Safety System Digital Platform -MELTAC-

Non Proprietary Version

April 2011

©2011 Mitsubishi Heavy Industries, Ltd. All Rights Reserved

Revision	Date	Page (Section)	Description
0	March 2007	All	Original issued
1	July 2007		Refer to Revision History of JEXU-1012-1002-P(R1)
2	August 2008		Refer to Revision History of JEXU-1012-1002-P(R2)
3	December 2008		Refer to Revision History of JEXU-1012-1002-P(R3)
4	September 2009		Refer to Revision History of JEXU-1012-1002-P(R4)
5	April 2010		Refer to Revision History of JEXU-1012-1002-P(R5)
6	October 2010		Refer to Revision History of JEXU-1012-1002-P(R6)
7	April 2011		Refer to Revision History of JEXU-1012-1002-P(R7)

© 2011 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved

This document has been prepared by Mitsubishi Heavy Industries, Ltd. ("MHI") in connection with its request to the U.S. Nuclear Regulatory Commission ("NRC") for a pre-application review of the US-APWR nuclear power plant design. No right to disclose, use or copy any of the information in this document, other than by the NRC and its contractors in support of MHI's pre-application review of the US-APWR, is authorized without the express written permission of MHI.

This document contains technology information and intellectual property relating to the US-APWR and it is delivered to the NRC on the express condition that it not be disclosed, copied or reproduced in whole or in part, or used for the benefit of anyone other than MHI without the express written permission of MHI, except as set forth in the previous paragraph.

This document is protected by the laws of Japan, U.S. copyright law, international treaties and conventions, and the applicable laws of any country where it is being used.

Mitsubishi Heavy Industries, Ltd. 16-5, Konan 2-chome, Minato-ku Tokyo 108-8215 Japan

<u>Abstract</u>

This topical report which is attached JEXU-1012-1002-P describes the MELTAC digital platform. MHI seeks NRC approval of this platform for application to the safety systems of the US-APWR and for replacement of current safety systems in operating plants. The MELTAC digital platform was developed by MHI and MELCO for nuclear power plants in Japan. For applications in the US, this report demonstrates conformance of the MELTAC digital platform to all applicable US Codes and Standards. These include:

- Code of Federal Regulations
- Regulatory Guides
- Branch Technical Positions
- NUREG-Series Publications
- IEEE-Standards
- Other Industry Standards

Safety System Digital Platform - MELTAC -

Non-Proprietary Version

April 2011

© 2011 MITSUBISHI ELECTRIC CORPORATION All Rights Reserved

JEXU-1012-1002-NP(R7)

Prepared:

Reviewed:

Yukiko Hirano, Engineer

Control & Protection Systems Section

Control & Protection Systems Section

Yasuo Uranaka, Manage

'zo// Yasunobu Koga, Manage

2011 Date

DCS Development Section

25/2011

Makoto Ito, Manager

Date

DCS Development Section

Approved:

25/2011 MA v//

Hozumi Kadohara, Section Manager Control & Protection Systems Section

Masahiko Nambu, Section Manager **DCS Development Section**

Date

Approved:

Kadohara 4/25/2011

Hozumi Kadohara, Project Manager Nuclear Power Department

Date

Date

Approved:

Satoshi Nagao, Department Manager **Development Department**

26/2011 Date

Approved:

m26,2011

Hiroyuki Fukumitsu, Department Manager Nuclear Power Department

Approved:

pr. 26, 2011 Date

Masanori Sugita, Department Manager Nuclear Power Plant Quality Assurance Department

<u>Signature</u>	History
-	

	Rev.0	Rev.1	Rev.2	Rev.3
Propored	Shigeru Sugitani	Shigeru Sugitani	Shigeru Sugitani	Shigeru Sugitani
Prepared	Tomonori Yamane	Tomonori Yamane	Tomonori Yamane	Tomonori Yamane
Reviewed	Tokihiro Fukuhara	Hidetoshi Matsushita	Hidetoshi Matsushita	Hidetoshi Matsushita
Reviewed	Makoto Ito	Makoto Ito	Makoto Ito	Makoto Ito
	Katsumi Akagi	Tokihiro Fukuhara	Tokihiro Fukuhara	Tokihiro Fukuhara
	Hiroaki Ohno	Hiroaki Ohno	Hiroaki Ohno	Hiroaki Ohno
Approved	Kunio Yugami	Toru Ito	Toru Ito	Toru Ito
Approved	Keisuke Ichieda	Keisuke Ichieda	Keisuke Ichieda	Keisuke Ichieda
	Masahiko Yamawaki	Shuichi Kobashi	Shuichi Kobashi	Shuichi Kobashi
	Yasuo Shiraishi	Yasuo Shiraishi	Tatsuaki Kawabata	Tatsuaki Kawabata

	Rev.4	Rev.5	Rev.6	
Propored	Shigeru Sugitani	Yukiko Hirano	Yukiko Hirano	
Prepared	Yasunobu Koga	Yasunobu Koga	Yasunobu Koga	
Reviewed	Hidetoshi Matsushita	Yasuo Uranaka	Yasuo Uranaka	
Reviewed	Makoto Ito	Makoto Ito	Makoto Ito	
	Tokihiro Fukuhara	Hozumi Kadohara	Hozumi Kadohara	
	Masahiko Nambu	Masahiko Nambu	Masahiko Nambu	
Approved	Toru Ito	Hidetoshi Matsushita	Hidetoshi Matsushita	
Approved	Keisuke Ichieda	Satoshi Nagao	Satoshi Nagao	
	Hiroyuki Fukumitsu	Hiroyuki Fukumitsu	Hiroyuki Fukumitsu	
	Tatsuaki Kawabata	Tatsuaki Kawabata	Tatsuaki Kawabata	

Revision History

Revision	Date	Page (section)	Description
0	March 2007	All	Original issued
1	July 2007		The following items are revised based on NRC comments or correction of simple spelling errors.
		47 (Sec.4.1.3.1)	Figure 4.1-10 is modified.Tool Communication is added.
		51 (Sec.4.1.4)	J Description of the MELTAC engineering tool is modified.
		51,52 (Sec.4.1.4.1)	Description of download is modified. "Controller failure diagnosis display" is added. "Adjustment of field changeable constants and setpoints" is added.
		53 (Sec.4.1.4.2)	Description of network for the MELTAC engineering tool is modified. Description of the communication interface between Controller and the MELTAC engineering tool is added.
		85,86,87 (Sec.4.3.4)	Description of Maintenance Network configuration and isolation are added.
		ſ	J
		125 (Sec.6.1.5)	Spelling errors are corrected (They -> The)

Revision	Date	Page (section)	Description
1	July 2007		
		141 (Sec.6.1.12)	Spelling error is corrected (Plant -> Plan)
2	August 2008	34 (Sec.4.1.1.4)	Table 4.1-2 is modified. CE101 in EMC specifications is deleted.
		96 (Sec.5.0)	The name of the EMC test report is changed.
		105 (Sec.5.3)	CE101 is deleted. The acceptance criteria are modified.
		106 (Sec.5.3)	The name of the EMC test report is changed. CE101 is deleted.
		108 -113 (Sec.5.3.2.1- 12)	Sec.5.3.2.1 CE101 Test is deleted.
		108 - 110 (Sec.5.3.2.1- 9)	Spelling errors are corrected (envelop -> envelope)
		114, 115 (Sec.5.4)	The acceptance criteria in the ESD test are modified.
		116, 117 (Sec.6.1.1)	ر Reflecting the reorganization of the reference internal quality assurance program documents

Revision	Data	Page	Description
	Date	(section)	
3	December 2008	i	Spelling error is corrected (that -> than).
		6,9,13 (Sec.3.0)	Descriptions in Paragraphs 6, 16, and 44 are revised in accordance with the response to RAI.
		15,16,17,19 (Sec.3.0)	Paragraphs of the sections and procedures that include descriptions related to each standard are indicated. (Number 54, 55 – 57, 59, 61, 64 – 74)
		18 – 20 (Sec.3.0)	Two standards (IEEE802.3 and IEEE802.17) are deleted and the paragraph numbers thereafter are reassigned.(Paragraphs 76 – 87)
		84 (Sec.4.3.3.1)	Omission in writing in Figure 4.3-5 is corrected in accordance with the response to RAI.
		97 (Sec.5.0)	Descriptions of environmental, seismic, and EMC test reports are added in accordance with the response to RAI.
		164 (Appendix A.5)	Description of the accuracy of analog input is added in accordance with the response to RAI on Safety I&C System. (**)
		168 (Appendix A.8)	Error in writing is modified $(1.6A_{0-P} \rightarrow 16A_{0-P})$.
4	September 2009	iii (Abstract)	Abstract is modified.
		ix (List of Acronym)	HICB is deleted. DAAC and EEPROM are added.
		2 (Code of Federal	Description of 10 CFR 50 Appendix A, GDC 1 is modified.
		Regulation 1) 6 (Code of Federal	Description of 10 CFR 50.55a is modified.
		Regulation 5)	

Revision	Date	Page (section)	Description
4	September 2009	7 (Code of Federal	Spelling error is corrected (Commision's -> Commission's).
		Regulation 8) 9 (NRC Regulation	Description of RG1.75 is modified.
		Guides 15) 9 (NRC Regulation	Description of RG1.105 is modified.
		Guides 19) 10 – 11 (NRC Regulation Guides 24 -	Description of RG1.168, 1.169, 1.170, 1.171, 1.172, 1.173 is modified.
		29) 12 (NRC Regulation Guides 30a)	RG 1.206 is added.
		12-14 (NRC Branch Technical	All items of "HICB" is changed to "7" Item 44 is deleted.
		Positions) 17 (IEEE Standards 60)	Descriptions of 37, 38 and 48 are modified. Description of IEEE 420 is modified.
		25 (4.1.1.1)	Description of Figure 4.1-2 is added.
		31 (4.1.1.2)	Explanation for Failure Mode is added.
		34 (4.1.1.3)	Explanation of Cycle time is added in Table 4.1-1.
		39 (4.1.2.1.1)	Explanation of Futurebus+ is added.
		40 (4.1.2.1.6)	Description of PPNJ-12 is modified.
		43 (4.1.2.3)	Figure 4.1-8, Figure 4.1-9 and description are added.

Revision	Date	Page (section)	Description
4	September	45	Description of E/O converter is modified.
	2009	(4.1.2.5) 46 (4.1.2.7.2)	Description of Power supply fan units is added.
		(4.1.2.7.3) 46, 47 (4.1.2.8)	Description of Power supply module is added.
		(4.1.2.0)	١
			ر ار
		55	J Description is added.
		(4.1.3.2)	J
		65	J Section 4.1.5.6 is added.
		(4.1.5.6) 65, 66	Section 4.1.6 is added.
		(4.1.6) 66 - 68	Section 4.1.7 is added.
		(4.1.7) 70 (4.2.1.2.1),	Description is added.
		(4.2.1.2.1), 74 (4.2.2.1)	Additional explanation for interruption is added.
		(4.2.4)	Section 4.2.4 is added.
		83 (4.3.2)	Example of inter divisional communication between safety and non-safety is added.
		(4.0.2)	
		L 85, 86	
		(4.3.2.1)	Wording is modified in Figure 4.3-1, 4.3-2.
		86 (4.3.2.1)	Explanation for bypass function of optical switch about Figure4.3-2 is added.
		87, 88 (4.3.2.1)	Figure4.3-3 and explanation of optical switch failure mode are added.
		89 (4.3.2.2)	Optical cable specification is added in Table4.3-2.
		Í	

Revision	Date	Page (section)	Description
4	September 2009		
		102 (4.4)	Additional explanation of self-diagnosis is added.
			Wording is modified. (BTP HICB-21 -> BTP 7-21)
		110 (5.0)	Isolation qualification is added.
		115 (5.2.2.1)	Description of the configuration of the Cabinet Seismic Resistance Test specimen is added.
		119 (5.2.2.2)	Descriptions of the Module Seismic Resistance Test are modified. Optical Switch and Ethernet Optical Isolation
		123 (5.3.1)	Device are added. The model name of safety VDU panel is changed.

Revision	Dete	Page	Description
	Date	Page (section)	
4	September 2009		
))

Revision	Date	Page (section)	Description
4	September 2009	156 (6.1.6.4)	Section title is modified.
		Ì	

Revision	Date	Page	Description
4	September 2009	(section)	
		(176, 177 (7.1)	Description of "History of Operation" is modified. Table 7.1-1, the summary for history of changes of the MELTAC platform, is added.
		189 (7.5)	Description for replacement cycle of Periodic replacement Parts is added.
		190 (Appendix	Explanation about the modules is added.
		A) 190 (Appendix A.2)	Description of firmware is added.
		191 (Appendix A.4)	Description of firmware is added.
		192, 194, 196 (Appendix A.5)	Descriptions of firmware and current consumption are added.
		197 (Appendix A.6)	Description of current consumption is added.
		197 (Appendix A.7)	Description of current consumption is added. Specification of MEOJ-11 is added.
		198 (Appendix A.8)	Description of current consumption is added.
		199 (Appendix A.10)	Description of current consumption is added.
		200 (Appendix B)	Explanation of the list is added.

Revision		Page	Description
	Date	(section)	
5	April 2010	ii, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 19, 20, 22, 118, 146, 154, 164, 168, 169, 170, 186, 193	Document names are modified. (Design Process Topical Report, Safety System Topical Report -> Technical Report for the US- APWR DCD)
		14 (NRC Branch Technical Positions 46) 31,32	Description of conformance to BTP 7-18 is modified. Explanation of Mode Management is added.
		(4.1.1.2.1)	Description of Figure 4.1-5 is modified.
		33,34 (4.1.1.2.2)	Explanation of Mode Management is added. Description of Figure 4.1-6 is modified.
		59 (4.1.4.2)	Description of Network for the MELTAC engineering tool is modified.
		67 (4.1.6)	Error in writing is modified. (64 -> 96)
		ſ	
		101 (4.3.4.2)	Section 4.3.4.2, Isolation, is modified.
		142 (6.1.1)	Wording is modified.
			Add description about hardware procured or manufactured prior to the App. B-based QAP.
		150 (6.1.4)	Wording is modified. (V&V -> independent review and test)
		Ç	Ĵ

Revision	Date	Page	Description
5	April 2010	(section)	٦
			J
		181 (6.5)	Section 6.5, MELTAC Engineering Tool Life Cycle, is added.
		205 (Appendix A.7)	Description of Ethernet Optical Isolation Module is added.
6	October 2010	14 (3.0)	"App. B- Based" is changed to "App.B-based".
	2010	(3.0) 22 (4.0)	"Engineering Tool" and "Maintenance Network" are deleted from the items of qualified building blocks.
		22 (4.0)	The note of the Maintenance Network is added in Fig4.0-1.
		35 (4.1.1.3)	Description of Input/Output in Table 4.1-1 is modified.
		ſ	٦
		57,58 (4.1.4.1)	ر Descriptions of "b)Download" and "e)Adjustment of field changeable constants and setpoints" are modified.
		59 (4.1.4.2)	Descriptions of the permanent or temporary connection of the MELTAC engineering tool and Maintenance Network are added.
		L	ر
		86,88 (4.3.2.1)	The arrows for "Optical Cable" in Fig4.3-1 and Fig4.3-2 are corrected.
		87 (4.3.2.1)	Description of the key technical aspects of the Control Network is added.
		101 (4.3.4.1)	Descriptions of the MELTAC engineering tool connected to the Maintenance Network are modified and added.
		101 (4.3.4.1)	The note of the Maintenance Network is added in Fig4.3-8.
		103 (4.3.4.2)	Figure 4.3-9 is modified.

Revision		Page	Description
	Date	(section)	
6	October 2010	104 (4.3.4.2)	Figure 4.1-10 "Dedicated Re-programming Chassis for Writing F-ROM" is added.
		105 (4.3.4.2)	Descriptions of the controller connected to the Maintenance Network are modified.
		106 (4.3.4.3)	The title of Section 4.3.4.3 is changed from "Design Basis of Permanent Connection" to "Design Basis of Permanent or Temporary Connection".
			ر ا
			J
			Í
			j
		ĺ	
		180 (6.3, 6.3.1)	"B Based" in the titles of Section 6.3 and Section 6.3.1 are changed to "B-based".
7	April 2011	general	All sections are revised to unify the terminology.
		general	Descriptions of this report are modified. Topical Report -> Technical Report
		58 (4.1.4.1)	Explanation of Download is added.

Revision	Date	Page (section)	Description
Revision 7	Date April 2011	(section) (((((((((((((((((((Section 4.3.2.5 is added.
		189, 194 (6.1.6)	The term "cyber security" is changed to "secure development environment ".

Revision	Date	Page (section)	Description
7	April 2011	207 (6.1.12)	The terms "software safety plan/analysis" are changed to "software critical function analysis ".
		216 (6.4) 220 (6.5)	The title of Section 6.4 is changed from "BTP 7-14 Assessment" to "Basic Software Program Manual". Description of MELTAC Engineering Tool life cycle is revised.
		257 (Appendix D) 260 (Appendix E)	Appendix D is added. Appendix E is added.
		298 (Appendix F)	Appendix F is added.

© 2011 MITSUBISHI ELECTRIC CORPORATION All Rights Reserved

This document has been prepared by Mitsubishi Electric Corporation ("MELCO") in connection with Mitsubishi Heavy Industries, LTD. ("MHI")'s request to the U.S. Nuclear Regulatory Commission ("NRC") for a pre-application review of the US-APWR nuclear power plant design. No right to disclose, use or copy any of the information in this document, other than by the NRC and its contractors in support of MHI's pre-application review of the US-APWR, is authorized without the express written permission of MELCO.

This document contains technology information and intellectual property relating to the MELCO's Safety System Digital Platform (MELTAC) and it is delivered to the NRC on the express condition that it not be disclosed, copied or reproduced in whole or in part, or used for the benefit of anyone other than MELCO without the express written permission of MELCO, except as set forth in the previous paragraph.

This document is protected by the laws of Japan, U.S. copyright law, international treaties and conventions, and the applicable laws of any country where it is being used.

Mitsubishi Electric Corporation 7-3, Marunouchi 2-chome, Chiyoda-ku Tokyo 100-8310 Japan

Abstract

This Technical Report describes the design of the Mitsubishi Electric Total Advanced Controller (MELTAC) Platform and its conformance to the U.S. Nuclear Regulatory requirements for nuclear safety systems. The MELTAC platform is the basis of the Mitsubishi Heavy Industries (MHI) safety and non-safety digital I&C systems.

The MELTAC platform was developed specifically for nuclear applications. The modular structure, deterministic response time and testability can be applied to solve plant-wide needs for safety and non-safety applications. Moreover the MELTAC platform has been developed using a rigorous safety-related design process that ensures suitable hardware and software quality and reliability for critical applications such as the reactor protection system or engineered safety features actuation system.

The MELTAC platform has accumulated many years of positive performance records in various non-safety system applications such as the Plant Control and Monitoring System in nuclear plants operating in Japan. Based on its excellent performance in numerous non-safety applications, the MELTAC platform has now been applied to almost all systems throughout Japanese PWR nuclear plants under construction. These systems were shipped to the site recently.

The goal of this report is to seek approval from the U.S. Nuclear Regulatory Commission (NRC) for the use of the MELTAC platform for nuclear safety systems in new reactors (US-APWR).

For applications in the US, this report demonstrates conformance of the Design and Design Process to all applicable US Codes and Standards. These include:

- Code of Federal Regulations
- Regulatory Guides
- Branch Technical Positions
- NUREG-Series Publications
- IEEE-Standards
- Other Industry Standards

The information provided in this report covers the following topics to fully understand the MELTAC platform:

- The design of the hardware, software, communication network and application development tools of the MELTAC platform
- The equipment qualification of the MELTAC platform and its conformance to the corresponding U.S. standards
- The life cycle and the Quality Assurance Program of the MELTAC platform conformed to U.S. regulations
- The history of operation and the equipment reliabilities of the MELTAC platform

The complete MHI digital I&C design is described in Topical Reports and a Technical Report for the US-APWR DCD:

- Safety I&C System Description and Design Process (Technical Report for the US-APWR DCD)
- Safety System Digital Platform MELTAC (this report)

- HSI System Description and HFE (Human Factor Engineering) Process
- Defense in Depth and Diversity

The information in this Digital Platform Technical Reports is expected to be sufficient to allow the NRC to make a final safety determination regarding the suitability of the MELTAC platform for safety-related nuclear applications, on the condition of completing specific application engineering as identified in the other topical reports. Other documentation which has been generated during the MELTAC design process is available for NRC audit, as may be needed to allow the NRC to confirm the MELCO design and design process, as documented in this Technical Report.

Table of Contents

List of Tables	
List of Figures	xxii
List of Acronyms	xxiv
1.0 PURPOSE	
2.0 SCOPE	
3.0 APPLICABLE CODE, STANDARDS AND REGULATORY GUIDANCE	
4.0 MELTAC PLATFORM DESCRIPTION	
4.1 Controller	
4.1.1 Hardware Configuration	
4.1.2 Hardware Descriptions	
4.1.3 Software	
4.1.4 MELTAC Engineering Tool	
4.1.5 Self-Diagnosis	61
4.1.6 Bus inside the controller	
4.1.7 Manual test	
4.2 Safety VDU Panel and Processor	
4.2.1 Hardware	
4.2.2 Software	
4.2.3 Self-Diagnosis	
4.2.4 Manual test	
4.3 Communication System	
4.3.1 General Description	
4.3.2 Control Network	
4.3.3 Data Link	
4.3.4 Maintenance Network	
4.4 Response Time	
4.4.1 Processing Time of MELTAC Fundamental Cycle	
4.4.2 Processing Time of MELTAC Application	139
4.4.3 Examples of Response Time Calculations	143
4.5 Control of Access	
4.5.1 Control of Access for Hardware	
4.5.2 Control of Access for Software	
4.6 Elimination or Relaxation of Surveillance	146
5.0 ENVIRONMENTAL, SEISMIC, ELECTROMAGNETIC AND ISOLATION QUALIFICATION	147
5.1 Environmental Test	147
5.1.1 Environmental Specification and Outline of Test	147
5.1.2 Contents of Environmental Test	
5.2 Seismic Test	
5.2.1 Overview	
5.2.2 Seismic Resistance Test	
5.3 Electromagnetic Compatibility and Radio Frequency Interference	
5.3.1 Test Configuration	
5.3.2 Description of Tests	
5.4 Electrostatic Discharge Test	

5.5 Isolation Test	169
6.0 LIFE CYCLE	173
6.1 Life Cycle Process	
6.1.1 Overview of the MELTAC Quality Assurance Program	175
6.1.2 Quality Assurance Program Rev 2	
6.1.3 Management	180
6.1.4 Development	181
6.1.5 Configuration Management	186
6.1.6 Secure Development Environment Management	
6.1.7 US Conformance Program for Previously Developed Components	
6.1.8 Software Installation	199
6.1.9 Maintenance	
6.1.10 Training	
6.1.11 Operations	
6.1.12 Software Critical Function Analysis	
6.2 Life Cycle Management	
6.2.1 Quality Records Management	
6.2.2 Failure and Error Reporting and Corrective Action	
6.2.3 Obsolescence Management	
6.2.4 Identification	
6.2.5 Reliability Database	
6.3 Establishment of 10 CFR Part 50 Appendix B-based QA Program, and MELTAC Re-	
evaluation Program	
6.3.1 Establishment of 10 CFR Part 50 Appendix B-based QA Program	
6.3.2 MELTAC Re-evaluation Program.	
6.4 Basic Software Program Manual	
6.5 MELTAC Engineering Tool Life Cycle	
7.0 EQUIPMENT RELIABILITY	217
7.1 History of Operation	
7.2 Mean Time between Failures (MTBF) Analysis	
7.3 Controller Reliability Analysis	
7.3.1 Reliability Model	
7.3.2 FTA for Spurious Actuation of the Safety Function	
7.3.3 FTA of Failure to Actuate the Safety Function	
7.3.4 Detailed Controller Reliability Analysis	
7.4 Failure Mode and Effects Analysis (FMEA)	
7.5 Periodic Replacement Equipment (Parts) to Keep Reliability7.6 Performance history of self-diagnosis function	
APPENDIX A HARDWARE SPECIFICATIONS	
Appendix A.1 CPU Module PCPJ-11 Specification	
Appendix A.2 System Management Module Specification Appendix A.3 Bus Master Module Specification	200
Appendix A.4 Control Network I/F Module Specification	
Appendix A.5 I/O Module Specification	
Appendix A.6 Isolation Module Specifications	
Appendix A.7 E/O Converter Modules Specifications.	
Appendix A.8 Power Interface Modules Specifications	
Appendix A.9 Power Supply Modules Specifications	
Appendix A.10 Safety VDU Panel Specification	
Appendix A.11 FMU Module Specification	
Appendix A.12 Touch Panel Interface Module Specification	243

APPENDIX B FUNCTIONAL SYMBOL SOFTWARE SPECIFICATIONS	244
APPENDIX C CONFORMANCE TO BTP 7-14	252
APPENDIX D CONFORMANCE MAP OF ISG-04 CHAPTER 1	257
APPENDIX E SOFTWARE CRITICAL FUNCTION ANALYSIS	260
APPENDIX F DEFINITION	298

List of Tables

Table 4.0-1 Typical Configuration of MELTAC Platform	22
Table 4.1-1 Scale and Capacity	35
Table 4.1-2 Environmental Specifications	36
Table 4.1-3 Module in the CPU Chassis	38
Table 4.1-4 CPU Chassis	39
Table 4.1-5 Cabinet of MELTAC Platform Specifications	49
Table 4.1-6 Bus inside the controller	68
Table 4.1-7 I/O bus specification	
Table 4.2-1 Explanation of the Screen	79
Table 4.2-2 Data Details	
Table 4.3-1 Configuration of Control Network	
Table 4.3-2 The Specification of Control Network	
Table 4.3-3 Self-Diagnosis Functions of Control Network	
Table 4.3-4 The Specification of Data Link Communication	
Table 4.4-1 Description of Processing in Each Component (maximum/minimum values)	
Table 5.3-1 MELTAC Modules for the EMC Test	
Table 6.1-1 QA Procedures	
Table 6.1-2 Contents of Activity in Each Phase	
Table 6.1-3 Contents of Hardware Development Activity in Each Phase	
Table 6.1-4 Security Measures of the Software Development/Storage Environment	
Table 6.1-5 Security Measures in the Software Development Process	
Table 6.1-6 Information Provided in the MELTAC Maintenance Manual	
Table 6.1-7 Hardware Measurement	
Table 6.1-8 Software Upgrades Relation	
Table 6.1-9 Possible Hazards	
Table 6.3-1 Relationship Between App.B-based QAP and Previous QAP	
Table 7.1-1 The summary for history of changes of the MELTAC platform	
Table 7.2-1 Failure rate of modules	
Table 7.5-1 List of Periodic Replacement Parts	
Table 7.6-1 Number of failures	232

List of Figures

Figure 4.1-1 Single Controller Configuration	. 24
Figure 4.1-2 Redundant Parallel Controller Configuration	. 26
Figure 4.1-3 Redundant Standby Controller Configuration	. 28
Figure 4.1-4 Picture of Modules in a CPU Chassis for a Redundant Standby Controller	
Configuration	. 29
Figure 4.1-5 Mode Management of Single Controller and Redundant Parallel	. 31
Figure 4.1-6 Mode Management of Redundant Standby Controller	. 33
Figure 4.1-7 Location of Isolation Module	
Figure 4.1-8 The Internal Configuration Diagram of The Analog Isolation Modules	. 44
Figure 4.1-9 The Internal Configuration Diagram of The Digital Isolation Module	. 44
Figure 4.1-10 The Internal Configuration Diagram of The PIF Module	
Figure 4.1-11 Cabinet External Dimensions and Rack Up, Typical Sample A	. 50
Figure 4.1-12 Cabinet External Dimensions and Rack Up, Typical Sample B	. 51
Figure 4.1-13 Configuration of Power Supply for Controller Cabinet	. 52
Figure 4.1-14 Basic Software Processes and Execution Order	. 53
Figure 4.1-15 Remaining Time Diagnosis	
Figure 4.1-16 Coverage of Self-diagnosis function of the controller	
Figure 4.1-17 Manual test for process input and output	
Figure 4.2-1 Configuration of Safety VDU Processor	
Figure 4.2-2 Configuration of Power Supply for Safety VDU	. 75
Figure 4.2-3 Software Structure of Safety VDU Processor	
Figure 4.2-4 Screen Transition of the Safety VDU Processor	
Figure 4.2-5 A Sample of Operation Switch Pictogram on the Safety VDU Panel	
Figure 4.2-6 Explanation of the Safety VDU Processor Operation	
Figure 4.3-1 Configuration of Control Network	
Figure 4.3-2 Explanation of Bypass Operation by the Optical Switch	
Figure 4.3-3 Explanation of Optical Switch Failure	
Figure 4.3-4 Protocol Stack of Control Network	
Figure 4.3-5 Separation in Communication of Control Network	
Figure 4.3-6 Operation signal flow from O-VDU	
Figure 4.3-7 Process signal flow from RPS to Unit Bus	
Figure 4.3-8 Detail signal flow in COM (Receiving process)	
Figure 4.3-9 Detail signal flow in RPS (Sending process)	
Figure 4.3-10 Processing by the Control Network I/F Module	
Figure 4.3-11 Processing by the main CPU	
Figure 4.3-12 Processing by the main CPU	
Figure 4.3-13 Processing by the Control Network I/F Module	
Figure 4.3-14 Example of Connection Configuration of Data Link Configuration	115
Figure 4.3-15 Separation in Communication of Data Link	
Figure 4.3-16 Partial Trip signal flow between RPSs	
Figure 4.3-17 Detail signal flow in RPS (Receiving process)	
Figure 4.3-18 Detail signal flow in RPS (Sending process).	
Figure 4.3-19 Processing by the Bus Master Module	
Figure 4.3-20 Processing by the main CPU	125
Figure 4.3-21 Processing by the main CPU	127
Figure 4.3-22 Processing by the Bus Master Module	129
Figure 4.3-23 Maintenance Network Configuration	132

Figure 4.3-24 Separation in Communication of Maintenance Network	34
Figure 4.3-25 Dedicated Re-programming Chassis for Writing F-ROM	35
Figure 4.4-1 The Time Chart of Fundamental Process in Cyclic	38
Figure 4.4-2 Internal Process Divisions of the MELTAC Platform to Perform Response Time	
Calculations14	
Figure 5.5-1 Isolation Test Configuration of KILJ-01 for Transverse Mode Faults	70
Figure 5.5-2 Isolation Test Configuration of KILJ-01 for Common Mode Faults	70
Figure 5.5-3 Isolation Test Configuration of KIDJ-01 for Transverse Mode Faults	71
Figure 5.5-4 Isolation Test Configuration of KIDJ-01 for Common Mode Faults 17	71
Figure 6.1-1 Outline of In-house QA Procedures System and Relationship of Various Plans 17	78
Figure 6.1-2 Outline of Software Development Plan 18	32
Figure 6.1-3 Outline of Problem Tracking/Resolution Process	34
Figure 6.1-4 Security Measures of the Software Development/Storage Environment 19	90
Figure 6.1-5 Software Installation 20	01
Figure 7.1-1 MELTAC Development and Operating History	19
Figure 7.3-1 Reliability Model 22	23
Figure 7.3-2 Fault Tree for Output Failure Spurious Actuation	24
Figure 7.3-3 Fault Tree for Failure to Actuate 22	25
Figure 7.3-4 Reliability Model of Subsystem 22	26
Figure 7.3-5 Fault Tree of Subsystem 22	26
Figure 7.3-6 Reliability Model of Dedicated I/O 22	27
Figure 7.3-7 Fault Tree of Dedicated I/O 22	27
Figure 7.3-8 Input/Output Line 22	28
Figure 7.3-9 Fault Tree of Input/Output Line 22	28
Figure 7.5-1 Failure Rate Curve	

List of Acronyms

AI	Analog Input
ANSI	American National Standards Institute
AO	Analog Output
ASME	American Society of Mechanical Engineers
ATWS	Anticipated Transient without Scram
BTP	Branch Technical Position
CEAS	MELCO Corporate Electronic Archive System
CFR	Code of Federal Regulations
COTS	Commercial Off The Shelf
CPU	Central Processing Unit
CRC	Cyclic Redundancy Check
CSMA/CD	Carrier Sense Multiple Access with Collision Detection
DAAC DAC	Diverse Automatic Actuation Cabinet
DAC	Design Acceptance Criteria
DBA	Diverse Actuation System Design Basis Accident
DI	Digital Input
DO	Digital Output
DSP	Digital Signal Processor
EEPROM	Electronically Erasable Programmable Read Only Memory
EMC	Electromagnetic Compatibility
EMI	Electromagnetic Interference
ESC	Energy Systems Center in Mitsubishi Electric Corporation
ESD	Electrostatic Discharge
ESFAS	Engineered Safety Features Actuation System
EUT	Equipment under Test
E/O	Electrical / Optical
FBD	Functional Block Diagram
FMEA	Failure Mode and Effect Analysis
FMU	Frame Memory Unit
F-ROM	Flash Electrically Erasable Programmable Read Only Memory
GBD	Graphic Block Diagram
GDC	General Design Criteria
GUI	Graphic User Interface
HSI ID	Human System Interface Identification
IEC	International Electrotechnical Commission
IEEE	Institute of Electrical and Electronics Engineers
IPL	Interposing Logic
ISO	International Standardization Organization
IT	Information Technology
ITAAC	Inspection, Test, Analysis, and Acceptance Criteria
I/O	Input/Output
I&C	Instrumentation and Control
JEC	Japanese Electrotechnical Committee
JIS	Japanese Industrial Standards

JEAG	Japanese Electric Association Guide
JEIDA	Japan Electronic Industry Development Association
LCO	Limiting Conditions for Operation
LED	Light Emitting Diode
MCB	Main Control Board
MCR	Main Control Room
MELENS	Mitsubishi Electric Total Advanced Controller
	Engineering Station
MELCO	Mitsubishi Electric Corporation
MELTAC	Mitsubishi Electric Total Advanced Controller
METI	Ministry of Economy, Trade and Industry
MHI	Mitsubishi Heavy Industries, Ltd.
MTBF	Mean Time Between Failures
MTTR	Mean Time To Repair
NC	Normally Close
NO	Normally Open
NPD	Nuclear Power Department in Mitsubishi Electric Corporation
NRC	Nuclear Regulatory Commission
OBE	Operational Basis Earthquakes
PIF	Power Interface
QA	Quality Assurance
QAP	Quality Assurance Program
QC	Quality Control
RAM	Random Access Memory
RFI	•
RG	Radio Frequency Interference
-	Regulatory Guide
RGB	Red/Green/Blue
ROM	Read Only Memory
RPR	Resilient Packet Ring
RPS	Reactor Protection System
RTD	Resistance Temperature Detector
RTM	Requirements Traceability Matrix
SSE	Safe Shutdown Earthquake
VDU	Visual Display Unit
V&V	Verification and Validation
UCP	MELTAC US Conformance Program
UDP/IP	User Datagram Protocol Internet Protocol
UV-ROM	Ultra-Violet Erasable Programmable Read Only Memory
UTP	Unshielded Twist Pair Cable
WDT	Watchdog Timer

1.0 PURPOSE

The purpose of this report is to describe a nuclear safety Platform by Mitsubishi Electric Corporation. One common platform with a modular structure can be applied to solve most utility needs for safety applications, including new systems, component replacements and complete system replacements. The platform is referred to as Mitsubishi Electric Total Advanced Controller Platform; or simply as "MELTAC platform ".

