

Tennessee Valley Authority, Post Office Box 2000, Spring City, Tennessee 37381-2000

April 29, 2011

10 CFR 50.4(b) 10 CFR 50.34(b)

AILO

U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, D.C. 20555-0001

> Watts Bar Nuclear Plant, Unit 2 NRC Docket No. 50-391

Subject: Watts Bar Nuclear Plant (WBN) Unit 2 – Response to Requests for Additional Information (RAIs) Regarding Generic Letter 2004-02, Potential Impact of Debris Blockage of Emergency Recirculation During Design Basis Accidents at Pressurized-Water Reactors (TAC No. MD6726)

- References: 1. NRC to TVA letter dated April 19, 2011, "Watts Bar Nuclear Plant, Unit 2 -Request for Additional Information Regarding Generic Letter 2004-02, Potential Impact of Debris Blockage on Emergency Recirculation During Design Basis Accidents at Pressurized-Water Reactors (TAC No. MD6726)"
 - NRC to TVA letter dated April 25, 2011, "Watts Bar Nuclear Plant, Unit 2 -Request for Additional Information Regarding Generic Letter 2004-02, Potential Impact of Debris Blockage on Emergency Recirculation During Design Basis Accidents at Pressurized-Water Reactors Round 2 (TAC No. MD6726)"

NRC's letters to TVA dated April 19, 2011 (Reference 1) and April 25, 2011 (Reference 2) contained several RAIs related to Generic Letter 2004-02, "Potential Impact of Debris Blockage on Emergency Recirculation During Design Basis Accidents at Pressurized-Water Reactors." The RAIs and the responses to Reference 1 and Reference 2 questions are provided in Enclosures 1 and 2, respectively.

There are no new commitments made in this letter. If you have any questions, please contact Bill Crouch at (423) 365-2004.

U.S. Nuclear Regulatory Commission Page 2 April 29, 2011

I declare under penalty of perjury that the foregoing is true and correct. Executed on the 29th day of April, 2011.

Respectfully,

David Stinson Watts Bar Unit 2 Vice President

Enclosures:

- 1. Response to RAIs Related to April 19, 2011 Letter
- 2. Response to RAIs Related to April 25, 2011 Letter

Attachment:

1. TVA Specification, SQN-WBN-DS-2005-063-001, Rev. 2, "Advanced Design Containment Building Sump Strainers for Sequoyah Nuclear Plant Units 1 and 2 and Watts Bar Nuclear Plant Units 1 and 2"

cc (Enclosures):

U. S. Nuclear Regulatory Commission Region II Marquis One Tower 245 Peachtree Center Ave., NE Suite 1200 Atlanta, Georgia 30303-1257

NRC Resident Inspector Unit 2 Watts Bar Nuclear Plant 1260 Nuclear Plant Road Spring City, Tennessee 37381

Response to RAIs Related to NRC's April 19, 2011 Letter

Tennessee Valley Authority - Watts Bar Nuclear Plant - Unit 2, Docket No. 50-391

Requests for Additional Information (RAI)

EMCB RAI 1

In response to Item 3.k.1 of the Watts Bar Nuclear Plant (WBN), Unit 2, supplemental Generic Letter (GL) 2004-02 response (Reference 1), four out of the six load combinations for which the strainers were structurally qualified include loads due to either an operating basis earthquake (OBE) or a safe shutdown earthquake (SSE). However, no information was provided regarding the structural damping values used in the seismic analyses of the strainers, including their individual components, as part of the structural qualification of these components. Please provide the OBE and SSE damping values used for the strainer structures in the aforementioned analysis.

TVA Response

The WBN Unit 2 OBE and SSE damping values used in the sump strainer were 2% and 3%, respectively, per the TVA Advanced Design Containment Building Sump Strainer Design Specification, SQN-WBN-DS-2005-063-001, Rev. 2. Refer to Attachment 1 for excerpts from this specification which provide the WBN Unit 2 seismic spectra. These response spectra are similar to spectra used for analysis of the WBN Unit 1 strainer assemblies. The slight difference is due to steam generator replacement for Unit 1 which added mass to the reactor building.

These damping values are the same as used for Category I Equipment Seismic/Structural Qualification (ESQ).

EMCB RAI 2

Note 3 accompanying the loading combinations in Reference 1, which were considered in the structural analyses of the WBN Unit 2 sump strainers, indicates that loads due to jet impingement and debris impact were not considered in the final strainer design. The response to Item 3.k.3 of the WBN Unit 2 supplemental GL 2004-02 response clearly articulates that loads due to jet impingement are not credible, due to the location of the sump strainers. However, there is little justification for neglecting the postulated loads due to debris impact. Please provide additional justification and/or explanation regarding the conclusion of debris impact loads from the applicable loading combinations considered in response to Item 3.k.1.

TVA Response

Debris impact loads were included in Load Combination 6, but determined to be negligible based on the location of the WBN Unit 2 strainer assembly relative to postulated pipe breaks inside containment. This is the same reasoning as used for jet impingement loads, as stated in the response to Item 3.k.3.

Note that Load Combination 6 conservatively combines Safe Shutdown Earthquake (SSE) with applicable debris impact and jet impingement loads from postulated pipe breaks at the location of the component (i.e., the strainer assembly). The load combinations and allowable stresses used for strainer assembly structural analysis are consistent with WBN design criteria WB-DC-20-21 for miscellaneous steel components.

Response to RAIs Related to NRC's April 19, 2011 Letter

Tennessee Valley Authority - Watts Bar Nuclear Plant - Unit 2, Docket No. 50-391

EMCB RAI 3

Note 6 accompanying the aforementioned loading combinations considered in the structural analyses of the WBN Unit 2 sump strainers, indicates that loads due to hydrostatic or hydrodynamic effects were not considered in the final strainer design. There is no accompanying justification for the exclusion of the effects of these loads in the sump strainer structural analyses. Please provide additional justification regarding the exclusion of hydrostatic and hydrodynamic loads. This justification should include, but not be limited to, whether submergence, sump strainer construction, or the bounding of these effects by other loads account for the absence of hydrostatic and hydrodynamic loads in the current structural analysis.

TVA Response

Contrary to the above NRC question, Note 6 does not say that hydrostatic or hydrodynamic loads are excluded from the design. Instead, Note 6 states that these loads are not considered in combination with seismic Operating Basis Earthquake (OBE) or SSE loads. The WBN Unit 2 containment sump design basis does not require consideration of a seismic event during recovery from a design basis LOCA. As the containment sump strainers will only be subjected to accident hydrostatic or hydrodynamic loading during the recovery from a design basis event, application of hydrostatic or hydrodynamic loads to load combinations which include seismic loads is beyond the current design and licensing basis of the plants.

Hydrostatic loads are included in the differential pressure (DP) load as discussed in response to Item 3.k.1. The strainers are designed for a strainer maximum submergence of 14.42 ft above floor elevation at the top of the sump pit. These static loads to the strainer assembly and plenum were considered in determining the DP load. The DP load acts during accident conditions when the strainers are covered with debris. This is conservatively based on the maximum allowable hydrostatic pressure drop across the debris covered strainers of 3.5 feet of water.

Response to RAIs Related to NRC's April 25, 2011 Letter

Tennessee Valley Authority - Watts Bar Nuclear Plant - Unit 2, Docket No. 50-391

Debris Generation (DG)

DG RAI-1

According to the Break Selection Evaluation, mineral wool is installed in limited locations, but was stated to not be within any loss-of-coolant accident (LOCA) zone of influence (ZOI). No ZOI size was provided for the mineral wool material. The basis for excluding the mineral wool as potential debris was not provided. Provide information to justify that the mineral wool cannot become transportable debris. Alternately, provide information to justify that the design basis debris load bounds any alternate debris load that includes the mineral wool.

TVA Response

As stated in the response to Item 3.a.2, some mineral wool insulation is used inside containment but it is not in locations within the ZOI for any LOCA. A small quantity of mineral wool (1.57 ft3) is used where the under vessel in-core instrument tubes penetrate the crane wall. Mineral wool is also used inside the guard pipes on the main feedwater lines outside of the crane wall where the lines penetrate the steel primary containment. Upon blowdown, if this material were to fail, the mineral wool in the under vessel in-core instrument tube crane wall penetrations would be blown to the area outside the crane wall, which has no communication with the emergency sump inside the crane wall. Mineral wool inside the guard pipes on the main feedwater lines outside of the crane wall. Mineral wool is not considered transportable debris.

Head Loss and Vortexing (HLV)

HLV RAI-1

The design basis assumes 750 ft² sacrificial strainer area for miscellaneous debris (Section 3.b of submittal), During testing, the NRC staff understood that scaling included a 200 ft² sacrificial area, as documented in the staff's trip report (ML102160226). Please reconcile this discrepancy.

