

DEPARTMENT OF THE ARMY WALTER REED ARMY MEDICAL CENTER

WASHINGTON, DC 20307-5001

MCHL-HP 7 July 1997

MEMORANDUM FOR Record

SUBJECT: Decommissioning Survey of Building 513 Forest Glen Annex

- 1. A decommissioning survey was conducted in building 513, Forest Glen Annex on 27 June to 2 July 1997. The building was surveyed with survey meters for detectable contamination. In addition swipes were collected for each square meter of the floor area and up 5 feet on every inside wall for removable contamination.
- 2. The building was used as a storage location for a sealed source irradiator and a sealed drum containing depleted uranium shielding. No unsealed radioactive material was used at this location. Based on the knowledge of the site history and previous survey information this building was not expected to contain any residual radioactive contamination.
- 3. A historical review indicated that no spills or unusual occurrences happened at this location.
- 4. The floor of the building was grided off in 3 foot squares. The squares were labeled as indicated in enclosure 1. The inside walls were grided from the floor to 3 feet and labeled as the floor grid coordinate plus a reference direction (N=north, E=east, S=south, W=west) and a number 1. From 3 feet up to 5 feet as the floor coordinate, reference direction and number 2. An example of a wall coordinate is AlN1 for the area on the wall adjacent to the floor coordinate Al, in the north reference direction, and the lower grid coordinate from the floor up to 3 feet.
- 5. The survey instrumentation was chosen to provide the highest sensitivity for detecting alpha, beta, or gamma radiation. The calibration and sensitivity data for all instrumentation used in this report is included in enclosure 2.
- 6. Every square yard of the floor of building 513 was grided and directly surveyed for gamma contamination using the AN/PDR-77, serial number 41395A. The results of the survey are included in columns 1 and 4 of enclosure 3. The meter was checked for proper operation and calibrated against a NIST traceable check source. The check source was 1.81 μ Ci of Cs-137 as of December 1972

MCHL-HP

SUBJECT: Decommissioning Survey of Building 513 Forest Glen

Section

source number 475. The decayed source strength at the time of the survey was about 1.03 μ Ci of Cs-137. The measured activity of this check source was 11.0E4 CPM. The measured background level was 1.74E3 CPM. The swipes from these locations indicated no contamination (enclosure 4).

- 7. A Ludlum L-3 with an unshielded beta probe was used to directly survey the floor of building 513 for beta or gamma contamination. The results of the survey were recorded in columns 2 and 5 of enclosure 3. The meter was checked for proper operation and calibrated against a NIST traceable check source. The check source was 0.0064 μ Ci of Am-241 as of February 1970. The decayed source strength at the time of the survey was about 0.0064 μ Ci of Am-241. The measured activity of this check source was 15,000 CPM. The measured background level was 60 CPM. The results of this survey indicated that no beta contamination was present in building 513 (enclosure 5). Note that C-14 and tritium which emit very low energy beta radiation may not be detectable using this survey meter.
- 8. The AN/PDR-77, serial number 41395A was used to directly survey the floor of building 513 for alpha contamination. The results of the survey were recorded in columns 3 and 6 of enclosure 3. The meter was checked for proper operation and calibrated against a NIST traceable check source. The check source was 0.0064 μCi of Am-241 as of February 1970. The decayed source strength at the time of the survey was about 0.0064 μCi of Am-241. The measured activity of this check source was 10,200 CPM. The measured background level was 140 CPM. The results of this survey indicated that no alpha contamination was present in building 513 (enclosure 6).
- 9. Swipes were taken in each grid location and on every inside wall for removable contamination. The swipes were put in marked vials and analyzed in a Packard A5530 automatic gamma counter. The background was counted for 10 minutes and the samples were counted for 2 minutes each. The results are background subtracted and printed in enclosure 7. A diagram of the floor plan of the building with the walls is included as enclosure 8. The results of this survey indicate that no removable gamma contamination was present in building 513.
- 10. After the swipes were analyzed in the auto-gamma counter, 10 ml of liquid scintillation fluid was added to each vial and the vials were counted in a Packard 2500LX automatic liquid scintillation counter. The background was counted for 10 minutes

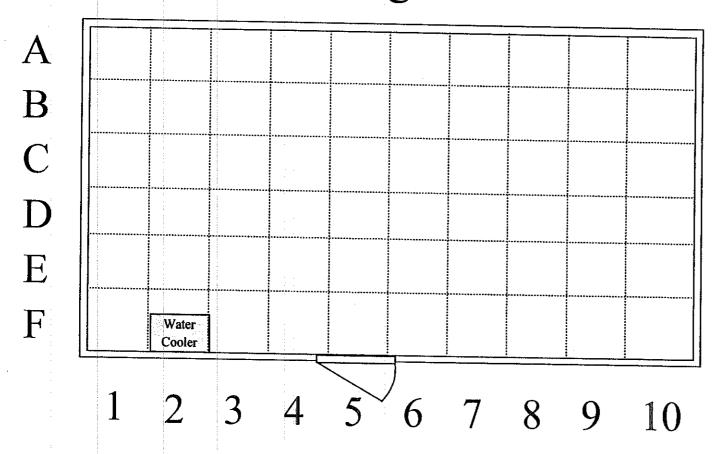
MCHL-HP

SUBJECT: Decommissioning Survey of Building 513 Forest Glen

Section

and the samples were counted for 2 minutes each. The results are background subtracted and printed in enclosure 9. A diagram of the floor plan of the building with the walls is included as enclosure 10. The results of this survey indicated possible contamination in on wall grid F10E2, however, this sample was rerun through the liquid scintillation counter and this time measured no contamination (enclosure 11). This problem could be due to chemical contamination of the swipe sample that reacted with the scintillation fluid.

11. Based on the results of this survey, building 513, Forest Glen Annex, can be removed from the WRAMC NRC license and is considered free from radioactive contamination.


11 Encls

ARTHUR R. MORTON

CPT, MS

Chief, Operations Branch, HPO

Building 513

US ARMY TMDE SUPPORT CENTER-ABERDEEN
ABERDEED PROVING GROUNDS.MD.

