Code Accuracy based Realistic Evaluation Model (CAREM) for LBLOCA Analysis of APR1400

Meeting Objective

Overview of APR1400 Design Features and LOCA

Experimental Program

Overview of CAREM

Contents of Topical Report

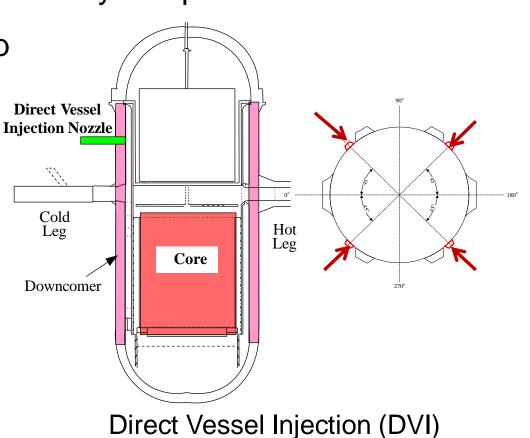
Summary

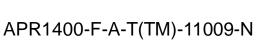
Meeting Objective

 To provide a preview of the APR1400 LBLOCA Realistic Evaluation Model (CAREM)
 Topical Report for its submittal in 3rd Qtr 2011

Contents

- Overview of APR1400 Design Features and LOCA Experimental Program
- Overview of CAREM
- Contents of Topical Report
- Summary

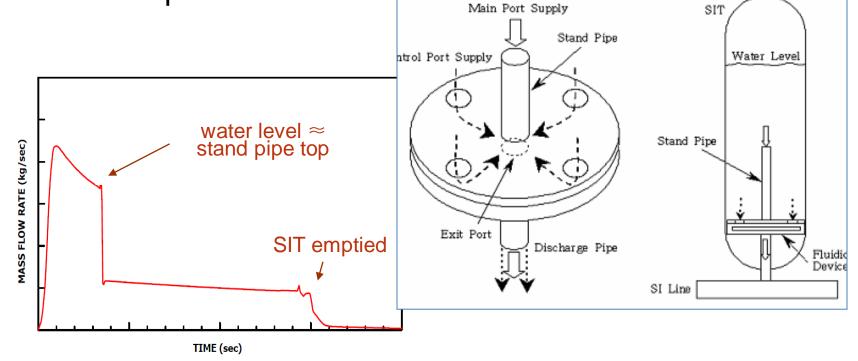




APR1400 Design Features

Direct Vessel Injection (DVI)

- SIS consists of 4 mechanically independent trains
- A safety injection pump and a safety injection tank are installed in
 ach train.
- All the ECC water is injected into the upper annulus of reactor pressure vessel


Initial Pre -application Meeting

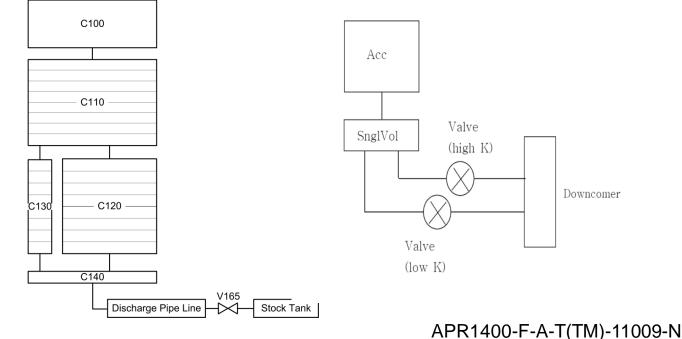
4/48

APR1400

APR1400 Design Features SIT equipped with Fluidic Device

FLUIDIC DEVICE in SIT regulates the injection flow rate and enhances removal of decay heat in early reflood phase.

