

Public Workshop on Seismic Risk Evaluations for Operating Reactors

May 18, 2011

Objectives of Meeting

- Provide a forum to discuss
 - Information needs for Regulatory Analysis
 - Potential methods to obtain necessary information
 - Timelines/schedules for results
 - Long-term strategy to address new information
- Obtain feedback from stakeholders

Presentation Outline

- Overview of Generic Issue (GI)199
- Information Needs for GI-199
- Possible method(s) to be used in developing requested information
 - ➤ Seismic hazard methodology
 - ➤ Plant evaluation methodology
 - Schedule and Strategies for overcoming resource challenges

The Generic Issues Program (GIP)

- Agency-wide program administered by Office of Nuclear Regulatory Research (RES), implemented by Management Directive 6.4
- Value Added
 - Advance understanding of the issue
 - Find the best place for the issue to be worked
 - Develop NRC consensus
 - Engage stakeholders

(http://www.nrc.gov/about-nrc/regulatory/gen-issues.html)

Generic Issues Program Stages

- 1. Identification
- 2. Acceptance
- 3. Screening
- 4. Safety/Risk Assessment
 - Issue Analyzed
 - Paneled, Report Issued
 - Recommendations Endorsed

Overview of Generic Issue 199 Safety/Risk Assessment Results

- Operating power plants are safe
- Though still small, some seismic hazard estimates have increased
- Assessment of GI-199 will continue
 - Information is needed to perform regulatory assessments
 - NRC will request the needed information

Information Needs for Proposed Generic Letter

- Updated site specific hazard curves and response spectra
- Fragility information
- Contributors to seismic risk
- Identification of potential plant-specific improvements

Seismic Hazard Methodology

- Perform PSHA to develop site-specific base rock hazard curves
 - CEUS-Seismic Source Characterization (2011)
 - Local refinements unnecessary
 - EPRI (2004, 2006) Ground Motion Prediction Equations
- Perform site response to determine control point elevation hazard curves
 - Site amplification curves
 - Base on original site investigations
 - Adequately incorporate uncertainties
 - Develop over broad range of annual frequencies
- Limited CAV filtering

Seismic Hazard Methodology (cont.)

- Perform deaggregation to determine low- and high-frequency Controlling Earthquakes at frequencies of 10⁻⁴/yr and 10⁻⁵/yr
- Develop performance-based Ground Motion Response Spectra (GMRS) using RG 1.208
- Hazard Screening Evaluation
 - Compare GMRS with SSE
- Use plant specific site corrected hazard curves for plant evaluation

Attributes of Plant Evaluation Methodologies

- Should be able to be applied consistently and uniformly across the plants
 - So that comparison of results is meaningful
 - Should meet provisions of ASME/ANS standard and guidance of RG 1.200
- Provide robust measures of plant seismic risk in-terms of core damage frequency distribution and containment performance
 - Can be used in subsequent regulatory analysis
 - Provide meaningful comparison with other initiators
 - Can be extended to full Level 2 or Level 3, if necessary

Attributes of Plant Evaluation Methodologies (Cont.)

- Should have an integrated model which includes all systems (both safety and non-safety) that are used in plant response to the seismic initiating event and event progression
 - Focus on total plant behavior to get more realistic understanding of accident progression and post-accident response.
 - Develop effective accident mitigation and management strategies
- Should be an integrated assessment of design, seismic capacity, equipment reliability, operating procedures, operator actions, maintenance, and as-built condition
 - To identify contributors to the accident sequences
 - To identify potential improvements to hardware, operating procedures, training, etc.

Attributes of Plant Evaluation Methodologies (Cont.)

- Should be capable of addressing secondary effects, such as seismic-induced fires, floods, and spent-fuel pool sequences
- Should realistically reflect effects of current ground motion in responses and fragilities
- Should be capable of being easily used to evaluate effects of new perception of seismic hazard and ground motions

Available Methods

- Seismic PRA
- Enhanced Seismic Margin (ASME/ANS Standard)
- Seismic Margin Methods
 - EPRI Success Path
 - NRC Margin Method
- Others Combination of methods

Limitations of Margin Methods

- Estimates of CDFs are not robust and, not necessarily bounding
- Limited to two initiators transients and small-LOCA
- Robust treatment of non-seismic failures and operator actions difficult
- Extension to containment and spent fuel pool not possible
- "EPRI Success Path" approaches will not get us there

Implementation Challenges

- Bases for plant evaluation method
- Availability of expert resources (particularly for fragility evaluations and peer reviews)
- Time to complete analysis

Strategies for Overcoming Challenges

- Prioritization of plants
- Team approach for similar designs
- Submittal of information in stages

Schedule/Timeline

- Issue Generic Letter End of 2011
- Provide seismic hazard results 180 days
 - Screening evaluation
 - Selection of plant evaluation methodology
- Perform plant evaluation staggered schedules