ESG-80-23

DIAMOND ORDNANCE RADIATION FACILITY

DECOMMISSIONING PROGRAM

FINAL REPORT

by

J. M. Harris

Rockwell International Energy Systems Group 8900 De Soto Avenue Canoga Park, California 91304

•

CONTRACT: DAAK 21-79-C-0136 ISSUED: JULY 7, 1980

CONTENTS

Abstrac	t	Page 6
I. I	ntroduction	7
II. F	acility Description	11
III. S	ummary of Decommissioning Activities	15
A	. Phase I	15.
В	. Phase II	15
	1. Site Preparation	16
	2. Packaging and Shipping Reactor Components to HEDL	16
	3. Exposure Room Dismantlement	23
	4. Pool Tank Removal	29
	5. Concrete Excavation	34
	6. Site Survey	43
	7. Waste Disposal	51
C	. Confirmatory Survey	53
D	Phase III	53
Appendi	A — Department of the Army Harry Diamond Laboratories	A-1
	TABLES	· · · · · · ·

1.	Acceptable Surface Contamination Levels From NRC Regulatory Guide 1.86	8
2.	Contamination Limits for Decontamination and Disposal of DORF	9
З.	Analysis of Pool Water	17
4.	List of Reactor Components Shipped to HEDL	18
5.	Container Packing List for HEDL Shipment :	21
6.	Analysis of Lead From Shield Doors	33
7.	Pre-excavation Analysis of Concrete by ESG at DORF	37
8.	Pre-excavation Analysis of Concrete by Teledyne Isotopes	39
9.	Post-excavation Analysis for Fixed Contamination in Concrete	47
10.	Results of Air Sampling at DORF	51
11.	Redline Changes to DORF Drawings	58

FIGURES

.

rdue	Ρ	a	a	е
------	---	---	---	---

1.	Exterior View of DORF	10
2.	Interior View of DORF Showing TRIGA Reactor Carriage and Control Drive Housing Located on Parapet	10
3.	View of Reactor Core Housing and Support Structure	12
4.	Test Setup in Exposure Room	12
5.	Vertical Section of DORF Reactor	14
6.	Removal of Reactor Support Structure From Pool Tank	19
7.	Reactor Cooling System Piping After Disassembly but Prior to Packaging	19
8.	Reactor Cooling System Piping Partially Packaged (Box No. 156)	20
9.	Partially Packaged Reactor Core Support Structure (Box No. 154)	20
10.	Truck Being Loaded With Boxes and Drums of Reactor Components for Shipment to HEDL	22
11.	Start of Wood Removal From Exposure Room by First Removing Load Bearing Beam From Over Doorway While Lifting Ceiling With Cribbing	24
12.	Ceiling Timbers Partially Removed After Lowering Cribbing With Fork Lift	24
13.	Using Chain Saw to Cut Wood Into Disposable Pieces	25
14.	Clean Wood Being Loaded Into Dumpster for Disposal	25
15.	Clean Wood Being Dumped at Disposal Site	26
16.	Phenolic-Coated Tar Paper Covering Concrete Wall of Exposure Room	26
17.	View of East Wall of Exposure Room Showing One Lead Shield Lying on Floor to Left and One Lead Shield in Motion on Right	27
18.	Lead Shields in Exposure Room Prior to Removal	27
19.	Shielding Being Removed From Exposure Room	28
20.	Lead Shield Being Removed From Lead Shield Hoist	28
21.	Excavating Sand From Around Lead Shield Hoist	30
22.	Removal of Lead Shield Hoist	30
23.	Cutting an Opening Into Reactor Pool Tank From Exposure Room	31
24.	Sampling Transformer Oil in Lead Shield Doors for PCB Analysis	31
25.	Draining Lead From Lead Shield Doors	32
26.	Cutting a Section of Reactor Pool Tank	32

ESG-80-23

4

FIGURES

	Page
27.	Hoisting Section of Pool Tank From Pool Tank Cavity
28.	Transferring Section of Pool Tank to Low Background Area
	for Radiological Survey
29.	Core Sampling of Concrete in Exposure Room • • • • • • • • • • • 35
 30.	DORF Sampling Plan • • • • • • • • • • • • • • • • 36
31.	Planned Excavation (Side View) • • • • • • • • • • • • • • • • • • •
32.	Planned Excavation (Top View) • • • • • • • • • • • • • • • • • • •
33.	Excavating Concrete From Area Below Primary Reactor Operating Position ••••••••••••••••••••••••••••••••••••
34.	Excavating Concrete From Wall Surrounding Secondary Reactor Operating Position ••••••••••••••••••••••••••••••••••••
35.	Using a Rock Breaker to Form Cracks in Activated Portion of Rolling Door • • • • • • • • • • • • • • • • • •
36.	Using a Pry Bar to Remove Fractured Concrete 42
37.	Mobile Hydraulic Ram Being Used to Break Nonradioactive Portion of Rolling Door
38.	Scabbling Concrete From Surface of Exposure Room Wall 44
39.	Using Rock Drill to Bore Holes Into Ceiling of Exposure Room (preparation for inserting rock splitter)
40.	Using Rock Splitter to Form Cracks in Concrete Ceiling 45
41.	Spalling Concrete From Surface of Exposure Room After Crack Forming
42.	View of Concrete Excavation of Ceiling, Floor, East and North Walls of Exposure Room and Portion of Pool Tank Cavity ••••• 46
43.	DORF Final Survey, Exposure Room • • • • • • • • • • • • • • • • • •
44.	DORF Final Survey, Exposure Room • • • • • • • • • • • • • • • • • •
45.	DORF Final Survey, Exposure Room • • • • • • • • • • • • • • • • • •
46.	Partially Filled Box of Radioactive Waste
47.	Radioactive Waste Containers Being Loaded Onto Truck
48.	View of Barrier Wall From Parapet
49.	View of Barrier Wall From Exposure Room
50.	Explosive Charges Being Loaded Into Pre-drilled Holes
51.	Parapet After Several Explosive Charges Set Off
52.	Concrete Rubble Being Pushed Into Pool Tank Cavity
53.	Parapet Demolition Completed

ABSTRACT

The Atomics International (AI) Division of the Energy Systems Group (ESG) of Rockwell International was contracted by the Department of the Army to dismantle and decontaminate the Diamond Ordnance Radiation Facility (DORF) located at the Forest Glen Section of Walter Reed Army Medical Center in Silver Spring, Maryland. The contract was for a firm fixed price with a schedule duration of 8 months.

All the contracted terms specified in DAAK 21-79-C-0136 were fulfilled within the required schedule and budget. There was no significant radiation exposure to personnel or internal deposition of radioactive material as a result of decommissioning the Diamond Ordnance Radiation Facility.

6

I. INTRODUCTION

The objective for dismantlement and decontamination of radioactivity of the Diamond Ordnance Radiation Facility (DORF) was to make the facility acceptable for unrestricted use by removing radioactivity to levels below those requiring surveillance and licensing.

Dismantling the reactor and removing the radioactive components was the mode selected for decommissioning DORF. Specifically identified reactor components were dismantled, packaged, and shipped to Westinghouse's Hanford Engineering Development Laboratories (HEDL) in Richland, Washington. The pool tank, lead shield doors, lead shield hoist, exposure room wood lining, rolling shield door, and activated concrete were dismantled, removed from the facility, and disposed to clean salvage/disposal or to radioactive disposal.

The regulatory agency governing operations at DORF was the U.S. Army. The Army specified Nuclear Regulatory Commission (NRC) Regulatory Guide 1.86 as the governing document for the decommissioning activity. This guide specifically requires decontamination to levels which are as low as reasonably achievable (ALARA), but in all cases to levels below those listed in Table 1. To show compliance with ALARA, Rockwell established the limits shown in Table 2 as a target. These limits are based on experience regarding levels that in most cases are reasonably achievable and can be effectively monitored.