Initial Pre -application Meeting


5/48

APR1400

APR1400 Design Features

SIT equipped with Fluidic Device

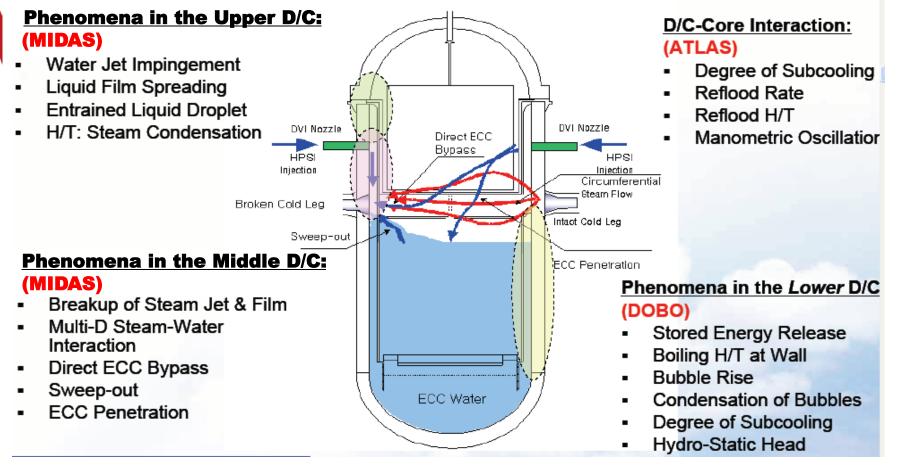
- Sensitivity on the discharge of non-condensable gas during low flow injection period was studied.
- Downcomer water levels were enough to reach cold leg elevation in both cases.
- Negligible effect on core cooling was observed.

Initial Pre -application Meeting

APR1400 Design Features LOCA Experimental Program (1/7)

- To better understand the phenomena during APR1400 LOCA, various experiments were performed.
- Separate effect tests
 - MIDAS (Multi-dimensional Investigation in Downcomer Annulus Simulation)
 - DOBO (DOwncomer BOiling)
 - VAPER (Valve Performance Evaluation test Rig)
- Integral effect test
 - ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation)

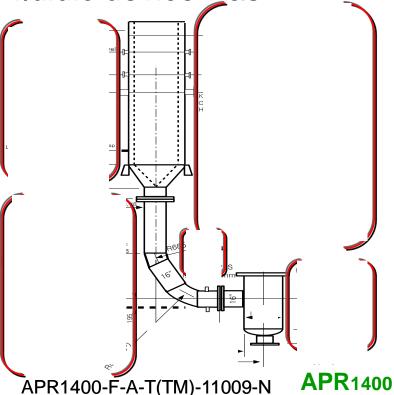
<u>re -Submittal M</u>


APR1400 Design Features LOCA Experimental Program (2/7)

- LOCA tests confirmed the effectiveness of APR1400 SIS design and the data were utilized in the development of realistic evaluation model.
 - Effective delivery of ECC water flowing as film was observed.
 - Successful cooling of the core in late reflood was proven.

APR1400 Design Features LOCA Experimental Program (3/7)

