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ABSTRACT 

 

The Institut de Radioprotection et de Sûreté Nucléaire (IRSN) and the U.S. Nuclear Regulatory 
Commission (NRC) jointly investigated and evaluated the suitability of applying fault modes and 
effects analysis (FMEA), as a technique for identifying faults attributable to Complex Logic in 
digital instrumentation and controls for safety functions in nuclear power plants. Complex Logic 
refers to logic in the form of software, or in the form of programmed hardware, for which it is not 
practicable to ensure the correctness of all behaviors through verification alone. Whereas the 
term, “failure modes and effects analysis” is used in the context of the overall DI&C system , the 
corresponding concept for software (and other forms of complex logic) in a DI&C system is “fault 
modes and effects analysis.” When FMEA techniques, which have been used effectively for 
traditional hardware, are applied to Complex Logic, such extension does not yield a similar 
benefit to regulatory assurance, because of the fundamental differences in the nature of faults in 
traditional hardware versus Complex Logic. Whereas hardwired devices (such as 
electromechanical relays) have only a few predetermined fault modes, the potential fault space 
in Complex Logic is huge; yet the actual number of faults is an extremely small fraction of the 
potential fault space. Finding these faults through FMEA is akin to searching for a needle in a 
haystack. Through analysis and examples of several real-life catastrophes, this report shows 
that FMEA could not have helped in the discovery of the underlying faults. The report concludes 
that the contribution of FMEA to regulatory assurance of Complex Logic, especially software, in 
a nuclear power plant safety system is marginal. Further investigations, not in the scope of the 
current NRC-IRSN collaborative study, are needed to understand the appropriate roles and 
combination of FMEA and fault tree analysis  and appropriate application constraints for reliable 
results from such analysis techniques. 
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FOREWORD 

In March 2010, the Institut de Radioprotection et de Sûreté Nucléaire (IRSN) and the U.S. 
Nuclear Regulatory Commission (NRC) started technical exchange activities and cooperation in 
the field of digital instrumentation and control (DI&C) research. In discussions, both parties 
identified an interest in sharing their understanding of DI&C system fault modes attributable to 
Complex Logic (such as logic in the form of software or in the form of programmed hardware, 
for which it is not practicable to assure correctness of all behaviors through verification alone) in 
DI&C systems for safety functions in nuclear power plants (NPPs).  

This study contributes to a part of the NRC research activity, “Analytical Assessment of DI&C 
Systems” described in Section 3.1.5 of the fiscal year (FY) 2010 – FY 2014 NRC Digital 
Systems Research Plan [1]. The NRC research activity was formulated in response to the 
DI&C-relevant part of the Commission’s staff requirements memorandum (SRM)-M080605B [2] 
dated June 26, 2008, as follows:  

The staff should report the progress made with respect to identifying and analyzing 
digital I&C failure modes, and discuss the feasibility of applying failure mode analysis to 
quantification of risk associated with digital  I&C.   

SRM-M080605B was triggered by Advisory Committee on Reactor Safeguards (ACRS) concern 
[3] that DI&C system failures were not well understood and recommendation to emphasize the 
importance of the identification of failure modes. Later, in its letter report on the 576th meeting 
[4], the ACRS recommended that: 

Software Failure Modes and Effects Analysis (FMEA) methods should be 
investigated and evaluated to examine their suitability for identifying critical 
software failures that could impair reliable and predictable DI&C performance. 

NRC is continuing its research to address SRM-M080605B and the recommendation from the 
ACRS’ 576th meeting; however, Section 3.2 of this study has identified significant difficulties.  

These findings are consistent with the NRC’s regulatory review guidance that is given in DI&C 
Interim Staff Guidance No. 06 [5], Section D.9.4.2.1,1 “FMEA”; for software, it refers to Sections 
D.4.4.1.9 “Software Safety Plan,” D.4.4.2.1 “Safety Analysis,” D.6 “Defense-in-Depth & 
Diversity”- this guidance does not propose failure modes and effects analysis be applied to 
software. 

IRSN-NRC researchers jointly investigated and evaluated the suitability of fault modes and 
effects analysis (FMEA) as a technique for identifying faults attributable to software and other 
realizations of Complex Logic for safety functions in NPPs. Whereas the term, “failure modes 
and effects analysis” is used in the context of the overall DI&C system , the corresponding 
concept for software (and other forms of complex logic) in a DI&C system is “fault modes and 
effects analysis.”  Logic does not fail in the traditional sense of degradation of a hardware 
component, but the system could fail, due to a pre-existing logic fault, triggered by some 
combination of inputs and system-internal conditions. 

The IRSN and NRC conducted this study as part of their bilateral agreement on technical 
exchange and cooperation in the area of DI&C safety systems. In general, the scope of the 
IRSN-NRC cooperation is limited to exchanging information helpful in developing the technical 
basis, but excludes development or discussion of regulatory guidance. In this study, the scope 
of the investigation is limited to the role of FMEA in regulatory assurance of Complex Logic in 
DI&C safety systems and excludes the role of FMEA in the development process. 
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The study first characterizes the differences between traditional hardwired systems and current 
complex logic-intensive systems and the technological trends that drive these differences. Then, 
it discusses the issues and limitations of extending FMEA, as used in traditional hardwired 
devices, to current complex logic-intensive systems.  

The contribution of IRSN researchers is based on a quarter century of experience with digital 
safety systems, spanning three generational changes in technologies. The NRC staff 
contributed relevant information gleaned from publicly available research publications and 
interviews with several of the authors. The IRSN and NRC staff collaborated in refining the 
analysis of their findings. 

This study has also revealed areas for further investigation, but the scope of further 
collaborative investigation has not yet been determined. In the meantime, the NRC intends to 
contact experts reporting benefits from using FMEA to gain a deeper understanding of their 
experience relevant to regulatory assurance.  

Separate from the joint investigation with IRSN, in response to the concerns mentioned above, 
the NRC had been investigating different ways of characterizing and classifying faults or defects 
in software and their potential utility in regulatory assurance of nuclear power plant safety 
systems. When that investigation is completed, the NRC will report its results separately. The 
IRSN-NRC joint study serves as an interim response to address these concerns. This report 
marks the successful launch of research collaboration between the NRC and IRSN. Both sides 
expect to continue cooperative research into the assurance of digital safety systems. to address 
research questions identified, but not answered in this study: 

• Should the assessor accept “inadequately specified verification cases” to be “normal” and 
overcome these weaknesses through redundant techniques? Or,  

• Should the focus be on finding and fixing underlying systemic weaknesses in the upstream 
review criteria?  

Apart from the collaborative activities with IRSN, NRC will be addressing other related research 
questions:  

• What is the appropriate role for techniques such as FMEA in addressing the areas of 
concern identified above?  

• How effective are these techniques in comparison with other alternatives?  
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EXECUTIVE SUMMARY  

This study was launched to investigate the efficacy of fault modes and effects analysis (FMEA) 
as a method for identifying faults attributable to Complex Logic (for which it is not practicable to 
ensure the correctness of all behaviors through verification alone)  and leading to system 
failures that would impair a safety function in a nuclear power plant. 

The primary method of investigation is analytical. First, the study characterizes the differences 
between traditional hardwired systems and current Complex Logic-intensive systems and the 
technological trends that drive these differences. Given the fundamental differences thus 
identified, the study discusses the issues and limitations of extending FMEA, as used for 
traditional hardwired devices, to current complex logic-intensive systems. Then, it illustrates the 
analytical conclusions through examples of real-life cases. The report includes an analysis of 
information gleaned from relevant research publications. 

The investigation concludes that FMEA techniques, which have been used effectively for 
traditional hardware, do not yield similar benefit to regulatory assurance when applied to 
Complex Logic, because of fundamental differences in the nature of faults in traditional 
hardware and Complex Logic. Whereas hardwired devices have only a few predetermined fault 
modes, the potential fault space in Complex Logic is huge; yet the actual number of faults is an 
extremely small fraction of the potential fault space. Finding these faults through FMEA is akin 
to searching for a needle in a haystack.  

In examples drawn from four real-life cases (Canadian Bruce-4 nuclear reactor, Palo Verde 
Nuclear Generating Station Unit 2, Ariane 5 launcher, and AT&T’s #4ESS toll switching 
systems), analysis shows that FMEA could not have helped discover the underlying faults. 

Many faults and fault propagation paths cannot even be identified through an examination of the 
design documentation because of two well-known causes of concern—(1) incomplete, 
inconsistent, or ambiguous requirements and (2) inadequate, unenforceable, or unverifiable 
architectural constraints.  

This situation leads to this research question: Under what verifiable conditions could 
development documents be deemed dependable for the purpose of obtaining FMEA results 
about hypothetical software faults, when such faults are always due to development mistakes 
(and are in most cases undocumented behaviors)? 

