ATTACHMENT (6)

UNIT 1 PRESSURIZER HEATER SLEEVE AS-LEFT J-GROOVE WELD

FLAW EVALUATION FOR IDTB REPAIR – NON-PROPRIETARY

.

A AREVA CALCULATION SUMMARY	SHEET (CSS)
Document No. <u>32 - 9156231 - 000</u> Safet	y Related: 🛛 Yes 🗌 No
Title CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Eva	luation for IDTB Repair
PURPOSE AND SUMMARY OF RESULTS:	
Purpose	
The purpose of the present analysis is to determine from a fracture mechanics v degraded J-groove weld material in the Calvert Cliffs Unit 1 pressurizer (PZR) ver a heater sleeve by the ID temper bead weld (IDTB) procedure. It is postulated that combine with a large stress corrosion crack in the weld and cladding to form propagate into the low alloy steel head by fatigue crack growth under cyclic loading	iewpoint the suitability of leaving essel head following the repair of at a small flaw in the head would a radial corner flaw that would ng conditions.
This document provides a non-propriety version of AREVA NP INC document 32-4	9116467-003.
Summary of Results	
Based on a combination of linear-elastic and elastic-plastic fracture mechanics (postulated remaining flaw in the original Alloy 82/182 J-groove weld and cladding PZR lower head is considered to be acceptable for at least { } years of operat flaw formed in the low alloy steel PZR lower head. The controlling loading con insurge transient Insurge1, for which it was shown that with safety factors of secondary loads that the applied tearing modulus (9.36 for uphill side, and 7.044 than the tearing modulus of the low alloy steel head material (9.38 for uphill side, and than the tearing modulus of the low alloy steel head material (9.38 for uphill side, and than the tearing modulus of the low alloy steel head material (9.38 for uphill side, and than the tearing modulus of the low alloy steel head material (9.38 for uphill side, and than the tearing modulus of the low alloy steel head material (9.38 for uphill side, and than the tearing modulus of the low alloy steel head material (9.38 for uphill side, and the tearing modulus of the low alloy steel head material (9.38 for uphill side, and the tearing modulus of the low alloy steel head material (9.38 for uphill side) and the tearing modulus of the low alloy steel head material (9.38 for uphill side) and the tearing modulus (9.36 for uphill side) and the tearing (9.38 for uphill side) and tearing (9.38 for uphill side) a	(LEFM and EPFM) analysis of a material, the Calvert Cliffs Unit 1 ion from the time the postulated idition was determined to be the 3 on primary loads and 1.5 on 6 for downhill side) was still less and 45.736 for downhill side).
THE FOLLOWING COMPUTER CODES HAVE BEEN USED IN THIS DOCUMENT: CODE/VERSION/REV CODE/VERSION/REV ANSYS/12/0	THE DOCUMENT CONTAINS ASSUMPTIONS THAT SHALL BE VERIFIED PRIOR TO USE YES NO
<u>, , , , , , , , , , , , , , , , , , , </u>	Page 1 of 76

2012/2014

Ţ

Ū.Ľ

Controlled Document

0402-01-F01 (20697) (Rev. 015, 10/18/2010) Document No. 32-9156231-000

CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair

Review Method: Design Review (Detailed Check)

Signature Block

Name and Title (printed or typed)	Signature	P/R/A and LP/LR	Date	Pages/Sections Prepared/Reviewed/Approved
3				
Pei-Yuan Cheng Engineer III	Pin- Fran Chong	Р	3/11/11	All
	· · ·			
Heqin Xu Principal Engineer	Un Xn	R	3/11/11	All
	· ·			
T. M. Wiger Unit Manager	T.M.L.	A	5/11/11	All
	•			
·				

Note: P/R/A designates Preparer (P), Reviewer (R), Approver (A); LP/LR designates Lead Preparer (LP), Lead Reviewer (LR)

Project Manager Approval of Customer References (N/A if not applicable)

Name (printed or typed)	Title (printed or typed)	Signature	Date
N/A			

Mentoring Information (not required per 0402-01)

Name (printed or typed)	Title (printed or typed)	Mentor to: (P/R)	Signature	Date
N/R				
N/R				

민물

Page 3

CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair

Record of Revision

Revision No.	Date	Pages/Sections/ Paragraphs Changed	Brief Description / Change Authorization
ÓÓO	03/2011	All	Original release
			3
			· · · · · · · · · · · · · · · · · · ·
			¢v.

Document No. 32-9156231-000

CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair

د م منابع			Table of Contents	
				Page
SIGN		BLOCK	٢	2
RECO		F REVIS	5ION	
				0
		SLES		O
LIST	OF FIG	URES		7
- 1.0	INTR	ODUCTI	ION	8
20	ΔΝΔΙ	VTICAL		11
2.0	2 1	Strees		
	2 . I	2 1 1	Finite Element Crack Models	1⁄2
		2.1.1	Stress Manning	1/
	22	Crack (Growth Considerations	17
		221	Plastic Zone Correction	17
	2.3	Linear-	Flastic Fracture Mechanics	18
hi ini i	2.4	Elastic-	-Plastic Fracture Mechanics	
an Anna Anna		2.4.1	Screening Criteria	
.?		2.4.2	Flaw Stability and Crack Driving Force	
3.0	ASSL	JMPTIQI	NS	
	3.1	Unverif	ied Assumptions	
	3.2	Justifie	d Assumptions	
	3.3	Modelii	ng Simplifications	
4.0	DESI	GN INPL	UTS	.,,
	4.1	Materia	als	
		4.1.1	Mechanical and Properties	
		4.1.2	Reference Temperature	
		4.1.3	Fracture Toughness	24
		4.1.4	J-integral Resistance Curve	
- 4		4.1.5	Fatigue Crack Growth Rate	
	4.2	Basic G	Geometry	
lan tan tanan tanan tanan	4.3	Operat	ing Transients	
	4,4	Applied	d Stresses	

ź

Document No. 32-9156231-000

	(CCNPP-	1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDT	B Repair
			Table of Contents (continued)	
		4.4.1	Residual Stresses	
		4.4.2	Operational Stresses	
5.0	CALC	ULATIC	DNS	
	5 .1	Stress	Intensity Factor Calculations	
х	5.2	Fatigu	e Crack Growth	
	5.3	LEFM	Evaluation	
	5.4	Screer	ning Criteria for Flaw Evaluation	
	5.5	Uphill	EPFM Flaw Evaluations	
	5.6	Downh	nill EPFM Flaw Evaluations	
6.0	SUM	WARY C	OF RESULTS AND CONCLUSIONS	
	6.1	Summ	ary of Results	
	6.2	Conclu	usion	
7.0	REFE	ERENCE	Ξ\$	
APPE		: VER		
APPE	NDIX B	: CON	IPUTER USAGE	
APPE		: FINI	TE ELEMENT CRACK MODEL	
APPE	NDIX D	: STR	ESS INTENSITY FACTOR DUE TO PRESSURE	
APPE	NDIX E	: DET	AILED CRACK GROWTH CALCULATIONS	

15

Ľ

.

Ş

CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair

List of Tables

÷.

		Page
Table 1-1:	Safety Factors for Flaw Acceptance	9
Table 4-1:	Material Properties for Low Alloy Steel PZR Head	22
Table 4-2:	Material Properties for Cladding, Weld Filler, Existing Heater Sleeve	23
Table 4-3:	Operating Conditions Transients	27
Table 5-1:	Listing of Selected Stress Intensity Factors Used for Fatigue Crack Growth	31
Table 5-2:	Contribution of Crack Growth from Individual Transients	34
Table 5-3:	Uphill LEFM Flaw Evaluation	35
Table 5-4:	Downhill LEFM Flaw Evaluation	36
Table 5-5:	Uphill Screening Criteria	37
Table 5-6:	Downhill Screening Criteria	38
Table 5-7:	Uphill EPFM Flaw Evaluation	40
Table 5-8:	Detailed EPFM Evaluation for Transient Insurge1 Load Step 5 (Uphill)	42
Table 5-9:	Downhill EPFM Flaw Evaluation	45
Table 5-10	: Detailed EPFM Evaluation for Transient Insurge1 Load Step 5 (Downhill)	47
Table 6-1:	Summary of Results	49
Table D-1:	Downhill Stress Intensity Factors for Design Case Pressure	61
Table D-2:	Uphill Stress Intensity Factors for Design Case Pressure	62

	opini oress intensity i debis for Design odse i ressure	-
Table E-1:	Uphill Detailed Crack Growth	3
Table E-2:	Downhill Detailed Crack Growth	0

	CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair	··· _ 1
	List of Figures	
	Pa	ge
Figure 1-1:	ID Temper Bead Weld Repair	10
Figure 2-1:	Downhill Side Postulated Radial Flaw	12
Figure 2-2:	Uphill Side Postulated Radial Flaw	13
Figure 2-3:	Downhill Side Finite Element Crack Model	15
Figure 2-4:	Uphill Side Finite Element Crack Model	16
Figure 4-1:	Correlation of Coefficient, C, of Power Law with Charpy V-Notch Upper Shelf Energy	25
Figure 4-2:	Correlation of Exponent, m, of Power Law with Coefficient, C, and Flow Stress, σ_0	25
Figure 5-1:	Uphill Side Fatigue Crack Growth	32
Figure 5-2:	Downhill Side Fatigue Crack Growth	33
Figure 5-3:	J-T Diagram for Transient Insurge1 Load Step 5 (Uphill)	43
Figure 5-4:	J-T Diagram for Transient Insurge1 Load Step 5 (Downhill)	48
Figure C-1:	Overall Model of PZR Lower Head Penetration	56
Figure C-2:	Development of Crack Model	58
Figure C-3:	Final Finite Element Crack Models	59
<u>\</u>		
i		
		÷

4.14

CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair

1.0 INTRODUCTION

Small diameter Alloy 600 nozzles, such as Pressurizer (PZR) heater sleeves, have experienced leaks as a result of primary water stress corrosion cracking (PWSCC) at Calvert Cliffs Unit 1. AREVA will perform the modification and associated engineering analyses required for several PZR heater penetrations at Calvert Cliffs Unit 1 (CCNPP-1) as repair or mitigation [1]. AREVA will utilize the halfnozzle approach to modify the PZR heater sleeves. As shown in Figure 1-1, a portion of the existing heater sleeve will be removed, the outer portion of the penetration will be bored out larger than the original diameter to accept the replacement sleeve and accommodate the inside diameter temper bead (IDTB) weld head. The new stainless steel lower sleeve will be inserted into the penetration. The ambient temperature temper bead welding technique, using the gas tungsten arc welding (GTAW) process with stainless steel filler metal, will attach the new sleeve to the bore ID, establishing a new pressure boundary weld. The IDTB weld is disassociated from the original heater sleeve. The repair is more fully described by the design specification [1] and the design drawing [2]. Although the remnant J-groove weld would no longer be associated with the primary pressure boundary, a defect in the weld could grow into the low alloy steel PZR lower head and thereby impact the structural integrity of the remaining pressure boundary. Since a potential, or even detected, flaw in the J-groove weld can not be sized by currently available non-destructive examination techniques, it is assumed that the "as-left" condition of the remnant J-groove weld includes degraded or cracked weld material extending through the J-groove weld and the entire cladding thickness in the vicinity of the nozzle penetration.

It is postulated that a radial crack in the Alloy 82/182 weld metal would propagate by PWSCC, through the weld and cladding, to the interface between the cladding and the head material, where it is fully expected that such a crack would then blunt, or arrest, as discussed in Reference [3] for interfaces with low alloy steels. Although primary water stress corrosion cracking would not extend into the head, it is further postulated that a small fatigue initiated flaw forms in the low alloy steel head and combines with the stress corrosion crack in the weld and cladding to form a large radial flaw that would propagate into the head by fatigue crack growth under cyclic loading conditions. Linear-elastic (LEFM) and elastic-plastic (EPFM) fracture mechanics procedures are utilized to evaluate this worst case flaw.

Key features of the fracture mechanics analysis are:

- This analysis applies specifically to the PZR heater sleeve penetrations in the Calvert Cliff Unit 1 PZR lower head. A J-integral resistance curve is developed based on estimates of the Charpy V-notch upper-shelf energy for the PZR head.
- Flaw growth is calculated for a 40-year period of operation. However, the remaining life of the component will be estimated based on the flaw evaluation procedures performed in this document.
- Flaw acceptance is based on the available fracture toughness and ductile tearing resistance of the PZR lower head material considering the safety factors listed in Table 1-1.

e e

CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair

Linear-Elastic Fracture Mechanics			
Operating Condition	Evaluation Method	Fracture Toughness / K	
Normal/Upset	K _{la} fracture toughness	√10 = 3.16	
Emergency/Faulted	K _{lc} fracture toughness	√2 = 1.41	
Elastic-Plastic Fracture Mechanics			
Operating Condition	Evaluation Method	Primary	Secondary
Normal/Upset	J/T based flaw stability	3.0	1.5
Normal/Upset	J _{0.1} limited flaw extension	1.5	1.0
Emergency/Faulted	J/T based flaw stability	1.5	1.0
Emergency/Faulted	$J_{0.1}$ limited flaw extension	1.5	1.0

Table 1-1: Safety Factors for Flaw Acceptance

2.0 ANALYTICAL METHODOLOGY

A radial flaw at the inside corner of non-radial head penetration is evaluated based on a combination of linear-elastic fracture mechanics (LEFM) and elastic-plastic fracture mechanics (EPFM), as outlined below.

- 1. Postulate a radial flaw in the J-groove weld, extending from the inside corner of the penetration to the interface between the cladding and low alloy steel head, as shown in Figure 2-1 and Figure 2-2 for both the downhill and uphill sides of the heater sleeve penetration.
- 2. Develop two three-dimensional finite element crack models, one for the uphill side crack, and the other for the downhill side crack, of the PZR heater sleeve penetration in the vicinity of the outermost nozzle penetration. Crack tip elements are modeled in the cladding and along the interface between the cladding and the low alloy steel base metal. This crack model will be used to obtain stress intensity factors at various positions along the crack front for combined stresses due to the welding processes and transient loading conditions.
- 3. Develop a mapping procedure to transfer stresses from uncracked finite element stress analysis models (for residual and operational stresses) to the crack face of the crack model. This will enable stress intensity factors to be calculated for arbitrary stress distributions over the crack face utilizing the principle of superposition.
- 4. Calculate fatigue crack growth for cyclic loading conditions using combined residual and operational stresses from pressure and thermal loads. It is noted that the only effect of residual stress on fatigue crack growth is in the calculation of the R ratio, or K_{min}/K_{max}, which is the ratio of the minimum and maximum stress intensity factors for a pair of stress states. Starting from the stress intensity factor calculated by the finite element crack model for the initial flaw size, stress intensity factors are updated for each increment of crack growth by the square root of the ratio of the flaw sizes over the increment.
- 5. Utilize the screening criteria of ASME Code Section XI, Appendix C to determine the failure mode and appropriate method of analysis (LEFM or EPFM) for flaws in ferritic materials, considering the applied stress, temperature, and material toughness. For LEFM flaw evaluations, compare the stress intensity factor at the final flaw size to the available fracture toughness, with appropriate safety factors, as discussed in Section 2.3. When the material is more ductile and EPFM is the appropriate analysis method, evaluate flaw stability and crack driving force as described in Section 2.4.

Figure 2-1: Downhill Side Postulated Radial Flaw

2.1 Stress Intensity Factor Solution

Stress intensity factors for corner flaws at a non-radial nozzle penetration are best determined by finite element analysis using three-dimensional models with crack tip elements along the crack front. Although loads can be applied to finite element crack models like any other structural model, the crack models were developed to serve as a flaw evaluation tool that could accept stresses from separate stress analyses. This strategy makes it possible, for example, to obtain pressure and thermal stresses from an independent thermal/structural analysis and then transfer these stresses to a crack model for flaw evaluations. Using the principle of superposition common to fracture mechanics analysis, the only stresses that need be considered for these flaw evaluations are the stresses on the crack face. A mapping procedure is developed to transfer stresses from a separate stress analysis to the crack face of the crack models.

2.1.1 Finite Element Crack Models

Two three-dimensional finite element models are developed for the PZR lower head in the vicinity of the outermost heat sleeve penetration, by modeling a portion of the head, cladding, and the remnant nozzle with the ANSYS finite element computer program [4]. Since stresses increase with penetration angle, it is conservative to base the model on the outermost nozzle penetration. Details of the finite element crack models are presented in Appendix C.

The three-dimensional finite element models are first constructed to represent an unflawed non-radial nozzle penetration in the PZR lower head using the ANSYS SOLID186 20-node structural element. Elements along the crack front are then replaced by a sub-model of crack tip elements in the cladding and along the interface between the cladding and the low alloy steel head. These elements consist of 20-node isoparametric elements that are collapsed to form a wedge with the appropriate mid-side nodes shifted to quarter-point locations to simulate a singularity at the crack tip. The final crack models are shown in Figure 2-3 and Figure 2-4 for the downhill and uphill sides of the PZR heater sleeve penetration, respectively. Linear contact elements were used to bond various parts of the model to simplify meshing.

Stress intensity factors are obtained using the DH_K1Kcalc.mac and UH_K1Kcalc.mac files, which contain a set of ANSYS parametric design language instructions which implements similar theory to the ANSYS KCALC routine. The DH_K1Kcalc.mac and UH_K1Kcalc.mac ANSYS command sets files were verified against the ANSYS KCALC routine in Appendix A. SIF values are calculated at each crack tip node position along the crack front, as indicated in Figure 2-3 and Figure 2-4. For both the downhill and uphill sides, Position 1 is located on the cladding surface and the last position is along the remnant nozzle inner surface.

2.1.2 Stress Mapping

Residual and operational stresses, obtained from separate finite element models, are mapped onto the crack face of the finite element crack model shown in Figure 2-3 and Figure 2-4 to calculate the individual contributions to the stress intensity factors. A set of ANSYS parametric design language instructions has been written based on the *MOPER, MAP command to transfer stresses by nodal interpolation from a dissimilar finite element model (e.g., residual stresses and operating stresses) to the crack model.