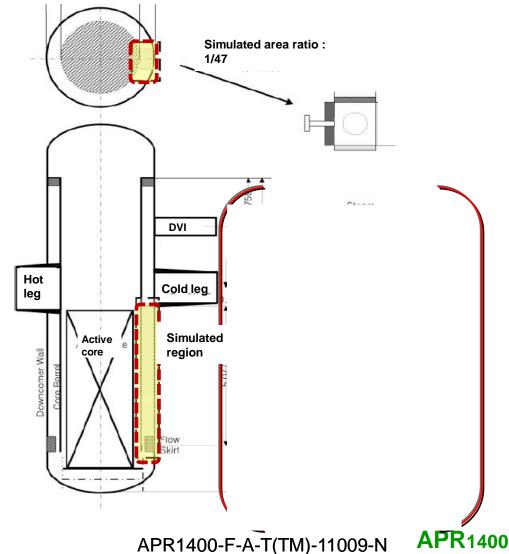
ICEDCO



APR1400 Design Features

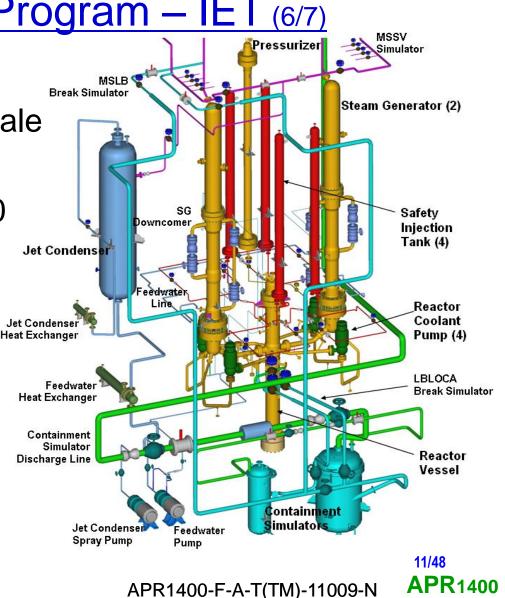
LOCA Experimental Program – SETs (4/7)

> VAPER


- Full scale SIT experiment with fluidic device
- Regulation of safety injection flow rate was confirmed and the flow resistance of the fluidic device was provided.
- > MIDAS
 - 1/24 scale facility to study phenomena in downcomer during late reflood phase
 - Direct ECC bypass (15 tests)
 - Void height (4 tests) in the downcomer

APR1400 Design Features LOCA Experimental Program – SETs (5/7)

- > DOBO:
 - to study downcomer boiling phenomenon
 - A fraction of lower downcomer was simulated maintaining gap width and height
 - 4 tests with varying wall heat flux



APR1400 Design Features

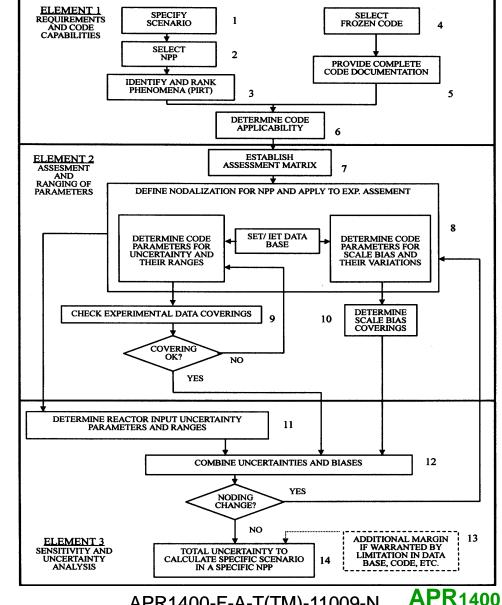
LOCA Experimental Program – IET (6/7)

- > ATLAS: 1/2 length, 1/288 volume scale
- Equipped with all major components of APR1400
 - RPV & Pressurizer
 - 2 Steam generators
 - 4 Reactor Coolant Pumps
 - 2 Hot Legs & 4 Cold legs
 - 4 DVI injection lines
 - 4 Safety Injection Tanks
 - 4 HPSI Pumps

re -Submittal Meetin

APR1400 Design Features

LOCA Experimental Program – IET (7/7)


- > ATLAS
 - To understand and identify the major thermal hydraulic characteristics during the reflood phase of APR1400.
 - To provide reliable data to help validate the LB-LOCA methodology.

Phase	Objectives Test N			
<u>Phase 1</u> Parametric Effect	To study the effects of wall temperature, SI flow rate, containment pressure, decay heat, etc., on core cooling	No.1 ~ No.7		
<u>Phase 2</u> LBLOCA Reflood	To study the reflood phenomena of DVI plant and to measure necessary data including PCT.	No.8 ~ No.15		

re -Submittal M

Overview of CAREM

- CAREM consists of 3 elements and 14 steps as in CSAU.
- Step 9 checks experimental data covering (EDC) using the uncertainty parameters determined in step 8. If it fails, step 8 repeats until the covering is satisfied.
- Non-parametric statistics is used in EDC as well as in plant calculations.
- References:
 - Nuclear Tech. V.148, 3, 2004.
 - Nuclear Tech. V.158, 2007.

