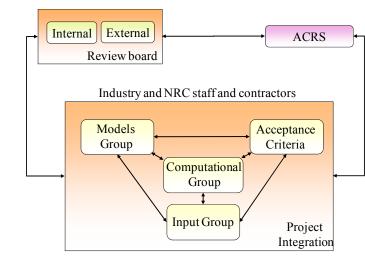
XLPR Modular Code A Probabilistic Approach to LBB

David Rudland U.S. NRC RES/DE/CIB

NRC-Industry 2011 Meeting on Alloy 690 Research Rockville, MD Tuesday, June 7, 2011

GDC-4 and LBB

- 10CFR50 Appendix A GDC-4 allows local dynamic effects of pipe ruptures to be excluded from design basis if pipe ruptures have extremely low probability of occurrence
- Local dynamic effects include pipe whipping and discharging fluids
- Commission-approved conservative flaw tolerance analyses developed and incorporated in SRP3.6.3 to demonstrate leak-before-break and satisfy GDC-4
- One screening criterion in SRP3.6.3 requires no active degradation mechanism



- PWSCC is an active degradation mechanism
- LBB approved for piping systems prior to PWSCC operational experience
- LBB systems still in compliance with regulations
- Qualitative: mitigations and inspections
- Quantitative: probabilistic evaluation to assess compliance (xLPR)

xLPR Development

- NRC goal to develop "Modular" code for addressing issues related to Risk of Pressure Boundary Integrity Failure
- Currently focusing on piping issues (xLPR) to solve current LBB need. May be applicable to other needs
- Working cooperatively with EPRI through a Memorandum of Understanding Addendum

- NRC and Industry staff participation in all aspects of code development
- Initial pilot study to assess effectiveness of approach

Team Members

Protecting People and the Environment

Computational Group

David Rudland - U.S. NRC Bruce Bishop – Westinghouse Nathan Palm – Westinghouse Patrick Mattie – Sandia National Laboratories Cedric Sallaberry - Sandia National Laboratories Don Kalinich - Sandia National Laboratories Jon Helton – Sandia National Laboratories Hilda Klasky – Oak Ridge National Laboratory Paul Williams – Oak Ridge National Laboratory Robert Kurth – Emc² Scott Sanborn - Pacific Northwest National Laboratory David Harris - Structural Integrity Associates Dilip Dedhia – Structural Integrity Associates Anitha Gubbi - Structural Integrity Associates

Inputs Group

Fric Focht – U.S. NRC Mark Kirk - U.S. NRC Guy DeBoo - Exelon Paul Scott - Battelle Ashok Nana - AREVA NP Inc. John Broussard – Dominion Engineering Nathan Palm - Westinghouse Pat Heasler - Pacific Northwest National Laboratorv Gery Wilkowski - Emc²

Acceptance Group

Mark Kirk - U.S. NRC Glenn White - Dominion Engineering Inc. Aladar Csontos - U.S. NRC Robert Hardies – U.S. NRC David Rudland - U.S. NRC Bruce Bishop – Westinghouse Robert Tregoning - U.S. NRC

