-5. Subsequently, the Response to RAI, Chapter 11, Question 3 included Figure 11-1 that reflected the addition of two permanent environmental air samplers to arrive at a total of six permanent air sampling locations for decommissioning activities. One of the additional samplers will be located along the east side of the Planned Laydown Area which is intended to measure air concentrations relevant to the nearest member of the public, and the 2nd additional sampler will be located adjacent to the south side of the rail spur waste loading operations to measure air concentrations within the public railroad right-of-way. Another permanent air sampler has been added southeast of Building 231 to be closer to the loading pad. Another permanent environmental air samplers will operate 7 days per week, 24 hours per day in order to obtain an adequate sampler volume to demonstrate that the individual member of the public likely to receive the highest dose would not be expected to receive a total effective dose equivalent in excess of 10 mrem per year from site air effluents. Figure 1 shows the locations of the permanent air samplers. As a supplement to the arrangement of the eight permanent environmental air samplers will be analyzed after a collection period of one day to provide time |   |

## **Proposed Resolution**

Westinghouse has provided the requested clarifying information in the Discussion Points. No further action required.

| EEMP<br>Section | Issues                                                                                                                                                                                                                                                                   | Path Forward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Discussion Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | daily sample indicating a concentration in excess of 50 percent of the annual effluent limit) is identified in a timely manner. This will serve as an initiator for corrective actions that may include adjustment to engineering controls or work practices to ensure the annual average concentration limit is not exceeded.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 8.3.1<br>C2     | Location of<br>permanent air<br>samplers                                                                                                                                                                                                                                 | Provide details on how does Westinghouse address the situation where the wind direction will not result in a permanent downstream sampler measuring the release?<br>Information from the Discussion Points needs to be added to DP or docketed EEMP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | When wind direction is such that a permanent environmental air<br>sampler will not measure the release at a specific point in time,<br>portable air samples will be positioned downwind of the work areas<br>when there is a potential to exceed 20 percent of the air effluent limit<br>at the perimeter of the work area.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | In practice, it is Westinghouse's intent to run perimeter samplers<br>during nearly all operations that involve movement of exposed soil,<br>(e.g., excavation, rail car loading), thus portable downwind air<br>samplers will be utilized for many activities that have the potential to<br>generate concentrations that are less than 20 percent of the air effluent<br>limit.                                                                                                                                                                                                                                                                                                                                                                                               |
| 8.3.4<br>C1     | Conflicting<br>information with<br>respect to<br>operation of the<br>wastewater<br>treatment facility<br>under the<br>continuous mode<br>of operation for<br>the 25 year storm<br>scenario and the<br>monitoring and<br>effluent<br>conditions under<br>such a scenario. | Correct or clarify the conflicting information.<br>Westinghouse's approach with respect to continuous releases is unacceptable. There is no<br>basis for concluding that previous batch measurements are indicative of releases on a<br>continuous basis. If Westinghouse wishes to operate the system on a continuous basis then<br>it needs to monitor the effluent by taking a continuous composite sample and a continuous<br>flow measurement. Such measurements may be made by using either (1) a continuous<br>proportioning sampling system, with at least two sample collection tanks. The system<br>should be designed to collect a sample at a fixed ratio established between the sample<br>collection flow rate and the effluent stream discharge flow rate or (2) Use of a periodic<br>automatic grab sampling system, with at least two sample collection tanks. The system<br>should be designed to collect a sample at a fixed volume established at a rate that is<br>proportional to the effluent stream discharge flow rate.<br>See Staff response to DP Chapter 8 RAI No. 2c. Staff concerns carry over here too. | <ul> <li>While EEMP Section 8.3.4 does not mention the 25 year storm scenario, review of 8.3.4 identified that the discussion of batch versus continuous sampling could be improved. Westinghouse will revise Section 8.3.4 to be consistent with the response to the matrix response on DP Chapter 8, RAI#2c.</li> <li>Effluent samples from the WTS pathway are obtained after treatment at the sample location denoted as SFW-A2 on Figure 1, "Existing Sampling Locations for Air, Surface Water, and Sediment."</li> </ul>                                                                                                                                                                                                                                                |
| 8.3.4<br>C2     | Investigative<br>derived waste<br>treatment system                                                                                                                                                                                                                       | Clarify whether such a system will be utilized as part of the decommissioning and provide a description of the system in the DP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The Investigative Derived Waste Treatment System (IDWTS) was a<br>small scale water treatment system that was used to treat purge water<br>and small volumes of impacted water from the site. This system is no<br>longer in service and has been dismantled, but was not removed in the<br>event it was needed before the Water Treatment System was<br>operational.<br>All impacted water encountered during the remedial actions will be<br>sampled and discharged providing effluent release criteria are met<br>with due consideration of maintaining release concentrations ALARA,<br>or will be collected, sampled and processed through the Water<br>Treatment System, as appropriate. References to IDWTS will be<br>removed from future revisions of site documents. |

| Proposed Resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Westinghouse has provided the requested clarifying<br>information in the Discussion Points. No further<br>action required.                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| The first paragraph of EEMP Section 8.3.4 will be<br>revised to include the same information that is in the<br>proposed resolution in the matrix response on DP<br>Chapter 8, RAI #2c.                                                                                                                                                                                                                                                                                                                                                                        |
| Westinghouse will revise: (1) Section 8.3.3 of the<br>EEMP removing the paragraph describing the<br>IDWTS; (2) Section 10.2 of the EEMP removing the<br>reference to the IDWTS from the table describing the<br>outfall sample locations; (3) Section 11.0 of the<br>EEMP removing reference to the IDWTS; (4) Table 1<br>of the EEMP removing reference to the IDWTS in the<br>sample point description for liquid effluent; and (5)<br>Appendix A removing reference to the IDWTS from<br>the description of Outfall #001 and from the list of<br>acronyms. |

| EEMP<br>Section | Issues                                                      | Path Forward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Discussion Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8.4.1           | Perimeter<br>sampling %                                     | Provide the basis for only performing perimeter sampling if the performance of the work<br>activities generate activities at the perimeter of the work, concentrations greater than 20%<br>of the annual limits specified in 10CFR20, Appendix B, Table 2, Column 1 when the<br>ALARA goal described in DP Section 11.1.1.1 is at 20% of the Appendix B value.<br>Discussion points need to be provided in a revised DP or in a revised docketed EEMP.<br>Include the information in the Discussion Points in the DP. | The basis is derived from the ALARA constraint in 10 CFR 20.1101<br>(d) of 10 mrem/yr for public exposure from emissions of airborne<br>radioactive material, which is equivalent to twenty percent of<br>10CFR20, Appendix B, Table 2, Column 1. However, the location of<br>a perimeter air sampler is conservative relative to the location of a<br>member of the public. A member of the public would not be at the<br>perimeter of the work area for the duration of the work, which is<br>where the air sampler is located. Thus, a member of the public would<br>receive less dose than the dose estimated from perimeter air sample<br>results. Accordingly, sampling at the perimeter of the work area at an<br>action level equivalent to the ALARA goal for the public, and taking<br>ALARA actions based on exceedances of the ALARA goal at the<br>perimeter of the work area, conservatively ensure the ALARA goal is<br>met for the public at a downwind location.<br>In practice, it is Westinghouse's intent to run perimeter samplers<br>during nearly all operations that involve movement of exposed soil,<br>(e.g., excavation, rail car loading), thus portable downwind air<br>samplers will be utilized for many activities that have the potential to<br>generate concentrations that are less than 20 percent of the air effluent<br>limit. |
| 8.4.4<br>C1     | Discussion of air<br>samples (1 <sup>st</sup><br>paragraph) | WEC delete reference to air samples.<br>Revision needs to be docketed.                                                                                                                                                                                                                                                                                                                                                                                                                                                | Westinghouse will revise the section in question per the proposed resolution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8.4.4<br>C2     | Batch release<br>based upon<br>process<br>knowledge and     | Justify why process knowledge and retrospective confirmation is permissible for a batch release in lieu of a laboratory analysis results prior to release of the batch.<br>See RAI No. 8.3.4 C.1 above.                                                                                                                                                                                                                                                                                                               | Westinghouse will revise the section in question per the proposed resolution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

#### **Proposed Resolution**

The following text will be added to the end of the first paragraph in DP Section 11.2.1:

This basis is derived from the ALARA constraint in 10 CFR 20.1101 (d) of 10 mrem/yr for public exposure from emissions of airborne radioactive material, which is equivalent to twenty percent of 10CFR20, Appendix B, Table 2, Column 1. It should be noted that the location of a perimeter air sampler is conservative relative to the location of a member of the public. A member of the public would not be at the perimeter of the work area for the duration of the work, which is where the air sampler is located. Thus, a member of the public would receive less dose than the dose estimated from perimeter air sample results. Accordingly, sampling at the perimeter of the work area at an action level equivalent to the ALARA goal for the public, and taking ALARA actions based on exceedances of the ALARA goal at the perimeter of the work area, conservatively ensure the ALARA goal is met for the public at a downwind location.