AREA NUCLEONICS LABORATORY
REPORT OF CALIBRATION
FOR
RADIAC SET/SURVEY METER

MODEL:3 SERIAL NO.:18103

SUBMITTED BY:

WZDHØ1

The measurements were performed under ambient conditions of approximately 22.7 Degrees C and 40% percent relative humidity.

This instrument was calibrated In accordance with TB9-6665-285-15. Army Calibration Program for Radiac Meters.

The reference standard for this Calibration in a model 500-2 LUDLUM Pulser, serial number 129168, Calibrated 30 JAN. 1996.

Calibration uncertainty including measuring errors and the accuracy Of the reference standard is \pm/\pm 10%.

This calibration is traceable to and compatible with National Institute of standards and technology (NIST) measurements.

In charge of test:

DAVID AL JAMESON

Radiation Protection Officer

US. ARMY DTSC-Aberdeen

Calibration Report No.: W2DH01059C Calibration Date: 29 UET 1996 Calibration Due Date: 24 UCT 1997

Page 1 of 2 cases

RADIAC INSTRUMENT DATA SHEET

INSTRUMENT MAKE: LUDLUM

MODEL NO. 3

SER.NO.18103

PROBE TYPE: 44-9

a grant

SERIAL NO.: 18103-1 RATE:3300CFM/mR/HR

CALIBRATION GEOMETRY:

Check Source Reading at surface Level =18K

SCALE	SOURCE	DISTANCE				
	MODE		INSTRUME	ENT METER REA	DING	
			RATE	•	ADJUSTMENT	
			CPM	BEFORE	AFTER	
X100			400k		48 6 K	
			100K		1 <i>00</i> K	
						-
X1Ø			4ØK		4ØK	
			1 <i>Ø</i> K		10k	
ΪX			4k.		4K	
			1K		1K	
		,				
X. 1			4 <i>6</i> 0		400	
			100		100	

Probe checked with= Americium-241

Activity: (2.65 kbg) 71.6 nci +/-10%. Count rate in the alpha-plateau at 5 mm distance from the Surface of the source 79.524 CPM.

CPM BEFORE AFTER X1Ø 79,524 26K

PROBE EFFICIENCY= 32.7%

CALIBRATION REPORT NO. W2DHØ1059C PAGE 2 OF 2

DATE 29 OCT 1996

SURVEY INSTRUMENT CALIBRATION REPORT AN/PDR-77

Serial :	Number: 4	1395#	Rad	ionuclide:	Cs-137	
ouic: _	WZDHOI					
PUIC:	W4599C					
Battery	Check:	OK				

Beta/Gamma Pr	obe Low Rai	nge Detector	(DT-616/VDR-2)
Applied	Re	ad	Correction Factor
2 R/hr	2.02	K mR/hr	. 99
200 mR/hr	193	mR/hr	1.04
80 mR/hr	76.4	mR/hr	1.05
20 mR/hr	19.5	mR/hr	1.03
8 mR/hr	7.78	mR/hr	1.83
0.8 mR/hr	. 746	mR/hr	1.07
0.08 mR/hr	.073	mR/hr	1.09
Beta/Gamma Pro	obe High Rar	ige Detector	(DT-616/VDR-2)
Applied	Rea	ad	Correction Factor
200 R/hr	N/A	K mR/hr	N/A
80 R/hr	82.7	K mR/hr	.97
20 R/hr	19.9	K mR/hir	1.01
8 R/hr	8.2	K mR/hr	1.98

Calibration Report Number: W2DH01279C

Date: 24 JAN. 97

CAIIBRATION DUE DATE 23 JUL. 97

Radionuclide: Pu-239

: : ::::::::::::::::::::::::::::::::::	Alp	ha Probe (DT	`-669/PDR-	77)
Appli	ed	Réac		Correction Factor
126	K cpm	122	Ксрт	1.03
 10.6	K cpm	10.1	К срт	1.05
 . 856	Ксрп	. 823	к срт	1.04
 * Check S	Source	7.76	Керт	N/A

^{*} Check source (Th-232) measurement obtained with Alpha side up, centered, and flush against detector.

Radionuclide: Am-241

	X-ray P	robe (DT-674/)	PDR-77)	
Energy Salact Position	calibration Position	Applied	Řáád	Cotraction Factor
17 KeV	* Center	246 K cpm	25.2 K cpm	.98
17 KeV	**	Check Source	1.29 K cpm	N/A
60 KeV	Center	45.9 K cpm	46.3 K cpm	.99
60 KeV	**	check Source	5.99 K cpm	N/A

^{*} Center measurements were obtained 12 inches directly above source.

calibration Report Number: WADHOLA19C

Date: 24 JAN 91

CALIBRATION DUE DATE 33 Jul. 91

In Charge of Calibration

Reviewer

2 of 2

^{**} Check source (Th-232) measurement obtained with X-ray Side up, centered, and flush against detector.

Instrument Detection Sensitivity

For an integrated measurement over a preset time, the minimum detectable activity (MDA) for surface activity can be approximated by:

$$MDA = \frac{2.71 + 4.65 \sqrt{B_r * t}}{t * E * \frac{1}{100}}$$

where,

MDA = activity level in DPM/100 cm²

 B_r = measured background rate in CPM

t = counting time in minutes

E = detector efficiency in counts/disintegrations

A = active area of the probe in cm^2

Meter	SN	B _r (CPM)	t (min)	E	A (cm²)	MDA (DPM)
AN/PDR-77	41395A	5	1	0.950	129.00	10.7
L-3	18,103	60	1	0.327	20.27	584.3
AN/PDR-77	41395A	1,740	1	0.600	506.70	64.8