Document No. 32-9156231-000

CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair

23

CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair

2.2 Crack Growth Considerations

The fundamental expression for the crack tip stress intensity factor is

 $K_1 = \sigma \sqrt{\pi a}$

Since the crack model is developed for a single flaw size, stress intensity factors are updated at each increment of crack growth by the square root of the flaw size; i.e.,

 $K_i(a_{i+1}) = K_i(a) \sqrt{\frac{a_{i+1}}{a_i}},$

where

Since the stress intensity factor is directly proportional to the magnitude of the stress and both residual and operating stresses decrease in the direction of crack growth, this procedure produces conservative estimates of stress intensity factor as the crack extends into the head and stresses diminish over the expanding crack face.

i = increment of crack growth.

a = flaw size

2.2.1 Plastic Zone Correction

The Irwin plasticity correction is used to account for a moderate amount of yielding at the crack tip. For plane strain conditions, this correction is

$$r_y = \frac{1}{6\pi} \left(\frac{K_1(a)}{\sigma_y} \right)^2$$
, [Ref. [5], Eqn. (2.63)]

where

 $K_1(a)$ = stress intensity factor based on the actual crack size, a σ_v = material yield strength.

<u>\</u>2

A stress intensity factor, $K_1(a_a)$, is then calculated for an effective crack size,

$$a_e = a + r_{\gamma}$$
,

based on the same scaling technique utilized for crack growth; i.e.,

$$K_{I}(a_{e}) = K_{I}(a)\sqrt{\frac{a_{e}}{a}}$$
.

Contr

Document No. 32-9156231-000

CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair

2.3 Linear-Elastic Fracture Mechanics

Article IWB-3612 of Section XI [7] requires that the applied stress intensity factor, K_i , at the final flaw size be less than the available fracture toughness at the crack tip temperature, with appropriate safety factors, as outlined below.

Normal and upset conditions: $K_I < K_{Ia} / \sqrt{10}$

Emergency and faulted conditions: $K_I < K_{IC} / \sqrt{2}$

where K_{lc} is the fracture toughness based on crack initiation.

2.4 Elastic-Plastic Fracture Mechanics

Elastic-plastic fracture mechanics (EPFM) will be used as alternative acceptance criteria when the flaw related failure mechanism is unstable ductile tearing. This type of failure falls between rapid, non-ductile crack extension and plastic collapse. Linear-elastic fracture mechanics (LEFM) would be used to assess the potential for non-ductile failure, whereas limit load analysis may be used to check for plastic collapse.

2.4.1 Screening Criteria

Screening criteria for determining failure modes in ferritic materials may be found in Appendix C of Section XI. Although Appendix C, Article C-4200 [7] contains specific rules for evaluating flaws in Class 1 ferritic piping, its screening criteria may be adapted to other ferritic components, such as the PZR head, as follows:

Let,	$K_r' = K_{lapp} / K_{lc}$
	$S_r' = \sigma_{max} / \sigma_f$

Then the appropriate method of analysis is determined by the following limits:

LEFM Regime:		$K_r' / S_r' \ge 1.8$
EPFM Regime:	1.8 >	$K_r^3 / S_r^3 \ge 0.2$
Limit Load Regime:	0.2 >	K _r ' / S _r '

2.4.2 Flaw Stability and Crack Driving Force

Elastic-plastic fracture mechanics analysis will be performed using a J-integral/tearing modulus (J-T) diagram to evaluate flaw stability under ductile tearing, where J is either the applied (J_{app}) or the material (J_{mat}) J-integral, and T is the tearing modulus, defined as $(E/\sigma_f^2)(dJ/da)$. The crack driving force, as measured by J_{app} , is also checked against the J-R curve at a crack extension of 0.1 inch $(J_{0.1})$. Consistent with industry practice for the evaluation of flaws in partial penetration welded nozzles, different safety factors will be utilized for primary and secondary loads. Flaw stability assessments for normal and upset conditions will consider a safety factor of 3 on the stress intensity factor due to

Döcument No. 32-9156231-000

CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair

primary (pressure) stresses and a safety factor of 1.5 for secondary (residual plus thermal) stresses. The crack driving force will be calculated using safety factors of 1.5 and 1 for primary and secondary stresses, respectively. For EPFM analysis of faulted conditions, safety factors of 1.5 and 1 will be used for flaw stability assessments and 1.5 and 1 for evaluations of crack driving force.

The general methodology for performing an EPFM analysis is outlined below.

Let

 $E' = E/(1-v^2)$

Final flaw depth = a

Total applied $K_1 = K_{lapp}$

 K_{I} due to pressure (primary) = K_{Ip} (from Appendix D)

 K_{l} due to residual plus thermal (secondary) = $K_{ls} = K_{lapp} - K_{lp}$

Safety factor on primary loads = SF_{p}

Safety factor on secondary loads = SFs

For small scale yielding at the crack tip, a plastic zone correction is used to calculate an effective flaw depth based on

$$a_e = a + [1/(6\pi)] [(K_{lp} + K_{ls}) / \sigma_v]^2$$

which is used to update the stress intensity factors based on

$$K'_{ip} = K_{ip} \sqrt{\frac{a_e}{a}}$$

 $K'_{ls} = K_{ls} \sqrt{\frac{a_e}{a}}.$

and

The applied J-integral is then calculated using the relationship

$$J_{app} = (SF_{p}^{*}K'_{lp} + SF_{s}^{*}K'_{ls})^{2}/E'.$$

The final parameter needed to construct the J-T diagram is the tearing modulus. The applied tearing modulus, T_{app} , is calculated by numerical differentiation for small increments of crack size (da) about the final crack size (a), according to

$$T_{app} = \frac{E}{\sigma_{f}^{2}} \left[\frac{J_{app}(a + da) - J_{app}(a - da)}{2(da)} \right].$$

3 10

÷

CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair

Using the power law expression for the J-R curve,

 $J_{mat} = C(\Delta a)^m$

the material tearing modulus, T_{mat} , can be expressed as

 $T_{mat} = (E/\sigma_f^2)Cm(\Delta a)^{m-1}.$

Constructing the J-T diagram,

flaw stability is demonstrated at an applied J-integral when the applied tearing modulus is less than the material tearing modulus. Alternately, the applied J-integral is less than the J-integral at the point of instability.

To complete the EPFM analysis, it must be shown that the applied J-integral is less than $J_{0.1}$, demonstrating that the crack driving force falls below the J-R curve at a crack extension of 0.1 inch.

3.0 ASSUMPTIONS

This section discusses assumptions and modeling simplifications applicable to the present evaluation of the CCNPP-1 PZR heater sleeve J-groove weld remnant flaw.

3.1 Unverified Assumptions

This document contains no assumptions that must be verified prior to use on safety-related work.

3.2 Justified Assumptions

It is conservatively assumed that the postulated flaw extends through the entire J-groove weld and adjacent cladding material. The extent of radial flaw size was limited in the radial direction since the residual and operational stresses diminish away from the J-groove weld. The RT_{NDT} is assumed to be 60 °F which is conservative since the RT_{NDT} value for the CCNPP-1 pressurized lower head is 48 °F per reference [6]. The Charpy Upper Shelf Energy value of 70 ft-lbs is assumed. This is conservative since the CCNPP-1 pressurized lower head is 85 ft-lbs per reference [6].

3.3 Modeling Simplifications

The following modeling simplifications were used

- 1. The finite element model with crack tip elements does not include the ID temper bead repair weld. This is deemed to be an appropriate modeling simplification since the IDTB material does not have any effects to the as-left J-groove weld analysis.
- Since the J-groove weld partially penetrates the cladding and both materials have similar properties, the J-groove weld boundary is not specifically included in the finite element model with crack tip elements. This is deemed to be an appropriate modeling simplification and will not have any impact on the results.

CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair

4.0 DESIGN INPUTS

This section provides basic input data needed to perform a fatigue crack growth analysis and flaw evaluation of the final flaw size.

4.1 Materials

4.1.1 Mechanical and Properties

Table 4-1 and Table 4-2 list the temperature dependent values of modulus of elasticity (E) and Poisson's ratio (v). These properties are obtained from Reference [9]. Yield, ultimate, and flow strengths for the low alloy steel head are also provided in Table 4-1, where the flow stress is the average of the yield and ultimate strengths.

<u>Component</u>	<u>Material</u>
PZR bottom head Cladding J-groove weld filler	SA-533 Grade B Class 1 [1] Ni-Cr-Fe (use Alloy 600) [1] Alloy 82/182 (use Alloy 600) [1]
Existing lower level heater sleeve	SB-166, Alloy 600 [1]

Component	Head								
Material		SA-533 Grade B Class 1							
Temperature	E (10 ⁶ psi)	ν	σ _y (ksi)	σ _u (ksi)	σ _f (ksi)				
70	27.90	0.3	50.00	80.0	65.00				
100	27.85	0.3	50.00	80.0	65.00				
200	27.70	0.3	47.15	80.0	63.58				
300	27.40	0.3	45.25	80.0	62.63				
400	27.00	0.3	44.50	80.0	62.25				
500	26.40	0.3	43.20	80.0	61.60				
600	25.70	0.3	42.00	80.0	61.00				
650	25.25	0.3	41.40	80.0	60.70				
700	24.80	0.3	40.60	80.0	60.30				

Table 4-1: Material Properties for Low Alloy Steel PZR Head

Component	Cladding, Weld Filler, Existing Heater Sleeve				
Material	Use Alloy 600 (SB-166)				
Temperature	E (10 ⁶ psi)	ï۷			
70	31.70	0.3			
100	31.52	0.3			
200	30.90	0.3			
300	30.50	0.3			
400	30.00	0.3			
500	29.60	0.3			
600	29.20	0.3			
650	28.90	0.3			
700	28.60	0.3			

Table 4-2: Material Properties for Cladding, Weld Filler, Existing Heater Sleeve

4.1.2 Reference Temperature

Per Reference [6], the RT_{NDT} value for the CCNPP-1 pressurized lower head material is { } °F, an RT_{NDT} value of { } °F is conservatively used in this document.

4.1.3 Fracture Toughness

From Article A-4200 of Section XI [7], the lower bound K_{la} fracture toughness for crack arrest can be expressed as

$$K_{la} = 26.8 + 12.445 \exp [0.0145 (T - RT_{NDT})],$$

where T is the crack tip temperature, RT_{NDT} is the reference nil-ductility temperature of the material, K_{Ia} is in units of ksi \sqrt{in} , and T and RT_{NDT} are in units of °F. In the present flaw evaluations, K_{Ia} is limited to a maximum value of 200 ksi \sqrt{in} (upper-shelf fracture toughness). Using the above equation with an RT_{NDT} of $\{ \}$ °F, K_{Ia} equals 200 ksi \sqrt{in} at a crack tip temperature of $\{ \}$ °F.

A higher measure of fracture toughness is provided by the K_{lc} fracture toughness for crack initiation, approximated in Article A-4200 of Section XI [7] by

$$K_{lc} = 33.2 + 20.734 \exp \left[0.02 \left(T - RT_{NDT} \right) \right].$$

4.1.4 J-integral Resistance Curve

The J-integral resistance (J-R) curve, needed for the EPFM method of analysis, is obtained from the following power law expression for nuclear reactor pressure vessel steels [8],

$$J_R = C(\Delta a)^m$$
,

where the coefficient, C, and exponent, m, depend on the Charpy V-notch upper-shelf energy, CVN, and the flow stress, σ_0 or σ_f , as shown in Figure 4-1 and Figure 4-2.

Per reference [6] the Charpy V-notch upper-shelf energy for the CCNPP-1 pressurized lower head material is { } ft-lbs. However, Charpy V-notch upper-shelf value of { } ft-lbs is used in this document. For an upper-shelf value of { } ft-lbs, the coefficients of the power law are found to be:

C = { } m = { }, based on the flow stress of { } ksi at room temperature

.

4.1.5 Fatigue Crack Growth Rate

Flaw growth due to cyclic loading is calculated using the fatigue crack growth rate model from Article A-4300 of Section XI [7],

$$\frac{\mathrm{da}}{\mathrm{dN}} = \mathrm{C}_{\mathrm{o}} \left(\Delta \mathrm{K}_{\mathrm{I}} \right)^{\mathrm{n}},$$

where ΔK_I is the stress intensity factor range in ksi \sqrt{I} in and da/dN is in inches/cycle. The crack growth rates for a surface flaw will be used for the evaluation of the corner crack since it is assumed that the degraded condition of the J-groove weld and cladding exposes the low alloy steel head material to the primary water environment.

The following equations from Section XI [7] are used to model fatigue crack growth.

	$\Delta KI = KI_{max} - KI_{min}$ R = KI _{min} / KI _{max}
0 ≤ R ≤ 0.25:	$\Delta K_1 < 17.74,$ n = 5.95 $C_o = 1.02 \times 10^{-12} \times S$ S = 1.0
	$\Delta K_1 \ge 17.74,$ n = 1.95 $C_o = 1.01 \times 10^{-7} \times S$ S = 1.0
0.25 ≤ R ≤ 0.65:	ΔK _I < 17.74 [(3.75R + 0.06) / (26.9R – 5.725)] ^{0,25} ,
	n = 5.95 $C_o = 1.02 \times 10^{-12} \times S$ S = 26.9R - 5.725
ΔKi	≥ 17.74 [(3.75R + 0.06) / (26.9R – 5.725)] ^{0.25} ,
	n = 1.95 C _o = 1.01 × 10 ⁻⁷ × S S = 3.75R + 0.06
0.65 ≤ R < 1.0:	$\Delta K_1 < 12.04,$ n = 5.95 $C_o = 1.02 \times 10^{-12} \times S$ S = 11.76
	$\Delta K_1 \ge 12.04,$ n = 1.95 $C_o = 1.01 \times 10^{-7} \times S$ S = 2.5

4.2 Basic Geometry

The PZR lower head and heater sleeve penetration are described by the following key dimensions:

Radius to base metal	= {	} in. [2]	
Head thickness (minimum)	= {	} in. [2]	
Cladding thickness (nominal)	= {	} in. [2]	
Penetration bore	= {	} in. [2]	
Penetration to PZR center	= {	} in. [2]	
Initial Flaw depth	= {	} in {	}

Details of the PZR heater sleeve penetration are provided in the description of the finite element crack model in Appendix C.

4.3 **Operating Transients**

The operating conditions (temperature and pressure) transients for the PZR heater sleeve are summarized in Reference [9]. Table 4-3 lists the heater sleeve operating conditions transients and the number of cycles for 40 years of operation.

Condition	Transient Name	Description	Cycle
Normal	1A		
	1B		
	2A		
	2B		
	PL		
Test	Leak Test		
Upset	LL		
Insurges	Insurge1		
	Insurge2		
	Insurge3)

Table 4-3: Operating Conditions Transients

Condition	Transient Name	Description	Cycle
•	Insurge4		
	Insurge5		
	Insurge6		
	Insurge7		
	Insurge8		
	Insurge9		}
	Insurge10		
	Insurge11		
	Insurge12		
	Insurge13		
	Insurge14	l)

For fatigue flaw growth calculation, the most limiting transient of 1A and 1B will be considered. Similarly, the most limiting transient of 2A and 2B will be considered.

Since the safety factors on fracture toughness are higher for normal/upset conditions than for emergency/faulted conditions (Table 1-1), it follows that the present flaw evaluations for normal/upset conditions also serve as a bounding analysis for emergency and faulted conditions. No further consideration of the emergency and faulted transients is therefore warranted.

4.4 Applied Stresses

Two sources of applied stress are considered for the present flaw evaluations, residual stresses from welding and stresses that occur during normal operation.

4.4.1 Residual Stresses

Residual stresses are obtained from a three-dimensional elastic-plastic finite element stress analysis performed in Reference [10]. Hoop stresses on the radial plane through the J-groove weld and cladding are then mapped to the three-dimensional finite element crack model described in Section 2.1.1. Hoop stresses are used since these stresses are perpendicular to the crack face and therefore open the crack.

Reference [10] simulated welding of the J-groove partial penetration weld at the outmost heater sleeve penetration, hydrostatic testing, operation at steady state temperature and pressure conditions, return to zero load conditions, welding of the IDTB repair, and a second application of steady state loads.

Document No. 32-9156231-000

CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair

4.4.2 Operational Stresses

Operational stresses are obtained by linear-elastic stress analysis performed in Reference [11] using three-dimensional finite element analysis. Hoop stresses on a radial plane through the crack are provided by Reference [11] to facilitate the calculation of stress intensity factors along the entire crack front. Stresses are developed for the transients discussed in Section 4.3 using the thermal and structural finite element models [12]. The thermal phase of the solution is driven by wetted surface loads developed from time-dependent bulk fluid temperatures and convective heat transfer (film) coefficients. The structural model is then loaded by internal pressure (surface load) and nodal temperatures (body force loads from the thermal solution) to determine stresses at various times. Stresses are provided for all the transients listed in Table 4-3 and for a design case pressure that was simulated at { } F and { } psig in Reference [11].

The critical time points are selected only after calculating stress intensity factors for each set of stresses output from the stress analysis solution. This process serves to maximize the stress intensity factors used in the fatigue crack growth analysis and the final flaw evaluations.

. . !

CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair

5.0 CALCULATIONS

Propagation of an initial flaw, postulated in the cladding and along the cladding low alloy steel interface, is calculated to determine the final flaw size after a 40-year service interval. Flaw evaluations are then performed to determine the final flaw size and the remaining life.

5.1 Stress Intensity Factor Calculations

The stress intensity factors were calculated using the three-dimensional finite element analysis method for the postulated flaws in both the uphill and downhill sides of the PZR heater sleeve penetration. SIF values were calculated for every crack tip location at every transient time point provided in Reference [11]. The stresses that contributed to the crack driving force are weld residual stresses, operational stresses, and crack face pressure. The stress intensity factors were summarized in files DH_K1.out and UH_K1.out that are archived in the AREVA NP COLDStor repository, as described in Appendix B. Table 5-1 lists the stress intensity selected for every transient that result in maximum crack growth for both uphill and downhill sides. From the results tabulated in Table 5-1, it is shown that transients 1B and 2B have the highest ΔK for the heatup and cooldown transients. Thus, transients 1A and 2A will not be used for crack growth. However, transients 1A and 2A will be considered during flaw evaluation.

