Microstructural Characterizations of Alloy 690: Key Examples

Matt Olszta, Mychailo Toloczko and Steve Bruemmer Pacific Northwest National Laboratory

Research Supported by U.S. Nuclear Regulator Commission

> NRC Project Manager Darrell Dunn

NRC – Industry 2011 Meeting on Alloy 690 Research June 6-7, 2011 Rockville, MD

PNNL Characterization Actvities: Examples for Alloy 690 Materials

Microstructural Characterization

- Essential for material assessment and comparisons including heatto-heat, processing and heat treatment effects.
- Important to assess general microstructure (grain size/shape, banding), precipitate microstructures (size/distribution IG and TG), local microchemistry (grain boundary depletion/segregation), matrix hardness and strain distributions.
- Open question how detailed characterizations should be on most materials, depends on specific issues being examined.

Characterization Methods

- Optical metallography, SEM and EBSD for general microstructure
- SEM and TEM for precipitate microstructure
- TEM for grain boundary microchemistry and phase identification
- EBSD for strain distributions
- Optical, SEM and TEM of SCC cracks and crack tips

PNNL Characterization Actvities: Examples for Alloy 690 Materials

Initial Alloy 690 Microstructures

- As-received thermally treated (TT), solution annealed (SA) or desensitized alloy 690 CRDM tubing
- As-received alloy 690 mill annealed (MA) plate heats

Cold Work Effects on Alloy 690 Microstructures

- 26%CR ANL (NX3297HK12) and 20%CR GEG (B25K) heats
- 17-31%CR CRDM alloy 690TT and alloy 690SA, influence of recovery anneal after 31%CR alloy 690TT (heat RE243)

SCC Crack and Crack-Tip Exams on Alloy 690

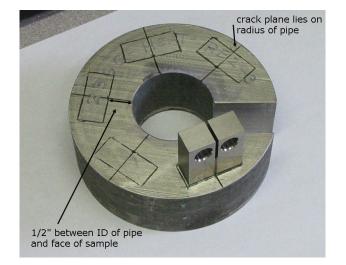
SCC morphology and crack path interactions with CR damage

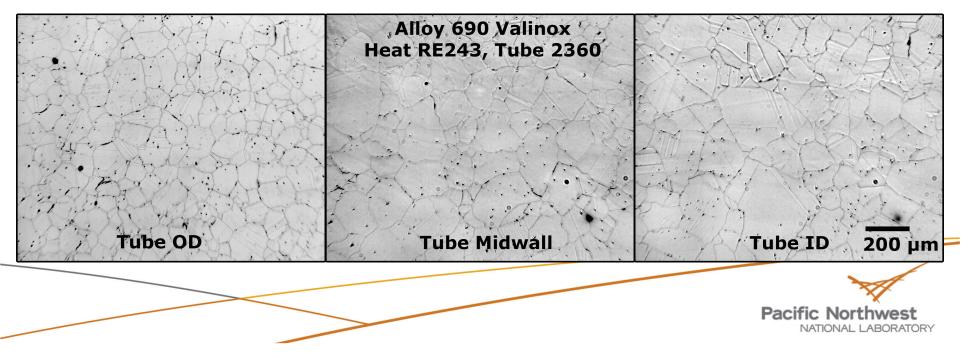
Microstructure Characterizations for CRDM Alloy 690 Heat RE243

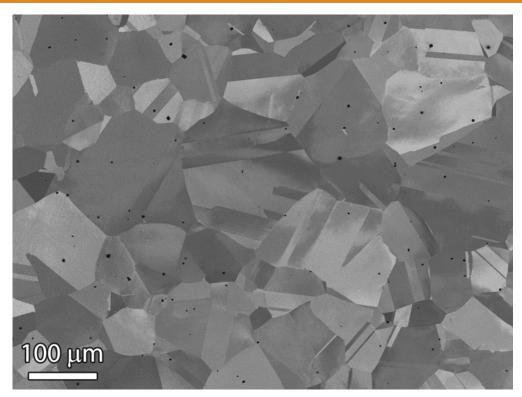
Alloy 690 CRDM Heat RE243: As-received, thermally treated (TT) condition

Microstructural	Measurement	Description
Characteristic	Technique	Description
Grain Shape/Size	ОМ	Equiaxed grains, avg. size $\sim 100 \ \mu m$
IG Precipitates	OM/SEM/TEM	Semi-continuous discrete (100-200 nm) and
		cellular M ₂₃ C ₆ , occasional TiN (200-500 nm)
GB Cr Content	TEM-EDS	Cr minimum ~21-24 wt%, width 300-400 nm
TG Precipitates	OM/SEM	Few random TiN or Ti carbonitrides (~1 μm)
Hardness	Vickers	175 kg/mm ² (CT crack plane)
Damage µS	SEM/TEM	None, low dislocation density
Strain & GB	EBSD	Low strain levels, random GBs >75%
Distribution		

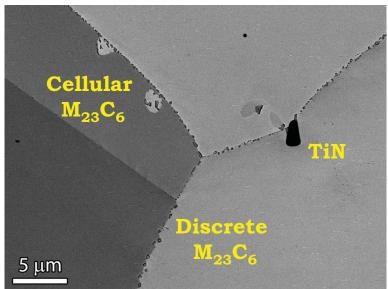
Alloy 690 CRDM Heat RE243: Solution-annealed (SA) condition

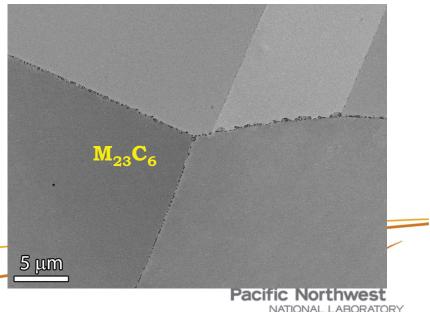

Microstructural	Measurement	Description	
Characteristic	Technique	Description	
Grain Shape/Size	ОМ	Equiaxed grains, avg. size ~120 μm	
IG Precipitates	OM/SEM/TEM	Few, isolated $M_{23}C_6$, occasional TiN (~500 nm)	
GB Cr Content	TEM-EDS	30 wt%, no depletion or enrichment	
TG Precipitates	OM/SEM	Few random TiN or Ti carbonitrides (~1 μm)	
Hardness	Vickers	165 kg/mm ² (CT crack plane)	
Damage µS	SEM/TEM	None, low dislocation density	
Strain Dist.	EBSD	Very low strain levels	


Isolating effect of grain boundary Cr carbides.

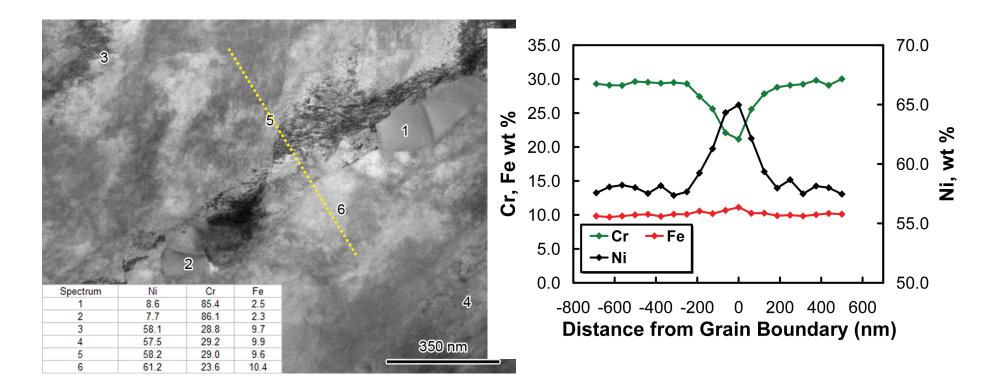

As-Received, Alloy 690TT CRDM Tubing

- Extruded tubing provided by Valinox in a thermally treated condition (720°C/10.5 hr)
- Equiaxed grain dimensions (70-120 μm) at midwall and ID, smaller very near tube OD
- High density of nearly continuous, grain boundary carbides
- Low density of matrix TiN particles
- No banded structures