The MELTAC platform is applied to the protection and safety monitoring system, which includes the reactor protection system, engineered safety feature actuation system, safety logic system, safety-related HSI system, and any other safety system. In addition, the MELTAC platform is applied to non-safety systems such as the Plant Control and Monitoring System. The MELTAC equipment applied for non-safety applications is the same design as the equipment for safety applications. However, there are differences in Quality Assurance methods for software design and other software life cycle processes.

The goal of this report is to seek approval from the U.S. Nuclear Regulatory Commission for the use of the MELTAC platform for nuclear safety systems in new reactors.

2.0 SCOPE

The scope of this report includes the hardware and software associated with the MELTAC platform. The MELTAC platform described herein encompasses design, qualification, and reliability.

The MELTAC platform will be used for the safety systems of new plants (US-APWR).

3.0 APPLICABLE CODE, STANDARDS AND REGULATORY GUIDANCE

This section identifies conformance to applicable codes and standards. Unless specifically noted, the latest version issued on the date of this document is applicable. The following terminology is used in this section:

Plant Licensing Documentation – This refers to plant level documentation that is specific to a group of plants or a single plant, such as the Design Certification Document, Combined Operating Licensing Application, Final Safety Analysis Report, or License Amendment Request.

Equipment - This refers to the components that are the subject of this Technical Report. "Equipment" includes the MHI safety-related digital I&C systems and the MELCO safety-related digital I&C platform. "Equipment" does not include the MHI non-safety digital I&C or HSI systems nor the MELCO non-safety digital I&C or HSI platforms. It is noted that the MHI non-safety digital I&C systems utilize the MELCO non-safety digital I&C platform. However, some QA aspects of design and manufacturing are not equivalent between safety and non-safety systems.

Code of Federal Regulations

1. 10 CFR 50 Appendix A: General Design Criteria for Nuclear Power Plants

GDC 1: Quality Standards and Records

The MELCO quality program that meets all requirements of 10CFR50 Appendix B is described in Section 6. This is referred to as the App.B-based QAP. This program governs the re-evaluation of MELTAC development activities conducted under previous MELCO quality programs that used the requirements of 10CFR50 Appendix B as a guideline, but were not in full compliance with 10CFR50 Appendix B. The re-evaluation demonstrates that MELTAC has suitable technical characteristics and quality for nuclear safety applications, and is therefore equivalent to a product developed under a 10CFR50 Appendix B quality program.

GDC 2: Design Bases For Protection Against Natural Phenomena This Equipment is seismically qualified. The Equipment is located within building structures that provide protection against other natural phenomena. Specific buildings and Equipment locations are described in Plant Licensing Documentation.

GDC 4: Environmental And Dynamic Effects Design Bases This Equipment is located in a mild environment that is not adversely effected by plant accidents.

GDC 5: Sharing of Structures, Systems, and Components In general, there is no sharing of this Equipment among nuclear power units. Any sharing is discussed in specific Plant Licensing Documentation.

GDC 12: Suppression Of Reactor Power Oscillations

Specific reactor trip functions implemented within this Equipment are described in Plant Licensing Documentation.

GDC 13: Instrumentation And Control

Specific instrumentation and control functions implemented within this Equipment are described in Plant Licensing Documentation.

GDC 17: Electric Power Systems

The electric power sources for this Equipment and the plant components controlled by this Equipment are discussed in Plant Licensing Documentation. This document describes the interface requirements for these power sources.

GDC 19: Control Room

This Equipment provides safety-related Human System Interfaces (HSI) for the control room. The MHI non-safety digital I&C systems and the MELCO non-safety digital I&C platform provide non-safety HSI for the control room. The Human Factors design aspects of the HSI and the control room design are described in other digital system licensing documentation.

GDC 20: Protection System Functions

Specific protection system functions implemented within this Equipment are described in Plant Licensing Documentation.

GDC 21: Protection System Reliability and Testability

This Equipment includes automated testing with a high degree of coverage, and additional overlapping manual test features for the areas that are not covered by automated tests. Most manual tests may be conducted with the plant on line, and with the Equipment bypassed or out of service. Equipment that cannot be tested with the plant on line can be tested with the plant shutdown. Depending on the system design for a specific plant, the Equipment is configured with N or N+1 redundancy, where N is the number of divisions needed for single failure compliance and to meet the plant reliability goals. For systems with N+1 redundancy, this GDC is met with one division continuously bypassed or out of service. The redundancy configuration for each plant system is described in other digital system licensing documentation.

GDC 22: Protection System Independence

Redundant divisions are physically and electrically isolated to ensure that failures that originate in one division cannot propagate to other divisions. Physical isolation is discussed in the Safety I&C System Description and Design Process Technical Report for the US-APWR DCD and Plant Licensing Documentation. Platform features to accommodate electrical isolation are discussed in this Technical Report.

All Equipment is qualified to ensure that the Equipment is unaffected by adverse conditions that may concurrently effect multiple divisions. The qualification limits of this equipment are described in this Technical Report. The Safety I&C System Description and Design Process Technical Report for the US-APWR DCD describes the analysis methods used to demonstrate conformance to those limits

for actual plant conditions. Plant Licensing Documentation describes the specific analysis for each plant.

Interlocks between redundant divisions and administrative controls ensure maintenance is performed on one division at a time. Interlocks are described in the Safety I&C System Description and Design Process Technical Report for the US-APWR DCD. Administrative controls are described in Plant Licensing Documentation.

GDC 23: Protection System Failure Modes

Signals are generated for all detected failures. These signals can be configured at the application level to generate alarms. Functions can be designed to fail to an actuated trip state on loss of all power, on failures that are not automatically detected, or on failures that are automatically detected and would prevent proper execution of the function. Functions can also be designed to fail to an unactuated state. The unactuated state may be desirable to avoid spurious plant transients. Compliance for reactor trip and ESFAS functions are described in the Safety I&C System Description and Design Process Technical Report for the US-APWR DCD.

GDC 24: Separation of Protection and Control Systems

Redundant divisions of the protection systems are physically and electrically isolated from the non-safety control systems. Where safety sensors are shared between control and protection systems, signal selection logic in the control system prevents erroneous control actions due to single sensor failures. Eliminating these erroneous control actions prevents challenges to the protection system while it is degraded due to the same sensor failure. Where non-safety signals control safety systems or components, logic in the safety systems ensures prioritization of safety functions.

GDC 25: Protection System Requirements For Reactivity Control Malfunctions Specific functions implemented within this Equipment to protect against Reactivity Control Malfunctions are described in Plant Licensing Documentation. Specific features designed into the MHI non-safety control systems to limit the extent of Reactivity Control Malfunctions is described in Plant Licensing Documentation.

GDC 29: Protection Against Anticipated Operation Occurrences The Equipment achieves an extremely high probability of accomplishing its safety functions through components with conservative design margins, redundancy to accommodate random failures, a quality program that minimizes the potential for design or manufacturing errors.

2. 10CFR50.34 (f)(2) Post-TMI Requirements

(iii) Control room

The Human Factors design aspects of the HSI and the control room are described in the HSI Topical Report and other digital system plant licensing documentation.

(iv) Safety Parameter Display

The non-safety HSI systems provide safety parameter displays in the control room. Some data presented on safety parameter displays originates in this Equipment.

(v) Bypassed and inoperable status indication

This indication is provided by this Equipment and by the non-safety HSI system. All bypassed or inoperable signals for safety systems originate in this Equipment.

(xi) Relief and safety valve position Indication

(xii) Auxiliary feedwater system initiation and flow indication

- (xiii) Pressurizer heater control
- (xiv) Containment isolation systems

(xvii) Accident monitoring instrumentation

(xviii) Inadequate core cooling monitoring

(xix) Instruments for monitoring plant conditions following core damage

(xx) Pressurizer level indication and controls for pressurizer relief and block valves

Specific functions implemented within this Equipment to meet the Post-TMI requirements, items xi thru xx above, are described in Plant Licensing Documentation.

3. 10 CFR 50.36 Technical specifications

1) Safety limits, limiting safety system settings, and limiting control settings.

This Equipment is used in digital safety systems to maintain safety limits. The MELCO non-safety digital I&C platform is used in non-safety control systems to maintain control limits.

2) Limiting conditions for operation.

This Equipment can be configured at the application level with N or N+1 redundancy, as discussed above for conformance to GDC 21. The Limiting Conditions for Operation (LCO) related to bypassed or out of service conditions for a single division are dependent upon the extent of redundancy. The Safety I&C System Description and Design Process Technical Report for the US-APWR DCD describes the LCO for this Equipment.

3) Surveillance requirements

This Equipment includes extensive self-diagnostic testing, as discussed above for conformance to GDC 21. Provisions are included for periodic surveillances to confirm the operability of the self-diagnostic test features. Provisions can also be included at that application level to manually test features of the system that are not tested automatically. The test interval for all manual tests is based, in part, on Equipment reliability which is described in Section 7.3 of this report. Specific manual surveillance features are described in the Safety I&C System Description and Design Process Technical Report for the US-APWR DCD.

- 4. 10 CFR 50.49 Environmental Qualification Of Electric Equipment Important To Safety For Nuclear Power Plants
 This Equipment is located in a mild environment. A mild environment is an environment that would at no time be significantly more severe than the environment that would occur during normal plant operation, including anticipated operational occurrences. Therefore this criteria is not applicable. This criteria is applicable to some instrumentation that interfaces to this Equipment. The qualification of this instrumentation is described in Plant Licensing Documentation.
- 5. 10 CFR 50.55a

(a)(1) Quality Standards for Systems Important to Safety This Equipment was originally developed under a Japanese nuclear quality program that encompasses most requirements of 10CFR50 Appendix B. Section 6 describes the App.B-based QAP, which is fully compliant to 10CFR50 Appendix B. The App.B-based QAP governs the re-evaluation of previous MELTAC development, and all new MELTAC development or revisions that may occur after this re-evaluation.

(h) Invokes IEEE Std. 603-1991

See conformance to IEEE 603-1991

6. 10 CFR 50.62 ATWS Rule

The Diverse Actuation System (DAS), which is used to actuate plant systems for ATWS mitigation, is described briefly in the Safety I&C System Description and Design Process Technical Report for the US-APWR DCD, MUAP-07004, and in more depth in the Defense in Depth and Diversity Topical Report, MUAP-07006. The DAS is diverse from this Equipment for all reactor trip functions. The DAS and the safety logic system, described in MUAP-07004, utilize a common output module that interfaces to plant components. This common module is described in all Topical Reports as the Power Interface (PIF) module. To ensure compliance with the ATWS rule, the PIF module is not used for any reactor trip functions. The diversity between MELTAC and the DAS is described in the Defense in Depth and Diversity Topical Report.

7. 10 CFR 52.47

(a)(1)(iv) Resolution of Unresolved and Generic Safety Issues

(a)(1)(vi) ITAAC in Design Certification Applications

(a)(1)(vii) Interface Requirements

Conformance to the requirements in items iv thru vii, above, are described in Plant Licensing Documentation .

(a)(2) Level of Detail

The content of this Technical Report, together with the additional information described in other digital system Topical Reports and Plant Licensing Documentation, is sufficient to allow the NRC staff to reach a final conclusion on all safety questions associated with the design. The information includes performance requirements and design information sufficiently detailed to permit the preparation of acceptance and inspection requirements by the NRC, and procurement specifications and construction and installation specifications by an applicant.

(b)(2)(i) Innovative Means of Accomplishing Safety Functions

In the near term, the Equipment is expected to be applied to conventional I&C safety and non-safety functions typical of new evolutionary plants. In the longer term, the Equipment is expected to be applied to more innovative safety functions as may be typical of new passive plants. All specific plant safety functions are described in Plant Licensing Documentation.

8. 10 CFR 52.79(c) ITAAC in Combined Operating License Applications The inspections, tests, analyses and acceptance criteria that demonstrate that this Equipment has been constructed and will operate in conformity with the Commission's final safety conclusion, will be described in the Plant Licensing Documentation.

Staff Requirements Memoranda

9. SRM to SECY 93-087

II.Q Defense Against Common-Mode Failures in Digital I&C Systems Conformance is described in the Defense-in-Depth and Diversity Topical Report.

II.T Control Room Annunciator (Alarm) Reliability This Equipment and the MHI non-safety I&C systems can be configured at the application level to generate alarms. Alarm annunciators are provided by the MHI non-safety HSI system. Conformance to requirements for redundancy, and conformance to separation and independence criteria between safety divisions and between safety and non-safety divisions is described in the Safety I&C System Description and Design Process Technical Report for the US-APWR DCD.

NRC Regulatory Guides

 RG 1.22 Periodic Testing of Protection System Actuation Functions See GDC 21 conformance. The functions controlled by this Equipment can be configured at the application level to be completely testable through a combination of overlapping automatic and manual tests. The detail is described in the Safety I&C System Description and Design Process Technical Report for the US-APWR DCD.

- 11. RG 1.29 Revision 03 Seismic Design Classification The Equipment is designated Seismic Category I.
- 12. RG 1.47 Bypassed and Inoperable Status Indication for Nuclear Power Plant Safety Systems

See conformance to 10CFR50.34 (f)(2)(v). The Equipment can be configured at the application level so that alarms are provided for all bypassed or inoperable safety functions. The ability to manually actuate bypassed or inoperable alarms can also be configured for conditions that are not automatically detected. The detail is described in the Safety I&C System Description and Design Process Technical Report for the US-APWR DCD.

13. RG 1.53 Application of the Single-Failure Criterion to Nuclear Power Plant Protection Systems

endorses IEEE Std 379-2000

See conformance to GDC 21 and 24. This Equipment can be configured at the application level so that safety functions are designed with N or N+1 divisions. Each safety division can be independent from the other safety divisions and from non-safety divisions. Independence ensures that credible single failures cannot propagate between divisions within the system and therefore can not prevent proper protective action at the system level. Single failures considered in the divisions are described in the Failure Modes and Effects Analyses (FMEA) for each system. The FMEA method for the components of this Equipment is provided in this Technical Report. The FMEA method for specific plant applications is described in the Safety I&C System Description and Design Process Technical Report for the US-APWR DCD. The actual plant specific FMEA is described in Plant Licensing Documentation.

14. RG 1.62 Manual Initiation of Protective Actions

The Equipment can be configured at the application level so that all RPS and ESFAS safety functions can be manually initiated at the system level by conventional switches located in the main control room. Additional system level manual initiation switches may also be located at the Remote Shutdown panel, depending on the specific plant design; these are described in Plant Licensing Documentation . The Equipment can be configured at the application level so that manual initiation requires a minimum of Equipment, the Equipment common to manual and automatic initiation paths is kept to a minimum and no credible single failure in the manual , automatic or common portions will prevent initiation of a protective action by manual or automatic means. Manual initiation is described in the Safety I&C System Description and Design Process Technical Report for the US-APWR DCD.

15. RG 1.75 Physical Independence of Electric Systems

endorses IEEE 384-1992

Redundant safety divisions are physically and electrically independent of each other and physically and electrically independent of any non-safety divisions.

Physical independence is maintained either by the required distance or by barriers which prevent propagation of fire or electrical faults. Electrical independence is maintained by fiber optic cable communication interfaces or conventional isolators, such as opto-couplers, relays or transformers. Conventional isolators include fault interrupting devices such as fuses or circuit breakers. Conventional isolators prevent propagation of transverse and common mode faults from the maximum credible energy source. Fiber optic cable communication interfaces are described in Section 4.3.2.3 (Control Network), 4.3.3.2 (Data Link) and 4.3.4.2 (Maintenance Network). Specifications and qualification of conventional isolators are discussed in Section 4.1.2.3 and 5.5 of this Technical Report, respectively.

- 16.
 - . RG 1.89 Qualification for Class 1E Equipment for Nuclear Power Plants endorses IEEE323-1974

The environmental qualification of this Equipment is by an appropriate combination of type testing and analysis. This Equipment is located in a mild environment that is not adversely effected by plant accidents. Therefore qualification for radiation is by analysis of component

specifications. Qualification for temperature and humidity is by type test, and by analysis of room ambient conditions and heat rise calculations for the installed configuration. Seismic qualification and EMI qualification are by type testing. This Equipment has no known aging mechanisms, except as noted in Section 7.5; random failures will be

detected through self-diagnostics and periodic surveillance testing. Type testing for conformance to RG 1.89 is described through the aggregate of all qualification reports – Environmental, Seismic and EMC, see section 5.

17. RG 1.97 Instrumentation for Light Water Cooled Nuclear Power Plants to Assess Plant Conditions During and Following an Accident

endorses IEEE Std. 497-2002

This Equipment is used to process and display signals from accident monitoring instrumentation of all variable Types. It meets all the applicable requirements. Signals from some accident monitoring instrumentation are also transmitted from this Equipment to the non-safety HSI system for displays and alarms. Independence is maintained between all divisions. Specific accident monitoring instrumentation is described in Plant Licensing Documentation .

18. RG 1.100 Seismic Qualification of Electric and Mechanical Equipment for Nuclear Power Plants

This Equipment is designated Seismic Category I. It is designed and qualified to withstand the cumulative effects of a minimum of five (5) Operational Basis Earthquakes (OBEs) and one (1) Safe Shutdown Earthquake (SSE) without loss of safety function or physical integrity. The input spectrum is selected to envelope all anticipated applications. Conformance to this envelope for specific applications is discussed in Plant Licensing Documentation .

19. RG 1.105 Setpoints for Safety-Related Instrumentation

endorses ISA-S67.04-1994 and ANS-10.4-1987

The uncertainties associated with the Equipment are described in this Technical Report. Appendix A.5 defines I/O module accuracies. Appendix A.6 defines isolation module accuracies. Appendix A.9 defines accuracy of I/O power supplies. This includes uncertainties for signal conditioning modules, signal splitters, instrument loop power suppliers and analog to digital converters. The uncertainties associated with specific process instrumentation and the resulting safety-related setpoints are described in Plant Licensing Documentation. The methodology used to combine all uncertainties to establish safety-related setpoints is described in the Safety I&C System Description and Design Process Technical Report for the US-APWR DCD. The plant specific uncertainty/setpoint analysis is described in Plant Licensing Documentation.

20. RG 1.118 Periodic Testing of Electric Power and Protection Systems endorses IEEE 338-1987

> See conformance to GDC 21, 10CFR50.36 and RG 1.22. The Equipment can be configured so that all safety functions are tested either automatically or manually, and so that manual tests do not require any system reconfiguration, such as jumpers or fuse removal. The periodic test features are described in the Safety I&C System Description and Design Process Technical Report for the US-APWR DCD.

21. RG 1.151 Instrument Sensing Lines

endorses ISA-S67.02

Compliance is described in Plant Licensing Documentation .

22. RG 1.152 Criteria for Programmable Digital Computers in Safety Systems of Nuclear Power Plants

endorses IEEE 7-4.3.2-2003

The methods used for specifying, designing, verifying, validating and maintaining software for this Equipment conforms to these requirements. The life cycle process for the digital platform software is described in this Technical Report. The life cycle process for the system application software is described in the Safety I&C System Description and Design Process Technical Report for the US-APWR DCD. The methods used for controlling cyber threats throughout the life cycle are described in these documents.

- RG 1.153 1996 Criteria for Safety Systems endorses IEEE Std 603-1991 Compliance with the General Design Criterion identified in this Regulatory Guide is discussed above. Compliance with IEEE 603-1991 is discussed below.
- 24. RG 1.168 Verification, Validation, Reviews, and Audits for Digital Computer Software Used in Safety Systems of Nuclear Power Plants

endorses IEEE Std 1012-1998 and IEEE Std 1028-1997

This Equipment uses processes for verification, validation, reviews and audits that conform to this Regulatory Guide. The design processes for the digital platform are described in Section 6 of this Technical Report. Section 6 includes references to the corresponding MELTAC software life cycle planning documents. Appendix C of this Technical Report provides a complete list of MELTAC software life cycle documents with a cross correlation to the guidance of BTP 7-14. The design processes for plant systems are described in the Safety I&C System Description and Design Process Technical Report for the US-APWR DCD.

25. RG 1.169 Configuration Management Plans for Digital Computer Software Used in Safety Systems of Nuclear Power Plants

endorses IEEE Std 828-1990 and IEEE Std 1042-1987

This Equipment is designed and maintained using a Configuration Management process that conforms to this Regulatory Guide. The Configuration Management process for the digital platform is described in Section 6.1.5 of this Technical Report. The Configuration Management process for plant systems is described in the Safety I&C System Description and Design Process Technical Report for the US-APWR DCD.

26. RG 1.170 Software Test Documentation for Digital Computer Software Used in Safety Systems of Nuclear Power Plants

endorses IEEE Std 829-1983

The test documentation for this Equipment conforms to this Regulatory Guide. The test process and corresponding documentation for the digital platform is described in Section 6.1.4 of this Technical Report. The test documentation for plant systems is described in the Safety I&C System Description and Design Process Technical Report for the US-APWR DCD.

27. RG 1.171 Software Unit Testing for Digital Computer Software Used in Safety Systems of Nuclear Power Plants

endorses IEEE Std 1008-1987

Unit testing for this Equipment conforms to this Regulatory Guide. This unit testing for the digital platform is described in Section 6.1.4 of this Technical Report. Unit testing for plant systems is described in the Safety I&C System Description and Design Process Technical Report for the US-APWR DCD.

28. RG 1.172 Software Requirements Specifications for Digital Computer Software Used in Safety Systems of Nuclear Power Plants

endorses IEEE Std 830-1993

The Software Requirements Specifications for this Equipment conforms to this Regulatory Guide. The Software Requirements Specifications for the digital platform are described in Section 6.1.4 of this Technical Report. The Software Requirements Specifications for plant systems are described in the Safety I&C System Description and Design Process Technical Report for the US-APWR DCD.

29. RG 1.173 Developing Software Life Cycle Processes for Digital Computer Software Used in Safety Systems of Nuclear Power Plants

endorses IEEE Std 1074-1995

The Software Life Cycle Process for this Equipment conforms to this Regulatory Guide. The Software Life Cycle Processes for the digital platform are described in Section 6 of this Technical Report. The Software Life Cycle Processes for plant systems is described in the Safety I&C System Description and Design Process Technical Report for the US-APWR DCD.

30. RG 1.180 Guidelines for Evaluating Electromagnetic and Radio-Frequency Interference in safety-related Instrumentation and Control Systems

endorses MIL-STD-461E, IEC 61000 Parts 3, 4, and 6, IEEE Std C62.41-1991, IEEE Std C62.45-1992, IEEE Std 1050-1996, EPRI TR-102323

This Equipment conforms to the EMI/RFI requirements of this standard. Qualification testing for the digital platform is described in this Technical Report. Requirements and features of plant systems that ensure conformance to the platform qualification envelope are described in the Safety I&C System Description and Design Process Technical Report for the US-APWR DCD.

30.a RG1.206 Combined License Applications for Nuclear Power Plants (LWR Edition)

The level of detail provided in this report conforms to this Regulatory Guide and is expected to be sufficient for the NRC staff to make a final safety determination regarding the suitability of the MELTAC platform for safety-related applications. This document is intended to supplement the information provided in COL applications. This document may be referenced directly or indirectly (via reference to a certified design, which references this document). Should the NRC Safety Evaluation Report for this Technical Report identify Application Specific Action Items, those open items will be addressed within an ITAAC for the certified design.

NRC Branch Technical Positions

- 31. BTP 7-1 Guidance on Isolation of Low-Pressure Systems from the High-Pressure Reactor Coolant System
- 32. BTP 7-2 Guidance on Requirements of Motor-Operated Valves in the Emergency Core Cooling System Accumulator lines
- 33. BTP 7-3 Guidance on Protection System Trip Point Changes for Operation with Reactor Coolant Pumps out of Service
- 34. BTP 7-4 Guidance on Design Criteria for Auxiliary Feedwater Systems

- 35. BTP 7-5 Guidance on Spurious Withdrawals of Single Control Rods in Pressurized Water Reactors
- BTP 7-6 Guidance on Design of Instrumentation and Controls Provided to Accomplish Changeover from Injection to Recirculation Mode
 Compliance with BTP 7-1 thru 6, above, is described in Plant Licensing Documentation.
- 37. BTP 7-8 Guidance for Application of Regulatory Guide 1.22

The Equipment includes extensive self-diagnostics which run continuously. The Equipment can be configured at the application level with additional manual test features to test the portions of the system that are not tested automatically. These manual test features can be configured so that all functions of the protection system are testable at power. Self-diagnostics are described in Section 4.1.5 of this Technical Report. Manual test features are described in Section 4.1.7 and 4.2.4 of this Technical Report, and also in the Safety I&C System Description and Design Process Technical Report for the US-APWR DCD.

38. BTP 7-9 Guidance on Requirements for Reactor Protection System Anticipatory Trips

> In general there are no non-safety anticipatory trips used in the protection system. Any exception to this will be described in Plant Licensing Documentation. If any non-safety trips are used in the protection system the following requirements are met:

- All non-safety equipment can be isolated from the safety system to prevent electrical fault propagation and adverse communication interaction.
- Safety functions have priority over all non-safety functions.
- Analysis demonstrates that credible non-safety signal failures do not result in plant conditions that are outside the boundary of the safety analysis.
- 39. BTP 7-10 Guidance on Application of Regulatory Guide 1.97

The Equipment conforms to this BTP for processing all instrumentation signals. However, RG 1.97 Revision 4 has superseded Revisions 2 and 3, for which this BTP was written. Therefore, where there are conflicts, the Equipment meets the requirements of RG 1.97 Revision 4.

40. BTP 7-11 Guidance on Application and Qualifications of Isolation Devices endorses IEEE Std 472, ANSI Std C62.36, ANSI Std C62.41, ANSI Std C62.45 See conformance to RG 1.75. Isolation devices are qualified in conformance to these standards.

- 41. BTP 7-12 Guidance on Establishing and Maintaining Instrument Setpoints See conformance to RG 1.105.
- BTP 7-13 Guidance on Cross-Calibration of Protection System Resistance Temperature Detectors
 The methods used for periodically verifying the accuracy and response time of RTDs conforms to this standard. The method is described in Plant Licensing Documentation.
- BTP 7-14 Guidance on SW Reviews for Digital Computer-Based I&C Systems endorses IEEE Std 730
 See conformance to RG 1.168 thru 1.173.
- 44. Deleted.
- 45. BTP 7-17 Guidance on Self-Test and Surveillance Test Provisions See conformance to GDC 21, 10CFR50.36, RG 1.22 and RG 1.118. Surveillance testing taken together with automatic self-testing provides a mechanism for detecting all failures.
- 46. BTP 7-18 Guidance on Use of Programmable Logic Controllers in Digital Computer-Based I&C Systems

This Equipment is not a commercial-grade computer system; it was designed originally for nuclear safety applications in Japan. Since it has been deployed in numerous non-safety nuclear applications in Japan and will be deployed in nuclear safety applications in Japan in the near future. All of this operating experience in Japan is directly applicable to expected nuclear safety applications in the US.

However, since the Japanese QA program to which MELTAC was designed, does not directly comply with 10CFR50 Appendix B, a description of the MELTAC Re-evaluation Program (MRP) is provided in Section 6.3. The MRP demonstrates that the design life cycle activities for MELTAC, including supplemental conformance activities, have resulted in a design that is equivalent to a design resulting from a 10CFR50 Appendix B program.

The MRP is a non-recurring activity applicable only to the MELTAC design life cycle, prior to US applications. All future MELTAC life cycle activities, including hardware and software design, manufacturing, testing, operations, maintenance and retirement, will be conducted under MELCO's App.B-based QAP.

47. BTP 7-19 Guidance on Evaluation of Defense-in-Depth and Diversity in Digital Computer-Based I&C Systems

The MHI safety-related digital I&C systems utilize the MELCO safety-related digital I&C platform (ie. this Equipment). The MHI non-safety digital I&C systems utilize the MELCO non-safety digital I&C platform. The two MELCO platforms are essentially the same, however some QA aspects of design and manufacturing are not equivalent between safety and non-safety platforms. The Defense-in-Depth and Diversity Topical Report describes the functional diversity within the safety and non-safety I&C systems. The report also describes the methodology for coping with a common cause failure of all of these systems and provides and example of this methodology for one Design Basis Accident (DBA). Coping for all Design Basis Accidents (DBAs) is described in Plant Licensing Documentation.

48. BTP 7-21 Guidance on Digital Computer Real-Time Performance The real-time performance for this Equipment conforms to this BTP. The method for determining response time performance for plant systems (including the digital platform) is described in the Safety I&C System Description and Design Process Technical Report for the US-APWR DCD. The response time performance for digital platform components is described in Section 4.4 of this Technical Report. Requirements for system response time for conformance with the plant design basis and the response time of actual plant systems is described in Plant Licensing Documentation.

NUREG-Series Publications (NRC Reports)

- 49. NUREG-0737, Supplement 1 Clarification of TMI Action Plan Requirements This Equipment can be configured at the application level for conformance to the following TMI Action Plan Requirements:
 - Plant Safety Parameter Display This Equipment can provide safetyrelated data to the MHI non-safety HSI system which can provide this display for the control room and for emergency support facilities.
 - Indication and Control for Safety Components (eg. relief valves, pressurizer heaters, containment isolation valves), Inadequate Core Cooling Monitoring and Instrumentation for Accident Monitoring - This Equipment can provide safety-related controls and monitoring for safetyrelated instruments to generate safety-related displays. Alarms and nonsafety displays can be generated by the MHI non-safety HSI system.

These features are described in the Safety I&C System Description and Design Process Technical Report for the US-APWR DCD.

50. NUREG-0800 Chapter 7 of the USNRC Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants, Rev 4

This Equipment fulfills all safety-related requirements of this NUREG for monitoring safety-related plant instrumentation and controlling safety-related plant components. Descriptions of specific plant systems are described in Plant Licensing Documentation.