	Uphill Side			Downhill Side			
Transient	Kmax	Kmin	ΔK	Kmax	Kmin	ΔK	
	(psi√in)	(psi√in)	(psi√in)	(psi√in)	(psi√in)	(psi√in)	
1A	17042.0	3835.8	13206.2	15683.7	1135.5	14548.2	
1B	17042.4	3060.4	13982.0	15684.6	49.2	15635.4	
2A	18344.3	8452.0	9892.3	16828.0	5240.0	11588.0	
2B	18203.3	8256.9	9946.4	16104.0	4180.2	11923.8	
PL	23685.8	21736.7	1949.1	17162.1	15548.0	1614.1	
PU	23965.5	21801.3	2164.2	17420.4	15380.1	2040.3	
Leak Test	19200.4	7034.7	12165.7	18534.1	3214.2	15319.9	
LLA	24586.0	18691.3	5894.7	16644.9	11986.2	4658.7	
Insurge1	62775.1	22122.3	40652.8	46620.1	15942.8	30677.3	
Insurge2	43880.4	10956.3	32924.1	27245.5	1918.8	25326.7	
Insurge3	57621.9	22122.3	35499.6	42567.2	15887.1	26680.1	
Insurge4	41603.4	10956.3	30647.1	25347.3	1918.8	23428.5	
Insurge5	40477.4	10932.5	29544.9	24648.5	1901.0	22747.5	
Insurge6	39218.3	10956.3	28262.0	23642.2	1918.8	21723.4	
Insurge7	51499.3	22122.3	29377.0	37955.4	15869.3	22086.1	
Insurge8	37569.2	10956.3	26612.9	22410.5	1918.8	20491.7	
Insurge9	36294.4	10956.3	25338.1	21557.7	1918.8	19638.9	
Insurge10	47450.7	22016.8	25433.9	34904.9	15942.8	18962.1	
Insurge11	45275.0	21915.5	23359.5	33459.1	15869.3	17589.8	
Insurge12	30902.1	10956.3	19945.8	17440.0	1918.8	15521.2	
Insurge13	33848.6	21716.4	12132.2	24754.4	15829.7	8924.7	
Insurge14	21169.6	10956.3	10213.3	9820.6	1918.8	7901.8	

Table 5-1: Listing of Selected Stress Intensity Factors Used for Fatigue Crack Growth

5.2 Fatigue Crack Growth

Although it is believed that a PWSCC flaw would be confined to the J-groove weld and cladding, it is postulated that a fatigue flaw would initiate in the low alloy steel head, combine with the PWSCC flaw, and propagate farther into the head under cyclic loads. Fatigue crack growth is calculated from stress intensity factors derived from a finite element crack model using residual stresses from Reference [10] and operational stresses from Reference [11]. The SIF values used for fatigue crack growth are tabulated in Table 5-1.

Figure 5-1 and Figure 5-2 show the crack depth as a function of operating years for both the uphill and downhill sides, respectively. Table 5-2 shows the contribution of crack growth from each transient for both the uphill and the downhill sides. It should be noted that the crack in the uphill side was limited to $\{ \}$ years based on the flaw evaluation results described in Sections 5.3 and 5.5.

Details of the crack growth evaluation are shown in Appendix E.

Figure 5-1: Uphill Side Fatigue Crack Growth

Figure 5-2: Downhill Side Fatigue Crack Growth

: ہے۔ ۲۰۰۰

is Ça CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair

	ι	Downhill		
	Crack		Crack	
Transient	Growth	Percentage	Growth	Percentage
1B 2B PL PU LeakTest LLA Insurge1 Insurge2 Insurge3 Insurge4 Insurge5 Insurge6 Insurge6 Insurge7 Insurge8 Insurge9 Insurge10 Insurge11 Insurge13 Insurge14	in		in	
Total Crack Growth	{ } in	{ } Years	{ } in	40 Years

Table 5-2: Contribution of Crack Growth from Individual Transients

5.3 LEFM Evaluation

The LEFM evaluation was performed to determine LEFM safety margins. According to the LEFM criteria listed in Section 2.3, for normal and upset conditions, the applied safety margin should be greater than $\sqrt{10}$.

$$K_{I} < K_{Ia} / \sqrt{10}$$

The LEFM margins were calculated for all load steps. Table 5-3 lists only the time points that violated the LEFM criteria after { } years of plant operation for the uphill side. It is seen that for the uphill side transients 1A and 2A have the minimum LEFM safety margin of 1.2.

Table 5-4 lists the downhill LEFM evaluation, based on 40 year life. It is seen from Table 5-4 that the minimum LEFM margin of 2.6 occurs for transients 1A, 2A and Insurge1.

č

Controlled Document

Document No. 32-9156231-000

CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair

Table 5-3: Uphill LEFM Flaw Evaluation

Number of a	Number of application years { } Crack depth {						} in			
Transient	Load	Temperature	σ_y	K initial	K final, K _f	Plasticity Correction	a _{eff}	Kl _{eff}	Kla	LEFM
	Step			KI	(Kl√a _f /a₀)	$r_{p} = (1/6\pi) (K_{f}/\sigma_{y})^{2}$	a _r +r _p	(K _f √a _{eff} /a _f)		Margin
		(F)	(ksi)	(ksi√in)	(ksi√in)	(in <u>)</u>	(in)	(ksi√in)	(ksi√in)	Kl _a /Kl _{eff}
1A	1	70	50.0	16.7	34.6	0.0254	() 34.9	41.3	1.2
1B	1	70	50.0	14.5	30.2	0.0193		30.4	41.3	1.4
2A	17	70	50.0	16.7	34.6	0.0254		34.9	41.3	1,2
2B	27	70	50.0	14.6	30.2	0.0193		30.4	41.3	1.4
LeakTest	7	103	49.9	15.0	31.0	0.0205		31.2	50.2	1.6
Insrg1	5	628	41.7	55.7	115.5	0.4080		129.3	200.0	1.5
Insrg2	7	380	44.7	37.2	77.2	0.1585		80.9	200.0	2.5
Insrg3	9	633	41.6	51.0	105.7	0.3427)	116.4	200.0	1.7
Insrg4	4	383	44.6	35.2	73.0	0.1419	Ì	(76.1	200.0	2.6
Insrg5	5	382	44.6	34.2	71.0	0.1342		73.9	200.0	2.7
Insig6	5	383	44.6	33.1	68.7	0.1257		71.3	200.0	2.8
Insrg7	7	636	41.6	45.4	94.1	0.2721		101.7	200.0	2.0
Insrg8	5	384	44.6	31.7	65.7	0.1150		68.0	200.0	2.9
Insrg9	5	383	44.6	30.6	63.4	0.1071		65.5	200.0	3.1
Insrg10	5	638	41.5	41.7	86.4	0.2297		92.4	200.0	2.2
Insrg11	7	637	41.6	39.7	82.4	0.2086	l	J 87.6	200.0	2.3

 $KI_{a} = 26.8 + 12.445 \exp \left[0.0145 \left(T - RT_{NDT} \right) \right]$ KIc = 33.2 + 20.734 exp [0.02 (T - RT_{NDT})]

1.1

. . .

 $< 1^{\circ}$
Rev Provide State Sta

Č,s:

A AREVA

Document No. 32-9156231-000

CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair

Table 5-4: Downhill LEFM Flaw Evaluation

Number of application years 40 Crack depth { } in												
Transient	Load	Temperature	σ_y	K initial	K final, K _f	Plasticity Correction	a _{eff}	Kl _{eff}	Kla	LEFM		
	Step			KI	(Kl√a _f /a₀)	$r_{p}=(1/6\pi)(K_{f}/\sigma_{y})^{2}$	a _f +r _p	(K _f √a _{eff} /a _f)		Margin		
		(F)	(ksi)	(ksi√in)	(ksi√in)	(in)	(in)	(ksi√in)	(ksi√in)	Kl _a /Kl _{eff}		
1A	. 1	70	50.0	10.2	15.8	0.0053	() 15.8	41.3	2.6		
1B	1	70	50.0	7.1	11.0	0.0026	1	11.0	41.3	3,8		
2A	17	70	50.0	10.2	15.8	0.0053		15.8	41.3	2.6		
2B	27	70	50.0	7.1	11.0	0.0026		11.0	41.3	3.8		
LeakTest	7	103	49.9	8.2	12.7	0.0034		12.7	50.3	3.9		
Insurge1	5	605	41.9	46.6	72.2	0.1573		78.3	200.0	2.6		
Insurge2	7	361	44.8	27.2	42.2	0.0471		43.3	200.0	4.6		
Insurge3	9	614	41.8	42.6	65.9	0.1318)	∖ 70.6	200.0	2.8		
Insurge4	4	367	44.8	25.3	39,3	0.0408	1	(40.1	200.0	·5.0		
Insurge5	5	365	44.8	24.6	38.2	0.0386		39.0	200.0	5.1		
Insurge6	5	367	44.7	23.6	36.6	0.0355		37.3	200.0	5.4		
Insurge7	7	620	41.8	38.0	58.8	0.1052		62.1	200.0	3.2		
Insurge8	5	369	44.7	22.4	34.7	0.0320		35.3	200.0	5.7		
Insurge9	5	368	44.7	21.6	33.4	0.0296		33.9	200.0	5.9		
Insurge10	5	625	41.7	34.9	54.1	0.0892		56.7	200,0	3,5		
Insurge11	7	623	41.7	33.5	<u>5</u> 1.8	0.0819		/ 54.1	200.0	3.7		

 $KI_a = 26.8 + 12.445 \exp [0.0145 (T - RT_{NDT})]$

Klc = 33.2 + 20.734 exp [0.02 (T – RT_{NDT})]

5.4 Screening Criteria for Flaw Evaluation

The screening criteria described in Section 2.4.1 was evaluated to determine the appropriated evaluation procedures for all the time points that was shown not to pass the LEFM criteria as shown in Table 5-3 and Table 5-4. Table 5-5 shows the results of evaluating the screening criteria for the uphill side. Based on the results shown in Table 5-5, the elastic-plastic fracture mechanics (EPFM) is the appropriated evaluation procedures for the flaw postulated in the uphill side.

Table 5-6 shows the results of evaluating the screening criteria for the downhill side. It is seen from the results summarized in Table 5-6 that a limit load analysis (LL) is appropriate for evaluating the flaw postulated in the downhill side. Since the limit load analysis is typically done for piping components which is different than the geometry of the component being analyzed, the elastic-plastic fracture mechanics (EPFM) flaw evaluation procedure will conservatively be used for evaluating the postulated downhill flaw.

Number of	applicatio	n years { }	•				Crack de	óth { }	in
Transient	Load	$\sigma_{\rm f}$	Kl _{eff}	Klc	Kr'	σ_{max}	sr'	Kr'/Sr'	Appropriate
	Step		(K _f √a _{eff} /a _i)						Criteria
		(ksi)	(ksi√in)	(ksi√in)	Kl _{eff} /Kl _C	(ksi)	σ_{max}/σ_{f}		-
1A	1	65.0	34.9	58.5	0.596	51.1	0.787	0.76	EPFM
1B	1	65.0	30.4	58.5	0.519	49.1	0.755	0.69	EPFM
2A	17	65.0	34.9	58.5	0.596	51.1	0.787	0.76	EPFM
2B	27	65.0	30.4	58.6	0.519	49.1	0.755	0.69	EPFM
LeakTest	7	65.0	31.2	82.2	0.380	49.1	0.757	0.50	EPFM
Insurge1	5	60.8	129.3	200.0	0.646	129.4	2.128	0.30	EPFM
Insurge2	7	62.3	80.9	200.0	0.404	101.3	1.626	0.25	EPFM
Insurge3	9	60.8	116.4	200.0	0.582	118.3	1.946	0.30	EPFM
Insurge4	4	62.3	76.1	200.0	0.381	97.5	1.565	0.24	EPFM
Insurge5	5	62.3	73.9	200.0	0.369	94.9	1.523	0.24	EPFM
Insurge6	5	62,3	71.3	200.0	0.357	92.8	1.490	0.24	EPFM
Insurge7	7	60.8	101.7	200.0	0.509	105.1	1.729	0.29	EPFM
Insurge8	5	62.3	68.0	200.0	0.340	89.6	1.437	0.24	EPFM
Insurge9	5	62.3	65.5	200.0	0.327	86,9	1.395	0.23	EPFM
Insurge10	5	60.8	92.4	200.0	0.462	96.3	1.585	0.29	EPFM
Insurge11	7	60.8	87.6	200.0	0.438	91.6	1.507	0.29	EPFM

Table 5-5: Uphill Screening Criteria

 $Klc = 33.2 + 20.734 \exp[0.02 (T - RT_{NDT})]$

.

.....

e F

÷

 (° - . . ;

CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair

Number of	applicatio	n years 40					Crack dep	oth {	} in
Transient	Load Step	σ _f	Kl _{eff}	Klc	Kŕ'	σ _{max}	sr'	Kr'/Sr'	Appropriate
	•	(ksi)	(ksi√in) (ksi√in)	(ksi√in)	Kl _{eff} /Kl _C	(ksi)	σ _{max} /σ _f		Cntena
1A	1	65.0	15.8	58.5	0.270	47.7	0.735	0.37	EPFM
1B	1	65.0	11.0	58.5	0.188	46.4	0.714	0.26	EPFM
2A	17	65.0	15.8	58.5	0.270	47.7	0.735	0.37	EPFM
2B	27	65.0	11.0	58.6	0,188	46.4	0.715	0.26	EPFM
LeakTest	7	65.0	12.7	82.4	0.155	46.4	0.715	0.22	EPFM
Insurge1	5	61.0	78.3	200.0	0.391	224.3	3.679	0.11	LL ·
Insurge2	7	62.4	43.3	200.0	0.216	155.9	2.499	0.09	LL
Insurge3	9	60.9	70.6	200.0	0.353	200.9	3.298	0.11	LL
Insurge4	4	62.4	40.1	200.0	0.201	145.1	2.327	0.09	LL
Insurge5	5	62.4	39.0	200.0	0.195	139.0	2.228	0.09	LL
Insurge6	5	62.4	37.3	200.0	0.187	133.2	2.135	0.09	LL
Insurge7	7	60.9	62.1	200.0	0.311	173.1	2.843	0.11	LL
Insurge8	5	62.4	35.3	200.0	0.177	124.8	2.001	0.09	LL
Insurge9	5	62.4	33.9	200.0	0.170	118.3	1.897	0.09	LL
Insurge10	5	60.9	56.7	200.0	0.283	154.7	2.542	0.11	LL
Insurge11	7	60.9	54.1	200.0	0.271	144.6	2.377	0.11	LL

Table 5-6: Downhill Screening Criteria

 $KIc = 33.2 + 20.734 \exp [0.02 (T - RT_{NDT})]$

5.5 Uphill EPFM Flaw Evaluations

Based on the results provided in Section 5.4, the elastic-plastic fracture mechanics (EPFM) procedure described in Section 2.4 is used to evaluate the final size of the postulated flaw after fatigue crack growth. The EPFM results for the uphill flaw are shown in Table 5-7. The first part of Table 5-7 shows the applied J integral and Tearing modulus using a factor of safety of 3 on pressure stress and 1.5 on thermal and residual stress. The second part of Table 5-7 shows the J integral and Tearing modulus at the instability point. The instability point is found by iteratively changing the safety margin until the applied Tearing modulus and J integral are equal to the material Tearing modulus and J integral. Also, the second part of Table 5-7 shows the crack driving force evaluation where the applied J integral is evaluated using a factor of safety of 1.5 on pressure stress and 1.0 on thermal and residual stress. This value of applied J integral should remain below the material J integral at 0.1 in of stable crack extension. Based on the data reported in Table 5-7, the uphill flaw meets the EPFM evaluation criteria for { } years. The lowest margin (predicted by $J_{instability}/J_{applied}$) occurs for transient Insurge1 at load step 5. Detailed EPFM evaluation for this condition is shown in Table 5-8. Figure 5-3 shows the J-T diagram for this condition.

CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair

Number of application years { } Crack depth, a _f = { } in										
Transient	Load	Pressure,P	E'	Klp	Kls	J _{app}	Tapp	T _{mat}		
	Step				KI _f -Kl _p					
	_	(psi)	(ksi)	(ksi√in)	(ksi√in)	(kip/in)				
1A	1	485	30659	6.9	27.7	0.128	0.525	1380.266		
1B	1	85	30659	1.2	29.0	0.073	0.300	3728.151		
2A	17	485	30659	6.9	27.7	0.128	0.525	1380.266		
2B	27	85	30659	1.2	29.0	0.073	0.300	3726.325		
LeakTest	7	345	30599	4.9	26.1	0.096	0.394	2296.337		
Insurge1	5	2250	27961	32.1	83.4	2.198	9.360	9.384		
Insurge2	7	247	29759	3.5	73.7	0.541	2.335	118.489		
Insurge3	9	2250	27913	32.1	73.6	1.858	7.904	12.721		
Insurge4	4	247	29744	3.5	69.5	0.482	2.080	145.853		
Insurge5	5	247	29750	3.5	67.5	0.455	1.964	161.793		
Insurge6	5	247	29746	3.5	65.2	0.425	1.835	182.700		
Insurge7	7	2250	27884	32.1	62.0	1.503	6.394	18.665		
Insurge8	5	247	29742	3.5	62.2	0.388	1.676	215.041		
Insurge9	5	247	29747	3.5	59.9	0.361	1.560	244.708		
Insurge10	5	2250	27863	32.1	54.3	1.297	5.515	24.384		
Insurge11	7	2250	27877	32.1	50.3	1.196	5.085	28.270		
C={ }										

Table 5-7: Uphill EPFM Flaw Evaluation

 $KI_{f}=KI \times \sqrt{(a_{f} / a_{0})}$ where a_{f} is the final flaw size and a_{0} is the initial flaw size $KI_{p}=(P/Pd)KI_{Po}\sqrt{(a_{f} / a_{0})}$ where Pd=2485 psi and KI_{po} is from Appendix D. $a_e = a_f + (1 / 6\pi) * ((KI_p + KI_s) / \sigma_y)^2$ $KIp_{eff} = KI_p \times \sqrt{(a_e / a)}$ $KIs_{eff} = KI_s \times \sqrt{(a_e / a)}$ $J_{app} = (SFp \times Klp_{eff} + SF_s \times Kls_{eff})^2 / E'$ where $SF_p=3$ and $SF_s = 1.5$
$$\begin{split} T_{app} &= (E/\sigma_{f}^{2}) \; (\; J_{app}(a+.01) - J_{app}(a-.01)) /.02 \\ T_{mat} &= (E/\sigma_{f}^{2}) \; Cm \; (\Delta a)^{m-1} \; where \; \Delta a = (J/C)^{1/m} \end{split}$$

				Instability			Crack Driv	ing Force
Transient	Load Step	SFp=SFs	J _{Instability}	T _{Instability}	m	T _{mat}	J _{app}	J _{0.1} C(0.1) ^m
	-	•		(kip/in)			(kip/in)	(kip/in)
1A	1	7.461	2.206	9.019	$\left(\right)$	9.019	0.048	1.167
1B	1	8.562	2.206	9.019	1	9.019	0.031	1.167
2A	17	7.461	2.206	9.019		9.019	0.048	1.167
2B	27	8.561	2.206	9.019		9.019	0.031	1.167
LeakTest	7	8.315	2.206	9.013		9.013	0.037	1.167
Insurge1	5	1.918	2.200	9.368		9.368	0.776	1.182
Insurge2	7	3.165 [°]	2.202	9.506		9.506	0.230	1.177
Insurge3	9	2.129	2.200	9.361)	9.361	0.644	1.182
Insurge4	4	3.361	2.202	9.505)	9.505	0.204	1.177
Insurge5	5	3.464	2.202	9.506		9.506	0.193	1.177
Insurge6	5	3.589	2.202	9.506		9.506	0.180	1.177
Insurge7	7	2.434	2.200	9.356		9.356	0.509	1.182
Insurge8	5	3.764	2.202	9.505		9.505	0.164	1.177
Insurge9	5	3.909	2.202	9.506		9.506	0.152	1.177
Insurge10	5	2.680	2.200	9.353		9.353	0.431	1.182
Insurge11	7	2.828	2.200	9.355		9.355	0,393	1.182

Table 5-7: Uphill EPFM Flaw Evaluation (Continued)

C={ }

 $\begin{array}{l} a_e = a_f + (1 \ / \ 6\pi) \ x \ ((KI_p + KI_S) \ / \ \sigma_y)^2 \\ KIp_{eff} = KI_p \ x \ \sqrt{(a_e \ / \ a)} \end{array}$

 $KIs_{eff} = KI_s \times \sqrt{(a_e / a)}$

 $J_{app} = (SFp \times KIp_{eff} + SF_s \times KIs_{eff})^2 / E'$ where $SF_p = 1.5$ and $SF_s = 1.0$

$$\begin{split} T_{app} &= (E/\sigma_{f}^{2}) \; (\; J_{app}(a+.01) - J_{app}(a-.01)) /.02 \\ T_{mat} &= (E/\sigma_{f}^{2}) \; Cm \; (\Delta a)^{m-1} \; where \; \Delta a = (J/C)^{1/m} \end{split}$$

Table 5-8: Detailed EPFM Evaluation for Transient Insurge1 Load Step 5 (Uphill)

EPFM Equations:

J _{mat} =	C(∆a) ^m
T _{mat} =	(E/σ _f ²)*Cm(∆a) ^{m-1}

 $\begin{array}{c} C = \\ m = \end{array} \begin{array}{c} \end{array}$

$$\begin{split} J_{app} &= (SF_p {}^*K'_{1p} {}^+SF_s {}^*K'_{1s})^2 / E' \\ T_{app} &= (E/\sigma_f^2) {}^*(dJ_{app} / da) \end{split}$$

Ductile Crack Growth Stability Criterion:

At instability:

 $T_{app} = T_{mat}$

 $T_{app} < T_{mat}$

Safety	Safety Factors		SF*K' _{is}	J _{app}	T _{app}	Stable?
Primary	Secondary	(ksi√in)	(ksi√in)	(kips/in)		
1.00	1.00	35.972	93.325	0.598	2.546	Yes
2.00	1.00	71.945	93.325	0.977	4.160	Yes
3.00	1.50	107.917	139.988	2.198	9,360	Yes
5.00	1.00	179.862	93.325	2.669	11.367	NO
7.00	1.00	251.807	93.325	4.260	18.142	NO

Iterate on safety factor until $T_{app} = T_{mat}$ to determine $J_{instability}$:

	1.9182	1.9182	69.001	179.013	J _{instability} 2.200	T _{app} 9.368	T _{mat} 9.368
	at J _{mat} =	2.198	kips/in,	T _{mat} =	9.383		
ied J-l	ntegral Crit	erion:		J _{app} < .	J _{0.1}		

Applied J-Integral Criterion:

where,

 $J_{0.1} = J_{mat}$ at $\Delta a = 0.1$ in.

Safety Factors		SF*K' _{lp}	SF*K' _{ls}	J_{app}	J _{0.1}	OK?
Primary	Secondary	(ksi√in)	(ksi√in)	(kips/in)	(kips/in)	
1.50	1.00	53.959	93.325	0.776	1.182	Yes

5.6 Downhill EPFM Flaw Evaluations

Based on the discussion provided in 5.4, elastic-plastic fracture mechanics (EPFM) procedure described in Section 2.4 is conservatively used to evaluate the final size of the postulated downhill flaw after fatigue crack growth. The EPFM results for the downhill flaw are shown in Table 5-9. The first part of Table 5-9 shows the applied J integral and Tearing modulus using a factor of safety of 3 on pressure stress and 1.5 on thermal and residual stress. The second part of Table 5-9 shows the J integral and Tearing modulus at the instability point. The instability point is found by iteratively changing the safety margin until the applied Tearing modulus and J integral are equal to the material Tearing modulus and J integral. Also, the second part of Table 5-9 shows the crack driving force evaluation where the applied J integral is evaluated using a factor of safety of 1.5 on pressure stress and 1.0 on thermal and residual stress. This value of applied J integral should remain below the material J integral at 0.1 in of stable crack extension. Based on the data reported in Table 5-9, the downhill flaw meets the EPFM evaluation criteria for 40 years. The lowest margin (predicted by Jinstability/Japplied) occurs for transient Insurge1 at load step 5. Detailed EPFM evaluation for this condition is shown in Table 5-10. Figure 5-4 shows the J-T diagram for this condition.

Number of ap	plication ye	ears 40			Crack de	∋pth {	} in	
Transient	Load	Pressure,P	E'	Кlp	Kls	J_{app}	T _{app}	T _{mat}
	Step				Kl _f -Kl _p			
		(psi)	(ksi)	(ksi√in)	(ksi√in)	(kip/in)		
1A	1	485	30659	5.8	10.0	0.034	0.251	14308.913
1B	1	85	30659	1.0 ⁻	10.0	0.011	0.078	113893.316
2A	17	485	30659	5.8	10.0	0.034	0.251	14308.913
2B	27	85	30659	1.0	10.0	0.011	0.078	113844.487
LeakTest	7	345	30599	4.1	8.6	0.021	0.153	34355.462
Insurge1	5	2250	28193	26.8	45.4	0.919	7,046	45.736
Insurge2	7	247	29842	2.9	39.3	0.162	1.253	1036.254
Insurge3	9	2250	28108	26.8	39.2	0.789	6.042	60.234
Insurge4	4	247	29817	2.9	36.3	0.141	1.089	1334.363
Insurge5	5	247	29824	2.9	35.2	0.133	1.031	1471.652
Insurge6	5	247	29815	2.9	33.7	0.123	0.952	1700.247
Insurge7	7	2250	28043	26.8	32.0	0.656	5.020	84.053
Insurge8	5	247	29808	2.9	31.8	0.111	0.859	2044.163
Insurge9	5	247	29813	2.9	30.5	0.103	0.797	2335.356
Insurge10	5	2250	27999	26.8	27.3	0.577	4.414	105.988
Insurge11	7	2250	28011	26.8	25.1	0.542	4.141	119.041

Table 5-9: Downhill EPFM Flaw Evaluation

C={ }

 $KI_f = KI \times \sqrt{(a_f / a_0)}$ where a_f is the final flaw size and a_0 is the initial flaw size $K_{Ip} = (P/Pd)KI_{Po}\sqrt{(a_f / a_0)}$ where Pd = 2485 psi and KI_{po} is from Appendix D. $a_e = a_f + (1 / 6\pi) * ((Kl_p + Kl_s) / \sigma_y)^2$ $KIp_{eff} = KI_p \times \sqrt{(a_e / a)}$ $KIs_{eff} = KI_S \times \sqrt{(a_e / a)}$ $J_{app} = (SFp x Klp_{eff} + SF_s x Kls_{eff})^2 / E'$ where $SF_p = 3.0$ and $SF_s = 1.5$
$$\begin{split} T_{app} &= (E/\sigma_{f}^{2}) \; (\; J_{app}(a+.01) - J_{app}(a-.01)) /.02 \\ T_{mat}^{} &= (E/\sigma_{f}^{2}) \; Cm \; (\Delta a)^{m-1} \; where \; \Delta a = (J/C)^{1/m} \end{split}$$

CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair

				Instability			Crack Driv	ing Force
Transient	Load Step	SFp=SFs	JInstability	T _{Instability}	m	T _{mat}	J _{ápp}	J _{0.1} C(0.1) ^m
	-	•	(kip/in)			<u>.</u>	(kip/in)	kip/in
1A	1	14.796	1.786	13.103	$\langle \rangle$	13.103	0.011	1.167
1B	1	21.257	1.786	13.103		13.103	0.004	1.167
2A	17	14.796	1.786	13.103		13.103	0.011	1.167
2B	27	21.254	1.786	13.103		13.103	0.004	1.167
LeakTest	7.	18.343	1.786	13.096		13.096	0.007	1.167
Insurge1	5	2.867	1.787	13.704		13.704	0.305	1.182
Insurge2	7	5.333	1.787	13.847		13.847	0.067	1.176
Insurge3	9	3.174	1.787	13.686		> 13.686	0.257	1.182
Insurge4	4	5.749	1.787	13.845		(13.845	0.058	1.176
Insurge5	5	5.919	1.787	13.845		13.845	0.055	1.176
Insurge6	5	6.181	1.787	13.844		13.844	0.051	1.176
Insurge7	7	3.603	1.787	13.672		13.672	0.208	1.182
Insurge8	5	6.532	1.787	13.844		13.844	0.045	1.176
Insurge9	5	6.800	1.787	13.844		13.844	0.042	1.176
Insurge10	5	3.946	1.787	13.663		13.663	0.179	1.182
Insurge11	7	4.133	1.787	13.666		13.666	0.166	1.182

Table 5-9: Downhill EPFM Flaw Evaluation (Continued)

C={ }

 $\begin{array}{l} a_{e}=a_{f}+(1\,/\,6\pi)\,x\,((KI_{p}+KI_{S})\,/\,\sigma_{y})^{2}\\ KIp_{eff}=KI_{p}\,x\,\sqrt{(a_{e}\,/\,a)}\\ KIs_{eff}=KI_{S}\,x\,\sqrt{(a_{e}\,/\,a)}\\ J_{app}=(SFp\,x\,KIp_{eff}+SF_{s}\,x\,\,KIs_{eff})^{2}\,/E'\,\,where\,\,SF_{p}=\\ 1.5\,\,and\,\,SF_{s}=1.0\\ T_{app}=(E/\sigma_{f}^{2})\,(\,J_{app}(a+.01)-J_{app}(a-.01))/.02\\ T_{mat}=(E/\sigma_{f}^{2})\,Cm\,(\Delta a)^{m-1}\,\,where\,\,\Delta a{=}(J/C)^{1/m} \end{array}$

Table 5-10: Detailed EPFM Evaluation for Transient Insurge1 Load Step 5 (Downhill)

EPFM Equations: J_{ma}

 $\begin{array}{ll} J_{mat} = C(\Delta a)^m & C = \\ T_{mat} = (E/\sigma_f^2)^* Cm(\Delta a)^{m-1} & m = \end{array} \right\} \\ J_{app} = (SF_p^*K'_{1p} + SF_s^*K'_{1s})^2 / E' \\ T_{app} = (E/\sigma_f^2)^* (dJ_{app}/da) \end{array}$

Ductile Crack Growth Stability Criterion: T_{app} < T_{mat}

At instability:

 $T_{app} = T_{mat}$

Safety	Safety Factors		SF*K'ls	J _{app}	T _{app}	Stable?
Primary	Secondary	(ksi√in)	(ksi√in)	(kips/in)		
1.00	1.00	29.021	49.261	0.217	1.667	Yes
2.00	1.00	58.042	49.261	0.408	3.132	Yes
3.00	1.50	87.063	73.892	0.919	7.046	Yes
5.00	1.00	145.106	49.261	1.340	10.275	Yes
7.00	1.00	203,148	49.261	2.260	17.328	NO

Iterate on safety factor until $T_{app} = T_{mat}$ to determine $J_{instability}$:

where,

2.8674	2.8674	83.215	141.252	J _{instability} 1.787	Т _{арр} 13.704	T _{mat} 13.704
at J _{mat} =	0.919	kips/in,	T _{mat} =	45.736		

Applied J-Integral Criterion:

J_{0.1} = J_{mat} at ∆a = 0.1 in.

 $J_{app} < J_{0.1}$

Safety	Factors	SF*K' _{tp}	SF*K' _{ls}	J_{app}	J _{0.1}	OK?
Primary	Secondary	(ksi√in)	(ksi√in)	(kips/in)	(kips/in)	
1.50	1.00	43.532	49.261	0.305	1.182	Yes

6.0 SUMMARY OF RESULTS AND CONCLUSIONS

Elastic-plastic fracture mechanics has been used to evaluate a postulated radial flaw in the J-groove weld and cladding of an outermost PZR heater sleeve penetration. The final flaw size was determined by linear-elastic fracture mechanics for { } years of fatigue crack growth.

6.1 Summary of Results

A summary of the results is provided in Table 6-1.

	Uphil	l Flav	v Downl	nill Flaw	
Initial flaw size	{	}	{	}	in
Time of fatigue crack growth	{	}	4	10	year
Final flaw size, af	{	}	{	}	in
Crack Growth	{	}	{	}	in
Safety factors (primary/secondary)			SF = 3 / 1.5		
Material tearing modulus	{	}	{	}	
Applied tearing modulus (< Tmat)	{	}	{	.}	
Safety factors (primary/secondary)			SF = 1.5 / 1		
Material J-integral, J _{0.1}	{	}	{	}	kips/in
Applied J-integral (< J _{0.1})	{	}	{	}	kips/in

Table 6-1: Summary of Results

6.2 Conclusion

Based on a combination of linear-elastic and elastic-plastic fracture mechanics analysis of a postulated remaining flaw in the original Alloy 82/182 J-groove weld and cladding, a remnant flaw in the CCNPP-1 heater sleeve penetration is considered to be acceptable for at least { } years of operation from the time the postulated flaw formed in the low alloy steel PZR lower head.

7.0 **REFERENCES**

- 1. AREVA NP Document, 08-9112221-002, Design Specification for Calvert Cliffs Unit 1, Pressurizer Heater Sleeve and Lower Instrumentation Nozzle Modification, September, 2009.
- 2. AREVA NP Drawing 02-9116243D-007, "Calvert Cliffs Pressurizer Heater Sleeve Nozzle Modification."
- 3. AREVA NP Document 51-5012047-00, "Stress Corrosion Cracking of Low Alloy Steel," March 2001.
- 4. ANSYS Finite Element Computer Code, Version 12.0, ANSYS Inc., Canonsburg, PA.
- 5. T.L. Anderson, Fracture Mechanics: Fundamentals and Applications, CRC Press, 1991.
- 6. AREVA Document 38-2200661-005, "Project Specification for a Pressurizer Assembly for Calvert Cliffs Units 1 & 2," VENDRPT# 20101112-00001.
- 7. ASME Boiler and Pressure Vessel Code, Section XI, Rules for Inservice Inspection of Nuclear Power Plant Components, 2004 Edition with no Addenda.
- 8. NUREG-0744, Vol. 2, Rev. 1, "Resolution of the Task A-11 Reactor Vessel Materials Toughness Safety Issue," Appendix D, Materials Toughness Properties, Division of Safety Technology, Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, Washington, D.C. 20555, October 1982.
- 9. AREVA NP Document 32-9126631-000, "Material and Transient Data for Pressurizer Heater Sleeve Repair Stress Analysis."
- 10. AREVA NP Document 32-9116466-003, "CCNPP-1 PZR Heater Sleeve & Plug Weld Residual Stress Analysis."
- 11. AREVA NP Document 32-9132487-005, "Calvert Cliffs Unit 1, Pressurizer Heater Sleeve/Plugged Sleeve Repair Structural Analysis."