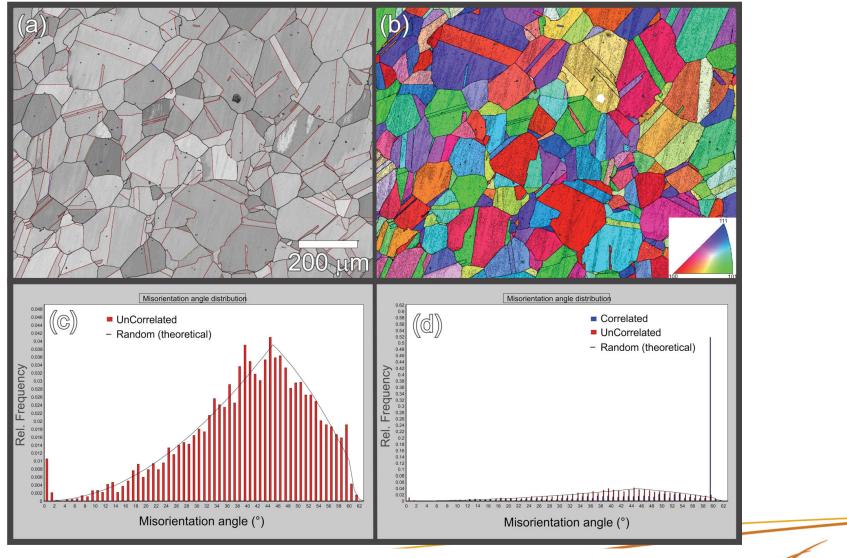




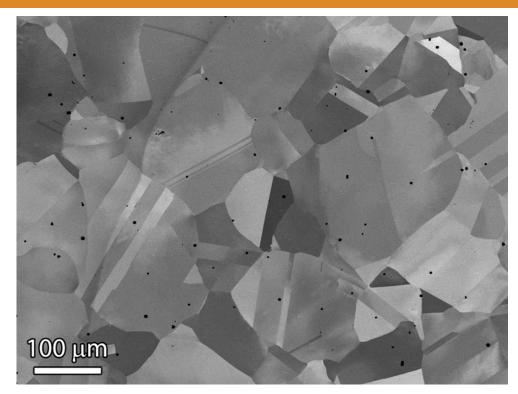
Grain Boundary Microstructures in As Received, Thermally Treated (TT) Alloy 690

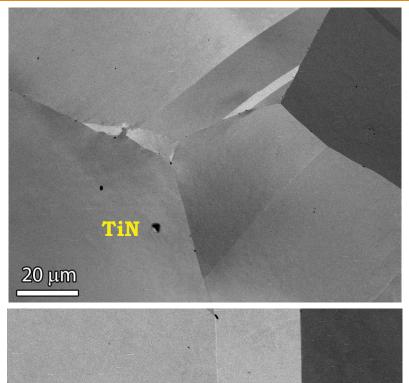


SEM backscatter images show general microstructure and grain boundary carbides in alloy 690TT CRDM tubing heat RE243.


Grain Boundary Cr Depletion in As-Received Alloy 690TT CRDM Tubing Heat RE243

Semi-continuous GB carbides for the as-received alloy 690TT material with significant Cr depletion observed associated with both discrete carbides and cellular $M_{26}C_6$ precipitates.


As-Received, Alloy 690TT CRDM Tubing

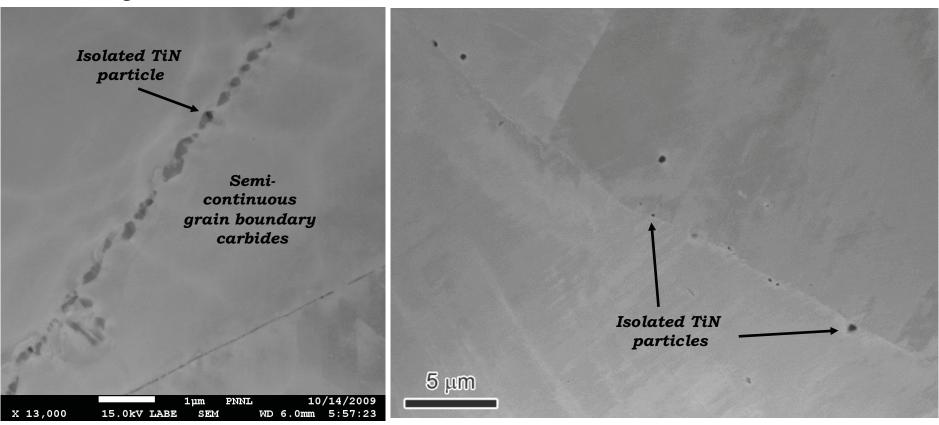

EBSD shows a high density of twin boundaries, but most grain boundaries (>75%) are random, high-energy boundaries.

thwest LABORATORY

Grain Boundary Microstructures in Solution Annealed (SA) Alloy 690

Solution anneal at 1100°C and water quench removed nearly all grain boundary carbides in CRDM heat RE243, isolated TiN particles remain. Slight increase in average grain size.

TIN


5 µm

NATIONAL LABORATORY

Grain Boundary Microstructures in Alloy 690 Thermally Treated (TT) versus Solution Annealed (SA)

Alloy 690TT CRDM

Alloy 690TT + SA

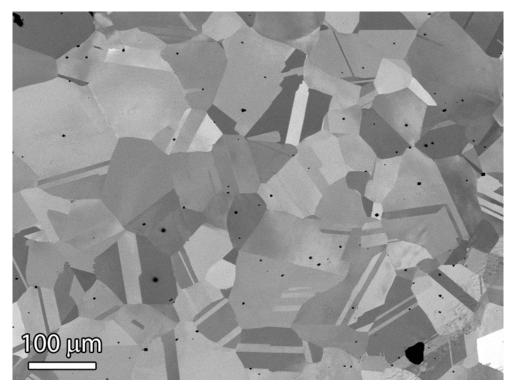
Solution anneal at 1100°C and water quench removed nearly all grain boundary carbides, isolated TiN particles remain.

Pacific Northv NATIONAL LABORATORY

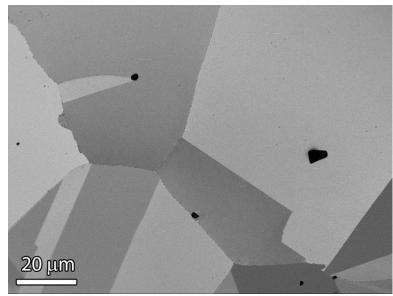
Microstructure Characterizations for CRDM Alloy 690 Heat RE243

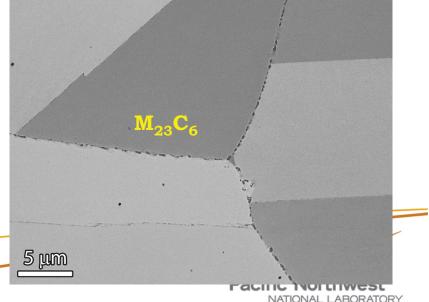
Alloy 690 CRDM Heat RE243: As-received, thermally treated (TT) condition

0		
Microstructural	Measurement	Description
Characteristic	Technique	Description
Grain Shape/Size	ОМ	Equiaxed grains, avg. size ~100 μm
IG Precipitates	OM/SEM/TEM	Semi-continuous discrete (100-200 nm) and
		cellular M ₂₃ C ₆ , occasional TiN (200-500 nm)
GB Cr Content	TEM-EDS	Cr minimum ~21-24 wt%, width 300-400 nm
TG Precipitates	OM/SEM	Few random TiN or Ti carbonitrides (~1 μ m)
Hardness	Vickers	175 kg/mm ² (CT crack plane)
Damage µS	SEM/TEM	None, low dislocation density
Strain & GB	EBSD	Low strain levels, random GBs >75%
Distribution		

