APPENDIX IV

 $\mathcal{F} = \{\gamma_i^{*}\}$

.

10

Ň

RADIO-ISOTOPIC ANALYSIS OF RADIOACTIVE MATERIAL

IN THE DORF STRUCTURE BEFORE

DECOMMISSIONING

INTRODUCTION

This report documents information of the amount and type of radioactive material that will be present in the structure and building of the Diamond Ordnance Radiation Facility after removal of the reactor fuel in the spring of 1978. Such information is required for decommissioning plans and must be supplied to the Army Reactor Committee for Health and Safety (ARCHS) prior to their approval of such plans. The information is also needed by the waste-disposal area directorate who must budget for specific volumes and radioactive levels. Finally, the isotopic composition of the radioactive waste is necessary for labeling containers at the time of shipment.

The first section of this report is a summary for those who need only the final results on type, location and amount of residual radioactivity. Section two describes the investigative procedures, discusses the possible sources of radioactivity and the properties of the radioactive isotopes found. Graphs of isotopic analyses and calculations, which convert detector response to specific activities, are included in this section. The second section also provides the detailed calculations of volumes, weights and total radioactivity in the various sections of DORF. The final section contains recommendations based on things discovered during this study.

SUMMARY

The radioactivity that will remain at DORF after the fuel removal in the spring of 1978 has been carefully estimated based on criteria, measurements and necessary assumptions documented in this report. A concise summary of that radioactivity is given in Table I. The most predominant radioactive isotopes in the concrete are cobalt-60 and europium-152 and -154. The most predominant isotopes in lead are antimony-124 and silver-110. The wood and steel (mainly in the lead-shield hoist) are not very radioactive and are easy to dispose of. The aluminum itself is almost non-radioactive but there is a radioactive Phenoline

liner which tends to stick to the aluminum. Its radioactivity comes from cobalt-60 and zinc-65. All of these radioactive isotopes have half-lives in excess of 60 days.

ť.

ŧ

,

-

Material	Mass (1bs)	Volume (ft ³)	Radioactivity (millicuries)		
CONCRETE	82,170	412	36.24		
(If whole plug door included).	(170,050)	(850)	(36.24)		
LEAD	55,753	112	13.34		
ALUMINUM	ALUMINUM 2,288		75.71		
WOOD	34,944	1344	0.33		
STEEL	2,662	5.5	0.03		
GRAND					
. TOTAL	177,817 1bs	1889 ft ³	0.126 Curie		

 $\frac{1}{1}$ This represents a summation of the values given in Table X.

IDENTIFICATION OF THE RADIOACTIVITY

Isotope Identification:

The principal method of identification was gamma-radiation spectroscopy with a germanium lithium-drifted detector, or Ge(Li) crystal. The crystal is housed inside a very low-activity-lead cave lined with wood. Numerous background analyses confirm that for photons with energies greater than 140 keV, samples with low activities (two to three times background) can be successfully analyzed for specific photon energies. A plot of a multichannel analyzer spectrum of the background is given in Fig. 1. The principal higher energy peaks in the background spectrum are the 511-keV gammas associated with annihilation radiation and the 1461-keV peak from ⁴⁰K, a radioactive isotope which is found naturally in almost all "non-radioactive" materials.

The method of analyses provides for very good resolution of the photon energies in the range 140 keV to 2500 keV at approximately 9.7 keV per channel of 256 total channels. The electronic equipment is sufficiently stable over counting periods of 50,000 seconds to permit energy assignment within two percent. Graphs of the gamma spectra of the various materials investigated are shown. (See Fig. 2 through 5).

The method does not provide for the ultimate in accuracy for determining specific activity. The crystal efficiency (disintegrations per count as a function of energy) can only be accurately assigned for a well-defined geometry. The samples in the present situation varied in size and shape. Therefore, they were suspended above the crystal so that their centers of mass were approximately three centimeters from the active volume of the

detector and efficiencies were determined with calibrated point sources. The error associated with this procedure is estimated to be no greater than 50%, based on a volume integration of point-source response at points in space representative of the sample size. For the task at hand such accuracy is sufficient.

Rational of Sample Selection

The job was to identify the radioactive content and quantity of materials that will have to be removed from the DORF site so that it can be certified, by post-decommissioning radioactive survey, as an unrestricted area for possible public use. This survey, to be conducted by the Army Environmental Health Agency (AEHA), must be accomplished prior to any filling, sealing or burying activities. This presented two problems. How can we identify the radioactivity in presently inaccessible areas, such as below the reactor pool, before the reactor fuel and higher-level radioactive structures have been removed? What amount of material will have to be removed from walls and floors to reach an acceptable AEHA level?

The first problem was attacked as follows. Representative samples of all the material types are accessible in the exposure-room area. Because of the significantly larger thermal-neutron cross sections of materials and the fact that the DORF-TRIGA reactor is zirconium-hydride moderated and water-cooled reactor, the thermal component of the spectrum is the dominate source of induced radioactivity. As will be discussed later, the predominance of radioactive europium confirms this. Therefore, isotopic analyzes of exposure room samples are representative of those in presently inaccessible

areas. Furthermore, with facility dosimetry data for the various locations, we can estimate the residual radioactivity in remote locations with significantly different flux exposure levels.

The second problem of how much material to remove is more complex because we do not have good guidance on the amount of radioactivity in volume that can remain. NRC Regulation 1.86, the current guide, clearly specifies levels for removal surface contamination but is, at best, vague on volume activity and how to detect it. The criteria set for the analysis in this report are as follows:

(1) Once the reactor support structure has been removed there will be no high-level radioactive waste remaining in the DORF structure. Our analyses confirm this.

(2) Based on existing allowable concentrations of radioactive materials in water and a specific activity proportional to material density, we can set an allowable specific activity of 2 x 10^{-5} microcuries per gram as the maximum permissible concentration of radionuclides in water when it is known that Sr 90, I 129, (I 125, I 126, I 131, Table II only), Pb 210, Ra 226, Ra 228, $\frac{1}{2}$ Cm 248, and Cf 254 are not present. Since the density of water is one g/cm³ and there are 28317 cm³/ft³, 2 x $10^{-5}\mu$ Ci/g corresponds to 0.57 μ Ci/ft³ of water.