TVA Response

An initial conservative allowance of 1,000 ft² of total surface area was used for signs, placards, tags, tape, etc., inside the containment. The initial assumption was used in the design of the strainers. The entire quantity of signs, placards, tags, tape and similar miscellaneous materials was conservatively assumed in the analysis to be transported to the sump intake. Based on Section 3.5.2.2.2 of the NRC SER for NEI-04-07, a 75 percent packing ratio was applied to this debris. Thus, 750 ft² represents the strainer area assumed to be blocked by signs, placards, tags, tape, and similar miscellaneous materials in containment in response to Item 3.b.5. Based on containment walkdown results documented in WAT-D-11530 for Unit 1, a conservative estimate of the actual total surface area of all signs, placards, tags, tape and similar miscellaneous materials in containment was established as 697 ft²; thereby confirming the adequacy of the original design allowance. The allowance will be the same for Unit 2. It was later determined that this type of debris does not get transported to the sump screens due to the geometry of the containment and thus the final test did not include these types of debris.

The WBN Unit 2 strainer surface area is about 4,600 ft². For the purpose of test scaling, the total surface area was assumed to be only 4,400 ft² in order to add 200 ft² of margin to the

Response to RAIs Related to NRC's April 25, 2011 Letter

Tennessee Valley Authority - Watts Bar Nuclear Plant - Unit 2, Docket No. 50-391

strainer flow test results. The AREVA Debris Allocation Table for the WBN Unit 1 strainer performance test erroneously stated that this 200 ft² area was removed for tags and labels. This 200 ft² does not represent a direct correlation to signs, placards, tags and tape, but as described above, was an assumed clean strainer area reduction to provide margin. Results from AREVA strainer prototype testing confirmed that tag and label debris does not readily transport to the sump strainer assemblies and thus, tags and label debris were not included in the testing.

HLV RAI-2

The application did not include a plot of the test strainer head loss as a function of time for the design basis test, annotated with significant events during the test, as described in the revised content guide for GL 2004-02 supplemental responses (ADAMS Accession No. ML07311 0278). The NRC staff reviews the plot to validate extrapolation of test results to the mission time, and to ensure that pressure-driven bed discontinuities did not affect the debris head loss (such that temperature scaling may be inappropriate). Provide an annotated plot of the design basis test.

TVA Response

The third Thin Bed Test was performed on July 16, 2010. This thin bed test represents the design basis test for WBN Unit 2 debris loaded head loss.

Figure 6-6 below from AREVA document number 66-9144025-000, Watts Bar Unit 1 Emergency Core Cooling System Strainer Performance Test Report, presents a plot of the head loss data versus time for the duration of Test 4C.

Response to RAIs Related to NRC's April 25, 2011 Letter

Tennessee Valley Authority - Watts Bar Nuclear Plant - Unit 2, Docket No. 50-391

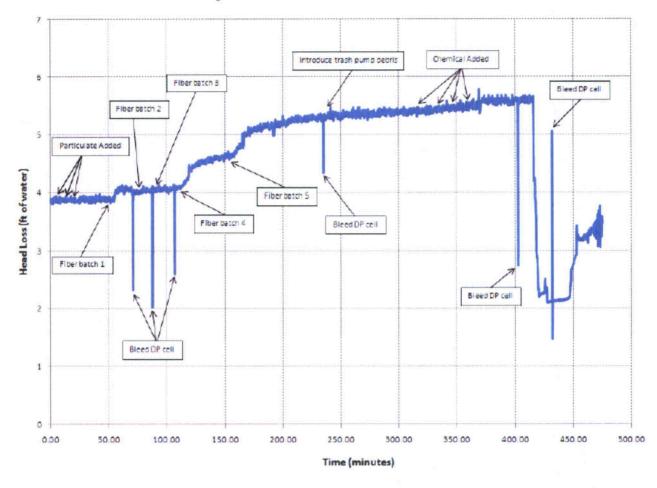


Figure 6-6: Test 4C Head Loss vs. Time

HLV RAI-3

Provide the methodology used for extrapolation of head loss values to the 30-day mission time, including any statistical methodology employed.

TVA Response

Figure 6-5 below from AREVA document number 66-9144025-000, Watts Bar Unit 1 Emergency Core Cooling System Strainer Performance Test Report, presents a plot of the extrapolated head loss data versus time for the duration of Test 4C. As can be seen, the head loss after 15 flume turnovers is constant and therefore is bounding for the 30 day mission time.

Response to RAIs Related to NRC's April 25, 2011 Letter

Tennessee Valley Authority - Watts Bar Nuclear Plant - Unit 2, Docket No. 50-391

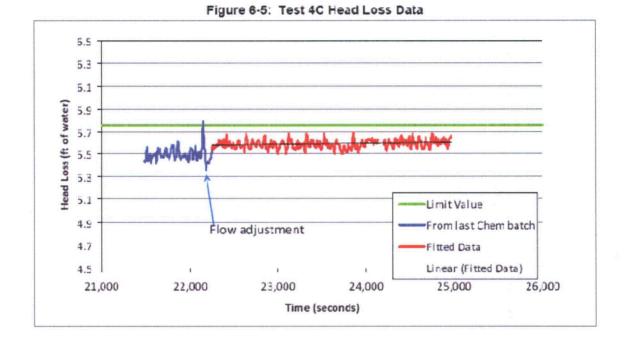


Table 6-7 below from AREVA document number 66-9144025-000, Watts Bar Unit 1 Emergency Core Cooling System Strainer Performance Test Report, presents the data used to calculate the upper limit head loss for Test 4C. The upper limit with maximum deviation determined below bounds the 30 day mission time.

Averaging Time (minutes) ¹	Average Head Loss (ft. of water)	Standard Deviation (ft)	Upper Limit for 95% Confidence (ft)	Upper Limit with Maximum Deviation (ft)
45.2	5.59	0.038	5.66	5.76

Table 6-7: Upper Limit Head Loss

¹Note 45.2 minutes is the time duration for the last 15 flume turnovers.

Table 6-8 below presents the clean strainer and thin bed temperature corrected head losses.

	Test Temperature (°F)	Test Temperature Dynamic Viscosity (Ib s/ft ²)	Reference Temperature (°F)	Reference Temperature Dynamic Viscosity (Ib s/ft ²)	Head Loss (ft of water)	Temperature Corrected Head Loss (ft of water)
Clean Strainer Average	120.0	1.164 x 10 ⁻⁵	190.0	6.775 x 10 ⁻⁶	3.88	2.26
Thin Bed Upper Limit	120.0	1.164 x 10 ⁻⁵	190.0	6.775 x 10 ⁻⁶	5.76	3.35

Response to RAIs Related to NRC's April 25, 2011 Letter

Tennessee Valley Authority - Watts Bar Nuclear Plant - Unit 2, Docket No. 50-391

Note: The clean strainer average head loss is the average head loss before debris was introduced during Test 4C.

Using the clean strainer and thin bed upper limit head losses from Table 6-8, the thin bed upper limit debris loaded head loss is:

5.76 (ft of water) - 3.88 (ft of water) = 1.88 (ft of water)

The temperature corrected thin bed upper limit debris loaded head loss is:

3.35 (ft of water) -2.26 (ft of water) = 1.09 (ft of water)

Net Positive Suction Head (NPSH)

NPSH RAI-1

It is unclear how the margins reported for residual heat removal switchover time and containment spray system (CSS) switchover time are consistent with the strainer submergence values reported in section 3.f.2 of the Watts Bar 2 submittal. For the limiting case of small-break LOCA (SBLOCA), the minimum sump level is stated to increase from 5.78 ft to 6.91 ft from the time of emergency core cooling system recirculation to the time of CSS recirculation. This would contribute to a net positive suction head (NPSH) margin of 1.1 ft. The NPSH section of the submittal states that NSPH margin increases by about 3.7 ft when comparing similar conditions. The change in submergence for a large-break LOCA reported in section 3.f.2 (3.4 ft) is closer to this value. There may be a discrepancy in the reported minimum sump level at CSS recirculation for the SBLOCA case. Clarify the water levels and discuss how the NPSH margins reported in section 3.g.16 were calculated.

TVA Response

The value for minimum sump level for the SBLOCA case reported in response 3.f.2 is incorrect. The 3.f.2 response erroneously stated the sump level at the time of entering containment spray system (CSS) recirculation mode is 6.91 feet. The correct value is 9.39 ft which is the result of a 3.61 ft increase in sump water level. This 3.61 ft increase corresponds to the 3.7 ft NPSH margin increase seen in the 3.g.16 response as described below. Note 2 in the original 3.f.2 response states, "SBLOCA results are for the 120 gpm SBLOCA case. 2000 gpm SBLOCA was also examined in sump water inventory calculations for NPSH." The minimum sump level of 6.91 ft is actually the sump level at the time of emergency core cooling system (ECCS) recirculation for the 2000 gpm SBLOCA. The corrected values, including the values for the 2000 gpm SBLOCA case and the large break LOCA case from the latest revision of the analysis for minimum sump level, are shown below:

Response to RAIs Related to NRC's April 25, 2011 Letter

Tennessee Valley Authority - Watts Bar Nuclear Plant - Unit 2, Docket No. 50-391

Containment	t Sump Strainer Min	nimum Submergenc	е
Conditions	Minimum Sump Level	Strainer Assembly Height	Minimum Submergence
Large Break LOCA			
ECCS Recirculation	8.5 ft	Short: 4.81 ft	3.69 ft
ECCS Recirculation	8.5 ft	Tall: 5.52 ft	2.98 ft
CSS Recirculation	11.85 ft	Short: 4.81 ft	7.04 ft
CSS Recirculation	11.85 ft	Tall: 5.52 ft	6.33 ft
Small Break LOCA (2000 gpm)			
ECCS Recirculation	6.91 ft	Short: 4.81 ft	2.1 ft
ECCS Recirculation	6.91 ft	Tall: 5.52 ft	1.39 ft
CSS Recirculation	12.07 ft	Short: 4.81 ft	7.26 ft
CSS Recirculation	12.07 ft	Tall: 5.52 ft	6.55 ft
Small Break LOCA (120 gpm)			
ECCS Recirculation	5.78 ft	Short: 4.81 ft	0.97 ft
ECCS Recirculation	5.78 ft	Tall: 5.52 ft	0.26 ft
CSS Recirculation	9.39 ft	Short: 4.81 ft	4.58 ft
	9.39 ft	Tall: 5.52 ft	3.87 ft

The available NPSH is calculated using standard equations with the NPSH margin being the mathematical difference between the available NPSH and the required NPSH. The sump level is an input to the MULTIFLOW model. The model is based on a maximum sump temperature of 190°F. Thus, a 3.61 ft change at 60°F and 1 atmosphere converts to 3.73 ft at 190°F, which rounds to 3.7 ft of NPSH margin.