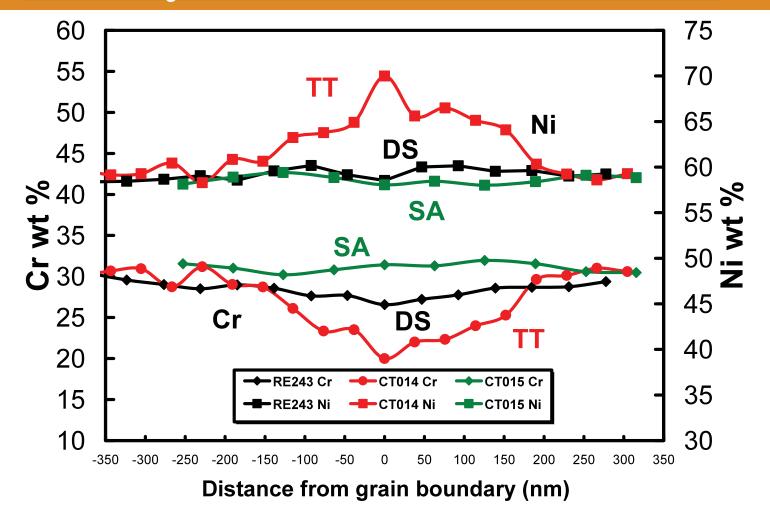

Alloy 690 CRDM Heat RE243: TT + desensitized condition

Microstructural Characteristic	Measurement Technique	Description	
Grain Shape/Size	ОМ	Equiaxed grains, avg. size ~100 μm	
IG Precipitates	OM/SEM/TEM	Semi-continuous discrete (100-350 nm) and	
		cellular M ₂₃ C ₆ , occasional TiN (200-500 nm)	
GB Cr Content	TEM-EDS	Cr minimum ~28 wt%, width ~1000 nm	
TG Precipitates	OM/SEM	Few random TiN or Ti carbonitrides (\sim 1 μ m)	
Hardness	Vickers		
Damage µS	SEM/TEM	None, low dislocation density	
Strain Dist.	EBSD	Very low strain levels	


Isolating effect of grain boundary Cr depletion.



Grain Boundary Microstructures in Desensitized Alloy 690



Desensitization heat treatment at 900°C/1h and water quench keeps semi-continuous distribution of grain boundary carbides in CRDM heat RE243. Slight increase in carbide size and decrease in density.

Grain Boundary Cr Concentrations Alloy 690 CRDM Heat RE243

Solution anneal removes GB carbides and Cr depletion, desensitization keep GB carbides but removes most Cr depletion.

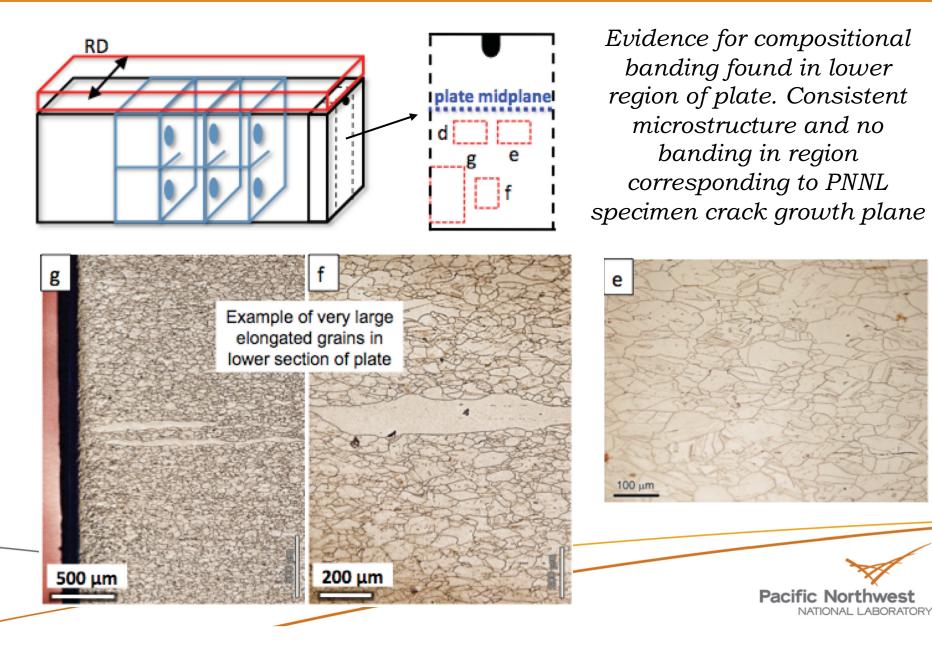
Pacific Northwest

PNNL Characterization Actvities: Examples for Alloy 690 Materials

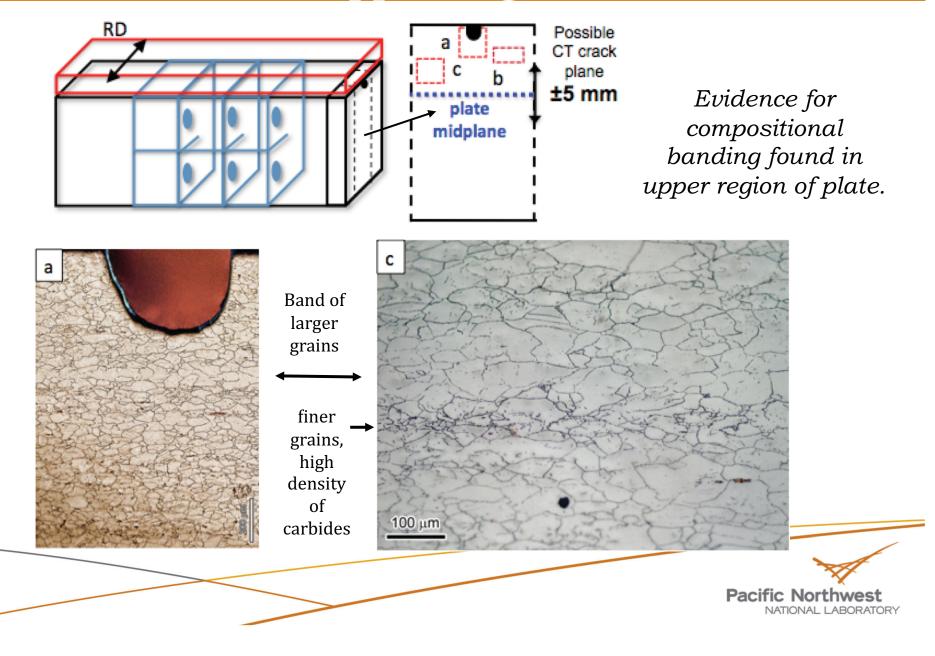
Initial Alloy 690 Microstructures

- As-received thermally treated (TT), solution annealed (SA) or desensitized alloy 690 CRDM tubing
- As-received alloy 690 mill annealed (MA) plate heats

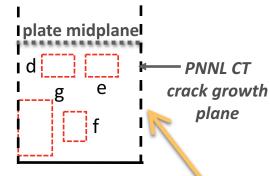
Cold Work Effects on Alloy 690 Microstructures


- 26%CR ANL (NX3297HK12) and 20%CR GEG (B25K) heats
- 17-31%CR CRDM alloy 690TT and alloy 690SA, influence of recovery anneal after 31%CR alloy 690TT (heat RE243)

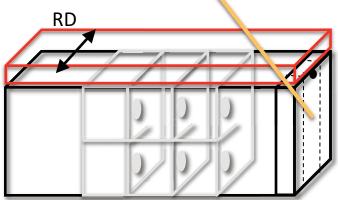
SCC Crack and Crack-Tip Exams on Alloy 690


SCC morphology and crack path interactions with CR damage

Example Microstructures: ANL 26%CR Plate at Crack Plane



Example Microstructures: ANL 26%CR Plate at Upper Region of Plate

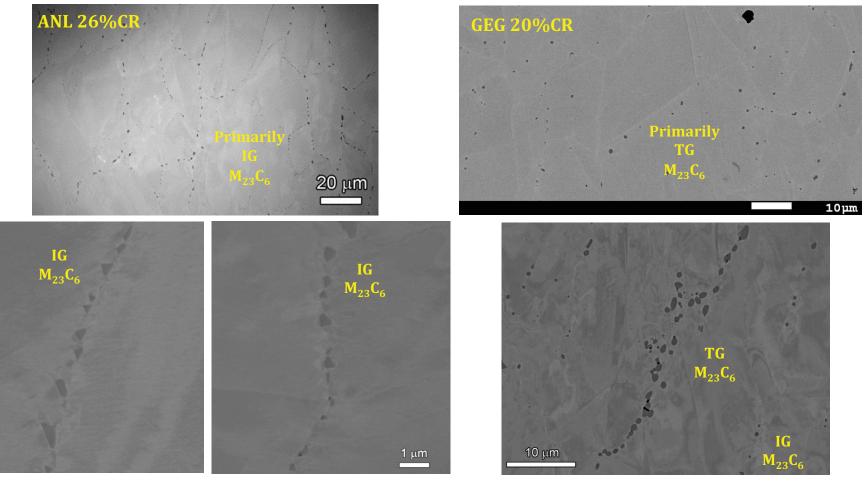


Example Microstructures: ANL 26%CR Plate at Crack Plane


Consistent microstructure, no indication of significant banding in region corresponding to PNNL specimen crack growth plane