The following text will be inserted after the second sentence in the second paragraph of DP Section 11.2.1: "In practice, it is Westinghouse's intent to run perimeter samplers during nearly all operations that involve movement of exposed soil, (e.g., excavation, rail car loading), thus portable downwind air samplers will be utilized for many activities that have the potential to generate concentrations that are less than 20 percent of the air effluent limit."

Westinghouse will revise Section 8.4.4 of the EEMP to read as follows:

"Liquid effluent samples shall be analyzed for gross alpha radioactivity and gross beta radioactivity. The review of liquid effluent results shall include consideration of whether the isotopic mixture may differ from that previously understood, thus warranting isotopic analysis. Considerations to determine that a change in isotopic mixture may have occurred include isotopic results of soil or other media associated with the origin of the wastewater."

See the proposed resolution to 8.3.4C1 above.

| EEMP<br>Section      | Issues                                                                     | Path Forward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Discussion Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Proposed Resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | retrospective<br>confirmation in<br>addition to<br>laboratory<br>analysis. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8.5                  | Erosion controls                                                           | Clarify whether erosion controls will be used in the laydown and waste handling staging<br>area.<br>Laydown area seems to be addressed by the Northeast Creek Water Diversion System.<br>Appears that waste staging area is addressed by Section 9.8 of the Water Management Plan.<br>Need to confirm the latter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes, erosion controls will be used in the laydown and waste staging<br>areas. The document HDP-PO-EM-004, <i>Water Management Plan</i> ,<br>which was provided to NRC via the same Westinghouse letter that<br>provided the EEMP (HEM-10-138 dated January 28, 2011) discusses<br>erosion control measures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DP Table 8-4 will be revised to add the following<br>rows:Laydown<br>AreaBMP – silt fence, straw bales,<br>waddles, berms, or ditches to divert<br>surface and storm water towards<br>outfalls, i.e. Implement SWPPP<br>controls.Storm and<br>surface waterBMP – sand bags, berms, silt fences,<br>or ditches to divert surface and storm<br>water towards subsurface and storm<br>water towards subsurface drain for<br>water collection, sample analysis,<br>and treatment as necessary.                                                                                                                                                                                                                                                                |
| 9.3<br>Table 2<br>C1 | Investigation<br>Level<br>Environmental<br>Samples                         | Provide a description of how Westinghouse determines that an environmental sample will<br>exceed 10% of the regulatory limits in Table 1 of the Effluent Monitoring Plan.<br>DP needs to be revised to include discussion points.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Permanent environmental air samples and samples of water, sediment<br>and vegetation are analyzed for gross alpha and beta radioactivity<br>using a target detection level of 5 percent of the annual air effluent<br>concentration limit. Based on experience, this target is appropriate<br>since the average detection level for the year 2010 was less than 5<br>percent of the annual limit.<br>See the additional response to the RAI on DP Chapter 11-11 in<br>Westinghouse letter HEM-11-90 for routine isotopic analysis, which<br>allows the individual sample threshold t be the investigation level.                                                                                                                                                                                                                                                                          | Changes made to DP Chapter 11 based on HEM-11-<br>90 will also be propagated through the EEMP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 9.3<br>Table 2<br>C2 | Investigation<br>levels limits for<br>Table 2                              | <ul> <li>Provide the investigatory limits in Table 2.</li> <li>ORISE review:</li> <li>OBSERVATION 1:</li> <li>The application of the Mann-Kendall test as provided in Section 9.5 and Appendix D Data Quality Objectives (DQOs) is an appropriate statistical method to evaluate either a stable, upward, or downward trend of groundwater contaminant concentrations. However, the monitoring plan lacks much of the specific information relevant to how the test will be applied and other considerations. Information that has not been provided includes:</li> <li>1. Per Section 9.5 and Table 2, WEC will use the Mann-Kendall test to analyze trends in soil, surface water, groundwater, and vegetation samples. Are all of these media subject to exhibiting contamination level trending and if not, is this an appropriate method for evaluating data from these sample media?</li> <li>2. How will the null hypothesis (H<sub>0</sub>) be stated? As with any hypothesis test, overwhelming evidence is required to reject the assumed base condition (H<sub>0</sub>) and</li> </ul> | <ul> <li>Investigation limits are shown for the parameters listed in Table 1 since these parameters have associated regulatory limits. With the exception of the air sample medium, the sample media listed in Table 2 do not have specific regulatory limits. For surface water, groundwater, soil, vegetation, and sediment environmental sample results, two analyses of the results will be used to evaluate adverse trends within the data.</li> <li>1. HDP plans to use the Mann-Kendall test to evaluate the environmental monitoring results of soil, groundwater, vegetation, and sediment samples at the locations listed in EEMP Table 2 using the following test parameters:</li> <li>The null hypothesis will be stated as no trend.</li> <li>HDP plans to use the normal approximation for sample size greater than 10 and will use the methodology contained in</li> </ul> | <ul> <li>Westinghouse will insert the following footnote to<br/>Table 2 of the EEMP: "Note: See Section 9.5 for<br/>trending of all sample media results except for air<br/>sample results, which have investigative limits<br/>established in Table 1 of this EEMP."</li> <li>Westinghouse will revise Section 9.5 of the EEMP to<br/>state:</li> <li>The quarterly environmental monitoring results for<br/>groundwater, soil, vegetation, and sediment shall be<br/>reviewed for trends and outlier results, and should<br/>include:</li> <li>A graphical analysis to identify patterns that<br/>would otherwise go unnoticed using purely<br/>statistical methods (such as identification of<br/>outliers and seasonal data patterns). The</li> </ul> |

| Propo | sed ] | Reso | olut | ion |
|-------|-------|------|------|-----|
|       |       |      |      |     |

| EEMP<br>Section Issues | Path Forward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Discussion Points                                                                                                                                                                                                                                                                                   |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | accept the alternative hypothesis ( $H_A$ ). That is, will $H_0$ be stated in such a way that<br>there is no trend, a one-tailed upward trend, a one-tailed downward trend, or a two-<br>tailed upward/downward trend? Most example applications state $H_0$ with the base<br>condition being no trend, then the A is stated where it accounts for either a one- or<br>two-tailed test. It is anticipated that WEC would be concerned with a one-tailed<br>upward trend.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>EPA-QA/G9 for sample sizes smaller than or equal to 10.</li> <li>HDP will use an alpha error of 0.05. There is not beta error rate associated with the Mann-Kendall test.</li> <li>HDP does not plan to apply a statistical evaluation to evaluate homogeneity across stations.</li> </ul> |
|                        | <ul> <li>upward trend.</li> <li>3. There are two specific methods for applying the test, dependent upon whether <i>n</i> is &lt; or &gt; 40. The plan does not discuss this. When <i>n</i> &gt; 40, a normal approximation test is used.</li> <li>4. The DQOs provided in Appendix D provide no specific information on the control of the α and β errors.</li> <li>5. The document should provide for additional data evaluation methods. For instance, it is assumed that the Mann-Kendall will be applied for each monitoring well. The document does not discuss whether the data from multiple monitoring stations will be evaluated to draw conclusions for the site as a whole. Section 16.4.4 "Homogeneity of Stations" in Gilbert 1987 provides additional information on this assessment. The outlier discussions/evaluations in the plan lack clarity.</li> <li>CONCLUSION 1:</li> <li>The plan provides limited information for prospective review and independent evaluation of the selected statistical test, controls on errors, application of the test, anomalous result evaluation, etc.</li> <li>PATH FORWARD 1:</li> <li>It is recommended that WEC revise the plan to include more specific information that clearly defines test parameters, inputs, and data quality assessment methods. A detailed discussion of assumptions and uncertainties need to be presented, along with an explanation of why the Mann-Kendall test is appropriate for all sample media.</li> <li>OBSERVATION 2:</li> <li>The Mann-Kendall test does not consider the magnitude of the data; rather scores are given either a +1 or -1 dependent upon the prior result for a given monitoring point. Therefore, dependent upon <i>n</i>, the test could conclude there is no trend when there are indeed individual results the site should evaluate. An example would be results of 10 pCi/l; 9,000 pCi/l; 8,500 pCi/l; 9,500 pCi/l; and 8,900 pCi/l. In this example, the result of the statistical test would be to file to a given monitoring point. Therefore, dependent upon <i>n</i>, the test concluding there is a decreasing trend are the resul</li></ul> |                                                                                                                                                                                                                                                                                                     |

