APPENDIX 1V

RADTO-ISOTOPIC ANALYSIS OF RADIOACTIVE MATERTAL
IN THE DORF STRUCTURE BEFORE

DECOMMISSIONING



INTRODUCTION

This report documents information of the amount and type of radioactive
material that will be present in the structure and building of the Diamond
Ordnance Radiation Faciiity after removal of the reactor fuel in therspring
of 1978. Such information is required for decommissioning plans and must
. ﬁé'éﬁﬁpiié&”tb'fﬁé'AfﬁymRééEEofmCEmﬁiﬁtéeMfﬁf“ﬁé&ifhwéﬁd'séfééfn(ARéﬁéj“”'"”
.P?iqr.Fo.their“approval”of sugh plans. The_infqrm;tiog is also_needed by
the waste-disposal area directorate who must‘Budget for specific volumes and
radioactive levels. Finally, the isotopic composition of the radioactive
wagte 1s necessary for labeling containers at the time of shipment.

The first section of this report is a summary for those who need only
the final results on type, location and amount of residual radiocactivity.
Section two desc?ibes the investigative procedures, discusses the possible
sources of radicactivity and the properties of the radioactive isotopes
found. . Graphs of isotopic analyses and calculétions, which convert detector
response to specific activities, are included in this section. The second
gsection also provides the detailed calculations of volumes, weights and total
radioactivity in the various sections of DORF. The final section contains

recommendations based on things discovered during this study.

SUMMARY

The radiocactivity that will remain at DORF after the fuel removal in the
spring of 1978 has been carefully estimated based on criteria, measurements and
necessary assumptions documented in this report. A concise summary of that
radicactivity is given in Table I. The most predominant radioactive isotopesl
in the concrete are cobalt-60 and europium-152 and -154. The most predominant
isotopes in lead are antimony-124 and silver-110' . The wood and steel (mainly
in the lead-shield hoist) are not very radioactive and are easy to dispose of.. The

aluminum itself is almost non-radioactive but there is a radicactive Phenoline



liner which tends to stick to the aluminum. Its radioactivity comes from
cobalt-60 and zinc~65. All of these radioactive isotopes have half-lives

in excess of 60 days.

TABLE I. Summaryilof total radiocactivity to be expected from materials
in. the DORF. structure after core removal. ... . .. et e

Mass Volume Radioactivity
Material (1bs) (£Fe3) (millicuries)
CONCRETE 82,170 412 36.24
(If whole plug (170,050) (850) (36.24)
door included).
LEAD 55,753 112 13.34
ALUMINUM 2,288 15 75.71
WOOD 34,944 1344 0.33
STEEL 2,662 5.5 0.03
GRAND
TOTAL 177,817 1bs 1889 ft3 0.126 Curies
(89 tons)

1/

=~ This represents a summation of the values given in Table X.



IDENTTFICATION OF THE RADTOACTIVITY

Isotope Identification:

The principal method of identification was gamma-radiation spectroscopy
.Wwith a germanium lithium~drifted detector, or Ge(Li)-erystal, - The crystal

is housed inside a very low-~activity-lead cave lined with wood, Numerous
background analyses confirm that for photons with enérgieslgreatef than

140 keV, samples with low activities (two to three times background) can be
successfully analyzed for specific photon energies. A plot of a multichannel
analyzer spectrum of the background is given in Fig. 1. The principal higher
energy peaks in the background spectrum are the 511-keV gammas associated
‘with annihilation radfation and the 1461-keV peak from'doK, a radioactive
isotope which is found naturally in almost all "non-radioactive" materials.

The method of analyses provides for very good resolution of the photon
energies in the range 140 keV to 2500 keV at approximately §.7 keV per
channel of 256 total channels, The electronic equipment is sufficiently
stable over counting periods.of 50,000 seconds to permit energy assignment
within two percent. OG&raphs of the gamma spectra of the various materials
investigated are shown. (See Fig. 2 through 5).

The method does not provide for the ultimate in accuracy for determining
specific activity. The crystal efficiency (disintegrations per count as a
function of energy) can only be accurately assigned for a well-defined
geometry. The samples in the present situation varied in size and shape,
Therefore, they were suspended above the crystal so that their centers of

mass were approximately three centimeters from the active volume of the



detector and efficiencies were determined with calibrated point sources.

The error associated with this procedure igs estimated to be no greater than
50%, based on a volume integration of point-source response at points in
space representative of the sample size, For the task at hand such accuracy

.1z sufficient.

Rational of Sample Selectipn_.