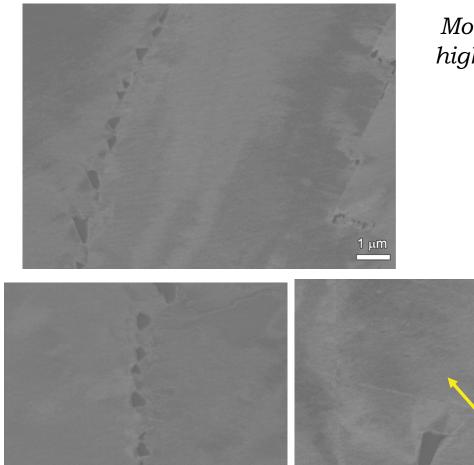
Moderate-to-high density of grain boundary carbides 100 µm

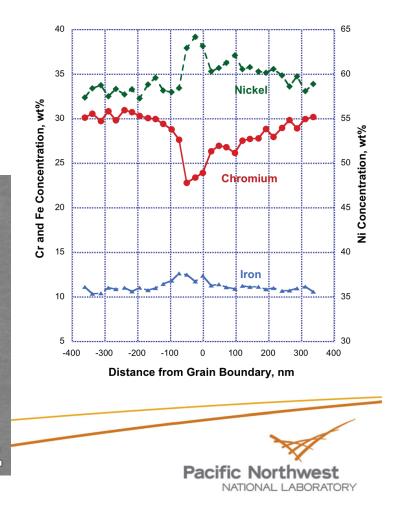
grain boundary


 $M_{23}C_{6}$

NATIONAL LABORATORY

0.5 µm


Precipitation Microstructures in ANL 26%CR and GEG 20%CR Alloy 690 Plates


SEM examinations reveal that the ANL alloy 690 plate has a high density of Cr carbides at <u>nearly all high-energy</u> grain boundaries, while the GEG plate has a low density of carbides on <u>most grain</u> boundaries.

Pacific Northwest NATIONAL LABORATORY

Grain Boundary Microstructure/Chemistry for ANL 26%CR Plate at Crack Plane

Most random grain boundaries have a high density of discrete $M_{23}C_6$ carbides and significant Cr depletion.

PNNL Characterization Actvities: Examples for Alloy 690 Materials

Initial Alloy 690 Microstructures

- As-received thermally treated (TT), solution annealed (SA) or desensitized alloy 690 CRDM tubing
- As-received alloy 690 mill annealed (MA) plate heats

Cold Work Effects on Alloy 690 Microstructures

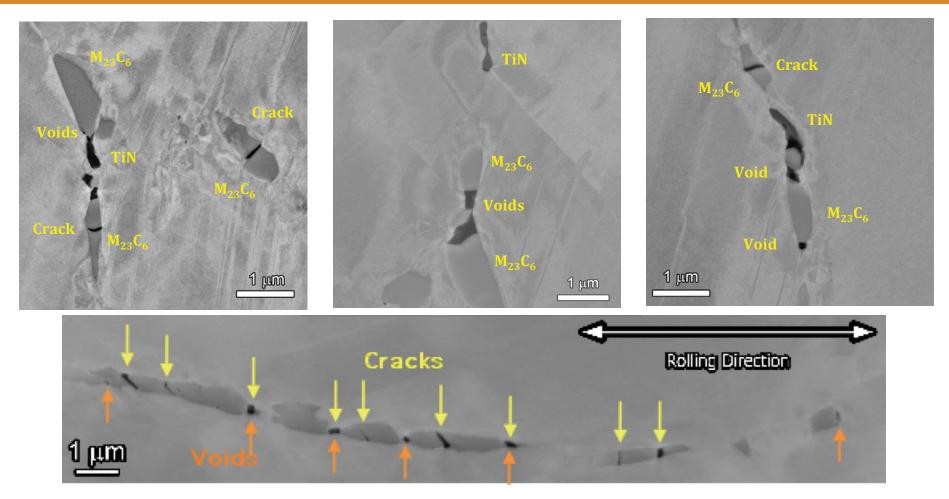
- 26%CR ANL (NX3297HK12) and 20%CR GEG (B25K) heats
- 17-31%CR CRDM alloy 690TT and alloy 690SA, influence of recovery anneal after 31%CR alloy 690TT (heat RE243)

SCC Crack and Crack-Tip Exams on Alloy 690

SCC morphology and crack path interactions with CR damage

Microstructure Characterizations for CR Alloy 690: ANL and GEG Plate Heats

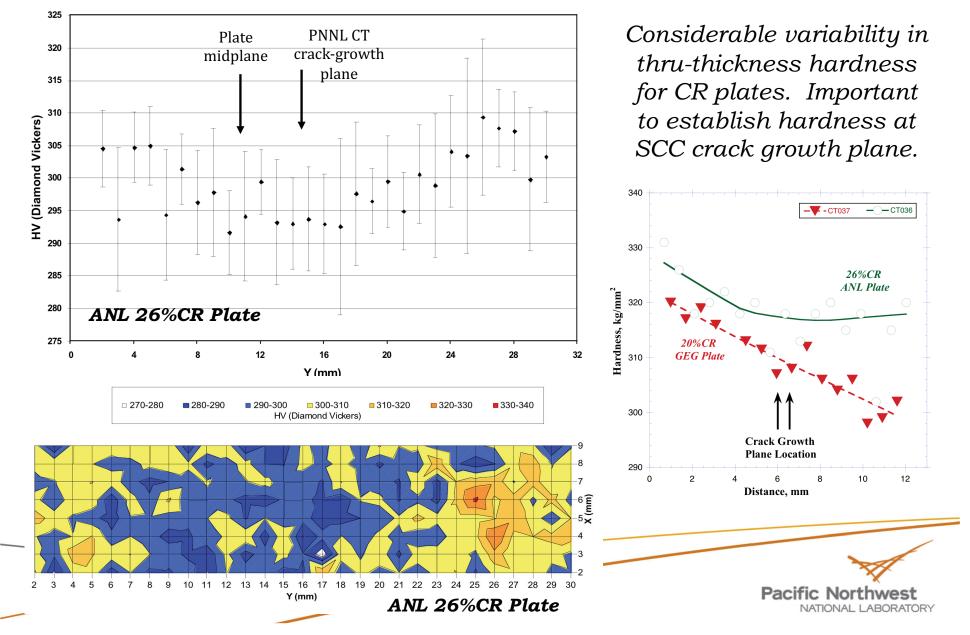
Alloy 690 Bar Heat NX3297HK12 (ANL): As-received, MA condition + 26%CR


Microstructural Characteristic	Measurement Technique	Description
Grain Shape/Size	OM	Slightly elongated grains, avg. size \sim 80 μ m
IG Precipitates	OM/SEM/TEM	Semi-continuous discrete (0.1-1 µm) M ₂₃ C ₆ ,
		occasional TiN (300-500 nm)
GB Cr Depletion	TEM-EDS	Cr minimum ~22 wt%, width 100-300 nm
TG Precipitates	OM/SEM	Many TiN (~1 μ m), often as stringers
Banding	OM/SEM	Fine grains with higher density of second
		phases near top and bottom of plate
Hardness	Vickers	315 kg/mm ² (PNNL CT crack plane)
Damage µS	SEM/TEM	High dislocation density, many GB cracked
		carbides and voids, many cracked matrix TiN
Strain	EBSD	High strain levels in matrix increasing at GBs,
Distribution		also local high strain at large matrix nitrides.