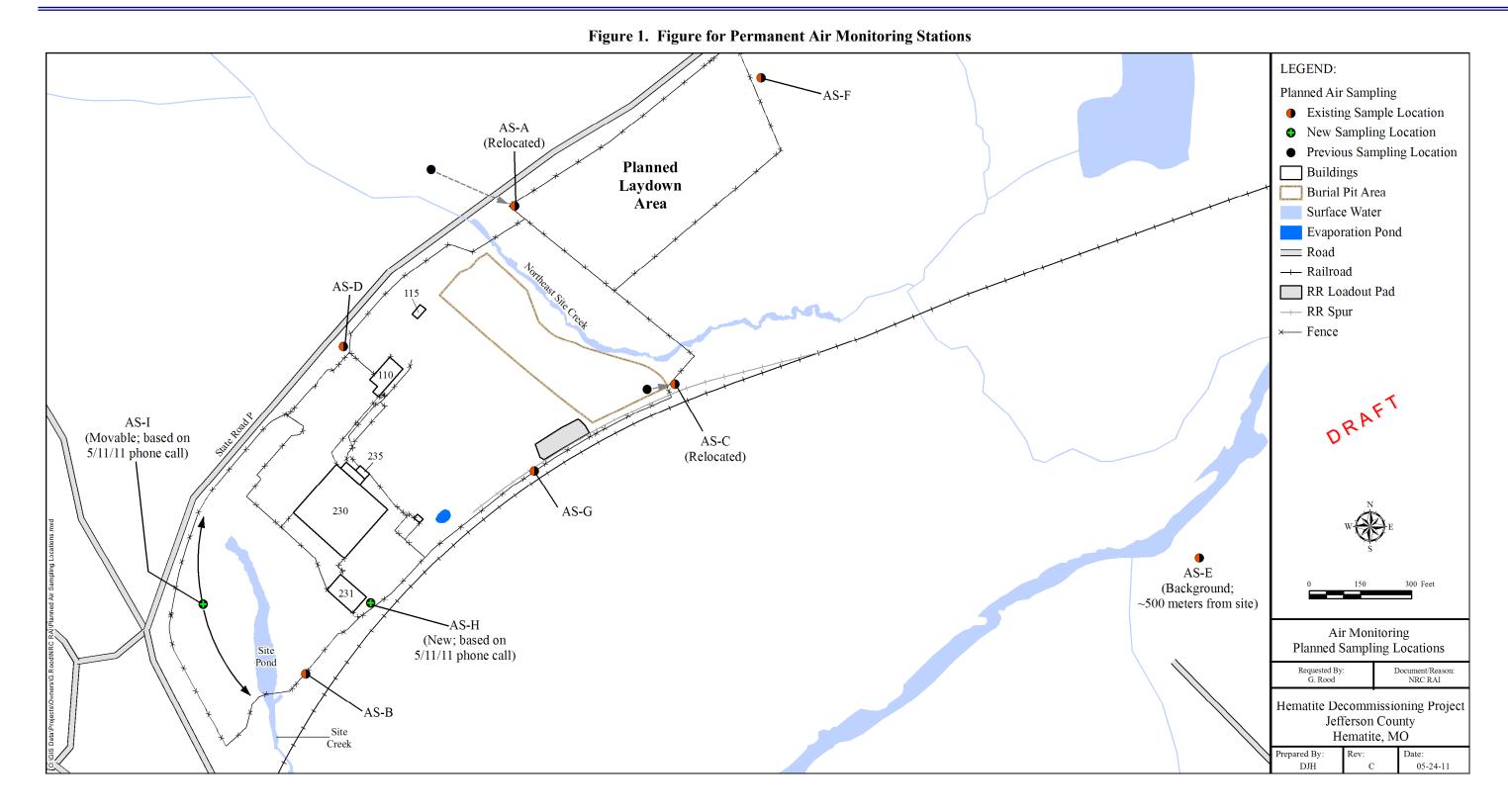
#### **Proposed Resolution**

graphical analysis will include the historical mean plus 3 sigma (calculated under stable, preremediation conditions). Measurements which exceed this historical mean plus 3 sigma range should be flagged for further evaluation as outliers.

The Mann-Kendall test (Reference 5.17) using a • 0.05 probability level with a one-tailed confidence interval (Null Hypothesis of no trend). For a sample size of less than 10 measurements, the Mann-Kendall "S" statistic should be evaluated using EPA QA/G-9, Table A-11 ("Probabilities for the small-sample Mann-Kendall Trend Test") (Reference 5.18). For a sample size greater than 10, the normal approximation may be used (References 5.17 and 5.18). Evaluation of statistical trending methods should consider the following limitations inherent in the Mann-Kendall test: 1) insensitivity to the magnitude of successive measurements, and 2) susceptibility to false results due to changes in laboratory analytical methods. In any case, failure to reject the null hypothesis (there is no trend) is not conclusive; it simply means that there is insufficient evidence to reject the null hypothesis of no trend.

The EH&S Manager and RSO shall be notified of any individual outlier measurements and of identified trends. Once an upward trend is identified, a review of the associated decommissioning activity(s) will be conducted to determine if such activities are contributing to the observed increase. The review should assess, as applicable, remedial actions, the source of contamination, the potential for contamination to become airborne or reach liquid effluents, the equipment being used, and control, treatment, and/or mitigation measures. Changes to work methods and/or engineering controls should be implemented, as appropriate, to reduce effluent concentrations to ALARA levels.

New References 5.17 and 5.18 will be added to the EEMP as follows:


5.17 Gilbert, R.O., Statistical Methods for

| EEMP<br>Section | Issues | Path Forward                                                                                                                                                                                                                                                                                                                                                                                                     | <b>Discussion Points</b> | T |
|-----------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---|
|                 |        | <ol> <li>The test will not account for seasonality, nor for varying sampling or analytical methods. The underlying assumptions are that these conditions are known/controlled and that any trending is the result of natural attenuation.</li> </ol>                                                                                                                                                             |                          | Ī |
|                 |        | 3. Because of how the H <sub>0</sub> is generally stated, a "no trend" result for this test is not conclusive. It simply means there is insufficient evidence to reject the H <sub>0</sub> . The examples provided above in Observation 2.1 illustrate this point.                                                                                                                                               |                          |   |
|                 |        | CONCLUSION 2:                                                                                                                                                                                                                                                                                                                                                                                                    |                          |   |
|                 |        | The plan as currently written does not discuss how the limitations of selected statistical tests will be controlled.                                                                                                                                                                                                                                                                                             |                          |   |
|                 |        | PATH FORWARD 2:                                                                                                                                                                                                                                                                                                                                                                                                  |                          |   |
|                 |        | It is recommended that WEC revise the plan to include more specific information regarding the test's limitations, anomaly detection, decision processes, and potential conclusion errors.                                                                                                                                                                                                                        |                          |   |
|                 |        | OBSERVATION 3:                                                                                                                                                                                                                                                                                                                                                                                                   |                          |   |
|                 |        | Section 9.5, page 15 of 28 states that the Environmental Health and Safety (EH&S)<br>Manager and Radiation Safety Officer (RSO) will be notified if an adverse trend is<br>identified. How is an adverse trend defined? Would this be defined as one quarterly<br>monitoring round where the conclusion is there is an upward trend? What about individual<br>anomalous results (refer also to Observation 2.1)? |                          |   |
|                 |        | The discussion provided in Section 8.2 states: "an investigation level for individual air<br>and liquid effluent samples has been established at 50 percent of the applicable values in 10<br>CFR 20, Appendix B." Is this intended to define what is meant by an "adverse trend?"                                                                                                                               |                          |   |
|                 |        | CONCLUSION 3:                                                                                                                                                                                                                                                                                                                                                                                                    |                          |   |
|                 |        | The plan is unclear in the discussion of anomalous results.                                                                                                                                                                                                                                                                                                                                                      |                          |   |
|                 |        | PATH FORWARD 3:                                                                                                                                                                                                                                                                                                                                                                                                  |                          |   |
|                 |        | It is recommended that WEC revise the plan to include more specific information that clearly discusses anomaly detection and evaluations for individual data points for all matrices.                                                                                                                                                                                                                            |                          |   |

#### **Proposed Resolution**

Environmental Pollution Monitoring, 1987, John Wiley & Sons, New York.