	Mikoloski	Surve	eyor 2: <i>Delo</i>			Date	: 3 July 9
Coordinate	Alpha	Beta	Gamma	Coordinate	Alpha	Beta	Gamma
Al	3.22	80	1,76 K	FI	5.9	90	1.73
H 2	2.75	80	1,93	FZ	7.14	80	1.70
A 3	2.27	100	1,87	F3	8.37	100	1.69
144	6.48	60	1.73	FY	9.5	120	1.66
A 5	9.98	40	1,83	FS	12.3	80	1.66
F.6	9.06	60	13.1	76	10.2	20	466
<i>n</i>)	इ.३५	<i>20</i>	1.73	F7	12.3	60	172
43	12.0	8.0	7.77	<i>52</i>	14.9	100	1.77
A 9	10.03	30	1.78	'zá	2.13	50	2.20
A10	3 , 🐔	100	1.79	F10	2,57	60	/_799
21	12.4	30	1.84				
22_	10 0	. 0	190				
2.5	11.0	80	1.82				
24	771	80	1.95			, , , , , , , , , , , , , , , , , , , ,	
E.f	4.14	80	19/				
26	4,57	60	, 93				
37	603	20	1 25				
26	8,90	100	1.83				
<u> 29</u>	0.4	100	1.82				
2/0	11.3	; c	180				
C 1	11.4	100	180				
<u></u>	0.4	100	1 5.5				
	-7 1/2	ر ز	26				
C4	12.1	30	22				
<u> </u>		150	135				
.,	= £,0	. 0	139				-
۷٦	141	<i>50</i>	7.81)				
د 8	4.5	20	3501				
(9	15.0	110	200				
C10	3.6	80	1.74				-
D /	8.73	100	1.80				
D2	10.2	100	77				
73	13.1)	ê0	1.86				1
54	14.1	20	1.87				
D5	3.10	/20	1.89				
D/3	3, 73	80	1.25				
27	4.49	ev	7.87				
28	5.1	100	1,78				
D 9	6 79	80	188				<u> </u>
510	4.77	<u>60</u>	1.90				
EI	7.45	<i>50</i>	1.82				
E2	6,36	120	1,72		-		
£2	5.42	80	1.84				
<u>54</u>	4.78		1.81				
<u> </u>	8,06	100	1.83				+
		<u> </u>					
<u>E/9</u>	6.66	<u>80</u>	1.72				-
<u>57</u>	5.51	60	1.80				-
<u> </u>	4.70	60	1.80				-
<u> 59</u>	3.76	60	1.70	ţ	1		1

γ Meter/SN: μμάριτη 4/35Α Chk Source: (2/37 Msr: 1/000 cm Bkgd: 1.74 k Cfm β Meter/SN: 1-3 /8/03 Chk Source: Cl 36 2/13 0.02 μC Msr: 15 000 Bkgd: (0 Cfm α Meter/SN: μμάριτη 4/364 Chk Source: 4m241 2/10 0.0064 μC Msr: 12,200 Bkgd: 5,0 Cfm

Gamma	Source	Activity	Date	Source Bkgd
Meter		иСi		CPM CPM
AN/PDR-77	Cs-137	1.81	Dec 1972	11,000 1.74E+03

	4	` `		eter Readi	ngs (CPM	Provident surgery trace a man car care and				naurona a cre era
The state of the s	4 705 .00	4.005.00	4.075.00	4 705 : 02	4.035.00		4.005.00	4 705 .00		10
A .	1.76E+03	1.93E+03	1.87E+03		1.83E+03	1.81E+03	1.83E+03	1.79E+03	1.78E+03	1.79E+03
В	1.85E+03	1.90E+03	1.88E+03	1.92E+03	1.91E+03	1.93E+03	1.88E+03	1.83E+03	1.82E+03	1.80E+03
C	1.80E+03	1.79E+03	1.80E+03	1.82E+03	1.85E+03	1.89E+03	1.87E+03	1.88E+03	2.00E+03	1.94E+03
D	1.80E+03	1.87E+03	1.86E+03	1.88E+03	1.89E+03	1.85E+03	1.87E+03	1.88E+03	1.88E+03	1.90E+03
E	1.82E+03	1.82E+03	1.84E+03	1.81E+03	1.83E+03	1.82E+03	1.80E+03	1.80E+03	1.80E+03	1.79E+03
F	1.73E+03	1.70E+03	1.69E+03	1.66E+03	1,66E+03	1.66E+03	1.72E+03	1.77E+03	1.80E+03	1.79E+03
	1	2	3	4	5	6	1 19 64 7 1 1926	8 PM	9 6	10
!										
	1	2	Gamma 3	Meter Rea	dings (CP	M) - Back 6	ground S	ubtracted 8	9	10
A	20	2 190		<u>.</u> '		the state of the s	ground S 7 90		9	10 50
A			3	4	5	6	A seeks 1 the should	Sandarana 8 Anabara		
	20	190	130	0	90	70	7 90	50	40	50
В	20 110	190 160	130 140	0	90 170	70 190	90 140	50 90	40 80	50 60
B C	20 110 60	190 160 50	130 140 60	0 180 80	90 170 110	70 190 150	90 140 130	50 90 140	40 80 260	50 60 200
B C D	20 110 60 60	190 160 50 130	130 140 60 120	0 180 80 140	90 170 110 150	70 190 150 110	90 140 130 130	50 90 140 140	40 80 260 140	50 60 200 160

Beta	Source	Activity	Date	Source Bkgd
Meter	21 E	uCi		CPM CPM
L-3	_Cl-36	0.02	Feb 73	15,000 60

gavanting the back on \$22.5	1	2	Beta Met	er Readin 4	gs (CPM) - 5	Not Back	ground S 7	ubtracted 8	yana . O istilaas	10	
A	80	80	100	60	60	60	80	80	80	100	A
В	80	80	80	80	80	60	80	100	100	80	В
C	100	100	60	80	100	80	80	120	100	80	C
D	100	100	80	80	120	80	80	100	80	60	D
E	80	100	80	100	100	80	60	60	60	60	E
F	90	80	60	120	80	80	60	60	60	60	F
	1	2	3	4	5	6	60 mg 7 11 mm	. The . 8 th 40	9 9	10	The second secon

	_	. <u> </u>	Beta Me	eter Read	ings (CPM) - Backg	round Sub	otracted			
gay	1	2	3	4	5	6	7	8	9	10	
A	20	20	40	0	0	0	20	20	20	40	A
В	20	20	20	20	20	0	20	40	40	20	В
C	40	40	0	20	40	20	20	60	40	20	.
D	40	40	20	20	60	20	20	40	20	0	is D
E	20	40	20	40	40	20	0	0	0	0	E
F	30	20	0	60	20	20	0	0	0	0	F
	1	2	3	4	5	asimon 6 negas	Vysa 7 bysa	8	spect 9 and t	- in 10 s is	

- 軽が終心	Source	Activity	Date	Source	Bkgd
Meter		uСi		CPM *	CPM
AN/PDR-77	Am-241	0.0064	Feb 70	12,300	5