Alloy 690 Bar Heat B25K (GEG): As-received, MA condition + 20%CR

Microstructural CharacteristicMeasurement TechniqueDescriptionGrain Shape/SizeOMSlightly elongated grains, avg. size ~70 μmIG PrecipitatesOM/SEM/TEMWell-spaced, discrete (100-500 nm) M ₂₃ C ₆ , higher density in areas, few TiN (200 nm)GB Cr DepletionTEM-EDSNone for most GBs, certain GBs show areas with M ₂₃ C ₆ and some depletionTG PrecipitatesOM/SEMMany discrete (100-500 nm) M ₂₃ C ₆ , few random TiN or Ti carbonitrides (1-10 μm)BandingOM/SEMTiN or Ti(C,N) perpendicular to cold rolling and to CT crack-growth planeHardnessVickers307 kg/mm² (CT crack plane)Damage μSSEM/TEMHigh dislocation density, low density of GB voids, cracked GB M ₂₃ C ₆ , few cracked TiNStrain Dist.EBSDModerate strain in matrix increasing to GBs		<u> </u>	()		
IG PrecipitatesOM/SEM/TEMWell-spaced, discrete (100-500 nm) M23C6, higher density in areas, few TiN (200 nm)GB Cr DepletionTEM-EDSNone for most GBs, certain GBs show areas with M23C6 and some depletionTG PrecipitatesOM/SEMMany discrete (100-500 nm) M23C6, few random TiN or Ti carbonitrides (1-10 µm)BandingOM/SEMTiN or Ti(C,N) perpendicular to cold rolling and to CT crack-growth planeHardnessVickers307 kg/mm² (CT crack plane)Damage µSSEM/TEMHigh dislocation density, low density of GB voids, cracked GB M23C6, few cracked TiN				Description	
Answerhigher density in areas, few TiN (200 nm)GB Cr DepletionTEM-EDSNone for most GBs, certain GBs show areas with M23C6 and some depletionTG PrecipitatesOM/SEMMany discrete (100-500 nm) M23C6, few random TiN or Ti carbonitrides (1-10 μm)BandingOM/SEMTiN or Ti(C,N) perpendicular to cold rolling and to CT crack-growth planeHardnessVickers307 kg/mm² (CT crack plane)Damage μSSEM/TEMHigh dislocation density, low density of GB voids, cracked GB M23C6, few cracked TiN		Grain Shape/Size	OM	Slightly elongated grains, avg. size \sim 70 µm]
GB Cr DepletionTEM-EDSNone for most GBs, certain GBs show areas with M23C6 and some depletionTG PrecipitatesOM/SEMMany discrete (100-500 nm) M23C6, few random TiN or Ti carbonitrides (1-10 μm)BandingOM/SEMTiN or Ti(C,N) perpendicular to cold rolling and to CT crack-growth planeHardnessVickers307 kg/mm² (CT crack plane)Damage μSSEM/TEMHigh dislocation density, low density of GB voids, cracked GB M23C6, few cracked TiN		IG Precipitates	OM/SEM/TEM	Well-spaced, discrete (100-500 nm) M ₂₃ C ₆ ,	
Image μSwith M23C6 and some depletionTG PrecipitatesOM/SEMMany discrete (100-500 nm) M23C6, few random TiN or Ti carbonitrides (1-10 μm)BandingOM/SEMTiN or Ti(C,N) perpendicular to cold rolling and to CT crack-growth planeHardnessVickers307 kg/mm² (CT crack plane)Damage μSSEM/TEMHigh dislocation density, low density of GB voids, cracked GB M23C6, few cracked TiN				higher density in areas, few TiN (200 nm)	
TG PrecipitatesOM/SEMMany discrete (100-500 nm) M23C6, few random TiN or Ti carbonitrides (1-10 μm)BandingOM/SEMTiN or Ti(C,N) perpendicular to cold rolling and to CT crack-growth planeHardnessVickers307 kg/mm² (CT crack plane)Damage μSSEM/TEMHigh dislocation density, low density of GB voids, cracked GB M23C6, few cracked TiN		GB Cr Depletion	TEM-EDS	None for most GBs, certain GBs show areas	
Image μS Image μS <t< td=""><td></td><td>_</td><td></td><td>with M₂₃C₆ and some depletion</td><td></td></t<>		_		with M ₂₃ C ₆ and some depletion	
BandingOM/SEMTiN or Ti(C,N) perpendicular to cold rolling and to CT crack-growth planeHardnessVickers307 kg/mm² (CT crack plane)Damage μSSEM/TEMHigh dislocation density, low density of GB voids, cracked GB M23C6, few cracked TiN		TG Precipitates	OM/SEM	Many discrete (100-500 nm) M ₂₃ C ₆ , few	
and to CT crack-growth plane Hardness Vickers 307 kg/mm² (CT crack plane) Damage μS SEM/TEM High dislocation density, low density of GB voids, cracked GB M ₂₃ C ₆ , few cracked TiN				random TiN or Ti carbonitrides (1-10 μm)	
Hardness Vickers 307 kg/mm² (CT crack plane) Damage μS SEM/TEM High dislocation density, low density of GB voids, cracked GB M ₂₃ C ₆ , few cracked TiN		Banding	OM/SEM	TiN or Ti(C,N) perpendicular to cold rolling	
Damage μS SEM/TEM High dislocation density, low density of GB voids, cracked GB M ₂₃ C ₆ , few cracked TiN				and to CT crack-growth plane	
voids, cracked GB M ₂₃ C ₆ , few cracked TiN		Hardness	Vickers	307 kg/mm ² (CT crack plane)	
		Damage µS	SEM/TEM	High dislocation density, low density of GB	
Strain Dist. EBSD Moderate strain in matrix increasing to GBs Pacific Northwest				voids, cracked GB M ₂₃ C ₆ , few cracked TiN	
	_	Strain Dist.	EBSD	Moderate strain in matrix increasing to GBs	Pacific Northwest

NATIONAL LABORATORY


Grain Boundary Damage Microstructures in Cold Rolled ANL 26%CR Alloy 690

ANL 26%CR plate shows the highest degree of "permanent" grain boundary damage with the minimum spacing (~1 μm) between voids and cracked carbides.

> Pacific Northwest NATIONAL LABORATORY

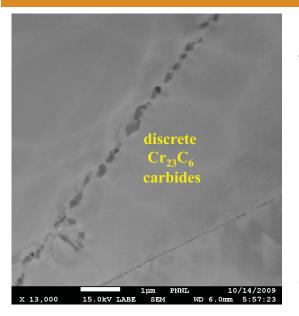
Hardness Measurements for CR Alloy 690 Plate Materials

PNNL Characterization Actvities: Examples for Alloy 690 Materials

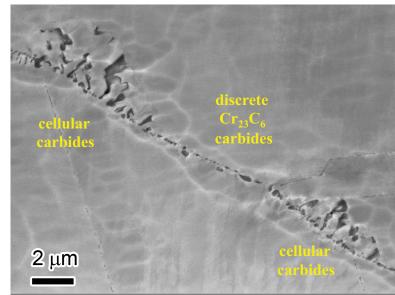
Initial Alloy 690 Microstructures

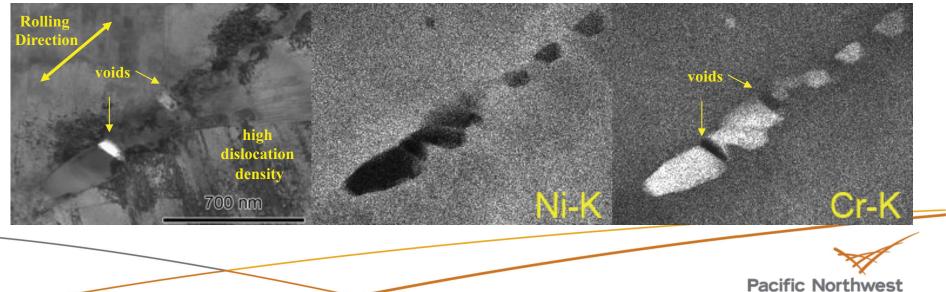
- As-received thermally treated (TT), solution annealed (SA) or desensitized alloy 690 CRDM tubing
- As-received alloy 690 mill annealed (MA) plate heats

Cold Work Effects on Alloy 690 Microstructures


- 26%CR ANL (NX3297HK12) and 20%CR GEG (B25K) heats
- 17-31%CR CRDM alloy 690TT and alloy 690SA, influence of recovery anneal after 31%CR alloy 690TT (heat RE243)

SCC Crack and Crack-Tip Exams on Alloy 690


SCC morphology and crack path interactions with CR damage



Cold Rolling Effects on Microstructure of Alloy 690TT CRDM

Nearly continuous $Cr_{23}C_6$ carbides along high-energy grain boundaries with regions of cellular ppt. Cold rolling produces voids between carbides and some cracked ppts.