APR1400-F-A-T(TM)-11009-N

CEPCO

Overview of CAREM

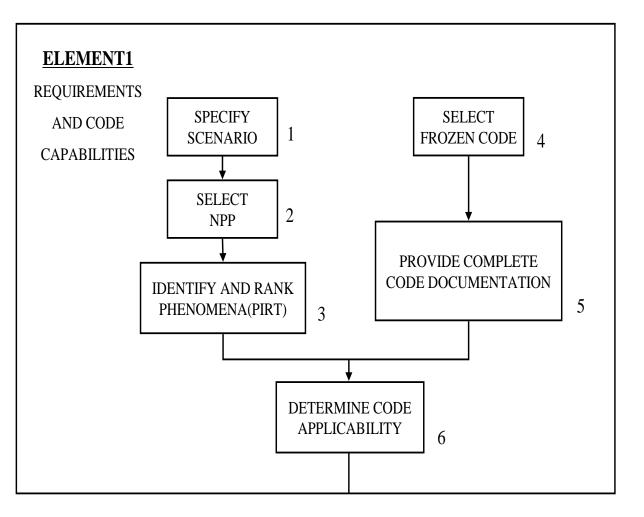
Best Estimate + Uncertainty Quantification

- RELAP5/MOD3.3 + CONTEMPT4/MOD5
- CSAU Based
- Uncertainty Quantification
 - Non-Parametric Statistics

Overview of CAREM

Licensing History in Korea

Plant Type	Development	Licensing Review	Approval	Remark
WH 3-Loop	1993 ~ 1996	1997 ~ 2002	Sen 2002	CLI
VVII 3-LOOP	1990 ~ 1990	1997 ~ 2002	Sep. 2002	UEM change
OPR1000	2002 ~ 2005	2005 ~ 2007	Apr. 2007	CLI
WH 2-Loop	2005 ~ 2006	2006 ~ 2007	Dec. 2007	UPI
APR1400	2004 ~ 2008	2008 ~ 2009	Feb. 2010	DVI


- CLI: Cold Leg Injection
- UPI: Upper Plenum Injection
- UEM: Uncertainty Evaluation Method
- DVI: Direct Vessel Injection

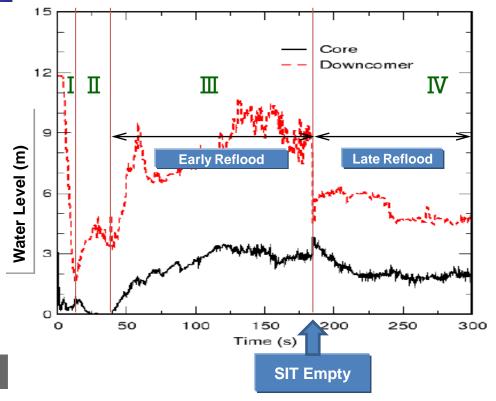
Pre-Submittal M

Element 1 Requirements and Code Capabilities

Element 1 is the same as CSAU.

Pre-Submittal Meeting

KEDCO


16/48 APR1400-F-A-T(TM)-11009-N **APR1400**

Element 1

Requirements and Code Capabilities

Scenario Specification

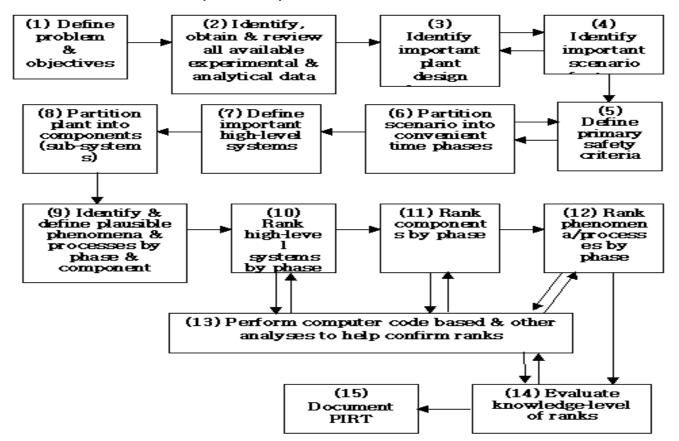
- Cold leg guillotine break
- LOOP and Single failure of a DG assumed

- I: Blowdown (~ 20 sec) break open ~ initiation of SIT
- II: Refill (~ 35 sec)
 - until water level is reached to the bottom of active core
- III : Early Reflood (~ 190 sec) until SIT empty
- IV : Late Reflood after SIT empty