(3) It is assumed that the radioactivity is distributed in the material to be removed in proportion to the incident thermal fluence (flux-time product) and attenuated exponentially according to thermal-neutron relaxation lengths, (i.e., the inverse of microscopic removal cross sections for broad beams). Half-life decay is taken into consideration for the period until spring 1978. Therefore, the depth of material to be removed, D in centimeters, is determined

*

¹⁰ CFR20, note to Appendix B

by relative fluence level at the surface, ϕ/ϕ_{o} , and

$$D = L \ln \frac{\phi/\phi_o x A}{0.57 \mu C i/f t^3}$$
(1)

where A is the activity in μ Ci/ft³ estimated from this study. The values of relaxation length are given in Table II.

TABLE II. Mate	erial densities and relax:	ation lengths, L
Material	Density	Relaxation Length
Concrete	2.35 g/cm ³	1.6 cm
Lead	11.0 g/cm ³	4.2 cm 🛼
Wood	0.42 g/cm^3	2.9 cm

Measured Radioactivity

Samples taken from the DORF exposure room were concrete, wood, aluminum, lead and a tar-paper-like liner installed between the aluminum pool tank and the concrete pool base. Although the aluminum itself has very little residual radioactivity (less than 8 x 10^{-6} µCi/gm for the sections counted), the Phenoline paper (i.e., the tar-paper liner) has the highest specific activity of all the materials examined. Since this liner tends to stick to the aluminum, for all practical purposes the aluminum tank exhibits this activity.

Tables IV through IX give a breakdown of the isotopic composition of the radioactivity in the various samples. Tables IV and V are composed of several additional pages that serve as detailed examples of the methods of analyses and are self explanatory when reference is made to the graphs of the multichannelanalyzer output. Figs. 1 through 5 are the multichannel-analyzer gamma spectra for the various types of samples. The energy of the photopeaks is related to

[,] 6

	Type of Material	Location in Exposure Room	Specific Activity (d/s•g)	Activity per uni of material
•	PHENOLINE PAPER	On aluminum tank near exposure room end of pool	636	3.6 µCi/sq ft
2.	CONCRETE	From front part of room about 4 feet from reactor	78	140 µCi/ft ³
3.	CONCRETE	Very near reactor at exposure room end of tank	141	252 µCi/ft ³
•	LEAD	From curtain above the movable lead shield	72	0.62 µCi/1b
5.	LEAD	From brick in middle of the movable lead shield	205	1.30 µCi/1b
ò.	WOOD	From very near reactor and concrete sample #3, above.	1.3	0.40 µCi/ft ³

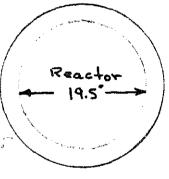
TABLE III. GAMMA SPECIFIC ACTIVITY AND THE NUMBER OF MICROCURIES PER UNIT OF MATERIAL FOR VARIOUS RADIOACTIVE MATERIALS FROM THE DORF EXPOSURE ROOM

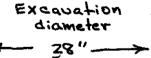
* From gross beta plus gamma analyses, the beta-to-gamma activity of all these different materials is approximately 1.8.

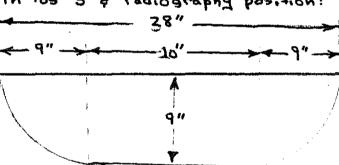
~ ~

spectra for the various types of samples. The energy of the photopeaks is related to start the channel number (abcissa) by the following equation:

 $E(keV) = (channel +2.5) \times 9.69 \pm 2\%$ (2)

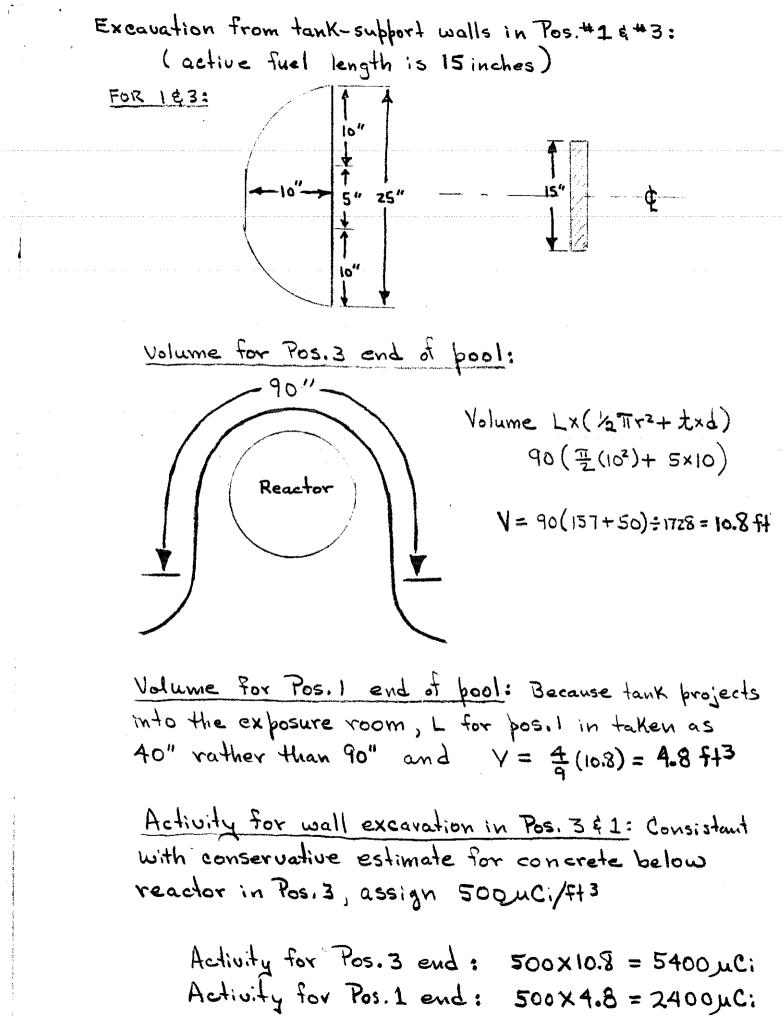

For clarification, the gamma-ray peaks are indentified by isotope and their energies in keV (and in parenthsis) are given for most of the peaks.