An initial study of research publications indicates that the techniques were useful in the system 
development process, rather than in the assurance process. There is no report of a successful 
use of FMEA for the purpose of software assurance. However, the Korean Atomic Energy 
Research Institute (KAERI) has reported beneficial use of fault tree analysis (FTA) in the 
assurance of software. Specially crafted for software, the technique is different from the FTA 
used for traditional hardware. Researchers applied the technique only to a small, critical 
module, acknowledging that the technique was redundant to two types of verification, formal 
verification and testing, which had been applied to the selected module earlier, but had failed to 
identify the defect that the FTA revealed. The KAERI case leads to several research questions, 
in which are beyond the scope of this NRC-IRSN collaborative  study:  

• Should the assessor accept “inadequately specified verification cases” to be “normal” and 
overcome these weaknesses through redundant techniques? Or,  

• Should the focus be on finding and fixing underlying systemic weaknesses in the upstream 
review criteria?  
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Other related research questions are: What is the appropriate role for techniques such as FMEA 
in addressing the areas of concern identified above? How effective are these techniques in 
comparison with other alternatives? 
 
These questions will be considered in the on-going research program.   
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1. INTRODUCTION 
With the introduction of digital instrumentation and control (DI&C) in safety-related systems, 
some researchers and practitioners envisaged extending the traditional hardware failure 
analysis techniques to software. However, this extension encounters the major difficulty that 
software and traditional hardware fault modes are by nature quite different. Institut de 
Radioprotection et de Sûreté Nucléaire (IRSN) and the U.S. Nuclear Regulatory Commission 
(NRC) jointly investigated and evaluated the suitability of applying fault modes and effects 
analysis (FMEA), as a technique for identifying faults attributable to Complex Logic (such as 
logic in the form of software or in the form of programmed hardware, for which it is not 
practicable to ensure the correctness of all behaviors1 through verification alone) in DI&C for 
safety functions in nuclear power plants (NPPs). The scope of the investigation is limited to the 
role of FMEA in regulatory assurance of Complex Logic in DI&C safety systems. The study 
provides a technical basis for IRSN and NRC staff to evaluate the use of FMEA for identifying 
faults attributable to software and other forms of Complex Logic. 

The research method is primarily analytical. First, the study characterizes the differences 
between traditional hardwired systems and current complex logic-intensive systems and the 
technological trends that drive these differences. Given the fundamental differences thus 
identified, the study discusses the issues and limitations of extending FMEA, as used for 
traditional hardwired devices, to current complex logic-intensive systems. Then, it illustrates the 
analytical conclusions through examples of real-life cases. The investigation also includes an 
analysis of information gleaned from relevant research publications. 

Section 2 characterizes the differences and the technological drivers behind the differences. 
Section 3 explains the implications of extending FMEA and fault tree analysis (FTA) from 
traditional hardwired devices to Complex Logic. Section 4 captures miscellaneous related 
observations, by first summarizing research supporting the use of FMEA for software and then 
summarizing other sources of uncertainty from both today’s complex electronic hardware and 
complex software. Section 5 summarizes the findings of the study. Section 6 identifies some 
issues requiring further research. Appendix A, “Glossary,” defines key fundamental terms as 
used in this document. The definition is hyperlinked at the first occurrence of a term that is not 
well known or may not be well accepted. Key concepts and definitions are supported with 
references that provide further information about these concepts. Appendix B, “Other Causes of 
Faults,” summarizes the sources of uncertainties in complex software. Appendix C, “State of the 
Art in FMEA for Software,” summarizes the specific viewpoints outside the U.S. NPP industry 
that are relevant to the suitability of FMEA-FTA for use in the safety assurance of Complex 
Logic. The conclusions reported in Section 5 are consistent with these findings. However, as 
reported in Sections 4 and 6, further investigations, not in the scope of the current NRC-IRSN 
collaborative study, are needed to understand the appropriate roles and combination of FMEA 
and FTA and appropriate application constraints for reliable results from such analysis 
techniques.

                                                
1  This refers to behavior under all foreseeable operating conditions with no anomalous behavior. 
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2. TECHNOLOGICAL TRENDS 
Traditionally, NPPs have relied on hardwired devices for their instrumentation and control (I&C) 
safety functions. In recent years, a shift in technology has led to the use of digital electronic 
systems in nuclear safety applications, because of the increased obsolescence and difficulty in 
maintaining analog electronic assemblies and to take advantage of functions enabled by digital 
logic. However, this introduction of digital electronics into nuclear safety applications, with 
increase in functionality, interdependencies2, and complexity3, increases the potential for 
failures due to systemic causes. This section characterizes and contrasts the technological 
differences. 

2.1 Characteristics of past hardwired electrical technologies  
When I&C systems comprised only traditional electrical hardware (where logic was hardwired), 
the components were functionally simple (diodes, resistors, relays, etc.), and they had to be 
physically placed on printed circuits of limited size. In practice, this severely constrained the 
number of components and therefore allowed only simple designs. This simplicity yielded two 
advantages: (1) practitioners could evolve designs that were not very fault prone, compared to 
current logic-intensive digital systems, and (2) the circuits could be verified with a higher degree 
of certitude. Thus, relative to system failures caused by component degradation, there was an 
insignificant contribution of system failures due to design faults, or, more generally, engineering 
mistakes and other systemic causes, compared to current logic-intensive digital systems.  

Hardware component technologies used in early NPP safety systems were stable, and change 
in technology was slow enough that sufficient operating experience could be accumulated for 
understanding fault modes and their failure likelihood. In successive system design cycles, 
component types could be selected based on operating experience, thus avoiding component 
types that failed in unpredictable ways. To understand whether the system could perform its 
intended function when needed, the system was analyzed for its reliability (e.g., through failure 
analysis techniques such as FMEA and FTA). Most fault propagation paths could be understood 
by examining the system design (interconnections and their implied interactions); even “sneak 
paths” could be discovered from the available documentation. Given the reliability of each 
hardware component and the fault propagation paths thus determined, the system reliability 
could be estimated and effects on system functions could be understood. The system could be 
configured to monitor and detect the failure or impending failure of a critical component and 
bring the system to a safe state gracefully.  

Hardware fault modes of traditional hardwired logic may be characterized as follows: 

• Typically, faults result from physical degradation. 

• The number of fault modes for basic components (e.g., relay stuck open or stuck closed) is 
limited, and these fault modes are well understood. (Manufacturers often give fault modes 
and frequencies for their basic components based on operational experience with the same 
and similar components.) 

• Faults propagate along the electrical interconnections between components (e.g., the 
printed circuit tracks and wiring across panel-mounted components in electrical enclosures). 

                                                
2 For example: Interconnections; signal exchanges; resource sharing 
3 For example: Number of elementary structures grows from 10s (hardwired) to millions or billions (gates in 
 complex logic) 
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• Faults occur randomly4; good design and maintenance practice may extend the interval 
between random occurrences, but in general, it is accepted that the likelihood cannot be 
reduced to zero.  

2.2 Characteristics of current digital electronics systems 
Some safety systems, including protection systems, have been implemented with digital 
electronics to compute complex protection functions, such as departure from nucleate boiling 
ratio, which allow a better and safer use of the nuclear fuel. Digital electronics systems 
represent signals as discrete levels, rather than as a continuous range, and perform 
computations using assemblies of logic gates, representing Boolean logic functions. These 
assemblies5 can comprise computers or other forms of programmable or configurable hardware, 
as discussed in the next section. 

Current digital technologies enable many benefits (e.g., more complex and accurate 
computations, auxiliary functions such as calibration and self-monitoring, significant reduction of 
cabling and signal transmitters, and ease of modification). For this reason, their use has 
expanded to the point that most new systems or retrofits exploit digital electronics. 

2.2.1 Programmability and increasing configurability 

Current digital technologies are characterized by their programmability, which may take one of 
the following forms or a combination of both: 

• Software: The hardware is based on general-purpose, commercial off-the-shelf (COTS) 
components such as microprocessors, electronic memory components, and input/output 
circuitry. The application-specific function is implemented in a program which is stored in 
memory and executed by the microprocessor. Typically, application-independent software 
(known as the system software, which is a very simplified form of operating system) is used 
to interface with the computing and communication hardware, sensors, and actuators and to 
manage the sharing of system resources. 

• Programmable hardware: The hardware is based on programmable circuits such as field-
programmable gate arrays, complex programmable logic devices, or application-specific 
integrated circuits. These components cannot perform a safety function without first being 
“customized” (physically configured to a specific safety logic). This customized logic then 
works alone (no operating system or system software is needed). 

2.2.2 Increasing complexity of hardware 

The logic of DI&C system output functions also depends on complex hardware modules which 
are also susceptible to systemic causes of faults. In addition, current digital component 
technologies have very high integration densities, reaching billions of transistors in a single 
integrated circuit, which increases the potential for component-level faults due to engineering 
mistakes. 