- 51. NUREG/CR-6303 Method for Performing Diversity and Defense-in-Depth Analyses of Reactor Protection Systems
 The design of this Equipment is described in this Technical Report. The assessment of diversity within this Equipment and between this Equipment and other I&C systems is described in the Diversity and Defense-in-Depth Topical Report. The Diversity and Defense-in-Depth Topical Report also describes the method of coping with common mode failure vulnerabilities.
- 52. NUREG/CR-6421 A Proposed Acceptance Process For Commercial-Off-The-Shelf (COTS) Software in Reactor Applications This NUREG is not applicable to this Equipment since there is no COTS software. All software has been designed for nuclear applications.

IEEE Standards

53. IEEE 7-4.3.2 2003 Criteria for Programmable Digital Computer Systems in Safety Systems of Nuclear Power Generating Stations

This Equipment conforms to all requirements of this standard, as augmented by RG 1.152, including key requirements for:

- Software quality and life cycle processes
- Independent Verification and Validation
- Communications independence

Conformance is described in Sections 4 through 6.

54. IEEE 323 2003 Qualifying Class 1E Equipment for Nuclear Power Generating Systems

This Equipment is qualified in conformance to this standard, as augmented by RG 1.89. See conformance to RG1.89.

55. IEEE 338 1987 Periodic Surveillance Testing of Nuclear Power Generating Station Safety Systems

The self-diagnostics that are credited for Periodic Surveillance Testing are described throughout this document. As described in RG 1.22 item 10, RG1.22 and IEEE338 test features that are configured at the system level or within the application software are not described in this Technical Report but in "Safety I&C System Description and Design Process Technical Report for the US-APWR DCD".

56. IEEE 344 1987 Seismic Qualification of Class 1E Equipment for Nuclear Power Generating Stations

This Equipment conforms to this standard as augmented by RG 1.100. Conformance is described in the Seismic Qualification Report.

57. IEEE 379 2000 Application of the Single-Failure Criterion to Nuclear Power Generating Station Safety Systems

As described in RG1.53 item 13, compliance to the Single-Failure Criterion is achieved through the configuration of this Equipment at the system level. The system configuration for nuclear safety applications is provided in MUAP-07004.

- 58. IEEE 383 1974 Type Test of Class 1E Electric Cables, Field Splices, and Connections for Nuclear Power Generating Stations
 The cable and electrical connections used within this Equipment and between this Equipment conform to this standard, including requirements for flame retarding qualification requirements. Cables for interfaces to/from this equipment to other I&C systems and components are discussed in Plant Licensing Documentation.
- 59. IEEE 384 1992 Criteria for Independence of Class 1E Equipment and Circuits

This Equipment conforms to this standard as augmented by RG 1.75. All safety functions are implemented within multiple divisions with physical separation and electrical independence between redundant safety divisions and between safety and non-safety divisions. Electrical independence is accomplished primarily through the use of fiber optic technology. Independence of electrical circuits is accomplished with isolators and physical separation or barriers, such as conduits. MELTAC components credited for physical, electrical, and functional isolations and independences are described in Section 4 (4.3.2.3, 4.3.3.2, 4.3.4.2) of this Technical Report. These components are used for interfaces between safety divisions and between safety and non-safety divisions, as described at the system level in MUAP-07004.

60. IEEE 420 1982 Design and Qualification of Class 1E Control Board, Panels and Racks.

Standard enclosures for this Equipment conform to this standard. These enclosures are described in this Technical Report. Equipment is clearly marked to identify safety-related division designations, as described in Section 6.2.4 Identification of Equipment. Other enclosures, including any deviations from this standard, are described in Plant Licensing Documentation.

- 61. IEEE 472 IEEE Guide for Surge Withstand Capability (SWC) Tests Input/Output modules used within this Equipment conform to this standard. Conformance to surge withstand requirements is described in the EMC Qualification Report.
- 62. IEEE 494 1974 Method for identification of Documents Related to 1E Equipment.
 The documentation for this Equipment conforms to this standard by having the term "Nuclear Safety Related" applied on the face of each document and drawing that is provided to the licensee. Generic documents and drawings used only for internal use by MELCO do not contain this designation.

- 63. IEEE 497 2002 Accident Monitoring Instrumentation for Nuclear Power Generating Stations See conformance for RG 1.97.
- 64. IEEE 603 1991 Safety Systems for Nuclear Power Generating Stations

1998 version is currently not endorsed by NRC

This Equipment conforms to this standard, as augmented by RG 1.153, including key requirements for:

- Single failures
- Completion of Protective Action
- Quality
- Qualification
- Independence
- Testability
- Monitoring and Information
- Bypasses

Conformance is described in Sections 4 through 7. MUAP-07004 Appendix A provides a detailed conformance assessment at the system level.

65. IEEE 730 1989 Software Quality Assurance Plans

The Software Quality Assurance Plans are described in Section 6. Common elements that do not depend on individual projects are described in [

]. Project-dependent individual elements are described in the Project Plan and the Software V&V Plan.

- 66. IEEE 828 1990 IEEE Standard for Software Configuration Management Plans
 The software Configuration Management Plan is described in Section 6.1.5. It is controlled by internal documents [] and] and
- 67. IEEE 829 1983 Software Test Documentation

The software test documentation is described in Section 6.1.4. It is controlled by internal documents [] and [].

68. IEEE 830 1993 IEEE Recommended Practice for Software Requirements Specifications

The software requirements are documented in the "Safety System Digital Platform MELTAC-Nplus System Specification", which is described in Section 6.1.4.

- 69. IEEE 1008 1987 IEEE Standard for Software Unit Testing Software unit testing is described in Section 6.1.4. It is controlled by [] and [].
- 70. IEEE 1012 1998 IEEE Standard for Software Verification and Validation Plans (2004 not yet endorsed by NRC)

	Software V&V is described in Section 6.1.4. It is controlled by [].
71.	IEEE 1016 1987 IEEE Recommended Practice for Software Design Descriptions
	The Software Design Description is documented in the "Safety System Digital Platform MELTAC-Nplus Software Specification", which is described in Section 6.1.4.
72.	IEEE 1028 1997 IEEE Standard for Software Reviews and Audits
	Software reviews and audits are described in Section 6.1. Reviews and audits are controlled by [], [], and [].
73.	IEEE 1042 1987 IEEE Guide To Software Configuration Management
	Configuration Management is described in Section 6.1.5. It is controlled by [] and [].
74.	IEEE 1074 1995 IEEE Std for Developing Software Life Cycle Processes
	1997 version not yet endorsed by NRC
	The software life cycle process is described in Section 6. It is controlled by [], [], and [].
75	IEEE 407 2002 Accident Monitoring Instrumentation for Nuclear Power

- 75. IEEE 497 2002 Accident Monitoring Instrumentation for Nuclear Power Generating Stations See conformance for RG 1.97.
- 76. IEEE 896 1991 Standard For Futurebus+® Logical and Physical Layers
 The communication between Modules in the same Subsystem of the MELTAC platform conforms to this standard.

Other Industry Standards

- ANS-10.4 1987 Guidelines for the Verification and Validation of Scientific and Engineering Computer Programs for the Nuclear Industry
 The computer programs used to develop setpoints for this Equipment are described in the Safety I&C System Description and Design Process Technical Report for the US-APWR DCD.
- 78. ANSI C62.41 IEEE Recommended Practice on Surge Voltages in Low-Voltage AC Power Circuits
 This Equipment conforms to the sections of this standard endorsed by RG 1.180.

- ANSI C62.45 IEEE Guide on Surge Testing for Equipment Connected to Low-Voltage AC Power Circuits
 This Equipment conforms to the sections of this standard endorsed by RG 1.180.
- 80. IEC 61000 Electromagnetic compatibility (Basic EMC publication)

This Equipment conforms to the following sections of this standard:

- IEC 61000-4-2: Testing and measurement techniques Electrostatic discharge immunity tests. Basic EMC publication
- IEC 61000-4-4: Testing and measurement techniques Electrical fast transient/burst immunity test. Basic EMC publication
- IEC 61000-4-5: Testing and measurement techniques Surge immunity test
- IEC 61000-4-12: Testing and measurement techniques Oscillatory waves immunity test.
- 81. ISA-S67.04 1994 Setpoints For Nuclear Safety Related Instrumentation Used in Nuclear Power Plants

See conformance to RG 1.105. The methodology used to develop setpoints for this Equipment is described in the Safety I&C System Description and Design Process Technical Report for the US-APWR DCD.

82. MIL-STD-461E Requirements for the Control of Electromagnetic Interference Characteristics of Subsystems and Equipment

This Equipment conforms to this standard as referenced in RG 1.180. This standard replaces MIL-STD-461D and MIL-STD-462D referenced in EPRI TR-102323.

 83. ISO9001: 2000 International Organisation for Standardisation Quality Management Systems
 MELCO original Quality Assurance program conforms to this standard.

Japanese Domestic Standards

84. JIS-C0704-1995 Insulation Test for Control Gear (in Japanese)

This standard is the defined as the Japanese Industrial Standard. The withstand voltage of this Equipment conforms to this standard.

85. JEC-210-1981 Control Circuit Terminal Test Voltage (in Japanese)

This standard is issued by Japanese Electrotechnical Committee. The Lightning impulse resistance of this Equipment conforms to this standard.

86. JEIDA-63-2000 Guideline for the Environmental Condition for the Industrial Information Processing and Control Equipment (in Japanese)

> This standard is issued by Japan Electronics and Information Technology Industries Association. This Equipment conforms to the class B of this standard regarding dust and dirt tolerance.

87. JEAG-4101 Guidelines for Quality Assurance in Nuclear Power Plant (in Japanese)

This standard is the guidelines for the quality assurance in the nuclear power plant in Japan and issued by Japan Electric Association. This Equipment conforms to this standard.

4.0 MELTAC PLATFORM DESCRIPTION

The MELTAC platform is based on using qualified building blocks that can be used for all safety system applications. The building blocks are the following items.

- Controller
- Safety VDU (Visual Display Unit) Panel
- Safety VDU Processor
- Control Network
- Data Link

A typical configuration of the MELTAC platform for a safety system is described in Figure 4.0-1. Plant safety systems have multiple divisions, as described in the Safety System. Technical Report for the US-APWR DCD. The configuration shown in Figure 4.0-1 is typical for a single division of a plant safety system, with an interface to a Controller in another division.

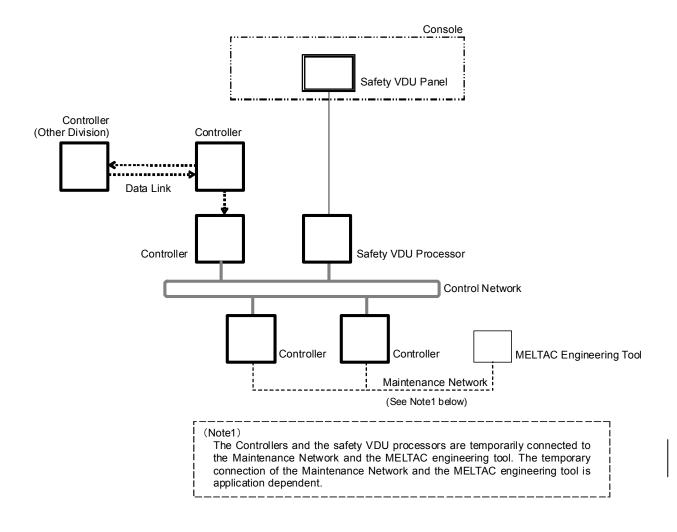


Figure 4.0-1 Typical Configuration of MELTAC Platform

4.1 Controller

4.1.1 Hardware Configuration

The Controller for the MELTAC platform consists of the following parts.

- a) One CPU Chassis including one or two Subsystems, one Switch Panel and one Fan Unit. Each Subsystem consists of a Power Supply module, CPU Modules, Control Network I/F Module, System Management Module and two Bus Master Module. Each Subsystem communicates with the Control Network via its own Optical Switch.
- b) Multiple Input/Output (I/O) Chassis, each with multiple I/O modules

4.1.1.1 Concept of Configuration

The MELTAC platform is capable of taking three different kinds of configuration as shown below:

- a) Single Controller Configuration The Controller includes one Subsystem. The Subsystem operates in Control Mode. (Control Mode means the Subsystem controls the outputs to plant components.)
- b) Redundant Parallel Controller Configuration The Controller includes two Subsystems. Each Subsystem operates in Control Mode.
- c) Redundant Standby Controller Configuration The Controller includes two Subsystems. One Subsystem operates in Control Mode while the other Subsystem operates in Standby Mode. Standby Mode means the Subsystem is closely monitoring the operation of the Subsystem in Control Mode, including memory states, so that if that Subsystem fails, the Subsystem operating in Standby Mode will automatically switch to Control Mode, with no bump in the control outputs.

The configuration to be applied is determined based on the application system requirements. Any of the three configurations may be applied to safety systems.

For redundant configuration, the internally redundant Subsystems are only for reliability enhancement. This redundancy is not credited for single failure compliance. Single failure compliance is achieved through multiple controllers located in physically separate and independent safety divisions.

4.1.1.1.1 Single Controller Configuration

The single controller configuration is shown in Figure 4.1-1.

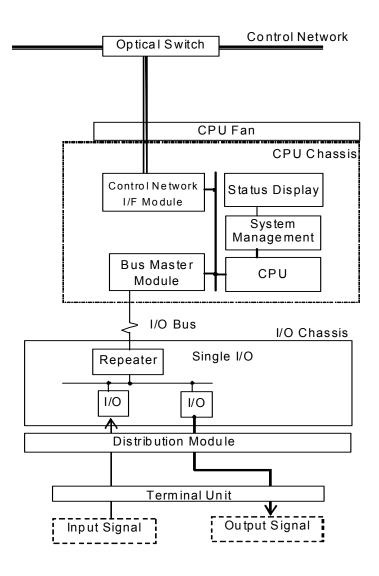


Figure 4.1-1 Single Controller Configuration

The Single Controller consists of the following:

CPU Chassis

The CPU Chassis includes one Subsystem, and a CPU Fan. A Subsystem consists of a CPU Module, System Management Module, Status Display Module, Control Network I/F Module and Bus Master Module. A Subsystem communicates with the Control Network via its own Optical Switch. The Subsystem is capable of taking a number of Control Network I/F Modules and Bus Master Modules depending on the scale of the application.

Input/Output (I/O) Chassis

The I/O Chassis includes only Single I/O. Single I/O consists of a Repeater Module and multiple I/O modules. Each I/O module communicates with the Bus Master Module in the Subsystem via the Repeater Module and the I/O Bus.

The I/O modules receive signals from sensors and send control outputs to components via the Terminal Unit and Distribution Module. For Single I/O, the Distribution Module works as a surge absorber between the I/O modules and the Terminal Unit which connects external cables.

4.1.1.1.2 Redundant Parallel Controller Configuration

The redundant parallel controller configuration is shown in Figure 4.1-2. This configuration can only be used within the same division (i.e. the redundant subsystems cannot be in different divisions), because there is no electrical or functional independence between subsystems.

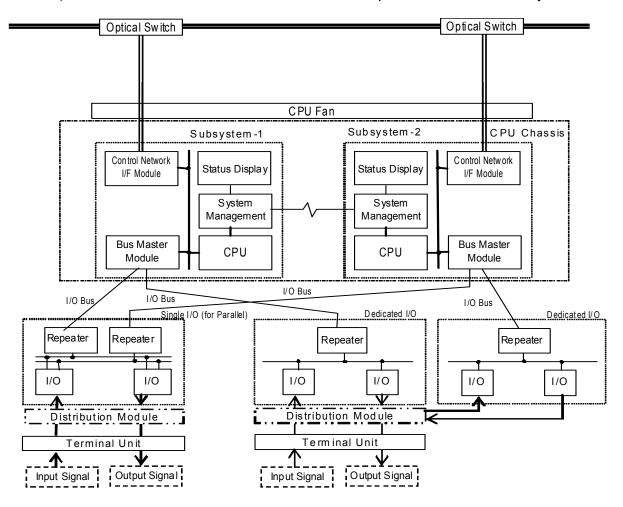


Figure 4.1-2 Redundant Parallel Controller Configuration

The Redundant Parallel Controller consists of the following:

a) CPU Chassis

The CPU Chassis includes Subsystem-1, Subsystem-2 and a CPU Fan. Both Subsystems have the same configuration. Each Subsystem consists of a CPU Module, System Management Module, Status Display Module, Control Network I/F Module and Bus Master Module. Each Subsystem communicates with the Control Network via its own Optical Switch. The Subsystem is capable of taking a number of Control Network I/F Modules and Bus Master Modules depending on the scale of the application.

In the redundant parallel controller configuration, both Subsystems operate in Control Mode. Each Subsystem operates independently. However, when a Subsystem initially starts, the data link between the System Management Modules allows all state based logic to be updated, if other Subsystem is already in the Control Mode. Since both systems operate in the Control Mode, there is no subsystem changeover to accommodate a subsystem failure as in the Redundant Standby Configuration.

The Status Display Module displays the mode and alarms of the subsystem.

b) Input/Output (I/O) Chassis

The Redundant Parallel Controller can be configured with either redundant I/O (called Dedicated I/O) and/or non-redundant I/O (called Single I/O).

For Single I/O each non-redundant I/O module communicates with the Bus Master Modules in Subsystem-1 and Subsystem-2 via separate Repeater Modules and the redundant I/O Bus. The Single I/O, redundant Repeater Modules and redundant I/O Bus are all contained within the same I/O chassis. The data from each non-redundant input module is communicated to both Subsystems. The output control signals from each Subsystem are logically combined within the non-redundant output modules. Each output can be individually configured using 1-out-2 or 2-out-of-2 voting logic, as needed for the specific application. The Single I/O for a Redundant Parallel Controller is referred to as Single I/O (Parallel) to distinguish it from the Single I/O for a Single I/O for a Single I/O (Parallel) provides interfaces for the redundant I/O Bus and the redundant Subsystems.

To enhance I/O reliability, a Redundant Parallel Controller can also be configured with redundant Dedicated I/O. Dedicated I/O is distributed in two separate I/O chassis. Each chassis consists of a Repeater module and multiple Dedicated I/O modules. Each Dedicated I/O module communicates with the Bus Master Module in only one Subsystem via the Repeater module and the I/O Bus within the chassis. Therefore, each Dedicated I/O module is subordinate to Subsystem-1 or Subsystem-2. Same input signals are distributed to each Dedicated I/O input module via the Distribution Module and output signals from each Subsystem are combined in the Distribution Module by using 1-out-of-2 (OR) logic. The Terminal Units for Dedicated I/O are the same as for Single I/O.

4.1.1.1.3 Redundant Standby Controller Configuration

The redundant standby controller configuration is shown in Figure 4.1-3.

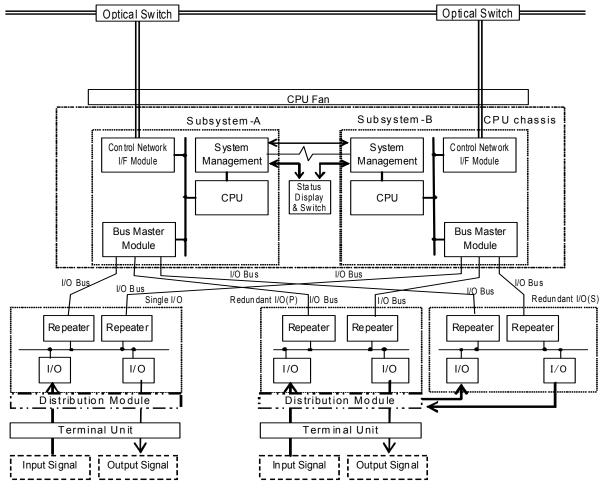
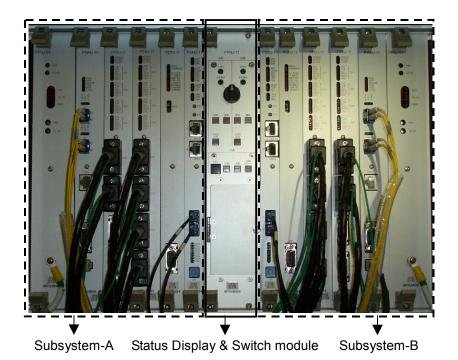



Figure 4.1-3 Redundant Standby Controller Configuration

A photograph of the MELTAC redundant standby controller configuration is shown in Figure 4.1-4.

Figure 4.1-4 Picture of Modules in a CPU Chassis for a Redundant Standby Controller Configuration

The Redundant Standby Controller consists of the following.

a) CPU Chassis

The CPU Chassis includes Subsystem-A, Subsystem-B, a Status Display & Switch Module and a CPU Fan. Both Subsystems have the same configuration. Each Subsystem consists of a CPU Module, System Management Module, Control Network I/F Module and Bus Master Module. Each Subsystem communicates with the Control Network via its own Optical Switch. The Subsystem is capable of taking a number of Control Network I/F Modules and Bus Master Modules depending on the scale of the application.

In a redundant standby controller configuration one Subsystem is in the Control Mode while the other one is in the Standby Mode. Each Subsystem operates independently.

When the Subsystem in the Control Mode stops operating due to a self detected fault, the Subsystem in the Standby Mode will automatically switch to the Control Mode, with no manual intervention. When in the Control Mode the Subsystem takes over all control functions with no bump in the control process. The switchover is controlled by the System Management modules. The Subsystems can also be switched manually from the Status Display & Switch Module.

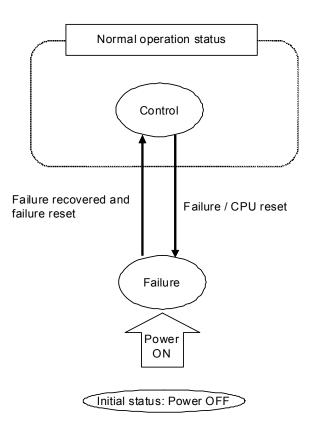
b) Input/Output (I/O) Chassis

The Redundant Standby Controller includes either Redundant I/O and/or Single I/O.

The Single I/O consists of two Repeater modules, a non-redundant I/O Bus and multiple I/O modules. Each I/O module communicates with the Bus Master Module for the Subsystem in the Control Mode. When the Subsystems switch modes, communication with the I/O modules also switches. Process input signals and output signals are connected to Single I/O via the Distribution Module and Terminal Unit.

To enhance I/O reliability, a Redundant Standby Controller can also be configured with Redundant I/O. The Redundant I/O consists of Redundant I/O primary (P) and Redundant I/O secondary (S). Two I/O modules (primary and secondary) are utilized to interface with one field signal via the Distribution Module and Terminal Unit. However, like the Subsystems, one I/O module is in the Control Mode and the other is in the Standby Mode. Only the I/O module in the Control Mode generates output signals.

The Subsystem in the Control Mode decides which I/O module is in the Control Mode based on communication self-diagnostics. Each I/O module communicates only with the Subsystem in the Control mode via the I/O Bus, Repeater Module and Bus Master Module.


4.1.1.2 Mode Management

4.1.1.2.1 Mode Management of Single Controller and Redundant Parallel Controller

In the Single Controller and the Redundant Parallel Controller, there are two modes: Control Mode and Failure Mode.

Mode management of the Subsystem in a Single controller is the same as mode management of each Subsystem in a Redundant Parallel Controller.

Mode management of these controllers is shown in Figure 4.1-5.

Figure 4.1-5 Mode Management of Single Controller and Redundant Parallel

The Subsystem has the following two modes.

Control Mode: A state in which the Subsystem performs input, operation, output processing, and self-diagnosis. When the Subsystem detects its own failure (through selfdiagnostics), it automatically changes from the Control Mode to the Failure Mode. A failure signal, which can be used for external alarming, is generated for this transition.

Failure Mode: The Subsystem initializes to the Failure Mode after initial power activation. The Subsystem also shifts to this mode automatically after it detects its own failure

or there is a loss of power greater than 20msec. A Subsystem shifts from the Failure Mode to the Control Mode only by pushing the reset button on the Status Display module.

In the Parallel Redundant Controller, Subsystem-A and Subsystem-B operate independently with the Mode Management described above, including failure detection, loss of power detection and manual reset.

Analog and digital outputs can be held in their preset initial mode, after the Subsystem shifts to the Control Mode, until the Output Start button on the Status Display Module is pushed. After pushing the output start button, output updating by the controller is enabled. For the redundant parallel controller configuration there are separate Output Start buttons for each controller. Pushing either button will enable output updating for the respective controller.

The output holding function can be disabled or enabled in the application program configuration. If this function is disabled, the outputs are enabled immediately after the Subsystem shifts to the Control Mode, without pushing the output start button. This function is enabled if it is required to confirm that the status of application software (POL) outputs matches the status of actual output devices before enabling output updating.

4.1.1.2.2 Mode Management of Redundant Standby Controller

In a Redundant Standby Controller, there are three modes: Control mode, Standby mode and Failure mode. The system transitions between these modes according to the events that occur. An example of the status transitions of a redundant standby controller configuration is shown in Figure 4.1-6.

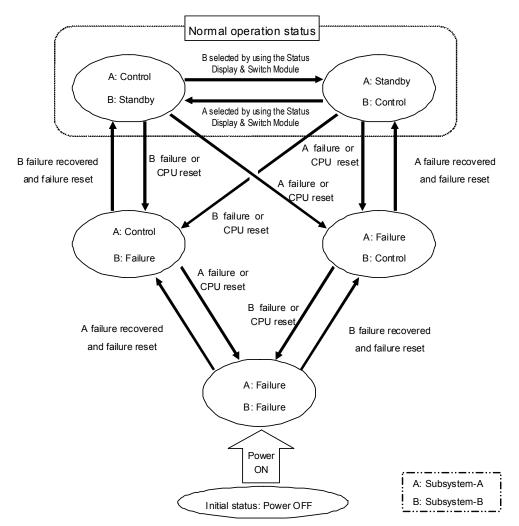


Figure 4.1-6 Mode Management of Redundant Standby Controller

- Control Mode : A state in which the Subsystem performs input, operation, output processing, and self-diagnosis. When the Subsystem detects its own failure (through selfdiagnostics), it automatically changes from the Control Mode to the Failure Mode
- Standby Mode : In this mode the Subsystem tracks the data from the Subsystem in the Control Mode so it can automatically transition into the Control Mode if the other Subsystem transitions to the Failure Mode. When the Subsystem detects its own failure (through self-diagnostics), it automatically changes from the Standby Mode to the Failure Mode.

Failure Mode : The Subsystem is initialized to the Failure Mode after initial power activation. The Subsystem also shifts to this mode automatically after it detects its own failure. A Subsystem shifts from the Failure Mode to the Control Mode or Standby Mode only by pushing the reset button on the Status Display & Switch Module. If there is no Subsystem in Control Mode, the Subsystem switches to the Control Mode when the reset button is pushed. If a Subsystem is already in the Control Mode, the Subsystem switches to the Standby Mode when the reset button is pushed.

Analog and digital outputs can be held in their preset initial mode, after the Subsystem shifts to the Control Mode, until the Output Start button on the Status Display & Switch Module is pushed. After pushing the Output Start button, output updating by the controller is enabled. For the redundant standby controller configuration there is one common Output Start button. Pushing the button will enable output updating for the Redundant Standby Controller.

The output holding function can be disabled or enabled in the application program configuration same as Mode Management of Single Controller and Redundant Parallel Controller described in 4.1.1.2.1.

4.1.1.3 Scale and Capacity

The scale and capacity of the MELTAC platform controller is described in Table 4.1-1.

Table 4.1-1 Scale and Capacity

Item	Scale/Capacity
Input/Output Maximum 3072 I/O modules per controller	
Software	Cycle time: 20 msec to 1 sec The value between 20msec to 1sec is set in the application software F- ROM. This value is determined based on the application requirements. During the design phase, the system response time is predictably determined through analysis, as described in Section 4.4. This analysis confirms the ability of the system to execute all functions within the allowed software cycle time. In the Integration Test phase, the system response time is confirmed by measurement.

4.1.1.4 Environmental Specifications

The MELTAC Controller is designed to operate within the environmental conditions described in Table 4.1-2.

Item	Specifications		
Room Ambient temperature	Recommended	68 to78.8°F(20 to 26°C) This temperature range is expected within a heated/ air-conditioned instrumentation and control room of the nuclear power plant. The controller should be mounted in a cabinet with no more than 18°F (10°C) heat rise. Operating within this range will maximize the life of the equipment. 32 to122°F(0 to 50°C)	
	guarantee	This temperature range is expected during heat/air conditioning failure conditions. The controller should be mounted in a cabinet with no more than 18°F (10°C) heat rise.	
Relative humidity	10 to 95%Rh (No co	ndensation)	
Withstand voltage	AC power input line	AC power input line: $5M\Omega$ or more (500 VDC megger) (input - ground, input - DC output) Analog I/O line: $5M\Omega$ or more (500 VDC megger) (I/O - ground, input - output) Digital I/O line: $5M\Omega$ or more (500 VDC megger) (I/O - ground, input - output) Applicable standard: JIS-C0704-1995 (IEC664/947)	
	I/O line	Analog I/O line: 1 KV AC (1 minute) (I/O - ground, input - output) Digital I/O line: 2 KV AC (1 minute) (I/O - ground, input - output) Applicable standard: JIS-C0704-1995 (IEC664/947)	
EMC (Electro Magnetic Compatibility)	EMI (Electro Magnetic Interference)	Complies with MIL-STD-461E for emissions: 1.Conducted emissions Conducted emissions from the power line (field discharge) CE102: High-frequency, 10kHz to 2MHz 2.Radiated emission RE101: Magnetic field, 30Hz to 100kHz RE102: Electric field, 2MHz to 10GHz	

Table 4.1-2 E	nvironmental	Specifications
---------------	--------------	----------------

Item	Specifications		
	EMS (Electro Magnetic Susceptibility)	Complies with MIL-STD-461E for susceptibility: 1.Conducted susceptibility CS101: Low-frequency, 30Hz to 150kHz CS114: High-frequency, 10kHz to 30MHz CS115: bulk cable injection, impulse excitation CS116: damped sinusoidal transients, 10kHz to 100MHz 2. Radiated susceptibility RS103: Electric field, 30MHz to 10GHz 3.Surge to the power line IEEE std 472 Should be provided with the magnetic susceptibility for the following items included in IEC61000-4: IEC61000-4-12: Ring wave IEC61000-4-5: Surge (Switching, lightning) IEC61000-4-5: Surge (Switching, lightning) IEC61000-4-2-1999 Level 2 5.Lightning impulse resistance AC power source line: Applied voltage 4 kV, waveform 1.2/50 μsec Digital I/O signal line: 4 kV, waveform 1.2/50 μsec Applicable standard: JEC-210-1981(Japanese Standard) Circuit category: 6	
Seismic resistance	MELTAC Cabinet (at floor mounting) MELTAC modules	Horizontal: 2.5G (X- and Y-directions) Vertical: 1G Horizontal: 10G (X- and Y-directions)	
	(at chassis mounting)	Vertical: 2G	
Radiation resistance	Environment in whic	h radiation is negligible.	
Dust	1.87 x 10 ⁻⁸ lb/ft ³ (0.3 mg/m ³) Reference standard: JEIDA-63-2000 Class B (Japanese Standard).		
Corrosive gas	Environment where r	no corrosive gas is detected.	

4.1.2 Hardware Descriptions

4.1.2.1 CPU Chassis

There are several kinds of modules described in Table 4.1-3 in the CPU Chassis. This section describes each module.

	Name	Model	Function
Basic Function Module	CPU Module	PCPJ-11	 Executes basic software Executes application software, including control computation processing
	System Management Module	PSMJ-11	 Communication between the redundant Subsystems Communication with the MELTAC engineering tool. Auxiliary DI and DO functions
Communic ation	Control Network I/F Module	PWNJ-01	Communication with the Control Network.
Module	Bus Master Module	PFBJ-11	 Communication with I/O Data link communication with other Controllers This module has four communication channels.
Power Supply Module	CPU Power Supply Module	PPSJ-01 PPSJ-11	Supplies power to the modules within the CPU chassis.
Display & Switch Module	Status Display & Switch Module	PPNJ-11	 Mode display LED Subsystem Mode switch Operation switch (described below) This module is only used in the redundant standby controller configuration.
	Status Display Module	PPNJ-12	 Mode display LED Operation switch (described below) This module is used for the single controller configuration or the redundant parallel controller configuration.

 Table 4.1-3 Module in the CPU Chassis

MELTAC has 3 types of CPU Chassis as shown in Table 4.1-4.