NATIONAL LABORATORY

Microstructure Characterizations for CR CRDM Alloy 690TT Heat RE243

Alloy 690 CRDM Heat RE243: As-received, TT condition + 17%CR

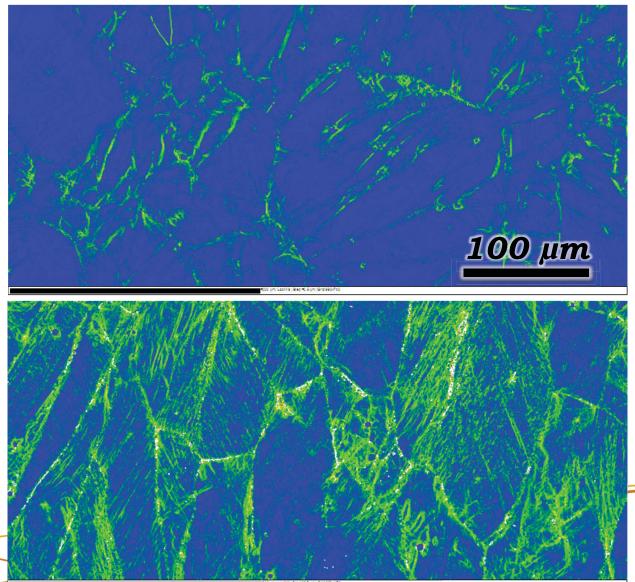
Microstructural Characteristic	Measurement Technique	Description
Grain Shape/Size	OM	Equiaxed grains, avg. size ~100 μm
IG Precipitates	OM/SEM/TEM	Semi-continuous discrete (100-200 nm) and
		cellular M ₂₃ C ₆ , occasional TiN (200-500 nm)
GB Cr Depletion	TEM-EDS	Cr minimum ~21-24 wt%, width 300-400 nm
TG Precipitates	OM/SEM	Few random TiN or Ti carbonitrides (\sim 1 μ m)
Hardness	Vickers	250 kg/mm ² (CT crack plane)
Damage µS	SEM/TEM	High dislocation density, few GB voids, few
		cracked GB M ₂₃ C ₆ , and matrix/GB TiN
Strain Dist.	EBSD	Moderate in matrix increasing at GBs

Alloy 690 CRDM Heat RE243: As-received, TT condition + 31%CR

	Microstructural	Measurement	Description
	Characteristic	Technique	Description
	Grain Shape/Size	ОМ	Slightly elongated grains, avg. size $\sim 100 \ \mu m$
	IG Precipitates	OM/SEM/TEM	Semi-continuous discrete (100-200 nm) and
			cellular M ₂₃ C ₆ , occasional TiN (200-500 nm)
	GB Cr Depletion	TEM-EDS	Cr minimum ~21-24 wt%, width 300-400 nm
	TG Precipitates	OM/SEM	Few random TiN or Ti carbonitrides (~1 μm)
Ī	Hardness	Vickers	300 kg/mm ² (CT crack plane)
	Damage µS	SEM/TEM	High dislocation density, many GB voids and
			some cracked GB M ₂₃ C ₆ , and matrix TiN
	Strain Dist.	EBSD	High strain levels in matrix increasing at GBs

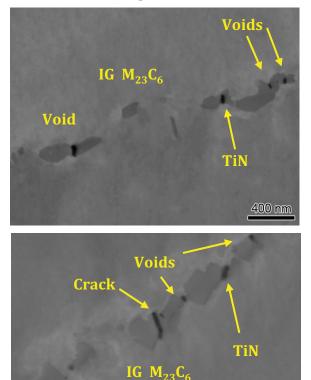
Pacific Nor

NATIONAL LABORATORY

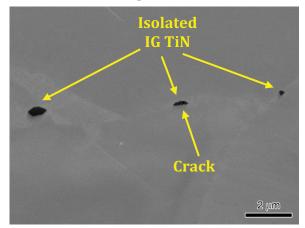

Effect of Cold Rolling on EBSD-Indicated Strain

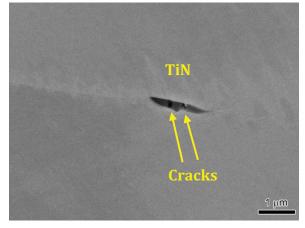
Strain is linearly proportional to misorientation parameter

> 17%CR Alloy 690TT **—** 250 kg/mm²


- Significant difference in strains between 17% and 31%CR.
- Strains observed to develop first at GBs.

31%CR Alloy 690TT **—** 300 kg/mm² Misorientation represented by green intensity




Permanent GB Damage Microstructures in Highly CR Alloy 690TT versus Alloy 690SA

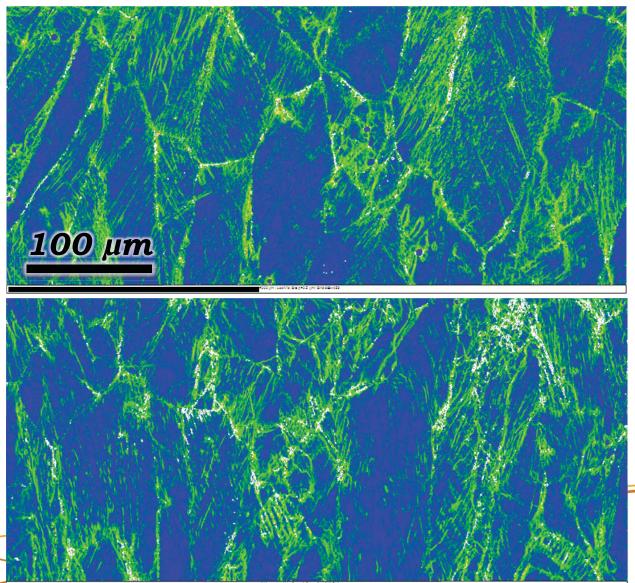
30%CR alloy 690TT CRDM

30%CR alloy 690SA CRDM

A moderate density of GB voids and some cracked carbides present in 30-31%CR alloy 690TT materials versus <u>isolated</u> observations of cracked GB TiN particles in 30-31%CR alloy 690SA materials.

400 nm

Pacific Northwest NATIONAL LABORATORY


EBSD-Indicated Strain in Highly Cold Rolled TT and SA Materials

Strain is linearly proportional to misorientation parameter

> 31%CR Alloy 690TT **---**300 kg/mm²

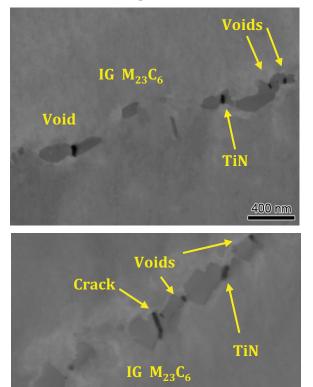
Similar level of indicated strain, perhaps more continuous GB distribution for TT.