	<u> </u>	2	Alpha Me 3	eter Readii 4	ngs (CPM) 5	- Not Bac	kground S	Subtracted	9	10 🔎	双
Α	3.22	2.75	2.27	6.48	9.98	9.06	8.24	12.00	10.03	13.90	A
В	13.40	10.00	11.00	7.81	4.16	4.57	5.03	8.90	10.40	11.80	. B
C	11.40	10.40	9.42	13.10	16.50	15.00	14.10	16.50	15.00	13.60	c
D	8.73	10.20	12.00	14.10	3.17	3.83	4.49	5.10	5.79	6.79	D.
E	7.45	6.36	5.42	4.78	8.06	6.66	5.51	4.79	3.76	3.32	E
F	5.90	7.14	8.37	9.50	12.30	10.20	12.30	14.90	2.13	2.57	F
	1	2	3	4	5	6		7 1 2 2 8 1 March		. 10	<u></u>

			Alpha N	leter Reac	lings (CPN	l) - Backo	ground Su	btracted			
Management of the same	1	2	3	4	5	6	7	8	9	10	
A	0.00	0.00	0.00	1.48	4.98	4.06	3.24	7.00	5.03	8.90	A
В	8.40	5.00	6.00	2.81	0.00	0.00	0.03	3.90	5.40	6.80	В
C	6.40	5.40	4.42	8.10	11.50	10.00	9.10	11.50	10.00	8.60	C
D	3.73	5.20	7.00	9.10	0.00	0.00	0.00	0.10	0.79	1.79	D,
E	2.45	1.36	0.42	0.00	3.06	1.66	0.51	0.00	0.00	0.00	1.2. E 2.884
F	0.90	2.14	3.37	4.50	7.30	5.20	7.30	9.90	0.00	0.00	.
ĺ	1	2	3	4	5	6	7		9	10	

RE RE	OGRAIGION GION GION GION	A: LL= B: LL= C: LL=	85 150	UL= 85 UL= 150 UL= 275 UL= 400	BKG= BKG= BKG=	0 %SI	GMA= .0 GMA= .0 GMA= .0	0	19
RE RE	GION GION ME=	E: LL= F: LL=	400 900	UL= 900 UL= 1400 LIMITS=	0	0			
P# 1		TIME 10.00	CPMA 32	CPMB 25	CPMC 52	CPMD 33	CPME 71	CPMF FLAGS 29 B	MIN 10
1 1 1 1 1 1 1 1	3 4 5 6 7 8 9	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	2 0 0 3 0 0 1 6	0 3 0 3 0 7 6 0 4	0 0 0 1 0 2 0 9	5 4 3 2 0 0 1 0 1	0 0 0 8 2 0 0	0 A) 1 N1 0 N2 3 W2 0 A2 0 N1 0 N2 2 A? 0 N1	13 15 17 19 21 23 26 28 30 32
1 1 1 1 1 1 1 1 1	12 13 14 15 16 17 18	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	1 9 0 5 2 3 0 0 0	0 1 0 0 1 1 0 4 2	3 0 0 4 4 0 0 4	4 7 5 1 9 3 4 11 0	0 0 2 0 0 3 0	1 NZ 0 AT 5 NI 0 NZ 1 AS 2 NI 0 NZ 1 AL 0 NZ	34 36 38 41 43 45 47 49 51 53
1 1 1 1 1 1 1 1 1	22 23 24 25 26 27 28 29	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	0 2 6 2 1 0 2 0 4	0 0 0 3 0 4 2 2 2 0	0 0 1 2 0 4 0 4	0 5 1 8 1 0 2	00003000	0 A7 1 A7 0 M2 2 A8 3 N1 0 A12 2 M4 0 N2 0 A10	56 58 60 62 64 66 69 71 73
1 1 1 1 1 1 1 1 1	32 33 34 35 36 37 38 39	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	5 2 0 0 0 1 11 4	4 5 0 1 0 0 1 4 5 0	0 0 1 1 0 2 0 6 8	0 3 0 1 3 6 0 8 0	2 0 0 3 3 0 0	0 NI 0 NZ 2 EI 0 EI 1 NI 4 EZ 0 ZH	77 79 81 84 86 88 90 92 94 96
1		2.00 2.00	6 0	0	1 0	1 0	1 0	10 25 1 26	99 101

P# 1 1 1	S# 43 44 45	TIME 2.00 2.00 2.00	CPMA 1 3 2	CPMB 0 6 0	CPMC 2 0	CPMD 2 0 4	CPME 0 0	CPMF FLAGS 4 27 0 27 1 29 0 210	MIN 103 105 107
1 1 1 1 1	46 47 48 49 50	2.00 2.00 2.00 2.00 2.00	0 4 0 0	2 1 2 4	0 0 1 0	2 0 2 0	0 3 0 0	0 210 7 E1 6 E2 0 C1 4 W1	109 112 114 116 118
1 1 1 1 1 1 1 1 1	51 52 53 54 55 56 57 58 59 60	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	0 5 0 0 0 3 2 1 4	0 1 4 3 6 0 0 5 7	0 0 0 1 0 0 0	0 5 0 3 6 0 6 4 0	0 10 0 0 0 0 0	3 W2 2 C2 0 C3 1 C4 3 C5 0 C6 2 C7 5 C8 0 C9 2 C10	120 122 124 127 129 131 133 135 137
1 1 1 1 1 1 1 1	61 62 63 64 65 66 67 68 69 70	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	0 3 0 5 0 5 0 2	7 4 0 1 8 4 0 0 5	1 0 4 5 0 9 0	7 2 0 1 0 3 11 0	0 0 0 0 0 0	0 E1 7 EZ 1 D1 10 W1 0 PZ 4 D3 0 D4 2 D5 2 P6	142 144 148 148 150 152 155 157 159 161
1 1 1 1 1 1 1	71 72 73 74 75 76 77 78 79	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	0 3 1 0 0 2 0 7 0	6 3 1 0 4 2 0 0 0	0 5 0 0 2 0 4 0	0 4 7 0 2 0 3 5 0	0 6 0 6 0 5 0	0 D7 1 97 3 59 0 0 10 4 E1 0 E2 5 E1 0 W1 3 W2 2 E2	163 165 167 170 172 174 176 178 180
1 1 1 1 1 1 1 1	81 82 83 84 85 86 87 88 89 90	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	3 2 2 0 4 0 2 7 0	0 7 5 2 0 2 1 0 2 5	0 0 6 0 6 3 8 1	000005000	0 0 5 1 0 0	1 63 3 64 1 65 0 66 5 67 0 67 0 67 0 67 0 67 0 67 0 67	185 187 189 191 193 195 198 200 202 204
1 1 1	91 92 93	2.00 2.00 2.00	5 0 6	0 0 3	0 0	0 0 0	0 0 0	0 F1 5 S1 1 SZ	206 208 210