Table 4.1-4	CPU	Chassis
-------------	-----	---------

Туре	Use
Mirror-split CPU Chassis	- For redundant standby controller configuration
Slide-split CPU Chassis	- For redundant standby controller configuration
	 For redundant parallel controller configuration
Non-split CPU Chassis	- For redundant standby controller configuration
	 For redundant parallel controller configuration
	- For single controller configuration

The CPU Chassis is selected from the 3 types to match the scale and configuration of the Controller. For example, if each Subsystem in redundant standby controller configuration has less than 5 modules, then a Mirror-Split CPU Chassis is used. If each Subsystem in redundant parallel controller configuration or single controller configuration has less than 5 modules then Slide-Split CPU Chassis is used. If each Subsystem in redundant standby controller configuration or a redundant parallel controller configuration has more than 5 modules, two Non-split CPU Chassis are used. If Subsystem in single controller configuration has more than 5 modules a Non-split CPU Chassis is used.

4.1.2.1.1 CPU Module (PCPJ-11)

The CPU Module utilizes a 32-bit microprocessor, with enhanced speed due to the high-speed SRAM and cache. This processor module is IEEE standard Futurebus+ compliant, and performs internal operations and data transmission with other modules (i.e. Bus Master Module Control Network Interface Module and System Management Module) via Futurebus+. The data transfer between the CPU Module and other modules is asynchronous. All modules have separate clocks.

This module utilizes UV-ROM (Ultra-Violet Erasable Programmable Read Only Memory) for storing the basic software and F-ROM (Flash Electrically Erasable Programmable Read Only Memory) for storing the application software, such as logic symbol interconnections, setpoints and constants.

Specifications of the CPU Module are in Appendix A.1.

4.1.2.1.2 System Management Module (PSMJ-11)

The System Management Module monitors the status of the CPU Module and executes auxiliary controller functions that are not directly related to the CPU Module.

This module has the following functions:

- Auxiliary DI/DO for generating alarms such as fan failure.
- Ethernet interface for communicating with the MELTAC engineering tool.
- Transmits and receives the changeover signal for Redundant Subsystem configurations via a dedicated backplane bus, as shown in Figure 4.1-3. In addition, this module is provided with a 2-port memory data link used for that the Standby Mode Subsystem receives operation data from the Control Mode Subsystem.

Specifications of System Management Module are in Appendix A.2.

4.1.2.1.3 Bus Master Module (PFBJ-11)

The Bus Master Module has a 4 communication interface channels. Either of the following two functions can be defined for each channel.

- Communication with I/O modules
 This module is IEEE standard Futurebus+ compliant. It has 2-port memory, allowing
 the CPU Module to deliver process I/O data via Futurebus+. Each communication
 channel is capable of controlling 96 I/O modules, enabling control of a maximum of
 384 I/O modules per Bus Master Module.
- Data Link communication
 The Bus Master Module implements serial data link communication between
 controllers in separate safety divisions. The Bus Master Module employs 2-port
 memory to ensure communication functions do not disrupt deterministic CPU
 operation.

Description of the Data Link is shown in Section 4.3.3.

Specifications of the Bus Master Module are in Appendix A.3.

4.1.2.1.4 Control Netowork I/F Module (PWNJ-01)

The Control Network I/F Module connects the Controller to the Control Network. This interface employs a Resilient Packet Ring (RPR) based on IEEE standard 802.17.

The Control Network is redundant using optical fiber as the communication medium. An optical switch unit enables optical bypass for system maintenance. The Control Network I/F Module employs 2-port memory to ensure communication functions do not disrupt deterministic CPU operation.

The description of the Control Network, including the Control Network I/F Module is shown in Section 4.3.2.

4.1.2.1.5 Status Display & Switch Module (PPNJ-11)

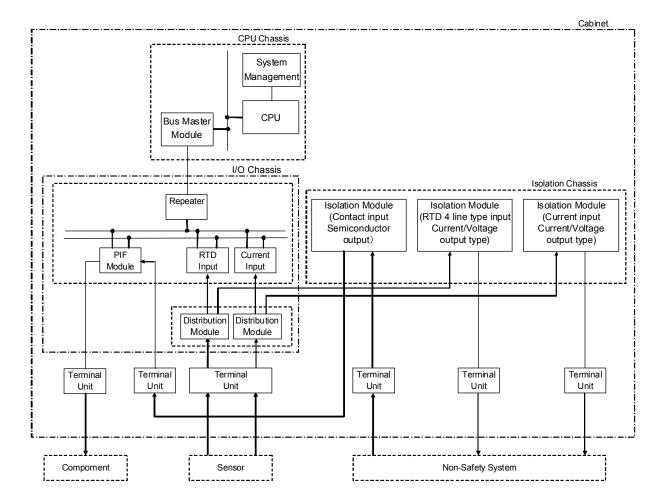
The Status Display & Switch Module is used in a CPU Chassis configured for a Redundant Standby Controller. This module displays the mode and alarms of the Subsystems and provides the manual mode change over switch.

4.1.2.1.6 Status Display Module (PPNJ-12)

The Status Display Module is used in a CPU Chassis configured for a Redundant Parallel Controller or Single Controller. It is connected with the CPU Module by wiring on the back plane. This module displays the mode and alarms of the single Subsystems to which it is directly connected there is no connection with the other subsystems.

4.1.2.2 Input/Output (I/O) Modules

The I/O modules in the MELTAC platform include the process input/output function and the signal conditioner function, including signal conversion and noise reduction. The MELTAC platform includes several types of analog and digital modules to accommodate various input/output signal interfaces.


The I/O modules are mounted in Dedicated I/O Chassis. One I/O Chassis can accommodate 16 modules. The modules mounted in the Chassis are connected to the Bus Master Modules in the CPU Chassis via Repeater Modules that can shape and amplify data communication signals. Data transfer is achieved via the I/O Bus.

There are one analog input or output per analog I/O module and four digital inputs or outputs per digital I/O module.

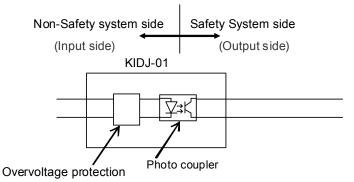
Specifications of I/O modules are in Appendix A5.

4.1.2.3 Isolation Module

Isolation Modules provided electrical isolation between safety systems and non-safety systems. Analog Isolation Modules receive safety related current or RTD input signals and transmit nonsafety analog output signals to other systems, without any software processing. Binary Isolation Modules receive non-safety contact inputs from other systems and transmit safety related signals to the MELTAC Power Interface Module (described below). Electrical isolation is provided between the input and output signals inside the Isolation Module. The Isolation Modules are mounted in dedicated Isolation Chassis. A single Isolation Chassis can accommodate 14 isolation modules. Each analog module processes one signal. Each binary module processes 2 signals.

The location of Isolation Modules is shown in Figure 4.1-7.

Figure 4.1-7 Location of Isolation Module


Specifications of Isolation Modules are in Appendix A.6.

The Figure 4.1-8 shows the internal configuration diagram of the analog isolation modules KILJ-01 and KIRJ-01. For common mode faults, the input and output are electrically isolated by the isolation amplifier. The positive temperature coefficient device (e.g. PolySwitch TM) is used to limit overcurrent conditions for transverse mode faults. The positive temperature coefficient device raises its resistance value when it is heated by sustained overcurrent conditions.

Figure 4.1-8 The Internal Configuration Diagram of The Analog Isolation Modules

The Figure 4.1-9 shows the internal configuration diagram of the binary isolation module KIDJ-01. For common mode faults, the input and output are electrically isolated by a photo coupler. The over voltage protection circuit limits the current for transverse mode faults. The over voltage protection circuit consists of a transistor, FET, and high-resistance. The circuit converts to high resistance to restrict the current when a voltage that exceeds the FET gate voltage is supplied.

Figure 4.1-9 The Internal Configuration Diagram of The Digital Isolation Module

These isolation modules were included in qualification testing for temperature and humidity, seismic and EMI described in Section 5. Isolation fault testing was conducted, as described in Section 5.5.

Calibration of input circuit, output circuit and current limiting circuit is conducted for all modules during manufacturing. Functional input-output operation is also confirmed for all modules during production.

4.1.2.4 Power Interface Module

The Power Interface (PIF) Modules have the same I/O Bus interfaces as in the I/O modules. These modules receive output commands as the result of Subsystem operation, and control the power that drives the switchgears, solenoid valves, etc. for plant components. This module utilizes power semiconductor devices for controlling power. Therefore, periodic replacement is unnecessary in contrast to electro-mechanical relays.

The PIF Modules also receive inputs from external contacts (the status contacts of the components) and transmit component status signals to the Subsystem. The Power Interface Modules include Interposing Logic (IPL) sub-boards that control the components in direct response to external contact inputs, independent of the Subsystem output commands. There are several types of IPL sub-boards, for different types of plant components (eg. switchgears, solenoid valves, etc.). Each PIF is configured with the appropriate IPL sub-board for the component being controlled. The IPL is realized by discrete logic Integrated Circuits.

[

All currently available IPL sub-boards have been qualified, as described in Section 5. However, it is anticipated that new IPL sub-boards may be required for US applications, due to changes in plant process components, changes in DAS interfaces and changes in priority logic, compared to applications in Japan. New IPL sub-boards will maintain the same design process, qualification process, hardware technology and quality program as current IPL subboards.

The entire PIF module, including the Communications Interface part is considered Class 1E. Therefore, the life cycle process for the development and maintenance of the firmware within the Communications Interface part is the same as the firmware for all other MELTAC modules. During manufacturing and production, the PIF modules are all tested to confirm the soundness of communication operation, IPL logic operation, and output operation.

Unlike electro-mechanical relays, the power semiconductor output of the PIF module does not degrade mechanically nor electrically and can be treated the same as any other general semiconductor device. Thus, the PIF modules are not considered to have any limitations in their expected service life. The components of the MELTAC platform that have a limited service life are identified in Section 7.5 Periodic Replacement Equipment (Parts) to Keep Reliability. The PIF is not included in this list.

1

Specifications of the Power Interface Module are in Appendix A.8.

4.1.2.5 Electrical/Optical Converter Module

Electrical/Optical (E/O) Converter Modules for Data Link communication convert electrical signals to optical signals or optical signals to electrical signals. They are mounted in dedicated E/O Chassis. Up to 14 modules can be installed per Chassis, with one communication link per module.

There is also an Ethernet Optical Isolation Module for the interface of the Maintenance Network to the System Management module.

Specifications of the E/O Converter Module and Ethernet Optical Isolation Module are in Appendix A.7.

4.1.2.6 Optical Switch

The Optical Switch is installed outside the CPU Chassis. It optically bypasses the Control Network communication line in the Control Network I/F Module during controller maintenance.

4.1.2.7 Fan Units

4.1.2.7.1 CPU Fan

The CPU Fan is installed on the top of the CPU Chassis to cool the modules within the CPU Chassis. It is equipped with a fan stop detection circuit which provides a contact signal to the System Management Module.

4.1.2.7.2 Door Fan Unit

The Door Fan Unit is installed at the top rear of the cabinet to cool internal cabinet components. It is equipped with a fan stop detection circuit which provides a contact signal to the System Management Module.

4.1.2.7.3 Power Supply Fan Units

The Power Supply Fan Units are installed at the bottom and the midsection on both the leftand right-hand sides of the cabinet to cool the power supplies, PS-1 and PS-2. It is equipped with a fan stop detection circuit which provides a contact signal to the System Management Module.

The fan stop detection circuit detects the decrease of fan rotation frequency by converting fan rotation frequency into a voltage pulse and monitoring the pulse length. If the pulse length reaches the length equivalent to the detected rotation frequency limit, the fan stop detection circuit de-energizes a relay, which generates a contact closing signal. Also, the same relay is deenergized if there is a power loss to the fan. Therefore, fan failure can be detected.

4.1.2.8 Power Supply Module

The Power Supply Modules convert the AC power supplied to the Chassis from two independent sources to DC power voltages suitable for the individual modules and units. Redundant Power Supply Modules are provided for CPU Chassis, I/O modules, Isolation Modules, Power Interface Modules, E/O Converter Modules and fan units.

There are two types of Power Supply Modules. The CPU Power Supply (PS-1, PPSJ-01 and PPSJ-11) provides multiple outputs of +2.1VDC and +5VDC for the CPU Chassis. The I/O Power Supply (PS-2) provides +24VDC for I/O modules, Isolation Modules, Power Interface Modules, E/O Converter Modules and fan units.

PPSJ-01 and PPSJ-11 are mounted in the CPU Chassis. These Power Supplies apply to the redundant parallel controller configuration.

PS-1 and PS-2 are mounted outside of the chassis. These Power Supplies apply to the single controller configuration where the power supply is redundant for the CPU Chassis. PS-1 and PS-2 are mounted on the panel cut parts that are set right and left of the cabinet chassis as shown in the Figure 4.1-10, Figure 4.1-11 and Figure 4.1-12. This mounting location was selected, rather than mounting them within the chassis for three reasons (1) this leaves space in the chassis for additional modules, (2) external mounting allows DC power to be supplied to the chassis from two redundant Power Supply Modules, (3) this location keeps the heat from the power supplies away from the modules, thereby improving module reliability.

Both types of Power Supply Modules are equipped with overvoltage protection that deenergizes the output when the output voltage exceeds a setting, and overcurrent protection that lowers the output voltage level when an overload or output short-circuit occurs. Both types of Power Supply Modules also provide a contact output alarm signal when an output shut-down occurs.

For a redundant standby controller configuration and a redundant parallel controller configuration, each Subsystem monitors the output condition of the other Subsystem's Power Supply Module. For a redundant standby controller configuration, when there is a shutdown of the power supply module of the Subsystem in the Control Mode, the Subsystem in the Standby Mode shifts to the Control Mode. When there is a shutdown of the power supply module of the Standby Mode, the Subsystem in the Control Mode generates an "Alarm". For a redundant parallel controller configuration, each Subsystem warns "Alarm" if there is a shutdown of the power supply module power supply module power supply module power supply module power suppl

The CPU Power Supply Module is also equipped with AC power input monitoring. When the AC power input is lost, it is detected by the AC power reduction detection circuit within the power supply, and an alarm signal is output to the CPU Module. When the CPU Module receives an alarm signal for loss of AC power from its own Subsystem's Power Supply Module, the CPU Module shifts to the "Failure" Mode before the Power Supply Module output voltage level becomes lower than the operable voltage of the CPU Module.

For a redundant standby controller configuration, if the AC power input for the Subsystem in the Control Mode is lost, the Subsystem shifts to the "Failure" Mode, then the Power Supply Module outputs shuts down. The Subsystem in the Standby Mode shifts to the Control Mode by detecting a failure or a shutdown of the power supply module of the other Subsystem.

Specifications of the Power Supply Modules are in Appendix A.9.

4.1.2.9 Controller Cabinet

a) Overview

The Controller Cabinet stores the following:

- CPU Chassis
- I/O Chassis
- E/O Chassis
- Isolation Chassis
- Power Interface Chassis
- CPU Power Supply Module
- I/O Power Supply Module
- CPU Fan
- Power Supply Fan
- Door Fan
- Terminal Unit
- Optical Switch
- Distribution Panel

The inside layout of the cabinet is as follows;

- Each module can be changed from the front side of the cabinet and each status display can be monitored from the front side of the cabinet. Therefore, maintenance personnel can easily identify the status of the module and repair the module without pullout of the chassis.
- The modules within the I/O chassis can be replaced at power. The modules in the CPU chassis cannot be replaced at power. For redundant subsystem configurations power down of the CPU chassis for module replacement has no effect on the system operation, since the other subsystem remains operable.
- Field cables entered the back side of the cabinet (through top and/or bottom entry) and are connected to the Terminal Unit.

b) Controller Cabinet specifications

The MELTAC platform cabinet is described in Table 4.1-5. Typical configurations of MELTAC platform cabinets are shown in Figure 4.1-11 and Figure 4.1-12.

Item	Specifications
External	2.62(W) x 2.95(D) X 7.55(H) ft (800 (W) x 900(D) x 2300(H) mm)
dimension	per a cabinet
Weight	Approximately 1600 lb (750kg) per cabinet including inside modules and units.
Door	Front and rear doors include handles, locks and seismic support bolts.
specifications	
Cooling	The cabinet has forced air-cooling. An exhaust fan is mounted in the upper rear part of the cabinet. The doors are provided with filtered ventilation ports. Exhaust fans are mounted above each CPU Chassis and adjacent to I/O power supplies. The I/O Chassis are naturally-cooled.

Table 4.1-5 C	Cabinet of MELTAC	Platform S	pecifications
---------------	-------------------	-------------------	---------------

Figure 4.1-11 Cabinet External Dimensions and Rack Up, Typical Sample A

Figure 4.1-12 Cabinet External Dimensions and Rack Up, Typical Sample B

4.1.2.10 Power Supply Configuration

Redundant AC power from two separate sources is supplied to the MELTAC Cabinet to avoid loss of function due to a single failure in the power supply or power source, as shown in Figure 4.1-13. The two AC power sources are from within the same safety division, but should not have a realistic single malfunction point that would result in simultaneously failure. It is important to note that power redundancy is only for system available. There is no credit for this power redundancy in complying with the Single Failure Criteria of IEEE 379, since compliance to IEEE 379 is achieved by having separate trains.

The source of AC power is described in system application documentation. The AC power is filtered and converted to DC voltage by the Power Supply modules. DC power from both sources is diode auctioneered, then distributed to each component in the cabinet. For some components diode auctioneering is separate for each component.

[

1

4.1.3 Software

The MELTAC platform consists of basic software and application software. Each software function is described below.

4.1.3.1 Basic Software

In order to achieve deterministic processing, the basic software of the MELTAC platform adheres to the following design principles.

a) There is only single task processing

b) [

1

The processes within the basic software and the order of their execution are shown in Figure 4.1-14.

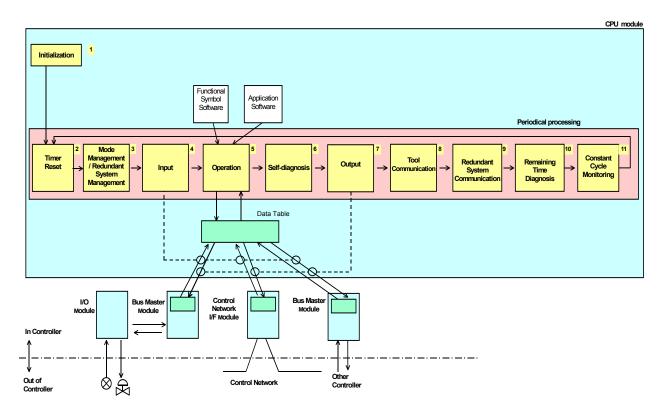


Figure 4.1-14 Basic Software Processes and Execution Order

The processing time from No.2 to No.8 is based on the application logic and the input/output signal quantity of each system. Since the controller operates cyclically, the processing time from No. 2 to No. 11 can be 100% of the application requirement (i.e. there is no application margin required for the system). However, to allow future system expansion, during the system design phase, the approximate processing time from No.2 to No.8 is calculated as described in Section 4.4 Response Time. If the processing time exceeds about 80% of the processing cycle required for the system, the application is divided into two or more controllers, as necessary. In the test phase, the system response time is confirmed by measurement.

The processes of the MELTAC basic software are described below.

]

Figure 4.1-15 Remaining Time Diagnosis

[

4.1.3.2 Application Software

The application software of the MELTAC platform is designed using the MELTAC engineering tool. Application software for functional algorithms is designed by combining simple graphical logic symbols such as "And", "Or", and "Not" using the Graphical User Interface (GUI) of the MELTAC engineering tool. A GUI is used to reduce the potential for design errors in building or modifying the application software. It also makes it easier for the Independent Verifier to ensure the application software Graphical Block Diagrams (GBD), which are created by the I&C system designer are consistent with the Functional Block Diagrams (FBD), which are created by the process system designer.

Using the MELTAC engineering tool, the application software GBD is automatically converted into Execution Data that is executed directly by the Operation process of the basic software. The Operation process of the basic software executes the Functional Symbol Software sequentially according to the Execution Data.

Application software execution data is stored in the F-ROM of the CPU Module.

J The Functional Symbols are listed in Appendix B.

4.1.4 MELTAC Engineering Tool

The MELTAC engineering tool (called "MELENS") provides various functions aimed at steadier and more efficient software management during all system life cycle phases (including design, fabrication, test, adjustment and maintenance).

MELENS is installed on a non-safety Personal Computer running the Microsoft Windows Operating System.

Access to MELENS is controlled by means of the PC password (BIOS, OS) and the MELENS password.

The application software execution data generated by MELENS is downloaded to the controller via the Maintenance Network and is stored in the F-ROM of the CPU Module. The functions of MELENS are described as follows.

4.1.4.1 Function Description

The functions of MELENS are as follows.

a) Creation of Application Software

The application software Graphical Block Diagram (GBD) is created from the Functional Block Diagrams (FBD) which is created with a commercial MITSUBISHI-made CAD software package called "RAPID". (Access to RAPID is controlled by a password.) MELENS can automatically translate the RAPID FBD to the MELTAC GBD. MELENS can then automatically generate the application software execution data directly from the GBD by compiling.

This automated process eliminates human translation errors.

GBDs can also be created manually using the MELENS GUI editor.

Whether the GBD is generated automatically from RAPID or manually using the MELENS GUI, the assignment of GBDs to controllers and the assignment of Input/Output signals are configured manually using MELENS.

b) Download

New application software, including logic changes or changes to setpoints or constants, can be downloaded to the Controllers from the MELTAC engineering tool PC via the Maintenance Network. [

c) Verifying F-ROM and UV-ROM data

The MELTAC MELTAC engineering tool provides a manually initiated function which automatically compares the F-ROM data and UV-ROM data in the Controller, bit by bit, with the basic software data and application software data stored in MELENS. This function is used

during periodic surveillance tests to confirm that the data in F-ROM and UV-ROM is the same as the data in MELENS, and therefore has not changed.

d) Controller failure diagnosis display

The MELTAC engineering tool displays the self-diagnostic result of the Controllers. It shows which module(s) is failed.

e) Temporary changes to field changeable process value in data table (Data Set)

4.1.4.2 Network for MELTAC Engineering Tool

In order to communicate between the MELTAC engineering tool and the Controller, the Maintenance Network is used. The MELTAC engineering tool, which runs on a Personal Computer, is temporarily connected via the Maintenance Network to the System Management Modules of each Controller in the division. This interface allows all functions described above. The Maintenance Network is temporarily connected to the controllers in the same safety division. There is a separate Maintenance Network for each division. There are no Maintenance Network interconnections between safety divisions. The temporary connection of the MELTAC engineering tool and Maintenance Network is application dependent. There is also a separate MELTAC engineering tool for each division. The specification of the Maintenance Network is described below.

For the configuration and the isolation of the Maintenance Network, see Section 4.3.4.

(Specification)

Function: Transmission of maintenance date for MELTAC engineering tools

- Transmission protocol: Ethernet (IEEE Std. 802.3; CSMA / CD, UDP/IP)
- Transmission speed: 10Mbps
- Communication form: Dialog communication
- Connection form: Bus/Star-type

Transmission media: UTP Category5 cable

[

4.1.5 Self-Diagnosis

The MELTAC platform controller is equipped with three types of self-diagnosis features: a hardware based detection process, a software based detection process, and a combination thereof. When an error is detected, an alarm is generated. When the error is severe, the Controller makes a transition from the Control or Standby mode to the Failure mode.

Detailed error descriptions are provided in Sections 4.1.5.2 thru 4.1.5.6. The categorization of each error is shown in parenthesis, for example "Clock check (Failure)". All errors in Section 4.1.5.2 and 4.1.5.3 are severe and are therefore categorized as "Failure". These errors stop main CPU operation, and generate signals that can be used for alarms. All other errors (those identified in Sections 4.1.5.4 and 4.1.5.5) generate signals that can be used for alarms, but do not stop the main CPU operation. All error signals are identified on the MELTAC engineering tool. The specific grouping of error signals into operator alarms is application specific. Since most applications have redundant CPUs, typically all error signals are grouped to a single operator alarm and then the MELTAC engineering tool is used for diagnosis of specific error conditions.

Failure notice is provided to the plant monitoring system for the three types of errors, "Failure", "Alarm", and "IO Alarm". These error signals are typically grouped into system trouble alarms, however the method used to present this information to the operator from the plant monitoring system is application dependent and not within the scope of the MELTAC platform. Detail information for diagnosis of all error conditions is provided on the MELTAC engineering tool.

a) Hardware based detection process

With this feature, self-diagnosis is implemented by special diagnostic circuitry on the CPU Module. The feature involves a watchdog timer, parity error, timeout, analog input check, etc.

b) Software based detection process

With this feature, self-diagnosis is implemented using software. The feature involves CPU healthy check, ROM error check, RAM error check, etc.

c) Software/hardware combination

With this feature, circuitry that supports self-diagnosis is added to the Controller and selfdiagnosis is performed using software-based read/write operations. This feature involves a digital input check, digital/analog output read-back check, etc.

The controller is monitored based on the above self-diagnosis processes every Execution Cycle. The individual error items can be identified by viewing the LED display on the front of each module and the representative alarm display (Failure, Alarm, I/O Alarm) on the Status Display & Switch Module and by using the MELTAC engineering tool connected via the Maintenance Network.

Each detected error is categorized into the three types (Failure, Alarm and I/O Alarm) as below.

1) Failure

The fatal abnormality by which the Subsystem cannot continue its functions is categorized as the Failure.

When the Subsystem detects this type of error, it transits to the Failure mode.

In the Failure mode, the processing of input/output and operation are stopped, although the processing of sending the own status data of the Failure mode is continued.

In case of redundant standby controller configuration, when the Subsystem in the Control mode changes to the Failure Mode and the Subsystem in the Standby mode changes from the Standby Mode to the Control Mode and continues the control function.

When there is no Subsystem which communicates with the Output Module, the Output Module transits to the Failure mode which is "as-is mode" or "off mode". This mode is set preliminarily.

2) Alarm

The minor abnormality with which the Subsystem can continue its functions is categorized as the Alarm. This includes the error of the Controller Cabinet.

When the Subsystem detects this type of error, it does not change its mode and only warns of the alarm.

3) I/O Alarm

The abnormality of I/O is categorized as the I/O Alarm.

When the Subsystem detects this type of error, it does not change its mode and only warns of the alarm.

In case of redundant standby controller configuration, when the I/O Alarm occurs in the Redundant I/O in the Control Mode, the Subsystem stops to use this I/O, switches the other I/O from the Standby mode to the Control Mode, and continues the processing of input/output. When the I/O Alarm occurs in the Single Input Module, the last good input values are retained and the application software is informed of the abnormal state of the input signals. For digital inputs, the input values are kept at the last value (1 or 0) before the error occurred. For analog inputs, the input values are kept at the last engineering value before the error occurred. Based on the error flag, the application software can be programmed for a predetermined control action.

4.1.5.1 Coverage of Self-diagnosis

Coverage of Self-diagnosis of the controller is shown in Figure 4.1-16.

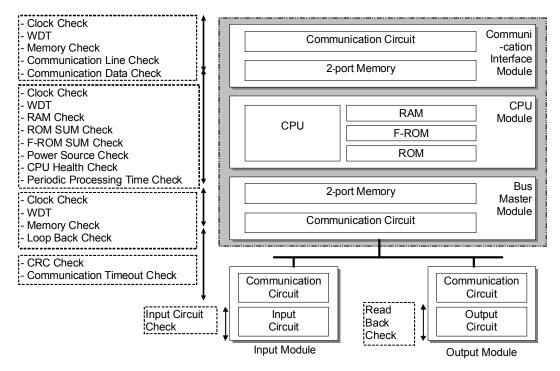


Figure 4.1-16 Coverage of Self-diagnosis function of the controller

4.1.5.2 Self-diagnosis of the controller

The self-diagnosis of the processor modules is described below.

Each diagnosis item is shown with the timing of diagnosis classified as follows:

- Initialization: At the time of initialization
- Self-diagnosis: Once per cycle in the constant cycle operation
- Remaining Time Diagnosis: Periodically in the remaining time of constant cycle operation, but not every cycle.

- Constant: On a constant basis by Hardware

4.1.5.2.1 CPU Module

[

[

]

4.1.5.2.2 Bus Master Module

4.1.5.3 Self Diagnosis of Power Supply Modules in the CPU Chassis [

]

4.1.5.4 Self-diagnosis of the Communication System

See Section 4.3.2.4 and 4.3.3.4. Communication System errors are categorized as "Failure" or "Alarm", depending on the redundancy configuration of the controller.

4.1.5.5 Self-diagnosis of I/O Modules

The self-diagnosis the I/O modules is described below.

4.1.5.5.1 Input Module

[

4.1.5.5.2 Output Module

] 4.1.5.5.3 Controller Cabinet

]

4.1.5.6 Operations when the hardware and software do not match

Mismatch of the module configuration in the CPU chassis: The CPU Module detects the error and the subsystem turns to Failure mode.

Mismatch of the module configuration in the I/O chassis:

The CPU Module detects the mismatch and notifies the application software logic that the I/O signals have bad quality, as explained in Section 4.1.5. Currently, the subsystem does not transfer to Failure, Alarm, or I/O Alarm and does not give an alarm. However, the MELTAC basic software will be modified to add an I/O Alarm for this condition. This modification is being executed as a design change under the App.B QAP (see Section 6), because this I/O Alarm was not required by the original MELTAC specification.

4.1.6 Bus inside the controller

Table 4.1-6 shows the two busses used inside the controller, and Table 4.1-7 shows I/O bus specification.

Item	Application
Futurebus+	Backplane bus in the CPU chassis. It is used to connect modules in CPU chassis and transfers other module data in the CPU chassis.
I/O bus	A bus that connects the CPU chassis and the I/O module. See Table 4.1-7 for detail.

 Table 4.1-6 Bus inside the controller

Table 4.1-7 I/O bus specification

Item	Specification	
Protocol	1:N master poling	
Configuration	Maximum 96 I/O modules can be connected to one I/O bus. (Up to 16 I/O modules can be mounted on one I/O chassis and up to six chassis can be connected to one I/O bus.). There are four I/O busses on each Bus Master Module and each controller can have eight Bus Master Modules.	
Interface	RS-485 transformer isolation.	
Baud rate	1Mbps	
Error detection method	CRC check	
Operation	The Bus Master Module and the I/O modules are connected to the I/O bus. The Bus Master Module sends output data and input data requests to the I/O module and the I/O module responds to that. This communication method is common to all I/O modules, including the PIF module.	

4.1.7 Manual test

4.1.7.1 Process input and output

Figure 4.1-17 shows the signal flow of Manual test for process input and output.

Input function is tested by manipulating the process to stimulate a state change.

Correct functionality is confirmed by monitoring states signals on the safety VDU or any other VDU that obtains its status information from the Control Network (eg. non-safety operational VDU in PCMS)

Output function is tested by operation from the safety VDU or any other VDU interfaced via the Control Network (eg. non-safety operational VDU in PCMS).

It is noted that these tests are intended to confirm functionality of the system's process input and output signal paths, since these cannot be fully tested by self-diagnostics. Therefore, the process input and output tests can be conducted using any VDU that obtains its data from the Control Network. A separate manual test for the safety VDU is described in Section 4.2.4.

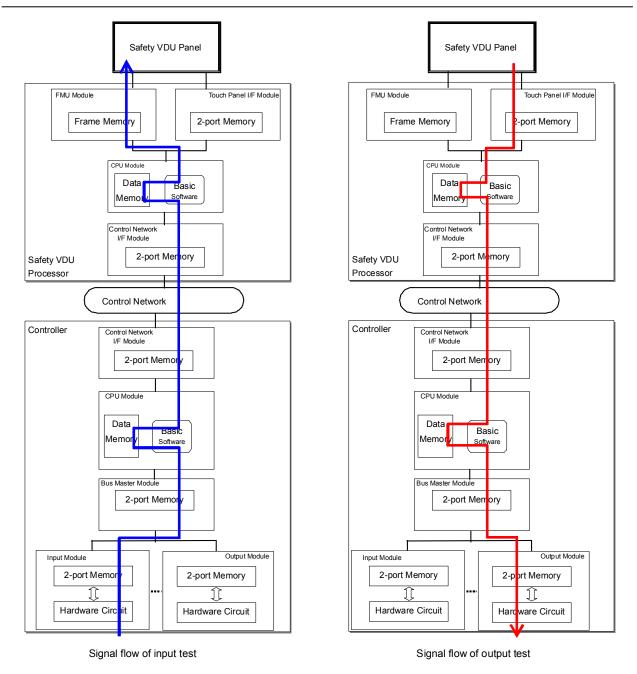


Figure 4.1-17 Manual test for process input and output

4.1.7.2 Software Memory Integrity

The MELTAC engineering tool includes a manually initiated function which automatically compares the software memory in the controller, bit by bit, with a copy of the software stored off-line.

This function is to confirm that the software in the controller is the same as the off-line version, and therefore has not changed or failed. This test confirms the functional integrity of the controller basic software and application software. The Software Memory Test is conducted periodically for every controller in the system.