Radioactive materials and components which exceeded Table 1 limits were removed from the facility. The limits shown in Table 2 were also met in all areas of the facility except in the exposure room where, due to room geometry and the accumulative properties of activation products, the activity ranged from 0.08 to 0.24 mrad/h as measured with a Technical Associates Mark III Cutie Pie - CP7M. The overall average was slightly higher than 0.1 mrad/h. Individual pieces of concrete from the higher activity areas, when removed from the exposure room, indicated levels below 0.1 mrad/h. These activity levels were deemed acceptable by the contracting officer's representative and by the United States Army Environmental Health Agency (USAEHA) radiation survey team.

7

Nuclide [*]	Average ^{+§}	Maximum ^{†***}	Removable ^{+,++}
$U^{nat}, U^{235}, U^{238}, and$	5,000 dpm α/100 cm ²	15,000 dpm α/100 cm ²	1,000 dpm α/100 cm ²
associated decay products			
Transuranics, Ra ²²⁶ , Ra ²²⁸ Th ²³⁰ , Th ²²⁸ , Pa ²³¹ , Ac ²²⁷ , 1 ¹²⁵ , 1 ¹²⁹	100 dpm/100 cm ²	300 dpm/100 cm ²	20 dpm/100 cm ²
Th ^{nat} , Th ²³² , Sr ⁹⁰ , Ra ²²³ Ra ²²⁴ , U ²³² , I ¹²⁶ , I ¹³¹ , I ¹³³	1,000 dpm/100 cm ²	3,000 dpm/100 cm ²	200 dpm/100 cm ²
Beta-gamma emitters (nuclides with	5,000 dpm $\beta_1/100$ cm ²	15,000 βγ/100 cm ²	1,000 dpm βγ/100 cm ²
decay modes other than alpha emis-			
sion or spontaneous fission) except Sr ⁹⁰ and others noted above.			

TABLE 1 ACCEPTABLE SURFACE CONTAMINATION LEVELS FROM NRC REGULATORY GUIDE 1.86

*Where surface contamination by both alpha- and beta-gamma-emitting nuclides exist, the limits established for alpha- and beta-gamma-emitting nuclides should apply independently.

tAs used in this table, dpm (disintegrations per minute) means the rate of emission by radioactive material as determined by correcting the counts per minute observed by an appropriate detector for background, efficiency, and geometric factors associated with the instrumentation.

SMeasurements of average contaminant should not be averaged over more than 1 m^2 . For objects of less surface area, the average should be derived for each such object.

**The maximum contamination level applies to an area of not more than 100 cm².

HThe amount of removable radioactive material per 100 cm² of surface area should be determined by wiping that area with dry filter or soft absorbent paper, applying moderate pressure, and assessing the amount of radioactive material on the wipe with an appropriate instrument of known efficiency. When removable contamination on objects of less surface area is determined, the pertinent levels should be reduced proportionally and the entire surface should be wiped.

TABLE 2

CONTAMINATION LIMITS FOR DECONTAMINATION AND DISPOSAL OF DORF

		Total	R	emovable	
Beta-Gamma Emiti	ters 0.1 mra and 0.3 at 1 cm absorbe	d/h average* mrad/h maxim with 7 mg/cm r	um† 2	dpm/100 cm ²	· · · ·
Alpha Emitters	100 dpm	/100 cm ²	20	dpm/100 cm ²	
*Measurements of av than 1 m ² . For obj derived for each s †The maximum contan	verage contamina jects of less su such object. nination level a	nt should not rface area, th pplies to an a	be averaged ne average s area of not	l over more hould be more than	
100 cm ² .	an dhadh gallan a ba' na man ar aithean an a Chaile an tha an taraig	n mayna na ann na mar ann an Alla. Ann an Alla		amendalar yang series series series Series Series series	
		en de la companya de		· · ·	
		· · ·			
· · · · · · · · · · · · · · · · · · ·					
	anna an				
e de la companya de l	n general en se gee	te intrautore a konstantin un sin kon		n an	

Figure 1. Exterior View of CORF

Figure 2. Interior View of DCRF Showing TRIGA Reactor Carriage and Control Drive Housing Located on Parapet

253-80-23

II. FACILITY DESCRIPTION

The Diamond Ordnance Radiation Facility (DORF), Figure 1, was operated by the Department of the Army's Harry Diamond Laboratories (HDL). The facility housed a TRIGA Mark F Reactor, Figure 2, as the principal research tool in the study of neutron and gamma radiation effects on electrical and electronic components.

DORF is located within the metropolitan area of Washington, D.C. at the Forest Glen section of the Walter Reed Army Medical Center (WRAMC), which is 8 miles due north of the center of Washington, D.C. The building containing the reactor is 65 ft by 50 ft and 25 ft high. It is encircled by an exclusion fence with a radius of about 240 ft. Access to the 4.2-acre site is controlled at a single entrance gate.

The reactor was designed and built by Gulf General Atomics, San Diego, California. It was designed for both steady-state and pulsed operation with a design capability of:

				•
 Steady-state or square-wave 	e operation	up to	250 kW for	a maximum
power generation of 1 mW-h/	'day.	· · · · . · ·	The movement and an and a second s	5. S

 Pulsed operation resulting in a peak power of 2,000 MW with a pulse width of 9.5 ms at half maximum.

On September 18, 1961, the DORF-TRIGA Mark F reactor achieved criticality for the first time. The first core was aluminum clad, but it was replaced with a stainless steel clad core in 1964. This stainless steel clad core was operated from 1964 through September of 1977, when reactor operations at DORF were terminated. An estimate of the burnup on the core at the time of shutdown was 0.48% based on 242,451 kWh of operation.

In the spring of 1979, the core was removed from the reactor. It was dispositioned to several university programs and to the DOE-Hanford Engineering Development Laboratories in Richland, Washington.

Figure 3. View of Reactor Core Housing and Support Structure

Figure 4. Test Setup in Exposure Room

The reactor core, Figure 3, was located near the bottom of a 15,000-gal aluminum tank which was about 13 ft in diameter and 20 ft deep. The core was suspended by a support structure from a motor driven carriage mounted on rails at the top of the tank. The carriage was capable of traversing the tank to enable the reactor to be positioned behind lead doors so that entry could be made into the exposure room immediately after a test. Figure 4 shows a typical test setup in the exposure room. Figure 5 is a diagram showing a cross-section view of the facility and the relative position of reactor to exposure room. With the lead doors open, the reactor could traverse the tank to a position by the lead shield.

Figure 5. Vertical Section of DORF Reactor

III. SUMMARY OF DECOMMISSIONING ACTIVITIES

The activities which comprise the decommissioning of DORF were grouped into three phases. Phase I consisted of the planning, procurement, and staffing activities required to conduct Phases II and III. Phase I was conducted in Canoga Park, California. Phase II consisted of those activities required to remove and dispose of the radioactive and nonradioactive components and materials identified in the RFQ. Phase III consisted of the demolition of nonradioactive portions of the facility. Phases II and III were conducted in Silver Spring, Maryland.

A. PHASE I

Facilities Dismantling Plan for DORF NO01-FDP-960-001 was prepared to delineate the activities necessary to achieve the stated objectives. These were categorized as: planning, monitoring, and control; radiological survey; dismantlement and disposal; and documentation. This dismantling plan was reviewed and approved by the Rockwell D&D Program Office, Health, Safety and Radiation Services, and by the Engineering Department. It was then reviewed and approved by the Army Reactor Committee for Health and Safety (ARCHS).

Activities concurrent with planning were: (1) the acquisition of equipment, tools, and material; (2) placement of service contracts; and (3) the recruitment and training of personnel. Phase I activities were initiated on September 17, 1979, and were completed on November 21, when ARCHS approved the dismantling plan.

B. PHASE II

Phase II was initiated on November 26, 1979, with the movement of personnel to the DORF site in Silver Spring, Maryland, and was completed on February 22, 1980, with the return and reassignment of personnel to other projects.