P# S# 1 94 1 95 1 96 1 97 1 98 1 99 1 100	TIME 2.00 2.00 2.00 2.00 2.00 2.00 2.00	CPMA 1 0 0 2 3 3	CPMB 6 4 1 0 6 5	CPMC 0 6 6 2 4 0	CPMD 0 2 0 0 4 9	CPME 0 0 0 0 0	CPMF FLAGS 0 WI 0 WZ 0 FZ 4 SI 9 SZ 3 F3 4 SI	MIN 213 215 217 219 221 223 225
1 101 1 102 1 103 1 104 1 105 1 106 1 107 1 108 1 109 1 110	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	0 0 5 0 1 0 4 5 3	0 4 1 0 0 2 2 2 6 1	0 0 0 0 0 0 4 0 6	0 0 6 2 4 0 0 7	0 0 0 0 0 0 6 0	0 52 0 F4 2 51 6 52 0 F5 7 51 0 52 0 F6 1 51 0 52	228 230 232 234 236 238 240 243 245 247
1 111 1 112 1 113 1 114 1 115 1 116 1 117 1 118 1 119 1 120	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	0 0 1 1 0 1 0 9	0 1 0 0 4 3 0 5	15 0 0 1 0 2 0 0	1 0 0 2 7 4 4 3 5	300000000	0 F7 3 \$1 5 \$2 0 \$3 0 \$2 1 F9 0 \$2 2 F10	249 251 253 256 258 260 262 264 266 268
1 121 1 122 1 123 1 124	2.00 2.00 2.00 2.00	2 3 0 3	1 0 0 7	0 6 0	0 0 0 2	0 3 0 0	0 El 0 EZ 3 \$1 0 \$2	271 273 275 277
High	est	1 (q	15	11	10	(∂	·

1 (B) (B) (B)			<u>-</u>	J	r	
Auto Gamma	Bkgd A	Bkgd B	Bkgd C	Bkgd D	Bkgd E	Bkgd F
Counter	CPM	CPM	CPM	CPM	СРМ	CPM
Packard A5530	32	25	52	33	71	29

* 2 minutes count time per sample * Measured counts are background subtracted

		-													
	W2	W1	1	2 0	:3	5	5	6	7	8	9	10	_ E1	E2	
	ĺ		0	0	0	5 0	0	0 2	7 6 0	0 4	9 0 2	5 5]	E4.	
N2			0 3	0	3	0	0.	4	0	0	0	0			N2
			0	1 0	0	1 0	0.	0	1 0	1 3	0	3 0	ľ		
			0 2	0	1 6	0	3	0	0 2	0	0	0			
N1			3 0	6 2	0	1	1 1	4	0	0	2 2	5 4			
		:	4] 1	1	0 5	4 3	0	0 5	2 8	0	0			N1
			0	0	0	2 5	2 2	3 0	0	0	0	2			
	3	0 3	2 0	0 7	-1	9	2	O	0	3 2	2	0 4	2	1 0	1
A	1	0	0	0	4 9	0	0	0	0	3	2	0	0	1	١.
	0 8	2 0	5 0	0 2	0	7	9:	11	0	1	1	0	0	1	A
	7	3 0	0	L o	2	0	1	1 1	0	0 2	0 2	0	0 2	0	l
<u>-</u>	1	0	0	1 4	11 5	4 0	6	0	1 0	3 6	2 0	0 2	4	0	1
В	0	2 6	0 3	0	.6 6	8	1 1	0	2	0	0	0	0	2 1	В
	0	3 1	3	0	0	0	1	0	2 0	0	0	2 0	0 3	2	
	0	0	0	1 5	0	0	10	3	4 2	0	1 4	0	7 0	6	1
С	0	1 6	4 0	0	(1 O	4	3	6 0	0	0	5	7	7	3 4	
	0	0	0	9	5	0	3	6	0	0 6	0 4	0	1 7	0 2	C
	3	4	0	0 2	10	0	3	0	0 2	0 5	0	0	0	0	
•	8	5 1	0	5 4	0	0	2 0	0	0	3	1	0	0	7	ł
D	5	4	0	0	.9	0	0	5 0	6 0	3 5	1 0	0	4	2 2	D
	0	1	0	0	3	11 D	0	0	0	4 6	7	0	0	2	"
	7	10 0	1 2	6	4	0	2	2	0	1	0 3	0	6 4	0	
	ļ0	0] 0	0	3 0	2 7	5	0 2	4	0 2	2 1	0	7	1	1
Ę	0 5	4	0	0	0	0	0	6	0	0	6	2 8	0 3	5	E
	0	5	0	0	0	0	0	0 5	0 1	0	5 0	0	0	0	_
	∮3 ↓0	0 1	5 5	2	1 3	3	1:	0 4	5 0	0	5	0	0	D]
F	4 6	6 0	0	1 6	5 0	4	0 :	6	0	0	1 3	1 0	2	3	ŀ
	2 0	0	0	0	9:	0	0 4	0	15 1	1 0	0	0 5	0	6 0	F
	0	0	0	0	0 3	0	0	0	0	0	0	0 2	0	3	
			0	0	3 0	5 1	0 2	5	0	1	0	Ö	0	0	1
S1			0	2	0	0	0	6	1 0	0	0	0			St
			0	0	0	6 0	0	7	0 3	2	4	0			
	-		<u>5</u>	4 2	4 0	<u>2</u> 0	7	3	3	0	lo	3 3			
S2	-		3	2 6	0	0	2		0	0	9 5	3 7			
54			0	4	0	0 2	4.	0 7	0	2 7	0 3	0 2			S2
		:	0	0	0	0	6	0	0	0	0	0			
	W2	W1	1 1	2	3	4	5	6	5 7	8	9	10	E1	E2	
										-	-				