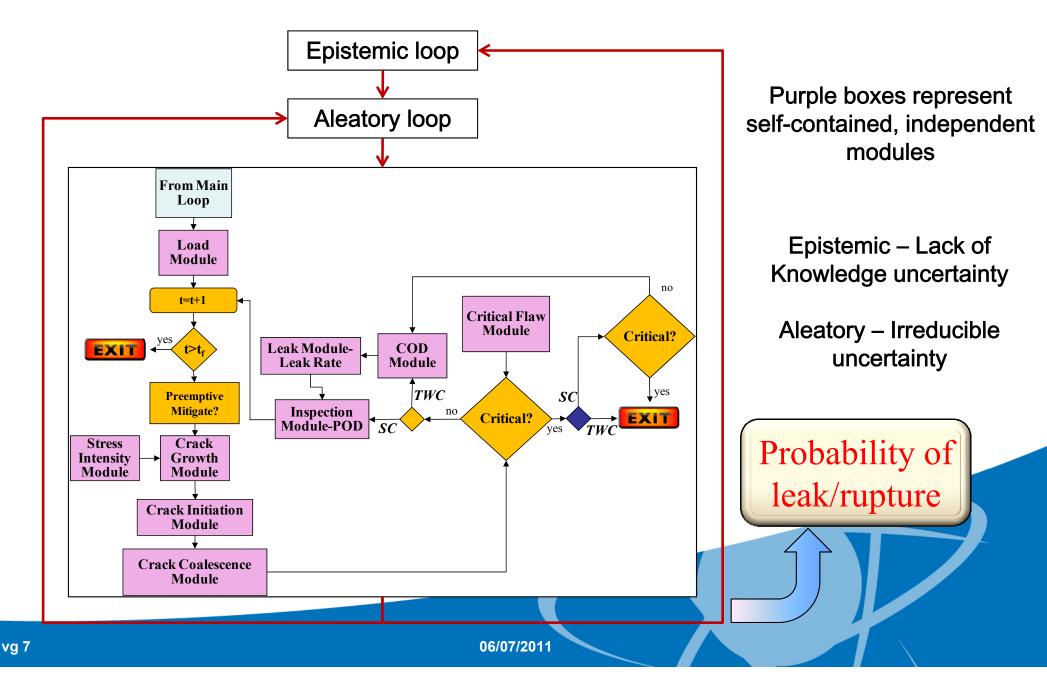
Models Group

Marjorie Erickson – PEAI Gary Stevens - U.S. NRC Howard Rathbun - U.S. NRC David Rudland - U.S. NRC John Broussard – Dominion Engineering Glenn White – Dominion Engineering Do-Jun Shim – Emc² Gerv Wilkowski - Emc² Bud Brust - Emc² Cliff Lange - Structural Integrity Associates Dave Harris - Structural Integrity Associates Steve Fyfitch - AREVA NP Inc. Ashok Nana – AREVA NP Inc. Rick Olson - Battelle Darrell Paul – Battelle Lee Fredette – Battelle Craig Harrington - EPRI Gabriel llevbare - EPRI Frank Ammirato – EPRI Patrick Heasler - Pacific Northwest National Laboratory Bruce Bishop – Westinghouse

Program Integration Board

Craig Harrington - EPRI Aladar Csontos - U.S. NRC Robert Hardies - U.S. NRC Denny Weakland - Ironwood Consulting

David Rudland – U.S. NRC Bruce Bishop – Westinghouse Eric Focht – U.S. NRC Guv DeBoo – Exelon Marjorie Erickson – PEAI Garv Stevens - U.S. NRC Howard Rathbun - U.S. NRC Mark Kirk - U.S. NRC Glenn White - Dominion Engineering Inc.



xLPR – NRC Intended Use U.S.NRC Inited States Nuclear Regulatory Commission Protecting People and the Environment

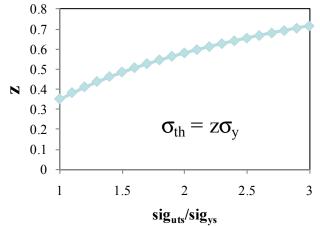
- Version 1.0 Pilot study Surge nozzle DM weld
 - To demonstrate feasibility
 - Determine appropriate probabilistic framework
 - Develop plan for future version
- Version 2.0 Primary piping
 - Support LBB Regulation Guide development
 - Assess compliance with GDC-4
 - Prioritize future research efforts
- Version 3.0 Reactor coolant pressure boundary
 - Combine piping with reactor vessel, steam generator, etc.
 - Analyze probability of failure for all coolant pressure boundary components

xLPR Process

Version 1.0 Models Description

Crack Initiation

Several models are available for initiation probability A.) Direct Approach


$$\frac{1}{t_{I}} = Ae^{-Q/RT}\sigma^{n} \quad (\sigma > \sigma_{th})$$
$$\sigma_{th} = 137 \text{MPa} (20 \text{ksi})$$