Response to RAIs Related to NRC's April 25, 2011 Letter

Tennessee Valley Authority - Watts Bar Nuclear Plant - Unit 2, Docket No. 50-391

NPSH RAI-2

For SBLOCAs, Enclosure 3 indicates that the minimum water level calculation assumes the reactor coolant system (RCS) will contribute inventory to the reactor cavity. The applicant calculates RCS shrinkage, due to cooling of the primary inventory, and subtracts this value to reduce the amount of water that reaches the containment sump. It is not clear to the staff that the calculations account for the inventory required to refill the RCS, such that the stated amounts provide for conservative estimates of minimum sump level. The NRC staff's position is that the applicant should account for the potential for the RCS to become completely filled with water at it's ultimate equilibrium temperature. The staff understands that the levels may have been calculated correctly and that ice melt will contribute inventory at a rate required to account for RCS refill and cooldown. Provide information to demonstrate that the minimum sump level has determined properly considering the above discussion.

TVA Response

Considering only the water inventory that spills from the RCS into the reactor cavity does not result in a level that will cause reactor cavity overflow to the sump for all SBLOCA minimum sump level determinations. The Reactor Cavity inventory is 128,000 gallons. The diversion of sump inventory from ECCS to maintain the Reactor Vessel filled was determined for a 4 inch SBLOCA of 2,000 gpm based upon the WBN Unit 1 SBLOCA Accident Analysis Parameter Checklist. As WBN Unit 1 RCS inventory is greater than WBN Unit 2, this is considered a conservative assumption. Initial RCS specific volume is based upon 2,235 psig and 586.2°F. The cooldown is postulated to occur until RCS achieves 600 psia, the accumulator injection setpoint, as accumulator injection is not credited as a sump or RCS makeup source. The RCS remains at the equilibrium RCS hot and cold leg temperatures of 489°F and 260°F for an average RCS temperature of 374.5°F. This temperature and pressure were used to determine the RCS specific volume and shrinkage at ECCS and CSS recirculation initiation. The ECCS makeup due to RCS shrinkage for ECCS and CSS recirculation were the same since no further RCS shrinkage occurs to permit accumulator injection after ECCS recirculation initiation.

The diversion of ECCS sump inventory for a 2 inch SBLOCA of 120 gpm assumes the initial RCS specific volume is based upon 2235 psig and 586.2°F. The diversion of sump inventory from ECCS to maintain the Reactor Vessel filled was determined for a 2 inch SBLOCA of 120 gpm based upon WCAP-11145, Westinghouse Small Break LOCA ECCS Model Generic Study with NOTRUMP Code. RCS cooldown does not achieve equilibrium at the time of ECCS recirculation initiation. The RCS hot and cold leg temperatures at initiation of ECCS recirculation were 561.0°F and 474.7°F for an average RCS temperature of 517.8°F. The RCS pressure at initiation of ECCS recirculation was 1,167 psia.

The long-term cooldown is postulated to occur until RCS achieves 610 psig, the accumulator injection setpoint, as accumulator injection is not credited as a sump or RCS makeup source. The long-term equilibrium RCS hot and cold leg temperatures were 509.4°F and 362.2°F for an average RCS temperature of 435.8°F. This temperature and pressure were used to determine the RCS specific volume and shrinkage at CSS recirculation initiation.

Attachment 1

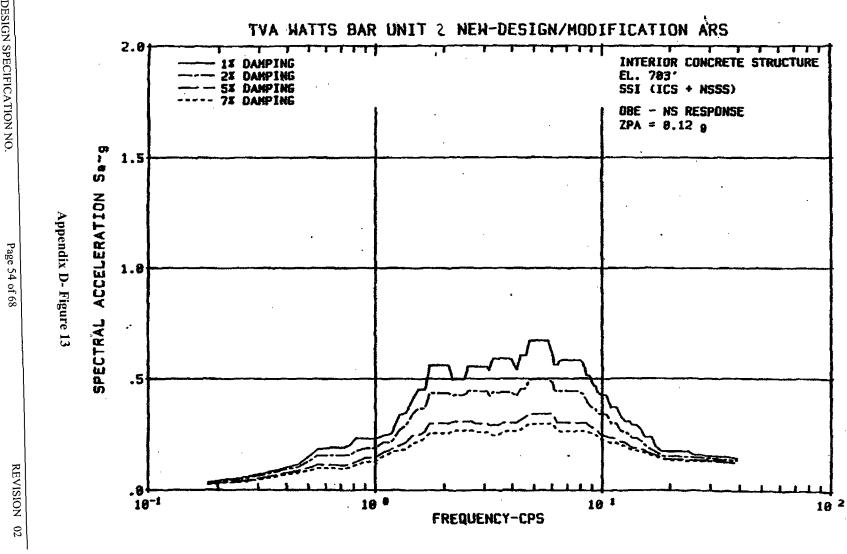
TVA Specification, SQN-WBN-DS-2005-063-001, Rev. 2, "Advanced Design Containment Building Sump Strainers for Sequoyah Nuclear Plant Units 1 and 2 and Watts Bar Nuclear Plant Units 1 and 2"

÷

T03_080429 001

TENNESSEE VALLEY AUTHORITY

SPECIFICATION NO. SQN/WBN-DS-2005-063-001, Revision 02


FOR

ADVANCED DESIGN CONTAINMENT BUILDING SUMP STRAINERS

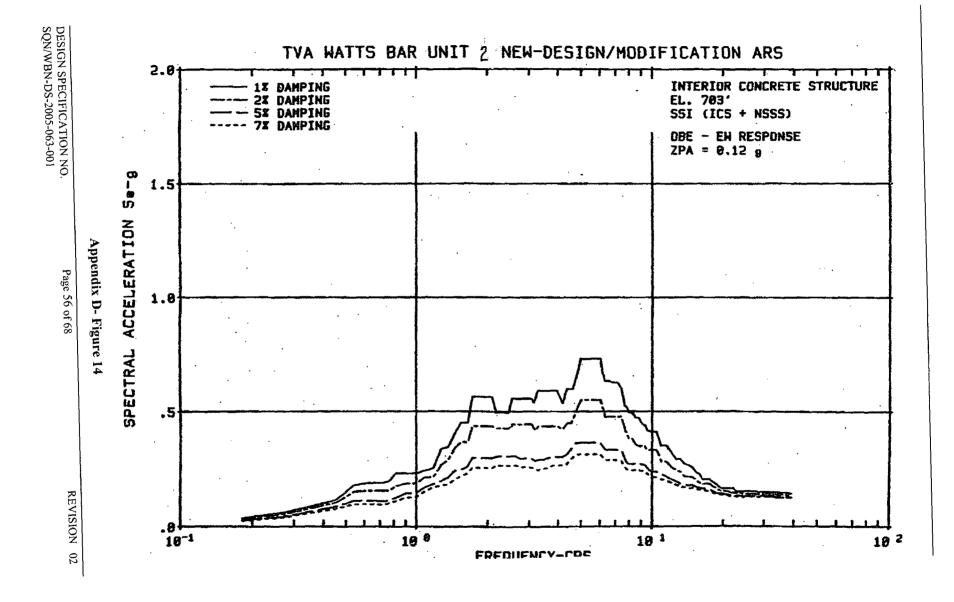
FOR

SEQUOYAH NUCLEAR PLANT UNITS 1 AND 2 AND WATTS BAR NUCLEAR PLANT UNITS 1 AND 2

Prepared <u>Date</u> Reviewed <u>Date</u> <u>Date</u> Approved -Will O. hunk 4/24/08 4/z4/08 Thompton 4/23/08 Tan