APPENDIX A: VERIFICATION OF COMPUTER CODE ANSYS

The ANSYS finite element computer program [4] is verified for use in the present flaw evaluation by executing a test case from the ANSYS set of verification problems that utilize the SOLID186 structural 20-node 3-D solid elements. Test case VM256 determines stress intensity factors using ANSYS commands KCALC and CINT, for a crack in a plate using both 2D and 3D models. All test models executed properly, as demonstrated below for SOLID186 structural 3-D solid model. Also, a modified version of VM256 (VM256_Kcalc) was executed to verify that the UH_K1KCALC.mac and DH_K1KCALC files calculate the SIF similar to ANSYS KCALC routine. Results of verification test are listed below:

Verification Problem VM256
Fracture Mechanics Stress Intensity Calculation for a Semi Circular Surface Crack in a 3D Plate
File: vm256.vrt
VM256 RESULTS COMPARISON
TARGET ANSYS RATIO
USING PLANE 103 ELEMENT (Z-D ANALISIS)
KT 1 0249 1 0038 0 979
PRINTOUT RESUMED BY /GOP

USING SOLID 185 ELEMENT (3-D ANALYSIS)
* * * * * * * * * * * * * * * * * * * *
KI 1.0249 1.0383 1.013
PRINTOUT RESUMED BY /GOP

USING SOLID 186 ELEMENT - SURFACE CRACK (3-D ANALYSIS)
KI 1.4000 I.4152 I.009
Verification Problem VM256 Kcalc
TARGET ANSYS RATIO
Ansys Kcalc K1Kcalc_ver.mac
PRINTOUT RESUMED BY /GOP

USING SOLID 186 ELEMENT - SURFACE CRACK (3-D ANALYSIS)
K1 314.7 312.9 0.99

APPENDIX B: COMPUTER USAGE

B.1 Software/Hardware

ANSYS Version 12.0 is used in this calculation. The hardware platform is Dell Precision PWS690, Intel® Xeon® CPU, 5160 @ 3.33GHz, 2.99GHz, 32.0 GB of RAM, Serial No. 9BHGZC1, and the Operating System is Microsoft Windows XP Professional x64 Edition Version 2003 Service Pack 1.

B.2 Computer Files

All ANSYS input/output files are collected as listed as follows. ANSYS verification input/output files are also listed. The computer files listed below have been placed in the AREVA NP COLDStor repository in the directory "\cold\41304\32-9116467-002\official". All files were installed on 1/20/2010.

For ANSYS 12.0, test case vm256 is run to verify that the answers are correct. The files vm256.vrt contains output from the test case. Review of the output shows that the test case is run successfully. ANSYS 12.0 analysis and verification files were run on Dell Precision PWS690, Tag# 9BHGZC1.

- 1. Computer program tested: ANSYS 12.0
- 2. Computer hardware used: Intel® Xeon® CPU, 5160 @ 3.33GHz, 2.99GHz Tag# 9BHGZC1
- 3. Name of person running test: Samer Mahmoud
- 4. Date of test: 06-15-2010
- 5. Results and acceptability: The results of test case vm256.vrt as listed in Appendix A are acceptable.

ANSYS Models

File Name	Description	Modified Date	Checksum
CCPZRHS_FM_Uhill.db	Crack model for uphill side	06/07/2010	30821
CCPZRHS_FM_Dhill.db	Crack model for downhill side	06/04/2010	19091

Files for Downhill Side Crac	:k		
File Name	Description	Modified Date	Checksum
DH_K1.out	Output file contains SIF (Downhill)	06/11/2010	15952
DH_K1_DC.out	Output file contains SIF (Downhill Design Case)	06/11/2010	31810
DH_K1Kcalc.mac	ANSYS command sets to calculate SIF	06/10/2010	12601
RUN_DH.inp	ANSYS command sets to run analysis results (Downhill)	06/10/2010	1333
RUN_DH.out	ANSYS output file (Downhill)	06/11/2010	35329
RUN_DH_DC.inp	ANSYS command sets to run analysis results (Downhill Design Case)	06/10/2010	10766
RUN_DH_DC.out	ANSYS output file (Downhill Design Case)	06/11/2010	26263
SummerizeResults.mac	ANSYS command sets to summarize results (Downhill)	06/04/2010	37552
SummerizeResults_DC.mac	ANSYS command sets to summarize results (Downhill Design Case)	06/08/2010	38405
sfmap_Prep.mac	ANSYS command sets to map stress	06/07/2010	18442

Files for Uphill Side Crack

Filë Name	Description	Modified Date	Checksum
UH_K1.out	Output file contains SIF (Uphill)	06/10/2010	51213
DC_UH_K1.out	Output file contains SIF (Uphill Design Case)	06/10/2010	21425
UH_K1Kcalc.mac	ANSYS command sets to calculate SIF	06/10/2010	8841
RUN_UH.inp	ANSYS command sets to run analysis (Uphill)	06/10/2010	52746 🗠
RUN_UH.out	ANSYS output file (Uphill)	06/10/2010	56757
RUN_UH_DC.inp	ANSYS command sets to run analysis results (Uphill Design Case)	06/10/2010	10603
RUN_UH_DC.out	ANSYS output file (Uphill Design Case)	06/10/2010	50226
UH_SummerizeResults.mac	ANSYS command sets to summarize results (Uphill)	06/07/2010	811
DC_UH_SummerizeResults.mac	ANSYS command sets to summarize results (Uphill Design Case)	06/09/2010	31076
sfmap_Prep.mac	ANSYS command sets to map stress	06/07/2010	18442

ANSYS Verification

[·] File Name	Description	Modified Date	Checksum
VM256.inp	Input for verification problem for SIF calculation with SOLID 86	06-15-10	11797
.vm256.vrt	Results for verification problem for SIF calculation with SOLID 86	06-15-10	49343
Vm256.out	Output for verification problem for SIF calculation with SOLID 86	06-15-10	29168
VM256_Kcalc.inp	Input for modified verification problem for K1Kcalc.mac ANSYS command sets	06-15-10	11000
VM256_Kcalc.vrt	Output for modified verification problem for K1Kcalc.mac ANSYS command sets	06-15-10	42538
VM256_Kcalc.out	Results for modified verification problem for K1Kcalc mac ANSYS command sets	06-15-10	3483
K1Kcalc_ver.mac	ANSYS command sets to calculate SIF for verification case	06-15-10	61227

Excel Sheet Calculations

File Name	Description	Modified Date	Checksum
UH_K1.xls	Crack growth, LEFM , and EPFM evaluations for uphill side	09/17/2010	36837
DH_K1.xls	Crack growth, LEFM , and EPFM evaluations for downhill side	09/17/2010	63707

APPENDIX C: FINITE ELEMENT CRACK MODEL

C.1 Introduction

A non-radial partial penetration nozzle in a spherically shaped pressure vessel presents a challenging set of geometric constraints for both stress analysis and fracture mechanics analysis of flaws, especially in the J-groove weld. Since there are no closed-form solutions available to calculate stress intensity factors for such flaws, a three-dimensional finite element crack model is developed in this appendix for use in evaluating the postulated flaws in the area of the partial penetration attachment weld.

The three-dimensional finite element model is constructed using crack tip elements along the entire postulated crack fronts, extending from the inside surface of the cladding to the interface between the cladding and the low alloy steel lower head. An uncracked model of the, remnant heater sleeve, a portion of the PZR lower head and cladding is first created using the ANSYS finite element computer program [4]. After removing a block of elements around the crack front and inserting a sub-model of crack tip elements, stress intensity factors can be obtained via the program's KCALC routine or similar procedures. The crack tip sub-model consists of 20-node isoparametric elements that are collapsed to form wedges, with the appropriate mid-side nodes shifted to quarter-point locations to create a $1/\sqrt{r}$ singularity in strain at the crack tip.

C.2 Base Finite Element Model

A three-dimensional finite element model is constructed to represent an uncracked non-radial nozzle penetration in a hemi-spherical shaped head. This model utilizes the ANSYS SOLID186 3-D 20-node structural solid element, so that a portion of the model can be readily removed and replaced with a crack tip sub-model.

C.2.1 Geometry

As shown in Figure C-1, the model is a 180-degree segment of the head, cladding, and remnant heater sleeve.

Figure C-1: Overall Model of PZR Lower Head Penetration

Key dimensions are:

Radius to base metal	= {	} in. [2]
Head thickness (minimum)	= {	} in. [2]
Cladding thickness (nominal)	= {	} in. [2]
Penetration bore	= {	} in. [2]
Penetration to PZR center Initial flaw depth	= { = {	} in. [2] } in (equals to cladding thickness)

C.2.2	Materials		
	Component	Material	
	PZR bottom head Cladding J-groove weld filler		SA-533 Grade B Class 1 [1] Ni-Cr-Fe (use Alloy 600) [1] Alloy 82/182 (use Alloy 600) [1]
	Existing Lower Level Heater Sle	eeve	SB-166, Alloy 600 [1]

The mechanical properties for these materials are provided in Section 4.1.1.

C.2.3 Boundary Conditions

The model includes a 180-degree segment of the PZR heater sleeve and portions of the head. The vertical plane containing the vertical axes of the PZR and the outermost heater sleeve penetration forms a plane of symmetry for the model. The displacements normal to this plane of symmetry are fixed (in the global Z-direction). Displacement constraints are also applied to the outer peripheral boundary of the spherical segment to simulate a state of membrane stress. By specifying meridional displacements to be zero in a spherical coordinate system, the head can only displace along a spherical radius parallel to this boundary.

C.3 Finite Element Crack Models

The three-dimensional finite element crack model is developed by removing a portion of the head cladding and inserting a sub-model of crack tip elements, as illustrated in Figure C-2. Displacement constraints are also removed along the plane of symmetry for nodes on the crack face. Figure C-3 shows the final crack models for both downhill and uphill sides used to analyze a postulated flaw in the PZR lower head.

Figure C-3: Final Finite Element Crack Models

APPENDIX D: STRESS INTENSITY FACTOR DUE TO PRESSURE

The elastic-plastic fracture flaw evaluations of Section 2.4 utilize different safety factors for primary (pressure) and secondary stress (residual and thermal) intensity factors. In order to isolate the pressure term, K_{ip} , stress intensity factors are developed for the design case conditions (pressure load of { } psig at { } °F) where the uncracked stress values are obtained from Reference [11]. Table D-1 and Table D-2 presents stress intensity factors at all crack front positions defined in Figure 2-3 and Figure 2-4 for both downhill and uphill postulated cracks. Since these values were determined for the initial crack size, they are adjusted by the square root of the crack size, considering the final crack size after crack growth, in the same fashion as described in Section 2.2.

The K_{lp} pressure terms used in the EPFM flaw evaluations of Section 5.5 are derived below.

l et	K(aP) =	K (a P)	a	P
Let,		(ao, o)	a。	P₀

Temperature,

Pressure,

Initial flaw size, a_o = { } in.

From Table D-1, the downhill pressure stress intensity factor is evaluated at crack tip 15 to be { psi \sqrt{n} which is the highest pressure stress intensity factor in the low alloy head.

 $T = \{\}^{\circ}F$

 $P_o = \{ \} psig$

}

Table D-1: Downhill Stress Intensity Factors for Design Case Pressure

1233

AREVA

1035 1915 - 1915 1915 - 1915 - 1915

Controlled Document

ಣ ಮಂತ್ರ

Document No. 32-9156231-000

CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair

APPENDIX E: DETAILED CRACK GROWTH CALCULATIONS

FATIGUE CRACK GROWTH FATIGUE CRACK GROWTH FATIGUE CRACK GROWTH a0 a0= a0= a0≃1 af= af≃ ∙af= 500.000 cycles 500.000 cycles 40 vears 40 years 15000.000 cycles 40 years ΔN 12.500 cycles/year 12.500 cycles/year AN 375.000 cycles/year ΔN Transient 1B Transient 2B Transient PL Position 13 Position 13 Position 10 Year of Kmin Ктах Year of Kmax Kmin Year of Kmin Kmax Operation KI(a) Ja а KI(a) Operation а KI(a) KI(a) ∆a Operation а KI(a) KI(a) ∆a (in.) (ksivin) (ksi√in) (in.) (in.) (ksi√in) (ksivin) (in.) (in.) (ksi√in) (ksivin) (in.) 3.1 8.3 18.2 21.7 23.7 3.1 8.4 18.6 22.2 24.2 3.2 8.6 19.0 22.7 24.7 3.3 8.8 194 23,1 25.2 3.3 9.0 19.8 23.6 25.7 3.4 9.2 20.2 24.1 26.3 3.5 9.4 20.6 24.6 26.8 3.5 95 21.1 25.1 27.4 3.6 9.8 21.5 25.7 28.0 3.7 10.0 22.0 26.2 28.6 3.8 10.2 22.4 26.8 29.2 3.8 10.4 22.9 27.3 29.8 3.9 10.6 23.4 27.9 30.4 4.0 10.8 23.9 28.5 31.1 4.1 11.1 24.4 29.1 31.7 4.2 11.3 24.9 29.8 32.4 4.3 11.5 25.4 30.4 33.1 4.4 11.8 26.0 31.0 33.8 4.5 12.0 26:5 31.7 34.5 4.6 12.3 27.1 32.4 35.3 4.6 12.5 27.7 33.0 36,0 4.7 12.8 28.2 33.7 36.8 4.8 13.1 28.8 34.4 37.5 4.9 13.4 294 35.2 38.3 5.1 13.6 30.1 35.9 39.1 5.2 13.9 30.7 36.7 40.0 5.3 14.2 31.3 37.4 40.8 5.4 14 Š 32.0 38.2 41.7 5.5 14.8 32.7 39.0 42.5 5.6 15.1 33.4 39.9 43.4 5.7 15.5 34.1 40.7 44.3 58 15.8 34.8 41.5 45.3 6.0 16.1 35.5 42.4 46.2 6.1 16.4 36.3 43.3 47.2

16.8

Table E-1: Uphill Detailed Crack Growth

37.0

6.2

Hage 63 Construction of the second project of the

44.2

48.2

Page 63

ند. <u>م</u>

.

÷.

Document No. 32-9156231-000

CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair

		FATIGUE	CRACK	GROWTH		FATIGUE CRACK GROWTH						FATIGUE CRACK GROWTH				
a0= af= ∆N Transient	{ 15000.000 375.000)in Jin cycles cycles/year	40	years	a0= af= ∆N	{ 320.000 8.000	jin in cycles cycles/year	40	years	á0= af≕ ∆N Transiont	{ 480.000 12.000	∫in ∫in cycles cycles/year	40	years		
Year of Operation	a (in.)	Position 10 Kmin Kl(a) (ksi√in)	Kmax Kl(a) (ksi√in)	_∆a (in.)	Year of Operation	a	Position 13 Kmin KI(a) (ksi√in)	Kmax Kl(a) (ksi√in)	∆a (in.)	Year of Operation	a (in.)	Position 10 Kmin KI(a) (ksi√in)	Kmax Kl(a) (ksi√in)	∆a (in.)		
	(in.)	(ksivin) 21.8 22.3 23.7 23.2 23.7 24.2 24.7 25.2 25.8 26.3 26.9 27.4 28.6 29.2 29.8 30.5 31.1 31.8 32.4 33.1 33.8 34.6 35.3 36.0 36.8 37.6 38.3 39.1 40.0	(ksivin) 24.0 24.5 25.0 25.5 26.0 26.6 27.1 27.7 28.3 28.9 29.5 30.2 30.8 31.4 32.1 32.8 33.5 34.2 34.9 35.7 36.4 37.2 38.0 38.8 39.6 40.4 41.3 42.2 43.0 43.9	(in.)		(in.)	(ksivin) 7.0 7.2 7.3 7.5 7.6 7.8 8.0 8.1 8.3 8.5 8.7 8.9 9.0 9.2 9.4 9.6 9.8 10.0 10.3 10.5 10.7 10.9 11.1 11.4 11.6 11.9 12.1 12.4 12.9 13.2	(ksi vln) 19.2 19.6 20.0 20.4 20.9 21.3 21.7 22.2 23.7 24.2 24.7 25.5 26.8 27.4 28.0 28.8 30.4 31.1 31.7 32.4 33.1 33.8 34.5 35.2	(in.)		(in.)	(ksi\lin) 18.7 19.1 19.5 19.9 20.3 20.7 21.2 21.6 22.1 22.6 23.0 23.5 24.0 24.5 25.6 26.1 26.7 27.2 27.8 28.4 29.0 29.6 30.9 31.5 32.2 32.9 33.6 34.3 25.0	(ksivin) 24.6 25.1 25.6 26.2 26.7 27.3 27.9 28.4 29.0 29.7 30.3 30.9 31.6 32.3 33.0 33.7 34.4 35.1 35.8 36.6 37.4 35.1 35.8 36.4 37.4 35.1 39.0 39.8 40.6 41.5 42.4 43.3 44.2 45.1	(in.)		
	3	41.7 42.5 43.4 44.3	45.8 46.8 47.7 48.7				13.4 13.7 14.0 14.3	36.7 37.5 38.2 39.0				35.7 36.5 37.2 38.0	47.0 48.0 49.0 50.0			

: ·

S y constructions

Maria Nam

A AREVA

Controlled Document

Document No. 32-9156231-000

CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair

		FATIGUE	CRACK	GROWTH		FATIGUE CRACK GROWTH						FATIGUE CRACK GROWTH			
a0≕ af≃ ∆N Transient In	{ 60.000 1.500	in Jin cycles cycles/year	40	years	a0= af= ∆N Transient	70.000 1.750	jin Jin cycles cycles/year	40	years	a0= af= ∆N Transiont	{ 130.000 3.250]in in cycles cycles/year	40	years	
∆N Transient In Year of Operation	1.500 <u>surge1</u> a (in.)	cycles/year Position 10 Kmin KI(a). (ksivin) 22.1 22.6 23.1 23.5 24.0 24.5 25.1 25.6 26.1 26.7 27.3 27.8 28.4 29.0 29.7 30.3 30.9 31.6 32.3 32.9 33.6 34.3 35.1 35.8 36.6 37.3 38.1 38.9 39.7 40.6 41.4 20.6 41.4 20.6 20.7 20.5 20.7 20.5 20.7 20.5 20.7 20.5 20.7 20.5 20.7 20.5 20.7 20.5 20.7 20.5 20.7 20.5 20.7 20.5 20.7 20.5 20.7 20.5 20.7 20.5 20.7 20.5 20.7 20.5 20.7 20.3 20.5 20.3 20.5 20.5 20.5 20.7 20.5	Kmax KI(a) (ksivin) 62.8 64.1 65.4 66.8 68.2 69.7 71.1 72.6 74.2 75.7 77.4 79.0 80.7 82.4 84.9 87.8 89.6 91.5 93.5 93.5 95.4 97.5 101.6 103.7 105.9 105.9 105.9 105.9 105.9 105.4 115.1 117.5		AN Transient Year of Operation	1.750 Insurge2 a (in.)	cycles/year Position 10 Kmin Kl(a) (ksivin) 11.0 11.2 11.4 11.7 11.9 12.2 12.4 12.7 12.9 13.2 13.5 13.8 14.1 14.4 14.7 15.0 15.3 15.6 16.0 16.3 16.7 17.0 17.4 17.7 18.1 18.5 18.9 19.3 19.7 20.1 20.5 12.5 12.5 10.5	Kmax KI(a) (ksivin) 43.9 44.8 45.8 46.7 47.7 49.7 50.8 51.9 53.0 54.1 55.2 56.4 57.6 58.8 60.1 61.4 62.7 64.0 65.4 66.7 68.1 69.6 71.1 72.5 74.1 75.5 74.1 72.5 74.1 75.8 80.5 82.2 78.8 77.2 78.8 77.2 78.8 77.2 78.8 77.2 78.8 77.2 78.8 77.2 78.8 77.2 78.8 77.2 78.8 77.2 78.8 77.2 78.8 77.2 78.8 77.2 78.8 77.2 78.8 77.2 78.8 77.2 77.2 78.8 77.2 7	∆a (in.)	AN Transient Year of Operation	3.250 Insurge3	cycles/year Position 10 Kmin KI(a) (ksi\in) 22.1 22.6 23.1 23.6 24.1 24.6 25.1 25.6 26.2 26.7 27.3 27.9 28.4 29.1 29.7 30.3 30.9 31.6 32.3 33.0 33.7 34.4 35.1 35.8 36.6 37.4 38.9 39.8 40.6 41.4	Kmax KI(a) (ksivin) 57.7 58.9 60.1 61.4 62.7 64.0 65.3 66.7 68.1 69.6 71.0 72.6 74.1 75.7 77.3 80.6 82.3 84.1 85.8 87.7 89.5 91.4 93.3 95.3 97.3 95.3 97.3 95.3 97.3 95.3 95.3 91.4 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3		
	ij	43.2 44.1 45.0	122.5 125.1 127.7				21.0 21.4 21.8 22.3	85.7 87.5 89.3				43.2 44.1 45.0	112.5 114.9 117.3		

 Rege 85 Di Geleratione de la company de la company de la company Page 65

S.