Phase II consisted of the following activities: (1) site preparation, (2) packaging and shipping reactor components to HEDL, (3) exposure room

```
15
```

dismantlement, (4) pool tank removal, (5) concrete excavation, (6) site survey, and (7) waste disposal.

1. Site Preparation

Site preparation included those activities required to move the Rockwell staff and their equipment to the DORF site and to establish a base of operations in Maryland. A radiological survey of the nonradioactive portions of the site was conducted for documentation and an analysis of the pool water was performed to determine compliance with 10 CFR 20.303.

On November 26, 1979, a six-man team from Rockwell International's Energy Systems Group in Canoga Park, Californía, arríved in Maryland to begin the Phase II work outlined in the contract. A base of operations was established within the first week including a site radiological survey. An agreement was made with Holy Cross Hospital in Silver Spring wherein they would accept for treatment any radioactively contaminated person from DORF.

A radiological survey taken of one of the floor drains adjacent to the parapet near the main experimental area indicated activity in the range of 250 cpm β_{γ} . The floor grating over the drain was removed and the radioactive residue was vacuumed into an approved radioactive waste container. Resurvey of this drain and all other areas of the facility outside the exposure room indicated levels of activity well below those listed in Tables 1 and 2.

Water samples from the pool tank were analyzed by Teledyne Isotopes, WRMAC, and Rockwell. The data are shown in Table 3. These data show the water to be well within the allowable limits given in 10 CFR 20, Appendix B, Table 1, Column 2. Walter Reed Hospital's Health and Safety Branch granted Rockwell permission to drain the water through their sanitary sewer system.

2. Packaging and Shipping Reactor Components to HEDL

The TRIGA reactor and its components were disassembled, packaged, and shipped to DOE-Hanford Engineering Development Laboratories (HEDL), Richland,

	µCi/m]	
Rockwell	$4.4 \times 10^{-9} \beta_{\gamma}$	
	$6.85 \times 10^{-10} \alpha$	
Teledyne Isotopes	<1 x 10 ⁻⁹ gross ß 1.41 x 10 ⁻⁶ H-3	
WRAMC	<detectable gross="" ß<br="">5 x 10⁻⁷ H-3</detectable>	- -
Note: 10 CFR 20 limits as follows: 4 x 4 x 10 ⁻⁷ uCi/mld;	were interpreted to be 10 ⁻⁷ μCi/mlβγ; 3 x 10 ⁻³ μCi/ml H-3	

TABLE 3 ANALYSIS OF POOL WATER

Washington. The packages and shipment conformed to Department of Transportation (DOT) specification, Title 49, Code of Federal Regulations (49 CFR).

The reactor and components were disassembled to the degree necessary to permit packaging. All of the items listed in Table 4 were removed, packed into weatherproof containers, and transported to HEDL. Figures 6 and 7 show reactor and component disassembly. Figures 8 and 9 show packaging activities. Figure 10 shows packages loaded into a truck for shipment.

Each package was monitored by the Health Physicist to determine its radioactive content. Only one of the containers had significant detectable radiation at the surface. It was Container No. 158, a DOT-type A-7A drum containing the 10 Ci americium-beryllium neutron source. Its radiation measured 120 mrad/h neutron-beta-gamma at the surface and 4 mrad/h at 1 m. All of the other containers were <10 mrad/h at the surface and near background at 1 m. Table 5 is a list of containers, their volumes, weights, and contents.

4			
Item No.	Description	Unit	Quantity
1 ·	Core Support Structure, Upper Section	Each	1
2	Core Support Structure, Lower Section	Each	1
3	Top and Bottom Grid Plates	Each	1
4	Connecting Rods for Control Rods	Set	1
5	Control Rods	Set	1
6	Carriage Drive Motor	Each	1
7	Water Pump: 1.5 hp	Each	1
8	Incore Experiment Tube	Each	1
9	Ion Chamber Support and Ion Chambers	Set	3
10	Carriage Support Rails	Set	1
11	Lead Shield Door Drives and Linkage	Set	1
12	Pool Cover Plates	Set	1
13	Fuel Storage Racks, Underwater	Each	8
14	Fuel Measurement Tool with Dial Micrometer	Each	1
15	Aluminum Water System Piping	Each	1
16	Water Pumps	Each	3
17	Demineralizers, 3 ft ³	Each	4
18	Flowmeters, 25 gpm	Each	2
19	Neutron Source, 10 Ci, Am-Be	Each	1
20	Neutron Source Holder	Each	1
21	Pool Lights	Set	1
- 22	Carriage Positioning Potentiometer	Each	1
23	Carriage Umbilical Arm	Each	1
24	Fuel Element Location Diagram	Each	1
25	Water Box, 1 ft ³ Capacity	Each	1
26	Charcoal Filter, 1 ft ³ Capacity	Each	1

TABLE 4 LIST OF REACTOR COMPONENTS SHIPPED TO HEDL

.

.

ESG-80-23

•

18

Figure 7. Reactor Cooling System Piping After Disassembly but Prior to Packaging

Figure 6. Removal of Reactor Support Structure From Pool Tank

476412

ESG-80-23

19

τ.

Figure 8. Reactor Cooling System Piping Partially Packaged (Box No. 155)

Figure 9. Partially Packaged Reactor Core Support Structure (Box No. 154)

TABLE 5

CONTAINER PACKING LIST FOR HEDL SHIPMENT (Sheet 1 of 2)

	Quantity
Box No. 151 (38 ft ³ , 1100 1b)	· · · · · · · · · · · · · · · · · · ·
No. 11 Lead Shield Door Drive and Linkage	
Motor and Clutch	. 1
Transmission Tee	1
Right Angle Transmission	2
Door Transmission	2
Short Shaft	2
Long Shaft	2
No. 16 Water Pump	. 3
Seals	4 boxes
Carriage Drive Motor (Spare)	1
Box No. 152 (112 ft ³ , 700 lb)	
No. 9 Ion Chamber Supports	4 sets
No. 4 Connecting Rods for Control Rods	7
No. 5 Control Rods (2), 1 graphite	
No. 14 Fuel Measurement Tool and Dial Micrometer	1
Dip Leg (Water Diffuser Pump), 1 long, 1 short	
Standard Control Rod FFCR	2
Ion Chamber Guide	2
Control Rod Guide	
Core Thimble Guide	<u></u>
No. 20 Neutron Source Holder	· · · · · · · · · · · · · · · · · · ·
Box No. 154 (333 ft ³ , 4500 lb)	
No. 1 Core Support Structure, Upper Section	1
	1
No. 2 Core Support Structure, Lower Section	A .
No. 2 Core Support Structure, Lower Section No. 12 Pool Cover Plates	4
No. 2 Core Support Structure, Lower Section No. 12 Pool Cover Plates No. 13 Fuel Storage Racks	4 16
No. 2 Core Support Structure, Lower Section No. 12 Pool Cover Plates No. 13 Fuel Storage Racks Connecting Rods and Bolts	4 16
No. 2 Core Support Structure, Lower Section No. 12 Pool Cover Plates No. 13 Fuel Storage Racks Connecting Rods and Bolts No. 21 Pool Lights	4 16 4
No. 2 Core Support Structure, Lower Section No. 12 Pool Cover Plates No. 13 Fuel Storage Racks Connecting Rods and Bolts No. 21 Pool Lights No. 10 Carriage Support Rails	4 4 2
No. 2 Core Support Structure, Lower Section No. 12 Pool Cover Plates No. 13 Fuel Storage Racks Connecting Rods and Bolts No. 21 Pool Lights No. 10 Carriage Support Rails No. 24 Fuel Element Location Diagrams (Picture Frames)	4 16 2 3
No. 2 Core Support Structure, Lower Section No. 12 Pool Cover Plates No. 13 Fuel Storage Racks Connecting Rods and Bolts No. 21 Pool Lights No. 10 Carriage Support Rails No. 24 Fuel Element Location Diagrams (Picture Frames) No. 5 Control Rod and Connecting Rod	4 16 2 3 2
No. 2 Core Support Structure, Lower Section No. 12 Pool Cover Plates No. 13 Fuel Storage Racks Connecting Rods and Bolts No. 21 Pool Lights No. 10 Carriage Support Rails No. 24 Fuel Element Location Diagrams (Picture Frames) No. 5 Control Rod and Connecting Rod Box No. 155 (159 ft ³ , 3200 lb)	4 16 2 3 2
No. 2 Core Support Structure, Lower Section No. 12 Pool Cover Plates No. 13 Fuel Storage Racks Connecting Rods and Bolts No. 21 Pool Lights No. 10 Carriage Support Rails No. 24 Fuel Element Location Diagrams (Picture Frames) No. 5 Control Rod and Connecting Rod Box No. 155 (159 ft ³ , 3200 lb) No. 6 Carriage	4 2 3 2 1
No. 2 Core Support Structure, Lower Section No. 12 Pool Cover Plates No. 13 Fuel Storage Racks Connecting Rods and Bolts No. 21 Pool Lights No. 10 Carriage Support Rails No. 24 Fuel Element Location Diagrams (Picture Frames) No. 5 Control Rod and Connecting Rod Box No. 155 (159 ft ³ , 3200 lb) No. 6 Carriage No. 7 Water Pump	4 2 3 2 1
No. 2 Core Support Structure, Lower Section No. 12 Pool Cover Plates No. 13 Fuel Storage Racks Connecting Rods and Bolts No. 21 Pool Lights No. 10 Carriage Support Rails No. 24 Fuel Element Location Diagrams (Picture Frames) No. 5 Control Rod and Connecting Rod Box No. 155 (159 ft ³ , 3200 lb) No. 6 Carriage No. 7 Water Pump No. 22 Potentiometer	4 16 2 3 2 1