DESIGN SPECIFICATION NO. SQN/WBN-DS-2005-063-001

	DIGITIZED DATA FOR BROADENED SPECTRU				TENNESSEE VALLEY AU WATTS BAR NUCLEAR I PRE-STEAM GENERATO INTERIOR CONCRETE S OBE - N-S - ELEVATION FIXED DAMPING RATIO	PLANT DR REPLACEMENT STRUCTURE 703 0.02
	Frequency Acceleration (Hz) (G's)	Frequency Acceleration (Hz) (G's)	Frequency Acceleration (Hz) (G's)	Frequency Acceleration (Hz) (G's)	Frequency Acceleration (Hz) (G's)	Frequency Acceleration (Hz) (G's)
Appendix D- Figure 13	.18180 .03150 .22000 .04150 .23000 .04360 .26090 .05020 .27270 .05270 .33000 .0750 .34500 .07580 .34780 .07660 .36360 .08110 .43480 .09850 .44000 .09980 .45460 .10300 .45460 .10300 .45460 .10300 .45460 .10300 .45460 .10300 .52170 .13860 .54550 .15110 .55000 .15130 .57500 .15220 .60870 .15440 .666000 .15440 .69560 .15440 .77700 .15540 .78260 .15990 .80500 .16870 .81820 .17990 .86960 .18100 .88200 .18620 .909010 .18620 .909010	1.27270 .26620 1.30440 .27400 1.32000 .27780 1.36360 .28820 1.38000 .29780 1.39130 .30450 1.43000 .32730 1.45450 .34130 1.47830 .34760 1.49500 .35210 1.54000 .36560 1.54550 .36560 1.63640 .36560 1.63640 .36560 1.63640 .36560 1.63640 .36560 1.63640 .36560 1.63220 .36760 1.72730 .43340 2.09000 .43510 2.17390 .42720 2.18180 .42640 2.52170 .43410 2.53000 .43510 2.17390 .42720 2.18180 .42640 2.52170 .43410 2.53000 .43500 2.54550 .44380 2.64500 .44380 2.64500 .44380 2.75000 .44380 2.7500 .44380 2.86360 .44380 3.10500 .43700 3.13040 .43020 3.13640 .42860 3.19000 .42690 3.27270 .42690	3.3000 .43920 3.30430 .43920 3.33500 .43920 3.45000 .43920 3.45500 .43920 3.45500 .43920 3.45500 .43920 3.45500 .43920 3.45500 .43920 3.62250 .43920 3.63000 .43920 3.63200 .43920 3.63200 .43920 3.63200 .43920 3.65220 .43920 3.65220 .43920 3.6520 .43920 3.6520 .43920 3.6520 .43920 3.96070 .43920 3.96070 .43920 3.96070 .43920 3.96070 .43920 3.96070 .4350 4.1000 .42470 4.17390 .42200 4.18180 .42150 4.37000 .45420 4.36360 .45420 4.56520 .45660 4.60000 .46940 4.77270 .49860	6.59090 .44400 6.87500 .44400 6.90000 .44400 7.04540 .44400 7.15000 .44400 7.15000 .44400 7.15000 .44400 7.15000 .44400 7.15000 .44400 7.17270 .44400 7.72730 .44360 7.76250 .44300 7.70000 .44400 7.72730 .44360 7.76250 .43300 7.82610 .44190 7.97500 .43850 8.05000 .43210 8.13105 .43370 8.13180 .43210 8.25000 .42890 8.33750 .42160 8.25000 .42890 8.33750 .42160 8.52500 .4280 8.63640 .39330 8.69560 .38780 8.80000 .37820 8.91250 .37370 9.09090 .36650 9.13040 .36280 9.24000 .36280 <td>11.00000 .29590 11.30440 .29590 11.36360 .29590 11.50000 .29590 11.55000 .29590 11.73910 .28420 11.8120 .27930 12.07500 .26370 12.17390 .26160 12.7270 .26090 12.6870 .25840 12.65000 .25800 12.72730 .25630 13.04350 .24920 13.18180 .24610 13.20000 .24570 13.20000 .24570 13.2000 .24480 13.63640 .23030 13.75000 .23030 13.8180 .24610 13.2000 .24480 13.63640 .23030 13.7500 .23030 13.8180 .24610 13.8000 .23030 14.37500 .22890 14.54540 .22560 14.72730 .22220 14.78260 .2110 14.85000 .21690 15.45460<!--</td--><td>17.82000 16080 18.18180 15490 18.26090 15410 18.40000 15250 18.63000 15000 18.70000 14930 19.09090 14930 19.09090 14930 19.55000 14930 19.55000 14930 20.00000 14930 20.70000 14930 21.73910 14840 22.00000 14930 21.73910 14840 22.00000 14830 21.73910 14840 22.00000 14830 24.15000 14800 23.10000 14800 23.10000 14800 24.15000 14570 25.30000 14570 25.30000 14570 25.30000 14570 25.35520 14570 25.55520 14270 28.63640 14270 29.56520 14230 381000 13550 <t< td=""></t<></td></td>	11.00000 .29590 11.30440 .29590 11.36360 .29590 11.50000 .29590 11.55000 .29590 11.73910 .28420 11.8120 .27930 12.07500 .26370 12.17390 .26160 12.7270 .26090 12.6870 .25840 12.65000 .25800 12.72730 .25630 13.04350 .24920 13.18180 .24610 13.20000 .24570 13.20000 .24570 13.2000 .24480 13.63640 .23030 13.75000 .23030 13.8180 .24610 13.2000 .24480 13.63640 .23030 13.7500 .23030 13.8180 .24610 13.8000 .23030 14.37500 .22890 14.54540 .22560 14.72730 .22220 14.78260 .2110 14.85000 .21690 15.45460 </td <td>17.82000 16080 18.18180 15490 18.26090 15410 18.40000 15250 18.63000 15000 18.70000 14930 19.09090 14930 19.09090 14930 19.55000 14930 19.55000 14930 20.00000 14930 20.70000 14930 21.73910 14840 22.00000 14930 21.73910 14840 22.00000 14830 21.73910 14840 22.00000 14830 24.15000 14800 23.10000 14800 23.10000 14800 24.15000 14570 25.30000 14570 25.30000 14570 25.30000 14570 25.35520 14570 25.55520 14270 28.63640 14270 29.56520 14230 381000 13550 <t< td=""></t<></td>	17.82000 16080 18.18180 15490 18.26090 15410 18.40000 15250 18.63000 15000 18.70000 14930 19.09090 14930 19.09090 14930 19.55000 14930 19.55000 14930 20.00000 14930 20.70000 14930 21.73910 14840 22.00000 14930 21.73910 14840 22.00000 14830 21.73910 14840 22.00000 14830 24.15000 14800 23.10000 14800 23.10000 14800 24.15000 14570 25.30000 14570 25.30000 14570 25.30000 14570 25.35520 14570 25.55520 14270 28.63640 14270 29.56520 14230 381000 13550 <t< td=""></t<>
			0.52110 .77700	10.72300 .30130	17.60000 .16510	


÷

Appendix n- rigure 13

DESIGN SPECIFICATION NO. SQN/WBN-DS-2005-063-001

Page 55 of 68

REVISION 02

Page 57 of 68

Appendix

P-

Figure

14

REVISION 02

Frequency Acceleration Frequency Acceleration (Hz) (G' .18180 .03 .22000 .04 .23000 .04

DIGITIZED DATA FOR

1.18180 .21290

1.21740 .23180

1.26500 .26150

1.21000

.22710

3.13640 .42810

3.19000 .41780

3.22000 .42420

3.27270 .43530

BROADENED SPECTRUM

(Hz) (G':		(Hz) ((Hz)		(Hz)		*,
.18180 .03	3150	1.27270	.26630	3.30000	.43530	6.32500	.47700	
.22000 .04	150	1.30440	.27400	3.30430	.43530	6.36360	.47700	
.23000 .04	360	1.32000	.27780	3.33500	.43530	6.45460	.47700	
.26090 .05	5020	1.36360	.28810	3.45000	.43530	6.52170	.47700	
.27270 .05	5270	1.38000	.29770	3.45450	.43530	6.59090	.47700	
.33000 .07	150	1.39130	.30440	3.46500	.43530	6.60000	.47700	
.34500 .07	580	1.43000	.32730	3.47830	.43530	6.61250	.47700	
.34780 .07	7660	1.45450	.34130	3.62250	.43530	6.73910	.47700	
.36360 .08	3110	1.47830	.34770	3.63000	.43530	6.81820	.47700	
.43480 .09	860	1.49500	.35230	3.63640	.43530	7.15000	.47700	
.44000 .09	980	1.54000	.36440	3.65220	.43530	7.18750	.47700	
.45460 .10)310	1.54550	.36590	3.79500	.43530	7.27270	.47700	
.46000 .10	0590	1.56520	.36590	3.81820	.43530	7.29570	.47700	
.52170 .13	3860	1.61000	.36590	3.96000	.43530	7.39130	.47700	
.54550 .15	5110	1.63640	.36590	3.96750	.43480	7.42500	.47700	
.55000 .15	5130	1.65000	.36590	4.00000	.43280	7.47500	.46610	
.57500 .15	5220	1.65220	.36780	4.14000	.42410	7.63640	.43080	
.60870 .15	5340	1.72500	.43340	4.17390	.42200	7.70000	.41710	
.63640 .15	5440	1.72730	.43540	4.18000	.42170	7.72730	.41440	
	5440	2.09000	.43540	4.18180	.42160	7.76250	.41100	
.69000 .15	5440	2.09090	.43520	4.34780	.44600	7.81000	.40630	
.69560 .15	5440	2.17390	.42700	4.36360	.44830	7.82610	.40380	
	5440	2.18180	.42620	4.37000	.44830	7.97500	.38080	
.77000 .15	5500	2.45450	.42620	4.40000	.44830	8.25000	.38080	
.78260 .15	5990	2.52170	.43400	4.54540	.44830	8.26090	.37980	
	5870	2.53000	.43500	4.56520	.45240	8.33750	.37340	
.81820 .17	7390	2.54550	.44350	4.60000	.45970	8.52500	.35760	
	3100	2.64000	.44350	4.62000	.46380	8.62500	.35310	
.88000 .18	3240	2.64500	.44350	4.75650	.49840	8.63640	.35250	
.90910 .18	3620	2.72730	.44350	4.77270	.50250	8.69560	.35140	
.92000 .18	3620	2.73910	.44350	4.78260	.50460	8.80000	.34940	
.95650 .18	3620	2.75000	.44350	4.83000	.51470	8.91250	.34940	
.99000 .18	3620	2.86000	.44350	4.84000	.51680	9.09090	.34940	
1.00000 .13	8620	2.86360	.44350	5.00000	.55010	9.13040	.34940	
1.03500 .1	9650	2.86960	.44350	5.77500	.55010	9.20000	.34940	
1.04350 .1	9900	2.87500	.44350	5.86960	.55010	9.24000	.34940	
1.09090 .2	1290	2.97000	.44350	5.90910	.55010	9.35000	.34930	
	1290	3.08000	.44350	6.03750	.55010	9.54540	.33220	
	1290	3.10500	.43670	6.05000	.55010	9.56520	.33220	
1.15000 .2	1290	3.13040	.42980	6.08700	.53850	9.64850	.33220	
4 4 4 4 4 4 4								