 $\{1,1,1,2,\dots,n\}$

ş

Page 65

1

Document No. 32-9156231-000

CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair

		FATIGUE	CRACK	GROWTH			FATIGUE	CRACK	GROWTH		FATIGUE CRACK GROWTH					
a0=	ſ	'n			a0=	<u></u>	'n			a0=	ſ	ի				
ar=		Jn	46		af≃	1	ſſ			af=	l	Jn				
4 N I	12 250	cycles	40	years		120.000	cycles	40	years		1010.000	cycles	40	years		
	15.200	cycles/year			AN .	3.000	cycles/year			AN	25.250	cycles/year				
Tansient	msurge4	Decition 10				Insurgeo				ransient	Insurgeo	1				
Voorof		Kmin	Kmax				Position 10					Position 10				
Operation	•	KIG	KI/a)	<u>م</u>	Year of		Kmin	Kmax	4 -	Year of		Kmin	Kmax			
Operation	(in)	(keislin)	(keivin)	∆a (in.)	Operation	a (')		KI(a)	∆a ″~	Operation	a //~ \	KI(a)	KI(a)	∆a		
		110	(KSIVIII) //17	(11.)	1	(in.)			(In.)		<u>(In.)</u>		(KSIVIN)	(in.)		
+1	<i>]</i> []	11.0	42.5	/ \	11 ()	11.0	40.0	/ ^	11 7	1	11.0	39.4			
	1	11.2	13 1	(11.2	41.0	· ·		1	11.2	40.2	/ :\		
		117	44.3]] (11.4	42.3				11.5	41.0			
		119	45.3				11.7	43.2	· ·			11.7	41.3			
		12.2	46.2				12.2	44.1	· ·			12.2	42.0			
		12.4	47.2				12.2	45.0				12.2	43.1			
		12.7	48.2				12.7	40.0				12.5	44.0			
		13.0	49.2				13.0	48.0			, i i	13.0	46.5			
		13.2	50.3				13.0	40.0				13.3	40.5			
		13.5	51.3				13.5	50.0				13.5	47.5			
	:	13.8	52.4				13.8	51.1				13.8	49.5			
		14.1	53.5				14.1	52.2	I .			14.1	50.6			
	;	14.4	54.7				14.1	53.3	I .			14.1	51.6			
11	;	14.7	55.8				14.7	54.4				14.7	52.7	4		
		15.0	57.0				15.0	55.6	1			15.0	53.9			
	; t	15.3	58.2				15.3	56.7		NI		15.0	55.0			
17	· · · · · ·	15.7	59.5		NJ		15.7	57.9		N N		15.7	56.2	- IN		
1 1	/	16.0	60.7		N)		16.0	59.2				16.0	57 4	i V		
		16.3	62.0		11 \		16.3	60.4				16.4	58.6			
		16.7	63.3		1.1		16.7	61.7				16.7	59.8			
	;	17.0	64.7				17.0	63.0				17.1	61.1			
	.	17:4	66.0				17.4	64.3	.			17.4	62.4			
	. 1	17.8	67.4				17.7	65.7				17.8	63.7			
	·]	18.1	68.8				18.1	67.1				18.2	65.0			
		18.5	70.3				18.5	68.5				18.5	66.4	;		
	;	18.9	71.8				18.9	69.9	.			18.9	67.8	3		
		19.3	73.3				19.3	71.4				19.3	69.2			
	.	19.7	74.8				19.7	72.9				19.7	70.7	5		
		20.1	76:4				20.1	74.4	.		<i></i>	20.2	72.1	5		
	:	20.5	78.0				20.5	76.0				20.6	73.7	Υ.		
		21.0	79.6		[1]		21.0	77.6				21.0	75.2	j.		
	:	21.4	81.3		1 I I		21.4	79.2			ļ	21.4	76.8	1		
	.]	21.9	83.0		A I 1	1	21.8	80.9	۱ ·	11-1		21.9	78.4			
11	J	.22.3	84.7	χ /			22.3	82.6	N)	11 \	J	22.4	80.0	X 4		

Sogn Es - <u>.</u> . -

1. S. A.

n an s Contains

A AREVA

(1)

e. . .

Controlled Document

Station States of the States o

2003

Document No. 32-9156231-000

. . .

CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair

		FATIGUE	CRACK	GROWTH		FATIGUE CRACK GROWTH						FATIGUE CRACK GROWTH				
a0=	_ا	hin.			a0=	c~	nin			a0=	ſ	Jin				
af=		jîn			af=	4	in			af=	{	lin				
	320.000	cycles	40	years	-	60.000	cvcles	40	vears		1210.000	cvcles	40	vears		
ΔN	8.000	cycles/year			ΔN	1.500	cvcles/vear		,	ΔN	30.250	cvcles/vear		,		
Transient	Insurge7				Transient	Insurge8	.,,			Transient	Insurge9	-,,-				
		Position 10					Position 10			1		Position 10				
Year of		Kmin	Kmax		Year of		Kmin	Kmax		Year of		Kmin	Kmax			
Operation	a	KI(a)	KI(a)	∆a	Operation	а	KI(a)	KI(a)	∆a	Operation	а	KI(a)	KI(a)	∆a		
	(in.)	(ksi√in)	(ksi√in)	(in.)		(in.)	(ksi√in)	(ksi√in)	(in.)		(in.)	(ksi√in)	(ksi√in)	(in.)		
11	····)	22.3	51.8	1	1	<i>I</i>	11.0	37.8	<u>/ \</u>	1	1	11.0	36.6	7		
	;]	22.7	52. 9	r II	F	ļ	11.3	38.6	(Ľ		1	11.3	37.3			
	2	23.2	54.0				11.5	39.4	¢ +	11 /	{	11,5	38.1	1 1		
	, ,	23.7	55.1				11.7	40.3	l ł		· ·	11.7	38.9			
	1	24.2	56.3				12.0	41.1	l ł			12.0	39.7			
		24.7	57.5				12.2	42.0	ļ			12.2	40.6			
		25.2	58.7				12.5	42.9	ŀ	11 I		12.5	41.4			
		25.7	59.9				12.8	43.8	ļ.			12.8	42.3			
	1	26.3	61.2				13.0	44.7		<u> </u>		13.0	43.2	i ii		
	÷	26.8	62.5				13.3	45.6				13.3	44.1			
	i	27.4	63.8				13.6	46.6				13.6	45.0	i iii		
		28.0	65.2				13.9	47.6				13.9	46.0	i iii		
	2	28.6	66.6				14.2	48.6				14.2	47.0			
	,	29.2	00.0				14.5	49.7	1			14.5	48.0			
		29.0	09.4				14.8	50.7				14.8	49.0			
		30.5	70.9				15.1	51.8			1	15.1	50.0			
	. 1	31.1	72.4				15.4	52.9	1	N/	1	15.4	51.1	1		
11		31.0	75.92		11		15.7	54.04	+	IN I	1	15.8	52.2	: P		
11		32.4	75.5				16,1	50.1	+	¥1 \		16.1	53.3	1		
		33.1	79.7	1			10.4	50.5		(† †		10.4	04.4 55.0	1 11		
		34.5	80.4				10.0	5/.5 59.7	•			10.0	56.7			
		35.3	82.1				17:1		•			17.5	57.0			
		36.0	93.9				17.5	64.0	•			17.5	50.0			
	<u>'</u>	36.8	85.6				18.2	62.5	,			1/.5	59.Z			
	i l	37.5	87.4				18.6	63.8				18.6	61.7			
		383	89.2				19.0	65.2				19.0	63.0			
	; [39.1	91.1				19.4	66:5	, I			19.0	64.3			
	<u> </u>	40.0	93.0				19.8	67.9	, I			19.8	65.6	1 1		
	; l	40.8	95.0				20.2	69.4				20.2	67.0	1]]		
	; l	41.6	97.0				20.7	70.8				20.7	68.4	1 1		
		42.5	99.0				21.1	72.3				21.1	69.9			
		43.4	101.1				21.5	73.8		H (21.5	71.3	i Ji		
	: 1	44,3	103.2	1	11		22.0	75.4		A {		22.0	72.8	1 1		
		45.2	105.3	\ '	11		22.4	76.9	V 7	\	ļ.	22.4	74.3	V II		

Prostantes . . . يې د د _اسم د د 19. n. **n.** 1

4

Controlled Document ากการของสุขารระบบสุขารสารสารสารสารการการการการการการการการสารสารสารสารสารสารสารสารสารสารสารสาร และสาร แน่ง นาร เป็นสารสารสารสารสารสารสารสารสารการการการการการการการการการการสารสารสารสารสารสารสารสารสาร และสาร และ สู้ให้

Document No. 32-9156231-000

CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair

		FATIGUE	CRACK	GROWTH				FATIGUE CRACK GROWTH						
a0=	، ا)in			a0=	۲	Jin			a0=	ſ	Jin		
af=	1 :	Ĵin			af=	ť	Ĵin			af=	1	Jin		
	170.000	cycles	40	years		1910.000	cvcles	40	vears		350.000	cycles	40	vears
ΔN	4.250	cycles/year			ΔN	47.750	cvcles/year			ΔN	8,750	cvcles/vear		
Transient	Insurge10				Transient	Insurge11				Transient	Insurge12	, ,		8
		Position 10				×	Position 10]		Position 10		
Year of		Kmin	Kmax		Year of		Kmin	Kmax		Year of		Kmin	Kmax	
Operation	а	KI(a)	KI(a)	∆a	Operation	а	KI(a)	KI(a)	∆a	Operation	а	KI(a)	KI(a)	∆a
	(in.)	(ksi√in)	(ksi√in)	(in.)		(in.)	(ksi√in)	(ksivin)	(in.)	11 .	(in.)	(ksi√in)	(ksi√in)	(in.)
1	J	22.2	47.9	/	1	1	22.1	45:8	1	1 7.	1	11.1	31.4	(
		22.7	48.9	/ \			22.6	46.7	/ 1		1	11.4	32.1	/ \
		23.2	50.0	[-]			23.1	47.7	1			11.6	32.7	4
	:	23.7	51.0				23.6	48.7	;			11.8	33.4	
	:	24.2	52.1				24.1	49.7	;			12.1	34.1	
		24.7	53.2	.			24.6	50.8	į ;			12.4	34.8	
		25.2	54.3	•			25.1	51.8				12.6	35.6	ļ
	:	25.7	55.4				25.6	52.9	;			12.9	36.3	ļ.
		26.3	56.6				26.2	54.0				13.1	37.1	
	•	26.8	57.8				26.7	55.2	5			13.4	37.9	
		27.4	59.0				27.3	56.4	r			13.7	38.7	
	i	28.0	60.3				27.9	57.6	;			14.0	39.5	4
		28.6	61.6		11		28.5	58.8	;		Ì	14.3	40.3	
	1	29.2	62.9				29.1	60.0	1			14.6	41.2	
	,	29.8	64.2				29.7	61.3	i -			14.9	42.1	ų
	: {	30.4	65.6				30,3	62.6		11		15.2	43:0	1
11	· • •	.31.1	67.0				31.0	63.9	Г .,	NI	1	15.6	43.9	Ň
K	· · }	31.7	68.4	-	5 K		31.6	65.3 🗸	;	\mathbb{R}	}	15.9	44.8	÷ D
11	: I	32.4	69.8				32.3	66.7	;			16.2	45.8	i.
	· [33.1	71.3	/			33.0	68.1		1 1		16.6	46.7	
	.	33.8	72.8	} ./			33.7	69:5			-	16.9	47.7	
		34.5	74.4	,			34.4	71.0	:			17.3	48.7	
	1	35.2	75.9	i			35.1	72.5	:			17.6	49.8	
		36.0	77.5				35.8	74.0				18.0	50.8	
		36.7	79.2	;			36.6	75.6	1			18.4	51.9	
	:	37.5	80.8	;			37.4	77:2				18.8	53.0	
		38.3	82.5				38.1	78.8]	1	19.2	54.1	
		39.1	84.3	;			38.9	80.5]	1	19.6	55:2	
		39.9	86.0				39.8	82.1				20.0	56:4	
	,	40.8	87.8				40.6	83.9				20.4	57.6	
	1	41.6	89.7	5			41.4	85.6			1	20.8	58.8	
	· ·	42.5	91.6			ł	42.3	87.4				21.3	60:0	
11	;	43.4	93.5				43.2	89.2		A 1 1		21.7	61.2	
\	· · · · · · · · · · · · · · · · · · ·	44.3	95.4	۱ <i>۱</i>		1	44.1	91.1	ن ز	AT N		22.2	62.5	1 1
)	45.2	97.4	A l		J.	45.0	93.0	$\lambda = I$	11 1		22.6	63:8	V il

केंक्ट्री के स

larısılar.

A AREVA Land Share a set of

- <u>-</u> -

muns i medi zerren hinne i azerre uzer

and the second s

. Controlled Document 77 SENG & STOL

Document No. 32-9156231-000

ince is as

CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair

		FATIGUE	CRACK	GROWTH			FATIGUE	CRACK	GROWTH	
a0=	۲)in			20=	(Jin			
af=	1.	Jin			at=	{	lin			
	3360.000	cycles	40	years	u 1	820 000	cycles	40	vears	
ΔN	84.000	cycles/year		•	AN	20,500	cycles/year	10	you,o	
Transient.	Insurge13				Transient	İnsurae14	-,,			
		Position 10]		Position 10			٦
Year of		Kmin	Kmax		Year of		Kmin	Kmax		
Operation	а	Kl(a)	Kl(a)	∆ a .	Operation	а	KI(a)	KI(a)	Δa	
	(in.)	(ksi√in)	(ksivin)	(in.)] .	(in.)	(ksi√in)	(ksi√in)	(in.);	
1	-)	22.1	34.4	1	1)	11.2	21.6	7	7
11	· • •	22.5	35.1	/ \	11 1	1	11.4	22.1		
	l l	23.0	35.9				11.7	22.5	1	
	f	23.5	36.6				11.9	23.0		
		24.0	37.4				12.1	23.5		
		24.5	38.2				12.4	24.0		
		25.0	39.0				12.7	24.5		
	'	25.5	39.8				12.9	25.0		
		26.1	40.6				13.2	25.5		
	•	26.6	41.5				13.5	26.1		
	'	27.2	42.4				13.8	26.6		
		27.8	43.3				14.1	27.2		
		28.4	44.2				14.4	27.8		
	4	29.0	45.2				14.7	28.3		
	· [29.0	40.1				15.0	28.9		
		30.2	47.1	r i		1	15.3	29.6		A
17		31.5	40.1		N /		15.6	30.2		N
1 \	1	31.5	49.1X		ИN	1	16.0	30.8		16
11		32.2	51.2		[] \		16.3	31.5		1
	1	33.6	52.2			1	17.0	32.1		1
		34.3	53.4				17.0	32.0		
		35.0	54.5				17.3	34.2		
		35.7	55.7				181	34.9		
		36.5	56.8				18.5	35.7		
		37.2	58.0				18.9	36.4		
		38.0	59.3				19.2	37.2		
		38.8	60.5			1	19.7	38.0		
		39.6	61.8				20.1	38.8		
		40.5	63.1			1	20.5	39.6		
		41.3	64.4				20.9	40.4		
		42.2	65.7				21.4	41.3		
		43.1	67.1			j j	21.8	42.1		
	· ·	44.0	68.5	l l			22.3	43.0	1	
1 1	J	449	70.0	\ '		1	22.7	43.9	1	4

· . /

ursundarsophin <u>ur suna</u>	e te e e compresente	
1	ada da se	
	1. F. S. S.	

• . • •

.