APR1400-F-A-T(TM)-11009-N

17/48

Phenomena/Process Identification and Ranking (1/7)

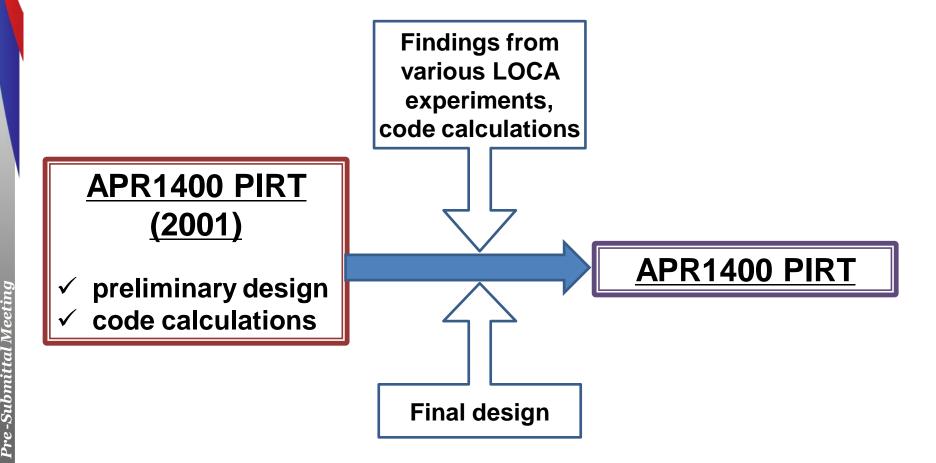

- APR1400 LBLOCA PIRT was developed from PIRT(2001).
- > APR1400 PIRT (2001)
 - Collaborative efforts between KINS and INEEL
 - Panel:
 - ✓ Mr. Gary E. Wilson (Idaho National Engineering Laboratory)
 - Panel Chairman
 - ✓ Dr. Brent E. Boyack (Los Alamos National Laboratory)
 - Dr. Bub-Dong Chung (Korea Atomic Energy Research Institute – KINS Customer Representative)
 - ✓ Dr. Lawrence E. Hochreiter (Pennsylvania State University)
 - ✓ Dr. Jose N. Reyes (Oregon State University)

APR1400-F-A-T(TM)-11009-N

18/48

- Phenomena/Process Identification and Ranking (3/7)
 - > APR1400 PIRT (2001) Process

 PCT was used as the primary safety criterion to judge the relative importance of a phenomenon.


Pre-Submittal Meeting

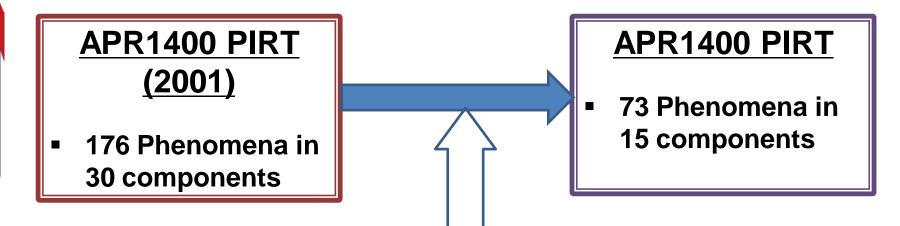
APR1400-F-A-T(TM)-11009-N

19/48

Phenomena/Process Identification and Ranking (4/7)

APR1400 PIRT

APR1400-F-A-T(TM)-11009-N


20/48

Phenomena/Process Identification and Ranking (5/7)

> APR1400 PIRT

APR	1400 PIRT	(2001)		APR1400 F	PIRT		
Phase	Starts At	Ends At	Phase	Starts AT	Ends At		
Blowdown	Break initiation	Initiation of LP refill	Blowdown	Break initiation	Initiation of SIT injection		
Refill	End of blowdown	Initiation of core recovery	Refill	End of blowdown	Initiation of core recovery		
Early Reflood	End of refill	Initial core quench	Early Reflood	End of refill	End of SIT injection		
Late Reflood	Initial core quench	Stable core quench	Late Reflood	End of SIT injection	Stable core quench		
rod re-hea boiling (c prelim exces	Based on the assumption of fuel rod re-heating due to downcomer boiling (code calculations using preliminary design data & excessively conservative assumptions)			r code calculations using the fina design data			
	assumption	ns)	ΔΡΕ	R1400-F-A-T(TM	21/48 4)-11009-N APR		