6.13640

6.14780

6.29050

6.30440 .48200

.52300

.52020

.48540

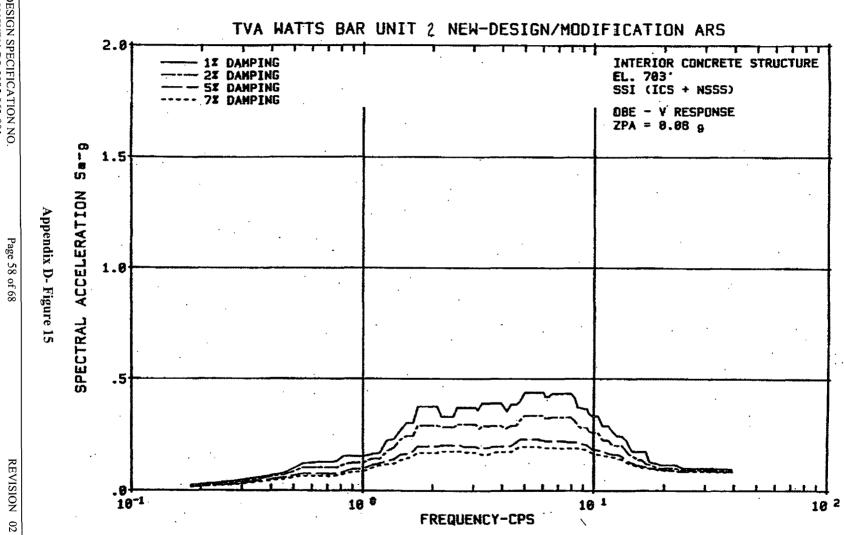
Frequency Acceleration

Frequency Acceleration

9.77500 .33220

9.90000 .33220

10.00000 .33220


10.35000 .33220

TENNESSEE VALLEY AUTHORITY WATTS BAR NUCLEAR PLANT PRE-STEAM GENERATOR REPLACEMENT INTERIOR CONCRETE STRUCTURE **OBE - E-W - ELEVATION 703** FIXED DAMPING RATIO 0.02 Frequency Acceleration Frequency Acceleration

(11-) ((2)-)

(H-) ((")-)

	(Hz) ((G's)	(Hz) (G's)
	10.43480	.33220	16.67500	.18420
	10.45000	.33220	16.78260	.18420
	10.45460	.33180	17.25000	.18420
	10.86960	.29350	17.39130	.18420
	10.90910	.28990	17.54540	.18420
	10.92500	.28840	17.60000	.18420
	11.00000	.28170	17.82000	.17900
		.28120	18.18180	.17330
	11.36360	.28110	18.26090	.17210
	11.50000		18.40000	.17000
		.28080	18.63000	.16640
		.27190	18.70000	.16530
		.26820	19.09090	.16010
	12.07500	.25640	19.13040	.15950
	12.10000	.25530	19.55000	.15400
		.25390	19.80000	.15290
		.25210	20.00000	.15290
	12.60870	.24600	20.70000	.15290
	12.65000		21.23000	.15010
	12.72730		21.73910	.14610
	13.04350		22.00000	.14550
		.23640	22.19500	.14500
		.23610	22.72730	.14500
	13.22500			.14500
		.22130	23.10000	.14500
	13.75000	.21750	24.15000	.14500
	13.80000		24.20000	.14420
	13.91300		24.34780	.14190
		.21660		.14030
		.21610	25.45460	.14030
		.21570	25.56520	.14030
	14.54540		26.72730	.14030
		.21410	27.50000	.14030
	14.78260	.21380	28.18180	.13980
		.21350	28.63640	.13980
		.21070	28.75000	.13980
	15.40000	.19820	29.56520	.13980
	15.45460	.19720	30.80000	.13980
		.19600	32.34000	.13980
	15.65220	.19380	33.81000	.13700
	15.95000	.18870	34.10000	.13640
	16.10000	.18700	34.65000	.13640
)	16.36360		37.40000	.13640
)	16.50000	.18420	39.10000	.13320

DESIGN SPECIFICATION NO. SQN/WBN-DS-2005-063-001

DESIGN SPECIFICATION N SQN/WBN-DS-2005-063-001 NO

Page 59 of 68

REVISION 02

PRE-STEAM GENERATOR REPLACEMENT INTERIOR CONCRETE STRUCTURE **OBE - VERTICAL - ELEVATION 703** FIXED DAMPING RATIO 0.02 Frequency Acceleration Frequency Acceleration **Frequency** Acceleration Frequency Acceleration Frequency Acceleration Frequency Acceleration (Hz) (G's) (Hz) (G's) (Hz) (G's) (Hz) (G's) (Hz) (G's) .18180 .02100 1.27270 .17750 3.33500 .28830 6.45460 .32410 10.90910 .22750 17.54540 .11540 1.30440 3.45000 .28830 .22710 .22000 .02770 .18260 6.52170 .32500 10.92500 17.60000 .23000 .02910 1.32000 .18510 .28830 3.45450 6.59090 .32580 11.00000 .22530 17.82000 .26090 .03350 1.36360 .19200 3.46500 .28830 7.15000 32580 11.30440 22530 18.18180 .27270 .03520 1.38000 .19840 3.47830 28830 7.18750 .32580 11.36360 .22530 18.26090 .33000 .04770 1.39130 .20280 3.62250 .28830 7.27270 .32580 11.50000 .22530 18.40000 .34500 .05050 1.43000 .21800 3.63000 .28830 7.29570 .32580 11.55000 .22530 18.63000 .34780 .05110 1.45450 .22730 3.63640 .28830 7.39130 .32580 11.73910 .21720 18.70000 .36360 .05410 1.47830 3.65220 .28830 7.42500 .32580 11.81820 .21380 .23160 19.09090 .28830 .43480 .06570 1.49500 .23470 3.79500 7.47500 .32580 12.07500 .20300 19.13040 44000 .06660 1.54000 .24290 3.81820 .28830 7.63640 .32580 12.10000 .20200 19.55000 45460 .06870 1.54550 .24390 3.96000 .28830 7.70000 .32580 12.17390 .20190 19.80000 .46000 .07060 1.56520 .24390 3.96750 .28790 7.72730 .32580 12.27270 .20180 20.00000 .52170 .09240 1.61000 .24390 4.00000 .28630 7.76250 .32580 12.60870 .20150 20.70000 54550 10080 1.63640 .24390 .27930 .32580 12.65000 4.14000 7.81000 .20140 21.23000 1.65000 .55000 .10090 .24390 4.17390 .27760 7.97500 32580 12.72730 .20140 21.73910 .57500 .10150 1.65220 .24510 4.18000 27730 8.05000 .32190 13.04350 .20120 22.00000 .60870 .10230 1.72500 .28860 4.18180 .27730 8.13050 .31770 13.18180 .20110 22.19500 .63640 .10300 1.72730 .29000 .28780 8.18180 .31500 13.20000 4.34780 .20110 22.72730 .66000 .10300 2.09000 .29000 4.36360 .28880 8.25000 .31150 13.22500 .19990 23.00000 2.09090 69000 .10300 .28980 4.37000 .28880 8.26090 13.63640 .31080 .18080 23,10000 .69560 .10300 2.17390 .28390 4.40000 .28880 8.33750 .30580 13.75000 .17570 24,15000 .10300 2.18180 4.54540 .28880 .72730 .28340 8.52500 29360 13.80000 .17370 24.20000 .77000 .10330 2.45450 .28340 4.56520 .28990 13.91300 .16930 8.62500 .28580 24.34780 2.52170 .78260 .10660 .28850 4.60000 .29180 8.63640 .28490 14.08700 .16260 25.30000 .80500 .11250 2.53000 .28910 4.62000 .29290 8.69560 .28350 14.30000 .15900 25.45460 .81820 .11590 2.54550 .29490 4.75650 .31100 8.80000 28090 14.37500 .15820 25.56520 .86960 .12070 2.64000 .29490 4.77270 .31320 8.91250 28090 14.54540 .15530 26,72730 .88000 .12170 2.64500 .29490 4,78260 .31410 9.09090 .28090 14.72730 .15220 27.50000 .90910 .12420 2.72730 29490 4.83000 .31850 9.13040 .28090 14.78260 .15120 28.18180 .92000 .12420 2.86000 .29490 4.84000 .31940 9.20000 .28090 14.85000 .15010 28.63640 .12420 .95650 2.86360 .29490 5.00000 .33400 9.24000 .28090 14.95000 .14840 30.80000 .99000 .12420 2.86960 .33400 9.35000 .29490 5.77500 .28090 15.40000 .13910 30.90910 1.00000 .12420 2.87500 .29490 5.86960 .33400 9.54540 .26430 15.45460 .13790 32.20000 1.03500 .13100 2.97000 .29490 5.90910 .33400 9.56520 .26400 15.52500 .13650 32.34000 1.04350 .13270 3.08000 .29490 6.03750 .33400 9.64850 .26280 15.65220 .13640 33.81000 1.09090 .14200 3.10500 .29030 .33400 6.05000 9.77500 .26090 15.95000 .13610 34.10000 .14200 1.10000 3.13040 .28560 .32880 6.08700 9.90000 .25900 16.10000 .13590 37.40000 1.13040 .14200 3.13640 .28450 6.13640 .32180 10.00000 .25900 16.36360 .12910 39.10000 1.15000 .14200 3.19000 .27670 .32190 10.35000 6.14780 .25900 16.50000 .12550 .14200 3.22000 1.18180 .28090 6.29050 .32290 10.43480 .25900 .12100 16.67500 1.21000 .15140 3.27270 .28830 6.30440 .32300 10.45000 .25900 16.78260 .11900 1.21740 .15450 3.30000 .28830 6.32500 .32320 25870 10.45460 17.25000 .11650