2.2.3 Notion of faults in Complex Logic 

Programs, a product of human thought, are becoming more and more complex, as indicated by 
their increasing requirements, functions, inputs/outputs, and interdependencies. Therefore, 
programs are more and more fault prone.   

                                                
4  This does not imply that the causes are random. 
5  The size of the constituent elements can range from small (e.g. 10s of elementary structures as in the case of  
 past hardwired systems) to very large (e.g. millions of logic gates). 
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Development of the application-specific contents of programmable hardware also involves the 
specification of requirements, design with dedicated languages, test, simulation, and use of 
complex software tools and thus has the same potential for logic faults.  

For example, the National Aeronautics and Space Administration (NASA) has stated the 
following about complex electronics [6]:  

• “Logic errors are still common in space-flight projects, with bad circuits making it into flight 
hardware.” 

• “A fundamental issue is how the complexity is managed to permit reliable design.” 
 
Similarly, the U.S. Federal Aviation Administration has stated the following [7]: 

• “Not only are there the normal hardware integrity issues for safety-critical systems, but now 
all the issues of software correctness apply also.” 

• “Error-free parts can no more be guaranteed than one can promise error-free software.” 

Potential faults in Complex Logic may originate in any phase of the development cycle, as 
detailed in Section 3.1. For example, many defect types may occur just in the design phase: a 
missing statement, a mistake in the name of a variable, a defect in loop control (software) or 
similarly in register-controlled cyclic paths (programmable electronics), a wrong initial value, the 
use of a wrong operator, a misunderstanding of operator precedence, a bad conditional 
construct, or others. Defects may also occur when the requirements of the Complex Logic are 
missing, ambiguous, or superfluous. 

Therefore, programming digital electronic systems of growing complexity, either through 
software or through programmable hardware, has the potential to introduce faults at any step of 
the development process and such potential faults, if actually introduced in the delivered 
Complex Logic, may trigger system failures. 

In contrast with the degradation-caused fault modes of traditional hardware characterized in 
Section 2.1, logic does not wear and tear from repeated usage. If a system fails because of 
logic, it had some fault (defect or deficiency or weakness) from the time of introduction, but this 
fault remained latent until the occurrence of a triggering or enabling combination of inputs, state 
of the environment, state of the DI&C system, and state of the faulty logic. 

2.2.4 Identification of potential faults in Complex Logic 

To evaluate the applicability of different techniques for identifying potential faults, an estimate 
follows of the order of magnitude of the potential fault space. 

The reactor trip output of a protection system typically depends on more than 50 analog inputs, 
each one digitized into more than 100 discrete values (typically 1,024). This means that the 
input space has more than 10050 = 10100 cases—more than the number of atoms in the 
universe,6 even without considering the influence of past inputs on the behavior of the logic.7 
Each of these cases is either within the authorized process domain or outside it, so for each 
input case, there exists one right value and one wrong value for the reactor trip output. Thus, 
there are potentially at least 10100 different faulty logics, each one producing the wrong output 

                                                
6 According to current estimates, there are approximately 1080 atoms in the universe. 
7  The behavior of a program usually depends not only on the values of its current inputs, but also on its internal 

state S, which may depend on arbitrarily old inputs (e.g., for ever S {if input condition X holds, then modify state 
S, or else keep S as it is; output = f(S, current inputs)}). 
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for exactly one of the 10100 input cases. Of course, all logics wrong for more than one input case 
are also faulty, leading to an even greater number of potential faulty logics. 

No tool can enumerate this large number of potential faults. Current processing speeds are in 
the range of 1010 instructions per second. Even if each case could be processed in one single 
computing instruction cycle, the processing time would be much more than 1090 seconds or 
3x1083 years. This is so much time that even a large number of computers (hundreds, 
thousands, or even millions) operating in parallel with 100-percent efficiency could not reduce 
computation time to a practicable level. 

Finally, when considering the influence of past inputs,7 the number of possible faulty logics is 
unbounded. Whatever the considered finite set of faulty logics, it is always possible to produce 
another faulty one (e.g., by delaying the occurrence of a faulty behavior by one additional clock 
tick). 

Therefore, the number of potential faults in a Complex Logic cannot be bounded in general, and 
these potential faults cannot be exhaustively identified. 

2.2.5 Characteristics of faults in Complex Logic 

Logic faults that may trigger DI&C system failures are characterized as follows: 

• The number of potential faults in Complex Logic is very high (see Section 2.2.4), and these 
potential faults cannot be exhaustively identified. 

• If the development and assurance processes are stringent and include independent 
verification, only a limited number of faults is actually present in the Complex Logic of typical 
safety systems. This implies that the faults actually present are unknown; otherwise, they 
would be corrected. 

• Faults that have not been introduced during the development process of the Complex Logic 
or that have been removed during verification and validation will never appear in use.  
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3. IMPLICATIONS OF EXTENDING FMEA TO COMPLEX LOGIC  
Given the technological trends characterized above, IRSN-NRC jointly examined the validity of 
extending the traditional hardware failure analysis techniques for the assurance of Complex 
Logic, such as software in a DI&C system for safety functions. 

Hardwired systems using past technology (diodes, relays, etc.) have a limited number of well-
understood faults. As discussed in Section 2.1, these faults result from physical deterioration 
over time, which means that they will necessarily occur during operation unless the component 
is replaced or the system is removed from service. The propagation paths for these faults are 
known (e.g., they are derived from printed circuit tracks or cabinet wiring). Therefore, the 
identification of the associated fault modes and the analysis of their effects, causes, and 
likelihood by FMEA and FTA are feasible and useful. 

In contrast, the Complex Logic in each new digital system, as characterized in Section 2.2, is 
not identical to the logic in any previous system, and the number of possible faults (i.e., the size 
of the potential fault space) can be extremely large, as shown in Section 2.2.4. A complete list of 
fault modes cannot be assembled [8]. 

Complex Logic design practice for safety systems follows principles that are intended to prevent 
faults in the first place; a combination of verification techniques is used to discover and remove 
faults or conditions that could lead to the failure of a safety function. This implies that the faults 
actually present in a Complex Logic are unknown; otherwise, they would be corrected during the 
development process.  

FMEA attempts to analyze the effects for the severity of their consequences and the modes for 
their likelihood of occurrence, or to identify measures to avoid their occurrence, or to identify 
measures to mitigate the consequences. For the technique to be workable, it should be possible 
to identify a feasibly small number of fault modes.8 Sections 3.1 and 3.2 analyze two 
approaches to arrive at a compact set of fault modes. Section 3.1 discusses fault modes 
abstracted from the causality perspective, and Section 3.2, from the effect perspective. In both 
cases, it is difficult to identify the effects. Section 3.2.1 discusses a case where faults can 
propagate in software unpredictably, even through functionally dependent paths. (Appendix B 
discusses other sources of uncertainty that are especially exacerbated when Complex Logic is 
implemented in software.) Section 3.3 illustrates these difficulties through some examples. 

3.1 Analyzing fault modes from the causality perspective 
Logic faults are rooted in human mistakes made during development, as illustrated in the 
process model in Figure 1, which shows the human role as a direct resource in the process, as 
well as having indirect roles in the creation of various resources. Mistakes may be made at the 
very beginning of the development during the specification of requirements or later, at any step, 
including transformation and introduction or omission of any information that will be included in 
or affect the delivered logic ultimately. Mistakes committed during the development of software 
tools used to build the delivered logic may also introduce faults in that logic. Compilers and 
synthesizers are typical examples of such software tools. 

 

 

                                                
8 Recall from the analysis in Section 2.2.4 that the potential fault space for Complex Logic can be extremely large, 

even without considering the uncertainties mentioned in Section 4. 
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Figure 1: General process model for an engineered product 

Human mistakes causing logic faults may be abstracted and categorized broadly as follows:  

• missing or incorrect requirement at the beginning of the development 
• incorrect translation of a requirement at some step of the development 
• addition of an unspecified requirement9 
• selection of faulty (or incorrectly or inadequately documented) COTS software or hardware  

One may be tempted to use such short lists as fault modes. However, the value of this is 
questionable, because it is not possible to predict the fault modes’ effects on a given piece of 
software. 

Indeed, in the case of traditional hardware, a fault mode such as “stuck open” defines a specific 
behavior that can be explicitly propagated through the hardware to predict its effects. By 
contrast, a fault mode such as “unspecified requirement” does not define a specific behavior: 
any possible behavior should be taken into account and explicitly propagated through the 
software, which is not feasible. Further analysis of the “unspecified requirement” category, as an 
example, reveals that the number of possibilities of “unspecified requirement” cannot be 
enumerated exhaustively. Similarly, in the category of “incorrect translation of a requirement,” 
the possibilities cannot be enumerated exhaustively. Then, because of the typically huge 
number of possibly different execution cases (as shown in Section 2.2.4), it is not possible to 
analyze each potentially faulty case one after the other. FMEA and FTA techniques are usable 
when the types of faults are a limited set, but these techniques cannot be used effectively and 
efficiently when the potential fault space is so large. 