02 Jul 97 09:41 ALPHA/BETA - 1.06 Page #1

Protocol #: 1 ROUTINE A User : SPC Dupui;

Time: 2.00

Data Mode: Dual DPM Nuclides: 3H-14C-UG Quench Sets

Low Energy: 3H-UG

High Energy: 14C-U(Background Subtract: 1st Vial

LL UL LCR 25% 0.0 - 12.0 0 0.0 BKG Region A: 0.0 - 12.0 Region B: 12.0 - 156 7.17 0.0 12.31 ő Region C: 156 - 2000 0.0 12.01

Quench Indicator: tSIE/AEC Ext Std Terminator: Count Coincidence Time(ns): 18

Delay Before Burst(ns): Normal

S# TIME 1 10.00	CPMA A:25% 7.17 23.61	CPMB B:25% 12.31 18.03	CPMC 12.01	DPM1	DPM2 tSIE FLAG 695.49 B
1 10.00 2 2.00 3 2.00 4 2.00 5 2.00 6 2.00 7 2.00 8 2.00 10 2.00 11 2.00 12 2.00 13 2.00 14 2.00 15 2.00 16 2.00 17 2.00 18 2.00 19 2.00 21 2.00 21 2.00 21 2.00 22 2.00 21 2.00 22 2.00 23 2.00 24 2.00 25 2.00 26 2.00 27 2.00 28 2.00 29 2.00 30 31 2.00 31 2.00 33 2.00	7.17 23.61 0.00	12.31 18.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.19 475.1 0.00 0.00	12.01 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	695.49 B 0.00 578.98 H 0.00 566.08 M 0.00 602.95 M 0.00 603.17 W 0.00 596.00 W 0.00 539.56 AZ 0.00 577.17 M 1.47 563.48 M 0.00 408.91 A3 0.00 613.48 M 0.00 584.90 M 0.00 583.72 M 0.00 583.72 M 0.00 597.46 M 0.00 583.72 M 0.00 597.46 M 0.00 583.72 M 0.00 583.72 M 0.00 583.72 M 0.00 585.48 M 0.00 585.48 M 0.00 585.48 M 0.00 596.14 M 0.00 596.
33 2.00 34 2.00 35 2.00 36 2.00 37 2.00 38 2.00 39 2.00 40 2.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.19 2891 0.00 0.00 0.19 2891 0.00 0.00 2.12 274.7 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.23 580.42 N ² 0.00 592.04 E I 0.23 579.47 E ² 0.00 472.91 BI 2.61 593.44 WI 0.00 574.79 W ² 0.00 459.16 B ² 0.00 431.96 B ³
40 2.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 431.96 B3

02 Jul 97	13:47 ALP	<u> HA/BETA - 1.06</u>			Page #3
Protocol #:	1 R	OUTINE A			User : SPC Dupuis
					•
S# TIME	CPMA A:2S%	CPMB B:25%	CPMC	DPM1	DPM2 tSIE FLAG
97 2.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 316.03 FZ
98 2.00	0.00 0.00	0.02 35389	0.00	0.00	0.02 556.47 ^{\$1}
99 2.00	0.00 0.00	0.19 2891	0.00	0.00	0.23 591.12
100 2.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 348.09 👫
101 2.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 537.79
102 2.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 496.76
103 2.00	0.00 0.00	3.69 164.7	0.00	0.00	4.57 525.83 🔑
104 2.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 587.14
105 2.00	0.83 526.3	1.69 339.7	0.00	1.45	2.01 507.52
106 2.00	0.06 6926	0.00 0.00	0.00	0.17	0.00 424.07 F3
107 2.00	0.00 0.00	1.19 475.1	0.00	0.00	1.48.498.08
108 2.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 380.01
109 2.00	0.00 0.00	0.00 0.00	0.99	0.00	0.00 254.76 76
110 2.00	0.00 0.00	2.46 238.5	0.00	0.00	3.06 504.61 ² /
111 2.00	0.00 0.00	3.19 187.9	0.00	0.00	3.97 497.11 5 ²
112 2.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 460.64 F7
113 2.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 496.77
114 2.00	0.00 0.00	4.19 147.0	0.00	0.00	5.19 539.19 🛒 💱
115 2.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 417.97 🙉
116 2.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 424.91
117 2.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 500.08
118 2.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 376.14 Fi
119 2.00	2.83 169.3	0.00 0.00	0.00	6.68	0.00 568.50
120 2.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 595.92
121 2.00	0.83 523.0	2.68 220.2	0.00	0.98	3.23 587.18 FID
122 2.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 562.07
(23) 2.00	19.38 38.61	5.64 113.3	0.00	47.42	4.90 498.82
124 2.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 581.48
125 2.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 582.20 52

Auto Beta	Bkgd A	Bkgđ B	Bkgd C
Counter	СРМ	СРМ	CPM
Packard 2500 LX	7.17	12.31	12.01