By confirming the basic software, the Software Memory Integrity test confirms the CPU instructions stored in ROM for all MELTAC functions described throughout this document, including the self-diagnostic functions. By confirming the application software, the Software Memory Integrity test confirms the CPU instructions stored in F-ROM for all functional logic required for the safety functions of the application.

The periodic manual tests (the process input and output test, and the safety VDU test) ensure the CPU is capable of executing instructions from both ROM and F-ROM. This encompasses the instructions that control continuous self-diagnostics, and the instructions that control the safety functions of monitoring process measurements and actuating plant components. Therefore, through the aggregate of periodic manual tests and continuous self-diagnostic tests, the complete functionality of the safety system is confirmed.

4.2 Safety VDU Panel and Processor

The MELTAC platform includes a safety VDU which consists of a safety VDU panel, and a safety VDU processor. There is one safety VDU processor for each safety VDU panel.

The number of safety VDUs is defined by specific plant design. Each safety VDU can be configured to provide the HSI for only one safety division.

Each division has its own safety VDU. Since the total I&C system has 4-divisions, a single failure of only one safety VDU doesn't cause loss of all HSI functions.

4.2.1 Hardware

4.2.1.1 Safety VDU Panel

The safety VDU panel is an HSI device which provides a color graphic display with an integral touch screen. Its function is described below.

- Display function: Displays operational screens by receiving red/green/blue (RGB) analog video signals from the safety VDU processor.
- Control function: Inputs by operator on the touch screen are transmitted to the safety VDU processor in the form of x-y coordinate data using a RS-232C data link.

The complete HSI functional design, including screen navigation, is described in the HFE Process and HSI System Design Topical Report. Specifications of the safety VDU panel are in Appendix A.10.

4.2.1.2 Safety VDU Processor

4.2.1.2.1 Configuration of the Safety VDU Processor

The safety VDU processor has a single Subsystem architecture as shown in Figure 4.2-1. The CPU Module and Control Network I/F Module hardware and basic software are the same as in the MELTAC Controller.

a) Information Display Function

The safety VDU processor stores the static data for each pre-configured display screen. The safety VDU processor gathers live plant data from safety Controllers via the Control Network. The safety VDU processor organizes the static data of the pre-configured screen with the live plant data and then displays those combined images on the safety VDU panel by means of the red/green/blue (RGB) interface. The RGB interface is generated by the Frame Memory Unit (FMU) Module.

b) Control Function

Operators take manual control actions by touching an operation switch image displayed on the safety VDU panel. A sample picture of the operation switch image is shown in Figure 4.2-5. The results of a touch screen operation are sent in the form of x-y coordinate data from the safety VDU panel to the safety VDU processor via the Touch Panel I/F Module. This is an RS-232C data link, which is converted from electrical to optical using module MEOJ-11, only to increase the transmission distance. The optical interface is not credited for any isolation function since the safety VDU processor and safety VDU panel are located in the same safety division and always in the same fire zone. The safety VDU processor converts the x-y coordinate data received from the safety VDU panel to plant control data (i.e. component ID and operational command), and then sends the data to the Controllers via the Control Network.

c) Control Network Interface

The Control Network Interface receives live plant data from the Controllers, and sends the plant control data to the Controllers via the Control Network. The Control Network and safety VDU are both intra divisional.

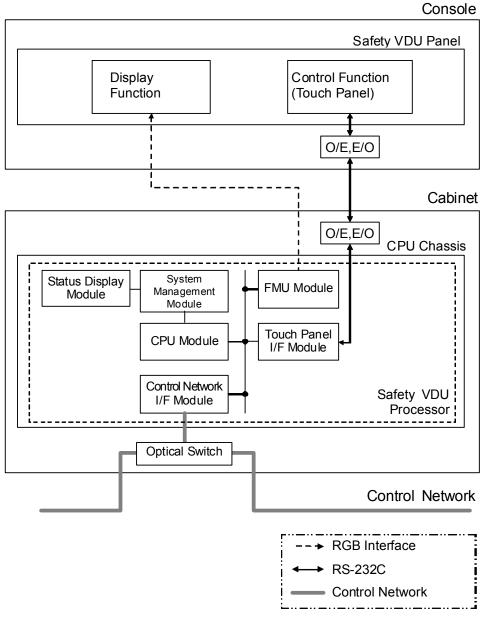


Figure 4.2-1 Configuration of Safety VDU Processor

4.2.1.2.2 Module Specifications of Safety VDU Processor

The safety VDU processor is comprised of the following modules:

- CPU Module
- System Management Module
- Control Network I/F Module
- Touch Panel I/F Module
- Frame Memory Unit (FMU) Module.
- Status Display Module

The FMU and Touch Panel Interface (I/F) Modules are specific to the safety VDU processor. The other modules are the same hardware as the modules of the Controller. The following sections describe the modules that are specific to the safety VDU processor.

a) FMU Module

The FMU Module provides the analog RGB signal for the graphic images to the safety VDU panel. The FMU Module communicates with the CPU Module inside the chassis by means of the Futurebus+ backplane.

Specifications of the FMU Module are in Appendix A.11

b) Touch Panel I/F Module

The Touch Panel I/F Module provides the touch panel interface signal from the safety VDU panel to the safety VDU processor. The Touch Panel I/F Module communicates with the CPU Module inside the chassis by means of the Futurebus+ backplane. Specifications of Touch Panel I/F Module are in Appendix A.12.

4.2.1.3 Power Supply

AC power can be supplied to the safety VDU with a single power supply configuration or a redundant configuration. The redundant configuration avoids loss of function due to a single failure in the power supply or the AC power source, as shown in Figure 4.2-2.

The AC power is converted to DC voltage by the Power Supply Modules. For a redundant power supply configuration the DC power from both sources is diode auctioneered for each component of the safety VDU.

Figure 4.2-2 Configuration of Power Supply for Safety VDU

4.2.2 Software

4.2.2.1 Basic Software

The safety VDU processor software configuration is shown in Figure 4.2-3.

The software structure ensures reliable deterministic operation.

The software structure configuration is based on the same design as that of the controller basic software. With fixed cycle control and no-external interrupts (except processing of self-diagnostic errors detected by the hardware within the CPU Module and the Power Supply Module and categorized as "Failure" (see Section 4.1.5)), the basic software provides high reliability, and deterministic processing. The basic software structure is simple, so it is verified with white box testing.

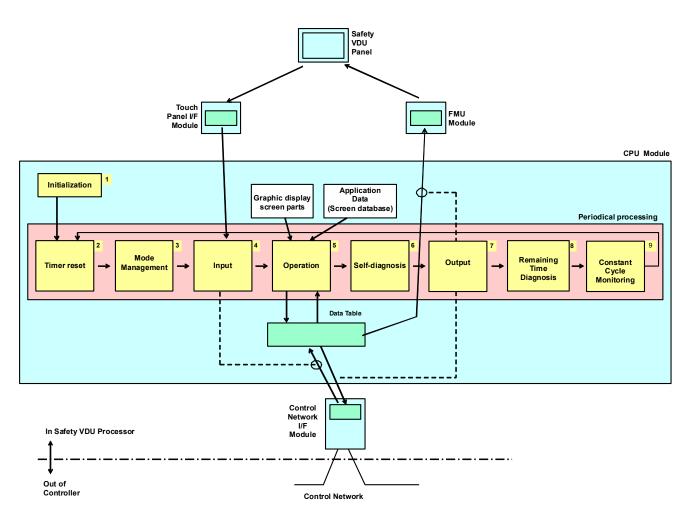


Figure 4.2-3 Software Structure of Safety VDU Processor

Details of the processing executed in each process are described below.

4.2.2.1.1 Screen Selection of Safety VDU Processor

One operation within basic software process No.5 is Screen Selection. Screen Selection is described in this section.

Figure 4.2-4 shows the types of screens displayed by the safety VDU processor and the available screen transitions. The Initial Screen is the screen shown-after the power is turned on. The types of information displayed on the Menu Screen, the Monitor Screen, and Operation Screen are shown in Table 4.2-1. The actual information displayed on these screens is configured uniquely for each application.

A sample of the operation switch image on the safety VDU panel is shown in Figure 4.2-5.

The screens described in this section are generic screens included in the generic basic software of the MELTAC platform. Other types of screens can be developed on a plant specific basis. The actual screens for any safety application are described in Plant Licensing Documentation.

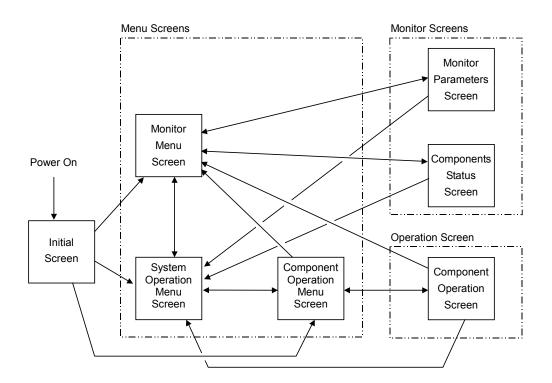


Figure 4.2-4 Screen Transition of the Safety VDU Processor

Table 4.2-1 Explanation of the Screen

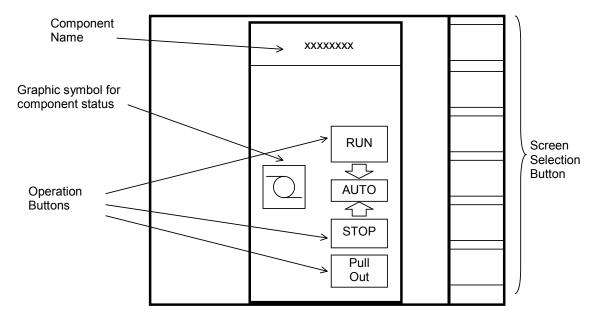


Figure 4.2-5 A Sample of Operation Switch Pictogram on the Safety VDU Panel

4.2.2.1.2 Detailed Explanation of Screen Display and Demand Processing

Basic software process No.5 also includes Screen Display Processing and Screen Demand Processing. These Operation processes and their relationship to other Operation processes are shown in Figure 4.2-6.

The table below shows the data used to create screen displays and the data used to generate output operation signals.

Table 4.2-2 Data Details

a) Screen Display Processing

]

b) Operation Demand Processing

1

Figure 4.2-6 Explanation of the Safety VDU Processor Operation

4.2.2.2 Application Software and MELTAC Engineering Tool [

]

4.2.3 Self-Diagnosis

]

4.2.4 Manual test

The safety VDU panel is tested by manually touching screen targets and confirming correct safety VDU processor response.

This test is conducted using a special test display screen that does not initiate any manual control actions.

Many soft buttons are displayed throughout the special test display screen. The safety VDU panel sends the Operation Touch Signal to the safety VDU processor, when a button is touched. The safety VDU processor responds by changing the color of the touched button after receiving the signal.

During this test, the safety VDU processor does not send any touch command control signals to the control network.

These test response are generated by the safety VDU processor, so there is overlap between the manual test and the platform self-diagnostics performed within the safety VDU processor.

4.3 Communication System

4.3.1 General Description

The key design basis of the Control Network, Data Link and Maintenance Network are provided below.

a) Control Network and Data Link:

- Asynchronous communications is used. Controller performs no communication handshaking that could disrupt deterministic logic processing.
- Predefined data size and structure ensure deterministic communication.
- Communications independence Electrical or communication processing faults in one electrical division cannot adversely affect performance of the safety function in other divisions.

b) Maintenance Network:

 Hardwired interlocks in the Controller or safety VDU processor ensure changes to software cannot be made through the data communication interface while the Controller or safety VDU processor are operating.

4.3.2 Control Network

This section describes the Control Network.

The Control Network communicates plant process data and control signal data with a deterministic periodic cycle.

The Control Network is used for the following applications:

- a) The Control Network is used mainly to communicate safety related data between multiple Controllers, and between Controllers and the safety VDU processor(s), all in the same division.
- b) The Control Network can also be used to communicate non-safety data between different divisions including the non-safety system. This may be between multiple Controllers in different divisions. Or it may be between operational VDU processors and multiple Controllers in different divisions.

The specific inter-divisional communication data is application specific. The typical types of inter-divisional communication between safety and non-safety are as follows:

- Operation signal from non-safety operational VDUs to manually control the Safety components of each train
- Alarm or Status information from the Safety components or Safety instrumentation to Alarm VDUs, operational VDUs, or non-safety controllers.
- Signals from non-safety control systems that control safety related equipment during normal operation, such as signals from the pressurizer level and pressure control systems to control Charging Pumps and Backup Heaters.

Inter-divisional communication for safety related functions is not implemented in the Control Network. For this application only Data Link communication is used, see Section 4.3.3.

4.3.2.1 Configurations

The Control Network has two types of periodic cycles, normal and high-speed. The desired type is selected during the application design process.

The Configuration of the Control Network is as shown in Table 4.3-1.

Table 4.3-1 Configuration of Control Network

A typical configuration of the Control Network for six Controllers is shown in Figure 4.3-1.

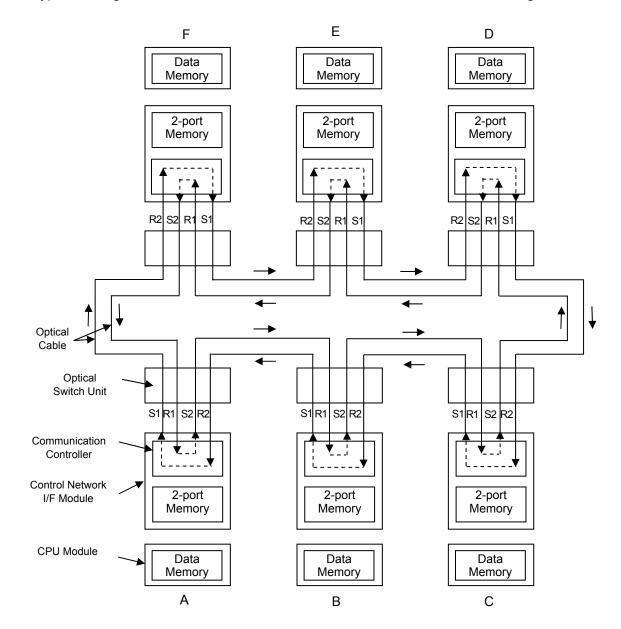


Figure 4.3-1 Configuration of Control Network

The Control Network I/F Modules are interconnected in a ring configuration. Each module communicates through an optical switch using four independent optical cables, one for transmission and the other for reception, in both clockwise and counterclockwise directions. The optical switch allows any subsystem on the Control Network, that is halted or disconnected for maintenance or for failure, to be bypassed so the network ring topology is always maintained. Figure 4.3-2 shows in the case where subsystem (B) is halted. In this case the optical switch bypasses subsystem (B) and directly connects subsystem (A) and (C).

These are the key technical aspects of the Control Network:

- Each Control Network I/F Module includes 2 receive and 2 transmit ports for dual ring redundancy.
- All received data is relayed to the adjacent nodes (in both directions) by the communication controller within the Control Network I/F Module. [
- The communication controller also places the received data in 2-port memory for processing by the main CPU in its node.
- The 2-port memory contains designated memory locations for the complete data package sent from each node on the network. [

1

- During its own deterministic cycle, the main CPU reads data only from memory locations in 2-port memory that correspond to the network nodes that sent data that is relevant to its application software.
 - 1

1

- If the main CPU only sends data to the Control Network (unidirectional data flow), as defined in [] the main CPU does not read any data locations in 2-port memory.
- The main CPU places data to be transmitted on the Control Network in its designated area of 2-port memory, during its own deterministic cycle. The updated data overwrites the data written by the main CPU in the previous cycle. If the data has not changed, the same data is rewritten again. This process repeats for every deterministic cycle of the main CPU.
- The data from the main CPU, that is stored within its designated location within 2-port memory, is then transmitted to the Control Network by the communication controller during its next deterministic relay/transmit cycle.
- The deterministic cycles of the communication controller and main CPU are completely independent.

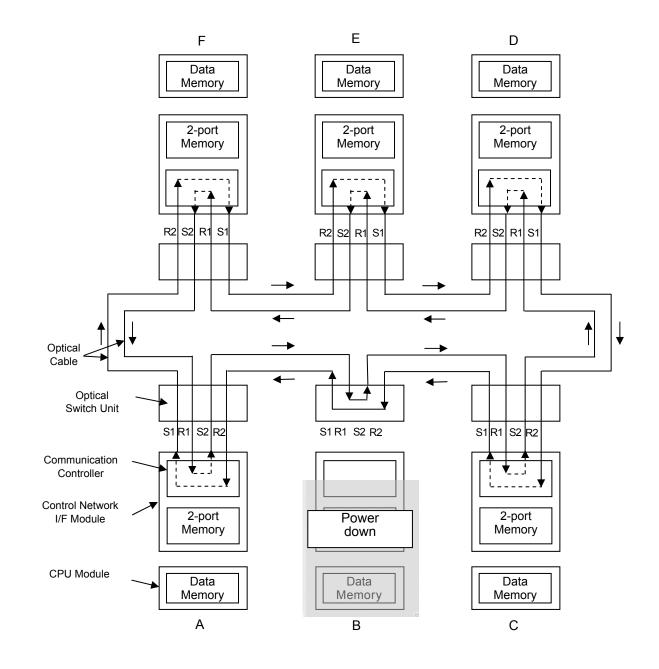


Figure 4.3-2 Explanation of Bypass Operation by the Optical Switch

The optical switch is powered by the power feeding cable from its associated Control Network I/F Module. If the MELTAC Controller fails, or its Control Network I/F Module fails, or the power feeding cable is disconnected, power is removed from the optical switch causing it to revert to the bypass mode for that node. When failures are detected by self-diagnostics, the Control Network I/F Module voluntarily removes power from the optical switch.

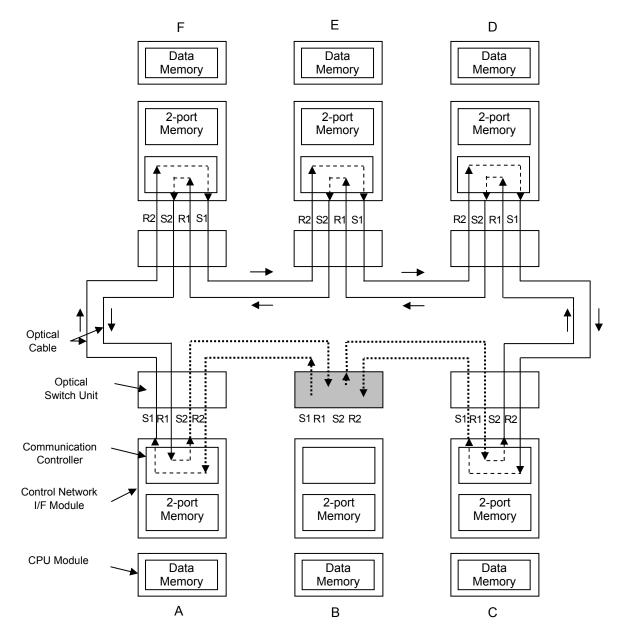
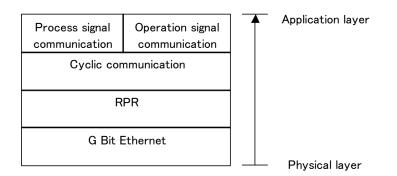


Figure 4.3-3 Explanation of Optical Switch Failure

Figure 4.3-3 shows the configuration of the network for failure of an optical switch. If the optical switch for subsystem (B) is in failure status, the communication path is disconnected between the optical switch and the Control Network I/F Module in subsystem (B), and between subsystems (A) and (C), as shown in the figure.

With the failure described above, the optical signal of subsystem (B)'s S1 and S2 port will be cut off. This will be detected by subsystem (A)'s R2 port and subsystem (C)'s R1 port, respectively. Thus the communication path that goes through subsystem (B) is determined to be unusable.


A communication path between subsystems (A) and (C) will then be established automatically via subsystems (F)/(E)/(D). The same applies for communication from the other nodes that normally communicate through subsystem (B). Therefore, the only node that can no longer send or receive communication is subsystem (B). Send and receive communication between all other nodes remains fully operable.

The reconfiguration of the communication paths described above causes a momentary disruption of data communication on the Control Network []. However, since the optical switch has been qualified, failure of an optical switch is a random hardware failure, that can adversely affect the safety function of only one division, this momentary disruption is not considered in the normal Control Network response time. If the main CPU reads the data in the Control Network I/F Module 2-port memory during this network reconfiguration disruption interval, the main CPU will continue to use the data from the previous communication cycle. The main CPU will alarm the network as failed if the data does not get updated after a predefined time.

4.3.2.2 Specifications

4.3.2.2.1 Infrastructure

The protocol stack of Control Network is described in Figure 4.3-4. The optical G-bit Ethernet is used for the physical layer. RPR based on IEEE Standard 802.17 is applied to the Data Link Layer protocol. (RPR: Resilient Packet Ring)

Figure 4.3-4 Protocol Stack of Control Network

The specifications of the Control Network are described in Table 4.3-2.

Table 4.3-2 The Specification of Control Network

Fiber cable, including outer and inner jackets and any strengthening components, is constructed using only non-conducting materials to ensure inherent isolation to prevent electrical fault propagation.

4.3.2.2.2 Communication Method

The data communication method of the Control Network is as follows.

]

The data is delivered to the destination Network I/F Module within the Guaranteed data update cycle time, shown in Table 4.3-1.

4.3.2.2.3 Communication Controller

[

]

4.3.2.3 Isolation

The MELTAC platform maintains electrical isolation and communication isolation for the interface between Controllers in separate safety divisions and for the interface between safety Controllers and any non-safety division. The methodology to ensure this isolation is described below.

a) Electrical Isolation

The MELTAC platform uses fiber optics and optical to electrical converters (E/O Converter) to ensure electric Isolation. The optical communication circuit is shown in Figure 4.3-5

b) Communication Isolation

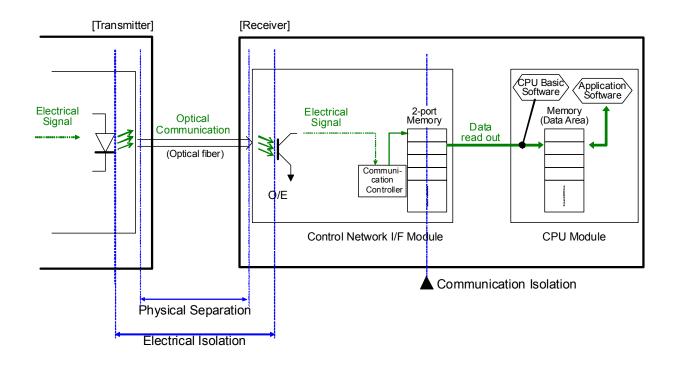


Figure 4.3-5 Separation in Communication of Control Network

4.3.2.4 Self-Diagnosis

The Self-diagnosis function of the Control Network is described below.

In MELTAC, a Fatal error is defined as "Failure" and a tolerable error is defined as "Alarm" (see Section 4.1.5.). For Failure conditions, the main CPU stops operation; the main CPU continues operating for Alarm conditions. The application software determines the response to Alarm conditions. For loss of input data, options include using predefined values or the last good values. The categorization of self-diagnostic errors detected for the Control Network I/F Module, as defined in Table 4.3-3 Self-Diagnosis Functions of Control Network, is described below:

Table 4.3-3 Self-Diagnosis Functions of Control Network

4.3.2.5 Communication Independence

This section describes how communication independence is maintained when the Control Network is applied for data communication between non-safety system and safety systems. This section provides details for communication isolation, which is described in Section 4.3.2.3. To exemplify this independence, this section describes the operational signal interface from the non-safety operational VDU (O-VDU) to the safety controller via the Unit Bus, and the monitoring signal interface from the Reactor Protection System (RPS) to the O-VDU via the Unit Bus, as applied in the US-APWR.

The O-VDU interface is an example to show the receiving process from non-safety system to the safety system and RPS interface is an example to show the sending process from safety system to non-safety system.

Figure 4.3-6 and Figure 4.3-7 show the relevant portion of the US-APWR system. (See MUAP-07004 for the entire configuration of the US-APWR system.)

[

1

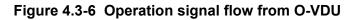


Figure 4.3-7 Process signal flow from RPS to Unit Bus

4.3.2.5.1 Detail data flow

This section describes the detail data flow between the Control Network I/F Module and the CPU Module in the COM.

[

]

[

Figure 4.3-8 Detail signal flow in COM (Receiving process)

MITSUBISHI ELECTRIC CORPORATION

Figure 4.3-9 Detail signal flow in RPS (Sending process)

[

]

]

(1) Receiving process

(1-1) Processing by the Control Network I/F Module

This paragraph discusses the processing in the Control Network I/F Module.

Figure 4.3-10 provides details of the Figure 4.3-8.

Figure 4.3-10 Processing by the Control Network I/F Module

[

]

(1-2) Processing by the main CPU

This paragraph explains the processing of the data by the main CPU. Figure 4.3-11 provides details of the Figure 4.3-8.

Figure 4.3-11 Processing by the main CPU

[

(2) Sending Process

(2-1) Processing by the main CPU

Figure 4.3-12 provides details of the Figure 4.3-9. And this paragraph explains the processing by the main CPU.

Figure 4.3-12 Processing by the main CPU

[

]

(2-2) Processing by the Control Network I/F Module

Figure 4.3-13 provides details of the Figure 4.3-9. And this paragraph explains the processing by the Control Network I/F Module.

Figure 4.3-13 Processing by the Control Network I/F Module

[

4.3.2.5.2 Summary of the design feature for the interdivisional communication

This section discusses the summary of the design feature for the interdivisional communication on the Control Network.

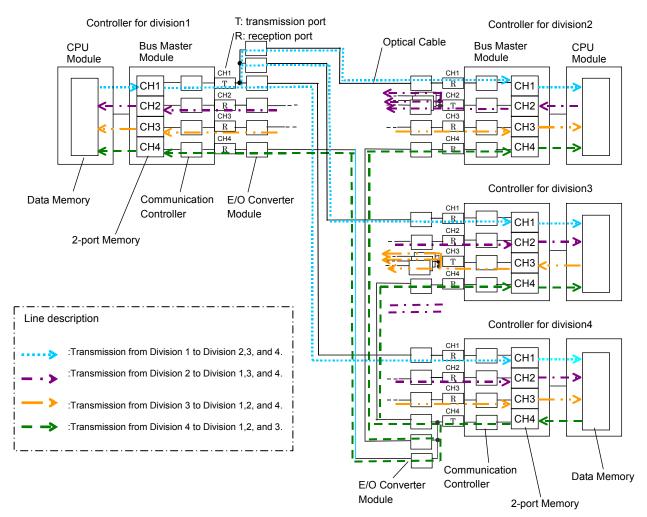
The receiving process in the data flow from the O-VDU to the COM will be discussed in this section.

In the Control Network interface, there are design policies and network check methods that provide the necessary means to comply with the requirements of ISG-04 for communication.

[

]

(4) Conformance summary to ISG-04


The conformance of ISG-04 is shown in MELTAC platform ISG-04 Conformance Analysis (JEXU-1015-1009) and Appendix D of this technical report.

4.3.3 Data Link

4.3.3.1 Configuration

Data Link communication is used to transmit process signals between the Controllers in different safety divisions. The Data Link uses a broadcast protocol at 1Mbps, with no communication handshaking.

Figure 4.3-14 provides a graphical representation of the data link connections between redundant safety divisions. This figure shows all the data link components and the example of connection configuration when CH1 of Controller for division1 is transmission port(T), CH1 of Controllers for other divisions is reception port(R), CH4 of Controller for division4 is transmission port(T), and CH4 of Controllers for other divisions is reception port(R).

Figure 4.3-14 Example of Connection Configuration of Data Link Configuration

The Data Link is interfaced through Bus Master Modules. The Bus Master Module provides four communication ports (also referred to as channels). [

]

Each port is set either as a transmission port or a reception port. The Bus Master Module produces an electrical output, which is converted by the Electrical/Optical Converter Module to an optical signal. The transmission port of the Electrical/Optical Converter Module is connected by the optical cable to the reception port of the Electrical/Optical Converter Module in another division.

4.3.3.2 Specifications

4.3.3.2.1 Infrastructure

The specifications of the Data Link Communications are described in Table 4.3-4.

 Table 4.3-4 The Specification of Data Link Communication

4.3.3.2.2 Communication Method

4.3.3.2.3Communication Controller

1

]

4.3.3.3 Isolation

The isolation method is basically the same as for the Control Network. However the Data Link communication interface is implemented in the Bus Master Modules and the communication is unidirectional.

The physical, electrical, and functional isolation, based on the above figure, is as described below.

a) Physical Separation

The E/O converter module of the data link allows for distance of 1Kmeters between sending and receiving controllers. This allows the controllers to be geographically separated into separate I&C equipment rooms. For example for the PSMS of the US-APWR, the configuration of controllers for each division is described in MUAP-07004.

b) Electrical Isolation

The MELTAC platform uses fiber optics and optical to electrical converters (E/O Converter) to ensure electric Isolation. The optical communication circuit is shown in Figure 4.3-15.

c) Communication (Functional) Isolation

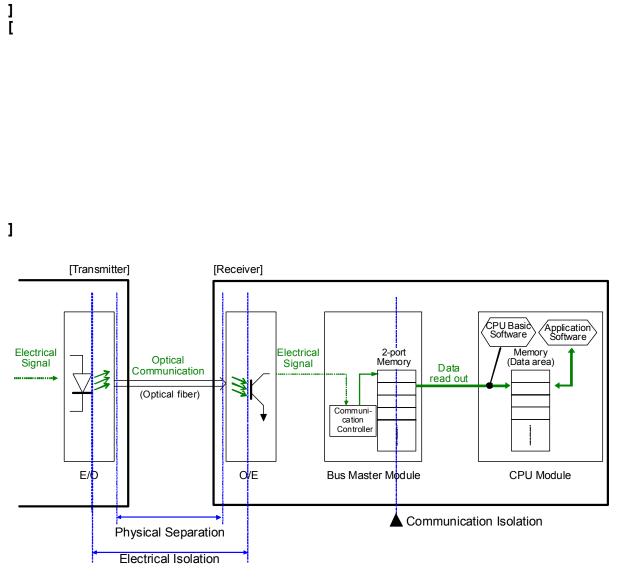


Figure 4.3-15 Separation in Communication of Data Link

4.3.3.4 Self-Diagnosis

[

4.3.3.5 Communication Independence

This section describes how communication independence is maintained when the Data Link is applied for data communication between Controllers in other divisions. This section provides details for communication isolation, which is described in Section 4.3.3.3. To exemplified this independence, this section describes the Reactor Protection System(RPS) interface to Controllers(RPS) in the other trains, as applied in the US-APWR. Figure 4.3-16 shows the configuration of a part of the US-APWR system that is relevant to the partial trip signal to each of the other three RPS trains. (See MUAP-07004 for the entire configuration of the US-APWR system.)

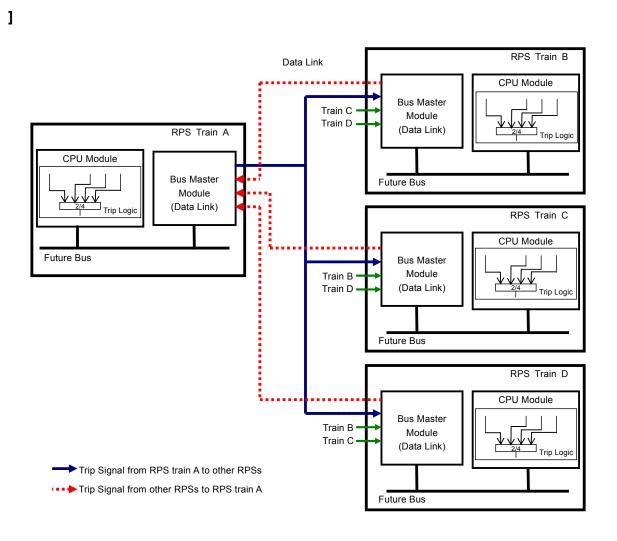
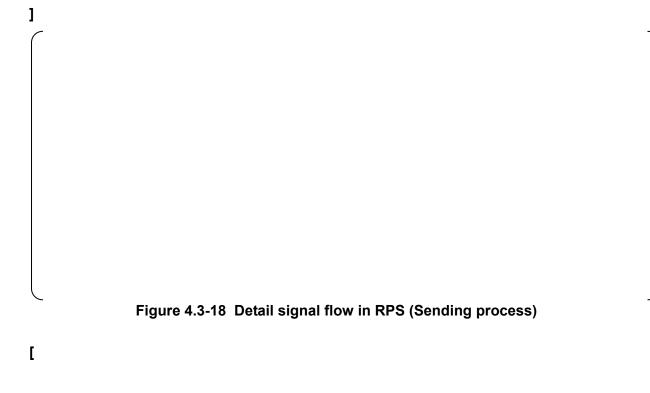


Figure 4.3-16 Partial Trip signal flow between RPSs


4.3.3.5.1 Detail data flow

This section describes the detail data flow between the Bus Master Module and the CPU Module in the RPS.