- Phenomena/Process Identification and Ranking (6/7)
 - > APR1400 PIRT

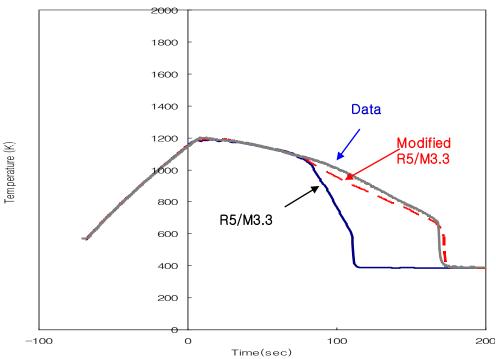
- Screened by ranks equal to or higher than 4
 - (1: Lowest, 2: Low, 3: Middle, 4: High, 5: Highest)
- Simplification of sub-components (ex. SG : shell side, primary and secondary side → SG)

Phenomena/Process Identification and Ranking (7/7)

> APR1400 PIRT

Component	Process/Phenomena	Component	Process/Phenomena	Component	Process/Phenomena		
	Stored energy release		Vessel stored energy release	DCD	D. C		
	Pellet heat transfer	_	Downcomer boiling	RCP	Pump performance		
	Gap conductance	Direct vessel injection jet flow Hot		Hot Leg	Entrainment		
	Nucleate boiling	Flashing			De-entrainment		
	Critical heat flux	_	Level		Flashing		
	Rewet	_	Entrainment	Pressurizer	Level		
	Film boiling	Reactor Vessel	De-entrainment				
	Transition boiling	downcomer	Multi-dimensional flow	SG	Vapor superheating		
	Vapor forced convection	_	Counter-current flow		U-tube heat transfer		
	Radiation	_	Condensation		Critical flow		
	Void reactivity		Delta-P	Break	Delta-P		
	Boron reactivity effect	_	Bulk mixing		Cold leg-Containment flow path		
Core/Fuel	Decay power	_	_	Containment	Pressure history		
0 010) I UUI	Clad oxidation	_	Non-condensable gas effect	Containment	Temperature history		
	Clad ballooning	_	Stored energy release	SIP	Time dependent delivery		
	Flow blockage	_	Boiling		Stored energy release		
	Fuel relocation	Reactor Vessel					
	Clad burst	lower plenum	Multi-dimensional flow		Pressure		
	Guide thimble radiation	_	Entrainment		Liquid temperature		
	Spacer grid heat transfer	_	Bulk mixing	SIT	Gas temperature		
	Flashing		Flashing	511	Level		
	Level	Desister	Level		Gas discharge to piping		
	Entrainment	upper plenum	Reactor upper plenum De-entrainment on structures		FD high flow K-factor		
	Multi-dimensional flow	_	Multi-dimensional flow		FD low flow K-factor		
	Vapor superheat	Reactor	Entrainment				
	Interfacial heat transfer	upper head	Flashing	IRWST	Temperature		

• Frozen Codes (1/2)