TENNESSEE VALLEY AUTHORITY

(Hz) (G's)

.11520

.11150

.10670

.10570

.10390

.10100

.10010

.09940

.09940

.09940

.09940

.09940

.09940

.09940

.09940

.09940

.09940

.09690

.09570

.09490

.09220

.09220

.09220

.09220

.09220

.09230

.09360

.09360

.09360

.09360

.09360

.09360

.09360

.09360

.09090

.09040

.09030

.08910

WATTS BAR NUCLEAR PLANT

Appendix

P-

Figure

5

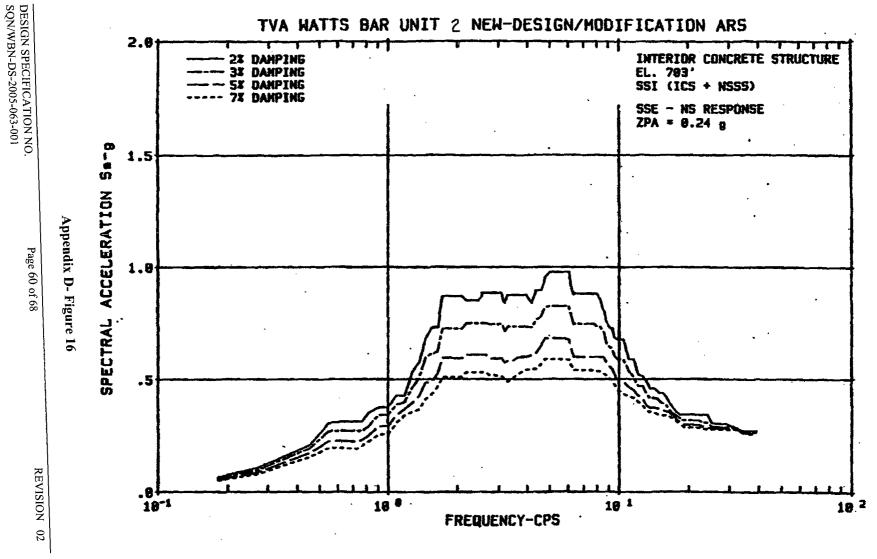
1.26500 .17430

3.30430

.28830

6.36360

.32350


10.86960

.23020

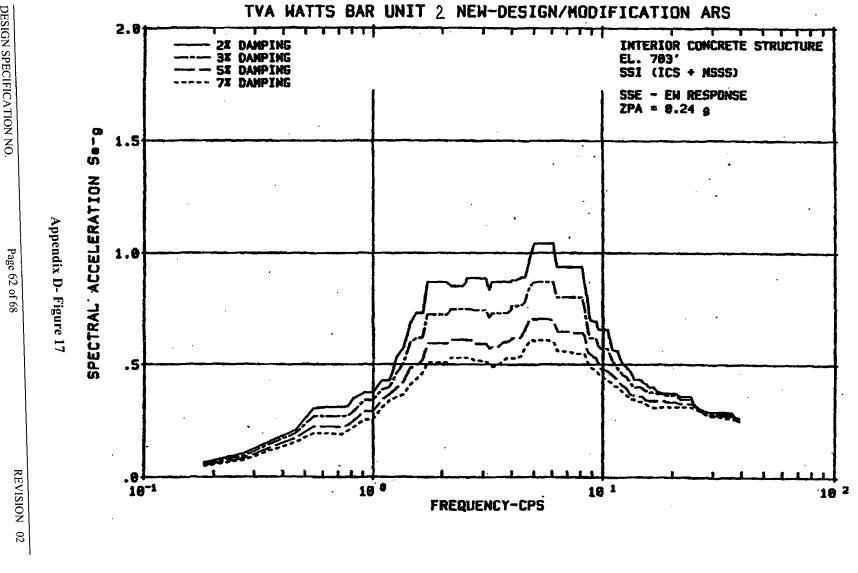
17.39130 .11590

DIGITIZED DATA FOR

BROADENED SPECTRUM

Sec		P
ž		S
3		5
в		Z
Z		SP
-DS-	1	E
-2		H
C		Ĩ
05-		A
06	2	T
3-)	0
8	5	4
-	1	2
		\sim

Page 61 of 68


REVISION 02

Appendix D- Figure 16

DIGITIZED DATA FOR	
BROADENED SPECTRUM	

TENNESSEE VALLEY AUTHORITY WATTS BAR NUCLEAR PLANT PRE-STEAM GENERATOR REPLACEMENT INTERIOR CONCRETE STRUCTURE SSE - N-S - ELEVATION 703 FIXED DAMPING RATIO 0.03 Frequency Acceleration Frequency Acceleration (Hz) (G's) (Hz) (G's)