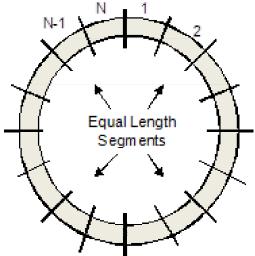
B.) Weibull

$$P(t_{I} < t) = 1 - e^{-(t/C)^{3}}$$
$$C = C_{1}e^{Q/RT}\sigma^{-n}$$

$$t_I = Be^{Q/RT} \ln[(D-z)/(\sigma/\sigma_{ys}-z)]$$

where $B = B_I m^q \ln[D] / \ln[(D-z)/(1-z)]$

• Capable of handling zinc/hydrogen changes, but not implemented



Models Description Crack Initiation

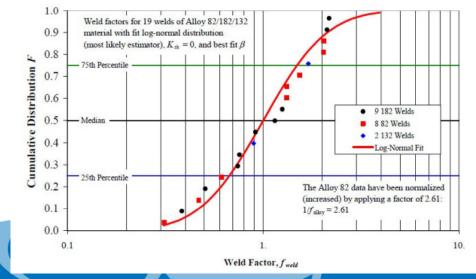
• For Version 1.0, models are "calibrated" to MRP-216 surge nozzle data and base WRS

P						
Nozzle	# inspected	# circ cracks	# axial cracks			
Surge	10	5	2			
Safety	20	1	4			
Relief	6	1	2			
Spray	7	0	0			

0.01 cracks/year

- Multiple circumferential crack initiation allowed
- Axial cracks added in Version 2.0

Crack Growth from MRP-263


$$CGR = \exp\left[-\frac{Q}{R}\left(\frac{1}{T} - \frac{1}{T_{ref}}\right)\right] \alpha f_{weld} \left(K - K_{th}\right)^{\beta} \left[\frac{1}{P} + \frac{(P-1)}{P} \exp\left(-0.5\left(\frac{\Delta ECP_{Ni/NiO}}{c}\right)^{2}\right)\right]$$

For Kth, CGR=0

$$\Delta ECP_{Ni/NiO} = 29.58 \left(\frac{T + 273.15}{298.15}\right) \log \left(\frac{[H_2]}{[H_2]_{Ni/NiO}}\right)$$

CGR = crack growth rate at temperature T in m/s

$$Q_g$$
 = thermal activation energy for crack growth = 130 kJ/mole
R = universal gas constant = 8.314 x 10⁻³ kJ/mole-K
T = absolute operating temperature at the crack location in K
T_{ref} = absolute reference temperature to normalize data = 598.15K
 α = power law constant = 2.01 x 10⁻¹²
K_{th} = threshold crack stress intensity factor = 0.0 MPa-m^{0.5}
 β = exponent = 1.6
H₂ = 25 cc/kg-STP

$$\left[H_2\right]_{Ni/NiO} = 10^{(0.0111T - 2.59)}$$

xLPR Framework

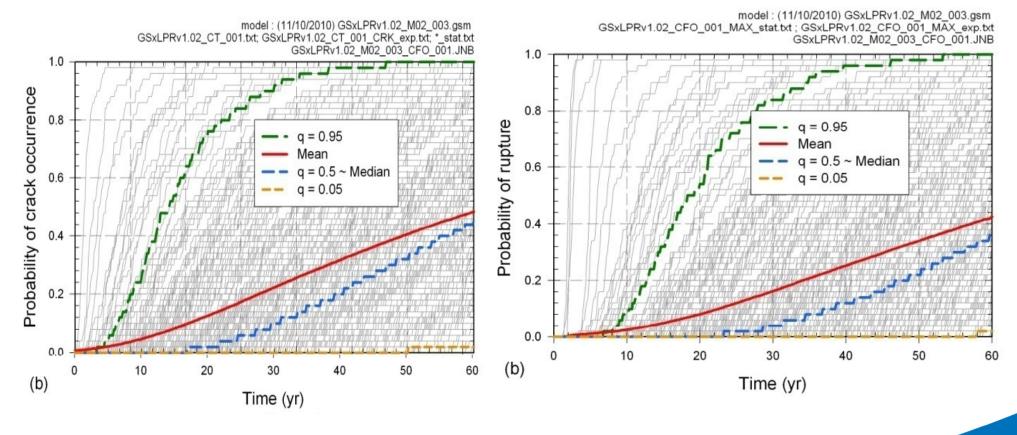
06/07/2011

Pilot Study Problems

Analysis	Description					
Probabilistic Base Case	Probabilistic base case analysis using Monte Carlo sampling.					
Sensitivity Study						
Stress Mitigation	Analyses evaluate different mitigation times, for the same stress-based mitigation.					
Chemical Mitigation	Chemical effects of increasing the hydrogen concentration in the water on the crack growth module. Three hydrogen concentrations were evaluated.					
Crack Initiation	Considers the crack initiation model uncertainty.					
Safe End Evaluation	Considers stainless steel safe end weld, which causes a through-thickness bending stress that can reduce the tensile inner-diameter stress.					