[

]

Figure 4.3-17 Detail signal flow in RPS (Receiving process)

(1) Receiving Process

(1-1) Processing by the Bus Master Module

Figure 4.3-19 provides details of the Figure 4.3-17. And this paragraph explains the processing by the Bus Master Module.

Figure 4.3-19 Processing by the Bus Master Module

] (1-2) Processing by the main CPU Figure 4.3-20 provides details of the Figure 4.3-17. And this paragraph explains the processing by the main CPU.

Figure 4.3-20 Processing by the main CPU

[

(2) Sending Process

(2-1) Processing by the main CPU

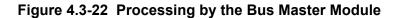

Figure 4.3-21 provides details of the Figure 4.3-18. And this paragraph explains the processing by the main CPU Module.

Figure 4.3-21 Processing by the main CPU

[

(2-2) Processing by the Bus Master Module

Figure 4.3-21 provides details of the Figure 4.3-18. And this paragraph explains the processing by the Bus Master Module.

[

4.3.3.5.2 Summary of the design feature for the interdivisional communication

This section discusses the summary of the design feature for the interdivisional communication on the Data Link.

]

(3) Conformance to ISG-04

The conformance of ISG-04 is shown in MELTAC platform ISG-04 Conformance Analysis (JEXU-1015-1009) and Appendix D of this technical report.

4.3.4 Maintenance Network

4.3.4.1 Configuration

The Maintenance Network is used to communicate between the Controllers and the MELTAC engineering tool to download new application software to the Controllers, or to read/write inside memory of controller. There may be up to three MELTAC engineering tools connected to one controller at any one time.

The description of the Controller's processing of data for the MELTAC engineering tool is described in Section4.1.4.2.

Figure 4.3-23 shows the Maintenance Network configuration.

In this figure the Maintenance Network is connected to the controllers. However, for some applications, continuous connection of the controllers to the Maintenance Network can be permitted, for US-APWR, that connection is normally disconnect. Where continuous connection is not permitted, the controllers are normally disconnected at the controller end. The controllers are connected for equipment maintenance. If controllers are normally disconnected, a connection signal is generated which can be used by the application configuration for an alarm in the Main Control Room (MCR).

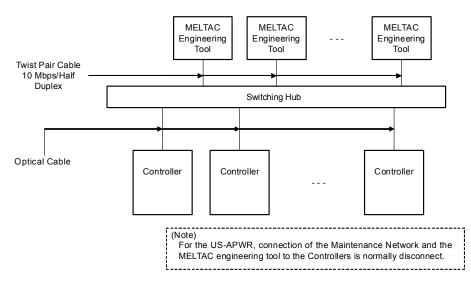


Figure 4.3-23 Maintenance Network Configuration

4.3.4.2 Isolation

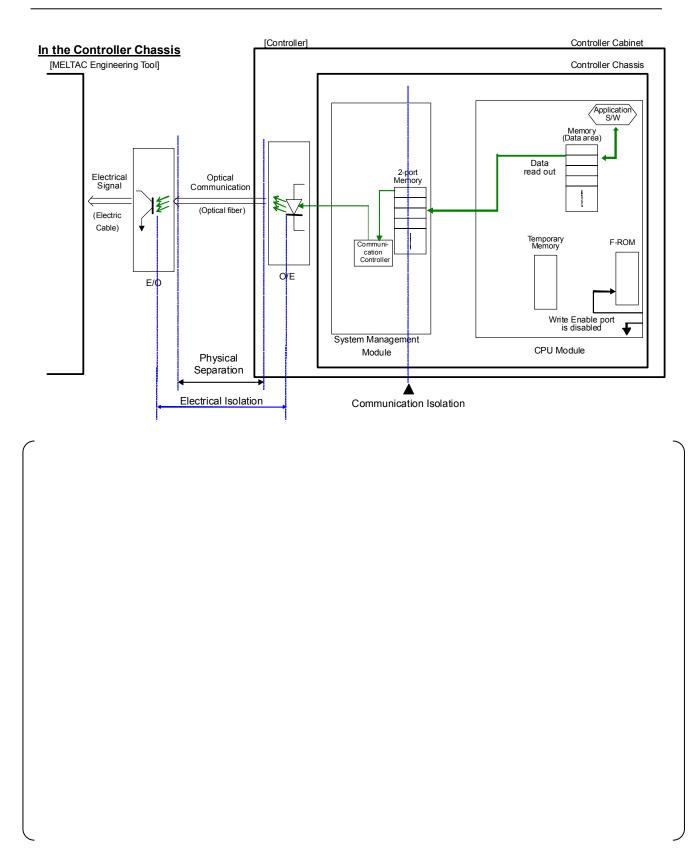


Figure 4.3-24 Separation in Communication of Maintenance Network

Figure 4.3-25 Dedicated Re-programming Chassis for Writing F-ROM

The MELTAC engineering tool and Switching Hub are connected to the Controller based on the following design features:

- The non-safety MELTAC engineering tool and Switching Hub are electrically isolated from the safety components through qualified fiber optic isolators with E/O converters.
- The communication interface for each Controller uses a separate System Management Module with 2-port memory to ensure the communication process and safety function process execute asynchronously.

If the Controller is normally disconnected from the Maintenance Network there is no communication with the MELTAC engineering tool. However, when the controller is connected to the Maintenance Network, the following communication description applies:

 When the Controllers are in service (ie. with the CPU Module in its normal configuration in the controller cabinet and with the write enable port of the F-ROM disabled) they provide only unidirectional outbound communication to the MELTAC engineering tool (ie. there is no ability for the MELTAC engineering tool to write information to the Controller's memory), based on data requests from the MELTAC engineering tool.

4.3.4.3 Design Basis of Connection to Maintenance Network

1

4.4 Response Time

The response time depends on the configuration of the Controller for a specific application. The worst case response time is determined by combining the response time of individual control processes. This section describes the concepts behind the processing time of each control process. It also describes the calculation method to determine the total response time of a specific application by exemplifying a typical hardware configuration. All self-diagnostics are considered in the response time calculation method.

As described in the following sections, the worst case response time is deterministic. Therefore the response time conforms to BTP 7-21.

4.4.1 Processing Time of MELTAC Fundamental Cycle

[

Figure 4.4-1 The Time Chart of Fundamental Process in Cyclic

]

4.4.2 Processing Time of MELTAC Application

The MELTAC platform is composed of the CPU Module, Bus Master Module, various types of I/O modules, Communication I/F Module and safety VDU panel. An external input is processed by each of these components before the control result is output to external terminal(s). Figure 4.4-2 is an example of a typical MELTAC hardware configuration, including communication between two controllers. Table 4.4-1 shows the method to calculate the minimum and maximum response time for each process.

Figure 4.4-2 Internal Process Divisions of the MELTAC Platform to Perform Response Time Calculations
 Table 4.4-1 Description of Processing in Each Component (maximum/minimum values)

4.4.3 Examples of Response Time Calculations

4.5 Control of Access

[

]

4.5.1 Control of Access for Hardware [

]

4.5.2 Control of Access for Software

4.6 Elimination or Relaxation of Surveillance

[

5.0 ENVIRONMENTAL, SEISMIC, ELECTROMAGNETIC AND ISOLATION QUALIFICATION

This section describes environmental, seismic, electromagnetic and isolation qualifications of MELTAC platform.

Environmental and seismic qualifications have been verified by the tests described in Section 5.1 and 5.2, respectively. Section 5.3 describes Electromagnetic compatibility (EMC) tests. Section 5.4 describes electrostatic discharge (ESD) tests. Environmental, seismic, EMC and ESD tests have been completed. The EMC acceptance criteria are described in this Technical Report. The results of Environmental test, Seismic test and EMC test are presented in the following test reports.

"Environmental Test Summary Report for the MELTAC Platform (JEXU-3300-2160)" "Seismic Test Summary Report for the MELTAC Platform (JEXU-3300-2161)" "EMC Qualification Test Summary Report for the MELTAC Platform (JEXU-1016-0022)"

5.1 Environmental Test

5.1.1 Environmental Specification and Outline of Test

The environment specifications of the MELTAC platform are shown in Section 4.1.1.4. The MELTAC platform is designed so as to continue operating without loss of functions even under the abnormal environmental conditions (temperature, humidity) of an assumed accident.

The MELTAC platform system environmental test was performed in a cabinet equipped with components of the platform. All modules, including modules that were not included in the system environmental test, were further subjected to an individual module environmental test.

Since the system environmental test, some new modules have been developed, and several modules included in the system test have been modified. All of these new or modified modules have undergone module environmental tests.

5.1.2 Contents of Environmental Test

5.1.2.1 System Level Environmental Test

The MELTAC modules mounted inside the cabinet for the system environmental tests are as follows:

- CPU Module
- System Management Module
- Bus Master Module
- Control Network I/F Module
- Touch Panel I/F Module
- Status Display & Switch Module
- Status Display Module
- Repeater Modules
- Analog Input Modules
- Analog Output Modules
- Digital Input Modules

- Digital Output Modules
- E/O Converter Modules
- Power Interface Module
- Distribution Modules
- Power Supply Modules

These modules were selected as those that were deemed necessary to confirm the safety function of a typical Reactor Protection System, including the bi-stable operation and the trip signal output.

For the system environmental tests a cabinet equipped with MELTAC modules interconnected and powered in a test configuration was placed inside a thermostatic chamber. The test configuration results in the worst case expected temperature rise across the module chassis and across the cabinet. Before, during, and after each test it was confirmed that there were no equipment failures or abnormal functions such as erroneous bi-stable operation or erroneous trip signal output, etc. To determine whether any function abnormalities occurred, the output signals were recorded on a chart recorder to capture any erroneous output during the test. In addition, the self-diagnosis function of the MELTAC platform detected no abnormalities during the test.

For the system environmental test, the correct performance of the system was verified during the following tests.

Thus, the system environmental tests showed that the MELTAC platform would continue to operate under all expected environmental conditions.

5.1.2.2 Module Environmental Test

Thus, the modules tests demonstrated that the individual modules of the MELTAC platform would continue to perform as designed under all expected environmental conditions.

5.2 Seismic Test

5.2.1 Overview

The MELTAC platform is designed to maintain structural integrity and functional integrity during and after a design basis earthquake. Seismic testing is part of the overall system seismic qualification which ensures there is no negative affect on the safety protection function of the equipment even if an earthquake occurs during plant operation.

The Cabinet Seismic Resistance Test was performed with a MELTAC Cabinet fully loaded with MELTAC components. For the Cabinet Seismic Resistance Test, a test specimen was prepared that is typical of a safety protection system application. The test specimen was vibration-excited on a large shaker table. During the test the physical integrity and vibration characteristics of the cabinet were confirmed. All system functions were also confirmed before, during and after the excitation. For the input acceleration used for the Cabinet Seismic Resistance Test, a floor response spectrum was selected that is high enough to cover the range of power plants in Japan.

There are no components with aging mechanisms that would affect the equipment's susceptibility to failure during these seismic tests. Therefore there was no special age related preconditioning for these tests.

The test facility for the Cabinet Seismic Resistance Test is a famous facility for conducting seismic test of large equipment for nuclear power plants. Tests were conducted on a 3-Direction large shaker table.

In addition, the Module Seismic Resistance Tests were performed for major components. For module types where structure and positions of parts are the same, and other differences would have no impact on seismic capability, such as differences in input ranges, one typical module type was selected. Modules were mounted in chassis for the Module Seismic Resistance Test. For the Module Seismic Resistance Tests, the cabinet maximum response ratio was analyzed from the cabinet seismic resistance test. The input acceleration for the Cabinet Seismic Resistance Test was multiplied by the maximum response ratio and additional margin is added to obtain the input acceleration for the chassis.

Chassis loaded with MELTAC modules were vibration-excited with this input acceleration. During and after this testing, the physical and functional integrity of the module is confirmed.

The Safety I&C System Description and Design Process Technical Report for the US-APWR DCD describes the method used to ensure the seismic testing levels bound the levels the equipment will be exposed to in actual in-plant applications.

5.2.2 Seismic Resistance Test

5.2.2.1 Cabinet Seismic Resistance Test

For the Cabinet Seismic Resistance Test, a specimen that simulates a fully loaded safety protection system cabinet was prepared. The loading configuration represents the worst case expected stress on internal mounting hardware. The configuration of the Cabinet Seismic Resistance Test specimen is shown in the Seismic Qualification Test Report JEXU-1002-1080.

The major MELTAC components located inside the cabinet are as follows:

- CPU Module
- System Management Module
- Bus Master Module
- Status Display Module
- Repeater Modules
- Analog Input Modules
- Analog Output Modules
- Digital Input Modules
- Digital Output Modules
- Power Interface Module
- Distribution Modules
- E/O Converter Modules
- Power Supply Modules

5.2.2.2 Module Seismic Resistance Test

For the Module Seismic Resistance Test, physical and functional integrity was confirmed by testing individual modules or chassis loaded with multiple modules. The following modules were included in these tests:

- CPU Module
- System Management Module
- Bus Master Module
- Control Network I/F Module
- Touch Panel I/F Module
- FMU Module
- Status Display & Switch Module
- Status Display Modules
- Repeater Modules
- I/O modules
- Power Interface Module
- Isolation Modules
- E/O converter Modules
- Distribution Modules
- Power Supply Modules
- Safety VDU Panel
- Optical Switch
- Ethernet Optical Isolation Device

5.3 Electromagnetic Compatibility and Radio Frequency Interference

The EMI/RFI emission and susceptibility tests are performed for the MELTAC platform based on the methods and acceptance criteria of RG1.180. The EMC qualification to RG1.180 is confirmed for the MELTAC platform. The tests are performed with a MELTAC cabinet fully equipped with a typical configuration of MELTAC components required for a safety protection system.

[

]

The specific test method used for the EMI/RFI emission and susceptibility tests described below, was that specified by MIL-STD-461E.

- Conducted emissions, high frequency, 10kHz to 2MHz (CE102)
- Radiated emissions, magnetic field, 30Hz to 100kHz (RE101)
- Radiate emissions, electric field, 2MHz to 1GHz, 1GHz to 10GHz (RE102)
- Conducted susceptibility, low frequency, 30Hz to 150kHz (CS101)
- Conducted susceptibility, high frequency, 10kHz to 30MHz (CS114)
- Conducted susceptibility, bulk cable injection, impulse excitation (CS115)
- Conducted susceptibility, damped sinusoidal transients, 10kHz to 100MHz (CS116)
- Radiated susceptibility, electric field, 30MHz to 1GHz, 1GHz to 10GHz (RS103)

For the power line surge withstand capability test, the following tests are performed with the same configuration as that for the EMI/RFI Test:

The specific test method used for theses tests is that specified by IEC61000-4.

- Surge Withstand Capability, Ring Wave
- Surge Withstand Capability, Combination Wave
- Surge Withstand Capability, Electrically Fast Transients/bursts

Surge Withstand Capability; Oscillatory Wave Test has been successfully performed based on IEEE Std 472 for MELTAC modules. Frequency range of 1 MHz, first peak voltage range of more than 2.5 kV and repetitive rate of more than 50 tests per second for a period of more than 2 seconds were applied.

For all susceptibility and surge withstand tests the following acceptance criteria is applied:

- There is no equipment damage
- Processors continue to function
- Data communications is not disrupted
- Discrete I/O does not change state
- Analog I/O levels do not vary by more than 3%
- There is no VDU image disturbance

The satisfactory performance of the equipment is confirmed by means of a recorder connected to the digital and analog output modules. Digital input and the analog input levels are

automatically monitored by the application software which displays an alarm in case of an error.

The occurrence of any system function abnormality, data communication abnormality, and equipment failure is confirmed by referring to the results of the self-diagnosis function of the MELTAC platform.

"EMC Qualification Test Summary Report for the MELTAC platform" provides the results of the EMI/RFI emission and susceptibility tests, and surge withstand capability tests. The test report describes any test anomalies, any special plant conditions needed to meet the acceptance criteria, or any operational or interface restrictions needed to accommodate conditions where the acceptance criteria has not been met.

5.3.1 Test Configuration

The Equipment Under Test (EUT) is comprised of two cabinets - the CPU cabinet fitted with the CPU Chassis, E/O converter Chassis, Optical Switch and Power Supply modules, and the I/O cabinet fitted with the I/O Chassis, Power Interface Chassis, Isolation Chassis and Power Supply modules. In order to attain the cabinet layout similar to the actual ordinary cabinet layout, the two cabinets are placed side by side with no space in between, thus securing the integral configuration. The cabinets were tested with the doors open to duplicate worst case conditions expected during testing and maintenance. The EUT also includes the safety VDU panel that is placed separately from the two cabinets.

The safety VDU panel is supplied power from the CPU cabinet and connected with the power cable and the signal cable.

The EUT included the module types required for safety protection system applications, as shown in Table 5.3-1.

For module types where differences will have no impact on EMC test results, such as NO vs NC contacts or differences in input ranges, one typical module type was selected.

The AC power to the EUT is supplied from two systems - main and standby -. Since within the EUT both power sources have the same configuration, the tests for AC input power line of CE102, CS101, CS114 and IEC61000-4 is performed for one AC power cable.

Module	Model
CPU Module	PCPJ-11
System Management Module	PSMJ-11
Bus Master Module	PFBJ-11
Control Network I/F Module	PWNJ-01
Touch Panel I/F Module	PRSJ-01
FMU Module	PFDJ-01
Status Display Module	PPNJ-12
Repeater Module	MRPJ-01
Repeater Module	MRPJ-02
Repeater Module	MRPJ-21
Analog Input Module (Current input)	MLPJ-01
Analog Input Module (Current input for automatic testing)	MLPJ-02
Analog Input Module (RTD input)	MRTJ-34
Analog Input Module (RTD input for automatic testing)	MRTJ-61
Analog Output Module (Current output)	MAOJ-01
Analog Output Module (Voltage output)	MVOJ-01
Digital Input Module (Contact input)	MDIJ-04
Digital Input Module (Contact input for automatic testing)	MDIJ-06
Digital Input Module (Contact input for redundant parallel controller)	MDIJ-62
Digital Output Module (Relay contact output)	MDOJ-03
Digital Output Module	MDOJ-61
(Relay contact output for redundant parallel controller)	
Digital Output Module (Semiconductor output)	MDOJ-22
Isolation Module (Current input, Current/Voltage output)	KILJ-01
Isolation Module (RTD 4line type input, Current/Voltage output)	KIRJ-01
Isolation Module (Contact input, Semiconductor output)	KIDJ-01
Power Interface Module	DPOJ-21
E/O Converter Module (RS485)	MEOJ-02
E/O Converter Module (RS232C)	MEOJ-11
CPU Power Supply Module	PS-1
I/O Power Supply Module	PS-2
CPU Power Supply Module (Small capacity type)	PPSJ-01
CPU Power Supply Module (Large capacity type)	PPSJ-11
CPU Fan	814JND
Door Fan	815JND
Power Supply Fan	503AH0HE
Safety VDU Panel	T10DHA229
Optical Switch	RJMA-02

Table 5.3-1 MELTAC Modules for the EMC Test

5.3.2 Description of Tests

5.3.2.1 Conducted Emissions, High Frequency (CE102) Test

The test is performed according to the method set forth in MIL-STD-461E, as follows:

a) Method

The conducted emission from the input power lead cable of the EUT is measured to confirm that the electromagnetic conducted emission from the EUT does not exceed the specified value.

b) Test Subject

The test subject is the AC input power lead cable including return and the ground cable of the EUT.

[

] 5.3.2.2 Radiated Emissions, Magnetic Field (RE101) Test

The test is performed according to the method set forth in MIL-STD-461E, as follows:

a) Method

A loop sensor is placed on the surface of the object EUT to measure and confirmed that the magnetic field radiated emission from the EUT does not exceed the specified value.

b) Test Subject

The test subjects are the EUT enclosure, the electrical cable interface and the safety VDU panel. The four surfaces are scanned in 360 degrees with the loop sensor at positions at the center of the location (height) where the module is mounted.

[

5.3.2.3 Radiated Emission, Electric Field (RE102) Test

The test is performed according to the method set forth in MIL-STD-461E, as follows:

a) Method

Antennas are placed at the position specified for each frequency range from the border of the setup environment including the interface cable in order to confirm that the electric field radiated emission from the EUT does not exceed the specified value.

b) Test Subject

The test subjects are the EUT enclosure, the all interface cables and the safety VDU panel. [

5.3.2.4 Conducted Susceptibility, Low Frequency (CS101) Test for Power Leads

According to section 4 of RG1.180, the CS101 test is mentioned as the MIL-STD-461E test method that can be applied as the conducted EMI/RFI susceptibility power leads. This test method is not applied to the signal lead.

The test is performed according to the method set forth in MIL-STD-461E, as follows:

```
a) Method
```

Confirm that the EUT can withstand the signal connected to the AC input power lead.

```
b) Test Subject
```

The test subject is AC input power lead to the EUT.

[

] 5.3.2.5 Conducted Susceptibility, High Frequency (CS114) Test for Power Leads

The CS114 test is applicable to all interconnecting leads including the power leads of the EUT. This section describes the CS114 test that is applied to the power and control lines described in section 4.1.2 of RG1.180.

The test is performed according to the method set forth in MIL-STD-461E, as follows:

a) Method

Confirm that the EUT can withstand the RF signals coupled onto the EUT associated cabling.

b) Test Subject

One each of the AC input power cable and the control cables (input and output cables of the Digital I/O modules and Power Interface Module) to the EUT

[

5.3.2.6 Conducted Susceptibility, High Frequency (CS114) Test for Signal Leads

The CS114 test is applicable to all interconnecting leads including the power leads of the EUT. This section describes the CS114 test that is applied to the signal line described in section 4.2 of RG1.180.

The test is performed according to the method set forth in MIL-STD-461E, as follows:

a) Method

Confirm that the EUT can withstand the RF signals coupled onto the EUT associated cabling.

b) Test Subject

One each of the signal cables (input and output cables of the Analog I/O modules, the Isolation Modules and the RGB cables) to the EUT

[

]

5.3.2.7 Conducted Susceptibility, Bulk Cable Injection, Impulse Excitation (CS115) Test

According to section 4.2 of RG1.180, the CS115 test is mentioned as the MIL-STD-461E test method that can be applied as the conducted EMI/RFI susceptibility test along the power leads for the interconnecting signal leads. This test method is not applied to the power lead. The test is performed according to the method set forth in MIL-STD-461E as follows:

a) Method

Confirm that the EUT can withstand the impulse signals coupled onto the EUT associated cabling.

b) Test Subject

One each of the signal cables (input and output cables of the Analog I/O modules, the Digital I/O modules, Power interface Module, the Isolation Modules and the RGB cables) to the EUT

5.3.2.8 Conducted Susceptibility, Damped Sinusoidal Transients (CS116) Test

According to section 4.2 of RG1.180, the CS116 test is mentioned as the MIL-STD-461E test method that can be applied as the conducted EMI/RFI susceptibility test along the power cables. This test method is not applied to the power lead.

The test is performed according to the method set forth in MIL-STD-461E as follows:

a) Method

Confirm that the EUT can withstand the damped sinusoidal transients coupled onto the EUT associated cabling.

b) Test Subject

One each of the signal cables (input and output cables of the Analog I/O modules, the Digital I/O modules, Power Interface Module, the Isolation Modules and the RGB cables) to the EUT

[

]

5.3.2.9 Radiated Susceptibility, Electric Field (RS103) Test

The test is performed according to the method set forth in MIL-STD-461E as follows:

a) Method

Confirm that the EUT can withstand the electric field emitted from the antenna.

b) Test Subject

The test subjects are the EUT enclosure, the all interface cables and the safety VDU panel. Since the EUT enclosure is placed on the floor as in actual plant conditions, and, since its height measures 7.55 ft (2300 mm), the direction of emission of the radiated electric field to the EUT enclosure is in 4 horizontal directions. The top and the bottom parts are not likely to be affected by the electric field.

[

5.3.2.10 Surge Withstand, Ring Wave Test

The test is performed according to the method set forth in IEC61000-4-12 as follows. For the withstand voltage of the test, the B Medium Exposure is selected out of the location categories described in IEEE Std C62.41-1991, and the corresponding surge voltage level is applied.

a) Method

Confirm that the EUT withstands the transient damped phenomenon (Ring Wave) generated by the low-voltage power network applied to the input power lead cable.

b) Test Subject

The test subject is the AC input power lead to the EUT.

[

] 5.3.2.11 Surge Withstand, Combination Wave Test

The test is performed according to the method set forth in IEC61000-4-5 as follows. For the withstand voltage of the test, the B Medium Exposure was selected out of the location categories described in IEEE Std C62.41-1991, and the according surge level was applied.

a) Method

Confirm that the EUT withstands the unidirectional surge generated by the over-voltage due to the transient phenomenon of switching and lightning applied to the input power lead cable.

b) Test Subject

The test subject is the AC input power lead to the EUT.

[

] 5.3.2.12 Surge Withstand, Electrically Fast Transients/bursts Test

The test is performed according to the method set forth in IEC61000-4-4 as follows. For the withstand voltage of the test, the B Medium Exposure was selected out of the location categories described in IEEE Std C62.41-1991, and the according surge voltage level was applied.

a) Method

Confirm that the EUT withstands the electrical fast transient/burst: EFT/B applied to the input power lead cable.

b) Test Subject

The test subject is the AC input power lead to the EUT.

[

5.4 Electrostatic Discharge Test

For the MELTAC platform, the ESD test has been successfully performed based on IEC61000-4-2 with test level-2, in accordance with Annex A (maximum charge voltage is 4 kV). This maximum charge voltage is based on the MELTAC Cabinet being installed in Japan on the floor using antistatic materials or concrete.

To avoid any special ESD maintenance precautions for US applications, an additional ESD test was also performed to level-4. This section describes the test, acceptance criteria and results.

The test is performed with the MELTAC Cabinet fully equipped with a typical configuration of MELTAC components required for a safety protection system.

The following acceptance criteria are applied for equipment that can be accessed during operation:

- There is no equipment damage
- Processors continue to function
- Data communications is not disrupted
- Discrete I/O does not change state
- Analog I/O levels do not vary by more than 3%
- There is no VDU image disturbance

This is the same acceptance criteria as for the EMI/RFI susceptibility test.

For equipment that can be accessed only during maintenance, the acceptance criteria is only to ensure no equipment damage.

The ESD test is performed according to the method set forth in IEC61000-4-2, as follows:

a) Method

Confirm that the EUT can withstand ESD, which may occur from personnel coming into contact at human-machine interface points of equipment during normal operation and when the equipment is out of service during maintenance.

b) Test Subject

The following equipment points are likely to be accessed by personnel during normal equipment operation.

- The touch panel of the safety VDU panel and the surrounding area.
- The front/rear door handles of the cabinet and the surrounding area
- The switches of the Status Display Module and the surrounding area.
- The switches and fuses of the Fans, and the surrounding area.
- The front panel of the Power Supply Modules and Analog Output Modules.

Other human-machine interface points of the equipment are expected to be accessed only during maintenance.

5.5 Isolation Test

[

6.0 LIFE CYCLE

In 2006, MELCO started the activities to apply MELTAC as a digital platform for Safety Systems in US nuclear facilities. At that time MELCO assessed the original QAP and the original MELTAC development process for conformance to US requirements. A deficiency regarding the IV&V required in IEEE 7-4.3.2 was identified. To compensate for this deficiency MELCO added assessment and IV&V procedures and developed [] which invoked those procedures. In accordance with [], MELCO conducted assessments of the existing Software and related documents during the period 2006-2007. These assessments resulted in additional IV&V program is referred to as the original US Conformance Program (UCP).

The "MELTAC Platform Basic Software Program Manual (SPM)" [] provides the generic plans that are followed under the [] for all activities related to all future activities for the MELTAC basic software life cycle. This document is applicable to any design modifications to the current MELTAC basic software to accommodate any product deficiencies and any product enhancements, and to any new MELTAC product development. The life cycle processes described in Section 6.1.3 through 6.1.12 and Section 6.2 establish the minimum requirements for the lifecycle specified in the []. To preclude the need for any additional post development assessments, the [] includes the requirements used for the UCP described in Section 6.1.7.

] Section 6.4 describes the assessment for the conformance of MELTAC to BTP 7-14.

Section 6.1 describes the lifecycle of MELTAC based on []. Section 6.1.1 and 6.1.2 describes the overview of MELCO's QA program for the current MELTAC basic software, []. Section 6.1.3 through 6.1.6 describes the original design process lifecycle of MELTAC.

Section 6.1.7 describes the original UCP conducted from 2006 to 2007, [], and the expanded UCP conducted from 2009 to 2010, [].

Section 6.1.8 through 6.1.11 describes the lifecycle of MELTAC after its development phase, based on [].

Section 6.1.12 describes the MELTAC software safety analysis for the current MELTAC basic software, **[**].

Section 6.2 describes the quality record management, failure management, and identification of MELTAC. This section is applicable to [].

Sections 6.1.3 through 6.1.12 and 6.2 are applicable to the current MELTAC platform. The processes defined in these sections established the basis for the assessment of the original MELTAC development conducted in the MRP, which is described in Section 6.3.

The life cycle requirements described in Sections 6.1.3 through 6.1.12 and 6.2, establish the minimum requirements for the "MELTAC Platform Basic Software Program Manual (SPM)"
[], which is used to manage the MELTAC software life cycle under the].

6.1 Life Cycle Process

This section describes key elements of the lifecycle process for the Basic components (software and hardware) of the MELTAC Platform, based on []. This section also includes the assessment of the original MELTAC development (prior to []), which was also conducted under [].

The life cycle processes for [] establish the minimum requirements for the processes defined in the "MELTAC Platform Basic Software Program Manual (SPM)" [

], which is used to manage the MELTAC software life cycle under the [].

6.1.1 Overview of the MELTAC Quality Assurance Program

As described in Section 7.1, the MELTAC platform has accumulated many years of positive performance records in various non-safety system applications such as the Plant Control and Monitoring System in nuclear plants operating in Japan. Based on its excellent performance in numerous non-safety applications, the MELTAC platform has been applied to all plant systems non-safety and safety in one of the Japanese nuclear plants under construction. These systems were shipped to the site.

The original quality assurance program (referred to as Original QAP) used for the MELTAC platform development was based on the Japanese Standard JEAG4101 and ISO9001. Since MELCO planned to apply the platform to safety systems in US nuclear facilities, the following quality assurance procedures were adopted in [], "NPD Procedure []: Safety System Digital Platform Quality Assurance Program", hence forth referred to as [Q-4102]. "NPD Procedure []: Safety System Digital Platform Cyber Security Program", hence forth referred to as [], and "NPD Procedure []: Safety System Digital Platform Software V&V Procedures", hence forth referred to as [].

Unless specifically noted, procedures applicable to software encompass all MELTAC basic software and firmware, regardless of which module or media that software may reside. These procedures address all requirements of IEEE7-4.3.2-2003, including the applicable Regulatory Guides and IEEE software standards. In addition, 10CFR Part 50 Appendix B was used as a guideline. The requirements of these quality assurance procedures are described in the Sections below.

The following table shows the relationship between the various QAP stages, the activities involved and standards conformance. This table is limited to design process activities, since all subsequent life cycle activities will be conducted only after the App.B-based QAP is in place.

Table 6.1-1 QA Procedures

]

Platform designs (hardware or software) developed prior to the [] (referred to as Existing Platform) will be reused for US nuclear applications. The Original QAP and records of the Existing Platform have been assessed against the [] procedures, to ensure suitable quality of the Existing Platform. This assessment, which was conducted under [], is referred to as the US Conformance Program (UCP). The result of the UCP

showed the development process for the Existing Platform conformed to [

] except the independent V&V requirement and other minor deficiencies. The MRP described in Section 6.3.1, provided an additional assessment conducted under the App. B-based QAP, using the guidance of EPRI-TR106439 and EPRI TR-107330.

Therefore MELCO developed the "MELTAC US Conformance Program" (UCP), which is the combination of the corrective actions taken to compensate for differences between the Original QAP and [], and the assessment of the developed software by the independent V&V Team. The detail is described in Section 6.1.7.

The requirements of [] are described in the following sections:

- Quality Assurance (6.1.2)
- Management (6.1.3)

The requirements of [] are described in the following section:

- Development (6.1.4)
- Configuration Management (6.1.5)
- Installation (6.1.8)
- Maintenance (6.1.9)
- Training (6.1.10)
- Operation (6.1.11)
- Software Safety Plan (6.1.12)

The requirements of [] are described in the following section:

Secure Development Environment Management (6.1.6)

The end of each section summaries the assessment of the Original QAP against the requirements of that section.