<u></u>	ge nager negere	<u></u>						FIXED DA	MPING RA	TIO 0.03	
	Acceleration		Acceleration		Acceleration	Frequency A		Frequency A		Frequency A	Acceleration
(Hz)	(G's)	(Hz)	(G's)	(Hz)	(G's)	(Hz) ((G's)	(Hz)	(G's)	(Hz)	(G's)
.18180	.05850	1.21000	.41640	3.10500	.73870	5.77500	.82600	9.77500	.59440	15.52500	.39020
.22000	.07550	1.21740	.42150	3.13040	.73110	5.86960	.82600	9.90000	.58810	15.65220	.39020
.23000	.07920	1.26500	.45450	3.13640	.72940	5.90910	.82600	10.00000	.58810	15.95000	.38290
.26090	.09040	1.27270	.45980	3.19000	.71370	6.03750	.82600		.58810		
.27270	.09470	1.30440	.47610	3.22000	.72130	6.05000	.82600	10.35000	.58810	16.10000	.38030
.33000	.13160	1.32000	.48410	3.27270	.73480	6.08700	.80990	10.43480		16.36360	.37030
.34500	.14000	1.36360	.50590	3.30000	.73480			10.45000	.58810	16.50000	.36510
.34780	.14160	1.38000	.52280	3.30430	.73480	6.13640	.78840	10.45460	.58770	16.67500	.35840
.36360	.15040	1.39130	.52280			6.14780	.78580	10.86960	.54920	16.78260	.35580
.30300	.18400			3.33500	.73480	6.29050	.75310	10.90910	.54560	17.25000	.34450
.43480	.18400	1.43000	.57470	3.45000	.73480	6.30440	.74990	10.92500	.54410	17.39130	.34190
		1.45450	.59930	3.45450	.73480	6.32500	.74520	11.00000	.53740	17.54540	.33920
.45460	.19260	1.47830	.60390	3.46500	.73480	6.36360	.74620	11.30440	.52150	17.60000	.33820
.46000	.19700	1.49500	.60710	3.47830	.73480	7.15000	.74620	11.36360	.51850	17.82000	.33430
.52170	.24760	1.54000	.61570	3.62250	.73480	7.18750	.74620	11.50000	.51150	18.18180	.32790
.54550	.26700	1.54550	.61670	3.63000	.73480	7.27270	.74620	11.55000	.50900	18.26090	.32650
.55000	.26710	1.56520	.61750	3.63640	.73480	7.70000	.74620	11.73910	.49470	18.40000	.32410
.57500	.26750	1.61000	.61940	3.65220	.73480	7.72730	.74540	11.81820	.48870	18.63000	.31490
.60870	.26800	1.63640	.62050	3.79500	.73480	7.76250	.74450	12.07500	.47090	18.70000	.31490
.63640	.26840	1.65000	.63660	3.81820	.73480	7.81000	.74310	12.10000	.46920	19.09090	.31490
.66000	.26840	1.65220	.63910	3.82610	.73480	7.82610	.74220	12.17390	.46920	19.13040	.31490
.69000	.26840	1.72500	.72270	3.96000	.73480	7.97500	.73320	12.27270	.46920	19.55000	.31490
.69560	.26840	1.72730	.72530	3.96750	.73460	8.05000	.73320	12.60870	.46920	22.19500	.31490
.72730	.26840	2.09000	.72530	4.00000	.73370	8.13050	.73320	12.65000	.46920	22.72730	.30840
.77000	.26840	2.09090	.72510	4.14000	.73370	8.18180	.73320	12.72730	.46410	23.00000	.30510
.78260	.27370	2.17390	.74750	4.17390	.73370	8.25000	.73320	13.04350	.44350	23,10000	.30510
.80500	.28320	2.18180	.74960	4.18000	.73370	8.26090	.73240	13.18180	.43450	24.15000	.30510
.81820	.28880	2.45450	.74960	4.18180	.73370	8.33750	.72690	13.20000	.43340	24.20000	.30400
.86960	.31770	2.52170	.74960	4.34780	.76450	8.52500	.71360	13.22500	.43230	24.34780	.30080
.88000	.32360	2.53000	.74960	4.36360	.76740	8.62500	.69300	13.63640	.41410	25.30000	.28660
.90910	.33910	2.54550	.74960	4.37000	.76780	8.63640	.69070	13.75000	.41410	28.75000	.28660
.92000	.33910	2.64000	.74960	4.40000	.76930	8.69560	.67870	13.80000	.41410	29,56520	.28590
.95650	.33910	2.64500	.74940	4.54540	.77660	8.80000	.65770	13.91300	.41410	30.80000	.28490
.99000	.33910	2.72730	.74620	4.56520	.78030	8.91250	.65330	14.08700	.41410	30.90910	.28480
1.00000	.33910	2.73910	.74620	4.60000	.78680	9.09090	.64650	14.30000	.41410	32,20000	.28380
1.03500	.35670	2.75000	.74620	4.62000	.79060	9.13040	.64500		.41410	and the second	.28380
1.04350	.36100	2.86000	.74620	4.75650	.81560	9.20000	.64240	14.37500	.41340	32.34000	.26600
1.09090	.38490	2.86360	.74620	4.77270	.81850	9.24000	.64090	14.54540		33.81000	and the second second second
1.10000	.38610	2.86960	.74620					14.72730	.41000	34.10000	.26600
1.13040	.38980		.74620	4.78260	.81890	9.35000	.63530	14.78260	.40950	34.65000	.26600
		2.87500		4.83000	.82040	9.54540	.60600	14.85000	.40890	35.65000	.26600
1.15000	.39220	2.97000	.74620	4.84000	.82080	9.56520	.60500	14.95000	.40320	39.10000	.26600
1.18180	.39610	3.08000	.74620	5.00000	.82600	9.64850	.60080	15.40000	.39020		

DESIGN SPECIFICATION NO. SQN/WBN-DS-2005-063-001

S	
0	DES
7	ŝ
<	H
5	G
H	Z
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-
4	Ŧ
Ċ	N SPEC
in	0
- 30	CIF
22	
ŏ	TCA
S	5
5	
6	-
ŝ	0
6	TION
ŏ	_
-	4
	0

Page 63 of 68

**Appendix D-** Figure 17

REVISION 02 DIGITIZED DATA FOR BROADENED SPECTRUM

Frequency Acceleration

(Hz) (G's) .18180 .05850 .22000 .07550 .23000 .07920 .26090 .09040 .27270 .09470 .33000 .13160 .34500 .14000 .34780 .14160 .36360 .15040 .43480 .18400 .44000 .18650

.45460 .19260 .46000 .19700

.81820 .28880

.86960 .31780

.88000 .32360

.90910 .33920

.92000 .33920

.95650 .33920 .99000 .33920

1.00000 .33920 1.03500 .35680

1.04350 .36100

1.09090 .38480

1.10000 .38600

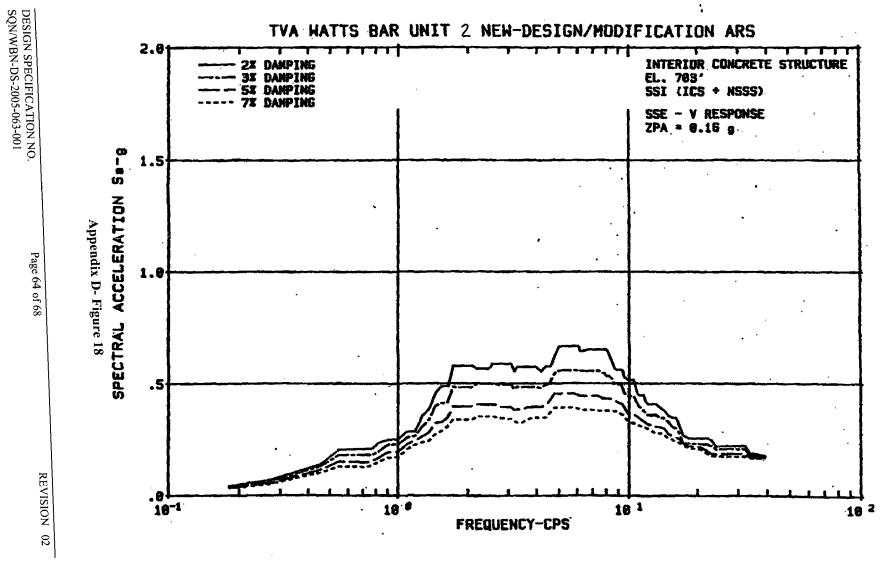
1.13040 .38980

1.15000 .39220

1.18180 .39620

1.21000 .41650

1.21740 .42160


.24760

.26700 .55000 .26710 .57500 .26750 .60870 .26810 .63640 .26850 .66000 .26850 .69000 .26850 .69560 .26850 .72730 .26850 .77000 .26850 .78260 .27380 .80500 .28330

