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Background
MRP 263 (EPRI 1019082 2009) T h i l B f Ch i l Miti tiMRP-263 (EPRI 1019082, 2009) – Technical Bases for Chemical Mitigation

 Hydrogen optimization reduces crack growth rates Hydrogen optimization reduces crack growth rates
– Rate decreases with distance from electrochemical potential of Ni/NiO transition
– Zinc addition reduces rate of new initiations
– Concentration of zinc not important

 Hydrogen has no effect on initiation over the range of interest
Ver lo h drogen concentrations can lo er initiation rate– Very low hydrogen concentrations can lower initiation rate

– No effect once above the Ni/NiO transition
 Zinc appears to have a limited effect on crack growth ratepp g

– Data mixed
– Possible mitigative effect at low K (lab data for Alloy 600 plus SG tube experience)

 Recommended probabilistic approach:
– Capture benefit on initiation from zinc
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p
– Address other uncertainties



M d l D i tiModel Description
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Overall Model

 Partially based on xLPR work Partially based on xLPR work
 Monte Carlo simulation
 Distributed input parameters
 No separation of aleatory and epistemic uncertaintyp y p y
 Reduced complexity of model output vs. xLPR (e.g., 

through-wall cracking, single initiation per weld, etc.)through wall cracking, single initiation per weld, etc.)

No InitiationInitiation

Repair Through-wall No Initiation

Repair <75% Through-wall No Initiation>75% Through-wall

Not Through-wall
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Note: Not to scale.  Typically, most Monte Carlo trials did not result in initiation.



Model Flow Charts
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Main Loop Time Loop



Main Model Componentsp

 Initiation Initiation
 Propagation
 Load Load
 Detection
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Initiation Model

 Simplified approach relative to xLPR based on empirical Simplified approach relative to xLPR, based on empirical 
plant data and one flaw per weld
 Step 1: select a reference initiation time using a Weibull Step 1: select a reference initiation time using a Weibull

distribution
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Initiation Model
St 1 W ib ll Di t ib ti (Pl t D t )Step 1: Weibull Distribution (Plant Data)

 Based on plant data
0.90 Weibull Plot

All inspection data adjusted to 600 F (Q = 44 kcal/mole)

Weibull slope 
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Initiation Model
St 1 W ib ll Di t ib ti (U t i ti )
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Step 1: Weibull Distribution (Uncertainties)
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Initiation Model
St 2 T t d St Adj t tStep 2: Temperature and Stress Adjustment

 Activation Energy Activation Energy
– Normal distribution
– µ = 184.23 kJ/mol, σ = 12.82 kJ/mol
– Based on laboratory data
– Mean used in assessment of plant data to determine Weibull distribution

 Stress Exponent Stress Exponent
– Stress dependence of crack initiation not modeled (i.e., n = 0) 
– Little data on surface stresses for particular plant welds
– Variation in initiation time due to stress captured by Weibull distribution

• Assume surface stress distribution in 593 inspected welds is representative 
of total population

• Fit to plant data incorporates aleatory and epistemic uncertainty
– Surface stress = lack of knowledge (epistemic)
– Stochastic initiation = inherent randomness (aleatory)
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Initiation Model
St 3 Adj t t f Zi (1/2)Step 3: Adjustment for Zinc (1/2)

 SG tube data used for quantification SG tube data used for quantification
 Supported by lab testing for Alloy 600
 Compare time to reach additional fraction failed to time Compare time to reach additional fraction failed to time 

predicted by pre-zinc Weibull trend
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Initiation Model
St 3 Adj t t f Zi (2/2)Step 3: Adjustment for Zinc (2/2)

 Normal in ln(FOI 1) Normal in ln(FOI-1)
– µ = -0.29, σ = 0.93 (mean FOI = 1.75)
– Fit to plant data (SG tubes)
– Lower truncation (FOI > 1) justified by corroborative lab data

• All studies show some improvement
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Initiation Model
Oth A tOther Aspects

 Orientation (circunferencial vs axial) randomly selected Orientation (circunferencial vs. axial) randomly selected
– Match to plant data

 Initial flaw depthInitial flaw depth
– Flaw depth is assumed to be finite upon initiation
– Normal distribution in ln(fraction through wall)

3 0 35 (mean fraction 0 05)– µ = -3, σ = 0.35 (mean fraction = 0.05)
– Results in SIFs greater than the assumed cut-off for zinc mitigation of 

propagation
Eff ti l iti ti f k th t b i dditi• Effectively, no mitigation of crack growth rates by zinc addition