^{* 2} minutes count time per sample * Measured counts are background subtracted

	1010														
	W2	W1	0	1 0	3	4	5	6	7	8	9	10	E1	E2	
N2			0	1.19	0	0.94	3.33	Ö	0	0	0	0	7		
	į		ő	0	lŏ	0	0	0	0	2.69	0	0.19			N2
			0	Ō	0.83	0	1 0	0	0	0	<u> </u>	0			
N1		1	0	0	0	Ö	3.19	l ő	2.19	3.69	0	0			
		<u> </u>	. 0	0	0	0	0	lŏ	0	0	Ö	2.69			N1
Α	0	0	0	0	0	0	0	0	4.83	Ö	0	 0 -	0	1 0	
A	1 0	0 0	0	0	0	0	0	0	0.19	0	l ŏ	lő	l ŏ	0.19	
	0	1 0	0	0	0	0	0	0	0	0	0	lŏ	١٥	0.13	Α
В	ŏ	2.12	l o	0	0	0	0	0	0.83	5.88	0	0	ō	T ŏ	1
_	lo	0	o	l ő	0 0	0	0	0	0	0.63	0	0	0	lŏl	В
	0	Ō	0	 	0	0	0	0	0	0	0	0	0	0	
С	0	0	o	l ő	l ő	ŏ	0	0	0	0	Ō	0	1.96	1.81	1
	0	0	0	Ö	Ö	ŏ	1 6	0	0.89 0	0	0	3.69	2.05	-0	С
_	0	0	0	0	0	ō	ŏ	 0	1 0	0	0	0	0	0	
D	0	0	0	0	0.69	0.19	Ιŏ	l ő	Ŏ	l ő	0	0	0.53	0	_
	0	0	0	0 :	0	0	Ō	l ŏ	ŏ	. 0	l ö	0	0	0	D
E	Ö	0	0	0	0	0	0	0	Ö	Ö	 0 -	 	0	0 0	
_	0	0	0	0	0	1.69	1.31	0	.0	Ō	Ιŏ	0.19	١٥	0.19	E
	0.49	 0	3.81	0	0	0	0	0	0	0	0	0	Ö	0.13	- 4
F	0.43	Ö	0	0	0	0	0.06	0	0	Ö	0	0.83	0	19.38 / 0.79	
	lo	lŏ	٥	0	0	3.69 0	0	0	0	0	0	2.68	0	5.64 / 0	F
	-	•	0.33	 	ŏ		0	0	0	0	0	0	0	0/0	
S1		İ	0	0.02	l ŏ	ő	1.19	2.46	0	0	2.83	0			
			0	0	Ō	Ö	0	2.40	l ő	0	0	0			S1
S2			0.33	0	0	0.83	0	Ö	 	0	 	Ö	{		
	1		0	0.19	0	1.69	0	3.19	4.19	ŏ	ŏ	Ö			62
	W2	1014	0	0	0	0	0	0	0	Ŏ	ŏ	ő	1		\$2
	772	W1	1	2	3	4	5	6	7	8	9	10	1 E1	E2	
		. 1													

Sample F10E2 was rerun in the LSC with a 30 minute count time. The results of the second count were substantially lower than the first (0.79, 0.0, 0.0).

ALPHA/BETA - 1.06 03 Jul 97 11:11 Protocol #: 8

Page #1

LIQUID WASTE A User : SSG Mille

Time: 30.00

Data Mode: Dual DPM

Nuclides: 3H-14C-UG

Quench Sets

Sigma Coincidence On

Low Energy: 3H-UG

Background Subtract: 1st Vial

High Energy: 14C-U

LL UL LCR 2S% BKG 0.0 - 12.0Region A: Ω 1.0 7.27 12.0 - 156 0 Region B: 1.0 12.20 Region C: 156 - 2000 0 0.0 12.03

Quench Indicator: tSIE/AEC

Ext Std Terminator: Count

5338 1-14

Coincidence Time(ns): 18

Delay Before Burst(ns): Normal

S#	TIME	CPMA .	A:2S%	CPMB	B:2S%	CPMC	DPM1	DPM2	tSIE	FLAG
	30.00		13.54	12.20	10.46	12.03			536.82	В
PIDEZ 2	30.00	0.79	180.3	0.00	0.00	0.00	2.79	0.00	328.05	

REPLY TO

DEPARTMENT OF THE ARMY WALTER REED ARMY MEDICAL CENTER WASHINGTON, DC 20307-5001

MCHL-HP 7 July 1997

MEMORANDUM FOR Record

SUBJECT: Decommissioning Survey of Building 513 Forest Glen Annex

- 1. A decommissioning survey was conducted in building 513, Forest Glen Annex on 27 June to 2 July 1997. The building was surveyed with survey meters for detectable contamination. In addition swipes were collected for each square meter of the floor area and up 5 feet on every inside wall for removable contamination.
- 2. The building was used as a storage location for a sealed source irradiator and a sealed drum containing depleted uranium shielding. No unsealed radioactive material was used at this location. Based on the knowledge of the site history and previous survey information this building was not expected to contain any residual radioactive contamination.
- 3. A historical review indicated that no spills or unusual occurrences happened at this location.
- 4. The floor of the building was grided off in 3 foot squares. The squares were labeled as indicated in enclosure 1. The inside walls were grided from the floor to 3 feet and labeled as the floor grid coordinate plus a reference direction (N=north, E=east, S=south, W=west) and a number 1. From 3 feet up to 5 feet as the floor coordinate, reference direction and number 2. An example of a wall coordinate is A1N1 for the area on the wall adjacent to the floor coordinate A1, in the north reference direction, and the lower grid coordinate from the floor úp to 3 feet.
- 5. The survey instrumentation was chosen to provide the highest sensitivity for detecting alpha, beta, or gamma radiation. The calibration and sensitivity data for all instrumentation used in this report is included in enclosure 2.
- 6. Every square yard of the floor of building 513 was grided and directly surveyed for gamma contamination using the AN/PDR-77, serial number 41395A. The results of the survey are included in columns 1 and 4 of enclosure 3. The meter was checked for proper operation and calibrated against a NIST traceable check source. The check source was 1.81 μ Ci of Cs-137 as of December 1972

MCHL-HP SUBJECT: Decommissioning Survey of Building 513 Forest Glen Section

source number 475. The decayed source strength at the time of the survey was about 1.03 μ Ci of Cs-137. The measured activity of this check source was 11.0E4 CPM. The measured background level was 1.74E3 CPM. The swipes from these locations indicated no contamination (enclosure 4).