As a hypothetical alternative, consider analyzing only those faults that are actually present; 
indeed, these actual faults are very few in safety software developed, verified, and validated to 

                                                
9  Unspecified requirements arise when a developer adds functionality to a system without updating the system, 

software, or hardware requirements document(s). An example of adding an unspecified requirement to a system 
is the addition of debug statements to software code and subsequent mistake of not removing the statements 
from the software without updating the software requirements document to reflect the additional functionality in 
the code. The unspecified requirements arising from these debug statements might adversely affect system 
performance and resources (e.g., system timing constraints, memory needs, stack needs, or system interface 
requirements). 
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very high standards. However, if actual faults in safety systems were known, they would be 
corrected; then FMEA would not be needed. 

When Complex Logic is implemented in software, additional sources of uncertainty arise, as 
discussed in Appendix B, which reduces even more the validity of the FMEA-FTA contribution to 
software assurance. 

3.2 Difficulty in identifying the effects of faults  
An FTA of an NPP as low as the safety I&C system would identify the event of interest 
(i.e., failure of a safety function allocated to the I&C system). An event tree analysis, internal to 
the I&C system, would trace the paths of functions on which this safety function was dependent. 
This analysis can be performed down to the finest-grained functions identified in the logical 
architecture and the logic modules to which these functions are allocated.  

Then, the manner in which any module in these paths could malfunction (i.e., its fault mode) is 
of interest for understanding the effect of that fault mode on the safety function. For example, 
fault modes of a module are characterized in terms of the module’s functions:  

(1) failure to perform the module function in time (i.e., in time domain) 
(2) failure to perform the module function with correct value (i.e., in value domain) 
(3) performance of an unwanted function by the module 
(4) interference or unexpected coupling with another module 

The effects of potential Fault Modes 1, 2, and 3 of a software module on the safety output are 
difficult to analyze. Indeed, the exact semantic of the software and of the computing architecture 
has to be considered to predict the impact of each possible time or value error of a module 
(e.g., delivery of the results of a module too early or too late may have catastrophic impact on 
the safety output or no impact at all, depending on the real-time scheduling of the modules).  

In the case of Fault Mode 1 (failure to perform the module function in time), performing an 
accurate analysis would imply studying every potential time error for any possible scheduling of 
the modules. In the case of Fault Mode 3 (performance of an unwanted function by the module), 
it is even more difficult to predict the impact of any possible unwanted function of a module on 
the safety output, because it would require identifying all possible unwanted functions and 
investigating their effects completely. As FMEA-FTA tools do not consider the exact semantic of 
the software and of the computing architecture, and do not identify all possible unwanted 
functions of each module, it is necessary to assume that the effect of these potential fault 
modes is that the DI&C system will fail to perform its intended safety function.  

As seen in Section 2.2, a huge number of cases pertain to Fault Modes 1, 2, and 3, and there is 
no way to know which ones are actually present. Therefore, FMEA-FTA analyses can conclude 
only that there is a huge number of potential faults that potentially lead to failure of the safety 
function. 

Potential Fault Mode 4 (interference with another module) is more common in software. A fault 
within a given module may adversely impact another module, even if those modules do not 
interact from the functional point of view (i.e., there is neither value exchanged, even indirectly 
through other modules, nor calling relation between the modules). One typical example is that a 
faulty module could write “out of bounds” of its allocated memory and corrupt a memory location 
used by another module. The failure can manifest itself, for instance, by corrupting a data value 
that would not be used until 6 months later in the operation of another module, and then cause a 
catastrophic failure.  
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Propagation paths of faults include not only all functional dependency links but also paths not 
visible from the functional point of view (i.e., not visible in the functional requirements). For 
example, two functionally independent modules may in fact need access to a shared resource, 
such as a bus to access memory and input/output. In this case, a fault in one module may put 
the shared resource in a faulty state and then adversely impact the other module. Since the 
dependency is not evident, it is difficult to verify non-interference or to identify an interference 
fault mode.  

There are many other subtle manifestations of such potential fault modes. Therefore, FMEA-
FTA techniques, as used commercially, cannot be relied on to identify the fault modes within a 
module, nor can these techniques accurately model their effects on other modules or on the 
safety output. 

3.2.1 Unpredictable fault propagation in software even with known dependencies 

Figure 2 illustrates an example of unpredictable propagation in software. In a program, the 
outputs of a given Unit A typically provide inputs to a Unit B and so on (e.g., C, D) until the 
signals reach one of the overall outputs (e.g., O1-O3, depending on the inputs (e.g., IA1, IA2, IA3) 
and the state transitions (e.g., B-S1, B-S2, B-S3). Hence, a software fault in Unit A may lead to 
an erroneous input in Unit B that will possibly lead to erroneous outputs of Unit B and so on. 
However, this propagation is not always predictable and may depend on the precise behavior of 
Unit B and other units and the entire state history. For instance, if the behavior of Unit B is to not 
use the particular output of Unit A when it is detected as faulty, if the specific fault under 
analysis is detected by B, and if B may tolerate the omission of a limited number of A output 
samples, then the propagation may be stopped. A system-level Fault Mode (1), as identified in 
Section 3.2, may occur as a result of propagation through software in the following manner. The 
output of A occurs at a time different from the time expected in the design of the policy to 
schedule the execution of B. When B is executed, the value used from A is incorrect for that 
execution.  

 

 
Figure 2: Unpredictable fault propagation in software  

In addition, the dependency space is huge, as illustrated in the following example. The amount 
of data exchanged between real software units would quickly add to hundreds of elementary 
fields. The number of units could be hundreds. The size-complexity of each unit is typically 
hundreds of lines of code. Carrying out such a dependency analysis already leads to a huge 
number of dependency paths and is quite challenging even with the use of tools.  
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For example, consider a state transition model of the behavior internal to the DI&C system, 
down to the interactions across components, including the behavior in case of a hardware 
failure.10 The traditional use of FTA, when applied to software, would be based on the designed 
control flow paths. However, some system failures attributable to software lead to a behavior 
that may not be analyzed, as they propagate erroneous values along the designed control flow 
paths of the software, but break that control flow and create a different set of behaviors. This is 
the case for software faults raising exceptions (e.g., a division by zero) or interrupts, or failures 
leading to another path in the binary code (e.g., consequent to a stack overflow). Here again, 
the possibilities are huge and are even harder to analyze systematically because the designed 
control flow does not capture all the propagation paths.   

3.2.2 Unpredictable fault propagation in software with hidden dependencies 

Dependencies may not be easy to find. For example, in a producer-consumer paradigm, 
especially with multiple consumers, the function chain does not reveal the propagation paths 
possible through the software in the system.  

Hidden dependencies and couplings are a major cause of system failure, limiting the ability to 
identify event propagation paths. In software systems, each part could appear to be correct and 
fully functional, but when components are combined as a system, problems can manifest 
themselves. There is no single component that would be at fault. Rather, it is the combination 
that can be at fault or the combination of explicit and implicit assumptions. Many critical 
assumptions are never formally written down. 

FMEA-FTA, when performed on the documented design, will not help in the discovery of such 
unpredictable fault propagation paths.11  

3.3 Experience feedback  
Following are some examples of system failures in different application domains, which illustrate 
the difficulty of identifying the fault modes and effects of Complex Logic.  

3.3.1 Canadian Bruce-4 nuclear reactor  

Description: In January 1990, an incident occurred at the Canadian Bruce-4 nuclear reactor in 
which a small loss-of-coolant accident resulted from a programming fault in the software used to 
control the reactor refueling machine.12 Because of this fault, the control computer, when 
suspending execution of the main refueling machine positioning control subroutine in order to 
execute a fault-handling subroutine triggered by a minor fault condition detected elsewhere in 
the plant, marked the wrong return address in its memory. As a result, execution resumed at the 
wrong segment of the main subroutine. The refueling machine, which at the time was locked 
onto one of the reactor pressure tube fuel channels, released its brake and dropped its refueling 
assembly by about 0.9 m (3 feet), damaging both the refueling assembly and the fuel channel 
[9]. 

Why FMEA-FTA techniques are not practical in such cases: This is a typical case of module 
Fault Mode 4 (a fault in a module adversely impacts another module under a previously 
unknown specific condition). FMEA-FTA could not have identified this fault mode for the 
following reasons: 
                                                
10  In current practice, such models are not available for safety reviews. 
11  To appreciate the scope of assurance activities, see notes under the definition of Complex Logic. 
12  Even though the system was not qualified to safety-grade standards, this type of software fault could also occur 

in a safety-grade system. 
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• FMEA-FTA does not know the involved mechanisms of the computing architecture (stack, 
return address, calling mechanisms) and does not analyze the source code.  