Ł

TABLE 5 CONTAINER PACKING LIST FOR HEDL SHIPMENT (Sheet 2 of 2)

Box-Me. 156 (192-ft ³ , 1700-16) No. 15 - Aluminum Piping - Water System No. 16 - Flowmeter (NK 398-00160) No. 23 - Carriage Umbilical Arm	1 2 1
No. 25 Water Box No. 26 Charcoal Filter Barrel Assembly (Spare) Connecting Rod	1 1 1 1 4
Drum No. 157 (174 Drum) (7.5 ft ³ , 200 lb). No. 3 Lower Core Assembly Top and Bottom Grid Plates	1
Drum No. 158 (178 Drum) (7.5 ft ³ , 550 16) No. 19 Americium-Beryllium Neutron Source	1

Figure 10. Truck Being Loaded with Boxes and Drums of Reactor Components for Shipment to HEDL

1

Quantity

3. Exposure Room Dismantlement

The exposure room was stripped of its wood lining, lead shields, lead shield hoist, and other removable components. The material was separated and dispositioned based on radiological analysis.

The three floor drains were temporarily plugged to prevent transporting radioactive materials into the facilities holdup tanks. The aluminum tracks on the ceiling and the masonite covering the wood lining were removed from the exposure room. Radiation survey analysis determined that about two-thirds of the wood lining could be disposed of as clean wood, the remaining one-third was packaged and disposed of as radioactive waste. The clean wood was removed from the exposure room, put into a large dumpster, transported to a local dump site, and buried to prevent its reuse. The wood was structurally damaged as a result of neutron irradiation and might have been tempting for use as structural material if left unburied. Figures 11 through 15 show these activities. The concrete wall of the exposure room (Figure 16) was covered with the phenolic-coated tar paper listed in the RFQ as being attached to the aluminum pool tank. Two lead shields were removed from the wall adjacent to the pool tank. These were coated on one side with the phenolic-coated paper from the wall which was activated. The coating was scraped from the lead and the lead was recovered as clean scrap. Figure 17 shows the lead removal task.

Six 1-in. thick pieces of lead were removed from the top portion of the exposed pool section of the tank in the exposure room. The aluminum frame was removed from the lead and disposed of as radioactive waste. The lead was analyzed and determined to be acceptable as clean scrap. Figures 18 and 19 show these operations.

The lead shield was removed from the lead shield hoist as shown in Figure 20. This shield was activated slightly and was packaged as radioactive waste. The lead shield hoist was drained of hydraulic oil. The oil was analyzed and was found to be nonradioactive. This oil was picked up by a "reclaimed oil" processor at no cost to the program. The lead shield hoist was removed by first

23

Figure 11. Start of World Percent From Exposure Room by First Removing Load Dearing Beac From Even Doorway While Lifting California its 1 fibbing

Figure 12. CeilingTimbers Partially Removed After Lowering Criticing With Fork Lift

Figure 13. Using Chain Saw to Cut Wood Into Disposable Pieces

Figure 14. Clean Wood Being Loaded Into Dumpster for Disposal

----Figure 18. Clean Wood Saing Durded at Disposal Site

Figure 18. Phenolic-Coated Tar Paper Covering Concrete Wall of Excloure Room

Figure 17. Tiew of East Wall of Exposure Poor Showing One Lead Shield Lying on Floor to Left and One Lead Shield in Motion on Right

Figure 18. Lead Shields in Exposure Room Price to Removal

Figure 20. Lead Shield Being Removed From Lead Shield Hoist Figure 19. Shielding Being Removed From Exposure Room 10.1

ESG-80-23

28

excavating the sand surrounding it (Figure 21) and then breaking the 8-in.-thick layer of concrete that surrounded its base with a jackhammer. Figure 22 shows the hoist removed. The hoist was activated and was therefore packaged and disposed of as radioactive waste.

4. Pool Tank Removal

Transformer oil and lead-shot were drained from the lead shield doors, the doors were removed from the pool tank, and the pool tank was removed from the concrete cavity.

To facilitate reactor component disassembly, an opening was cut into the pool tank to provide access to it from the exposure room. This opening was enlarged to about $7-ft^2$ (Figure 23) when pool tank removal was started.

Samples of the transformer oil (Figure 24) were removed from the lead doors and analyzed by Garnett-McCreath Labs in Harrisburg, Pennsylvania, for polychlorinated biphenals (PCB). PCB concentrations were determined to be <1 ppm, a factor of 50 below the established limits for controlled disposal as given in 40 CFR Part 761. About 180 gal of oil was drained from the lead doors into four 55-gal metal drums. This oil was given to a "reclaimed oil" processor at no cost to the program.

Lead was drained from the doors into thirteen 55-gal drums. Figure 25 shows this operation. Each drum weighed about 2,150 lb or a total of 28,000 lb. Lead samples from each drum were analyzed to determine radioactive content. All samples were well under the allowable limit for release for unrestricted use. Table 6 presents the results of these analyses. When sufficient lead had been drained from the doors, they were lifted from the tank with the overhead crane and removed to a low-background area for a radiological survey. Removable and fixed contamination levels were well below limits as depicted in Table 2. The doors and the lead were disposed of as salvageable scrap.

The aluminum pool tank was cut into several sections to enable its removal from the concrete cavity. Figures 26, 27, and 28 show this activity. Each piece

Excavating Sand From Around Lead Shield Hoist

Figure 22. Removal of Lead Shield Hoist

Figure 23. Cutting an Opening Into Reactor Pool Tank From Exposure Room

Figure 24. Sampling Transformer Oil in Lead Shield Doors for FCB Analysis

ternessen verste som en so I som en som e

Figure 26. Cutting a Section of Reactor Pool Tank

Figure 25. Draining Lead From Lead

TABL	.ε	6
------	----	---

ANALYSIS	OF	LEAD	FROM	SHIELD	DOORS
(Gross	dete	ectabl	e bet	ta acti	vity)

*Less than detectable limit.