Hardware procured or manufactured prior to the App. B-based QAP will not be used for US nuclear applications. All hardware procurement, manufacturing and related testing for US applications will be conducted under the App. B-based QAP. Therefore, these areas of the product life cycle are not included in the MRP described in Section 6.3.1.

6.1.2 Quality Assurance Program Rev 2

The requirements for MELTAC platform quality assurance are set forth in various in-house procedures, in accordance with IEEE7-4.3.2-2003 and IEEE1012-2004. In addition, 10CFR Part 50 Appendix B was used as a guideline. These in-house QA procedures are shown in Figure 6.1-1.

]

Figure 6.1-1 Outline of In-house QA Procedures System and Relationship of Various Plans [

]

[

6.1.3 Management

This section describes requirements for management of MELTAC platform development. These requirements are based on IEEE 7-4.3.2-2003 and IEEE1012-2004.

.]

6.1.3.1 Organization

] 6.1.3.2 Project Plan [] 6.1.3.3 Personnel Ability [

]

Existing Platform Assessment based on UCP There is no difference between the personnel ability requirements for the Original QA Program and [____].

6.1.4 Development

The outline of the Software Development Plan is shown in Figure 6.1-2, A similar process is applied to hardware components. The hardware development process is described in Table 6.1-3.

Figure 6.1-2 Outline of Software Development Plan

Table 6.1-2 Contents of Activity in Each Phase

[

Figure 6.1-3 Outline of Problem Tracking/Resolution Process

The hardware development process consists of the Design Team activity and the independent review and test activity by people other than the actual design staff. The activities in each phase are shown in the table below.

] Existing Platform Assessment based on UCP [

[

The detailed assessment of the Development process used for the Existing Platform is provided in Section 6.1.7.

6.1.5 Configuration Management

The configuration management process is in accordance with NPD Standard [], which conforms to RG1.169 and IEEE828-1990. The key elements of the configuration management program are described below. [

The assessment of the configuration management activities for the Existing Platform is provided in Section 6.1.5.8.

6.1.5.1 Organization/Responsibility

] 6.1.5.2 Base-Line [1

6.1.5.3 Other Configuration Management Items

In addition to products of the Design and V&V Teams, the following items are maintained under the Configuration Management program.

]

6.1.5.4 Reporting

A project Configuration Management Report is periodically generated to document the applicable version of all project products that are maintained under configuration management, including all that have been base-lined. The frequency of updating this report is defined in the Project Plan.

6.1.5.5 Change Management

[

6.1.5.6 Storage and Retrieval

[

]

6.1.5.7 Reviews [

1

6.1.5.8 Existing Platform Assessment based on UCP The configuration management of the Existing Platform was assessed against the current Configuration Management program. The following minor deficiencies were identified: [

6.1.6 Secure Development Environment Management

The Secure Development Environment Management Program is in accordance with NPD Standard [], which conforms to RG1.152. The overall Secure Development Environment Management Program ensures the followings:

- a) There is no unintended code included in the software during the process of software development.
- b) Unintended changes to the software installed in the system are prevented and detected.

For item a), the Section 6.1.6.1 and 6.1.6.2 describe the security measures in the development process of the MELTAC platform software and the MELTAC engineering tool. These requirements and procedures are documented. The security measures in the development process of the application software are described in application level documentation. For example, for the US-APWR these activities are described in the US-APWR Software Program Manual (MUAP-07017) The US-APWR Software Program Manual also describes change management and security measures for the application software during the final integration and testing of plant systems prior to shipment.

For item b), application level documentation describes security measures in the system design which prevent unintended changes while the system is in the plant. For example, for the US-APWR these measures are described in the Safety I&C System Description and Design Process Technical Report for the US-APWR DCD (MUAP-07004). This applies to pre-operational testing and operation. Section 6.1.6.3 describes features of the MELTAC platform, which prevent unintended changes during system operation and allow changes to be detected, should they occur.

[

The Section 6.1.6.4 describes the Existing Platform assessment.

6.1.6.1 Software and FPGA Development/Storage Security Measures [

Figure 6.1-4 Security Measures of the Software Development/Storage Environment

[

 Table 6.1-4 Security Measures of the Software Development/Storage Environment

The CEAS is developed and configuration managed by the MELCO IT Systems section. The system is isolated from the corporate network and is also physically secured. Only registered IT System personnel are allowed to develop/access/modify system.

6.1.6.2 Security Measures In Each Phase of Development Process

This security measures shown in Table 6.1-5 ensure that no unintended code can be introduced during the development process.

Table 6.1-5 Security Measures in the Software Development Process

6.1.6.3 Secure Development Environment Measures During System Operation [

] 6.1.6.4 Existing Platform Secure Development Environment Assessments based on UCP [

]

6.1.7 US Conformance Program for Previously Developed Components [

] 6.1.7.1 Platform Design

]

6.1.7.2 Software Design

6.1.7.2.1 Software

] 6.1.7.2.2 FPGA [

] 6.1.7.3 Program Design, Coding, Unit Test

6.1.7.3.1 Software

] 6.1.7.3.2 FPGA [

]

6.1.7.4 Integration Test

This section is composed of two parts. The first part describes the Integration Tests performed during the original UCP and the assessment of past Integration Tests. The combination of the both results fulfills the Platform Specification, which conforms to the regulatory requirements. The second part describes the Integration Tests for the expanded UCP.

6.1.7.4.1 Integration Test - original UCP

] Final assessment result - The V&V Team confirmed that all items for the existing MELTAC platform integration test satisfied the requirements of [].

[

]

Based on the overall UCP the V&V Team reached the conclusion that all the requirements for the safety system are met.

6.1.7.4.2 Integration Test - expanded UCP

[

]

6.1.8 Software Installation

Existing Platform Assessment based on UCP There are no differences between the Existing Platform and the MELTAC platform for service in U.S. in terms of software installation procedures or requirements.

Figure 6.1-5 Software Installation

6.1.9 Maintenance

[

]

Table 6.1-6 Information Provided in the MELTAC Maintenance Manual

Plant owners may supplement the instructions in the Maintenance Manual with plant specific procedures to address administrative issues such as work orders and approvals.

Existing Platform Assessment based on UCP

There are no differences between the Existing Platform and the MELTAC platform for service in U.S. in terms of maintenance procedures or requirements.

6.1.10 Training

MELCO supports training that assists customers in understanding the working and proper use of the MELTAC platform. [

1

This training is comprised of lecture classes and hands-on training using actual MELTAC Controllers. Below are the major trainings courses:

[

]

Additional application specific training is described in application level documentation. For example, for the US-APWR training is described in the US-APWR Software Program Manual (MUAP-07017).

Existing Platform Assessment based on UCP

There are no differences between the Existing Platform and the MELTAC platform for service in U.S. in terms of training procedures or requirements.

6.1.11 Operations

] 6.1.11.1 Hardware

The following hardware measurements and adjustments (as needed) are recommended on a periodic basis, but not more frequently than once every 24 months.

Table 6.1-7 Hardware Measurement

Existing Platform Assessment based on UCP

There are no differences between the Existing Platform and the MELTAC platform for service in U.S. in terms of hardware operations procedures or requirements.

6.1.11.2 Software

This section describes the upgrade process for the MELTAC basic software. Upgrades or changes to application software are described in application level documentation. For example, for the US-APWR software upgrades are described in the US-APWR Software Program Manual (MUAP-07017).

Table 6.1-8 Software Upgrades Relation

Existing Platform Assessment based on UCP

There are no differences between the Existing Platform and the MELTAC platform for service in U.S. in terms of software operations procedures or requirements.

6.1.12 Software Critical Function Analysis

] As is described in the Section 4.1.3.1 "Basic Software", MELTAC basic software consists of 9 tasks executed sequentially.

[

[

Table 6.1-9 Possible Hazards

]

MITSUBISHI ELECTRIC CORPORATION

6.2 Life Cycle Management

[

]

6.2.1 Quality Records Management

Quality records are collected and controlled. This Quality Assurance Program ensures records of completed items and activities affecting quality are appropriately stored. The records and their retention times are defined.

6.2.2 Failure and Error Reporting and Corrective Action

MELCO has supported the utilities' maintenance of the shipped equipments. MELCO participates in the annual inspection and has provided 24 hours on call support service and dedicated Maintenance Team per plant in Japan. Therefore all customer's claims and Irregular Events for the shipped equipments are reported directly to MELCO, whether the plant is in operation or in the maintenance.

6.2.2.1 Policy of MELTAC Troubleshooting

When any error or failure occur, Per Plant Maintenance Team executes the primary investigation and the emergency treatment against the customer's claim and sends detailed Information to the factory for the further investigation. At the factory side, the procedure of troubleshooting is prepared to solve problem and for the preventive actions for other plants.(See 6.2.2.2)

MELCO has recorded all phenomena, causes, solutions, and all information about troubles at all plants. So MELCO collects all field equipment Failure and Error Information in-depth. Based on this information, MELCO has analyzed the platform reliability to improve quality of the MELTAC platform.

6.2.2.2 Troubleshooting Summary

The rule, method and form of troubleshooting report to customer will be discussed between MELCO and each customer, in consideration of US regulations (10CFR21) and customer's situation.

This subsection describes the general problem handling process of MELCO. Changes to this process are likely to occur through the normal course of MELCO's process improvements.

[

[

1

6.2.3 Obsolescence Management

This section describes obsolescence management program for the MELTAC platform. MELCO uses only parts with an excellent record of production continuity. Regardless, the product service life for nuclear applications covers 20 - 30 years, therefore it is inevitable that many parts will become unavailable. The following sections describe the process used to determine the availability of parts and the process used to evaluate and utilize different parts for substitution.

The parts substitution method described in this section is primarily applicable to obsolescence management. However, MELCO may also use the same method of part substitution to ensure adequate parts supply from multiple sources to accommodate supply management issues or production peaks.

6.2.3.1 Obtaining Information on Part Availability

[

] 6.2.3.2 Selecting Replacement Parts [

]

6.2.3.3 Verification after Replacement

[

]

6.2.4 Identification

6.2.5 Reliability Database

[

- 6.3 Establishment of 10 CFR Part 50 Appendix B-based QA Program, and MELTAC Reevaluation Program
- 6.3.1 Establishment of 10 CFR Part 50 Appendix B-based QA Program

[

6.3.2 MELTAC Re-evaluation Program

[

]

6.4 Basic Software Program Manual

[

L

6.5 MELTAC Engineering Tool Life Cycle

The MELTAC engineering tool was developed and managed under MELCO QAP for nonsafety items (Complies with ISO 9001). It has demonstrated correct performance for nuclear applications of the MELTAC platform since 1987. Since the MELTAC engineering tool is not credited for any safety-related functions (ie. the output of the MELTAC engineering tool is manually verified), the UCP and MRP have not been applied to the MELTAC engineering tool.

The MELTAC engineering tool will continue to be managed under the MELCO QAP for nonsafety items, and the output of the tool will continue to be manually verified. Since the tool is used to develop application software, the application development and verification process is defined in application level documentation and managed under the applicable application level QAP. For example, for the US-APWR, the application software development process, is defined in the US-APWR Software Program Manual (MUAP-07017).

7.0 EQUIPMENT RELIABILITY

7.1 History of Operation

Development of the MELTAC platform was started in 1985 aiming at applications in nuclear non-safety systems in the short term and applications in nuclear safety protection systems in the longer term. The first non-safety system application was in 1987. This system accumulated several years of field experience in nuclear plants. This field experience allowed improvement of the product for application to safety systems.

The first safety prototype system went through third party Qualification Test by a Japanese domestic agency during the period from 1987 to 1990. The platform's basic hardware and software design were entirely accepted.

The latest digital technology development was started in 1988 for the purpose of improvements reflecting additional field operating experience and new features to allow application of the MELTAC platform to a complete plant-wide digital I&C system. The latest platform was first applied to nuclear plant non-safety systems in 2001.

Shown in Figure 7.1-1 is the history of the MELTAC development, the records of operation, and the application plans. The MELTAC operation status at the time of this document revision is described below.

- a) Operating at five PWR plants in Japan, each for an average of ten years.
- b) Used for 50 non-safety system applications per plant.
- c) Combined total operation time of over 20,000,000 hours
- d) No plant system has ever suffered shutdown due to software- or hardware-related problems.

The MELTAC platform has now been applied for total plant-wide digital upgrades at two Japanese nuclear plants. The platform is used throughout these plants, including the digital protection system and digital VDU-based main control room. The plants restarted with the complete plant-wide MELTAC system July 2009.

The MELTAC platform has also been applied for a Japanese nuclear plant under construction. The platform is used throughout the plant, including the digital protection system and digital VDU-based main control room. The complete digital system was shipped to the plant site recently after completing a 22 month factory acceptance test. Commercial operation of this plant is expected to begin in late 2009.

MELTAC systems are currently in production for six new nuclear plants in China. The platform is used for the digital plant protection systems.

All MELTAC operating experience to date has been encompassed in the MELTAC product described in this Technical Report. Additional experience gained through future applications is continuously encompassed in ongoing product improvements. All changes to the product are conducted under the App.B-based QAP described in Section 6. Changes to the product that also change the descriptions in this Technical Report will be identified in future licensing submittals.

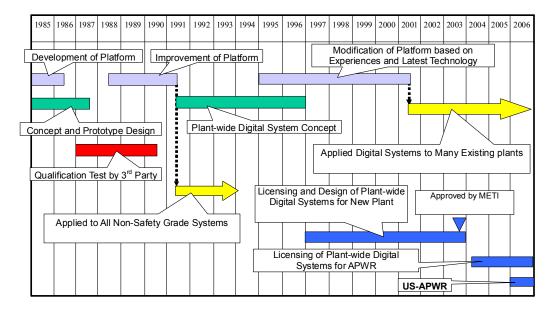


Figure 7.1-1 MELTAC Development and Operating History

The summary for history of changes of the MELTAC platform is as follows.

Year	Purpose of changes	Summary of Changes
2001-2002	Upgrade of Maintenance	(Changes of Hardware Module) System Management Module
	Network	(Changes of Software Module) Tool Communication Module
2002-2006	Additional development for Tomari	(Changes of Hardware Module) Bus Master Module, Input Output Modules for Redundant Parallel Controller, Isolation Modules, E/O Converter Modules, FMU Module, Touch Interface Module (Changes of Software Module) Input (Datalink, Touch Interface), Output (Datalink, FMU), Functional Symbol Software Modules
2006	Upgrade of Control Network	(Changes of Hardware Module) Communication Network I/F (Changes of Software Module) Input(Control Network), Output(Control Network)

 Table 7.1-1
 The summary for history of changes of the MELTAC platform

7.2 Mean Time between Failures (MTBF) Analysis

MTBF is calculated for each MELTAC module. These values are then used to assess the reliability of complete MELTAC controllers for each system, as explained in Section 7.3. The calculation of MTBF values is based on MIL-HDBK-217F NOTICE2. MTBF values are calculated by adding up the failure rates of the components which make up each module and finding the reciprocal of the module's failure rate thus obtained. For the MIL-HDBK, failure rate

is defined by the type of the component, taking operating conditions and reliability factor into consideration, so it represents a generic reliability assessment technique. Environmental conditions used for the calculation are described below.

]

MTBF of each modules is shown Table 7.2-1.

The actual MTBF value determined from recent operating history is more than the calculated MTBF value.

Therefore, the calculation method and the resulting calculated values are appropriate for assessing system reliability.

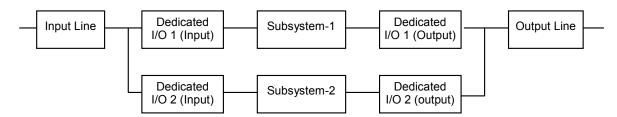
Table 7.2-1 Failure rate of modules

7.3 Controller Reliability Analysis

The failure rate of any MELTAC system, as a whole, depends on the complete system configuration. Variations for each application include:

- the number and configuration of redundant divisions
- the number and configuration of controllers within each division
- the redundancy configuration within each controller
- the configuration of I/O and Communications Interface modules and the criticality of those interfaces to the safety function (ie. the safety function logic design)

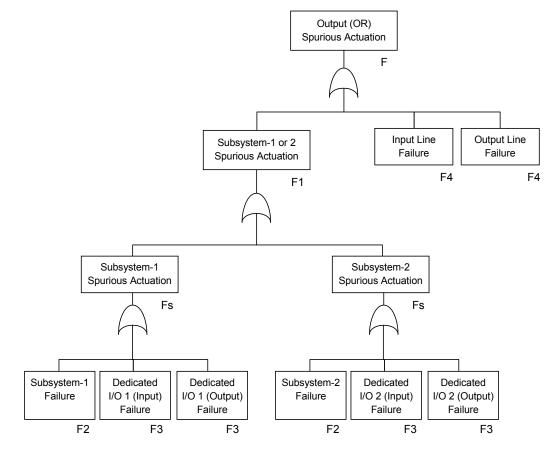
The overall reliability for safety system applications is described in the Safety I&C System Description and Design Process Technical Report for the US-APWR DCD. The MTBF numbers and reliability models used in that Topical Report are based on the methods described in this report.


This section describes the method used to determine the reliability of the generic Redundant Parallel Controller. The method for the Single Controller architecture can be extracted from this method.

Controller Reliability Analysis is performed as follows.

- A reliability model for the system's safety function is built
- Using the reliability model, Fault Tree Analysis (FTA) is used to determine the frequency of:
 - Spurious actuation of the safety function
 - Failure to actuate the safety function

The reliability model for a simple system is shown in section 7.3.1. To exemplify the reliability analysis process, Figure 7.3-2 shows the fault tree for spurious actuation of the safety function. The FTA for spurious actuation is explained below.


7.3.1 Reliability Model

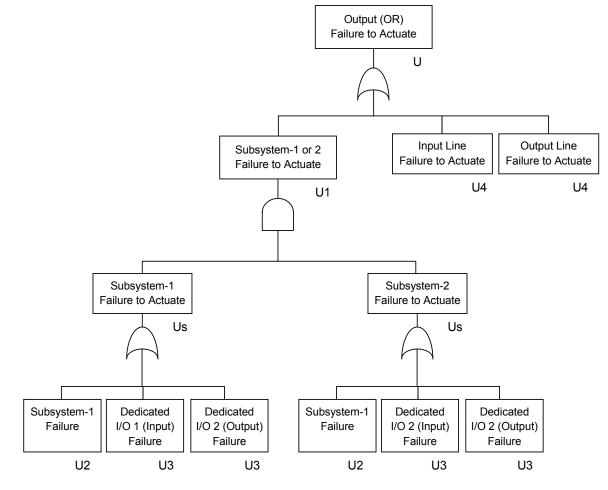
The above figure shows Reliability Model of Redundant Parallel Controller, which includes one input module and one output module for each Subsystem.

In the Reliability model, the Status Display is not included in the Subsystem, because the Status Display only displays the current state of the Subsystem; its failure doesn't affect the safety function of the Subsystem. The Control Network I/F Module and Optical Switch Module are not included in this simplified system. They would be included, depending on how the data from the Control Network is used in the application software. This also applies to the Data Link interface from the Bus Master Modules.

7.3.2 FTA for Spurious Actuation of the Safety Function

For the cause of spurious actuation, failure rate is described below.

F = F1 + F4 + F4 F1 = Fs + Fs Fs = F2 + F3 + F3


Failure rate Fi cause spurious action of each module or Subsystem is defined below.

Fi = λ i x (1-Pi)

- λ i = Failure rate
- Pi = probability of detecting the failure which effects the safety function by selfdiagnosis

F2, F3 and F4 are calculated as described below in section 7.3.4.1, 7.3.4.2 and 7.3.4.3. The failure rate of Input Line and Output Line are the same, because they consist of same module and unit.

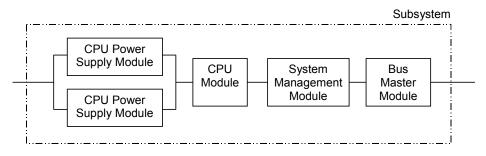
This FTA model assumes for this very simple system that the input has a direct effect on the system output. Systems with more complex logic may validate inputs (eg. voting) within the application logic so that spurious actuation requires multiple input failures.

7.3.3 FTA of Failure to Actuate the Safety Function

Figure 7.3-3 Fault Tree for Failure to Actuate

For the cause of failure to actuate, Unavailability is described below.

U = U1 + U4 + U4 U1 = Us x Us Us = U2 + U3 + U3


Where Ui is the unavailability each module or Subsystem is defined below.

Ui = 1 - MTBF / (MTBF + (1 - Pi) x (Ti /2) + MTTR) Ti = Manual Test interval MTBF = 1 / λ i

Ti and MTTR are unique values for each application.

7.3.4 Detailed Controller Reliability Analysis

7.3.4.1 Subsystem

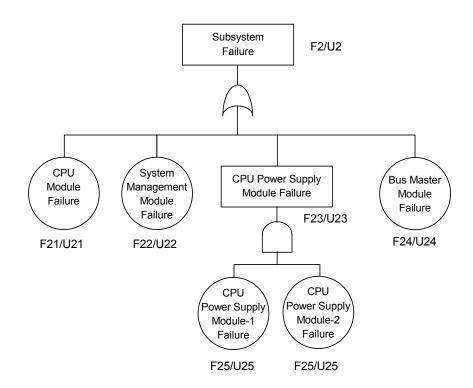


Figure 7.3-5 Fault Tree of Subsystem

Failure rate of Subsystem (F2) is as follows.

F2 = F21 + F22 + F23 + F24 F23 = F25 x F25 x MTTR x 2

Unavailability of Subsystem (U2) is as follows.

U2 = U21 + U22 + U23 +U24 U23 = U25 x U25

7.3.4.2 Dedicated I/O (Input/Output)

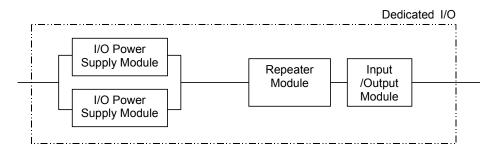


Figure 7.3-6 Reliability Model of Dedicated I/O

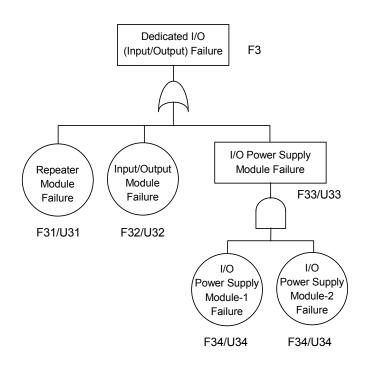


Figure 7.3-7 Fault Tree of Dedicated I/O

Failure rate of Subsystem (F3) is as follows.

F3 = F31 + F32 + F33 F33 = F34 x F34 x MTTR x 2

Unavailability of Subsystem (U3) is as follows.

U3 = U31 + U32 + U33 U33 = U34 x U34

7.3.4.3 Input/Output Line

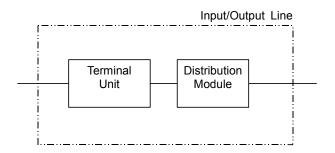


Figure 7.3-8 Input/Output Line

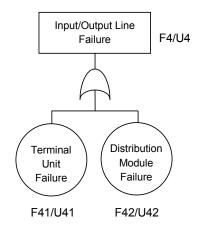


Figure 7.3-9 Fault Tree of Input/Output Line

Failure rate of Subsystem (F4) is as follows.

$$F4 = F41 + F42$$

Unavailability of Subsystem (U4) is as follows.

U4 = U41 + U42

7.4 Failure Mode and Effects Analysis (FMEA)

This section describes the method for conducting the FMEA, which is the method of determining the failure mode for each type of MELTAC Module and the resulting effects at the Controller level. The effects of failures at the system application level are described in the Safety I&C System Description and Design Process Technical Report for the US-APWR DCD.

The method of conducting the FMEA is as follows:.

- Module circuits are divided into function blocks.
- Determine the failure modes of the function block.
- Determine the state(s) of the module output(s) caused by the failure mode(s) of the function block.
- Determine the effects at the Controller level based on the module output failure states.

For a module to be acceptable for use in the CPU Chassis, failures in the function blocks that may affect the control function must be detected either by the self-diagnosis function inside the module or by the self-diagnosis function through a combination of modules.

The parts that do not affect the control function are identified through the FMEA, such as RS-232C communication port witch is used only for CPU Module debugging,

For a module to be acceptable for use in the I/O Chassis, failures in the parts that may affect the control function must be detected either by the self-diagnosis function of the CPU Module or by the application software. For instance, if the relay contact of the relay output module suffers a seizure failure, it cannot be detected by the self-diagnosis function of the controller. However, this failure can be detected by the application software when the component is actuated either automatically or manually.

7.5 Periodic Replacement Equipment (Parts) to Keep Reliability

Some components within the MELTAC platform have service life limits due to age related failure mechanisms. As shown in Figure 7.5-1, the failure rate of these components rises as the component reaches its service life limit. Therefore, it is necessary to periodically replace those components to maintain platform reliability.

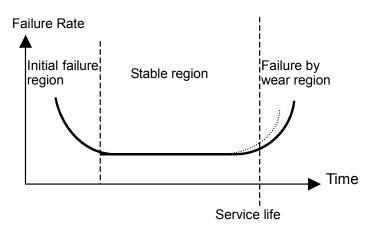


Figure 7.5-1 Failure Rate Curve

The components of the digital platform that have a known limited service life are as follows:

- a) Capacitor within Power Supplies
- b) Fan Fuse
- c) Liquid Crystal Display within safety VDU panel

For item a) above, the entire power supply module should be replaced. For item b) above, the fuse inside the fan unit should be replaced without replacing the entire fan unit. For item c) above, the entire safety VDU panel should be replaced. Parts may be replaced at any time with the equipment energized or de-energized. Any on-line replacement restrictions are governed only by specific plant applications.

The periodic replacement parts are as shown in Table 7.5-1.

Table 7.5-1 List of Periodic Replacement Parts

For the power supplies, the estimated lifetime of the internal electrolytic capacitor was calculated based on the Arrhenius equation. For the fuses in the fan assemblies, the estimated lifetime was determined by experience for the condition under which the fuse is actually used. The replacement interval of all of the above components was determined based on applying a 20% conservatism factor to the estimated lifetimes of these subparts.

The components described above have age related failure mechanisms, however none of these aging mechanisms would significantly affect the equipment's susceptibility to failure during any of the equipment qualification tests described in Section 5. Therefore there is no age related preconditioning prior to the qualification tests.

Other components in the MELTAC platform have no known age related failure mechanisms, therefore replacement only occurs at the time of a random failure.

7.6 Performance history of self-diagnosis function

[

]

Table 7.6-1 Number of failures

APPENDIX A HARDWARE SPECIFICATIONS

The modules described here are modules for Safety system. In addition to these, there are modules for non-safety system that have different functions.

Appendix A.1 CPU Module PCPJ-11 Specification

Item	Specification
CPU	intel Pentium 133MHz
	High-speed SRAM: 2Mbytes
	Low-speed SRAM: 4Mbytes
Memory	EPROM: 1Mbyte
	Flash memory: 8Mbytes
	Local RAM: 512kbytes
Current	+5V: 2.7A
consumption	
External	290×265×25(mm)
dimensions	
Hot-pluggability	Power supply must be disabled when plugging module off.

Appendix A.2 System Management Module Specification

Item	Specification
Communication	Optical module transmission speed: 100Mbps
Between Redundant	Maximum transmission distance: 100m
Subsystems	
	Number of inputs: 32
Svotom DI	Rated voltage: 24V (30V, maximum) external supply
System DI	Contact current: 3mA
	Dielectric voltage: AC500V
	Number of outputs: 11
Sustam DO	Rated voltage: 24V (30V, maximum)
System DO	Rated current: 50mA (100mA, maximum)
	Dielectric voltage: AC500V
CPU	intel 80960 (33.3MHz)
	2-port memory:1Mbyte Dedicated transmission memory:1Mbyte
	Dedicated transmission memory:1Mbyte
Onboard memory	Dedicated receiving memory:1Mbyte
	EPROM:512kbyte
	Local memory:1Mbyte EPROM:512kbyte Flash memory:4Mbyte
Firmware	Firmware is mounted on the Flash memory. It executes maintenance network communication function.
Ethernet I/E	Module Chassis, rear side: 10Mbps 1ch
Ethernet I/F	module front side: 100Mbps/10Mpbs (Speed: Automatically
	switched), 2ch
Current consumption	+5V: 9A
External dimension	290X265X20(mm)
Hot-pluggability	Power supply must be disabled when plugging module off.

Item	Specification
Protocol	1:N master poling (Case of Communication with I/O) One way communication (Case of data link communication)
Configuration	Number of channels: 4 channels/module (Whether to use communication with I/O or serial data link communication can be defined for each channel.)
Interface	RS-485 transformer insulation.
Baud rate	1Mbps
Error detection method	CRC check
Transmission capacity	1kbyte/channel maximum (Case of Communication with I/O) 3kbyte/channel maximum (Case of data link communication)
Onboard memory	Dedicated transmission memory: 1Mbyte (256kbyte/channel)
Current consumption	+5V: 2.5A
External dimension	290X265X30(mm)
Hot-pluggability	Power supply must be disabled when plugging module off.

Appendix A.3 Bus Master Module Specification

Appendix A.4 Control Network I/F Module Specification

Item	Specification
Protocol	Communication method: Cyclic Multiplexing method: RPR (Resilient Packet Ring) IEEE std 802.17
Configuration	Loop (redundant)
Medium	Optical fiber
Speed	Transmission rate: 1Gbps
Capacity	 Transmission capacity: 256kbytes, maximum for normal speed communication 128kbytes, maximum for high speed communication Number of connected stations: 126 stations, maximum for normal speed communication 32 stations, maximum for high speed communication Distance between stations: 2km, maximum
CPU	intel 80200 (400MHz)
Firmware	Firmware is mounted on the Flash memory. It executes Control Network communication function.
Current consumption	+5V: 5.3A
External dimension	290X265X30(mm)
Error detection	CRC detection
Hot-pluggability	Power supply must be disabled when plugging module off.

Appendix A.5 I/O Module Specification

Module Model	Function	Main Specifications	Remarks
MLPJ-01	Current input	Al: 1 input/module 4 to 20mA (Transmitter power supply is provided.) Input impedance: 10MΩ or greater Accuracy**: ±0.25%FS Temperature coefficient: ±50ppm/°C Current consumption: +24V, 0.2A Firmware: Firmware is mounted on the ROM. It executes analog input function.	
MLPJ-02	Current input	Al: 1 input/module 4 to 20mA (Transmitter power supply is provided.) Input impedance: 10MΩ or greater Accuracy**: ±0.25%FS Temperature coefficient: ±50ppm/°C * Auto testing function is provided. Current consumption: +24V, 0.2A Firmware: same as MLPJ-01	For automatic testing *
MRTJ-34	RTD 4 line type	AI: 1 input/module 4-line Pt200Ω, 32 to 392°F (0 to 200°C) Input impedance: 10MΩ or greater Accuracy**: ±0.25%FS Temperature coefficient: ±50ppm/°C Current consumption: +24V, 0.2A Firmware: same as MLPJ-01	
MRTJ-61	RTD 4 line type	Al: 1 input/module 4-line Pt200Ω, 32 to 752°F (0 to 400°C) Input impedance: 10MΩ or greater Accuracy**: ±0.25%FS * Auto testing function is provided. Temperature coefficient: ±50ppm/°C Current consumption: +24V, 0.2A Firmware: same as MLPJ-01	For automatic testing *
MRTJ-62	RTD 4 line type	Al: 1 input/module 4-line Pt200 Ω , 500 to 662°F (260 to 350°C) Input impedance: 10M Ω or greater Accuracy**: $\pm 0.25\%$ FS * Auto testing function is provided. Temperature coefficient: ± 50 ppm/°C Current consumption: $\pm 24V$, 0.2A Firmware: same as MLPJ-01	For automatic testing *

Analog Input Module Specifications

* This is a function which, having a I/O Bus interface compatible with the auto test device, switches AI input signal to power supply for process input calibration upon simulated input command from the auto test device. This verifies the integrity of analog input function by inputting an input signal independent of input signal on the external field side.

** A 16 bit successive approximation type A/D converter is applied for the analog input module of the MELTAC platform. The rounding error of 16 bits sampling is approximately 1E-3%FS. This is negligible compared with the accuracy of the input device of analog input modulewhich is 0.25%FS, as described in above table.

Consideration of cumulative error, which is a problem of integrating type A/D converters, is not necessary.