• FMEA-FTA provides no means to identify this fault rather than any other potential fault. 

3.3.2 AT&T’s #4ESS toll switching systems 

Description: On January 15, 1990, one of American Telephone & Telegraph’s (AT&T’s) #4ESS 
toll switching systems in New York City experienced an intermittent failure that caused a major 
service outage on the AT&T U.S. National Telephone Network.13 The outage occurred because 
of a software defect that had escaped detection even by AT&T’s software test methods. The 
software defect was traced to an elementary programming mistake (i.e., a misplaced break 
statement in a “C” program switch statement [10]). 

Why FMEA-FTA techniques are not practical in such cases: This is a typical case of module 
Fault Mode 2 (a module does not return the correct value under a previously unknown specific 
condition). FMEA-FTA could not have identified this fault mode for the following reasons: 

• FMEA-FTA does not know the involved mechanism of the “C” programming language (fall-
through conditions between cases of a “switch” statement) and does not analyze the source 
code.  

• FMEA-FTA provides no means to identify this fault rather than any other potential fault. 

3.3.3 Ariane 5 launcher (Ariane 501)  

Description: On June 4, 1996, the maiden flight of the Ariane 5 launcher14 (Ariane 501) 
resulted in self-destruction of the launcher. An independent inquiry board established by the 
European Space Agency reported that the failure of Ariane 501 was caused by the complete 
loss of guidance and attitude information 37 seconds after start of the main engine ignition 
sequence. This loss of information was the result of specification and design defects in the 
software of the inertial reference system. The inquiry board concluded that extensive reviews 
and tests carried out during the Ariane 5 development program did not include adequate 
analysis and testing of the inertial reference system or of the complete flight control system, 
which could have detected the failure [11]. 

Why FMEA-FTA techniques are not practical in such cases: This is a typical case of module 
Fault Mode 2 (a module does not return the correct value under a previously unknown specific 
condition). FMEA-FTA could not have identified this fault mode for the following reasons: 

• FMEA-FTA does not know the involved mechanism of the programming language (overflow 
error when “casting” a given “floating point” value into an integer of a given size) and does 
not analyze the source code.  

• FMEA-FTA provides no means to identify this fault rather than any other potential fault. 

3.3.4 Palo Verde Nuclear Generating Station Unit 2 

Description: On May 22, 2005, in the core protection calculator (CPC) of Palo Verde Nuclear 
Generating Station Unit 2, a software fault caused by a mistranslated system requirement when 
updating the CPC software was discovered. The CPC system requirements state that if 

                                                
13  Even though the system was not qualified to safety-grade standards, this type of software fault could also occur 

in a safety-grade system. 
14  Even though the system was not qualified to safety-grade standards, this type of software fault could also occur 

in a safety-grade system. 
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redundant analog input cards within the same channel have failed, the CPC should recognize 
those failures and automatically trip that channel. However, the software reverted to the “last 
stored good value” in case of double sensor failure, which could have masked an actual trip 
condition. This could have influenced multiple channels in the event of a common-cause failure 
affecting their sensors simultaneously [12]. After analyses and meetings between the vendor 
and Palo Verde staff, it was decided that the software defect common to all channels was a 
safety concern [13].  

Why FMEA-FTA techniques are not practical in such cases: This is a typical case of a 
mistake in the requirement specification of the software.15 FMEA-FTA could not have identified 
this fault mode for the following reasons: 

• FMEA-FTA does not analyze the source code and does not compare it to the actual needs.  

• FMEA-FTA provides no means to identify this fault rather than any other potential fault. 
 

                                                
15  The mistake was in the specification rather than in the software design. 
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4. MISCELLANEOUS OBSERVATIONS 
FMEA-FTA has been used in hazard analysis of software-reliant systems as discussed in 
Section 4.1. However, in addition to the issues identified above (mostly common to various 
realizations of Complex Logic), FMEA-FTA for software-reliant safety systems encounters some 
other pitfalls. Section 4.2 discusses uncertainties in large, complex, electronic hardware and 
assumptions about such hardware, which can affect the validity of safety analysis concerning 
software.  

4.1 Reported beneficial uses of FMEA for software  
Whereas this study questions the suitability of FMEA for the assurance of Complex Logic, it is 
also acknowledged that others [14–25] (as discussed in Appendix C) have found these 
techniques useful in hazard analysis leading to the discovery or identification of safety 
requirements. This activity is part of the system development process, performed by the license 
applicant or its agent and tailored to suit the applicant’s needs (e.g., system characteristics). 

FMEA has been used to analyze whether the architecture will bring the system to a safe state 
when something in the system does not behave as intended, whether it be a hardware 
component16 or a software component. The use of FMEA is a part of system-internal hazard 
analysis [23], which abstracts in terms of system functions (as discussed in Section 3.2) the 
fault modes attributable to software. 

The Korean Atomic Energy Research Institute (KAERI) has implemented a digital reactor 
protection system, for which it performed safety analysis of the software as a part of software 
development [23]. KAERI devised a “software HAZOP” technique, different from conventional 
hazard and operability (HAZOP) analysis. In KAERI’s technique, for each system hazard, it 
searches for adverse effects of qualitative software functional characteristics identified in the 
NRC’s “Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power 
Plants: LWR Edition” (NUREG-0800), Branch Technical Position 7-14, “Guidance on Software 
Reviews for Digital Computer-Based Instrumentation and Control Systems,” Revision 5 [26]. 
Limiting the search space to paths leading to critical system hazards helps reduce the analysis 
time compared to that of a conventional FMEA. From the result of the “software HAZOP,” 
KAERI selected a search subspace leading to the most critical system hazard (failure to trip on 
demand) and applied a software FTA technique for a detailed traversal through the software 
logic structure. The software FTA revealed a software defect17 that was not found in formal 
verification and testing. KAERI acknowledges that the use of software FTA was redundant (the 
“software HAZOP” could have been extended in the causal direction), but the experience on this 
project shows the value of redundancy in testing and formal verification techniques. This 
experience report raises the following questions: 

• Should one accept such “misses” to be “normal” and overcome these weaknesses through 
redundant techniques? Or 

• Should the focus be on finding and fixing systemic weaknesses18 in the state of the art for 
formal verification and testing techniques19?  

                                                
16  An example would be the effect of a bit flip. 
17  Further investigation of KAERI’s experience is needed to understand how the FTA was effective in identifying the 

fault. 
18  It is not a reflection on KAERI but indicates promising avenues for advancing the state of the art. 
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4.2 Assumptions about physical faults in digital electronics 
The economically useful life of digital component technologies has become so short that it is 
difficult to accumulate adequate operational experience with their respective fault modes and 
likelihoods.  

In addition, digital state switching time is being reduced continually, as well as switching voltage 
or energy threshold, which makes digital electronics more and more sensitive to radiation or 
high-energy particles. On the other hand, with the increasing use of electronics, electromagnetic 
emissions in the environment (e.g., from power electronics) are increasing. This makes it 
increasingly difficult to identify elementary physical faults in digital electronic hardware 
components, such as sensors, actuators, and computing devices, and to analyze how such 
elementary faults propagate within the circuit. Therefore, commensurate mitigating safety 
requirements (often for detection software) are not derivable through a well-defined, repeatable 
procedure.  

Uncertainties about the nature and occurrence of physical faults in new digital component 
technologies, especially faults leading to partial or intermittent component failure, may lead to 
unintended effects on the functionality of the impacted integrated circuit. In particular, the 
propagation paths of physical faults within an integrated circuit depend on complex and 
undisclosed microelectronic processes at nanometric scale. However, FMEA-FTA applied to the 
physical faults in a high-density integrated circuit often consider only the case of total failure of 
all functions provided by this circuit.  

These uncertainties increase system complexity and add to the challenges of validating 
assumptions about hardware when analyzing software. 

                                                                                                                                                       
19  This may also apply to development constraints (see second note under the definition of Complex Logic in 

Appendix A). 



 

5-1 
 

5. CONCLUSIONS 
IRSN and NRC researchers have jointly analyzed the role of FMEA in regulatory assurance of 
Complex Logic, especially software, in an NPP safety system and concluded that its contribution 
is marginal.  

The root cause of this limitation lies in the fundamentally different characteristics of faults in 
Complex Logic, especially software, compared to physical faults for which FMEA-FTA had been 
developed. Whereas hardwired devices have only a few predetermined fault modes, the 
potential fault space in Complex Logic is huge; yet the actual number of faults is an extremely 
small fraction of the potential fault space. Finding these faults through FMEA is akin to 
searching for a needle in a haystack. Therefore, extending methods that have been successfully 
used for analyzing traditional hardware to Complex Logic does not yield similar benefits. 
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6. ADDITIONAL INVESTIGATIONS 
Before further investigation into the appropriate role of FTA and FMEA in safety analysis of 
Complex Logic, a broader question must be addressed: Under what verifiable conditions would 
development documents be dependable for obtaining FMEA-FTA results20 for hypothetical 
software faults, when such faults always result from development mistakes (and are in most 
cases undocumented behaviors)?  