5.18 EPA QA/G-9, Guidance for Data Quality Assessment, Practical Methods for Data Analysis, EPA/600/R-96/084, July 2000



## **ATTACHMENT 14**

### Draft Supplemental Response to NRC Requests for Additional Information on Decommissioning Plan Reference to Water Management Plan

Westinghouse Electric Company LLC, Hematite Decommissioning Project

Docket No. 070-00036

© 2011 Westinghouse Electric Company LLC All Rights Reserved

| WMP<br>Section             | Issues                                                                                                                                                          | Path Forward                                                                                                                                                                                                                                                                     | Discussion Points                                                                                                                                                                                                                                                               | Propos                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8.3a                       | Free-flow by gravity<br>from effluent holding<br>tanks.                                                                                                         | First appearance of this release mechanism. No such description in the Chapter 8 RAI response about the WTS.                                                                                                                                                                     | The Water Treatment System (WTS) design had<br>not been completed at the time that the Water<br>Management Plan (WMP) was prepared, so the<br>WMP was written to allow for the possibility of<br>gravity drain. However, the installed WTS requires<br>pumps for the discharge. | The last sentence of the second paragraph of W<br>will be pumped during effluent discharge."                                                                                                                                                                                                                                                                                                 |
| 8.3b                       | Discharge of processed<br>water without sampling<br>& analysis based upon<br>operational history &<br>fact previous releases<br>have met effluent<br>standards. | Approach is unacceptable as discussed in NRC<br>response of May 6, 2011 to Westinghouse EEMP<br>Resolution Table.                                                                                                                                                                | There was a misunderstanding on sampling of<br>WTS discharges. Westinghouse's plan has always<br>been to sample batches prior to batch discharge or<br>to continuously sample, via composite sampler,<br>continuous discharges.                                                 | The last paragraph of WMP Section 8.3 will b<br>operation, or when processing water with new<br>processed water will be stored in a tank and te<br>met (sampling and batch release). After a peri<br>reliability in achieving the effluent standards,<br>composite sampling device during periods of o<br>release). While in this mode of operation, a w<br>subsequent laboratory analysis." |
| 9.2.2 &<br>9.6.2           | 0.5 inch precipitation<br>event                                                                                                                                 | Specify a time period for the 0.5 inch. Also, specify that evidence of standing water would be a basis for checking.                                                                                                                                                             | The intended precipitation event was 0.5 inch in a day. Standing water on ground surfaces is a reasonable visual indication of this amount of precipitation.                                                                                                                    | The last sentence of the first paragraph of WM<br>ensure controls are operating effectively and a<br>control in place will be checked whenever a ha<br>check of the Site's rain gauge, or whenever sta<br>soil or grass surfaces, but not paved or gravel<br>The last sentence of WMP Section 9.6.2 will b<br>functioning correctly, the method of redirection                               |
|                            |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                 | inch of precipitation is measured during the da<br>standing water is observed on ground surfaces<br>surfaces)."                                                                                                                                                                                                                                                                              |
| 9.6.1a<br>second<br>bullet | Grab Sample of drain of<br>supernatant from site<br>pond. Monitoring of                                                                                         | Commit to composite sample. Clarify whether the composite sampling at WS-18 in Table 1 of the EEMP would capture this release.                                                                                                                                                   | The supernatant from the Site Pond will be drained<br>to a discharge with a composite sampler. The<br>discharge location will be monitored by continuous                                                                                                                        | A new WMP Section 9.6.1 will be added and accordingly.                                                                                                                                                                                                                                                                                                                                       |
|                            | supernatant discharge                                                                                                                                           | pernatant discharge<br>The discharge location will "likely" be combined<br>with Outfall #001. Either it is or it is not. There<br>should be no ambiguity. Wherever it goes it should                                                                                             | sampler (samples analyzed weekly) following<br>approval of the DP License Amendment. (Sample<br>WS-18 is a grab sample currently taken at Outfall<br>#001 per the current SNM-33 amendment).                                                                                    | <ul> <li>9.6.1 Water Diversion (Temporary Change)</li> <li>The non-impacted spring and sur Road P and then entering the Sit portion of the Site Creek below the discharge sufficiently downstream</li> </ul>                                                                                                                                                                                 |
|                            |                                                                                                                                                                 | Based upon the proposed revision to Section 9.6.1,<br>it appears that the discharge from Outfall #001 is<br>being moved then its new location should be<br>reflected in the EEMP, other applicable Plans and<br>Programs and associated Figures and Tables<br>throughout the DP. |                                                                                                                                                                                                                                                                                 | <ul> <li>avoid interference with remediat</li> <li>The current location of Outfall #<br/>immediately downstream of the<br/>waste water from the Sanitary Tr<br/>composite sampler. While the S<br/>Outfall #001 will be diverted suf</li> </ul>                                                                                                                                              |
|                            |                                                                                                                                                                 | Present Section 9.6.1 describes the draining of the site pond. With the proposed change, one might conclude that the draining being described is that associated with the diversion around the site pond and not the supernatant in the pond.                                    |                                                                                                                                                                                                                                                                                 | <ul> <li>The current location of Outfall #3 does not discharge to the Site Pond, and</li> </ul>                                                                                                                                                                                                                                                                                              |
|                            |                                                                                                                                                                 | The third bullet proposed in Section 9.6.1 states that the WTS discharge is to Outfall #003 while the                                                                                                                                                                            |                                                                                                                                                                                                                                                                                 | the composite sampler at Outfall<br>effluent from the WTS, stormwa                                                                                                                                                                                                                                                                                                                           |

#### osed Resolution

f WMP Section 8.3 will be revised as follows: "Water

l be revised to state: "During the early stage of ew radiological or chemical characteristics, the tested to determine if the effluent standards have been eriod of operational experience that shows consistent s, processed water may be continuously sampled via a of continuous discharge (continuous sampling of weekly composite sample will be collected for

WMP Section 9.2.2 will be revised as follows: "To d as intended, each barrier and water management half-inch of precipitation is measured during the daily standing water is observed on ground surfaces (e.g., el surfaces)."

Il be revised as follows: "To ensure that it is ting upstream water will be inspected whenever a halfdaily check of the Site's rain gauge, or whenever ces (e.g., soil or grass surfaces, but not paved or gravel

d the existing Sections 9.6.x will be renumbered

#### anges)

surface water originating from the north side of State Site Pond will be diverted around the Site Pond and the w the dam that is to be remediated. This diversion will ream of the remediation area within the Site Creek to iation.

l #001 is along the eastern bank of the Site Creek, he Site Pond Dam. Outfall #001 effluent consists of Treatment System, and is continuously sampled via e Site Creek is undergoing remediation, the discharge at sufficiently downstream of the Site Creek remediation a remediation. The diverted Outfall #001 discharge y a composite sampler.

1 #003 is along the eastern bank of the Site Pond. Note arge directly to the environment. Rather, Outfall #3 nd is included in the effluent measurement obtained by Call #002 (Site Dam). Outfall #003 effluent consists of water from the parking lot, part of the footprint of the

DRAFT

| WMP<br>Section     | Issues                  | Path Forward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Discussion Points                                                                                                                                                                                                                                                                                   | Propos                                                                                                                                                                                                                            |
|--------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    |                         | fourth bullet says it is to the culvert below the site<br>pond. Which is correct?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                     | former processing building, barr<br>is undergoing remediation, disc<br>Outfall #001 or sufficiently dow<br>interference with remediation, d<br>The diverted Outfall #003 disch<br>the diversion.                                  |
|                    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                     | WMP Section 9.6.2 (old 9.6.1) will be replace                                                                                                                                                                                     |
|                    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                     | 9.6.2 Draining of Site Pond Supernatant                                                                                                                                                                                           |
|                    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                     | • Either a pump or a gravity dra<br>utilizing a submersible pump<br>The third bullet (previously 2 <sup>nd</sup> bullet of 9.6.1<br>follows: "Pump/gravity drain the supernatant<br>sampling will be conducted during this draini |
| 9.6.1b             | Treatment of the        | Commit to treating the supernatant if the sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Westinghouse had previously committed to treating                                                                                                                                                                                                                                                   | The first paragraph of Section 9.7 will be rev                                                                                                                                                                                    |
| second<br>bullet & | supernatant by the WTS. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | the Site Pond supernatant that is closest to the sediment, i.e., the bottom 6 inches of the                                                                                                                                                                                                         | Appendix B shows the location of the Ev                                                                                                                                                                                           |
| 9.7                |                         | For the evaporative pond, there was no commitment to treat the bottom six inches of the supernatant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | supernatant. An equivalent commitment is not<br>warranted for draining the remaining evaporation<br>pond in operation since it is lined. After the liner is<br>removed, the area is treated as an excavation area.                                                                                  | size. The western Evaporation Pond (<br>backfilled during 2010, and currently<br>remediation. At about that same time<br>converted to a collection sump by rem                                                                    |
|                    |                         | Does the discussion in Section 9.7 pertain to the<br>lined pond or the pond after the liner has been<br>removed? Is the water being pumped out is the<br>water contained by the liner?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | In the preceding row of this matrix, Westinghouse<br>committed to composite sampling during<br>supernatant draining. The following sentence in<br>Section 0.7 was inconsistent with DB Chapter 11                                                                                                   | liner and temporary pump. The discharge<br>WTS. During remediation, the supernata<br>Evaporation Pond prior to excavation. The<br>the WTS, or if in-situ samples of the super<br>will be directly discharged through a tem        |
|                    |                         | If there is a commitment for the 50% and 20% levels for the evaporative pond, why wouldn't there be a comparable commitment for the site pond which is not lined ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Section 9.7 was inconsistent with DP Chapter 11<br>and will be removed: "If the sample results are 20<br>percent of any effluent limits or more, the<br>supernatant will be collected and treated as<br>described in Section 8.0."                                                                  | hose/piping. After the supernatant is rem<br>laden sediment on top of the liner will be<br>pond floor and sidewalls. No drying time<br>very small in size, allowing the limited an                                                |
|                    |                         | Westinghouse has made the forgone conclusion<br>that the material collected by the various drains and<br>transmitted to the evaporative ponds does not<br>warrant treatment. That seems presumptuous just<br>because the pond is lined. Would guess that the<br>issue would be based upon activity levels not the<br>presence of a liner. Also, the staff thought that<br>there was previously a commitment by<br>Westinghouse to treat liquid in the evaporative<br>pond using the WTS based upon activity level in<br>the pond. See Section 8.2 as an example.<br>Eventually, the evaporative pond will be drawn<br>down and the supernatant will need to be<br>addressed. As noted above, the basis would not | Consistent with DP Chapter 11, Westinghouse will<br>apply an Investigation Level of 50 percent and its<br>annual ALARA Goal of 20 percent in evaluating<br>these sample results and considering appropriate<br>actions, such as treating the supernatant from the<br>Site Pond or Evaporation Pond. | contaminated soil underlying the liner.                                                                                                                                                                                           |
|                    |                         | addressed. As noted above, the basis would not seem to be the presence of a liner.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   |