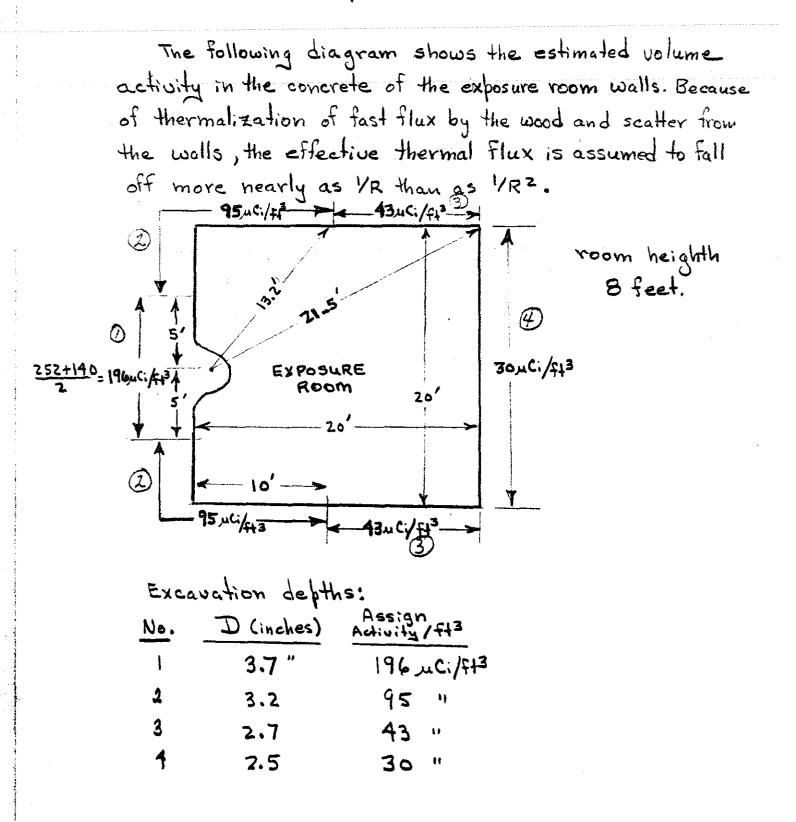

The specific activity $(d/s \cdot g)$ for each measured sample is compared in Table III. This table also provides the number of microcuries per unit most practical for that type of material. This latter information is used in Table X to determine the total radioactivity in the volumes of radioactive materials at DORF.


CONCRETE EXCAUATION

The maximum observed concrete-volume activity was 252 μ Ci/ft³. If we assume that the maximum fluence at any location is 100 times larger than at this monitored exposure room location, Eq.(1) ... the excavation-depth formula ... requires $D = 1.6 \ln \left(\frac{100 \times 252}{0.57}\right) = 17.1 \text{ cm} \text{ or } 6.7 \text{ inches}$

of course, fast neutrons will also penetrate and thermalize but the factor of 100 is already very conservative so excavation depths of 9 to 10 inches in the immediate vicinity of the reactor and at the end positions of the pool should adequately remove the radioactivity. It is assumed that because it the structure that the flux will be decreased by a fector of the 3st which extremess Excavation below reactor in Pos #3 # radiography position:





Volume: $\pi r_{1}^{2} l + \frac{1}{4} (2\pi^{2} R r_{2}^{2})$ $\pi [(10^{2}) 9 + \frac{1}{2} (\pi (14.5) (9^{2})]$ $V = (2827+5795) \div 1728 = 2.52 ft^{2}$

Activity in concrete below Pos. 3: Activity will not exceed measured maximum of 252,4Ci/Ft3 by more than a factor of two. Assign 500,4Ci/Ft3. 5.0 × 500 = 2500,4Ci Activity in concrete below radiography position: Assign 250,4Ci/Ft3 (conservative) 5.00 × 250, = 1250,4Ci

Execution of concrete from walls, floor and ceiling of the DORF exposure room.

TABLE IV.	CONCRETE SAMPLE OF EXPOSURE R	
$M = 2.4^{\circ}$	T=54,252 50	cosunto (MT=1.34X10
ISOTOPE	Half Life Activity TX dis/sig	% of Total Activity
6°C0	5.27y 31.66	40.55 %
152 Eu - 154 Eu	12.2y-16y 30.15	38.62 "
465c	12.2y-16y 30.15 84 Jays 5.44	6.97 4
134 05	2.07 y. 5.06	6,73 "
65 Zm	245 2 2.29	2.93 "
182 Ta	1152 1.19	1.52 "
124 56	60d 0.63	0.81 "
Annihilation	1.65	2.12 "
	TOTAL: 78.07 d/s.	
Not. Bb. in	- emachede	
9	- concrete (220 Ra series)	
214 B.	1622y 0.84 d/	
(i.e.,	concrete is 93 tim	es its own natural lu
	ty per culic foot a	
(12)	$(7 \ 54)3 = 7 \ 7 \ 7 \ 17 \ 3 \ 17 \ 3 \ 17 \ 17 \$	(013)
0	(2.54) ³ = 28317 /cm ³ / concrete = 2.35 g/cm ³	5 4 6.65×104 g/ld
A:1	$\frac{1}{1000000} = \frac{1}{10000000000000000000000000000000000$	
	$y = \frac{6.65 \times 10^{4} \times 78.07}{3.7 \times 10^{10} \text{ d/s} \cdot \text{ci}}$ $\frac{100}{3.7 \times 10^{10} \text{ d/s} \cdot \text{ci}}{(78.07)/3.7 \times 10^{10} \times 2.3}$	1.40×107 CI ~ 140,0
Estimate per	(78.07)/io	V 99V1-10
		tion radiation (511 her) background substracted

WEIGHT = 2.47 g (BKG. SUBSTRACTED FOR EQUAL TIME: 54,252 seconds)

* Indicated more that one isotope has a peak in this channel 9.71±0.05 her/ch+2.5