The job was to identify the radicactive content and quantity of materials
that will have to be removed from the DORF site so that it can be certified,
by post-decommissioning radicactive survey, as an unrestricted area for
possible public use. This survey, to be conducted by the Army Environmental
Health Agency (AEHA), must be accomplished prior to any filling, sealing or
burying activities, This presented two problems. How can we identify the
radioactivity in presently inaccessible areas, such as below the reactor
-pool, before the reactor fuel and higher-level radicactive structures have
been removed? What amount of material will have to be removed from walls
and floors to reach an acceptable AEHA level?

The first problem was attacked as follows. Representative samples of
all the material types are accessible in the exposure-room area. Because
of the significantly larger thermal-neutron cross sections of materials
and the fact that the DORF-TRIGA reactor is zirconium-hydride moderated and
water-cooled reactor, the thermal component of the spectrum is the dominate
source of induced radicactivity. As will be discussed later, the predominance
of radicactive europium confirms this. Therefore, isotopic analyzes of

exposure rocm samples are representative of those In presently inaccessihle



areas. Furthermore, with facility dosimetry data for the various locations,
we can estimate ﬁhe residual radicactivity in remete locations with signifi-
The second problem of how much material to remove is more complex
because we do not have good guldancde on the amount of radiocactivity in
volume that can remain. NRC Regulation 1.86, the current guide, clearly
.épecifies.leQEis for rémoval surface.coﬁtamination.but ig, at best, vague
on volume activity and how to detect it, The criteria set for the analysis
in this report are as follows:

(1) Once the reactor support structure has been removed there will be
no high-level radioactive waste remaining in the DORF structure. Our
analyses confirm this,

(2) Based on existing allowable concentrations of radioactive materials
in water and a specific activity proportional to material density, we can set
an allowable specific activity of 2 x 10-5 microcuries per gram as the maximum
permissible concentration of radionuclides in water when it is known that
8r 90, 113129, (T 125, T 126, 1 131,*Tab1e II only), Pb 210, Ra 226, Ra 228,

Ce 248, and Cf 254 are not present. Since the density of water is one g/cm3
and there are 28317 cm3/ft3, 2 x 10'5uCi/g corresponds to 0,57 WCL/ft> of water.

(3) It is assumed that the radioactivity is distributed in the material
to be removed in proportion to the incident thermal fluence (flux-time product)
and attenuated exponentially according to thermal-neutron relaxation lengths,
(i.e., the inverse of microscopic removal cross sections for broad beams).
Half-life decay is taken into consideration for the period until épring 1978. There-~

fore:, the depth of material to be removed, D in centimeters, is determined

*
10 CFR20, note to Appendix B



by relative fluence level at the surface, ¢/¢o, and

6/9, x A
D=LIln —m=
0.57uCi/ft3 ()

where A is the activity in uCi/ft3 estimated from this study. The values

of relaxation length are given in Table II.

TABLE II. Material densities and relazation lengths, L

Material Density Relaxation Length
Concrete 2.35 g/em 1.6 cm
Lead 11.0 g/cm3 4.2 cm =N
! Wood 0.42 g/cm3 2.9 em

Measured Radicactivity

Samples taken from the DORF exposure Toom were concrete, wood, aluminum,
lead and a tar-paper-like liner installed between the aluminum pool tamk and
the concrete pool base. Although the aluminum itself has very little residual
radioactivity (less than 8 x 10_6uCi/gm for the sections counted), the
Phenoline paper (i.e., the tar-paper liner) has the highest specific activity
of all the materials examined. Since this liner tends to stick to the aluminum,
for all practical purposes the aluminum tank exhibits this activity.

Tables IV through IX give a breakdown of the isotopic composition of the
radioactivity in the various samples. Tables IV and V are composed of several
additional pages that serve as detailed examples of the methods of analyses
and are self explanatory when reference is made to the graphs of the multichannel-
analyzer output. Figs. 1 through 5 are the multichannel-analyzer gamma spectra

for the various types of samples. The energy of the photopeaks is related to



* Q
TABLE III, GAMMA SPECIFIC ACTIVITY AND THE NUMBER OF MICROCURIES PER UNIT OE
MATERIAL FCOR VARIOUS RADTIOQACTIVE MATERIALS FROM THE DORF EXPOSUREEROOM

Specific Activity ‘Activitﬁ per unit

Type of
Material Location in Exposure Room (d/s.g) ‘ of material
1. PHENQOLINE PAPER On aluminum tank near exposure room 636 3.6 pCi/sq ft
' end of pool - :
.3
2. CONCRETE From front part of room about 78 140 pei/fe
4 feet from reactor
3. CONCRETE Very near reactor at exposure room 141 : 1252 uCi/fte
end of tank
4, LEAD From curtain above the movable lead 72 10,62 WCi/ib
shield ;
5. LEAD From brick in middle of the movable 205 1.30 uci/lb
lead shield
6. WOOD From very near reactor and concrete 1.3 50.40 p.Ci/ft3

sample #3, above.