The dependability of documentation is in question for two well-known causes of concern:  

(1) incomplete, inconsistent, or ambiguous requirements  
(2) inadequate or unenforceable or unverifiable architectural constraints21  

This leads to related research questions: What is the appropriate role for techniques such as 
FMEA and FTA in addressing these areas of concern? How effective are these techniques in 
comparison with other alternatives? 

Further investigations are needed to understand and evaluate the benefits of application of 
FMEA-FTA for software, reported by several experts and expert groups [14–25]. An initial study 
of their publications indicates that the techniques were useful in support of system-internal 
hazard analysis and for discovering and identifying safety requirements. The reported 
applications were successful under certain specific conditions.  

With respect to results from others’ research [14–25], reported in Section 4, the NRC intends to 
contact these experts to gain a deeper understanding of their experience.  

In the case of the KAERI application [21], in the context of the broad research questions 
mentioned above, the NRC has identified the following coupled research questions:  

• Should the assessor accept “inadequately specified verification cases” to be “normal” and 
overcome these weaknesses through redundant techniques? Or,  

• Should the focus be on finding and fixing underlying systemic weaknesses in the upstream 
review criteria?22  

These questions will be considered in NRC’s on-going research program.   

                                                
20  FMEA-FTA results can be used for software analysis. 
21  As an example of architectural concerns, if some dependency or flow path is not shown in the design, fault 

propagation paths or unwanted flow paths would escape analysis. 
22  See the second note under the definition of Complex Logic in Appendix A. 
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APPENDIX A: GLOSSARY 
The scope of this glossary is limited to this document. 

Complexity 

(A) (software) The degree to which a system or component has a design or implementation that 
is difficult to understand and verify. (Definition (1)(A) in [1]) 

(B) (software) Pertaining to any of a set of structure-based metrics that measure the attribute in 
Definition (1)(A) in [1]. (Definition (1)(B) in [1]) 

Notes: 

• There are other perspectives on the definition of complexity as illustrated below 
(i.e., there is no broadly accepted definition, even in the limited context of safety-critical 
software engineering).  

• The number of linearly independent paths (one plus the number of conditions) through 
the source code of a computer program is an indicator of control flow complexity, known 
as McCabe’s cyclomatic complexity. [2]  

• Sometimes, the term “size-complexity” is used to refer to the effect of the number of 
states and number of inputs and their values and combinations. 

• An ill-defined term that means many things to many people. [3] 

Complex Logic 

An item of logic for which it is not practicable to ensure the correctness of all behaviors1 through 
verification alone. 

Notes: 

• This definition is derived from a combination of the definition of complexity given above 
and the following definition in DO-254/ED-80 in Appendix C [4], for “simple hardware 
item”: “A hardware item is considered simple if a comprehensive combination of 
deterministic tests and analyses can ensure correct functional performance under all 
foreseeable operating conditions with no anomalous behaviour.” The conditional clause 
“if a comprehensive combination of deterministic tests and analyses…” is summarized 
as “verification” (defined below in this glossary). 

• Therefore, in addition to verification (see definition below), the demonstration of 
correctness of Complex Logic requires a combination of evidence from various phases 
of the development life cycle, integrated with reasoning to justify the completeness of 
coverage provided (summarized as development assurance). Examples include the 
following: 

o evaluation of the system concept (and conceptual architecture)  

o evaluation of the verification and validation plan  

o criticality analysis  

o evaluation of the architecture including requirements allocation  

o evaluation of the system-internal hazard analysis  

                                                
1  This refers to behaviour under all foreseeable operating conditions with no anomalous behaviour. 
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o validation of requirements and constraints on the design and implementation  

o assessment and audit of all the processes, including supporting processes and 
management processes  

o certifying2 organizations developing software  

o evaluation of the independence3 of the assurance activities 

(See [5] for more detail.) 

• Complex Logic is typically produced by techniques such as software or hardware 
description languages and their related tools. Thus, the assurance of correctness also 
requires commensurate assurance of the languages and tools. 

Design Defect  

Frailty or shortcoming of an item resulting from a defect in its concept, and which can be 
avoided only through an alteration or redesign of the item. [6] 

Error 

The difference between a computed, observed, or measured value or condition and the true, 
specified, or theoretically correct value or condition (Definition (8)(A) in [1]) 

Failure 

The termination of the ability of an item to perform a required function. [7] 

Note 1: After failure, the item has a fault. [5] 

Note 2: “Failure” is an event, as distinguished from “fault” which is a state. [7] 

Note 3: This concept as defined does not apply to items consisting of software only. [7] 

Note 4: The following definitions represent the perspectives of different disciplines to 
reinforce the definition given above: 

• the termination of the ability of an item to perform a required function (Definition (1)(A) in 
[1]) 

• the termination of the ability of a functional unit to perform its required function 
(Definition (1)(N) in [1]) 

• an event in which a system or system component does not perform a required function 
within specified limits; a failure may be produced when a fault is encountered 
(Definition (1)(O) in [1]) 

• the termination of the ability of an item to perform its required function (Definition 9 in [1] 
from “nuclear power generating station”) 

• the loss of ability of a component, equipment, or system to perform a required function 
(Definition 13 in [1] Safety systems equipment in “nuclear power generating stations”) 

                                                
2  Certification of the development organization should be a continual process of certification and recertification 

much in the same manner as reactor operators are certified periodically. For example, the capability maturity 
model integrated certification process developed by the Software Engineering Institute focuses on assessing the 
capabilities of development. 

3  For example, independence can be evaluated through certification of the assurance process for the Complex 
Logic (e.g., software). 
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• an event that may limit the capability of equipment or a system to perform its function(s) 
(Definition 14 in [1] “Supervisory control, data acquisition, and automatic control”) 

• the termination of the ability of an item to perform a required function (Definition 15 in [1] 
“nuclear power generating systems”) 

Failure Analysis 

The logical, systematic examination of a failed item to identify and analyze the failure 
mechanism, the failure cause, and the consequences of failure. (191-16-12 in [7]) 

Fault 

The state of an item characterized by inability to perform a required function, excluding the 
inability during preventive maintenance or other planned actions, or due to lack of external 
resources. (191-05-01 in [7]) 

Note 1: A fault is often the result of a failure of the item itself but may exist without prior 
failure. (191-05-01 in [7]) 

Note 2: Following are other definitions, relating “fault” and “defect”: 

• a defect or flaw in a hardware or software component (Definition 13 in [1]) 

• a defect in a hardware device or component; for example, a short circuit or broken wire 
(Definition 9 in [1]) 

Synonym: physical defect 

Note 3: The following definition is specific to software: 

An incorrect step, process, or data definition in a computer program (Definition (7)(A) in [1]) 

Fault Analysis 

The logical, systematic examination of an item to identify and analyze the probability, causes, 
and consequences of potential faults. (191-16-11 in [7]) 

Fault Mode 

One of the possible states of a faulty item, for a given required function. 

Note: The use of the term “failure mode” in this sense is now deprecated. 

Fault Modes and Effects Analysis (FMEA) 

A qualitative method of reliability analysis, which involves the study of the fault modes, which 
can exist in every subitem of the item, and the determination of the effects of each fault mode 
on other subitems of the item and on the required functions of the item. (191-16-03 in [7]) 

Note: The term “failure modes and effects analysis” is deprecated.  

Fault Tree Analysis (FTA) 

An analysis to determine which fault modes of the subitems or external events, or combinations 
thereof, may result in a stated fault mode of the item, presented in the form of a fault tree. 
(191-16-05 in [7]) 
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Faulty 

Pertaining to an item that has a fault. 

Feasible 

Capable of being done with the means at hand and circumstances as they are. [8]  

Other definitions also impose such constraints as “practicably,” “reasonable amount of effort, 
cost, or other hardship” [9], cost-effectiveness [10].  

Such constraints distinguish “feasibility” from “possibility.” 

Hardwired 

Pertaining to a circuit or device whose characteristics are permanently determined by the 
interconnections4 between components5 (Adapted from Definition 3 in [1]).  

Note: 

• The referred-to connections are at the printed circuit board level (or cabinet level), not 
internal to integrated circuits. 

Item (Entity) 

Any part, component, device, subsystem, functional unit, equipment, or system that can be 
individually considered. (191-01-01 in [7]) 

Notes: 

• An item may consist of hardware, software, or both, and may, in particular cases, include 
people. 

• A number of items (e.g., a population of items or a sample) may itself be considered an 
item. 