<u>.</u> 	NURCE COPE + TU	ker	LCHANNEL	PEAK Arojo Comuts	COMPTON BX3 LOUNTS	PFAK	e 4	Total			
	- ¹⁵⁴ Eu				†		2.56X152	305440			
	- 16year	245 \$ 248	10 23	23500 4889	3364	20136	1.16×10	244465			
د	- g	344'52	33		2030	2859	8-10×103	ł			
		277 411 57		8441	1756	6685 524	6.65×10-3	1			
		488 152	47.8	189 4 1658	1370 1340		5.58203	£	[
		689 154	68.8	1366	1230	318	3.90×103	1		-	
		720\$723.1	72 *	1357	1230	117	3.63×10-3			-	
		79152	78			1313	3.35×103	L			
		8676813	87	2562	1250	1	2.95×10	1	- A		
		86/9813 G((152	07 97	17 88 2457	1325	463	2.15×10- 2.66×103				
		966 ¹⁵²			940	190	2.57×163				
40 - 40 - 10 - 10 - 10 - 10 - 10 - 10 -		1006 1092 154	101	1130			i	307347	deletet	ecourse .	ST Zi
		1277'54	110	1728-	-975-	- 753	245210	1			
		1211 1412	129	321	135 50	186	1.95×103 1.74×103				
		1457		1220		1170		1			
		1957	146.7	73 59	32	41 41 ,	1.67×103	l ,			
		1595154	155 162.5	60	.18 17	43	1.52×163				
		1010	[(0 2 + -)	60		15	· · · · · · · · · · · · · · · · · · ·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6		
							ToTAL =				
60	Co										
1		1. sa s. 1	110	A		1710	- UN-3	2.023×1	_ (s		
\$2	Z7 years)		119	4857	589	4268	i 🗕				
1		1332.4	135	4 187	126	4061		2.219×10			1
				•			TOTAL	4.242×10			
13	4								 		
	4Cs		_			<u>.</u>	·2		4		
	•07 year)		56	1580	1300	280		5.932XI			
		605	60 *		1293	319	1 -	7.317 4			
		1954802	80 *	2101	1300	801		24.646 "			
		1040	105 *	870	840	30	2.50×103				
		1168	1	(370)	t	250		11.628 "			
		1365	139	370	60	3)0		17.127 "			
							TOTAL=	6.785×10	<u>5</u>	•	
	657			-							
	τh.	1.1.		7- 0			-3				
	45 day)	1115.4	110*	1128	975	753	2.45X0			-	
					-		TOTAL	3.073X			ł
					13						
	I	1	ł	I	i L	I	1	Į	ł	1	ì

TABLE INA. (continued)

u 1

ISOTOPE	Lev ENERGY	channel	61025	Blas	Net	E =/3	Total
4650	889,4	89 *	2491	1400	1091	2.90×103	3.762×105
(84 days)	1120.3	113	2330	(1550)	780	2.21×10-3	3.529×105
						TOTAL	7.291×105
124 -		6 - ¥				4 4 4 - 3	4
(60 day)	602.6	60*	н. н. н. н. Н		200	1	45.451 × 103
(60 day)	646	65 [*]			25	4.17×153	
	722.8	72*	- - -		25	3.63×153	6.337 11
	968	97 *	1120	1100	20	2.66×103	7.518 "
	1045	105*	870	853	17	Z.56X153	6,300 "
	1691	172	41	28	13	1.43×1053	9.071 "
	2085	209	25	22	3	1.15×103	2,601 *
							8.435×104
182 Ta	100.3	8	4577	4102	475	3.10×102	15.322 ×10
1827a (115 day)	152.4\$156	13.6	3054	2700	354	1.42×102	24.930 1
0	198.4	17.5 *	2620	2450	170	1.50×152	1
	223	2015	Z348	2210	138	1.35×102	10,222
	1121	113*	870	810	60		27.149
	1189	119	(017)	650	60	2.09X153	
	1221,6	123	337	252	85		41.463 "
							1.591×105
		1					

- 1-3-

• •

Amihilation	511	50	4100	3100	1,000	4.50×153	2,22X105
A 11-15 - 1	. 5		×. \			TOTAL	2.222105
Additional analys	5 01 "na	214B	(1627	in conc t	vete:		
		×fr		Ra se	ries		
	1731	דר	36	27	9	1.39×103	6.475×10
	767	180	39	29	10	1.24×103	8.064 11
	2119	217	23	14	9	1.13×103	7.965 "
	2204	226	32	23	9	1.082/03	
	2293	234	28	12	16		15.534 "
	2447	250	36	25	11	9.40×104	11.702 "
		A A	ctual ab	out zx +	رج منبإ	TOTAL	5.807×10

TABLE V. TAR-P		RE ROOM	KONI
·······	NOLINE COATIN		
M = 3.69 g	T = 20,183	is (r	$nT = 7.45 \times 10^{+}$
ISOTOPE	HALF-LIFE	Activity dis/s.g.	% of Total Activi
65 In	245 day	185.2	29.1%
60 00	5.27 years)	363.8	57.2%
152 Eu	12.2 year	86.8	13.7%
· ·	TOTAL	: 635.8 d/	s.g 100.0%
$423 \pm 11 = 3$	8.5 times	more actin	sample mas se than the e(Li) crystal = 8.1 times more

Activity per square foot of baber: (assuming a 1/8-inch thickness)

 $(12.x2.54)^2 \times 0.125 \times 2.54 = 295 \text{ cm}^3$ per square foot P = 0.7 g/cm³

Activity	635.8 d/s.g x 206.5g = 3.7 x 1010 d/s. Ci	3.5546:1 0 4
-	3.7×1010 d/s · Ci	15ge foot