06/07/2011

Uncertainty


- Uncertainties were classified by models/inputs group
- More discussion needed, but satisfactory for pilot study

Epistemic (Lack of knowledge)	Aleatory (Irreducible)			
 Loads WRS Crack growth (fweld) Crack initiation parameters POD parameters 	 Crack size POD detection Material properties Crack growth parameters (Q/R,c,P) 			

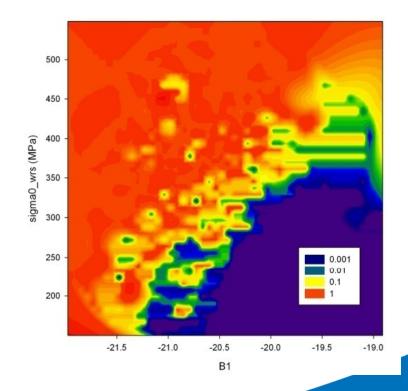
- Currently uses LHS (epistemic) and MC (aleatory)
- Importance sampling was demonstrated

Base Case Results

Problem is driven by crack initiation!!

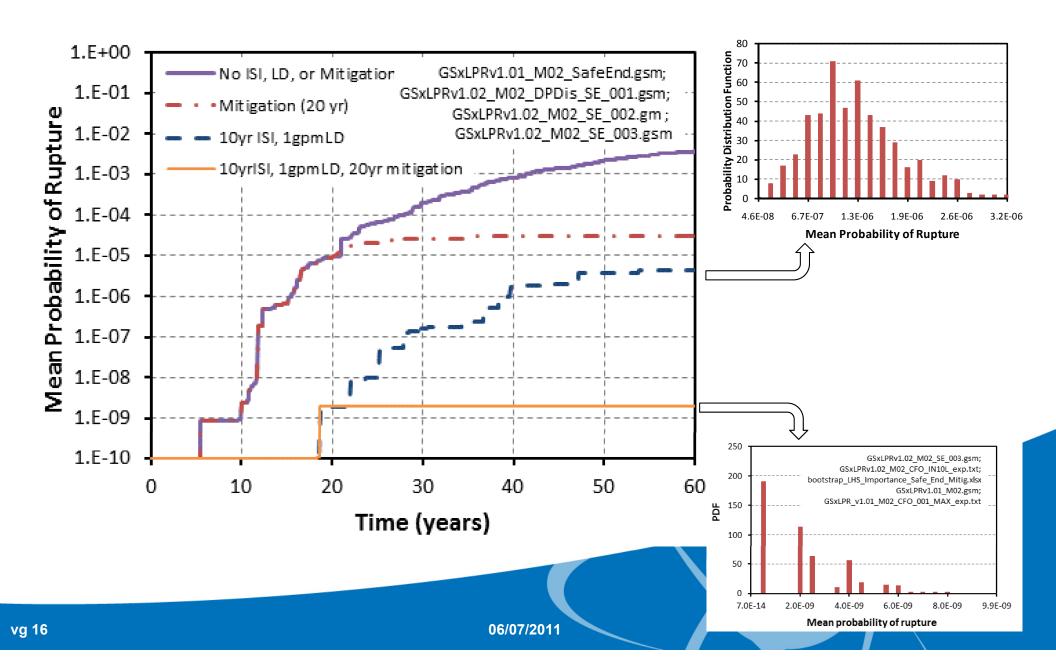
Grey lines represent individual epistemic realizations