 Initial aspect ratio
– Normal distribution in ln(AR)Normal distribution in ln(AR)
– Based on data from plant inspections
– Independently evaluated for circ and axial flaws
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Propagation Model
MRP 263 M d l ith H d Eff tMRP-263 Model with Hydrogen Effect
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Propagation Modelp g
Material Factors
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Propagation Model
Zi Eff tZinc Effect

 Normal distribution in ln(f 1) Normal distribution in ln(fZn-1)
– fZn > 1 corroborated by SG tube 

data
 Only applied for K<16.5 MPa√m
 Due to finite initial crack size, 

Data summary from MRP-263
K (Mpa√m) Zinc (ppb) FOI

27 57 1.25
27 22 0.64,

generally not applied during 
model run time

22 108 1.08
16.5 50 5.67
16.5 50 2.83
16.5 50 1.00
16.5 50 1.00
27 5 50 0 6227.5 50 0.62
27.5 150 1.72
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Propagation Model
H d Eff t E l T t D tHydrogen Effect – Example Test Data
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Propagation Model
H d Eff t D t A l iHydrogen Effect – Data Analysis

 Four test sets for Alloy 182 Four test sets for Alloy 182
– Corroborated by additional Alloy 600 data

 Peak width parameter cPeak width parameter c
– Normal distribution
– µ = 18.5, σ = 5.5

P k h i ht t P

Data Set Peak Width, c  (mV) Peak Ratio, P
A 20.2 1000
B 24.79 1000

 Peak height parameter P
– Normal distribution in ln(P-1)
– µ = 4.52, σ = 2.75 (mean P = 93)

C 12.06 10.5
D 15.81 8.6

µ  4.52, σ  2.75 (mean P  93)
– P > 1 supported by data from other nickel alloys (600, 82, X750)
– Form of equation used makes value of P unimportant if >~17
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Propagation Model
H d Eff t C l ti f P t S iti it St dHydrogen Effect – Correlation of Parameters Sensitivity Study
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Propagation Model
Oth A tOther Aspects

 Threshold K = 0 Threshold KIth = 0
 Stress exponent b taken as a single value

– 1 6 per MRP-115– 1.6 per MRP-115
 ΔECP taken as having no uncertainty
 During model run time, cracks grown in one month intervalsDuring model run time, cracks grown in one month intervals
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Loads
G l M d l I f tiGeneral Model Information

 Axial and hoop stresses considered Axial and hoop stresses considered
 Considers pressure, pipe thermal expansion, dead weight, 

and welding residual stressesand welding residual stresses
 Uses fourth order polynomial for residual stresses
 No seismic or thermal stratification loads (no surge nozzle No seismic or thermal stratification loads (no surge nozzle 

cases)
 Axisymmetric welding residual stressesAxisymmetric welding residual stresses
 CEA K-solutions used
 Similar to xLPR models except that:Similar to xLPR models except that:

– Axial flaws included
– CEA K-solutions used instead of WRC/API K-solutions

H t i l d ldi id l t
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– Hoop stresses include welding residual stresses



Loads
Examples
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Detection

 Used xLPR model extrapolating to (0 0) from 10% Used xLPR model, extrapolating to (0,0) from 10%
1

0.8

0.6

PO
D

0.2

0.4

0

0 20 40 60 80 100

Work Performed under EPRI ContractNRC/Industry Alloy 690 Meeting23

Flaw Size (%TW) Dashed lines are 95% confidence bounds



General Inputsp

 Westinghouse RV Outlet Nozzle (RVON) Westinghouse RV Outlet Nozzle (RVON)
– Others considered, but not presented here

 Typical geometry selected as fixed inputTypical geometry selected as fixed input
– Thickness 2.75 in 
– Diameter 36 in

Width 1 75 in– Width 1.75 in
 Aged component
 315°C 315 C
 Un-optimized hydrogen = 37 cc/kg
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Aged Componentsg p
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E l R ltExample Results
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Evaluation of Repeatabilityp y
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Different Strategies Consideredg
Zn Only H2 Only
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Initiation Sensitivity Study – Inputs y y p
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Initiation Sensitivity Study – Resultsy y
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Dependence on Inspection Interval
N Miti tiNo Mitigation
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Dependence on Inspection Interval
C i f N Miti ti ith Miti ti Zi O lComparison of No-Mitigation with Mitigation – Zinc Only
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Dependence on Inspection Interval
C i f N Miti ti ith Miti ti H d O lComparison of No-Mitigation with Mitigation – Hydrogen Only
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Dependence on Inspection Interval
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Conclusions

 Framework for quantitative incorporation of chemical Framework for quantitative incorporation of chemical 
mitigation (initiation and propagation) developed
 Results are favorable Results are favorable
 Industry considering best path forward

Work Performed under EPRI ContractNRC/Industry Alloy 690 Meeting35