Figure 27. Hoisting Section of Pool Tank From Pool Tank Cavity

Figure 28. Transferring Section of Pool Tank to Low Background Area for Radiological Survey

was surveyed in a low background area to determine radioactive content. The area of the tank that was exposed to the exposure room and an area 180° from that position and 2 ft to either side of the core centerline was removed and packaged as radioactive waste. The remaining aluminum from the tank was below the limits shown in Tables 1 and 2. This aluminum was disposed of as salvageable scrap. The pool tank had a coating of epoxy-based paint instead of the phenolic-coated tar paper liner described in the RFQ. There was very little adhesion of the tank to the concrete as a result of its being painted instead of coated with tar paper.

Тс.

5. Concrete Excavation

Following exposure room dismantlement and pool tank removal, a detailed radiation survey was conducted of the exposed concrete structures to establish a map of radioactivity. Concrete samples were cored (Figure 29) from selected areas to establish the extent and levels of activation in the concrete structures. Figure 30 shows the DORF sampling plan identifying the location where core samples were taken. Table 7 shows the results of the core sample analysis and Table 8 is a comparison of the results of analysis from two independent laboratories. The core samples that were provided for comparative analysis were taken from two areas of the exposure room. Sample Nos. 3, 3A, and 3B were taken from the wall and Sample Nos. 34, 34A, and 34B were taken from the floor. Each group of samples were cored as close to each other as possible.

Core samples were prepared for analysis at DORF and at ESG using existing ESG procedures. The samples were cut with a tungsten carbide saw blade at the appropriate distance from the end designated "the surface." The powder generated by sawing was contained, weighed, and counted on an NMC Model 72, automatic counting system for alpha and beta-gamma simultaneously.

Due to preferential cutting through softer material in the core sample, i.e., binder and soft rock as opposed to the harder rock matrix, this sampling technique did not permit obtaining a fully representative sample of the total activity.

Eigure 29. Core Sampling of Concrete in Exposure Room

Teledyne Isotopes prepared their samples by cutting through the entire core sample to segment it into 1-in. thick samples. The entire sample was then counted to determine activity. This technique was most representative of the total activity remaining in the concrete at DORF. The results of the concrete sample analysis formed the basis for the concrete excavation plan. Figures 31 and 32 show diagrams of the planned excavations.

Concrete excavation began in the pool tank cavity with the removal of the pedestal which extended under the tank into the exposure room. Jackhammers were 'used to break this pedestal (Figure 33) and the thin wall section between the pool tank cavity and the exposure room. Reinforcing bar (rebar) was removed as necessary to permit further concrete removal or because of activation. Activated concrete in the back of the pool tank cavity was then removed. This area, shown in Figure 34, extended about 2 ft to each side of the core centerline and followed the curvature of the wall. Maximum depth of the excavation was 10 in. at core centerline and tapered to about 2 in. at 2 ft from the centerline. Radiological

TABLE 7

PRE-EXCAVATION ANALYSIS OF CONCRETE BY ESG AT DORF (Gross Detectable Beta Activity) (Sheet 1 of 2)

		pCi/g							
	Core Number		Distance from Concrete Surface						
		PUG	0	1	2	3	4	5	6
	Ref. 1	Background		3.2	5.2	9.0	LTD	5.0	LTD
	Ref. 2	Background	12.4	9.7	LTD	LTD	3.1	LTD	LTD
Exposure	1	Background	28.0	37.7	23.8	16.6	19.7	10.4	13.3
Room Walls	2	25 cpm	20.5	23.0	11.0	6.8	11.8	8.5	10.6
Marro	3	300 cpm	126.8	98.0	63.8	65.8	31.4	36.6	35.8
	4	100 cpm	42.1	18.0	22.0	12.0	21.5	18.6	20.1
· · · · · · ·	5 5	Background	12.8	11.4	9.1	6.0	10.7	4.6	LTD
	6	∿25 cpm	22.8	8.3	9.5	19.1	5.2	13.1	7.3
	7	100 cpm	34.0	27.1	23.4	22.8	13.1	12.8	10.6
	8	Background	12.0	19.5	20.1	11.6	8.3	11.8	6.2
· · · · · · · · · · · · · · · · · · ·	9	25 cpm	21.5	10.2	17.0	17.4	14.7	13.7	13.7
	10	50 cpm	18.4	16.2	7.0	7.3	5.6	13.3	3.7
	11	25° cpm	25.3	22.6	19.1	6.4	12.2	5.6	16.0
	12	100 cpm	42.1	33.6	41.0	17.8	14.9	21.1	8.7
	13	50 cpm	50.4	27.6	43.3	34.6	18.4	23.8	22.6
	14	50 cpm	21.8	15.1	3.1	1.5	LTD	5.8	0.2
	15	Background	9.9	7.0	LTD	1.2	4.4	5.4	5.8
Ceiling	16	200 cpm	49.9	396.8	26.3	23.8	14.5	17.0	13.9
	17	50 срт	43.9	21.8	27.8	20.1	15.3	6.4	7.5
	18	100 cpm	37.7	15.5	35.2	19.5	16.6	17.8	24.2
	19	150 срт	57.2	11.0	20.7	30.9	16.6	14.7	12.6
	20	Background	17.4	9.5	15.7	1.0	1.7	8.2	9.9
	21	Background	23.8	11.4	7.0	3,5	6.2	9.1	8.1
	22	50 cpm	17.0	11.2	8.1	2.3	8.3	9.5	5.4

TABLE 7

PRE-EXCAVATION	ANALYSIS OF	CONCRETE	ΒY	ESG	AT	DORF
(Gross	Detectable	Beta Act	ivi	ty)		
	(Sheet 2	of 2)				

				p	Ci/g				
	Core Number	PUG*		Distanc	e from ((Concr in.)	ete Su	rface	·····
		100	0	1	2	3	4	5	6
Tank	23	Background	-	11.8	10.3	. —	_		5.0
	24	400 cpm	59.5	28.2	31.3	29.2	12.6	22.8	19.7
	25	150 cpm	29.8	14.7	25.5	18.4	5.4	9.9	9.3
-	26	Background	9.7	15.1	9.5	6.0	1.0	2.9	4.6
	27	Background	3.5	0.6	1.2	LTD	LTD	LTD	2.1
Fluor	28	100 cpm	43.9	32.9	24.0	26.7	38.3	13.5	18.0
	29	100 cpm	20.9	17.6	7.9	11.6	2.3	5.6	12.2
	30	50 cpm	18.6	13.3	14.7	14.3	2.5	10.8	10.4
	31	50 cpm	19.9	12.6	5.6	9.9	8.3	12.2	LTD
	32	Background	7.3	7.7	8.3	3.3	0.6	5.6	11.8
	33	25 срт	19.3	2.3	1.7	7.5	3.7	5.2	LTD
	34	Background	15.3	6.0	10.2	11.2	LTD	8.3	5.0

*Count rate meter with a 2-in. thin window pancake G-M detector.

survey of the pool tank cavity indicated compliance with Regulatory Guide 1.86, stipulations of which are listed in Tables 1 and 2.