#### oosed Resolution

arn area, and building roof drains. While the Site Pond scharge at Outfall #003 will be diverted either to ownstream of the Site Creek remediation area to avoid , depending upon the timing of Site Creek remediation. charge will be sampled by a composite sampler during

aced with a bullet as follows:

drain will be used; pumping would be performed ap fitted with a screen.

6.1) of WMP Section 9.6.2 (old 9.6.1) will be revised as ant down to a depth of 6 inches or less. Composite ining."

evised as follows:

Evaporation Ponds, which is about 0.03 acre in secondary) was emptied of water, lined, and contains soil that will be removed during the eastern Evaporation Pond (primary) was oving the water, and installing an impermeable rge of the pump is currently connected to the atant will be removed from the eastern The supernatant will either be processed through upernatant show an acceptable concentration, it emporary pump and additional temporary emoved, the liner and any accumulated waterbe excavated in conjunction with the underlying me of the sediment is planned since the pond is amount of sediment to be mixed with the dryer,

## **ATTACHMENT 15**

### Draft Supplemental Response to NRC Requests for Additional Information on Decommissioning Plan Reference to Waste Management and Transportation Plan

Westinghouse Electric Company LLC, Hematite Decommissioning Project

Docket No. 070-00036

© 2011 Westinghouse Electric Company LLC All Rights Reserved

| WMTP<br>Section | Issues                                                                                                                                                                      | Path Forward                                                                                                                      | <b>Discussion Points</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6 C1            | Responsibility for<br>VOC and<br>radiologically<br>contaminated<br>material and just<br>radiologically<br>contaminated<br>material is not<br>identified in this<br>section. | Identify who is responsible for VOC and<br>radiologically contaminated material and just<br>radiologically contaminated material. | The RSO is responsible for radiologically contaminated<br>material, regardless of whether such material also contains non-<br>radiological constituents. The RSO is also responsible for<br>defining the disposal requirements for soil and waste containing<br>radiological contaminants and for determining whether soil is<br>suitable for re-use as backfill based on radiological<br>characteristics.<br>The EH&S manager is responsible for identification, safety and<br>controls for non-radiological contaminants, such as VOCs and<br>chemicals, and for determining whether soil is suitable for re-<br>use as backfill based on non-radiological characteristics.<br>Waste Management is responsible for coordinating the<br>transportation and disposal of any radioactive, hazardous or<br>mixed waste.                                                                                                                                                                                                                                                                                   | Section 6.2 will be revised to ad<br>radiologically contaminated mat<br>non-radiological constituents. T<br>requirements for soil and waste<br>determining whether soil is suita<br>characteristics."<br>Section 6.3 will be revised to ad<br>responsible for identification, sa<br>such as VOCs and chemicals, ar<br>backfill based on non-radiologic<br>Section 6.2 will be revised to ad<br>identify radioactive materials an<br>Section 6.4 will be revised to sta |
|                 |                                                                                                                                                                             |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | entails ensuring radioactive, haz<br>classified, packaged, marked, la<br>DOT and other applicable regul                                                                                                                                                                                                                                                                                                                                                                |
| 6 C2            | Whether Waste<br>Management is a<br>manager, group<br>or whatever                                                                                                           | Indicate what Waste Management is.                                                                                                | The Waste Management Group reports to the RSO and is<br>composed of one or more Waste Management Specialist(s) and<br>health physics technicians, supported by operations personnel<br>and quality assurance inspectors. This Group is responsible to<br>ensure that the different types of waste generated at the HDP is<br>compliantly identified, classified, packaged, marked, labeled<br>and offered for transportation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Section 6.4 will be revised to ad<br>"Waste Management is a group<br>or more Waste Management Spe<br>operations personnel and quality                                                                                                                                                                                                                                                                                                                                  |
| 8.1             | Commitment to<br>subcontract<br>shipment of<br>fissile material to<br>an NRC licensee                                                                                       | Clarify when and when not an NRC licensee will be<br>utilized to handle fissile material shipments.<br>(DOE/Lawsuit resolution).  | <ul> <li>Westinghouse will not initiate transportation of a fissile material shipment from the Hematite Site under NRC License No. SNM-33. Instead, Westinghouse will initiate transportation of 'fissile exempt' Shipments under SNM-33. To accomplish this, mechanical size reduction of material will occur as necessary so that all decommissioning shipments may be made as fissile exempt. Westinghouse contemplates two contingencies to fissile exempt shipments, as follows:</li> <li>1. Westinghouse will utilize the U.S. Department of Energy (DOE) in the unlikely discovery of material that exceeds the minimum quantity of DOE Category II, as defined by DOE Manual 470.4-6. For implementation of this contingency, the DOE would take possession of the material at the Hematite Site and conduct the shipment under their authority pursuant to the Atomic Energy Act. The contingency plan for using DOE was established in the binding Judicial Settlement Agreement, Consent Decree, and Final Judgment of Westinghouse v. U.S.A. Civil Action No 4:03-CV-00861(CDP).</li> </ul> | "SNM resulting from decommise<br>exempt, using mechanical size r<br>Department of Energy (DOE) of<br>may be utilized in the unlikely e<br>such a contingency, the DOE or<br>the Hematite Site. Shipments by<br>performed in accordance with D<br>licensee would be in accordance<br>program in accordance with 10 of<br>5.2)."                                                                                                                                         |
|                 |                                                                                                                                                                             |                                                                                                                                   | 2. Westinghouse will consider using another NRC licensee<br>(other than Westinghouse-Hematite) to perform a fissile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

#### **Proposed Resolution**

add the following: "The RSO is responsible for naterial, regardless of whether such material also contains The RSO is also responsible for defining the disposal e containing radiological contaminants and for itable for re-use as backfill based on radiological

add the following: "Additionally, the EH&S manager is safety and controls for non-radiological contaminants, and for determining whether soil is suitable for re-use as gical characteristics."

add the following: "...WMTP, and is responsible to and radioactive waste."

state: "WM is responsible for waste disposal which azardous and mixed waste are properly identified, labeled and offered for transport in accordance with ulations."

add the following:

p within the RSO's organization and is composed of one Specialist(s) supported by health physics technicians, ity assurance inspectors."