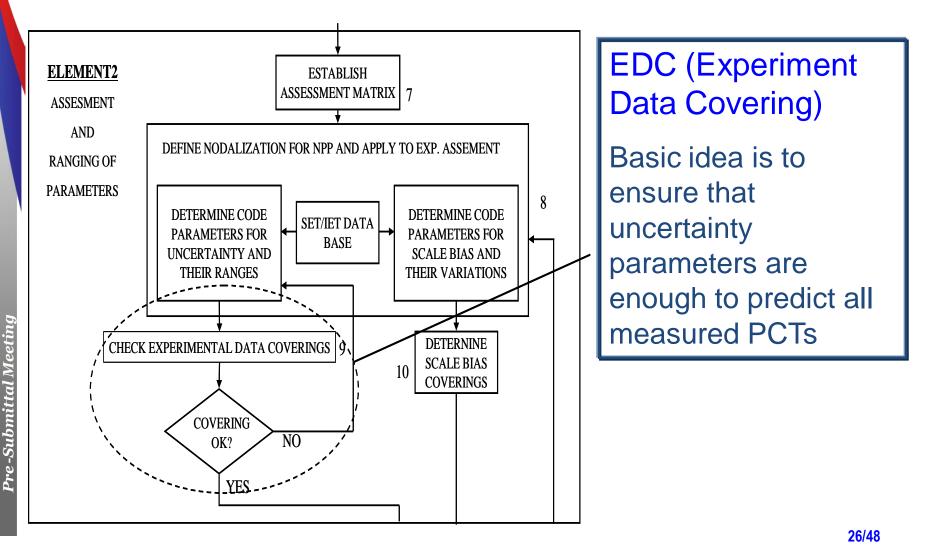

- RELAP5/MOD3.3 & CONTEMPT4/MOD5
 - Two codes were consolidated to exchange P & M/E every time step.
 - RELAP5/MOD3.3 was slightly modified.
 - Reflood Model (PSI Model) of RELAP5/MOD3.3
 - $\sqrt{\text{Predicts early quenching}}$
 - $\sqrt{\rm Over}\mbox{-}{\rm predicts}$ film boiling HTC
 - Film boiling HTC model was modified based on the assessment against FLECHT-SEASET tests.

Frozen Codes (2/2)

FLECHT-SEASET 31108 Variation of clad temperatures at 70 inch elevation

Improved predictability of modified RELAP5/MOD3.3 was confirmed through the various assessments.

- Determination of Code Applicability
 - Identified phenomena and code models are compared.



Pre-Submittal M

Element 2

Assessment and Ranging of Parameters

27/48

APR1400-F-A-T(TM)-11009-N

APR1400

• Establishment of Assessment Matrix (1/2)

- Includes various SETs, IETs and tests specific to APR1400
 - to confirm code's predictability of LBLOCA phenomena
 - to assess code accuracy
 - to confirm code's scale-up capability
 - to determine nodalization
 - to range uncertainty parameters
- Includes developmental assessments as well
- Tests specific to APR1400
 - MIDAS : ECC bypass
 - VAPER : SIT equipped with fluidic device
 - DOBO : Downcomer boiling
 - ATLAS : Overall reflood phenomena including ECC bypass and downcomer boiling