Α AREVA

~

ිකාන 69 මේකාන 69 මේකා විට දින්න කරන කරන කරන කරන කරන කරන · · · • • Page 69

Page 69

· · · · · · · · · ·

37 2268 B. Shine

···· ···

1

,

۰.

يرا حات محدوقات في

ેલ હા ઉત્તરપ્રસંઘર્ટ

1 1

AREVA

Document No. 32-9156231-000

The second second second second

ية من تجرير المين المين. أو يتوسط إلياني أو المحرور

11

CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair

Table E-2: Downhill Detailed Crack Growth

		FATIGUE	CRACK	GROWTH			FATIGU	E CRACK	GROWTH					
a0=	r i	ֆin			a0=	٢	Jin			-0-	r :	FAIIGU	CRACK	GROWTH
af=	- { _1	յիս			af≔	{	իր			a0=		un Cin		
	500.000	cycles	40	years		500.000	cycles	40	years	di-	15000.000	jui Lovoles	40	veare
											10000.000	cycles	40	Jears
ΔN =	12.500	cycles/year			۵N =	12.500	cycles/year			∆N'=	375.000	cvcles/vear		
Transient	1B	·····			Transient	2B				Transient	PL			
N		- Marcha	Position 1	5	Variate		Kasia	Position 1	5				Position 1	5
Year of	-	Kmin	Kmax	À.a	rear or	•	Kinin	Kinax	10	Year of		Kmin	Kmax	
Operation	al (in.)	(keidin)	(keislin)	∆ط (in)		din \	(keislin)	(ksivin)	∆al (in.)	Operation	а	Ki(a)	Ki(a)	∆a
	<u>(01.)</u>		15.7	<u></u>			((3)(1))	16.1	(***)	1	(in.)	(ksi\'in)	(ksi√in)	(in.)
	$I \rightarrow 1$	0.0	15.8	()		1 1	42	16.3	1 .		$\int \mathbf{v}$	15.6	17.2	I = M
3	1 1	0.1	16.0	1 '	3		4.3	16.4			1	15.7	17.3	1 31
4	1 1	0.1	16.2	í .:	4	1	4.3	16.6			1 1	15.9	17.5	{ }
5		0.1	16.3		5		4.4	16.8		4		16.0	17.0	
6		0.1	16.5		6		4.4	16.9				16.2	18.0	
7		0.1	16.7		7		4.4	17.1				16.5	18.2	· ·
8		0.1	16.8		8		4.5	17.3		1 8		16.7	18.4	· ·
9		0.1	17.0		9		4.5	17.5		9		16.9	18.6	· ·
10		0.1	17.2	1	10		4.6	17.6		10	1 1	17.0	18.8	· ·
11		0.1	17.4		11		4.6	17.8		11		17.2	19.0	· ·
12		0.1	17.5		12		4.7	18.0		12		17.4	19.2	· ·
13		0.1	17.7		13		4.7	18.2		13		17.6	19.4	· ·
14		0.1	17.9		14		4.8	18.4		14		17.8	19.6	· · ·
15		0.1	18.1		15		4.8	18.6		15		18.0	19.8	· ·
16		0.1	18.3		10	1	4.9	18.8		16		18.1	20.0	
11/) [0.1	10.0	1	18		4.9	19.0		17		18.3	20.2	
10	1 1	0.1	18 0	· ·	10	[]	5.0	10.2	1	18	1 1	18.5	20.5	
20	/ \	0.1	19.1		N 20	\	5.0	19.6	1	19	1 1	18.7	20.7	í . l
21	۲ I	0.1	19.3		21^{21}		52	19.8		D 20	{ }	19.0	20.9	. [
22	1 1	0.1	19.5		22	\ /	52	201		21	\ <i>I</i>	19.2	21.2	Y
23		0.1	19.8		23	1	5.3	20.3		22		19.4	21.4	1 . [
24		0.1	20.0		24		5.3	20.5		24		19.8	21.0	1.1
25		0.1	20.2		25		5.4	20.7		25		20.0	22.1	· ·
26	1 1	0.1	20.4		26		5.4	21.0		26		20.3	22.4	· ·
27	1 1	0.1	20.7		27		5.5	21.2		27		20.5	22.6	· ·
28		0.1	20.9		28		5.6	21.5		28		20.7	22.9	· ·
29		0.1	21.1		29		5.6	21.7		29		21.0	23.1	· ·
30		0.1	21.4		30		5.7	22.0		30		21.2	23.4	· · · ·
31		0.1	21.6		31		5.8	22.2		31		21.5	23.7	· · ·
32		0.1	21.9		32		5.8	22.5		32		21.7	24.0	I . I
33	1	0.1	22.1	•	33		5.9	22.7		33		22.0	24.2	
34		0.1	22.4	1	34		6.0	23.0		34		22.2	24.5	
35		0.1	22.7	· ·	35		6.0	23.3		35		22.5	24.8	
30		0.1	22.9		30		6.1	23.0		36		22.7	25.1	
31	1	0.1	23.2 22 F	1	3/	1	6.2	23.0		3/		23.0	25.4	
30	1	0.1	23.3	1	30		63	24.1	\ 1	1 30		23.5	25.7	1.1
40	A /	0.1	24.0	N 7	40	1 1	6.4	24.7	<i>\</i> '	40	1 1	23.8	26.3	\ /

,

Page 70

сэл. Со 1

AREVA

Proge 14

• • • •

- 84 177

-

1

Document No. 32-9156231-000

Pege ?

Con BH

CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair

		EATIQUE	CRACK	BOWTU		,	FATIGUE CRACK GROWTH			FATIGUE CRACK GROWTH				GROWTH
a0=	6	Jin	CRACK	SKOWIN	a0=	ſ]in			a0=	۲]in		
au-	{	- µ1			af=	ا ,	Ĵin			af=	1	ìn		
ai-	15000 000	cycles	40	Vears		320.000	cycles	40	years		480.000	cycles	40	years
	10000.000	Cycles	40	years										
4N =	375 000	cycles/year			∆N =	8.000	cycles/year			∆N =	12.000	cycles/year		
Transient	PU	oyologiyeal			Transient	LeakTest				Transient	LLA			
		1	Position 1	5	1			Position 1	5				Position 1	5:
Year of		Kmin	Kmax		Year of		Kmin	Kmax		Year of		Kmin	Kmax	
Operation	а	Kl(a)	KI(a)	∆a	Operation	а	KI(à)	Kl(a)	∆a	Operation	a	KI(a)	KI(a)	∆a
	(in.)	(ksi√in)	(ksivin)	(in,)		(in.)	(ksi√in)	(ksi√in)	(in.)		(in.)	(ksivin)	(ksivin)	(in.)
1	1	15.4	17.4	1 1	1 1	1	3.2	18.5	1	1	1	12.0	16.7	1
2	1	15.5	17.6	1 1	2	1	3.2	18.7	1 1	2	1 1	12.1	16.8	1 1
3	1 1	15.7	17.8	[3		3.3	18.9	1 1	3	1 1	12.2	17.0	1 1
4		15.9	18:0		4		3.3	19.1	[·]	4		12.4	17.2	
5		16.0	18.1		5		3.3	19.3		5		12.5	17.3	· ·
6		16.2	18.3		6		3.4	19.5		6		12.6	17:5	,
7		16.3	18.5		7		3.4	19.7				12.7	17.7	• ر
8		16.5	18.7		8		3.4	19.9		8		12.9	17.9	
9		16.7	18.9		9		3.5	20.1		9		13.0	18.1	,
10		16.9	19:1		10		3.5	20.3		10	1 1	13.1	18.2	
11		17.0	19.3		11		3.6	20.5		11		13.3	18.4	÷
12		17.2	19.5		12		3.6	20.7		12		13.4	18.6	•
13		17.4	19.7		13		3.6	21.0		13		13.6	18.8	· · · ·
14		17.6	19.9		14		3.7	21.2		14		13.7	19.0	· []
15		17.8	20.1		15		3.7	21.4		15		13.8	19.2	· · ·
16		18.0	20.3		16		3.8	21.6	1 1	16		14.0	19.4	1 1
17		18.1	20.6		17		3.8	21.9	1 1	17		14.1	19.6	· ·
18 ∙		18.3	20.8		18		3.8	22.1		18	1 1	14.3	19.9	1 1
19	1 1	18.5	21.0	1	19	1 1	3.9	22.3		19	1	14.5	20.1	
20	$\{ \}$	18.7	21.2			()	3.9	22.6		20	{ !	14.6	20.3	(i)
21	\ (19.0	21.5		21	1 1	4.0	22.8	· /	21	1 1	14.8	20.5	
22		19.2	21.7		22	1 1	4.0	.23.1	\ 1	22	1 1	14.9	20.7	
23		19.4	21.9		23	1	4.0	23.4	{	23	1 1	15.1	21.0	i 'İ
24		19.6	22.2		24		4.1	23.6		24		15.3	21.2	· · ·
25		19.8	22.4		25		4.1	23.9		25		15.4	21.5	· · · ·
26		20.0	22.7		20	1	4.2	24.2	: 1	20		15.0	21.7	
27		20.3	23:0		21		4.2	24.4	ŧ I	2/		15.8	21.9	I 'I
28		20.5	23.2		28		4.3	24.7	{	28		10.0	22.2	
29		20.7	23.5		29		4.3	25.0		29		10.2	22.5	
30		21.0	23.8		30		4.4	25.3	1	30		16.4	22.1	
31		21.2	24.0		31		4.4	25.6		1 31		10.5	23.0	i i
32		21.5	24.3		32		4.5	25.9		32		10.7	23:3	
33		21.7	24.6		33		4.5	20.2	1 I	33		10.9	23.3	î.
34		22.0	24.9		34		4.0	20.5	1	34	1	17.1	∠3.8 24.4	1 1
35		22.2	25.Z		35		4.6	20.8		1 35		17.3	24.1	
36		22.5	25.5		30		4./	27.1		1 30		17.5	24.4	
3/		22.8	25.8	l l	31		4.8	27.4	1	1 3/		17.7	24.0	([*])
38		23.0	26.1		38		4.8	27.7	1 1	1 38	1 1	17.9	24.9	
39		23.3	26.4	λ Ι	39	₹. F	4.9	28.1	۲ ۱	39	1	18.2	25.2	V 11
1 40	· /	23.0	26.7	\ /	11 40		1 4.9	28.4	1	11 40		10.4	∠ə.ə	1 4

Page 71

- 11 (193) 27 (194)

1.14.15

Document No. 32-9156231-000

CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair

		FATIGUE		FATIGUE	GROWTH			FATIGUE CRACK GROWTH						
a0=	ŕ	Jin			a0=	ſ	lin			a0=	[~	in		
af=	- 1-	in			af=	l	∫in			af=	1	l în		
	60.000	cycles	40	years		70.000	cycles	40	years		130.000	cycles	40	years
							-							
∆N =	1.500	cycles/year			<u></u> ۱۸ =	1.750	cycles/year			∆N =	3.250	cycles/year		
Transient	Insurge1				Transient	nsurge2				Transient	nsurge3			
			Position 1	5]			Position 1	5				Position 1	5
Year of		Kmin	Kmax		Year of		Kmin	Kmax		Year of		Kmin	Kmax	
Operation	а	Kl(a)	KI(a)	∆a	Operation	а	KI(à)	KI(a)	<u></u> යa	Operation	а	KI(a)	Ki(a)	∆a
	(in.)	(ksi√in)	(ksi√in)	(in.)		(in.)	(ksi√in)	(ksi√in)	(in.)		(in.)	(ksi√in)	(ksi√in)	(in.)
1	1 1	15:9	46.6	1	1 1	()	1.9	27.3	1	1	1 1	15.9	42.6	Γ 1
2	1	16.1	47.1	/ \	2	1 1	1.9	27:5	1 1	2	1	16.1	43.0	1 11
3	1 1	16.3	47.6	1 1	3	1 1	2.0	27.8	1 1	3	1 1	16.2	43.5	[
4		16.4	48.1		4	1	2.0	28.1		4		16.4	43.9	
5		16.6	48.5	1 1	5		2.0	28.4		5		16.5	44.3	
6		16.8	49.0		6		2.0	28.7		6		16.7	44.8	
7		16.9	49.5		7		2.0	29.0] 7		16.9	45.2	
8		17.1	50.0		8	:	2.1	29.3		8		17.1	45.7	
9		17.3	50.6		9		2.1	29.6	1 1	9		17.2	46.2	
10		17.5	51.1		10		2.1	29.9		10		17.4	46.7	
11		17.7	51.6		11	1	2.1	30.2	1 1	11		17.6	47.2	
12		17.8	52.2		12		2.1	30.5	1 1	12		17.8	47.6	
13		18.0	52.7		13		2.2	30.8	1 1	13		18.0	48.2	
14		18.2	53.3	1 1	14	1	2.2	31.1	1 1	14		18.2	48.7	
15		18.4	53.9		15		2.2	31.5	1 1	15		18.4	49.2	
16		18.6	54.4		16		2.2	31.8	1 1	16		18.6	49.7	
17		18.8	55.0		17	I - I	2.3	32.2	1 E	17		18.8	50.3	
18	1 1	19.0	55.6	1 1	18	[·]	2.3	32.5	1 {	18	1 1	19.0	50.8	
19	1 1	19.2	56.2	1	19	[-1	2.3	32.9	1 1	19	1 1	19.2	51.4	
20	$\langle \cdot \rangle$	19.4	56.8	/)	20	[· }	2.3	33.2	/ }	20	{ 1	19.4	51.9 🤇	y y
21	1 /	19.7	57.5	\ 1	21	\ <u>'</u>	2.4	33.6	\ 1	21	\ {	19.6	52.5	1
.22	1 [19.9	58.1	1	22	\ ·	2.4	.34.0	1 1	22	1 1	19.8	53.1	
23		20.1	58.8		23		2.4	34.3	\	23	1 1	20.0	53.7	i []
24		20.3	59.4		24	1	2.4	34.7		24		20.3	54.3	
25		20.5	60.1		25	· ·	2,5	35.1		25		20.5	54.9	
26		20.8	60.8		26		2.5	35.5	1	26		20.7	55.5	
27		21.0	61.5		27		2.5	35.9		27		21.0	56.1	
28		21.3	62.2		28		2.6	36.3	1 1	28		21.2	56.8	
29		21.5	62.9	1	29	· ·	2.6	36.8		29		21.4	57.4	
30		21.8	63.6		30	'	2.6	37.2	1 1	30	·	21.7	58.1	
.31		22.0	64.4		31	•	2.6	37.6	1 1	31		21.9	58.8	
32		22.3	65.1	1	32		2.7	38.1		32		22.2	59.5	i II
33		22.5	65.9		33	1	2.7	38.5		33		22.5	60:2	.
34		22.8	66.7		34		2.7	39.0		34		22.7	60.9	
35		23.1	67.4		35	1	2.8	39.4		35		23.0	61.6	
36		23.3	68.2		36		2.8	39.9		36		23.3	62.3	
37		23.6	69.0	1	37	1	2.8	40.3	I	37	4 I	23.5	63.0	L II
38		23.9	69.8		38	V 1	2.9	40.8	(I	38	1 1	23.8	63.8	t II
39	\ <i>\</i>	24.2	70.6	1 1	39	$\sqrt{1}$	2.9	41.3	1 .	39	$\Lambda = T$	24.1	64.5	\ /I
1 40		1 24.4	/14	1	1 4()		1 29	418	۱. ·	11 40		1 744	65 3	\

Level Martin Apple of

A AREVA

> Tega di s and with the states 1

Page 72

an a the second states

A AREVA

1 m 5 1

in the second

Page 73 Soft Committee (Committee)