vill be revised as follows:

hissioning work is expected to be shipped as fissile e reduction as necessary. As a contingency, the U.S. or an NRC licensee (other than Westinghouse-Hematite) v event that a shipment of fissile material is required. For or NRC licensee would take possession of the material at by the U.S. Department of Energy (DOE) would be DOE quality requirements. Shipment by another NRC ice with that licensee's approved quality assurance 0 CFR 71 Subpart H – Quality Assurance (Reference

| WMTP<br>Section | Issues                                                                    | Path Forward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Discussion Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | material shipment in the unlikely event of discovering material viable for re-introduction into the fuel manufacturing process. For implementation of this contingency, the NRC licensee would take possession of the fissile material at the Hematite Site and conduct the shipment under their license. The contingency action plan for using another NRC licensee has not been formally established at this time, but considerations would likely include the amount of fissile material relative to the fissile exempt criteria, the effort to size-reduce the material to less than the fissile exempt criteria, the ease of re-introducing the fissile material into the commercial fuel manufacturing process, and the licensee's license conditions. Since potential re-introduction of material into the fuel manufacturing process will depend on the properties of the discovered fissile material, Westinghouse would complete such contingency arrangements after the material is discovered and its properties are determined. As an example, arrangements could be made with the Westinghouse Columbia facility (NRC License No. SNM-1107) to conduct fissile material shipments when the viable fissile material is less than 5 percent enriched.                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8.6.5 C1        | Use of surrogates,<br>specifically U-<br>235 as a surrogate<br>for Tc-99. | Clarification that U-235 will not be used as a<br>surrogate for Tc-99 and that laboratory analyses will<br>be performed for Tc-99.<br>WEC refers to the 1983 "NRC Low-Level Licensing<br>Branch, Technical Position on Radioactive Waste<br>Classification, Revision 0 (5/83)" as part of their<br>justification for using scaling factors to represent<br>Tc-99 in waste streams going to NRC licensed<br>facilities. This document states that "the [NRC]<br>staff considers a reasonable target for determining<br>measured or inferred radionuclide concentrations is<br>that the concentrations are accurate to within a<br>factor of 10." WEC also refers to 10 CFR 61.55<br>which indicates that:<br>"8) Determination of concentrations in wastes. The<br>concentration of a radionuclide may be determined<br>by indirect methods such as use of scaling factors<br>which relate the inferred concentration of one<br>radionuclide to another that is measured, or<br>radionuclide material accountability, if there is<br>reasonable assurance that the indirect methods can<br>be correlated with actual measurements. The<br>concentration of a radionuclide may be averaged<br>over the volume of the waste, or weight of the waste<br>if the units are expressed as nanocuries per gram." | Westinghouse will not use a surrogate for Tc-99 for waste<br>characterization for disposal at USEI, or for demonstrating<br>compliance with the FSS dose criterion. Instead, laboratory<br>analytical data of samples will be used to demonstrate<br>compliance with the commitments made to the NRC in the 10<br>CFR 20.2002 alternate disposal exemption request for US<br>Ecology-Idaho, and to demonstrate compliance during FSS.<br>However, regarding the use of scaling factors for radioactive<br>waste characterization for disposal at facility licensed by the<br>NRC, 10 CFR 61 provides the following;<br>"8) <i>Determination of concentrations in wastes</i> . The<br>concentration of a radionuclide may be determined by indirect<br>methods such as use of scaling factors which relate the inferred<br>concentration of one radionuclide to another that is measured,<br>or radionuclide material accountability, if there is reasonable<br>assurance that the indirect methods can be correlated with<br>actual measurements. The concentration of a radionuclide may<br>be averaged over the volume of the waste, or weight of the<br>waste if the units are expressed as nanocuries per gram."<br>Westinghouse will use either laboratory analytical data from<br>samples, or scaling factors for radioactive waste shipments to<br>licensed facilities. The technical basis for the use of scaling<br>factors to support waste disposal at an NRC-licensed facility<br>will be documented. | <ul> <li>Section 8.6.5 will be revised as f<br/>A combination of radiologica<br/>additional sampling at the tim<br/>waste manifesting purposes.<br/>for different disposal or proce</li> <li>U S Ecology-Idaho is not a<br/>Approval for disposal is an<br/>10 CFR 20.2002. Pursuant<br/>radioactivity concentration<br/>using laboratory methods.</li> <li>Energy Solutions-Clive Far<br/>accepts radioactive and min<br/>Level Licensing Branch, To<br/>Classification (Reference 5)<br/>Consistent with NRC guida<br/>classification, laboratory methods<br/>It is acknowledged that the<br/>be unique in that higher con<br/>these radionuclides may be<br/>ratio. Because of this, com<br/>railcar at a frequency of on<br/>if railcars are not used, Th<br/>radionuclides (i.e., Tc-99, It<br/>the basis for transportation</li> </ul> |

#### **Proposed Resolution**

#### s follows:

ical characterization data from the HRCR and time of waste packaging may be used for radioactive s. However, note that differing requirements exist occessing facilities and are summarized below:

an Agreement State nor a NRC licensed facility. anticipated under a request for alternate disposal per ant to the conditions of this approval, the on within each railcar (package), will be measured s.

Facility is an Agreement State Licensed facility and mixed waste that is compliant with the NRC Low-Technical Position on Radioactive Waste e 5.36), and the site Waste Acceptance Criteria. idance regarding waste characterization and methods have been used to define the contributors aste.

he waste destined for disposal at Energy Solutions may concentrations of radionuclides may be present, and be present in ratios that differ from the average site-wide omposite sampling will be used to characterize each one composite sample per railcar, or equivalent volume The composite sample will be analyzed for the primary 9, U-234/235/238, Th-232, Ra-226), and the data used as on and disposal.

DRAFT

| WMTP<br>Section | Issues                                                                       | Path Forward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>Discussion Points</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                        |
|-----------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 |                                                                              | Based on the NRC staff's previous analysis of<br>surrogates it cannot really be said there is reasonable<br>assurance that the indirect methods can be correlated<br>with actual measurements based solely on the<br>current data. There needs to be additional<br>verification. Accordingly, there is also some<br>verbiage in the 1983 BTP stating that "scaling<br>factors should be developed on a facility and waste<br>stream specific basis, and should be initially<br>determined and periodically confirmed through<br>direct measurements." The staff's conclusion is that<br>scaling factors may be acceptable in accordance<br>with the 1983 BTP, but there also needs to be a clear<br>commitment to initially determine and then<br>periodically confirm the surrogates via direct<br>measurements. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                        |
| 8.6.5 C2        | Utilization of<br>surrogates                                                 | Identify the surrogates that anticipated to be used.<br>See preceding row.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Westinghouse will use either laboratory analytical data from<br>samples, or scaling factors for radioactive waste shipments to<br>facilities licensed by the NRC. The radioisotopes that may be<br>inferred include Tc-99, and U-234. The latter will be calculated<br>based on enrichment defined by the ratio of the measured<br>activities of U-235 and U-238.<br>The remaining hard to detect radionuclides in the waste stream<br>do not exist at concentrations or activities that will require<br>manifesting per 49 CFR, the NRC Low-Level Licensing Branch<br>Technical Position on Radioactive Waste Classification, or 10<br>CFR 20 Appendix G.<br>Westinghouse will not use a surrogate for Tc-99 for waste<br>characterization for disposal at USEI, or for demonstrating<br>compliance with the FSS dose criterion. Instead, laboratory<br>analytical data of samples will be used to demonstrate<br>compliance with the commitments made to the NRC in the 10<br>CFR 20.2002 alternate disposal exemption request for US | Westinghouse has provided the<br>Points. No further action requir                                                                                                                                                                                                      |
| 11.1            | Quality<br>Assurance<br>Requirements in<br>accordance with<br>10CFR71.101(f) | Clarify as DOE shipments probably may not be in accordance with 10CFR71.101(f).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ecology-Idaho, and to demonstrate compliance during FSS.<br>Westinghouse agrees that clarification is needed since the U.S.<br>Department of Energy is not subject to 10 CFR71.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Section 11.1, paragraph 3, last s<br>"As a contingency, the U.S. Dep<br>than Westinghouse-Hematite) n<br>fissile material is required. Ship<br>would be performed in accordar<br>another NRC licensee would be<br>assurance program in accordance<br>(Reference 5.2)." |
| 14.2            | Shipping<br>Manifests Form<br>and Signoff for<br>wastes which are            | Clarify what type of form will be used and who will sign off for the shipments which are not HazMat Class 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | If the material to be shipped is a waste, does not contain<br>licensed material and is not a hazardous waste, then no manifest<br>or bill of lading is required. This waste will be disposed of as<br>Office Waste and Construction &Demolition Waste (i.e., non-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Section 14.2 will be revised to r<br>For shipping manifests, the<br>CFR 20 (Reference 5.1) (U                                                                                                                                                                          |

#### **Proposed Resolution**

ne requested clarifying information in the Discussion uired.

t sentence will be revised to state;