TABLE VA.	TAR-PAPER	SAMPLE	· · · · · · · · · · · · · · · · · · ·		
	FRom Pos #	L END OF	TIME =		
en le a Angeleira ngegera angeleira	ALUMINUM	TANK (IN	20,183 50	a de Cara de Ca Cara de Cara de	172 - 11
	EXPOSURE R	(00m).			11 lika
			m= 3.68 75	grams	a ser i ga d'ar de la casa de la c
24183 000004 (1 02000	ender för som som ender att som en som e Som en som en			an di Shinda Calabara (1990). Shinda ang katalara katalara katalara katalara katalara katalara katalara katalar
000000	2000 - Juli	in the second	la de la calencia de la construcción de la construcción de la construcción de la construcción de la construcción Na construcción de la construcción d		
120183 000004 100019	065213 016877	013805 014030	014273 01357	1.013285	- UI 3616 in the second system with the second second system second
028361 011699	011727 011230	011878 010214	010054 00986	4 009489	009693
	009525 013469	008729 008657	008524 00843	3 008402	008066
008237 008377	007927 019884	097346 007546	007144 00698	3 00 68 59	006789
117690 116823	006536 007492	006603 006469	006496 00654	0 00 6 5 0 8	006670
00000	006383-006586	006497 006456	007013 00651	5 006682	006515
000060 007831 006514	006612 006741	006702 006907	006732 00600	1 007039	776989
000070	and the second			n an	
006567 006954	007301 007106	007305 007392	.007381 00752	0 009923	007635
	009383-008368	008998 008968	009128 01011	6 009901	012019
010201 000769	008668 00830×	008263 008354	008177 0000	8 006960	005804
000100				an a	
005583 005638	004958-004642	004680 004475	004422 00433	4 004357	004701
005809 004901	009792 037642	002790 002421	002438 00232	9 007215	028249
000120	001187 001140	000822 000787	000644 00054	6 000530	000822
888138 000744	000621 000538	000840 027671	000259 00020	3 000178	000189
		000157 000170			The second s
000159	000141 000172	000135 000193	000148 00014	4 000137	000121
0001.60	gradien protection	的人们是我们的问题。			
000125 000137	000143 000130	000094 000106	000124 00010	7 000116	000104
	000098 000124	000107 000099	000118 00008	4 000094	000087
009189		000093 000115		9 000088	000080
000190	15 Juni Romer Constant Provident	en nuels de la company	zera di serenda da sue	Maring the second	enter and interval and t
000082 000107	000089,000090	000030 000030	000095 00009	2 000078	000081
	000093 000095	.000085/000 Ets	000081-00008	2 000079	000068
0619910. 1990-190 00006#	adap en aradea	nena e anala		e mones	10007A
.dno220				* •	
- 9000.66 0000.64 - 000230	000068,000052	lone Green and a vo	000059 00007	6.000054	000062
000072 000062	Went we want the state of the	000056 000047	000041 00004	5 000043	000034
11111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	e wood center.	nannae nanne	noon s noon r	2 000012	nnnnte

) Alternation

.

•

.

ISOTOPIC ANALYSES OF TAR-PAPER SAMPLE FROM ON TANK WALL AT EXPOSURE-ROOM END AT APPROXIMATELY CORE CENTERLINE. COUNT TIME = 20,183 Sec.; WEIGHT = 3.6875 9

SOURCE	ENERGY	CHRANEL	PEAK	COMPTON	PEAK	XTAL	TOTAL
ISOTOPE / T		#	COUNTS	COUNTS	COUNTS	EFF. (C/d)	9
65 In	1115.4	113	37642	3700	33942	2.45×103	120017
(245 do	а <u>ч</u>) (115.1	· · · · · · · · · · · · · · · · · · ·	51614	5,00	55112	TOTAL=	
60 Co	1173	119	282 4 9	1700	265 1 9	2.11×103	1.26×10
(5.27 %		135	27671	750	26921	1.86×103	
						TOTAL=	
152 EU	121.8	10	48361	12600	35761	2.50×102	1.43×10
(12.2 yea	244.6	23	13469	9140	4329	1.16×152	
	344.2	33	19884	0077	12184	8.10×10 ³	1.50 1
	411.0	40	7690	6790	900	6.65x103	6.14 "
	443.9	43	7492	6500	992	6.60×103	0.15 "
	778.6	78	9932	7550	2382	3.35×103	0,71 "
	964.1	97	9248	7206	2048	2.66×103	
	1086.0	110	5809	4800	1009	2.45X103	0.41 "
	1407.5	143	Z053	210	1843	1.74×103	1.06 =
						TOTAL=	(6.97816

 \bigcirc

	NK IN EXPO		(MT= 4.65 × 105)
ISOTOPE	HALF-LIFE	Activity dis/s.g	% of Total Activity
6°Co 52Eu-159Eu 465c 65Zn 182Ta 134Cs 124Sb Annihilation	5.27 y 12.2y - 16y 84 day 245 day 115 day 2.07 y 60 day Tot	63.2 55.4 10.5 4.0 3.1 1.3 0.2 2.8 AL 140.5 d/s.	$\begin{array}{c} 44.5 & \frac{7}{6} \\ 39.0 & \frac{1}{7.4} \\ 2.8 & \frac{1}{2.2} \\ 0.9 & - \\ 1.02 & \frac{1}{2.0} \\ \end{array}$

.

. . . •

•

Note: This concrete sample is 1.8 times more radioactive than the sample From the Front of the room.

- -

Activity per cubic foot of concrete:
Density:
$$6.65 \times 10^{4} \text{ g/ft}^{3}$$

Activity = $\frac{6.65 \times 10^{4} \times 140.5}{3.7 \times 10^{10} \text{ d/s} \cdot \text{Ci}} = 2.52 \times 10^{4} \text{ c; or } 252 \mu \text{Ci/ft}^{3}$
Estimate per "mcl" of Hzo: $1.62 \times 10^{-3} \mu \text{Ci/g}$

•

GAMMA SPECIFIC ACTIVITY ANALYSES

· · · · · · · ·

	EAD FROM BR		ABLE					
M= 2.531 g	T=40,000	sec ((MT=1.01×105)					
ISOTOPE	HALF-LIFE (TIJZ)	ACTIVITY d/s.g	% of TOTAL ACTIVITY					
12456	60 days	181.8	71.0%					
110m Ag	Z53 day	67.3	26.3%					
152 Eu-154 Eu	12.24-164	1.5	0.6%					
Annihilation	Total	5.4 256.0 d/s.g	(100.0%)					
Activity	per pound of 454 g/16	lead:						
Activity	$y = \frac{454 \times 250}{3.7 \times 10}$	$\frac{6}{10} = 3.14$	×10 ⁶ 00 3.14 UCi/16					
Therefore Futhermore Shield shoul (Eff. Act = 0	Eff. Activity =	1.76.4Ci/1b. Hom guarter s es more like th a better value	sb contribution. Sb contribution. Sections of the lead at of the lead curtain for the whole					

GAMMA SPECIFIC ACTIVITY ANALYSES

1

ц.

ł

۰.