1. Sec. 1.

Controlled Document

Document No. 32-9156231-000

Page 78
Status - Market Party Sector

CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	a0=	FATIGUE CRACK GROWTH					FATIGUE CRACK GROWTH. ∫ 〕in a0=, ∫ Ìin						GROWTH		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	af=	520,000	jn jn	40	Voore	af=	120.000	Jin	40	WOOTS	af=	1010.000	jin oveloc	40	10050
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		550.000	cycles	40	years		120.000	Cycles	40	years		1010.000	cycles	40	years
Transmin Position 15 Position 15 Position 15 Position 15 Year of Operation a Knin Kniax Kniax Position 15 1 19 24.7 Constance Kniax Kniax Kniax 2 19 25.4 1 19 24.7 19 24.7 3 20 26.1 1 19 24.7 19 24.4 4 20 26.7 6 20 25.7 5 20 24.4 1 19 23.7 1 19 24.7 1 19 23.7 1 19 24.7 16 20 24.4 10 20 24.4 12 20 24.4 10 20 25.7 5 20 24.4 10 21 25.4 10 21 27.5 9 21 27.7 10 10 21 25.6 8 22 26.5 11 12 22 22.6 11 </td <td>∆N.=</td> <td>13.250</td> <td>cycles/year</td> <td></td> <td></td> <td>-<u>∆</u>N =</td> <td>3.000</td> <td>cycles/year</td> <td></td> <td></td> <td>۵N =</td> <td>25.250</td> <td>cycles/year</td> <td></td> <td></td>	∆N.=	13.250	cycles/year			- <u>∆</u> N =	3.000	cycles/year			۵N =	25.250	cycles/year		
Year of Operation Kmin Kmin knik Kmin knik Year of ktild) Year of ktild) Year of ktild) Kmik knik Knik Knik knik Knik knik <td></td> <td>Insurge4</td> <td>1</td> <td>Position 1</td> <td>5</td> <td></td> <td>nsurges</td> <td>1</td> <td>Position 1</td> <td>5</td> <td></td> <td>Insurgeb</td> <td>1</td> <td>Position:1</td> <td>5</td>		Insurge4	1	Position 1	5		nsurges	1	Position 1	5		Insurgeb	1	Position:1	5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Year of		Kmin	Kmax	<u> </u>	Year of		Kmin	Kmax		Year of		Kmin	Kmax	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Operation	а	KI(a)	KI(a)	∆a	Operation	а	KI(a)	KI(a)	∆a	Operation	а	KI(a)	KI(a)	∆a
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		(in.)	(ksi√in)	(ksi√in)	(in.)		(in.)	(ksi√in)	(ksi√in)	(in.)		(in.)	(ksi√in)	(ksivin)	(in.)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	1 1	1.9	25.4	<u> </u>	1	1 1	1.9	24.7	1	1	1	1.9	23.7	(
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2		1.9	25.6	1 1	2	I = 1	1.9	24.9	1	2	1	1.9	23.9	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3	1 1	2.0	25.9	1	3	1 1	1.9	25.2	1			2.0	24:2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4		2.0	26.1		4		2.0	25.4		4		2.0	24.4	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5		2.0	20.4		5		2.0	25.1	i I			2.0	24.7	
\cdot \cdot	7		2.0	20.7		7		2.0	20.0		7		2.0	24.3	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	8		2.0	27.0				2.0	26.5		'a		2.0	25.4	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9		2.1	27.5		ll ğ	{	2.1	26.8		l ĕ		2.1	25.7	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10		2.1	27.8		10		2.1	27.1		10		2.1	26:0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	11		2.1	28.1		11		2.1	27.3		11		2.1	26.2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	12		2.1	28.4		12	1	2.1	27.6		12		2.2	26.5	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	13		2.2	28.7		13		2.2	27.9	1	13		2.2	26.8	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	14		2.2	29.0		14		2.2	28.2	1	14	1 1	2.2	27.1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	15		2.2	29.3		15		2.2	28.5	1 1.	15		2.2	27.4	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16		2.2	29.6		16		2.2	28.8	1 1	16		2.2	27.7	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	17		2.3	29.9		17		2.2	29.1	ł l	17		2.3	28.0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	18		2.3	30.3		18		2.3	29.5	1	18	1 1	2.3	28.3	f l
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	f = 1	2.3	30.0	· · · ·	19	$l \downarrow$	2.3	29.0	1 \	19		2.3	20.0	/ 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	{ }	2.5	21 2		20		2.3	20.1		20	$\langle \rangle$	2.3	20.9	(.) I
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	1 /	24	31.5		22	1	2.5	30.8	\ [22	\setminus	24	29.5	\
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	23		2.4	32.0		23		2.4	31.1	1 1	23		2.4	29.8	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24		2.4	32.3		24	· ·	2.4	31.5		24		2.4	30.2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	25		2.5	32.7		25		2.5	31.8	1 1	25		2.5	30.5	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	26		2.5	33.1		26		2.5	32.2	1	26		2.5	30.9	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	27		2.5	33.4		27		2.5	32.5	1 1	27		2.5	31.2	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	28		2.6	33.8		28		2.5	32.9		28		2.6	31.6	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	29		2.6	34.2		29		2.6	33.3	1	29		2.6	32.0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30		2.6	34.6		30		2.6	33.7		30		2.6	32:3	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	31		2.7	35.0		31		2.6	34.1		31		2.7	32.7	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	32		2.7	35.4		32		2.7	34.5		32		2.7	33.1 22 F	
35 2.1 30.5 3.5 2.8 36.7 35 2.8 35.7 36 2.8 37.1 36 2.8 35.7 36 2.8 36.1 37 2.8 37.5 37 2.8 36.5 37 2.8 36.1 38 2.9 38.0 38 2.9 37.0 38 2.9 37.0 39 2.9 38.4 39 2.9 37.4 39 2.9 37.8 40 2.9 38.9 40 2.9 37.8 40 2.9 36.3	34		2.7	35.5		33		2.1	34.9		33		2.1	33.5	
36 2.8 37.1 36 2.8 36.1 37 2.8 37.5 37 2.8 36.5 38 2.9 38.0 38 2.9 37.0 39 2.9 38.4 39 2.9 37.4 40 2.9 38.9 40 2.9 37.8	35		28	36.7		35		28	35.7	[]	35		28	34.3	
37 2.8 37.5 37 2.8 36.5 37 2.8 35.1 38 2.9 38.0 38 2.9 37.0 38 2.9 35.5 39 2.9 38.4 39 2.9 37.4 39 2.9 35.5 40 2.9 38.9 40 2.9 37.8 40 2.9 36.3	36		2.8	37.1		36		2.8	36.1		36		2.8	34:7	
38 2.9 38.0 38 2.9 37.0 39 2.9 38.4 39 2.9 37.4 40 2.9 38.9 2.9 37.4 40 2.9 38.9 40	37		2.8	37.5	1	37		2.8	36.5	1 []	37		2.8	35.1	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	38		2.9	38.0	()	38	1 1	2.9	37.0	1 []	38		2.9	35.5	1 1
40 ' / 2.9 38.9 ' 40 ' 2.9 37.8 40 ' 2.9 36.3 '	39		2.9	38.4		39	1	2.9	37.4	1	39		2.9	35.9	
	40	<u> </u>	2.9	38.9	<u>\</u> '	40	<u> </u>	2.9	37.8	١	40	· /	2.9	36.3	$\sqrt{-4}$

z. .

and a state of the second

لأنعيها بربعا جوبة التدريون

enger ander n al liter a substanting and a substanting and the second of the second of the second of the substant and an and the second and the second of the

CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair

		FATIGUE	CRACK	GROWTH	FATIGUE CRACK GROWTH					FATIGUE CRACK GROWTH					
a0=	ſ	իin			a0=	ſ	jin			a0=	ſ · ·	lin			
af=	∤ ,'	իհո			af=	1	∫în			af=	1	ìn			
	320.000	cycles	40	years		60.000	cycles	40	years		1210.000	cycles	40	years	
<u>∆</u> N =	8.000	cycles/year			∆N =	1.500	cycles/year			∆N =	30.250	cycles/year			
Transient	Insurge7	1		_	Transient	nsurge8	1			Transient	Insurge9				
			Position 1	5			L	Position 1	5				Position 1	5	
Year of		Kmin	Kmax		Year of		Kmin	Kmax		Year of		Kmin	Kmax	.	
Operation	a (~)	KI(a)	KI(a)	∆a	Operation	a	Ki(a)	KI(a)	∆a	Operation	a,	KI(a)	KI(a)	∆a	
	(in.)			(in.)		(in.)			(in.)	1	(in.)	(KSIVIN)		(in.)	
	1 1	15.9	30.1	()		$l \rightarrow 1$	1.9	22.5			1 1	1.9	21.7		
	1	10.1	38,5 29 Å	1		1 1	1.9	22.7	1 1		1	1.9	21.9		
		16.2	20.9	1 1			2.0	23.0	1	3	1 1	2.0	22.1	1	
5		16.4	39.2		5		2.0	23.2		5		2.0	22.3	1	
5		16.0	40.0	1			2.0	23.4		5		2.0	22.5		
7		16.7	40.0	1 1			2.0	23.7		7		2.0	22.0		
		17.1	40.0	1			2.0	23.5]]	8		2.0	23.0	1 1	
å		17.3	40.5	1	a a		21	24.1	1]	9		2.1	23.5		
10		17.4	41.0		10		21	24.4		10		2.1	23.7		
11		17.6	42.2		10		21	24.7	1]	11		21	24.0		
12		17.8	42.6				22	25.2		12		22	24.0		
13		18.0	43.1		13		22	25.4	1	13		22	24.5		
14		18.2	43.5	1	14		22	25.7		14		22	24.7	1	
15		18.4	44.0	1 1	15		2.2	26.0		15		2.2	25.0		
16		18.6	44.5		16		2.2	26.3		16		2.2	25.3		
17		18.8	44.9		17		2.3	26.5		17		2.3	25.5		
18		19:0	45.4	1 1	18	1	2.3	26:8	1 4	18		2.3	25.8		
19		19:2	45.9	1	19		2.3	27.1	1 4	19		2.3	26.1	/ /	
20	1	19.4	46.4	/	20	/ \	2.3	27.4	ζ	20	1 1	2.3	26.4	/ 1	
21	$\left\{ \right.$	19.6	46.9	\	21		2.4	27.7	\{	21	$\{ i\}$	2.4	26.7		
22	1	19:8	47.5	1	22	1	2.4	28.0	1 4	22	1 1	2.4	.27.0		
23		20.1	48.0		23		2.4	28.4	1 (23		2.4	27.3		
24		20.3	48.5		24		2.5	28.7		24		2.5	27.6		
25		20.5	49:1		25		2.5	29.0	1	25		2.5	27.9		
26		20.7	49.6		26		2.5	29.3		26		2.5	28.2		
27		21.0	50.2		27		2.5	29.7		27		2.5	28.5		
28		21.2	50.8		28		2.6	30.0		28		2.6	28.9		
29		21.5	51.4		29		2.6	30.3		29	1 1	2.6	29.2		
30		21.7	52.0		30		2.6	30.7		30		2.6	29.5		
31		22.0	52.6		31		2.7	31.1		31		2.7	29.9		
32		22:2	53,2		32		2.7	31.4		32		2.7	30.2		
33		22.5	53.8		33		2.7	31.8		33		2.7	30.6		
34		22.8	54.4		34		2.8	32.2		34		2.8	30.9		
35		23.0	55.1		35		2.8	32.5		35		2.8	31.3		
36		23.3	55.7		36		2.8	32.9		36		2.8	31.7		
37		23.6	56.4	1	37	1	2.9	33.3	- I	37		2.9	32.0		
38		23.8	57.0		38	1 1	2.9	33.7	1 1	38		2.9	32.4		
39	1 1	24.1	5/./	\ /	1 39	X /	2.9	34.1	Λ $ $	39		2.9	32.8	A //	
40	<u> </u>	24.4	58.3	<u> </u>	40		J 3.0	34.5		40	· /	3.0	33.2	へ 7日	

Arit Care

vi zavne ze

A AREVA e den en sen en ser un an associerer e conserver managemilikasioner ener yn trader nar ware yn yn yn yn yn yn yn Neres 4-2-4

Δ

AREVA

Controlled Document

Document No. 32-9156231-000

CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair

	FATIGUE CRACK GROWTH					FATIGUE CRACK GROWTH					_	FATIGUE CRACK GROWTH				
a0=	1	lin			a0=	ſ	lin			a0=	[;	Jin				
af=	1	իր			af=	1 i	Ĵin			af=	1 1)in				
	170.000	cycles	40	years		1910.000	cycles	40	years		350.000	cycles	40	years		
∆N =	4.250	cycles/year			∆N =	47.750	cycles/year			∆N =	8.750	cycles/year				
Transient	Insurge10				Transient	Insurge11				Transient	Insurge12.					
			Position 1	5				Position 1	5				Position 1	5		
Year of		Kmin	Kmax		Year of		Kmin	Kmax		Year of		Kmin	Kmax	.		
Operation	a	KI(a)	KI(a)	∆a	Operation	a	KI(a)	KI(a)	∆a	Operation	a	KI(a)	KI(a)	∆a		
	(in.)	(KSIVIN)		(in.)		(In.)		(KSIVIN)	(in.)		(In.)	(KSIVIN)		(In.)		
	1 1	10.0	35.1	1		I = X	10.0	33.7	()		1 1	1.9	17.0			
2	1 1	10.2	35.5	1 1			16.1	24.0	1 1			2.0	19.0			
1		16.5	36.2				16.3	34.5				2.0	10.0			
5		16.7	36.5	1			16.4	35.0				2.0	18.3			
ő		169	36.9	1	i i i		16.0	35.4				2.0	18.5			
7		17.0	37 3		7		17.0	35.8		7		21	18.7			
8		17.2	37.7		8	· ·	17.1	36.1		8		21	18.9	1		
9		17.4	38.1		9		17.3	36.5		9		2.1	19.1			
10		17.6	38.5		10		17.5	36.9	1 1	10		2.1	19.3	1		
11		17.7	38.9		11		17.7	37.3		11		2.1	19.5			
12		17.9	39.3		12		17.9	37.6		12		2.2	19:7			
13		18.1	39.7		13		18:0	38.0		13		2.2	19.9			
14		18.3	40.1		14		18.2	38.5		14		2.2	20.1			
15		18.5	40.5		15		18:4	38.9		15		2.2	20.3			
16.		18.7	41.0		16		18.6	39.3		16		2.3	20.5	1 1		
17		18.9	41.4		17		18.8	39.7		17		2.3	20.8			
18		19.1	41.9		18		19.0	.40.1	1 1	18		2.3	21.0			
19		19.3	42.3	1. 4	19	1 1	19.2	40.6	1 1	19	1 1	2.3	21.2			
20	l = 1	19.5	42.8	· · ·	20	{ }	19.5	41.0		20	l = 1	2.4	21.4	{ }		
21	\setminus 1	19.8	43.3	1 1	21	\ 1	19.7	41.5	. 1	21	\setminus 1	2.4	21.7	\ 1		
22	1 [20.0	43.7	\ {	22	1 1	19.9	41.9	\ /	22		2.4	21.9			
23		20.2	44.2	1	23		20.1	42.4	{	23	1	2.4	22.2	1		
24		20.4	44.7		24		20.3	42.9	ļ	24		2.5	22.4			
25		20.7	45.2	1 1	25	1 1	20.6	43.4		25		2.5	22.7			
20		20.9	40.7		20	1 .1	20.8	43.9		20		2.5	22.9			
21		21.1	40.3		20		21.0	44.4	I I	27		2.0	23.2	1 1		
20		21.4	40.0	1	20		21.5	44.5		20		2.0	23.3			
29		21.0	47.3		29		21.5	40.4		29		2.0	23.7			
31		21.5	48.4		31		22.0	46.5		31		2.0	24.0	1 1		
32		22:4	49.0		32	1	22.3	47.0	1 1	32		27	24.0			
33		22.6	49.6		33		22.5	47.5		33		2.7	24.9			
34		22.9	50.2		34		22.8	48.1	1 1	34		2.8	25.1			
35		23.2	50.7		35		23.1	48.7		35		2.8	25.4			
36		23.4	51.3		36	. 1	23.3	49.2		36		2.8	25.7			
37		23.7	51.9		37	1 1	23.6	49.8		37		2.9	26:0			
38	1 1	24.0	52.5	1 I	38		23.9	50.4	\ {	38	1 1	2.9	26.3			
39		24.3	53.2	\	39	1 1	24.2	51.0	1	39	1 1	2.9	26.6			
40	<u>'</u> /	24.6	53.8	<u>\'</u>	40	· /	24.5	51.6	1	40	<u> </u>	3.0	27:0	<u>\</u>		

~ . 1: •••

Ξ,

- Alger 75 State State State State State

Page 75

12

WEAR.

A AREVA A 2012 CONTRACTOR AND DESCRIPTION OF A D

in the state of the state of the state of the state of the state of the state of the state of the state of the

11 2 av 1 1 1 1

measur dar

ية * 1 صدور بي 2 أو المكتمية سيغ "م

CCNPP-1 PZR Heater Sleeve As-Left J-Groove Weld Flaw Evaluation for IDTB Repair

		FATIGU	ECRACK	GROWTH			FATIGUE CRACK GROWTH				
a0=	[****]in				a0=	ſ	lin				
af=	1.	in			af≕	1	<u> În</u>				
336	60.000	cycles	40	years		820.000	cycles	40	years		
ΔŇ = 84	4.000	cycles/year			∆N =	20.500	cycles/year				
Transient Insu	urge13				Transient	Insurge14					
			Position 1	5				Position 1	5		
Year of		Kmin	Kmax		Year of		Kmin	Kmax			
Operation	а	KI(a)	KI(a)	∆a	Operation	а	KI(a)	Kl(a)	∆a		
	(in.)	_(ksi√in)_	(ksiÔn)	(in.)	 	(in.)	(ksi√in).	(ksi√in)	(in.)		
1 1	Ť	16.0	25.0	1	1	1	1.9	9 :9	1		
2	1	16.1	25.2		2		2.0	10.0			
3	1	16.3	25.5	1 1	3	1 1	2.0	10.1	1 11		
4		16.5	25.7		4		2.0	10.2			
5		16.6	.26.0		5		.2.0	10.3	1 3		
6		16.8	26.3		6		2.0	10.4			
7		17:0	26.5		7		2.1	10.5	j		
8		17.1	26.8		8		2.1	10.6	, , , , , , , , , , , , , , , , , , , ,		
9		17.3	27.1		9		2.1	10.8	j j		
10		17.5	27.4		10		2.1	10.9			
11		1.7.7	27.7		11	1 1	2.1	11.0			
12		17.9	27.9		12		2.2	11.1			
13		18.1	28.2		13	. 1	.2.2	11.2	i ii		
14	- 11	18:3	28.5		14		2.2	11.3			
15		18.4	28.9		15		2.2	11.5			
16		18.6	29.2		16		2.3	11.6			
		18.8	29.5	1	1/		2.3	11./			
18	1	19.1	29.8		18	1 1	2.3	11.8	1 21		
19	1	19.3	30.1	1	19		2.3	12.0			
20	}	19.5	30.5	{		5	2.4	12.1	· · · · ·		
		19.7	30.8		21		2.4	12.2	N 24		
22	- 1	19.9	31.1	1	22	1 1	2.4	12.4			
23	(20.1	31.0		23	1	2.4	12.0			
24		20.4	31.0		24		2.0	12.0			
20		20.0	32.2		25	1	2.5	12.0			
20		20.0	32.0		20		2.5	12.9			
27		21.1	22.5		27		2.0	10.1			
20	· ·	21.5	22.2		20		2.0	13.2			
29		21.0	34.1		29		2.0	12.4			
31		21.0	34.1		31		2.0	13.3			
32		22.1	3/ 0		32		2.1	13.0	1 31		
33		22:0	25.2		33]	2.1	14.0	1 11		
34		22.0	35.7		30	1	2.1	1/1 2			
35		22.0	36.1		35	1	2.0	14.2			
36	11	23.1	36.5		36		2:0	14.5			
37		23.4	37.0		37]	2.0	14.5	1 11		
38		23.0	37.0	1	38	[]	2.3	14.0			
39		24.2	37.8	1 1	39		29	15.0	1 11		
40		24.5	38.3	۱ J	40	1	3.0	15:2	X 41		

Page 76