Module Model	Function	Main Specifications	Remarks
MAOJ-01	Current output	AO: 1 output/module Maximum load: 600Ω Accuracy: ±0.25%FS Current consumption: +24V, 0.3A Firmware: Firmware is mounted on the ROM. It executes analog output function.	
MVOJ-01	Voltage output	AO: 1 output/module Minimum load: 500Ω Accuracy: $\pm 0.25\%$ FS Current consumption: $\pm 24V$, 0.3A Firmware: same as MAOJ-01	

Analog Output Modules Specifications

Digital Input Modules Specifications

Module Model	Function	Main Specifications	Remarks
MDIJ-03	Contact input	DI: 4 inputs/module Contact impressed voltage: DC24V Contact current: 10mA Current consumption: +24V, 0.2A	
MDIJ-04	Contact input	DI: 4 inputs/module Contact impressed voltage: DC48V Contact current: 10mA Current consumption: +24V, 0.2A	
MDIJ-05	Contact input	DI: 4 inputs/module Contact impressed voltage: DC24V Contact current: 10mA * Auto test function is provided. Current consumption: +24V, 0.2A	For automatic testing *
MDIJ-06	Contact input	DI: 4 inputs/module Contact impressed voltage: DC48V Contact current: 10mA * Auto test function is provided. Current consumption: +24V, 0.2A	For automatic testing *
MDIJ-61	Contact input	DI: 4 inputs/module Contact impressed voltage: DC24V Contact current: 10mA Current consumption: +24V, 0.2A	For redundant parallel controller
MDIJ-62	Contact input	DI: 4 inputs/module Contact impressed voltage: DC48V Contact current: 10mA Current consumption: +24V, 0.2A	For redundant parallel controller

* This has a serial communication interface compatible with the auto test device and contains a switching function which forcibly turns DI input ON or OFF upon simulated input command from the auto test device. It permits verification of the integrity of contact input state by forcibly inputting ON or OFF independent of the ON/OFF state on the external field-side contact.

Output Model	Function	Main Specifications	Remarks
MDOJ-03	Relay contact output	DO: 4 outputs/module, normally open contact Rated load (resistive load) : AC220V 0.5A DC110V 0.3A Current consumption: +24V, 0.2A	
MDOJ-04	Relay contact output	DO: 4 outputs/module, normally closed contact Rated load(resistive load) : AC220V 0.5A DC110V 0.3A Current consumption: +24V, 0.2A	
MDOJ-61	Relay contact output	DO: 4 outputs/module, normally open contact Rated load (resistive load): AC220V 0.5A DC110V 0.3A Current consumption: +24V, 0.2A	For redundant parallel controller
MDOJ-62	Relay contact output	DO: 4 outputs/module, normally closed contact Rated load (resistive load): AC220V 0.5A DC110V 0.3A Current consumption: +24V, 0.2A	For redundant parallel controller
MDOJ-22	Semiconductor output (open collector)	DO: 2 outputs/module (power DO) Maximum impressed voltage: AC110V/DC125V Output current:1A (continuous) 6A(100msec) 10A(20msec) Current consumption: +24V, 0.2A	

Digital Output Modules Specifications

Module Model	Function	Main Specifications	Remarks
KILJ-01	Current input Current/Voltage output	Al: 1 input/module 4 to 20mA Input impedance: 10MΩ or greater Accuracy: ±0.5%FS Temperature coefficient: ±100ppm/°C AO:1output/module 4 to 20mA / 0 to 10VDC (selectable) Current consumption: +24V, 0.2A	
KIRJ-01	RTD 4 line type input Current/Voltage output	Al: 1 input/module 4-line Pt100 Ω , 32 to 302°F (0 to 150°C) 4-line Pt100 Ω , 32 to 392°F (0 to 200°C) 4-line Pt200 Ω , 32 to 752°F (0 to 400°C) Input impedance: 10M Ω or greater Accuracy: $\pm 0.5\%$ FS Temperature coefficient: ± 100 ppm/°C AO:10utput/module 4 to 20mA / 0 to 10VDC (selectable) Current consumption: +24V, 0.2A	
KIDJ-01	Contact input Semiconductor output (open collector)	DI: 2 inputs/module Contact impressed voltage: DC48V DO: 2 outputs/module (power DO) Maximum impressed voltage: AC110V/DC125V Output current: 10mA Current consumption: +24V, 0.2A	

Appendix A.6 Isolation Module Specifications

Module Model	Function	Main Specifications	Remarks
MEOJ-01/02	Electrical/optical conversion	Electrical to Optical: 1 channel Optical to Electrical: 1 channel Electrical interface: RS-485 Optical signal: Single mode optical fiber Current consumption: +24V, 0.2A	
MEOJ-11	Electrical/optical conversion	Electrical to Optical: 1 channel Optical to Electrical: 1 channel Electrical interface: RS-232C Optical signal: Single mode optical fiber Current consumption: +24V, 0.1A	
FL SWITCH	Electrical/optical conversion	Electrical Interface: Ethernet (6 RJ45 ports) Optical Interface: Fiber optic interface (2FO ports) Optical signal: Multimode optical fiber Current consumption: +24V, 0.23A	

Appendix A.7 E/O Converter Modules Specifications

Module Model	Function	Main Specifications	Remarks
DPOJ-21	Semiconductor output Contact input	DO: 2 outputs/module (power DO) Maximum impressed voltage: AC110V/DC125V Output current: DC1.5A (continuous) AC2.0A _{rms} (continuous) 16A _{0-P} (100msec) 2.5A _{0-P} (1s) DI: 8 inputs/module Contact impressed voltage: DC48V Contact current: 10mA Current consumption: +24V, 0.5A	

Appendix A.8 Power Interface Modules Specifications

Appendix A.9 Power Supply Modules Specifications

Module Model	Function	Main Specifications	Remarks
PS-1	CPU Power Supply	Input voltage: AC85V to AC132V Frequency: 47Hz to 63 Hz Output voltage: DC5V (50A), DC2.1V (11A)	
PS-2	I/O Power Supply	Input voltage: AC85V to AC132V Frequency: 47Hz to 63 Hz Output voltage: DC24V (12A)	
PPSJ-01	CPU Power Supply (Small capacity type)	Input voltage: AC85V to AC132V Frequency: 47Hz to 63 Hz Output voltage: DC5V (30A), DC2.1V (11A)	Mounted at Mirror-split and Slide-split CPU Chassis
PPSJ-11	CPU Power Supply (Large capacity type)	Input voltage: AC85V to AC132V Frequency: 47Hz to 63 Hz Output voltage :DC5V (50A), DC2.1V (11A)	Mounted at non- split CPU Chassis

Appendix A.10 Safety VDU Panel Specification

Item	Specification
Туре	Thin Film Transistor Liquid Crystal Display (TFTLCD) module
Operator Interface	Touch interface (Acoustic type)
Communication Interface	 Safety VDU Processor to Panel Display signal : RGB, Horizontal Sync (HSYNC), Vertical Sync (VSYNC) Safety VDU Panel to Processor RS232C electrical or optical fiber with E/O,O/E converters
Current consumption	+24V: 1A

Appendix A.11 FMU Module Specification

Item	Specification
Picture Size	VGA (640*480 dots) to SXGA(1280*1024 dots)
Interface	Coaxial 5-line type (RGBHV)
Memory	Frame Memory (Memory for graphic images): 4Mbytes Font Memory (Memory for symbols, characters bit map data): 4Mbytes

Appendix A.12 Touch Panel Interface Module Specification

Item	Specification
Configuration	1:1 serial interface
Communication Medium	RS-232C.
Medium	Electrical Interface or Optical fiber with E/O Converter if the
	distance exceeds 15 meters
Speed	Baud rate: 76.8 kbps
Capacity	Number of channels: 2 channels/module (Only one channel is used)
	Transmission capacity: 2kbytes/channel for acceptance
	2kbytes/channel for sending
Error Detection	Parity check

APPENDIX B FUNCTIONAL SYMBOL SOFTWARE SPECIFICATIONS

The function symbols listed below are for safety applications.

No	Symbol	Name	Function
1	> & > &	AND	Defines the output signal (Y) with respect to the input signals (X_1 , X_2) as follows: Y= X_1 and X_2
2	>_≧1-	OR	Defines the output signal (Y) with respect to the input signals (X_1 , X_2) as follows: Y= X_1 or X_2
3		AND3	Defines the output signal (Y) with respect to the input signals (X_1 , X_2 , X_3) as follows: Y= X_1 and X_2 and X_3
4	≯ ≯≧1-	OR3	Defines the output signal (Y) with respect to the input signals (X ₁ , X ₂ , X ₃) as follows: Y= X ₁ or X ₂ or X ₃
5		AND4	Defines the output signal (Y) with respect to the input signals (X ₁ , X ₂ , X ₃ , X ₄) as follows: Y= X ₁ and X ₂ and X ₃ and X ₄
6	≯ ≧1-	OR4	Defines the output signal (Y) with respect to the input signals (X ₁ , X ₂ , X ₃ , X ₄) as follows: Y= X ₁ or X ₂ or X ₃ or X ₄
7		AND5	Defines the output signal (Y) with respect to the input signals (X ₁ , X ₂ , X ₃ , X ₄ , X ₅) as follows: Y= X ₁ and X ₂ and X ₃ and X ₄ and X ₅
8	<u>↓</u> ↓ ↓ ↓ ↓	OR5	Defines the output signal (Y) with respect to the input signals (X ₁ , X ₂ , X ₃ , X ₄ , X ₅) as follows: Y= X ₁ or X ₂ or X ₃ or X ₄ or X ₅
9	<u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	AND10	Defines the output signal (Y) with respect to the input signals ($X_1, X_2,, X_{10}$) as follows: Y= X_1 and X_2 and \cdots and X_{10}
10	₩₩₩₩₩₩₩₩ ≥1 ,	OR10	Defines the output signal (Y) with respect to the input signals $(X_1, X_2,, X_{10})$ as follows: Y= X ₁ or X ₂ or ··· or X ₁₀
11	¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ 	AND20	Defines the output signal (Y) with respect to the input signals ($X_1, X_2,, X_{20}$) as follows: Y= X_1 and X_2 and \cdots and X_{20}
12	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩ ₽ ₽ ₽	OR20	Defines the output signal (Y) with respect to the input signals (X ₁ , X ₂ ,X ₂₀) as follows: Y= X ₁ or X ₂ or \cdots or X ₂₀
13	**************************************	AND30	Defines the output signal (Y) with respect to the input signals (X ₁ , X ₂ ,X ₃₀) as follows: Y= X ₁ and X ₂ and \cdots and X ₃₀
14		OR30	Defines the output signal (Y) with respect to the input signals (X ₁ , X ₂ ,X ₁₀) as follows: Y= X ₁ or X ₂ or \cdots or X ₃₀

List of Function Symbols Discrete Control Processes

No	Symbol	Name	Function
15	>10	NOT	Defines the output signal (Y) with respect to the input signals (X) as follows: Y= \bar{x}
16	> □ -	ON DELAY TIMER	Turns the output signal ON after the delay time when the input signal changes from OFF to ON.
17		OFF DELAY TIMER	Turns the output signal OFF after the delay time when the input signal changes from ON to OFF.
18	> □-	ONE SHOT TIMER	Turns the output signal ON only for a set time span when the input signal changes from OFF to ON.
19	> S - R	FLIP-FLOP	Latches output ON with Set signal input, and clears output with Reset signal input.
20	⇒ ⇒ ≥2-	2-out-of-3	Outputs if 2 or more inputs out of 3 inputs are ON.
21	⇒ ≥2-	2-out-of-4	Outputs if 2 or more inputs out of 4 inputs are ON.
22	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	3-out-of-4	Outputs if 3 or more inputs out of 4 inputs are ON.
23	Ψ Ţ	1-INPUT FLIP-FLOP	Inverse-outputs the output signal every time the input signal changes OFF (0) -> ON (1).
24	¥ Ţ_ ^ĸ ←	1-INPUT FLIP-FLOP WITH RESET	Performs same as 1-INPUT FLIP-FLOP when reset-signal is OFF.
25		ANSWER BACK FOR AUX. UNIT (INCL. TIME MEASURING FUNCTION)	Performs the aux. unit answer back error judgment logic computation and outputs the results of computation.
26		ANSWER BACK FOR POWER VALVE (INCL. TIME MEASURING FUNCTION)	Performs the power valve answer back error judgment logic computation and outputs the results of computation.
27		ANSWER BACK 1 FOR PNEUMATIC VALVE (INCL. TIME MEASURING FUNCTION)	Performs the pneumatic valve answer back error judgment logic computation and outputs the results of computation.

No	Symbol	Name	Function
28		ANSWER BACK 2 FOR PNEUMATIC VALVE (INCL. TIME MEASURING FUNCTION)	Performs the pneumatic valve answer back error judgment logic computation and outputs the results of computation.
29		ANSWER BACK 3 FOR PNEUMATIC VALVE (INCL. TIME MEASURING FUNCTION)	Performs the pneumatic valve answer back error judgment logic computation and outputs the results of computation.
30	ABS	ANSWER BACK 4 FOR PNEUMATIC VALVE (INCL. TIME MEASURING FUNCTION)	Performs the pneumatic valve answer back error judgment logic computation and outputs the results of computation.
31	ON	ON FIXED OUTPUT	Outputs the ON signal.
32	OFF	OFF FIXED OUTPUT	Outputs the OFF signal.
33	<u>Y. Y: Y: X: Yu Ya</u> Ya Ya ≥ 2BYP	2/4-LOGIC WITH BYPASS FUNCTION	Outputs if 2 or more inputs out of 4 inputs are ON. Provided with the bypass function for the input signal. Outputs status to the multi-bypass- input tag.
34	Ψι Ψz ΨsΨειΨει GT	GLOBAL TRIP LOGIC	Provided with the bypass function for the partial trip. Outputs status to the multi-bypass input tag.
35	Ψι Ψ2 Ψ3ΨειΨει ΤΕ Ι	TRIP ENABLE LOGIC	Provided with the bypass function for the partial trip.

No.	Symbol	Name	Function
1	>' + }	ADDER	Defines the output signal (Y) with respect to the input signals (X ₁ , X ₂) as follows: Y= X_1+X_2
2		SUBTRACTE R	Defines the output signal (Y) with respect to the input signals (X ₁ , X ₂) as follows: Y= X_1 - X_2
3	⇒ ^L ∑ ²∧	ADDER- SUBTRACTO R	Defines the output signal (Y) with respect to the input signals (X ₁ , X ₂) as follows: Y= $G_1 \cdot X_1 + G_2 \cdot X_2$
4	-> ¹ /2 ¹ ∧	MULTIPLIER	Defines the output signal (Y) with respect to the input signals (X_1 , X_2) as follows: Y= $X_1 \times X_2$
5	·≫* <u>÷</u>	DIVIDER	Defines the output signal (Y) with respect to the input signals (X ₁ , X ₂) as follows: Y= $X_1 \div X_2$
6	> []]	ABSOLUTE VALUE	Defines the output signal (Y) with respect to the input signals (X) as follows: Y= X
7	> []	SQUARE ROOT	Defines the output signal (Y) with respect to the input signals (X) as follows: Y= $G \cdot \sqrt{X}$
8	≫	DEAD ZONE	Defines the output signal (Y) with respect to the input signals (X) as follows: $d_1 < X, d_2 > X$ Y= X $d_2 \le X \le d_1$ Y=(d_1+d_2)/2
9	-> ⁺ <mark><h3< mark=""> ²λ</h3<></mark>	HIGH SIGNAL SELECTOR / LOWER LIMIT CONTROLLE R	Defines the output signal (Y) with respect to the input signals (X ₁ , X ₂) as follows: X ₁ <x<sub>2Y=X₂, X₁=X₂ or X₁>X₂Y=X₁</x<sub>
10	->- >LS ²∧ ^	LOW SIGNAL SELECTOR / UPPER LIMIT CONTROLLE R	Defines the output signal (Y) with respect to the input signals (X ₁ , X ₂) as follows: X ₁ =X ₂ or X ₁ <x<sub>2 Y=X₁, X₁>X₂ Y=X₂</x<sub>
11	>□+-	UPPER LIMIT MONITOR	Outputs an output signal when the input signal reaches a set value. At the time the system is reset, the input signal is below the gap with respect to the set value.
12		LOWER LIMIT MONITOR	Outputs an output signal when the input signal reaches a set value. At the time the system is reset, the input signal is below the gap with respect to the set value.
13	» P	PROPORTIO NAL	Outputs an output signal with a proportional constant in response to the input signal.

List of Function Symbols Analog Control Processes

No.	Symbol	Name	Function
14	->°	DIFFERENTI ATION	Outputs a differentiated output signal in response to the input signal.
15	→ LAG	LAG	Outputs the lag operation results as the output signal in response to the input signal.
16	> LLAG	LEAD/LAG	Outputs the lead/lag operation results as the output signal in response to the input signal.
17		SIGNAL SWITCH	Switches the digital input signal (SW) in response to the input signals (X_1 , X_2) and outputs the output signal (Y). SW=1 Y= X_1 , SW=0 Y= X_2
18	UT IM	DEAD TIME	Outputs an output signal in response to the input signal after delaying output for a specified period of time.
19	-> [™] [™] [™] [™] - [™] [™]	ANALOG MEMORY	Gets parameters externally and, considering the digital input signal a trigger, outputs an output signal in proportion to the change rate set externally.
20	SET -	SIGNAL GENERATOR	Outputs a set value
21	₩ ₩R	LOGISTICS CONVERSIO N	Outputs the results of logistics output computation to the input signal.
22	Vi Va Va Va Va Va Vaz Vaz Vaz Vaz Vaz Vaz	4-CH 2ND-HI SIGNAL SELECTOR	Selects the 2nd High to the 4-ch analog value.
23	<u>Vi Vi Vi Vi Vi</u> v Viz Viz Viz Viz Viz Viz Viz Viz B∕S A∨⊐ '00	4-CH MEAN VALUE SIGNAL SELECTOR	Outputs the mean to the 4-ch analog value (for 3 groups).
24	Y. Y	4-CH MEAN VALUE SIGNAL SELECTOR	Outputs the mean to the 4-ch analog value (for 4 groups).
25	¥ FX20	20- POLYGONAL LINE FUNCTION	Outputs the polygonal function of up to 20 points to the input signal.
26	<u>Vi Ve Va VeiVee</u> Vea 5/5 Mid	3-CH INTERMEDIA TE VALUE SIGNAL SELECTOR	Outputs the intermediate value to the 3-ch analog input signal.
27	↓ LMT	UPPER/LOW ER LIMIT LIMITER	Outputs the output signal within the set range of the output upper/lower limit to the input signal.

SAFETY SYSTEM DIGITAL PLATFORM - MELTAC -

No.	Symbol	Name	Function
28	⋟ <mark>ऀ</mark> <u></u> Ţ	VARIABLE UPPER LIMIT MONITOR	Outputs the output signal when the input signal reaches the set value. The input signal should be below the gap value in relation to the set value. (The gap value can be changed by using the input signal.)
29	¥ всра т	ANALOG SIGNAL BCD CONVERSIO N	Converts the analog signal to the BCD code.

No	Symbol	Name
1	AI	ANALOG INPUT
2	Ý AO	ANALOG OUTPUT
3	DI	DIGITAL INPUT
4	Υ DO	DIGITAL OUTPUT
5	PDI	POWER I/F INPUT
6	¥ PDO	POWER I/F OUTPUT
7		COMMUNICATION INPUT (ANALOG)
8	Ý CAO	COMMUNICATION OUTPUT (ANALOG)
9	CDI	COMMUNICATION INPUT (DIGITAL)
10	CDO	COMMUNICATION OUTPUT (DIGITAL)
11	XDI	STATUS COMMUNICATION INPUT (DIGITAL)
12	¥ [xdo]	STATUS COMMUNICATION OUTPUT (DIGITAL)
13	I AO	OPERATION SIGNAL COMMUNICATION INPUT (ANALOG)
14		OPERATION SIGNAL COMMUNICATION INPUT (DIGITAL)
15	(TD1)	TEST INPUT
16		ANALOG TEST OUTPUT
17		DIGITAL TEST OUTPUT
18	APL ERR	APPLICATION DIAGNOSIS ERROR OUTPUT
19	ANSERR	ANSWER BACK ERROR DIAGNOSIS OUTPUT

The Function Symbols for Input and Output Process

No	Symbol	Name
1	₩ ASR	ANALOG STATUS RESET
2	USR	DIGITAL STATUS RESET
3	AUE	ANALOG ATTACHMENT BIT TAKEOUT
4		DIGITAL ATTACHMENT BIT TAKEOUT

The Function Symbols for Status Getting and Setting

APPENDIX C CONFORMANCE TO BTP 7-14

The documents identified in the Table below are applicable to the generic MELTAC platform. Additional documents, applicable to plant specific applications, such as Factory Acceptance Test Procedures and Reports, are identified in application specific or project specific documentation.

[

]

(1) Software Life Cycle Process Planning

(2) Software Life Cycle Process Implementation

(3) Software Life Cycle Process Design Outputs

APPENDIX D CONFORMANCE MAP OF ISG-04 CHAPTER 1

Figure D-1 and Figure D-2 show how data communication complies with ISG-04 requirement. Figure D-1 is for the Control Network and Figure D-2 is for the Data Link. Yellow hatched numbers in these figures shows the sections of ISG-04.

SAFETY SYSTEM DIGITAL PLATFORM - MELTAC -

JEXU-1012-1002-NP(R7)

Figure D-1 Conformance Map of ISG-04 (Control Network)

258

SAFETY SYSTEM DIGITAL PLATFORM - MELTAC -

Figure D-2 Conformance Map of ISG-04 (Data Link)

259

APPENDIX E SOFTWARE CRITICAL FUNCTION ANALYSIS

Appendix E describes the results of a specific software critical function analysis activity for the MELTAC platform basic software as described in Section 6.1.12.

The specific activity addressed in this software critical function analysis is identification and analysis of potential hazards that may adversely affect critical platform functions. This analysis assesses the effectiveness of mitigating platform level design features which ensure the hazards are correctly detected and the platform responds as specified.

The software critical function analysis activities conducted for the MELTAC platform basic software are supplemented by the software critical function analysis activities conducted for critical application level functions, as defined by the US-APWR Software Program Manual (MUAP-07017).

E.1 SCOPE

E.1.1 Analysis Target

The following table identifies the major hazards for the MELTAC basic software, that have the possibility to interfere with correct system operation.

Table E.1-1 Potential Hazards

E.1.2 Analysis Criteria

The potential hazards noted in Table E.1-2 will be checked against the following criteria.

Table E.1-2 Acceptance Criteria

E.2 SOFTWARE CRITICAL FUNCTION ANALYSIS RESULT

It was analyzed if faults can be detected at the architecture level.

If detection was done by software, its implementation was confirmed through verification of specification document and source code. The Analysis column in the tables below describes the method of tolerating the hazard, and the specific section(s) of the document(s) which identify this tolerance method.

Compliance to some requirements is determined through the application system configuration or application software. For these requirements, the analysis identifies example(s) of the compliance method(s), without identifying specific documentation. The documentation reference is application specific.

E.2.1 Detectability of Input, Operation, and Output hazards

The results of analyzing the detectability of input, operation, and output hazards are as follows.

For input from the network, refer to "MELTAC Platform ISG-04 Conformance Analysis" (JEXU-1015-1009).

E.2.2 Analysis of Self-Diagnosis Functions The results of analyzing the self-diagnosis functions are as follows.

E.2.2.1 CPU Module

E.2.2.2 System Management Module (SMM)

E.2.2.3 Bus Master Module

E.2.2.4 Control Network I/F Module

E.2.2.5 FMU Module

E.2.2.6 Touch Panel Interface Module

E.2.2.7 Safety VDU Panel

E.2.2.8 Analog Input Module

E.2.2.9 Analog Output Module

E.2.2.10 Digital Input Module

E.2.2.11 Digital Output Module

E.2.2.12 PIF Module

E.2.2.13 Repeater Module

E.2.2.14 Power Supply Module

E.2.2.15 Controller Cabinet

REFERENCED DOCUMENTATION

The following table is a list of specification documentation referenced in this analysis.

APPENDIX F DEFINITION

Alarm

The minor abnormality with which the Subsystem can continue its functions is categorized as the Alarm. This includes the error of the Controller Cabinet. When the Subsystem detects this type of error, it does not change its mode and only warns of the alarm.

Application Software

The application software reflects the plant specific functionality of the US-APWR I&C systems that apply MELTAC technology. It is documented and generated by the MELENS Engineering Tool. The platform system software uses this configuration data to carry out the application specific functionality of the US-APWR I&C systems.

Basic Software

The MELTAC platform basic software is low-level software that operates the MELTAC controllers. This software consists of initialization code, device drivers, communication layers, function blocks, diagnostics, etc. for the MELTAC platform including firmware and FPGA.

Bus Master Module

The Bus Master Module has 4 communication interface channels to use for communication with I/O modules or Data Link communication.

Control Mode

A state in which the Subsystem performs input, operation, output processing, and self-diagnosis.

Control Network

The Control Network is a MELTAC dedicated ring topology network and communicates plant process data and control signal data with a deterministic periodic cycle.

Control Network I/F Module

The Control Network I/F Module connects the Controller to the Control Network.

CPU Chassis

The CPU Chassis can accommodate various modules such as the Power Supply Module, CPU Module, Control Network I/F Module, System Management Module and Bus Master Module.

There are three types of CPU Chassis, Mirror-split type, Slide-split type, and Non-split type.

CPU Fan

The CPU Fan is installed on top of the CPU Chassis to cool the modules within the CPU Chassis.

CPU Module

The CPU Module utilizes a 32-bit microprocessor and performs internal operations and data transmission with other modules (i.e. Bus Master Module, Control Network I/F Module and System Management Module).

This module utilizes UV-ROM for storing the basic software and F-ROM for storing the application software.

Data Link

The Data Link communication is used to transmit process signals between controllers of different safety divisions. This communication is unidirectional.

Dedicated Re-programming Chassis

The F-ROM can be updated only when the CPU Module is placed in this chassis after removing it from the on-line controller chassis

Distribution Module

The signal input into the I/O module frame is distributed by the Distribution Module on the rear side of the module frame, and the distributed signals input into the duplex I/O module.

Similarly, the output signal is output through the distribution module.

Door Fan Unit

The Door Fan Unit is installed at the top rear of the cabinet to cool internal cabinet components.

EEPROM

Electrically Erasable Programmable Read Only Memory. EEPROM can be erased and reprogrammed repeatedly through the application of higher than normal electrical voltage.

Electrical/Optical (E/O) Converter Module

The Electrical/Optical (E/O) Converter Module for Data Link communication, converts electrical signals to optical signals or optical signals to electrical signals.

Electrical/Optical Converter Chassis

The Electrical/Optical(O/E) Converter Chassis can accommodate up to 14 O/E converter modules per chassis.

Failure

The fatal abnormality by which the Subsystem cannot continue its functions is categorized as the Failure.

When the Subsystem detects this type of error, it transits to the Failure mode. In the Failure mode, the processing of input/output and operation are stopped, although the

Failure Mode

The Subsystem initializes to the Failure Mode after initial power activation. The Subsystem also shifts to this mode automatically after it detects its own failure or there is a loss of power greater than 20msec. A Subsystem shifts from the Failure Mode to the Control Mode only by pushing the reset button on the Status Display module.

FPGA

Field Programmable Gate Array.

FPGA has many internal logical blocks consisting of logic gates and arithmetic circuits. Internal logical blocks are located on a matrix. Required circuit configuration are implemented by connecting these internal logical blocks.

Frame Memory Unit (FMU) Module.

The FMU Module provides the analog RGB signal for the graphic images to the safety VDU panel.

F-ROM

Flash Read Only Memory. F-ROM is also called flash memory. One of the nonvolatile semiconductor memories in which data do not disappear even after a device is turned off.

I/O Alarm

The abnormality of I/O is categorized as the I/O Alarm.

When the Subsystem detects this type of error, it does not change its mode and only warns of the alarm.

In case of Redundant Standby

I/O Bus

A communication line between the Bus Master Module and the Input/Output Chassis.

The I/O Bus is used for transmission of data, such as process inputs from the I/O module to the CPU Module and output commands from the CPU Module to the I/O module.

Input/Output Chassis

The I/O Chassis can accommodate up to 16 I/O modules per chassis.

Input/Output(I/O) Modules

The I/O module provides process input/output function and signal conditioner function, including signal conversion and noise reduction.

Isolation Module

Isolation Module provides electrical isolation between safety systems and non-safety systems.

Maintenance Network

The Maintenance Network is used to communicate between the controllers / safety VDUs and the MELTAC engineering tools to download new application software to the controllers / safety VDUs, or to read/write inside memory of the controller / safety VDUs.

MELENS

MELTAC Engineering Station. MELENS is a product name of the Engineering Tool. See the definition of "Engineering Tool".

MELTAC Controller

Mitsubishi Electric Total Advanced Controller. A safety system digital platform for nuclear power plants

MELTAC engineering tool

The MELTAC engineering tool is the tool that generates applications operate on the MELTAC, downloads generated applications to controllers, and displays failure and status information of the MELTAC (see 4.1.4.1 for details).

This tool consists of (Windows-based) non-safety PC and utility software called "MELENS.

Optical Switch

The Optical Switch bypasses the Control Network communication line in the Control Network I/F Module during controller maintenance.

POL

Problem Oriented Language.

This is the control language used in the MELCO's instrumentation controllers for nuclear power plants.

Power Interface Module

The Power InterFace (PIF) Module receives output commands as a result of Subsystem operation, and controls the power that drives the switchgears, solenoid valves, etc. for plant components.

Power Supply Fan Unit

The Power Supply Fan Units are installed at the bottom and the midsection on both the left and right-hand sides of the cabinet to cool the power supplies.

Power Supply Module

The Power Supply Modules convert the AC power supplied to the Chassis from two independent sources to DC power voltages suitable for the individual modules and units.

Redundant Power Supply Modules are provided for CPU Chassis, I/O modules, Isolation Modules, Power Interface Modules, E/O Converter Modules and fan units.

Redundant Parallel Controller

In the "Redundant Parallel" configuration, the Controller includes two Subsystems. Each Subsystem operates in Control Mode.

This configuration does not requires reliance on the self-diagnosis function of the CPU part or the subsystem switching operation and therefore ensures the highest reliability of a safety system.

Redundant Standby Controller

In the "Redundant Standby" configuration, the Controller includes two Subsystems. One Subsystem operates in Control Mode while the other Subsystem operates in Standby Mode.

This configuration allows a system to maintain high reliability even when any error is detected in the Subsystem in Control Mode by the self-diagnosis function, with a backup of the Subsystem in Standby Mode (i.e., status switching when the Control Subsystem fails).

Repeater Modules

The Repeater Modules shape and amplify data communication signals between I/O modules and Bus Master Module.

This module is used in a I/O Chassis.

Safety VDU Panel

The safety VDU panel is an HSI device which provides a color graphic display with an integral touch screen.

Safety VDU Processor

The safety VDU processor transfers operation signals received from the VDU panel to safety systems and displays information of each system on the VDU panel.

Self-Diagnosis

The integrity of digital I&C components is continuously checked by their selfdiagnostic features. These self-diagnostic features result in early detection of failures.

Single Controller

In the "Single" configuration, the Controller includes one Subsystem. The Subsystem operates in Control Mode.

This configuration can be applied when a system is multiplexed.

Standby Mode

In this mode the Subsystem tracks the data from the subsystem in the Control Mode so it can automatically transition into the Control Mode if the other Subsystem transitions to the Failure Mode.

When the Subsystem detects its own failure (through self-diagnostics), it automatically changes from the Standby Mode to the Failure Mode.

Status Display & Switch Module

The Status Display & Switch Module displays the mode and alarms of the Subsystems and provides the manual mode change over switch. This module is used in a CPU Chassis configured for a Redundant Standby Controller.

Status Display Module

The Status Display Module displays the mode and alarms of the single Subsystems. This module is used in a CPU Chassis configured for a Redundant Parallel Controller or Single Controller.

System Management Module

The System Management Module monitors the status of the CPU Module and executes auxiliary controller functions that are not directly related to the CPU Module such as Ethernet I/F for communicating with the Engineering Tool.

Touch Panel I/F Module

The Touch Panel I/F Module provides the touch panel interface signal from the safety VDU panel to the safety VDU processor by means of RS-232C data link.

US Conformance Program (UCP)

US Conformance Program (UCP) is the combination of the corrective actions taken to compensate for differences between the MELCO's original QAP and US requirements, and the assessment of the developed software by the independent V&V Team.

UV-ROM

Ultra-Violet erasable programmable Read Only Memory. It is a programmable ROM, where data can be erased by ultraviolet light.

V&V

Verification and Validation.

The process of determining 1) whether the requirements for a system or component are complete and correct, 2) whether the products of each development phase fulfill the requirements or conditions imposed by the previous phase, and 3) whether the final system or component complies with specified requirements.