Nuclear Controls Corporation (NCC) was contracted to break the activated concrete from the rolling door and to remove the remainder of the door from the site. This operation, shown in Figures 35, 36, and 37, was supported by the Rockwell staff and took place between January 28 and February 4, 1980. NCC used a rock splitter, a jackhammer, and a mobile hydraulic ram (hyram) to break up the door and remove it from the facility. The clean rubble from the door was staged on site for removal during Phase III. The activated rubble was packaged by Rockwell for disposal as radioactive waste.

	pCi/g									
Depth	Surface 0-1	1-2	2-3	3-4	4-5	5-6	6-7			
<u>3A</u> ,,40	10.7	10.4	с		12.2					
к Со ⁶⁰	154.0	136.0	86.6	443.0	55.3	27.5	20.2			
Eu ¹⁵² Eu ¹⁵⁴	281.0 19.0	188.0 13.6	141 5.29	- 96.6 7.3	166.0 12.2	93.0 7.0	2.3			
	466.7	348.0	238.3	546.9	245.8	127.5	53.7			
<u>34A</u>	· · · · · · ·					· · · ·				
к ⁴⁰	_	3.8	-	4.0		1.9	1.9			
Co ⁶⁰	18.2	15.8	6.8	7.8	5.0	4.5	2.2			
Eu ¹⁵²	34 6	35.9	14.2	18.1	14.6	9.7	3.2			
Eu ¹⁵⁴	2.9	2.5	0.9	1.2	<0.6	0.9	<0.3			
. ·	55.7	59.0	21.9	31.1	20.2	17.0	7.6			
			ESG Da	ta*						
	0 in.	1 in.	2 in.	3 in.	4 in.	5 in.	6 in.			
3B 34B	74.5 12.9	70.2 6.7	41.3 6.7	26.2 11.3	24.4 6.3	19.0 9.0	17.8 4.5			
	<i>,</i>									

TABLE 8

PRE-EXCAVATION ANALYSIS OF CONCRETE BY TELEDYNE ISOTOPES

*Gross By pCi/g

Figure 34. Excavating Concrete From Wall Surrounding Secondary Reactor Operating Position

Figure 35. Using a Rock Breaker to Form Cracks in Activated Portion of Rolling Door

Figure 36. Using a Pry Bar to Remove Fractured Concrete

The first effort in the exposure room was the removal of some of the phenoline liner (tar paper) from the concrete walls to determine its effect on background radiation in the room. A surface area of about 150 ft^2 of the north and east walls was removed by scabbling with bushing tools in 15-1b chipping hammers. This activity is shown in Figure 38. Radiation measurements with a PUG 1 before and after scabbling indicated no difference in reading even to where 1/4 in. of concrete was removed. Based on these results, removal of the phenoline liner from the concrete was terminated.

Based on the core sample analysis and contact radiation readings, there were five areas of the exposure room significantly above background. These areas are identified in Figures 31 and 32. Concrete was removed from these areas to depths of 6 to 8 in. using a combination of hydraulic crack forming and impact. A commercial rock splitter was used to hydraulically compress the concrete to form cracks, a jackhammer or chipping hammer was then used to break the concrete from the walls and ceiling. Figures 39 through 42 show this activity. About 40,000 lb of concrete was removed from the exposure room, packaged in DOT-approved shipping containers, and disposed of as radioactive waste.

6. <u>Site Survey</u>

Concurrent with and following the removal of radioactive components and materials from the DORF site, radiological surveys were conducted to document the levels of radioactivity left in the facility. Table 9 presents data generated from analyzing concrete for fixed contamination. No fixed or removable contamination or activation was detectable outside of the exposure room above Tables 1 and 2 limits. Concrete activation in the exposure room was greater than the Table 2 limits but less than the limits specified in the NRC Regulatory Guide 1.86. Figures 43 through 45 show the detectable activity remaining in the exposure room as determined during the final site survey. Continuous air monitors were operated in the reactor building during the demolition. An NMC Model was located in the high bay and an Eberline Model was located in the exposure room. Table 10 shows the air sample results for those areas.

Figure 37. Mobile Hydraulic Ram Being Used to Break Nonradioactive Portice of Rolling Door

ESG-80-23

Figure 40. Using Rock Splitter to Form Cracks in Concrete Ceiling

Figure 41. Spalling Concrete From Surface of Exposure Room After Crack Forming

.

Figure 42. View of Concrete Excavation of Ceiling, Floor, East and North Walls of Exposure Room and Portion of Pool Tank Cavity

ESG-80-23

	Samplo			PCi/	g Dry	
No.		Location	Co ⁶⁰	Eu ¹⁵²	Eu ¹⁵⁴	Total
	P-1	Excavated South Wall	27		4	31
	P-2	Nonexcavated South Wall	21	54	4	79
	P-3	Excavated Pit Wall	14	37	2	53
	P-4	Excavated Pit Wall	19	43	2	67
	P-5	Nonexcavated Floor	· · · 32·	68	. 4	104
	P-6	Nonexcavated South Wall	16	33	-	49
	P-7	Excavated South Wall	13	28	2	43
	P-8	Nonexcavated West Wall	28	61	4	93
	P-9	Excavated West Wall (Plug)	29	37	3	69
	P-10	Nonexcavated North Wall	134	28	_	162
	P-11	Excavated North Wall	18	36	2	56
	P-12	Scabbled East Wall	15	24	¹	39
	P-13	Nonexcavated South Reactor Wall	1	6		7
	P-14	Excavated South Reactor Wall	5	30	2	37
	P-15	Excavated Ceiling	15	68	5	88
	P-16	Nonexcavated Ceiling	34	82	6	122
	P-17	Nonexcavated Ceiling	19	56	4	79

TABLE 9 POST-EXCAVATION ANALYSIS FOR FIXED CONTAMINATION IN CONCRETE

٠.

Note: Five samples contained approximately 10 pCi/g K⁴⁰, two samples contained approximately 15 pCi/g Co⁵⁷, and one sample contained 96 pCi/g Cs¹³⁴ (p-17).

Figure 43. DORF Final Survey, Exposure Room

mRad/h THRU 7 mg/cm²@1cm

4764-5

TABLE 10 RESULTS OF AIR SAMPLING AT DORF

	μC	li/cc	
	High Bay	Exposure Room	
<u>1979</u>			
27 Nov. to 3 Dec.	1.6 × 10 ⁻¹⁴	1.8 × 10 ⁻¹³	
3 Dec. to 10 Dec.	1.3×10^{-14}	1.1×10^{-13}	
10 Dec. to 17 Dec.	1.3×10^{-14}	1.9×10^{-13}	
17 Dec. to 20 Dec.	1.7×10^{-14}	9.1 x 10^{-13}	
<u>1980</u>	· · · · · · · · · · · · · · · · · · ·		· · · ·
8 Jan. to 14 Jan.	1.7×10^{-14}	9.0×10^{-14}	
14 Jan. to 18 Jan.	1.2×10^{-14}	4.5×10^{-14}	
18 Jan. to 22 Jan.	1.3×10^{-14}	1.2×10^{-13}	
22 Jan. to 25 Jan.	1.7×10^{-14}	6.1×10^{-13}	
25 Jan. to 28 Jan.	2.0×10^{-14}	4.6×10^{-13}	
28 Jan. to 31 Jan.	1.7×10^{-14}	2.2×10^{-13}	
31 Jan. to 7 Feb.	0.7×10^{-14}	7.3×10^{-14}	
7 Feb. to 12 Feb.	1.2×10^{-14}	4.3×10^{-14}	entre services de la companya de la Companya de la companya de la company
12 Feb. to 16 Feb.	3.6×10^{-14}		A tage of the

Note: MPC for Eu^{154} in air is 4 x 10⁻⁹ μ Ci/cc. This was the most restrictive isotope present.

7. Waste Disposal

Radioactive (RA) waste was packaged into DOT-approved containers as the waste was generated. The types of material removed from the DORF site as RA waste included concrete, wood, aluminum, steel, plastic, and rubber. Forty-seven steel drums and eight wooden boxes containing 1143.5 ft³, weighing 60,425 lb, and 1.17×10^{-4} Ci were removed from DORF. The waste was disposed of by land burial. Due to State of South Carolina restrictions on the volume of RA waste permitted for burial at the Barnwell site, the earliest space allocation available to DORF waste was in April. In order to complete the DORF contract on schedule, the waste was shipped to the Nuclear Engineering Company (NECO) site in Beatty,

Figure 46. Partially Filled Eck of Radioactive Waste

Figure 47. Radioactive Waste Containers Being Loaded Onto Truck for Disposal by Land Burial

Nevada. Chem-Nuclear Systems was contacted to act as broker for the disposal of the RA waste. In that capacity, they handled the arrangements for the transportation and disposal of the waste taking possession of it at the DORF site boundary. Figures 46 and 47 show waste being loaded for shipment to land burial.