31%CR Alloy 690SA **—** 290 kg/mm² Misorientation represented by green intensity

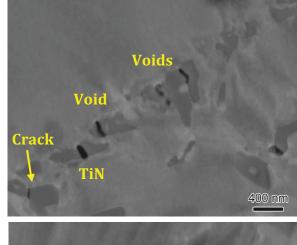
Microstructure Characterizations for CR CRDM Alloy 690TT Heat RE243

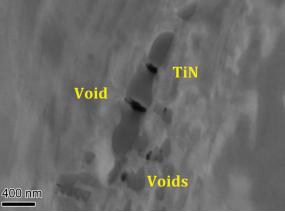
Alloy 690 CRDM Heat RE243: As-received, TT condition + 31%CR

Microstructural Characteristic	Measurement Technique	Description
Grain Shape/Size	OM	Slightly elongated grains, avg. size $\sim 100 \ \mu m$
IG Precipitates	OM/SEM/TEM	Semi-continuous discrete (100-200 nm) and
		cellular M ₂₃ C ₆ , occasional TiN (200-500 nm)
GB Cr Depletion	TEM-EDS	Cr minimum ~21-24 wt%, width 300-400 nm
TG Precipitates	OM/SEM	Few random TiN or Ti carbonitrides (~1 μ m)
Hardness	Vickers	300 kg/mm ² (CT crack plane)
Damage µS	SEM/TEM	High dislocation density, many GB voids and
		some cracked GB M ₂₃ C ₆ , and matrix TiN
Strain Dist.	EBSD	High strain levels in matrix increasing at GBs


Alloy 690 CRDM Heat RE243: As-received, TT condition + 31%CR + 700C/1h

Microstructural	Measurement	Description
Characteristic	Technique	Description
Grain Shape/Size	ОМ	Slightly elongated grains, avg. size $\sim 100 \ \mu m$
IG Precipitates	SEM	Semi-continuous discrete (100-200 nm) and
		cellular M ₂₃ C ₆ , occasional TiN (200-500 nm)
GB Cr Depletion	TEM-EDS	Not measured, assume similar to TT
TG Precipitates	SEM	Few random TiN or Ti carbonitrides (~1 μm)
Hardness	Vickers	~270 kg/mm ²
Damage µS	SEM	High dislocation density, many GB voids and
		some cracked GB M ₂₃ C ₆ , and matrix TiN
Strain Dist.	EBSD	Moderate strain level increasing at GBs


Pacific Northwest

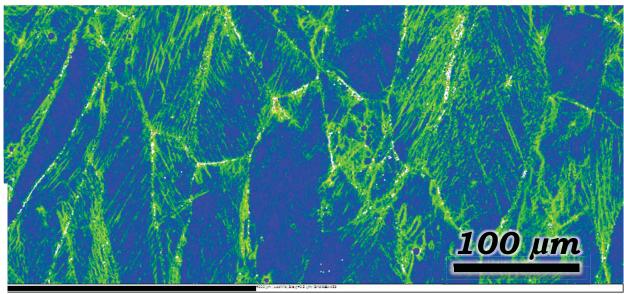

Effect of Recovery Anneal on the Permanent GB Damage Microstructures

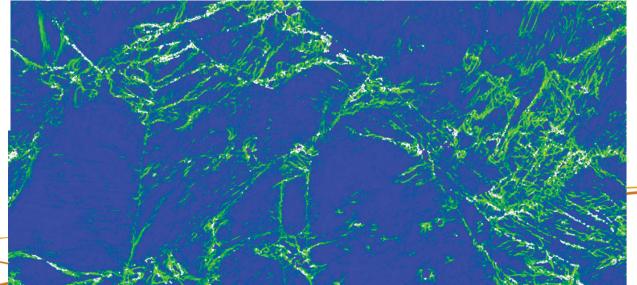
31%CR alloy 690TT CRDM

31%CR alloy 690TT + Recovery Anneal

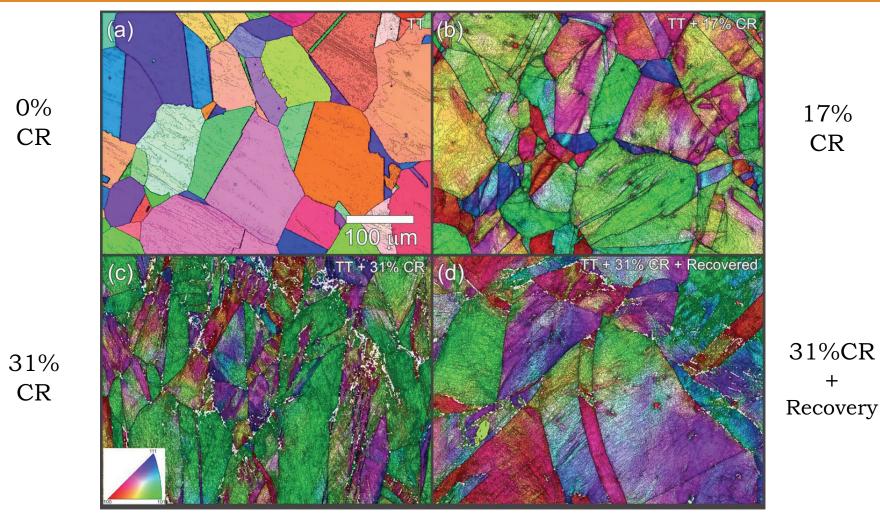
A moderate density of GB voids and some cracked carbides present in 30-31%CR alloy 690TT material and similar density remains after the post-CR 700°C recovery anneal.

400 nm



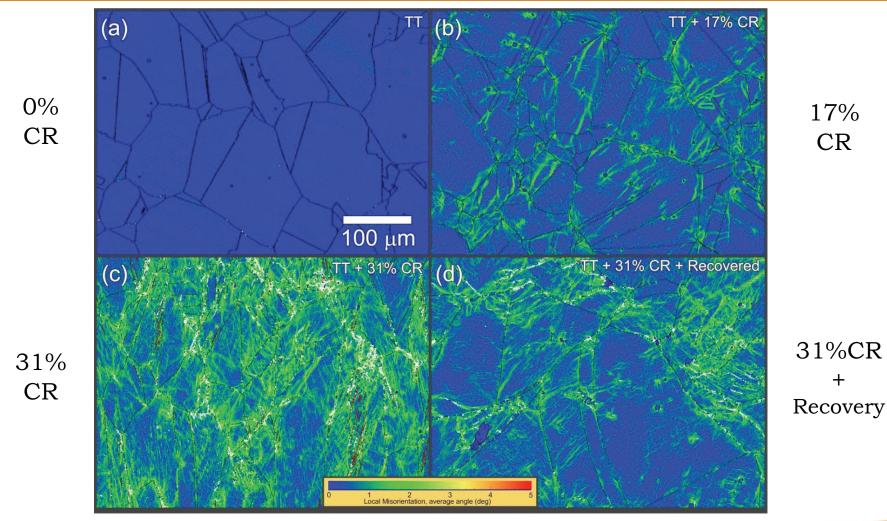

Effect of Recovery Treatment on EBSD-Indicated Strain

Strain is linearly proportional to misorientation parameter


One hour "recovery" heat treatment was applied after 31%CR to produce some dislocation relaxation/reorganization. Permanent GB damage (voids and cracked carbides) remains.

31%CR Alloy 690TT, -----700°C/1 hr/AC 270 kg/mm² Misorientation represented by green intensity

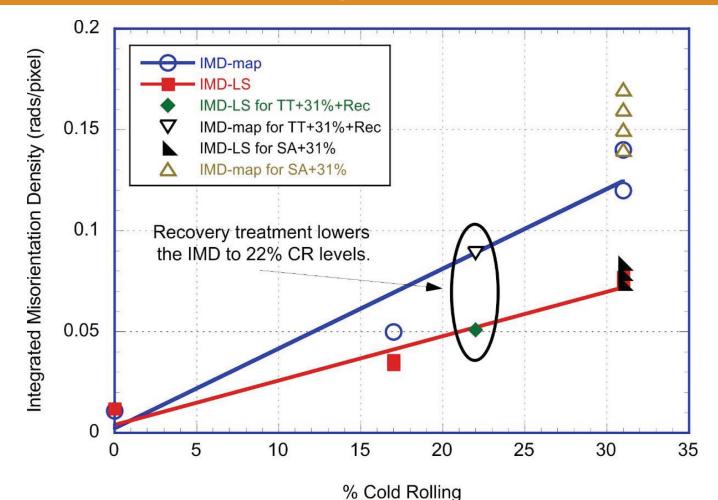
Influence of Cold Rolling on Strain Distributions for Alloy 690TT CRDM Tubing



EBSD TD inverse pole figure maps showing significant change from 17-31%CR and minor effect of recovery anneal.

Pacific Northwest NATIONAL LABORATORY

Influence of Cold Rolling on Strain Distributions for Alloy 690TT CRDM Tubing



Local misorientation maps showing significant change from 17-31%CR and minor effect of recovery anneal.

Pacific Northwest

NATIONAL LABORATORY

Influence of Cold Rolling on Strain Distributions for Alloy 690TT CRDM Tubing

Data from line scans and maps are included, and both indicate that a linear relationship can be inferred between the integrated misorientation density (IMD) and increasing levels of cold rolling.