Department of Energy (DOE) or an NRC licensee (other ) may be utilized in the unlikely event that a shipment of hipments by the U.S. Department of Energy (DOE) dance with DOE quality requirements. Shipment by be in accordance with that licensee's approved quality unce with 10 CFR 71 Subpart H – Quality Assurance

read as follows:

he requirements of 49 CFR, Appendix G of 10 (Uniform Low-Level Radioactive Waste Manifest

| WMTP<br>Section                                                                                              | Issues                                                                                                          | Path Forward                                                | Discussion Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Section 14.3.3                                                                                               | not HazMat Class<br>7<br>Licensee must<br>notify NRC<br>within 1 hour of<br>discovering loss                    | Add commitment to notify NRC to 14.3.3                      | <ul> <li>hazardous industrial waste).</li> <li>If the material to be shipped contains licensed material and is waste, then the waste will be manifested on a Uniform Low-Level Radioactive Waste Manifest (NRC 540 and 541 or equivalent form). This includes low level radioactive waste that does not meet the definition of radioactive material as identified by the DOT.</li> <li>If the material to be shipped does not contain licensed material, and is hazardous waste, then the waste will be manifested on a Uniform Hazardous Waste Manifest (EPA Form 8700-22).</li> <li>If the material to be shipped contains licensed material as waste and contains hazardous waste, then the waste will be manifested on a Uniform Low-Level Radioactive Waste Manifest (NRC 540 and 541 or equivalent form) and on a Uniform Hazardous Waste Manifest (EPA Form 8700-22).</li> <li>If the material to equivalent form) and on a Uniform Hazardous Waste Manifest (EPA Form 8700-22). This includes low-level mixed waste that does not meet the definition of radioactive material as identified by the DOT.</li> <li>Personnel assigned to the position of HDP Waste Management Specialist(s) have been trained and qualified as identified in section 8.4.4 of the WMTP and 49 CFR 172 subpart H will prepare documentation and authorize shipments.</li> <li>Both Sections 14.3.3 and 14.3.2 will be modified to include notifying the NRC within 1 hour of discovery of the loss of a shipment.</li> </ul> | <ul> <li>If the material to be ship<br/>and 3) is not a hazardou<br/>Uniform Low-Level Ra<br/>equivalent form). This<br/>not meet the definition of</li> <li>If the material to be ship<br/>hazardous waste, then th<br/>Hazardous Waste Manif</li> <li>If the material to be ship<br/>and 3) is a hazardous was<br/>Uniform Low-Level Ra<br/>equivalent form) and on<br/>Form 8700-22). This in<br/>the definition of radioact</li> <li>Sections 14.3.2 and 14.3.3 will be<br/>For shipments of SNM, immeding<br/>is determined to be lost or unactional<br/>to the ship of the ship of the ship of the ship of the ship<br/>and 3) is a hazardous was<br/>Uniform Low-Level Ra<br/>equivalent form) and on<br/>Form 8700-22). This in<br/>the definition of radioaction of the ship of the s</li></ul> |
|                                                                                                              | SNM of moderate<br>strategic<br>significance                                                                    |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | estimated time of arrival. Notif<br>discovery of the loss of the ship<br>for such lost shipment in accord<br>of Safeguards Events.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Appendix A<br>Transportation                                                                                 |                                                                                                                 | Clarify that confirmation will be received before shipment. | Westinghouse believes that the following text is clear in requiring confirmation before the shipment departs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Westinghouse has provided the Points. No further action require                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Security Plan<br>for Shipments<br>of SNM of                                                                  | must be received<br>before shipment<br>of SMN                                                                   |                                                             | Paragraph 2.1 states: "HDP will take the following actions prior to the shipment leaving the facility:"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Low Strategic<br>Significance<br>2.1.2                                                                       |                                                                                                                 |                                                             | The following subtier list includes Paragraph 2.1.2, which states "Receive confirmation from the receiver that the receiver will be ready to accept the shipment at the planned time and location and acknowledges the specific mode of transportation. This may be in the form of an email."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Appendix A<br>Transportation<br>Security Plan<br>for Shipments<br>of SNM of<br>Low Strategic<br>Significance | Licensee should<br>commit to<br>establishing and<br>maintaining<br>response<br>procedures in<br>accordance with | Add commitment.                                             | Section 2.2 of Appendix A and its subsections are intended to<br>be the response procedure as required by 10 CFR 73.67(g)(3)(i)<br>and is maintained as part of this WMTP. The DP requirements<br>for maintaining copies of quality records, such as the WMTP,<br>are located in DP Section 13.6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | The heading of Appendix A, See<br>Physical Protection and Respons<br>The following subsections to 2.2<br>A new paragraph between Section<br>"The following subsections are to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

#### **Proposed Resolution**

52 (Reference 5.17) (Uniform Hazardous Waste follows:

hipped is: 1) a waste, 2) does not contain licensed a hazardous waste, then no manifest or bill of his waste will be disposed of as Office Waste and lition Waste.

hipped is 1) a waste, 2) contains licensed material, bus waste, then the waste will be manifested on a Radioactive Waste Manifest (NRC 540 and 541 or s includes low level radioactive waste that does n of radioactive material as identified by the DOT.

nipped: does not contain licensed material, and is a the waste will be manifested on a Uniform nifest (EPA Form 8700-22).

hipped is 1) a waste, 2) contains licensed material, waste, then the waste will be manifested on a Radioactive Waste Manifest (NRC 540 and 541 or on a Uniform Hazardous Waste Manifest (EPA includes low-level mixed waste that does not meet active material as identified by the DOT.

l be combined and revised as follows:

diately initiate a trace investigation of any shipment that accounted for after a reasonable time beyond the ify the NRC Operations Center within one hour after ipment and within one hour after recovery or accounting rdance with the provisions of 10 CFR 73.71, Reporting

e requested clarifying information in the Discussion nired.

Section 2.2, will be revised to read: "3.0 In-Transit onse Procedures"

2.2 will be renumbered.

tions 3.0 and 3.1 will be added as follows:

e the response procedures per 10 CFR 73.67(g)(3)(i) for

| WMTP<br>Section | Issues          | Path Forward | Discussion Points |                                                                                                                                                                                         |
|-----------------|-----------------|--------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.1.12          | 73.67(g)(3)(i). |              |                   | dealing with threats or thefts of                                                                                                                                                       |
|                 |                 |              |                   | The newly numbered Subsection                                                                                                                                                           |
|                 |                 |              |                   | "For shipments of SNM of low s<br>investigation of any shipment th<br>time and notify the NRC Operat<br>of the shipment and within one h<br>shipment in accordance with the<br>Events." |

#### **Proposed Resolution**

of SNM shipped by HDP."

ion 3.4 will be revised to read:

w strategic significance, conduct immediately a trace t that is lost or unaccounted for after the estimated arrival erations Center within one hour after discovery of the loss he hour after recovery of or accounting for such lost the provisions of 10 CFR 73.71 Reporting of Safeguards

## **ATTACHMENT 16**

### Draft Supplemental Response to NRC Requests for Additional Information on Decommissioning Plan Reference to Nuclear Criticality Safety Items in the License Application Request (Westinghouse Letter HEM-11-79)

Westinghouse Electric Company LLC, Hematite Decommissioning Project

Docket No. 070-00036

© 2011 Westinghouse Electric Company LLC All Rights Reserved

| LAR<br>Section                              | Issues                                                                                                                                               | Path Forward                                                                                                     | Discussion Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Proposed Resolu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Section<br>1.6.2, 3 <sup>rd</sup><br>bullet | Westinghouse needs<br>to define how it<br>determines that the<br>areas are<br>"neutronically"<br>separated.                                          | Clarify how areas<br>are determined to be<br>"neutronically"<br>separated.                                       | <ul> <li>Neutronically separated areas are effectively neutronically isolated from all other areas used to store fissile material. Each area used to store fissile materials is deemed to be neutronically isolated from all other areas used to store fissile material when <u>either</u> of the following conditions are satisfied:</li> <li>a) A minimum edge-to-edge separation distance of 12 feet is maintained between each area used to store fissile material; or</li> <li>b) The configuration of each area used to store fissile material, in conjunction with any present fixed shielding (e.g., concrete block walls) between the areas, is demonstrated by neutron transport calculations to result in effective neutron isolation between each area.</li> <li>The 3rd bullet of Section 1.6.3 states: <ul> <li>Materials within neutronically separate areas containing less than the following isotopic mass amount per separate area:</li> <li>700 g <sup>235</sup>U in uranium enriched to more than 5 wt.% <sup>235</sup>U/U;</li> <li>Note: (1) Structure surfaces within the separate area that contain residual <sup>235</sup>U surface contamination below an areal density of 10 g <sup>235</sup>U/ft<sup>2</sup> are not included in the mass amount for the separate area.</li> <li>(2) Any <sup>235</sup>U in undisturbed subsurface areas is not included in the isotopic mass amount for the separate area.</li> </ul> </li> </ul> | <ul> <li>Westinghouse will revise the text in Enclosure 2 of Westinghouse<br/>"Revision to Hematite License Application for Decommissioning a<br/>This exemption is needed based on ANSI/ANS-8.3 Section 4.1<br/>Guide 3.71. ANSI/ANS-8.3 Section 4.1.1 states that a CAAS<br/>reduction in total risk. Stated conversely, a CAAS should not<br/>personnel risk. ANSI/ANS-8.3 also makes it clear that the haz<br/>important consideration. Given that there is no credible risk o<br/>amounts of SNM specified in this bullet, the hazards associate<br/>increases personnel risk. Thus an active CAAS would be inco<br/>this fact supports the issuance of the requested exemption.<br/>The supporting analysis for the mass limits in this exemption r<br/>4, 2009, (Westinghouse [E. K. Hackmann] letter to NRC [Doc<br/>Decommissioning Project Criticality Alarm Exemption Reque<br/>subcritical mass limits specified in Table 1 and Table 6 of AN<br/>mass limits do not exceed the maximum subcritical mass limit<br/>provided each area used to store fissile materials is deemed to<br/>used to store fissile material.<br/>Neutronically separated areas are to be considered effectively<br/>to store fissile material when <u>either</u> of the following conditions<br/>a) A minimum edge-to-edge separation distance of 12 feet is<br/>fissile material; or</li> <li>b) The configuration of each area used to store fissile materia<br/>shielding (e.g., concrete block walls) between the areas, is<br/>to result in effective neutron isolation between each area.<br/>In addition, the notes are based on:</li> <li>(1) The peak areal density established for the surfaces of th<br/>g<sup>235</sup>U/ft<sup>2</sup>. Due to the very large margin between this peak valu<br/>identified in Table 1 of ANSI/ANS-8.1, it is assured that any r<br/>items located within the buildings will be insignificant.</li> <li>(2) The years of material being in subsurface areas empiric<br/>subcritical. Material located in undisturbed subsurface areas c</li> </ul> |
| Section<br>1.6.2, 3 <sup>rd</sup><br>bullet | Additional details are<br>necessary in<br>Enclosure 2<br>demonstrating how<br>the previous<br>submittal dated<br>12/4/2009 bounds<br>this situation. | Revise text in<br>Enclosure 2<br>encompassing how<br>areas are determined<br>to be "neutronically"<br>separated. | Westinghouse agrees that additional justification is required<br>to connect the intrinsically safe mass limits that are<br>established in the 12/4/2009 letter with neutronically<br>separated areas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (1) The proposed resolution in the preceding row incorpora                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