Base Case Results



Sensitivity analyses were conducted to determine driving variables

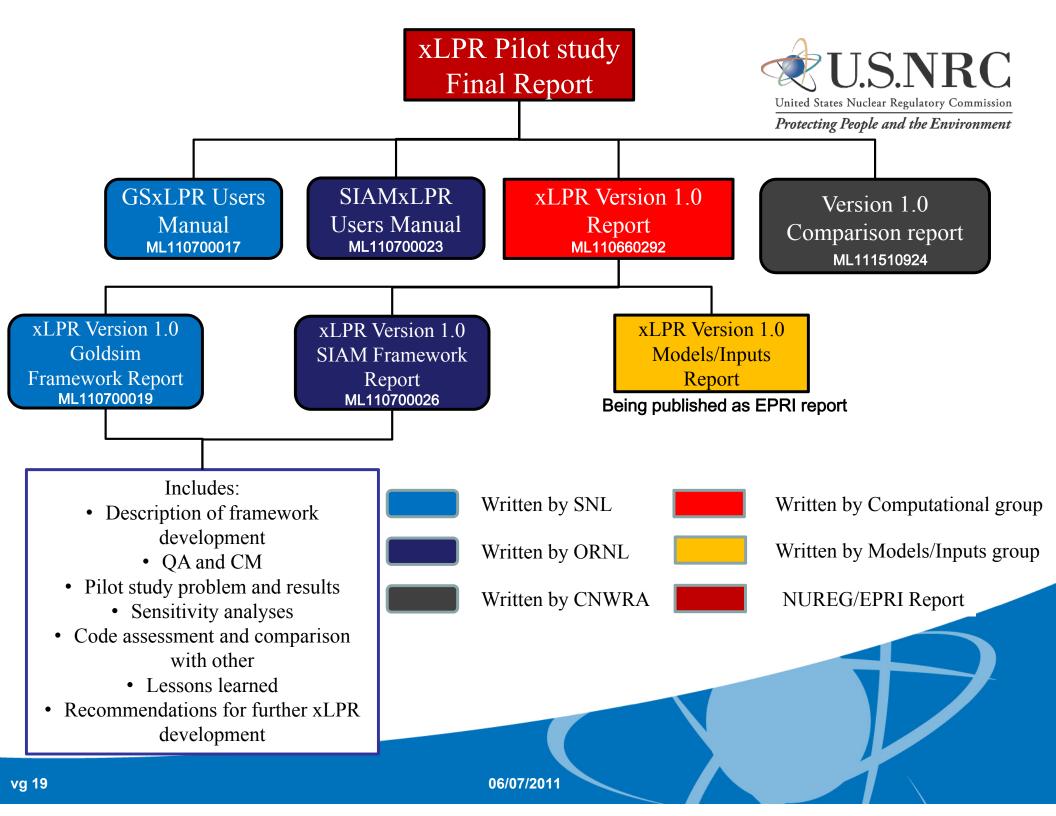
EXPCFO: 50 yr			EXPCFO: 60 yr				
var.	R ²	R ² inc.	SRRC	var.	R ²	R ² inc.	SRRC
SIG0WRS	41.80%	41.80%	0.5363	SIG0WRS	43.90%	43.90%	0.5764
B1	57.10%	15.30%	-0.3299	B1	60.70%	16.80%	-0.3568
FWELD	57.80%	0.70%	0.0701	FWELD	61.60%	0.90%	0.0853
RANDL17	58.00%	0.20%	0.0369	RANDP05	61.80%	0.20%	0.0391
				ODRAND	62.00%	0.20%	-0.0358


- R² how much of the output variance is explained with the current input and all previous inputs
- The incremental R² how much variance is explained by the addition of this input
- SIGOWRS ID weld residual stress
- B1 crack initiation parameter

Probability of rupture (60yr)

Safe End Sensitivity Case

Pilot Study Results



- The project team demonstrated that <u>it is feasible</u> to develop a modular-based probabilistic fracture mechanics code within a cooperative agreement while properly accounting for the problem uncertainties
- The project team demonstrated that the cooperative management structure was promising, but recommends a code development leader be selected and the PIB be restructured as an advisory committee

Pilot Study Results

• Based on the framework code comparison, a cost analysis, and long term prospects, the xLPR project team recommends that the future versions of xLPR be developed using the GoldSim commercial software as the computational framework

Path Forward

- Project management restructuring underway
- Version 2.0 QA program development underway
- Version 2.0 Model and capability discussions underway – Focus first on SCC initiation
- Version 2.0 Model development Sept 2011
- Version 2.0 Framework implementation April 2012
- Version 2.0 V&V April 2013
- Version 2.0 release End 2013