Mistake 

A human action that produces an unintended result (Definition 1 in [1] “electronic computation”)  

Editorial note (contrary to the note attached to Definition 1 in [1]): In the context of software 
engineering, this definition should be applied to mistakes concerning requirements 
development (including elicitation, transformation of intent into requirement or constraint 
specification, and explicit statement of assumptions (e.g., about the environment) and 
respective validation. 

A human action that produces an incorrect result (Definition 3 in [1] “software”)  

Note: The fault tolerance discipline distinguishes between the human action (a mistake), its 
manifestation (a hardware or software fault), the result of the fault (a failure), and the 
amount by which the result is incorrect (the error). [1] 

Editorial note (complementing the note in the previous definition of “mistake”): In the context 
of software engineering, this definition should be applied to mistakes concerning 
transformation of requirements specifications and constraints into successive work products 
and their respective verification. 

                                                
4  Examples: Wiring in cabinets; Printed paths in circuit boards 
5  Examples: Relays; AND-gates; OR-gates 
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Noninterference 

Absence of cascading failures between two or more elements that could lead to the violation of 
a safety requirement [11].6 

Example 1: Element 1 is interference-free of Element 2 if no failure of Element 2 can cause 
Element 1 to fail. 

Example 2: Element 3 interferes with Element 4 if there exists a failure of Element 3 that 
causes Element 4 to fail. 

Reliability (symbol : R(t1, t2)) 

The probability that an item can perform a required function under given conditions for a given 
time interval (t1, t2). (191-12-01 in [7]) 

Note: It is generally assumed that the item is in a state to perform this required function at 
the beginning of the time interval.7 

• The term “reliability” is also used to denote the reliability performance quantified by this 
probability (see 191-02-06 in [7]). 

• This definition does not apply to items for which development mistakes can cause 
failures, because there is no recognized way to assign a probability to development 
mistakes. 

Systemic 

Embedded within and spread throughout and affecting a group, system, or body. Also see 
“systemic cause” in [12]. 

Systematic Failure 

Failure, related in a deterministic way to a certain cause, that can be eliminated only by a 
modification of the design or of the manufacturing process, operational procedures, 
documentation, or other relevant factors. [7] 

Note 1: Corrective maintenance without modification will usually not eliminate the failure 
cause. 

Note 2: A systematic failure can be induced by simulating the failure cause. 

Note 3: In International Electrotechnical Commission 61508-4 CDV 3.6.6 [13]: Examples of 
causes of systematic failures include human mistakes in the following areas: 

• the safety requirements specification 
• the design, manufacture, installation, and operation of the hardware 
• the design, implementation, etc. of the software 

Also, see “systemic cause” in [12]. 

                                                
6  This reference uses the term “freedom from interference.” 
7  For a software component that is faulty to begin with, use of the term reliability is neither meaningful nor helpful; 

instead, it leads to the misapplication of analysis techniques that served well for traditional hardware. 
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Verification 

The process of providing objective evidence that the software and its associated products 
conform to requirements (e.g., for correctness, completeness, consistency, accuracy) for all life-
cycle activities during each life-cycle process (acquisition, supply, development, operation, and 
maintenance); satisfy standards, practices, and conventions during life-cycle processes; and 
successfully complete each life-cycle activity and satisfy all the criteria for initiating succeeding 
life-cycle activities (e.g., building the software correctly). (Definition 3.1.36 B in [5]) 
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APPENDIX B: OTHER CAUSES OF FAULTS  

In analyzing how safety systems may fail, identifying the cause in terms of a distinct fault mode 
has been useful when different fault modes could lead to different effects requiring different 
means and degrees of mitigation. When the differences in effects are unclear, as in the case of 
the logic fault modes characterized in Section 3.2, a root cause analysis offers more information 
and utility. Even the identification of intermediate links in the causality chain can lead to specific 
corrective actions and effective reduction of the possible ways a safety system may fail. 
Software engineering experts have identified some such causes or types of causes, as 
discussed below. Some types of causes, as in Sections B.1 and B.2, apply to Complex Logic in 
general, while others, as in Section B.3, occur more in software. 

B.1  Pervasive causes preclude localization of fault mode to item 

Systemic root causes of software defects tend to have influences that pervade the product and 
the process. Such pervasive causes include weaknesses in the culture of an organization or a 
division of work and people that prevents adequate communication and weaknesses in the 
process of identifying safety requirements, architectural standards, process standards, 
management of procurement processes, and the supply chain. Effects cannot be localized as in 
the case of failure caused by the wear and tear of a hardware component for which fault mode 
and effects analysis has proven useful.  

B.2  Unknown effect of change  

Changes, modifications, and updates occur during the usage life of a digital instrumentation and 
control system; not only do the systems change, but also the resources used in their 
performance (e.g., people and tools). These changes can introduce defects. For example, at the 
Jet Propulsion Laboratory, the software used for navigation from Earth to Mars was created 
30 years ago. It is robust, but revised from time to time to meet changing needs. One would 
expect that after 4 or 5 years, it would be defect free. However, over a 30-year period, the 
number of defects discovered has not decreased. It is reasonable to assume that there are still 
latent faults. What is the required rigor and granularity in configuration control and management, 
change control and management, and change impact analysis? There is no proven record of 
accomplishment to answer these questions. 

B.3  Other causes of faults when Complex Logic is in the form of software 

In most software systems, there is a significant amount of unpredictability of behavior. This may 
be surprising at first glance because a software program is a mathematical formula, which 
should provide only one well-defined result for a given input history. However, inadequately 
engineered software may depend not only on its functional inputs, but also on hidden, 
uncontrolled inputs,1 variability of computation times (e.g., because of the state of the cache 
memory resulting from the activities of other programs), and other inputs. Then, the behavior of 
the software is nondeterministic. Some of the contributing causes are discussed below. 

Assumptions about the environment of the software: In a software system that is composed of N 
individual components, each individual component can be designed “correctly,” and yet the 
composition can have flaws. The flaw is generally in the specific assumptions (explicit or 
implicit) about the operating environment made in the design and construction of each 

                                                
1  Examples include the state of the computing hardware such as time, environment variables, or availability of 

resources 
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component. A software component can be completely robust with respect to a specific set of 
environmental assumptions (“environment” refers to the rest of the system, including all other 
software components, and the rest of the world outside the system itself that can provide events 
that are visible to the system). Yet, there can be subtle discrepancies in the assumptions 
between components that could lead to failure of the system as a whole.  

Process scheduling: Another source of unpredictable behavior can come from process 
scheduling,2 actual concurrency,3 and the outside environment (providing input triggers that the 
software responds to, or is sensitive to). This unpredictability makes standard software testing 
extremely difficult. In general, this is known as the oracle problem. Any specific execution of the 
system as a whole is generally an unpredictable occurrence of a specific interleaving of small-
grained instruction executions. If there is a vulnerability4 of this type in the system, it can remain 
hidden for long periods (years), until it finally strikes when just the right interleaving of events 
happens. Those bugs also tend to be irreproducible even when they are known to be possible 
(too many things beyond the testers’ control need to happen in just the right order).  

Change in environmental conditions: A software component can function correctly for a long 
time, and just a small change in its environment (i.e., not in the component itself) can trigger a 
system failure. The change could be a change in the scheduler, or the speed of the CPU, or the 
speed at which external events occur. Concurrency issues make deterministic arguments 
difficult. Typically, when a race condition causes a problem, simply rebooting the system will 
remove all evidence of it, and the same problem may never strike again. The software may 
appear to work correctly and will be fully functional most of the time, even though it has 
vulnerabilities that can strike unpredictably at some point in its lifetime when the right conditions 
occur.  

Unpredictable effects of triggered faults: Most importantly, the possible effects of a triggered 
fault (defect) (for example, one that allows a subtle race condition, which can cause data 
corruption somewhere) are generally unpredictable. There are many examples of major system 
failures that were caused by seemingly small one-line bugs. One example is the AT&T disaster 
in January 1990, described in Section 3.3.2, where intermittent failure caused a major service 
outage on the entire long-distance U.S. telephone network. Other examples of seemingly 
“small” problems that lead to large failures abound. The National Aeronautics and Space 
Agency, for instance, lost an expensive spacecraft (the Mars Global Surveyor spacecraft) 
recently because of 1 byte of memory having the wrong value. These observations emphasize 
that the consequences of even very small defects in software can be quite unpredictable. So 
even if we could assign a reasonably accurate probability of a defect existing in a software 
system (which we cannot), that in itself does not help us assess the potential effect of such a 
defect. The effect could be benign, or it could bring down the entire system in an unforeseeable 
way.  

Mitigating measures are useful but limited: Intervention mechanisms outside the software (and 
independent of it) can (and should) be provided to mitigate the effects mentioned above. Strong 
mechanisms (e.g., the use of memory protection and partitioning kernels) should be provided to 
prevent the propagation of failures within software systems. Detection through runtime 
monitoring and other fault monitoring techniques can and should be exploited. Prevention 
techniques through defensive coding techniques, consistency checking, and static source code 

                                                
2  This refers to the way in which a process scheduler interleaves the execution of multiple tasks on a single 

processor. 
3  Multiple central processing units (CPUs) are running multiple tasks in parallel at unpredictable relative speeds. 
4  It is often the case. 
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analyzers can and should be used. Even then, mistakes can occur, but their likelihood and 
effects cannot be determined. 