#### lution

se letter, HEM-10-122, dated November 11, 2010, g and Exemption" to read as follows:

4.1.1, which is endorsed by the NRC in Regulatory S should only be installed when it will result in a ot be installed when it will result in an increase in azards associated with false alarms are an of a criticality accident associated with the ted with personnel evacuating from false alarms consistent with the guidance in this standard, and

n request is in Westinghouse letter dated December ocument Control Desk], HEM-09-140, "Hematite uest"). These mass limits are set at or below the NSI/ANS-8.1-1998. In summary, the specified nits for the corresponding <sup>235</sup>U enrichment, to be neutronically isolated from all other areas

y neutronically isolated from all other areas used ons are satisfied by:

is maintained between each area used to store

rial, in conjunction with any present fixed is demonstrated by neutron transport calculations

the buildings at the Hematite site is less than 10 lue and the maximum safe areal density of  $^{235}$ U v neutron interaction between building surfaces and

rically demonstrate that the undisturbed material is a can only be quantified after it is disturbed.

orates additional justification.

Attachment 16 to HEM-11-91 June 21, 2011 Page 3 of 4

## DRAFT

| LAR<br>Section                              | Issues                                                                      | Path Forward                                          | Discussion Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Proposed Resolut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Section<br>1.6.2, 5 <sup>th</sup><br>bullet | Westinghouse needs<br>to define what is<br>meant by "in secure<br>storage." | Provide the criteria<br>for secured storage<br>areas. | An on-site secured storage area is defined as an area in<br>which dual controlled entry is required as well as tandem<br>operations with oversight. The secured storage area access<br>doors are maintained in a locked position until opened via<br>two different locking mechanisms (e.g., combination lock or<br>key lock). Two different persons are required when<br>accessing the area and each is required to perform tasks in<br>tandem; in addition, oversight is required during all active<br>operations.<br>The 5th bullet of Section 1.6.3 states:<br>A Contingency Hot Spot that is in secure storage,<br>is neutronically isolated from other SNM, and is<br>intrinsically safe due to two of its physical<br>parameters (e.g., mass, volume, enrichment,<br>geometry, moderation) being in a known state<br>that is sufficient to render the item safely<br>subcritical. The term 'Contingency Hot Spot' is<br>defined in the <i>Nuclear Criticality Safety</i><br><i>Contingency Plan for Remediating Contingency</i><br><i>Hot Spots</i> . | <ul> <li>Westinghouse will revise the text in Enclosure 2 of Westinghouse I<br/>"Revision to Hematite License Application for Decommissioning and<br/>This exemption is needed based on ANSI/ANS-8.3 Section<br/>Regulatory Guide 3.71. ANSI/ANS-8.3 Section 4.1.1 stat<br/>when it will result in an increase in personnel risk. ANSI<br/>hazards associated with false alarms are an important cor-<br/>credible risk of a criticality accident associated with secu-<br/>the hazards associated with personnel evacuating from fa<br/>an active CAAS would be inconsistent with the guidance<br/>issuance of the requested exemption.</li> <li>Assuming that the unlikely event of discovering a <i>Contin</i><br/>remediation, this exemption is solely for the secure storage<br/>operations involving the <i>Contingency Hot Spot</i> would no<br/><i>Contingency Hot Spot</i> is only exempt where the specified<br/>conditions apply the double contingency principle to previse<br/>isolation to prevent interaction with other SNM. Achievo<br/>subject to Westinghouse's nuclear criticality safety progratises of the Decommissioning Plan, as submitted by V<br/>2009, (Westinghouse [E. K. Hackmann] letter to NRC [E<br/>"Decommissioning Plan and Revision to License Application corporating the discussions supporting the Westinghous<br/>Agreement-in-Principle</li> <li>The term <i>Contingency Hot Spot</i> is defined in the Nuclear<br/>Remediating Contingency Hot Spots, as submitted by We<br/>2010, (Westinghouse [E. K. Hackmann] letter to NRC [E<br/>"Nuclear Criticality Safety Contingency Plan").</li> <li>A Hot Spot is defined as a distinct, in-situ location will<br/>quantity of <sup>235</sup>U (whether one object, a group of object<br/>compared to the quantity of <sup>235</sup>U in the surrounding a<br/></li> <li>A <i>Contingency Hot Spot</i> is defined as a discrete item<br/>700 g235U (i.e., a distinct in-situ location where field<br/>more than 700 g of 235U).</li> <li>The term secured storage area is defined as an area in which of<br/>tandem operations with oversight.</li> <li>Neutronically isolated (separated) areas are to be considered e<br/>areas used to</li></ul> |

#### ution

se letter, HEM-10-122, dated November 11, 2010, g and Exemption" to read as follows:

ction 4.1.1, which is endorsed by the NRC in states that a CAAS should only be installed onversely, a CAAS should not be installed VSI/ANS-8.3 also makes it clear that the consideration. Given that there is no cure storage under the specified conditions, false alarms increases personnel risk. Thus ice in this standard, and this fact supports the

*tingency Hot Spot* occurs during rage of a *Contingency Hot Spot*. Other not be exempt. The secure storage of a ied conditions are met. The specified revent self-criticality and apply neutronic evement of these conditions would be gram, which is described in Chapter 10, be approved by the NRC by virtue of its y Westinghouse letter dated August 12, [Document Control Desk], HEM-09-94, ication"). This change is part of ouse-U.S. Government Settlement

ear Criticality Safety Contingency Plan for Westinghouse letter dated November 12, [Document Control Desk], HEM-10-116,

where field instruments indicate an elevated jects, or a cluster of material) when a rea.

em with a 235U mass estimate exceeding eld instruments indicate the presence of

ch dual controlled entry is required as well as

l effectively neutronically isolated from all other ing conditions are satisfied by:

2 feet is maintained between each area used to

Attachment 16 to HEM-11-91 June 21, 2011 Page 4 of 4

# DRAFT

| LAR<br>Section                              | Issues                                                                                                     | Path Forward                                                              | Discussion Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Proposed Resolu                                                                                                                                                                                                                        |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                             |                                                                                                            |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>store fissile material; or</li> <li>(3) b) The configuration of each area used to stor present fixed shielding (e.g., concrete block walls) betwee transport calculations to result in effective neutron isolation</li> </ul> |
| Section<br>1.6.2, 5 <sup>th</sup><br>bullet | Westinghouse needs<br>to define how it<br>determines that the<br>items are<br>"neutronically<br>isolated." | Clarify how areas<br>are determined to be<br>"neutronically"<br>isolated. | <ul> <li>Each area used to store fissile materials is deemed to be neutronically isolated from all other areas used to store fissile material when <u>either</u> of the following conditions are satisfied:</li> <li>a) A minimum edge-to-edge separation distance of 12 feet is maintained between each area used to store fissile material; or</li> <li>b) The configuration of each area used to store fissile material, in conjunction with any present fixed shielding (e.g., concrete block walls) between the areas, is demonstrated by neutron transport calculations to result in effective neutron isolation between each area.</li> </ul> | The proposed resolution in a previous row incorporates this definiti                                                                                                                                                                   |

#### olution

store fissile material, in conjunction with any ween the areas, is demonstrated by neutron ation between each area.

nition.