*

From gross beta plus gamma analyses, the beta-to-gamma activity of all these different materials is
approximately 1.8,



spectra for the various types of samples. The energy of the photopeaks .

is related to start the channel number (abcissa) by the following equation:

E(keV) = (channel +2.5) x 9.69  +2% (2)

Fdr clarification, the.éamma-féy peaks #fé iﬁdentified by isotope and their
energies in keV (and in parenthsis) are given for most of the peaks.

The specific activity (d/s-g) for each measured sample is compared
in Table III. This table also provides the number of microcuries per

unit most practical for that type of material. This latter information is

used in Table X to determine the total radioactivity in the volumes of

radicactive materials at DORF.
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GAMMA_ SPECIFIC ACTIVITY ANALYSES
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CONCLUSTONS & RECOMMENDATIONS

The principal conclusion from this study is that once the reactor-grid
support structure has been remaved there is very little radicactivity re- "~
maining at DORF. Unfortunately the levels are definitely above background,
but ounly by factors of several hundred, and the ra&idactivity is méinly |
digtributed throughout concrete walls and floors. Deep excavations will
not be necessary. However, this is of little consequence if one still has to
remove several inch-thick layers from large areas, This is the situation
in the exposure room. In fact, the exposure-room decontamination is by
far the major problem and several possible methods of attack come to mind.

(1) Excavate and remove the three SOOO-gallsn waste-water holding tanks,
cut off part of the tops and use them as shipping containers for the radio-
active debris from DORF. For example, the wood has suffered radiation
damage and dry rot so that it crumbles rather easily. It is a big volume
(1200 ft3) but relatively light in weight so it can easily be tossed or
shoveled into the tanks and they could then be closure welded for shipment.
There will also be much dust, dirt, paper and small councrete chips of
radicactive waste, all of which could be put into the tanks.

(2) Mechanically cut, DO NOT CUT WITH A TORCH, the aluminum because of
the radicactive ''tar-paper" liner which could easily catch on fire and
produce contaminated smoke, However by reference to the excavation-of-
concrete details in this report, the places where the aluminum liner will
be radicactive are easily identified. It does not appear that the liner

will produce a problem in other than these areas,
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(3) Thought should bé given £6 the possibility of transferring some
of the lead to AFRRI or APRF because its radioactivity is really not a
‘serious hazard and these facilities need it for shielding in neutron fields,
This could save a few dollars on transportétion and disposal costs,

f45 Sﬁfﬁey actiﬁiﬁies aré going t§ be a probiem because there just
isn't much activity to survey right now. For example, depending on what is
going tao be done with the exposure room, it may not be necessary to excavate
concrete from the rear wall of the room. 1In any event, thought should be
given to how much the survey reading "from the rear wall only'", before
excavation, must be decreased by material removal to prdﬁide an "acceptable"
surve§ level, 1In view of the expense to breakup and ship concrete, it is
prudent to be practical about sealing up or burying very small, but detectable,
amounts of radicactivity.

(5) Almost all of the materials exhibit one or two predominant and
characteristic photopeaks. Therefore, survey activities could be determined
by a sodium-iodide scintillation detector. It is suggested that a portable
detector with a 3/4-inch-thick cylindrical lead shield around the sides
would be practical. Calibration could be accomplished in a crude, but
adequate, manner by measuring the response of a variety of sources simul-
taneously positioned over a square-meter plane area behind about 1/4-inch
thick aluminum, This approximates the following situation. The dose rate
to tissue in rads per hour in an infinite medium, of density p, uniformly

contaminated by a gamma emitter, of energy E (MeV), is

2.12 BC/p (3
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..where C.is in microcuries per~cm3; At the surface, the dose rate is

about one half of this and for air a one-centimeter-from-the-surface

survey is. an-adequate representation of the surface rate. "By then surveying
the '"calibration setup at one meter" and correcting for l/R2 to one
centimeter, one can estimate the ra&é.pér hour éfficiency.df the
scintillation detector. A variety of sources, repositioned should be

used and the results averaged.
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