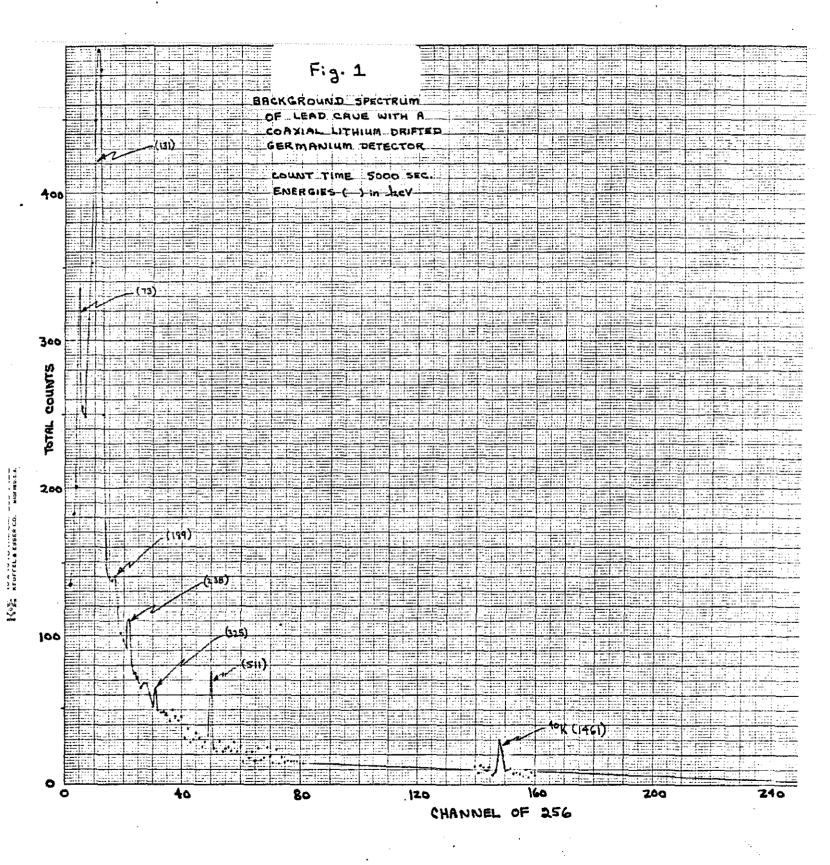
,

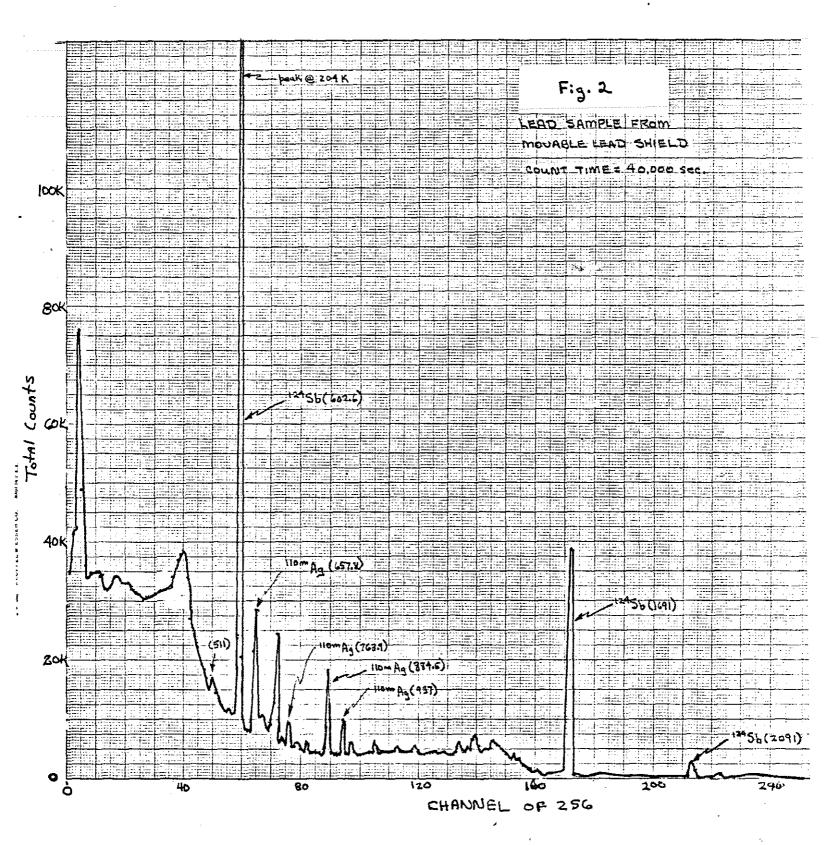
	TABLE VIII.	LEAD FROM	CURTAIN	
	M= 0.602	T= 40,000) 526 (MT=2.41×107)
	ISOTOPE	HALF-LIFE Tuz	ACTIVITY (d/s.g)	% of TOTAL ACTIVITY
	12456	60 days	4,96	62.1%
	110m Ag	253 days	2.28	28.5%
	A6Sc	84 days	0.45	5.670
	¹⁵² Eu- ¹⁵⁴ Eu	12.24-164	0.05	0.7%
	Annihilation	میں بر اور اور اور اور اور اور اور اور اور او	0.25	3.1%
	Activil	<u>y per pound</u> 454 g/1b)	7.99 d/s.g of lead:	(100.0)
•	Actiu	ity: <u>454x</u> 3.7	7.99 X 1010	$= 0.98 \times 10^{-7} = 1.0 \mu Ci/lb$
	NOTE: de cayed Therefor	About 38% I by spring L: Eff Act	of this act $1978.$ ivity = 0.62	huity will have