C. CONFIRMATORY SURVEY

A survey of the DORF site was conducted between February 25, 1980 and February 27, 1980 by a U.S. Army Environmental Health Agency radiation survey team. This survey was conducted to confirm compliance with NRC Regulatory Guide 1.86 prior to the Army's acceptance of the facility for unrestricted use. The survey team's recommendation, following analysis of the data from the onsite survey, was to accept the facility for unrestricted use. A copy of this recommendation and the preliminary results of their survey are appended in Appendix A. Compliance with NRC Regulatory Guide 1.86 was a contracted prerequisite to conducting Phase III tasks.

D. PHASE III

Phase III consisted of dismantling the concrete parapet to the main floor level, the restoration of any disrupted services to the building, and the repair of facilities damaged by the dismantling activities. An option was given to haul all of the debris from the site or to put it in the pool tank cavity, provided a barrier was erected between the exposure room and the cavity.

Phase III began on April 21, 1980 when ESG was officially notified that DORF was in compliance with NRC Regulatory Guide 1.86, and was completed on May 9, 1980.

Nuclear Controls Corporation (NCC), a subsidiary of the Penhall Company, was contracted by ESG to perform all of the Phase III work. They elected to construct a barrier between the exposure room and the pool tank cavity to permit the debris from the parapet to be disposed in the cavity. The barrier was constructed with a single course of the No. 4 reinforcing bar in the wall and a double course in the roof extension to the exposure room ceiling. The barrier wall was formed by

Figure 43. View of Barrier Wall From Parapet

Figure 49. View of Barrier Wall From Exposure Room

a single pour of concrete to a minimum thickness of 8 in. Figures 48 and 49 show the barrier.

NCC contracted Controlled Demolition Incorporated (CDI) to dismantle the concrete parapet. CDI specializes in explosive demolition. The parapet was reduced to rubble and placed into the pool tank cavity by the combined use of explosive charges, jackhammers, and a "Bobcat" skiploader. Figures 50, 51, and 52 show the parapet during dismantlement. Figure 53 shows the parapet demolition completed with the rubble completely below the floor level. A railing was installed around the open pit to provide a safety barrier. Restoration of the floor was not included in this contract.

Rubble, remaining on site from the demolition of the rolling door during Phase II, was removed from the site and, that area where the rubble had been piled was leveled and reseeded.

The building was cleaned of the debris generated by the demolition work. Minor repairs were made to restore the facility's lighting system and other utilities were verified to be functioning satisfactorily.

DORF facility drawings were redlined to reflect the changes made by the performance of the contracted work. These drawings were presented to the DORF Contracting Officer's Representative. A list of the drawings and a description of the changes are given in Table 11.

Figure 50. Explosive Charges Being Loaded Into Pre-drilled Holes

「一日三日の

Figure 51. Parapet After Several Explosive Charges Set Off

Figure 52. Concrete Rubble Being Pushed Into Pool Tank Cavity

Figure 53. Paratet Derolition Completed

ESG-20-23

TABLE 11

REDLINE CHANGES TO DORF DRAWINGS (Sheet 1 of 2)

DRAWING NUMBER

A-1 FLOOR PLANS AND SCHEDULES

Shows parapet removed.

Shows lead shielding removed.

Reference to Drawings #S-1, 2, 3, and 4 for changes.

A-2 ELEVATIONS AND SECTIONS

Crosshatched Section A to show deletion of parapet and Exposure Room wood.

Also crosshatched elevation B-1 to show deletion of details for Exposure Room.

A-3 SECTIONS AND DETAILS

Crosshatched Details 5, 10, 11, and 12 to show deletion of wood in Exposure Room.

E-1 SINGLE LINE DIAGRAM

Circled portion of line diagram showing the recirculating water pumps, lead shield door, rolling door, and core dolly electrical systems disconnected.

E-2 GROUNDING PLANS AND SYMBOLS

Circled parapet and Exposure Room grounding references to show them removed.

E-4 <u>POWER</u>

Marked up print to reflect disconnected circuits.

E-6 SAFETY INTERLOCK DIAGRAMS

Noted that fuses were removed from the relay panel in order to disable those circuits.

M-1 PLANS AIR CONDITIONING

Noted that wood was removed from the Exposure Room.

TABLE 11

REDLINE CHANGES TO DORF DRAWINGS (Sheet 2 of 2)

DRAWING NUMBER (Continued)

M-2 EQUIPMENT ROOM DETAILS

Showed that reactor cooling equipment was removed and that the hydraulic system for the lead shield hoist was drained and the hydraulic cylinder removed.

M-3 PLUMBING

Crosshatched details 5, 6, and 8, and Section B to show deletion.

M-5 ROLLING DOOR - EXPOSURE ROOM

Noted that the door was demolished.

S-1 PLANS many managements and the second se

Crosshatched Detail 4 to show deletion.

S-2 SECTIONS

Crosshatched Detail 1, Section C and Section D to show deletion. Also crosshatched to show approximate areas affected by the excavation of concrete.

S-3 DETAILS

Crosshatched rolling door frame to show deletion. Also circled and crosshatched area of doorway affected by concrete removal.

S-4 RAMP PLANS AND DETAILS

Crosshatched ramp plan, ramp reinforcing plan, Section A, and Details 1 and 2 to show deletion.

APPENDIX A

DEPARTMENT OF THE ARMY HARRY DIAMOND LABORATORIES

ESG-80-23

1

A-1

. . . .

DEPARTMENT OF THE ARMY HARRY DIAMOND LABORATORIES 2800 POWDER MILL ROAD ADELPHI, MD. 20783

DELHD-N-RBI

22 April 1980

RECEIVED Rockwell International Corp. Energy Systems Group APR 25 1980 8900 De Soto Avenue Canoga Park, CA 91304 Correspondence Dept.

Reference: Contract DAAK 21-79-C-0136

The inclosed letter of 17 April 1980 from the U.S. Army Material Development and Readiness Command, D. Taras states that the NRC Regulatory Guide 1.86 criteria for unrestricted use has been achieved at the Diamond Ordance Radiation Facility (DORF) based upon the preliminary report from the U.S. Army Environmental Hygiene Agency, 3 April 1980. Accordingly, this letter constitutes official notification that Section F.5.1 of the above contract has been accomplished and you now have thirty days from the date of this letter to initiate the phase III tasks (i.e. F.5.2 - F.10 as amended) as indicated in Section H.3 of the contract.

Sincerely, ale him

Charles Ware Contracting Officers Representative

incl. -2CF J. Rosado 22000 D. Schallhorn 22900 A. Mazzone 091 J. Harris Rockwell Int.

A-2

DEPARTMENT OF THE ARMY HEADQUARTERS US ARMY MATERIEL DEVELOPMENT AND READINESS COMMAND 5001 EISENHOWER AVENUE, ALEXANDRIA, VA. 22333

D. Taras/seb/AUTOVON 284-9340

DRCSF-P

17 April 1980

SUBJECT: Decontamination of Diamond Ordnance Radiation Facility

TO: Commander Harry Diamond Laboratories ATTN: DELHD-N-RBI Adelphi, MD 20783

1. Reference is made to the following report: Radiation Protection Special Study No. 28-43-0982-80, Close-Out Survey of Diamond Ordnance Radiation Facility (DORF), 25-28 February 1980.

2. On 10 April the Army Reactor Committee for Health and Safety reviewed the referenced report and concluded that decontamination is consistent with the criteria in NRC Regulatory Guide 1.86 and is as low as reasonably achievable. In PHONECON, 17 April 80, LTC Quillin, WRAMC Radiation Protection Officer, stated these acheived levels are acceptable to WRAMC. Based on the above, the facility is suitable for unrestricted use and occupancy.