Glossary 

Latent Fault 

An existing fault that has not yet been recognized. (191-05-20 in [1]) 

Oracle 

An oracle is a mechanism used by software testers and software engineers for determining 
whether a test has passed or failed. It is used by comparing the output(s) of the system under 
test, for a given test case input, to the outputs that the oracle determines that product should 
have. (Adapted from [2]) 

Examples: 

• an expected result 
• a requirements document 
• a previous version of the product 
• a human judgment 

The Oracle Problem 

Whether a decision procedure can be defined for interpreting the results of tests. (Adapted from 
3]) 

Examples: 

• Requirements specifications are incomplete, contain conflicting information, or are 
ambiguous.  

• Expected results in a test case detail only a small portion of what is expected (the tiny 
portion of the application and functionality the test is designed to expose).  

Notes:  

• The oracle problem is that all oracles are fallible.  
• Oracles are hard to find and require work to use effectively. 
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APPENDIX C: STATE OF THE ART IN FMEA FOR SOFTWARE 
Fault modes and effects analysis (FMEA) and fault tree analysis (FTA) have been used as a 
part of system-internal hazard analysis (HA) in nonnuclear application domains for identifying 
software requirements (e.g., monitoring and detection of a fault and mitigating its effect). Unlike 
hardware and system FMEA, a software FMEA cannot be easily used to identify system-level 
hazards [1]. Software analyses, reviews, and tests directed at finding faults in the software are 
not considered to be a direct part of software HA (i.e., verification and validation activities are 
not considered to be part of the HA). When performed on software, the HA considers only the 
following two questions [2]1: 

• If the software operates correctly (i.e., follows its specifications), what is the potential effect 
on system hazards? 

• If the software operates incorrectly (i.e., deviates from specifications), what is the potential 
effect on system hazards? 

Whereas the FMEA method looks at all faults and their effects, the FTA is limited to analysis of 
faults leading to events of interest (e.g., safety related or of the highest criticality) [3]. This 
appendix will briefly review specific viewpoints outside the U.S. commercial nuclear power plant 
industry that are relevant to a determination of the suitability of software FMEA, software FTA, 
or an FMEA-FTA combination, in the safety assurance of Complex Logic.  

C.1 Fault Modes and Effects Analysis 

FMEA is characterized as a bottom-up analysis technique that identifies the consequences of 
the credible fault modes for the system. The results of the FMEA are documented in a tabular 
format. However, this representation makes it difficult to understand the logical relationships 
among the causes of a failure [4] and does not group together the items causing the effects. For 
example, when performed on software, FMEA does not consider the correctness of algorithms 
or problems [5] resulting from design mistakes, but assumes that every variable may fail without 
regard to cause. FMEA is independent of two essential but different kinds of analysis: how the 
software design meets requirements and the adequacy of the requirements themselves23.   

Goddard4 notes that the intent of software FMEA is not to verify the quality of the software, but 
to provide assurance that should something go wrong (whether the problem is induced by 
hardware or software), the software will detect it and maintain the system in a safe state.5 
According to Goddard [1], two types of software FMEA are used in embedded control systems: 
a system software FMEA and detailed software FMEA. A system software FMEA, performed on 
the architecture, can support its evaluation for effectiveness, but does not examine the 
implemented functional code. The detailed software FMEA, performed on the code, can be used 
for identifying unexpected6 paths, which could lead to an adverse effect on safety. However, 
                                                
1  This reference assumes that the computer hardware operates without failure. In addition, it assumes that a 

separate system HA and a separate hardware HA are performed. 
2  Private communications with NRC in a teleconference with Ram Chillarege September 1, 2010 
3  Private communications with NRC in a teleconference with Peter Goddard, September 10, 2010 

4  Private communications with NRC in a teleconference with Peter Goddard, September 10, 2010 
5  This amounts to a system hazard analysis. 
6  The examination is limited to documented design. However, there could be other unexpected paths not visible in 

the documented design. 
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compared to the system software FMEA, the detailed software FMEA can be lengthy and labor 
intensive [1]. For example, if the system-level software FMEA consumes 6 weeks of labor, the 
detailed FMEA will probably take 6 or 7 man-months of labor [1]. In Goddard’s experience7, 
FMEA is more effective at the system level; its suitability and effectiveness at the detailed 
software level are questionable.  

The definition of fault modes is one of the hardest parts of the FMEA of a software-based 
system. Unlike for hardware, a complete list of fault modes for software cannot be assembled 
[4, 7]. Software fault modes generally are unknown (“software modules do not fail, they only 
display incorrect behaviour” [7]). The analysts must apply their own knowledge about the 
software and postulate the relevant fault modes [8]. Banerjee [9] provided an insightful look at 
how teams should use FMEA in software development. However, the effectiveness depends on 
the domain knowledge of the review team and the accuracy of the documentation [4]. In 
particular, inadequate software responses to extreme conditions and boundary cases are of 
concern [4]. Similarly, Fenelon and McDermid [10] and Pfleeger [11] pointed out that FMEA is 
highly labor intensive and relies on the experience of the analysts. 

The Radiation and Nuclear Safety Authority of Finland stated [7] that FMEA cannot alone 
provide the necessary evidence for the qualification of software-based safety critical 
applications in nuclear power plants, but the method should be combined with other safety and 
reliability engineering methods.   

C.2 Fault Tree Analysis 

FTA is characterized as a top-down analysis technique to identify the contributing elements that 
could cause the system-level undesired events (top events) [12]. Analysts have used FTA to 
discover design defects during the development of a system and to investigate the causes of 
accidents or problems that occur during system operation [13]. Software developers have used 
FTA to discover software defects [13, 14]. It has also been used for verifying software code, but 
it has been difficult and labor intensive to use it for large software [4]. A limitation of FTA is that 
the top event can describe only a known failure [13]. Because of lack of experience, it is difficult 
for analysts to select8 an adequate set of top events, which results in the risk of leaving critical, 
system-level undesired events out of the analysis [12]. In addition, it cannot identify the effects 
of “sneak paths” not reflected in the documented design. Like FMEA, FTA is only as good as the 
domain and system expertise of the analyst.  

Leveson states [15] that the purpose of HA is to discover or identify safety requirements (or 
derived requirements including design constraints and implementation constraints)—not to 
ensure that the logic will not lead to unsafe system failure.  

According to some experts, FTA has shown weaknesses when the code has loops, but loops 
are common in embedded software [16]. The Korean Atomic Energy Research Institute (KAERI) 
has reported [17–21] the use of carefully crafted FTA (different from the FTA used in traditional 
hardware) on a critical software module as a technique redundant and complementary to other 
techniques used in the project, including HAZOP, formal verification, and testing. The software 
FTA revealed a defect that was not found in formal verification and testing [17]. KAERI found 
the redundancy worthwhile.  

Fault trees are static approaches that cannot reach all the dynamic aspects of the software.  

                                                
7  Private communications with NRC in a teleconference with Peter Goddard, September 10, 2010 
8  Often, the range of scenarios leading to unwanted events is too large to consider exhaustively, and the analyst 

does not have enough explicit information about their likelihood to make a well-informed selection. 
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C.3 FTA-FMEA Combination 

Several experts and expert groups have considered the integrated use of both bottom-up and 
top-down techniques to fill the gaps when both techniques are applied separately. There are two 
ways to perform this integrated analysis [12]: 

(1) Bottom-up [16, 22–25] 
In this method, the FMEA is taken as the main method and then followed with software 
FTA as a supplement. The method is described as follows: 

1. Identify the fault modes.  
2. Evaluate the impact of the fault modes on the system and the severity of the impact.  
3. Select the effects with greater severity as top events for the software FTA. 
4. Determine the actions needed according to the causes of the fault modes. 

(2) Top-down [8, 26] 
In this method, the FTA is the main method, followed with FMEA as a supplement. This 
method is applied at the design phase. The method is described as follows: 

1. Identify the top events.  
2. Evaluate the minimal cut-sets and important bottom events. 
3. Perform the FMEA with the most important bottom events.  
4. Determine the actions needed with the new failure effects as top events. 
5. Continue analysis. 

Some experts prefer the bottom-up FMEA-FTA combination [16, 22–25], while others prefer the 
top-down FTA-FMEA combination [8, 26]. In the latter case, the preliminary FTA and resulting 
minimal cut-sets direct the identification of failure modes to those that are most significant for 
the system reliability. Then, the effects analysis of these failures steers the refinement of the 
fault trees and the final detailed FMEA [7].  
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