NATIONAL LABORATORY

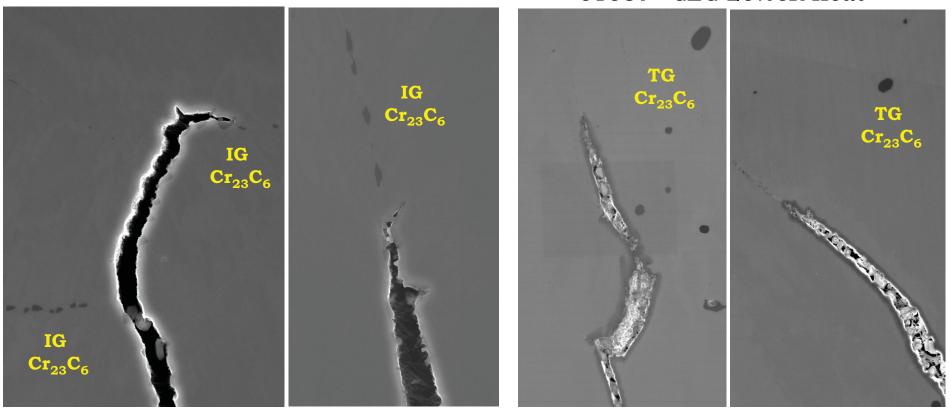
PNNL Characterization Actvities: Examples for Alloy 690 Materials

Initial Alloy 690 Microstructures

- As-received thermally treated (TT), solution annealed (SA) or desensitized alloy 690 CRDM tubing
- As-received alloy 690 mill annealed (MA) plate heats

Cold Work Effects on Alloy 690 Microstructures

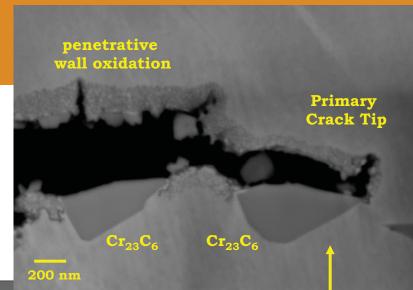
- 26%CR ANL (NX3297HK12) and 20%CR GEG (B25K) heats
- 17-31%CR CRDM alloy 690TT and alloy 690SA, influence of recovery anneal after 31%CR alloy 690TT (heat RE243)

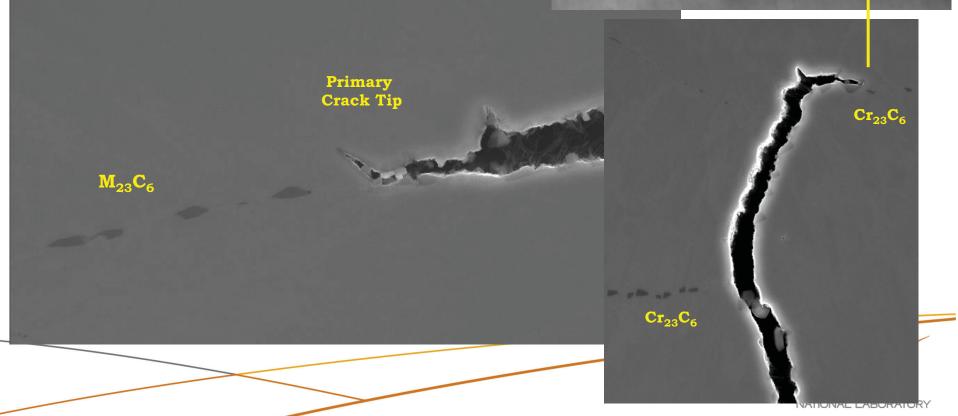

SCC Crack and Crack-Tip Exams on Alloy 690

SCC morphology and crack path interactions with CR damage

SCC Crack Tips in Alloy 690 CR Plates

CT036 - ANL 26%CR Heat

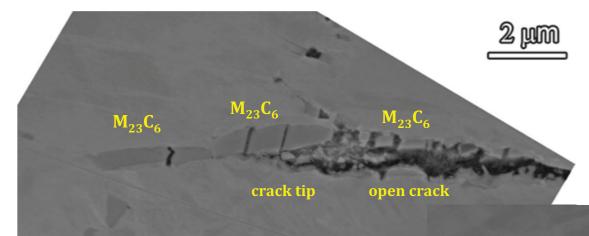

IGSCC in both cases with semi-continuous GB carbides for the ANL sample and only isolated GB carbides for the GEG material. Cracks are open to tips, but contain crystallites and needle-shaped filaments as fill material.


Pacific North NATIONAL LABORATORY

CT037 - GEG 20%CR Heat

SEM Images at SCC Tips in ANL 26%CR Alloy 690

SCC propagates along grain boundaries and carbide/boundary interfaces, no evidence for enhanced crack/void formation ahead of crack tips. Tips often blunt/branched, ending near carbides.



SCC Tip in ANL 26%CR Alloy 690 Plate

Cracked

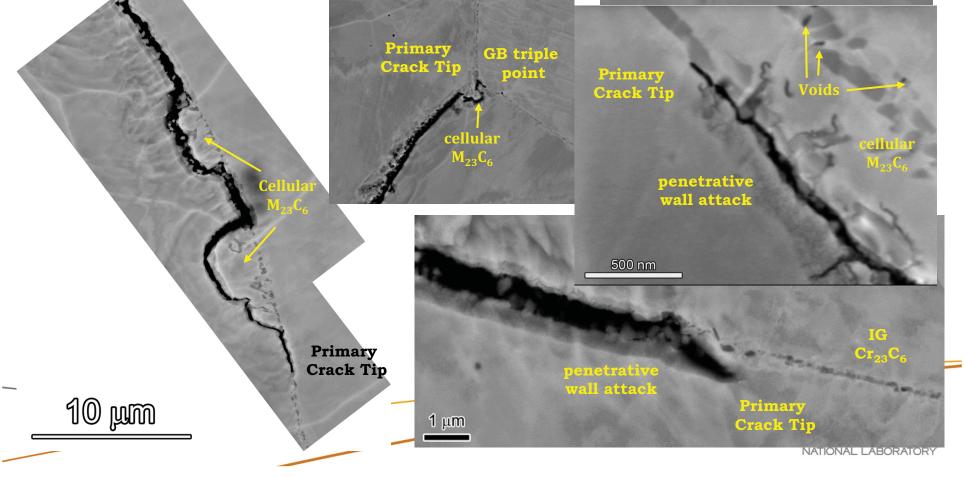
 $M_{23}C_{e}$

Interaction of IGSCC crack with preexisting cracked carbides in the ANL 26%CR alloy 690 material.

1 µm

NATIONAL LABORATORY

Pacific Northwest


Cracked

 $M_{23}C_{6}$

SCC propagates along grain boundaries and carbide/ boundary interfaces, no evidence for enhanced crack/void formation ahead of crack tips. Tips often blunt/branched, ending near carbides.

SEM Images at SCC Crack Tips in 30%CR Alloy 690 CRDM Tube

SCC propagates along grain boundaries and carbide/boundary interfaces, follows migrated boundaries around cellular carbides in 30%CR CRDM material. No evidence for enhanced crack/ void formation ahead of crack tips. IG Cr₂₃C₆ Secondary Crack Tip

IGSCC Crack Tip in 30%CR Alloy 690TT

Grain boundary characteristics have been examined ahead of IGSCC crack tips after further ion milling. Extremely high dislocation densities are present along with isolated voids from initial cold rolling. extremely high dislocation density

tip

100 nm

Crac

No evidence has been found for <u>enhanced</u> void or crack formation ahead of the oxidized IGSCC tips.

Pacific Northv NATIONAL LABORATORY

200 nm

PNNL Characterization Actvities: Examples for Alloy 690 Materials

Microstructural Characterization

- Essential for material assessment and comparisons including heatto-heat, processing and heat treatment effects.
- Important to assess general microstructure (grain size/shape, banding), precipitate microstructures (size/distribution IG and TG), local microchemistry (grain boundary depletion/segregation), matrix hardness and strain distributions.
- Open question how detailed characterizations should be on most materials, depends on specific issues being examined.

Characterization Methods

- Optical metallography, SEM and EBSD for general microstructure
- SEM and TEM for precipitate microstructure
- TEM for grain boundary microchemistry and phase identification
- EBSD for strain distributions
- Optical, SEM and TEM of SCC cracks and crack tips