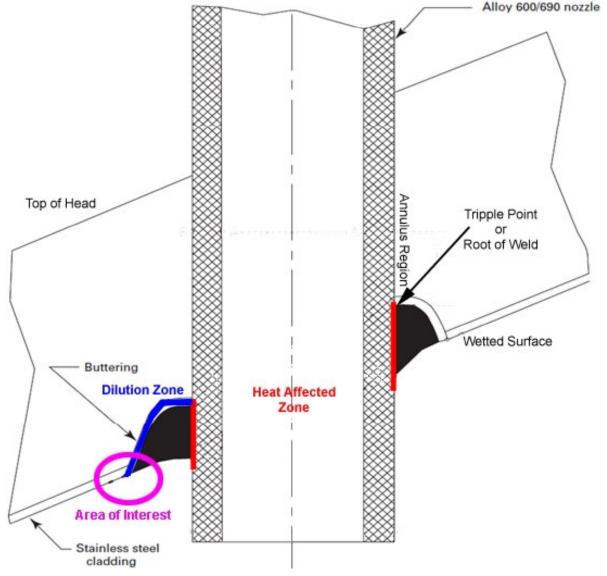

Regulatory Perspective Regarding Alloy 690 And Associated Weld Materials

RES Alloy 690 PWSCC Research Meeting Rockville, MD June 6th, 2011

Jay Collins Division of Component Integrity Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission

PWR Ni-base Alloy Regulatory Actions


Transitioning Requirements

Area	Current	Transitioning To	
Upper Head	ASME CC N-729-1		
Pressurizer	MRP-139 ASME CC N-722	ASME CC N-722-1 & N-770-1	
Lower Head	ASME CC N-722	ASME CC N-722-1	
DM Welds	MRP-139 (TI 2525/172)	ASME CC N-770-1	

Challenges - Upper RPV Head

- Heat Affected
 Zone
 - Testing applicable?
- Dilution Zone
 - LAS to A52/152
 - SS to A52/152
 - What is dilution type at the Area of Interest?

Challenges - New Dissimilar Metal Welds

Dilution Zones

- LAS to A52/152
- SS to A52/152
- Dilution zone
 in the Area of
 Interest for all welds?
- Alloy 182 Buttering Alloy 182 Buttering Alloy 82 & 182 Field Weld Dilution Zones SS - A52/152 Low-Alloy Steel Nozzle Small Circumferential Crack Blunts at Low-Alloy Steel Alloy 82 & 182 Field Weld Dilution Zones SS - A52/152 Stainless Steel Pipe Extent of Axial Crack Area of Interest

a. VC Summer Butt Weld

- Inlays/Onlays
 - Weld defects
 - Thin layer dilution

Testing Goals

- Sufficient Heats Tested for crack growth rate curves or improvement factors
 - Range of Vendor heats and welds
 - 26 heats tested for MRP-55
 - 17 welds tested for MRP-115
 - Consider binning results due to
 - HAZ
 - Dilution Effects
- 1-D Cold Work Issue

Testing Goals (con't)

• Alloy 152/52

- Dilution layer testing
 - Mitigation interfaces (Alloy 82/182, SS)
 - Low alloy steel (buttering and narrow groove effects)
- Consider effects of hot cracking and ductility dip cracking
 - Thin mitigation layers
- Testing on 52M, 52MSS, 152i/52i, and new combinations

Scheduled Testing

March – Sept 2011	Oct-March 2012	April – Sept 2012	Oct – March 2013	April – Sept 2013
ANL Alloy 152 V2 & SM Alloy 52MSS	CIEMAT 152/690 HAZ & 52/690 HAZ	KAPL 52/690 HAZ & SM 52MSS/690 HAZ	52M/182 Overlay #1 & #2	52M/182 Inlay #1 & #2
MHI Alloy 152 & 20%CF Alloy 152	30%Tensile & 30%CF CRDM 690	As-Rec 690TT Sumi + EPRI Plate	As-Welded Sumi 52M & 10%CF 152	Weld Modifications #1 & #2
17%CR CRDM 690 & 31%CR 690 + 700C/1h Recovery	30%%CR CRDM & 20%CR SA - B25K Plate	30%%CR CRDM Carbide2 & SA+TT B25K Plate	Alloy 52M Weld Defects, Duct. Dip & Solidification	Alloy 52M Weld Defects, Duct. Dip & Solidification
ENSA 22%CR & 32%CF 690 Plate	152/52/LAS Dilution Zone #1 & #2	MHI 152/304SS & KAPL 52M/316SS	One-Pass Narrow Gap #1 & #2	Open - Service Material Issues
Overlay 52M/182	Alloy 690 HAZ CRDM	10 & 20% Tensile CRDM 690	Mod. 690 CRDM & B25K Plate	Open - Service Material Issues
ANL 152 V2	Overlay 52M/182	As-Received Alloy 690TT		
ANL 152/690 HAZ	Overlay 52M/182 Dilution Zone	Weld Parameters #1	Draft schedule of future tests to show NRC plans to address goals and	
	As-Rec. ANL Plate	As-Welded MHI Alloy 152		
	Alloy 152/LAS Dilution	Weld Parameters #2		
			audicss	goals and

challenges

Discussion Items for This Meeting

- Intermittently, can this body reach consensus and publish summary results for initiation and crack growth rates?
 - Flaw Evaluations
 - Surface breaking fabrication defects
 - Inspection requirements
 - Probabilistic Codes (e.g., XLPR development)
- EPRI materials collection
 - Discuss plans to reserve materials for testing
 - Status on identifying preferred materials