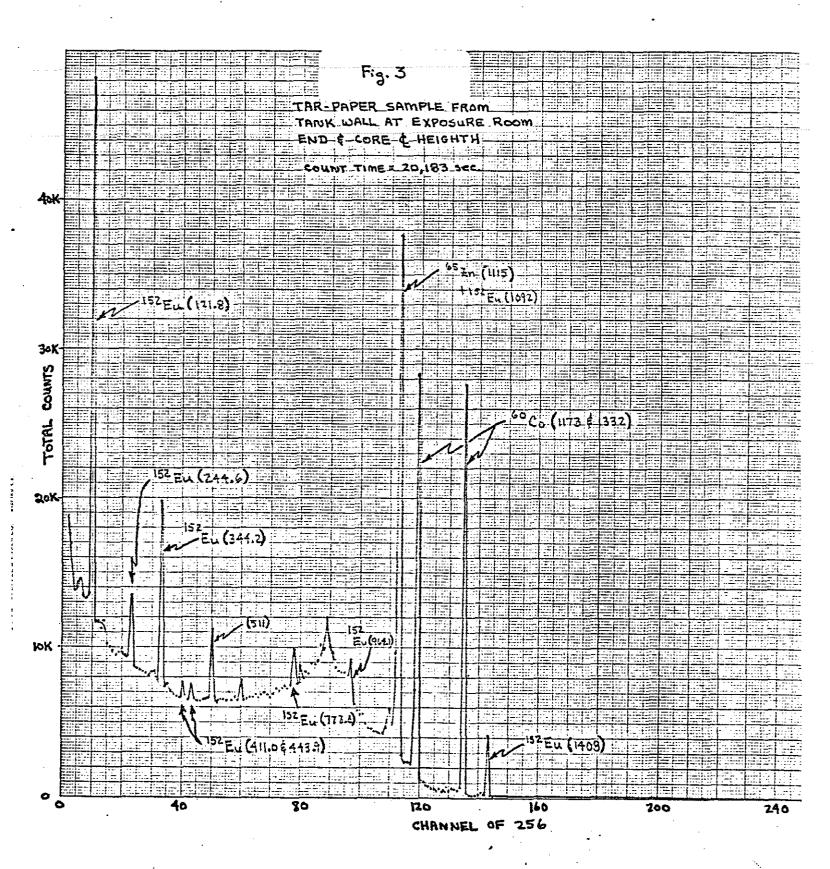
CAT	NMA SPECIFIC	HCHUITY HN	ALYSES	
TABLE IX . WOO	D FROM FROI	NT OF EXPOSU	IRE ROOM	
M=36.58 g	T = 8967	sec. (MT=	3.28×105)	
IS0TOPE	HALF-LIFE	ACTIVITY d/s.g	% of TOTAL ACTIVITY	
¹⁵² Eu- ¹⁵⁹ Eu	12.24-164	0.588	46.7 %	
60 00	5.27 4	0.534	424 %	
46 Sc	84 day	0.055	4.4 "	
129m Te	41 day	0.040	3.2 "	
Izim Te	110 day	0.026	2.1 4	
Annihilation		0.017	1.2 "	
	TOTAL	1.26 d/s.g	(100.0)	

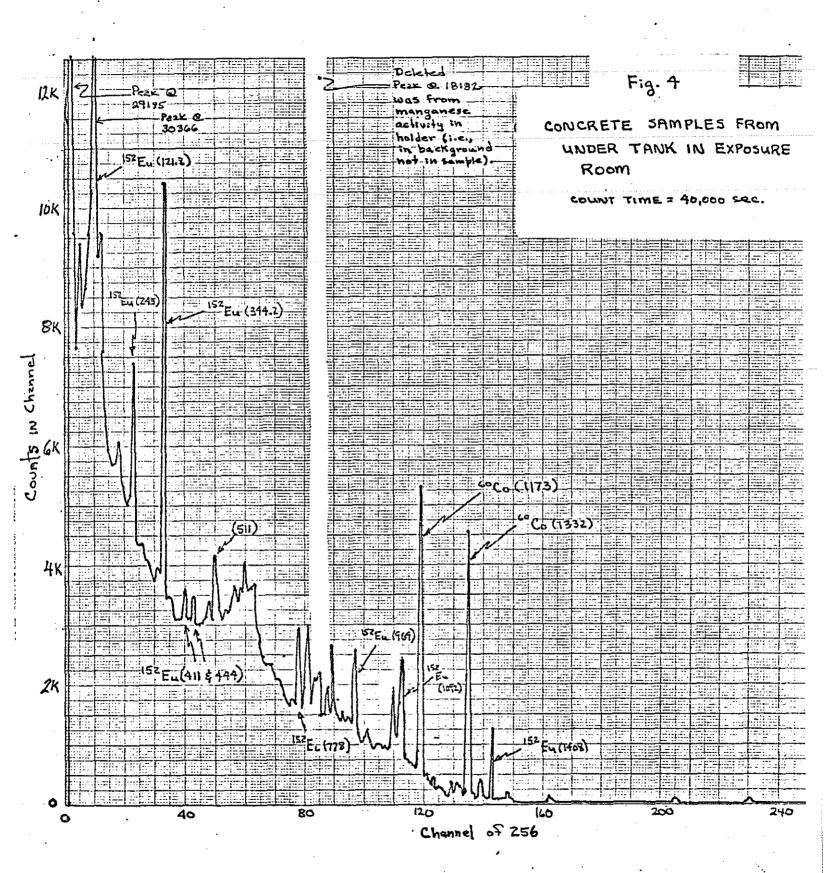
Activity: 1.26× 1.189×104 = 4.04×107 or 0.40, 201/43

Less than 10% of this activity will decay by spring 1978. NOTE: From WRAMC Health Physics survey of this sample we find there is a B/r ratio of approximately two.

