State-of-the-Art Reactor Consequence Analysis Emergency Preparedness

Randy Sullivan ACRS Subcommittee Briefing June 21, 2010

OFFICIAL USE ONLY SENSITIVE INTERNAL INFORMATION

EP Seismic Study

- ACRS questioned adequacy of EP modeling for seismically initiated scenarios given the potential effect on emergency response
- Past risk studies have not generally considered this effect except in simplified sensitivity calculations - delay times and evacuation speed or timing
- Policy issues were also considered
- SOARCA Approach

2

- Seismic assessment of infrastructure damage
 - Bridges, roads, power network (notification, traffic signals)
- Reassessment of response
 - Route alerting versus sirens
 - New ETE based on damage to road network
 - New cohort model developed for MACCS2
- Recalculation of offsite consequences
- Conclusion No substantial effect on offsite health consequences

- Seismic effects are site specific
 - Peach Bottom
 - Sirens fail but alternative notification occurs
 - Larger shadow evacuation
 - Free span bridges fail -- not key to evacuation,
 - Adequate road network remains and evacuation speeds are unchanged

Peach Bottom Seismic Analy

- Affects of earthquake on infrastructure
- 12 bridges/roadways affected
- Electrical system fails, no sirens sound
 - Public notification performed via
 Emergency Alert System, societal
 means and route alerting
 - Notification slower; people
 experienced earthquake and are
 more prepared to leave
- Power out, but few traffic signals in affected area.
- Shadow evacuation increased to 30%.
- Negligible effect on ETE.

OFFICIAL USE ONLY - BENSITTER

5

......

– Surry

- Sirens function (battery backup)
- Public evacuation starts earlier
- Larger shadow evacuation
- Schools evacuation delayed
 - Bridge failures significantly retard evacuation

 major effect on ETE
 - Smaller radiological release, LCF dominated by long term

Surry

• 40 bridges/roadways affected

- Interstate 64 fails within the EPZ
- Assume electrical system fails
 sirens have battery backup
- Public is prepared to leave
- Traffic signals default to 4 way stop
- Shadow evacuation increased to 30%.
- Considerable effect north of the James River – 18 hour ETE
- Negligible effect on the rural area south of James River

Typical Bridge Affected by Seisn

- Significant bridges assumed to fail, with large effect on ETE
- Overpass and underpass become unusable in many locations
- Use of secondary routes to points outside of affected area – delays travel

Afficial Use Ool

Surry - Unmitigated Thermally Induced Steam Generator Tube Rupture Assuming LNT

REFERENCE ONLY - SENSITIVE

9

- This evolutionary analysis presents the most detailed modeling of emergency response performed by NRC
- Integration of EP improves realism by modeling established and tested response programs
- EP Modeling is set up in WinMACCS and then the source term applied to develop consequence estimates
- At these sites, seismic effect on consequences are minimal