.52170

.54550

						WATTS BA PRE-STEA INTERIOR SSE - E-W	EE VALLEY AUTH AR NUCLEAR PLA M GENERATOR I CONCRETE STR - ELEVATION 703 MPING RATIO 0.0	NT REPLACEM UCTURE	ENT
Frequency A (Hz)		Frequency A (Hz)			Acceleration (G's)	Frequency A (Hz) (		Frequency A (Hz) (	
1.26500	.45460 .45990	3.22000 3.27270	.71960	6.30440 6.32500	.80260	10.45460 10.86960	.57050 .53010	16.78260 17.25000	.37270
1.30440	.47610	3.30000	.73220	6.36360	.80260	10.90910	.52630	17.39130	.36910
1.32000	.48410	3.30430	.73220	6.45460	.80260	10.92500	.52480	17.54540	.36910
1.36360	.50570	3.33500	.73220	6.52170	.80260	11.00000	.51770	17.60000	.36910
1.38000	.52270	3.45000	.73220	6.59090	.80260	11.30440	.50020	17.82000	.36910
1.39130	.53450	3.45450	.73220	7.15000	.80260	11.36360	.49680	18.18180	.36910
1.43000	.57470	3.46500	.73220	7.18750	.80260	11,50000	.48910	18.26090	.36910
1.45450	.59930	3.47830	.73220	7.27270	.80260	11.55000	.48630	18.40000	.36910
1.47830	.60410	3.62250	.73220	7.29570	.80260	11.73910	.47500	18.63000	.36290
1.49500	.60740	3.63000	.73220	7.39130	.80260	11.81820	.47030	18.70000	.36250
1.54000	.61630	3.63640	.73220	7.42500	.80260	12.07500	.45900	19.09090	.36050
1.54550	.61730	3.65220	.73220	7.47500	.80260	12.10000	.45710	19.13040	.36030
1.56520	.61800	3.79500	.73220	7.63640	.80260	12.17390	.45280	20.70000	.36030
1.61000	.61940	3.81820	.73220	7.70000	.80260	12.27270	.45130	21.23000	.35200
1.63640	.62020	3.82610	.73220	7.72730	.80260	12.60870	.44640	21.73910	.34410
1.65000	.63630	3.96000	.74660	7.76250	.80260	12.65000	.44580	24.15000	.34410
1.65220	.63890	3.96750	.74990	8.05000	.80260	12,72730	.44180	24.20000	.34280
1.72500	.72280	4.00000	.76400	8.13050	.80260	13.04350	.42600	24.34780	.33910
1.72730	.72540	4.18180	.76400	8.18180	.79090	13.18180	.41910	25,30000	.31560
2.09000	.72540	4.34780	.76400	8.25000	.77550	13.20000	.41820	25.45460	.31350
2.09090	.72520	4.36360	.76400	8.26090	.77300	13.22500	.41710	25.56520	.31210
2.17390	.74730	4.37000	.76400	8.33750	.75590	13.63640	.39770	26.72730	.29740
2.18180	.74950	4.40000	.76550	8.52500	.68160	13.75000	.39700	26.95650	.29450
2.45450	.74950	4.54540	.78010	8.62500	.64720	13.80000	.39700	27.39130	.28920
2.52170	.74950	4.56520	.78630	8.63640	.64500	13.91300	.39700	27.50000	.28880
2.53000	.74950	4.60000	.79720	8.69560	.63550	14.08700	.39700	28.18180	.28620
2.54550	.74950	4.62000	.80340	8.80000	.61880	14.30000	.39700	28.63640	.28450
2.64000	.74950	4.75650	.84520	8.91250	.61880	14.37500	.39690	28.75000	.28410
2.64500	.74920	4.77270	.85010	9.09090	.61880	14.54540	.39650	29.56520	.28410
2.72730	.74520	4.78260	.85100	9.13040	.61880	14.72730	.39620	30.80000	.28410
2.73910	.74520	4.83000	.85540	9.20000	.61880	14.78260	.39610	30.90910	.28410
2.75000	.74520	4.84000	.85630	9.24000	.61880	14.85000	.39600	32.20000	.28410
2.86000	.74520	5.00000	.87080	9.35000	.61500	14.95000	.39090	32.34000	.28380
2.86360	.74520	5.77500	.87080	9.54540	.58240	15.40000	.38190	33.81000	.28110
2.86960	.74520	5.86960	.87080	9.56520	.58180	15.45460	.38190	34.10000	.28110
2.87500	.74520	5.90910	.87080	9.64850	.57910	15.52500	.38190	34.65000	.28110
2.97000	.74520	6.03750	.87080	9.77500	.57500	15.65220	.37610	35.65000	.28110
3.08000	.74520	6.05000	.87080	9.90000	.57100	15.95000	.37470	36.22500	.28110
3.10500	.73770	6.08700	.85890	10.00000	.57100	16.10000	.37400	36.36360	.27880
3.13040	.73010	6.13640	.84300	10.35000	.57100	16.36360	.37400	37.40000	.26180
3.13640	.72830	6.14780	.84000	10.43480	.57100	16.50000	.37400	39.10000	.25610
3.19000	.71240	6.29050	.80290	10.45000	.57100	16.67500	.37400		



DESIGN SPECIFICATION N SQN/WBN-DS-2005-063-001

02

1.21000

1.21740 .28090

.27740

3.13640

3.19000 .47320

.48350

6.08700

6.13640

.55870

.55680

9.64850

9.77500

.45340

.44840

15.95000

16.10000

.30070

.29880

FIXED DAMPING RATIO 0.03 Frequency Acceleration Frequency Acceleration Frequency Acceleration Frequency Acceleration Frequency Acceleration Frequency Acceleration (Hz) (G's) (Hz) (G's) (Hz) (G's) (Hz) (G's) (Hz) (G's) 18180 .03900 1.26500 .30290 3.22000 .47730 6.14780 .55680 9.90000 .44340 16.36360 22000 .05040 .30650 1.27270 3.27270 .48450 6.29050 .55680 10.00000 .44340 16.50000 .23000 .05280 1.30440 .31720 3.30000 .48450 6.30440 .55680 10.35000 .44340 16.67500 .26090 .06030 1.32000 .32260 3.30430 .48450 6.32500 .55680 10.43480 .44340 16.78260 .27270 .06320 1.36360 .33690 3.33500 .48450 6.36360 .55680 10.45000 .44340 17.25000 .33000 .08780 1.38000 .34820 3.45000 .48450 6.45460 .55680 10.45460 .44310 17.39130 34500 .09340 1.39130 .35600 3.45450 .48450 6.52170 .55680 10.86960 .41140 17.54540 .34780 .09440 1.43000 .38270 3.46500 .48450 6.59090 .55680 10.90910 .40840 17.60000 .36360 .10030 1.45450 .39900 3.47830 .48450 7.15000 .55680 10.92500 .40720 17.82000 43480 .12270 1.47830 .40220 3.62250 .48450 7.18750 .55680 11.00000 .40160 18.18180 .44000 .12430 1.49500 .40450 3.63000 .48450 7.27270 .55680 11.30440 .39000 18.26090 Appendix 45460 .12840 1.54000 .41060 3.63640 .48450 7.29570 .55680 11.36360 .38770 19.55000 .46000 .13140 1.54550 .41130 3.65220 48450 7.39130 .55680 11.50000 .38260 19.80000 .16510 1.56520 .52170 .41170 48450 3.79500 7.42500 .55680 11.55000 .38080 20.00000 .17800 .54550 1.61000 .41270 3.81820 48450 7.47500 .55480 11.73910 .37130 20.70000 .17810 .55000 1.63640 .41330 3.96000 48450 7.63640 .54860 11.81820 .36740 21.23000 P .57500 .17840 1.65000 .42400 3.96750 .48400 7,70000 .54700 12.07500 .35880 21.73910 .60870 .17870 1.65220 .42560 Figure 4.00000 .48200 7.72730 .54700 12.10000 .35880 22.00000 .63640 .17910 1.72500 .48120 4.14000 .48030 7.76250 .54700 12.17390 .35880 22.19500 .66000 .17910 1.72730 .48300 4.17390 .47990 7.81000 .54700 12.27270 .35880 22.72730 .69000 .17910 2.09000 .48300 4.18000 .47980 7.82610 .54550 12.60870 .35880 23.00000 .69560 .17910 2.09090 .48280 18 4.18180 .47980 7.97500 .53220 12.65000 .35880 23.10000 .72730 .17910 2.17390 .49690 4.34780 .49190 8.05000 .53220 12.72730 .35880 24.15000 .77000 .17910 2.18180 .49830 4.36360 .49300 8.13050 .53220 13.04350 .35880 24.20000 .78260 .18260 2.45450 .49830 4.37000 .49330 8.18180 .53220 13.22500 .35880 24.34780 .80500 .18880 2.52170 .49830 4.40000 .49470 8.25000 .53220 13.63640 .34830 25.30000 .81820 .19250 2.53000 .49830 4.54540 .50130 8.26090 .53150 13.75000 .34540 25.45460 .86960 .21190 2.54550 .49830 4.56520 .50540 8.33750 .52660 13.80000 .34410 25.56520 88000 .21580 2.64000 .49830 4.60000 .51260 8.52500 .51460 13.91300 .34410 26.72730 .90910 .22620 2.64500 .49810 4.62000 .51670 8.62500 .49950 14.08700 .34410 26.95650 .92000 .22620 2.72730 .49450 4.75650 .54420 8.63640 .49780 14.30000 .34410 32.20000 .95650 .22620 .49450 2.73910 4.77270 .54750 8.69560 .49610 14.37500 .34410 32.34000 .99000 .22620 2.75000 .49450 4.78260 .54800 8.80000 .49320 14.54540 .33910 33.81000 1.00000 .22620 2.86000 .49450 4.83000 .55070 8.91250 .49320 14.72730 .33370 34.10000 1.03500 .23780 2.86360 .49450 4.84000 .55130 9.09090 .49320 14.78260 .33210 34.65000 1.04350 .24070 2.86960 .49450 5.00000 .56010 9.13040 .49320 14.85000 .33020 35.65000 1.09090 .25640 .49450 2.87500 5.77500 .56010 .49320 9.20000 14.95000 .32730 36.22500 1.10000 .25720 2.97000 .49450 5.86960 .56010 9.24000 .49320 15.40000 .31060 36.36360 1.13040 .25970 3.08000 .49450 5.90910 .56010 9.35000 .48140 15.45460 .30860 37.40000 1.15000 .26130 .48960 3.10500 6.03750 .56010 9.54540 .45750 15.52500 .30590 39.10000 1.18180 .26390 3.13040 .48470 6.05000 .56010 9.56520 .45670 15.65220 .30430

**TENNESSEE VALLEY AUTHORITY** 

PRE-STEAM GENERATOR REPLACEMENT INTERIOR CONCRETE STRUCTURE SSE - VERTICAL - ELEVATION 703

(Hz) (G's)

.28880

.28360

.27700

.26870

.23340

.23140

.23120

.23110

.23080

.23020

.23010

.23010

.22940

.22890

.22700

.22680

.22660

.22650

.22650

.22200

.21970

.21820

.20280

.20340

.20510

.20510

.20510

.20510

.20510

.20510

.20510

.20250

.17550

.17550

.17550

.17550

.17550

.17410

.17400

.17240

WATTS BAR NUCLEAR PLANT

DIGITIZED DATA FOR

**BROADENED SPECTRUM** 

# NO

Page 65 of 68

REVISION