VÍN 'N / TÁRAS

Member, Army Reactor Committee for Health and Safety

CF: HQDA(DASG-PSP-E); (DAPE-HRS) LACIS DRCSG

HSE-RH/WP

Mr. Lodde/cw/AUTOV01 DEPARTMENT OF THE ARMY U.S. ARMY ENVIRONMENTAL HYSIENE AGENCY ABERDEEN PROVING GROUND MARYLAND 21010

584-3526

3 APR 1960

SUBJECT: Preliminary Report, Rediation Protection Special Study No. 28-43-0982-80, Close-Out Survey of Diamond Ordnance Radiation Facility (DORF), 25-28 February 1930

Commander US Army Materiel Development and Readiness Command ATTN: DRCSG 5001 Eisenhower Avenue Alexandria, VA 22333

1. AUTHORITY. Letter, DELHO-N-RBI, Harry Cramond Laboratories, 2 November 1979, subject: Request for a Radiological Fealth Special Study, and indorsement thereto.

2. PURPOSE. This special study was performed to determine the presence and extent of radioactive contamination and whether the facility met the radioactive contamination levels stated in Nuclear Regulatory Commission, Regulatory Guide 1.86, Termination of Operating Licenses for Nuclear Reactors, June 1974, following decontamination.

3. GENERAL.

a. This radiation protection special study was conducted by Mr. Gordon M. Lodde, Health Physicist, and 2LT Roger M. Davis, Jr., Health Physics Division, this Agency, during the period 25-23 February 1980.

b. An entrance interview and an exit briefing were provided to Mr. Charles Ware, Contracting Officer's Representative, Harry Diamond Laboratories.

4. FINDING.

a. The results of smear surveys are provided in Inclosure 1.

b. The results of concrete analysis are provided in Inclosure 2.

HSE-RH/WP

SUBJECT: Preliminary Report, Radiation Protection Special Study No. 28-43-0982-80, Close-Out Survey of Diamond Ordnance Radiation Facility (DORF), 25-28 February 1980

c. Surveys by direct radiation measurements indicated that the highest radiation values were obtained on the north, south, and vest valls of the exposure room. The values ranged from 20-400 microroentgen per hour (μ R/h) on contact as measured with an Eberline, Model PRM-7, Micro-R-Meter and up to 350 μ R/Hr when measured with a Victoreen, Model 440, Ionization Chamber. These two methods of radiation measurements are in close agreement.

5. DISCUSSION.

a. Samples were taken from the wastewater holding tanks and the sewage system down stream from the holding tanks.

b. Core samples were taken off site and soil and vegetation samples were taken both on and off site.

c. The final report will be forwarded in about 60 days following analysis of the samples.

6. CONCLUSION. A review of the findings indicated that after decontamination the facility conformed to the requirements of Regulatory Guide 1.86.

7. RECOMMENDATION. None

FOR THE COMMANDER:

MeDERW

2 Incl as FRANK E. McDERMOTT COL, MSC Director, Radiation and Environmental Sciences

CF: Cdr, ERADCOM1 Cdr, HSC (HSPA-P)

HSE-RH/MP SUBJECT: Preliminary Report, Radiation Protection Special Study No. 28-43-0982-80, Close-Out Survey of Diamond Ordnance Radiation Facility (DORF), 25-28 February 1980

RESULTS OF ANALYZING WIPE TEST SAMPLES

 Sample Identification	RCB Lab No.	Disintegrations per Minute Gross Alpha <u>Activity</u>	e ±2 Standard Deviations, Gross Beta <u>Activity</u>	/100 cm ²
1	L244	< 1.4	4.4 ± 2.5	
2	L245	< 1.4	< 2.5	
3	L246	< 1.4	< 2.5	
 4	L247	< 1.4	< 2.5	
5	L248	< 1.4	< 2.5	
6	L249	< 1.4	< 2.5	
7	L250	<],4	< 2.5	
	L251	< 7.4	2.8 ± 2.0	
 9	L252	< 1.4	< 2.5	·····
10	L253	< 1.4	6.0 ± 2.7	
11	L254	<].4	2.6 ± 2.0	
12	L255	< 1.4	< 2.5	
13	L256	< 1.4	< 2.5	
14	L257	<].4	< 2.5	
15	L258	<].4	< 2.5	
16	L259	< 1.4	3.6 ± 1.9	
17	L260	< 1.4	< 2.5	
18	L261	<].4	< 2.5	
19	L262	<],4	14.6 ± 3.7	
20	L263	4.7 ± 2.4	14.0 ± 3.6	
21 /	L264	<1.4	< 2.5	
22	L265	< 1.4	6.2 ± 2.3	
23	L266	<],4	7.0 ± 2.6	
24	L267	3.2 ± 1.9	< 2.5	
25	L268	<].4	5.2 ± 2.4	
26	L269	< 1.4	< 2.5	
27	L270	< 1.4	3.0 ± 2.0	
28	L271	< 1.4	< 2.5	
29	L272	` <1.4	< 2.5	

1

HSE-RH/WP SUBJECT: Preliminary Report, Radiation Protection Special Study No. 28-43-0982-80, Close-Out Survey of Diamond Ordnance Radiation Facility (DORF), 25-28-February 1920

	Disintegrations per Minute ±2 Standard Reviations/199 cm ²							
Identification	Lab No.	<u>Activity</u>	Activity					
30	L273	< 1.4	3.2 ± 2.2					
31	L274	< 1.4	9.8 ± 3.2					
32	L275	< 1.4	3.2 ± 2.3					
33	L276	< 1.4	< 2.5					
34	L277	< 1.4	< 2.5					
35	L278	<].4	3.2 ± 2.4					
36	L279	< 1.4	3.2 ± 2.1					
37	L280	<].4	5.0 ± 2.4					
38	L281	< 1.4	4.8 ± 2.3					
39	L282	<].4	< 2.5					
40	L283	< 1.4	~ 2.5					
41	L284	< 1.4	3.4 ± 2.1					
42	L285	< 1.4	< 2.5					
4 3	L286	< 1.4	< 2.5					
44	L287	<].4	< 2.5					

ALPHUS L. JONES, Chief Radl 3 Biol Chem Div, USAEHA

 $\mathbf{\tilde{x}}$

HSE-RH/WP SUBJECT: Preliminary Report, Radiation Protection Special Study No. 28-43-0982-20, Close-Out Survey of Diamond Ordnance Radiation Facility (DORF). 25-28 February 1980

INTERIM RESULTS OF AMALYZING CONCRETE SAMPLES

nOD ALMUS LA MOMES, Chief Radl & Biol Chem Div, USAEHA

Sample	RCB	Nicrocurio	e per Gram ±2 Standard Deviati	ons
Identification	<u>n Lab ilo.</u>	Europium-152 Activity	Europium-154 Activity	Cobalt-60 Activity
EX-N	RC1	$3.5 \times 10^{-5} \pm 0.1 \times 10^{-5}$	2.8 x 10 ⁻⁶ ± 0.6 x 10 ⁻⁶	$1.0 \times 10^{-5} \pm 0.4 \times 10^{-6}$
EX-S	RC2	5.9 x $10^{-5} \pm 0.1$ x 10^{-5}	$4.5 \times 10^{-6} \pm 0.8 \times 10^{-6}$	$3.4 \times 10^{-5} \pm 0.1 \times 10^{-5}$
ES In Pool	RC3	$1.6 \times 10^{-5} \pm 0.1 \times 10^{-5}$	$1.4 \times 10^{-6} \pm 0.4 \times 10^{-6}$	5.4 x $10^{-6} \pm 0.3 \times 10^{-6}$
ES-W	RC4	$2.8 \times 10^{-5} \pm 0.1 \times 10^{-5}$	$2.2 \times 10^{-6} \pm 0.5 \times 10^{-6}$	$1.4 \times 10^{-5} \pm 0.1 \times 10^{-5}$
EX LIFT-S	RC5	$1.1 \times 10^{-4} \pm 0.2 \times 10^{-5}$	7.9 x 10 ⁻⁶ ± 0.9 x 10 ⁻²	$3.0 \times 10^{-5} \pm 0.1 \times 10^{-5}$

ESG-80-23 A-8

ł,

Rockwell International

Energy Systems Group 8900 DeSoto Avenue Canoga Park, California 91304