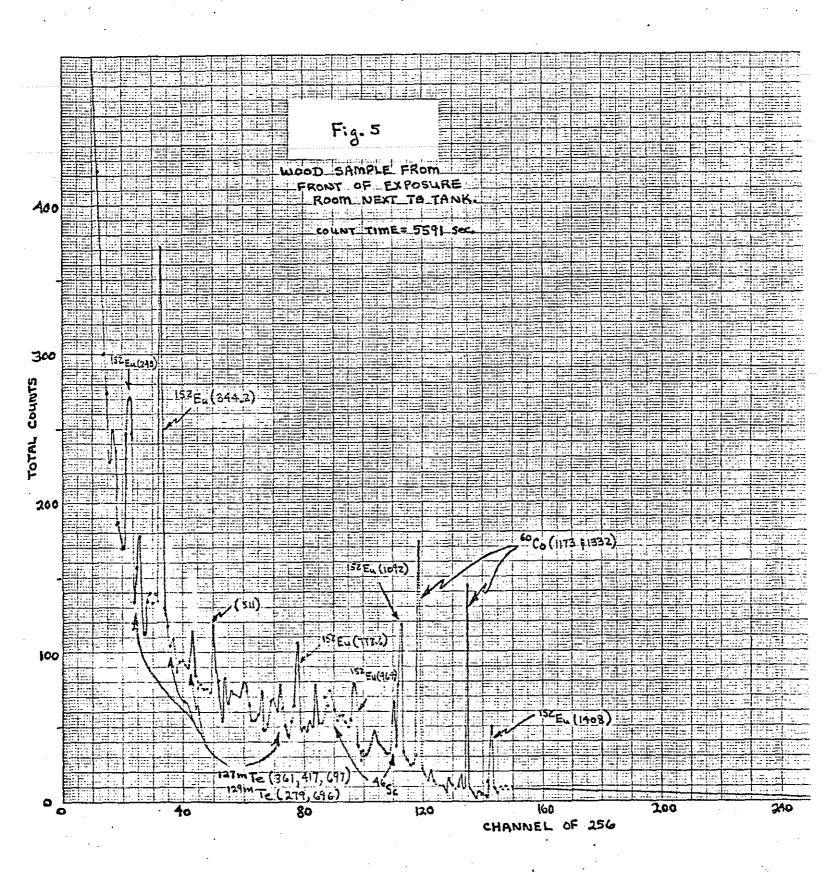

. _ . .


Say for a second second second


			ГА Е 	۶∟E	Σ ≟ 	ζ.	5 	um olur	me me	iry s a	of nd TT	acti	dia Nid	y lev	e m	ater t Di	RF .	ype ifte	5, 17 Y	loca	tor-	Cord	ren	nova		-
	MAT	ERI	AL	<u> i</u>	loc r	ATIO	NP	بر بر	POR					WEIGH (Ibs)		ume. (+3)		TIVI			1	,	· 1	NITY	1	.s)
	1. CO	NCRE	1 E	ι ί	1	D00R	1 1	1 -	<u>ا د</u>	1	1 1	200	י ב	87,880		39	14	1 10,11	<u></u> Ci/4	ct3	- 1	, v	1; j; l 86	ole		-
	ຊ.	 1*		E	EXPO	CEIL	E R	bon	ή			- H		70,92		55	1	rion	for d	ctail)		27.	49			:
	3. 4. L	.EAT	- <u> </u>		- 	N TAN					2")	 708		1,50		7.5		سر25 سر30	T .			+ 	89 91		, , , , , , ,	<u></u>
	5.	15 56	1 1	1 1	1	AIN P	1 1	1 1	1 1	1	.M.	+1 - 11		1,84		2.4 5.4	6.	سر 20 سر 72 سر 40	C:/	Ь		۱ .	15			i.
	<u> </u>	11	· []	·		SHOT						168.	-	40,00		0)		102	1				.00		: : :	 I
	9.	n		· cc	ORE	. 5 HT	ROV	YD.	•			1 (o 76 +	2	1,305		7.8	יר	5 m	¢:/	tt3		1	.00			
		ļ		ωì	ith t	K W pher	holir	ne l	line	وبر		11		815		6.2	(3	سره.	C:/ł	[²] [%]		0	.70			•
	1.	200 .y.fi		}		T EX						26		3,325	. .	28 56	4 1		•	/ft3		· [.05			
	3.	н м л.	· · · ·	•BP	ACK	. EX ۲۹ CB	Posi	URE	R	1		4		4,16	> I	60	0	15	üĊi		-	0.	06			
-	IS. S	TEE	 L	• 51	HIE		Но	ST				484		2,66		5.5		- <u></u>	, ,	1/16		<u> </u> .	03		· · ·	
	•																			•						


. •

-



.

.

CONCLUSIONS & RECOMMENDATIONS

At the second sec

The principal conclusion from this study is that once the reactor-grid support structure has been removed there is very little radioactivity remaining at DORF. Unfortunately the levels are definitely above background, but only by factors of several hundred, and the radioactivity is mainly distributed throughout concrete walls and floors. Deep excavations will not be necessary. However, this is of little consequence if one still has to remove several inch-thick layers from large areas. This is the situation in the exposure room. In fact, the exposure-room decontamination is by far the major problem and several possible methods of attack come to mind.

(1) Excavate and remove the three 5000-gallon waste-water holding tanks, cut off part of the tops and use them as shipping containers for the radioactive debris from DORF. For example, the wood has suffered radiation damage and dry rot so that it crumbles rather easily. It is a big volume (1200 ft³) but relatively light in weight so it can easily be tossed or shoveled into the tanks and they could then be closure welded for shipment. There will also be much dust, dirt, paper and small concrete chips of radioactive waste, all of which could be put into the tanks.

(2) Mechanically cut, DO NOT CUT WITH A TORCH, the aluminum because of the radioactive "tar-paper" liner which could easily catch on fire and produce contaminated smoke. However by reference to the excavation-ofconcrete details in this report, the places where the aluminum liner will be radioactive are easily identified. It does not appear that the liner will produce a problem in other than these areas.

(3) Thought should be given to the possibility of transferring some of the lead to AFRRI or APRF because its radioactivity is really not a serious hazard and these facilities need it for shielding in neutron fields. This could save a few dollars on transportation and disposal costs.

(4) Survey activities are going to be a problem because there just isn't much activity to survey right now. For example, depending on what is going to be done with the exposure room, it may not be necessary to excavate concrete from the rear wall of the room. In any event, thought should be given to how much the survey reading "from the rear wall only", before excavation, must be decreased by material removal to provide an "acceptable" survey level. In view of the expense to breakup and ship concrete, it is prudent to be practical about sealing up or burying very small, but detectable, amounts of radioactivity.

(5) Almost all of the materials exhibit one or two predominant and characteristic photopeaks. Therefore, survey activities could be determined by a sodium-iodide scintillation detector. It is suggested that a portable detector with a 3/4-inch-thick cylindrical lead shield around the sides would be practical. Calibration could be accomplished in a crude, but adequate, manner by measuring the response of a variety of sources simultaneously positioned over a square-meter plane area behind about 1/4-inch thick aluminum. This approximates the following situation. The dose rate to tissue in rads per hour in an infinite medium, of density ρ , uniformly contaminated by a gamma emitter, of energy E (MeV), is

2.12 EC/
$$\rho$$
 (3)

where C is in microcuries per cm³. At the surface, the dose rate is about one half of this and for air a one-centimeter-from-the-surface survey is an adequate representation of the surface rate. By then surveying the "calibration setup at one meter" and correcting for $1/R^2$ to one centimeter, one can estimate the rads per hour efficiency of the scintillation detector. A variety of sources, repositioned should be used and the results averaged.