- 7. A Ludlum L-3 with an unshielded beta probe was used to directly survey the floor of building 513 for beta or gamma contamination. The results of the survey were recorded in columns 2 and 5 of enclosure 3. The meter was checked for proper operation and calibrated against a NIST traceable check source. The check source was 0.0064 μ Ci of Am-241 as of February 1970. The decayed source strength at the time of the survey was about 0.0064 μ Ci of Am-241. The measured activity of this check source was 15,000 CPM. The measured background level was 60 CPM. The results of this survey indicated that no beta contamination was present in building 513 (enclosure 5). Note that C-14 and tritium which emit very low energy beta radiation may not be detectable using this survey meter.
- 8. The AN/PDR-77, serial number 41395A was used to directly survey the floor of building 513 for alpha contamination. The results of the survey were recorded in columns 3 and 6 of enclosure 3. The meter was checked for proper operation and calibrated against a NIST traceable check source. The check source was 0.0064 μ Ci of Am-241 as of February 1970. The decayed source strength at the time of the survey was about 0.0064 μ Ci of Am-241. The measured activity of this check source was 10,200 CPM. The measured background level was 140 CPM. The results of this survey indicated that no alpha contamination was present in building 513 (enclosure 6).
- 9. Swipes were taken in each grid location and on every inside wall for removable contamination. The swipes were put in marked vials and analyzed in a Packard A5530 automatic gamma counter. The background was counted for 10 minutes and the samples were counted for 2 minutes each. The results are background subtracted and printed in enclosure 7. A diagram of the floor plan of the building with the walls is included as enclosure 8. The results of this survey indicate that no removable gamma contamination was present in building 513.
- 10. After the swipes were analyzed in the auto-gamma counter, 10 ml of liquid scintillation fluid was added to each vial and the vials were counted in a Packard 2500LX automatic liquid scintillation counter. The background was counted for 10 minutes

MCHL-HP

SUBJECT: Decommissioning Survey of Building 513 Forest Glen

Section

and the samples were counted for 2 minutes each. The results are background subtracted and printed in enclosure 9. A diagram of the floor plan of the building with the walls is included as enclosure 10. The results of this survey indicated possible contamination in on wall grid F10E2, however, this sample was rerun through the liquid scintillation counter and this time measured no contamination (enclosure 11). This problem could be due to chemical contamination of the swipe sample that reacted with the scintillation fluid.

11. Based on the results of this survey, building 513, Forest Glen Annex, can be removed from the WRAMC NRC license and is considered free from radioactive contamination.

11 Encls

as

ARTHUR R. MORTON

CPT, MS

Chief, Operations Branch, HPO

REPLY TO ATTENTION OF: Preventive Medicine Services

DEPARTMENT OF THE ARMY WALTER REED ARMY MEDICAL CENTER WASHINGTON, DC 20307-5001 25 June 1997

Nuclear Regulatory Commission, Region I Medical Licensing Division 475 Alendale Road King of Prussia, Pennsylvania 19406-1415

Medical Licensing Division:

In compliance with the "Timeliness Rule," the Health Physics Office will cease license operations in buildings 149A and 508, Forest Glen, Silver Spring, MD, Walter Reed Army Medical Center, Washington, DC. The HPO received radiological packages, and has stored a variety of sealed radioactive sources in the buildings. No unsealed radioactive materials were used in either of these buildings. Neither of the buildings are individually listed on the Walter Reed Army Medical Center NRC Byproduct Materials License 08-01738-02, therefore, we do not believe that an amendment to this license is required.

The decommissioning of the buildings has begun with a historical records investigation, and decontamination surveys. The documentation for the final surveys will include meter surveys, swipe surveys, and historical survey records of the buildings. The meter surveys will search for alpha, beta, and gamma radioactive contamination. The swipe survey will consist of surveying the entire building floor and up to 5 feet on the walls or doors for removable contamination. The survey swipes will be processed in both the auto-gamma and liquid scintillation counters. We will also take additional samples in areas where dust could collect, such as lighting fixtures and any equipment that will remain in the buildings. Permanent records for this decommissioning survey will be maintained in the HPO files.

For additional information regarding this decommissioning plan, please contact Colonel William B. Johnson, Chief, Health Physics Office or Captain Arthur R. Mortón, Chief, Operations Branch, Health Physics Office, Preventive Medicine Services, at (202) 356-0058.

Sincerely,

William B. Johnson Colonel, U.S. Army

Radiation Protection Officer

DEPARTMENT OF THE ARMY WALTER REED ARMY MEDICAL CENTER WASHINGTON, DC 20307-5001 30 June 1997

Preventive Medicine Services

FILE COPY

Nuclear Regulatory Commission, Region I Medical Licensing Division 475 Alendale Road King of Prussia, Pennsylvania 19406-1415

Medical Licensing Division:

In compliance with the "Timeliness Rule," the Health Physics Office will cease license operations in buildings 149A and 513, Forest Glen, Silver Spring, MD, Walter Reed Army Medical Center, Washington, DC. The Health Physics Office received radiological packages, and has stored a variety of sealed radioactive sources in the buildings. No unsealed radioactive materials were used in either of these buildings. Neither of the buildings are individually listed on the Walter Reed Army Medical Center NRC Byproduct Materials License 08-01738-02, therefore, we do not believe that an amendment to this license is required.

The decommissioning of the buildings has begun with a historical records investigation, and decontamination surveys. The documentation for the final surveys will include meter surveys, swipe surveys, and historical survey records of the buildings. The meter surveys will search for alpha, beta, and gamma radioactive contamination. The swipe survey will consist of surveying the entire building floor and up to 5 feet on the walls or doors for removable contamination. The survey swipes will be processed in both the auto-gamma and liquid scintillation counters. We will also take additional samples in areas where dust could collect, such as lighting fixtures and any equipment that will remain in the buildings. Permanent records for this decommissioning survey will be maintained in the Health Physics Office files.

For additional information regarding this decommissioning plan, please contact Colonel William B. Johnson, Chief, Health Physics Office or Captain Arthur R. Morton, Chief, Operations Branch, Health Physics Office, Preventive Medicine Services, at (202) 356-0058.

Sincerely,

William B. Johnson

Colonel, U.S. Army

Radiation Protection Officer

UNITED STATES NUCLEAR REGULATORY COMMISSION

REGION I 475 ALLENDALE ROAD KING OF PRUSSIA, PENNSYLVANIA 19406-1415

JUL 3 0 1997

William B. Johnson
Colonel, U.S. Army
Radiation Protection Officer
Department of the Army
Walter Reed Army Medical Center
MCHL-HP/Health Physics Office
Building 41, Room 38
Washington, D.C. 20307-5001

Dear Colonel Johnson:

In accordance with 10 CFR 30.36 (d), your letter dated June 30, 1997 is accepted as notification that you have ceased operations in buildings 149A and 513. A review of decommissioning records and surveys will be performed at the time of your next inspection. No further correspondence on this matter is required.

Your cooperation is appreciated.

Sincerely,

Thomas K. Thompson

Division of Nuclear Materials Safety

License No. 08-01738-02 Docket No. 030-01317 Control No. 124735