Establishment of Assessment Matrix (2/2) (

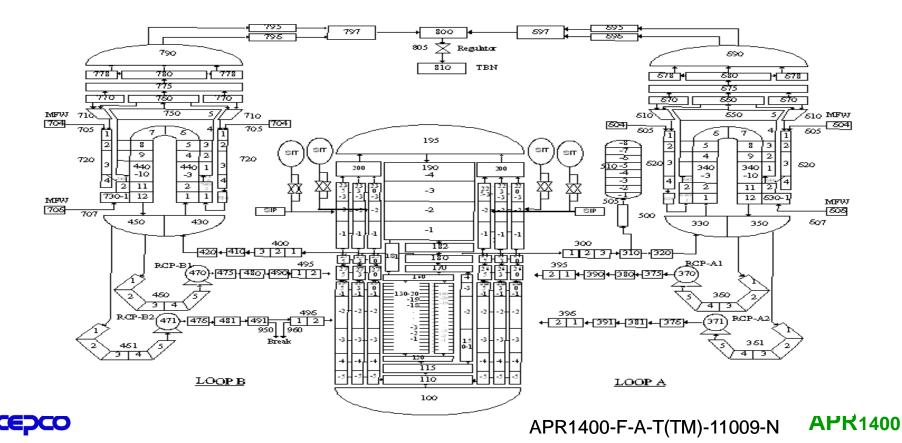
				Components							T							
		Test Facility	Phenomena	Fuel Rod	Core	Pump	Downcomer	Break	Upper plenumSG	Accumulator	Pressurizer			[C	V	ΊΤ	e
		UPTF	Lower plenum flashing, entrainment, liquid-vapor mixing with condensation, ECC bypass and DC penetration				•		•						-			Con
		CE (pump)	Two-phase pump behavior			•					\vdash	†			Fuel Rod	Core	Pump	
		LOFT-Wyle ¹)	Break, blowdown					٠			\vdash	†			R	()	dı	
		GE	Entrainment and de-entrainment		•						\square	1			od			
		Dukler Air-Water	CCFL				٠					1	Test Facil	ity				19
		LOFT Accu. Blowdown	Accumulator behavior							٠		1 —					+	+
		Christensen subcooled boiling	Subcooled boiling		•							l s	UPTF Test 21D MIDAS				+	-
		MIT Pressurizer test	Condensation in stratified conditions								٠	ΙE					<u> </u>	+
		ORNL	Interfacial drag, Core heat transfer		•							† Т	DOBO					'
		RIT Tube Test	Critical heat flux		•						1	1	ATLAS			٠		
		Bennet	Transition boiling		•							† └──						
		MINIZWOK ¹⁾	Metal-water reaction	•								1						
		Power Burst Facility	Gap conductance	٠								1						
	SET	FRIGG-2	Interfacial drag		٠							1						
		THETIS	Interfacial drag		•							1						
		ECN ¹⁾	Core liquid level		٠							1						
		MB-2 ¹⁾	Entrainment and de-entrainment in steam generator						•			Ī						
		CREARE	Downcomer countercurrent			٠	٠					T						
		FLECHT-SEASET	Core heat transfer		•				•			T						
		Marviken	Critical flow					٠				Ι						
		THTF	Blowdown heat transfer		•							I						
		NEPTUN	Core heat transfer		•							T						
		Semiscale Pump	Two-phase pump behavior			٠						Ι						
		W Pump (1/3)	Two-phase pump behavior			٠												
		CCTF	Steam binding, Core heat transfer, Quench front propagation		•				•									
		SCTF	Core level, entrainment and de-entrainment		•													
		PKL	Steam Binding		•							Ι						
		LOFT	Core wide void and flow distribution, Steam binding, Core heat transfer, Non-condensible gas effect		•	•	•											
	IET :	LOBI	Core wide void and flow distribution, Core heat transfer		•													
		SEMISCALE	Core wide void and flow distribution, Core heat transfer		•							ו אםנ 🛙	400-F-A-T	(TN /) 4	10	ഹ	א נ	
_	_										'	vi ⁻ IX 14	+00-1	(1 1 1 1) - 1	10	03	7-1 N	I

	Components					
Test Facility	Fuel Rod	Core	Pump	Downcomer	Break	Upper plenum/SG
UPTF Test 21D				•		
MIDAS				•		
DOBO				•		
ATLAS		•		•		•

28/48 **APR**1400

KEP

Plant Nodalization


- Plant model must be nodalized finely enough to capture both the important phenomena and design characteristics.
- But needs to be coarse to make the calculations practical and economical.
- Establishment of standard nodalization is needed to diminish nodalization uncertainty.
- APR1400 Nodalization
 - Guidelines and the various nodalizations of NPP & test facilities in RELAP5 documents and international experiences were referenced.
 - \checkmark NPP nodalization is kept in the test facility nodalization.

APR1400 Nodalization

- Each loop and its components are modeled separately.
- Downcomer is modeled with 6 channels and 10 axial nodes.
- Core is modeled with 2 hydraulic channels and 20 axial nodes.
- Explicit and fine noding of SG primary and 2ndry sides.

Determination of Code Uncertainty Parameters

- Candidate uncertainty parameters are first determined by comparing the important phenomena and corresponding code models, and by performing the auxiliary calculations.
- The ranges of candidate parameters are first determined by assessment calculations and literature survey.
- * The parameters are confirmed as a set by way of checking Experimental Data Covering (EDC, Step 9) against SET, IET data.

Code Parameters, excerpted

Fuel	Core Heat Transfer	Critical Flow
related	related	related
 Pellet Conductivity Clad Oxidation 	 CHF Film Boiling HT Transition Boiling HT 	 1-phase Cd 2-phase Cd

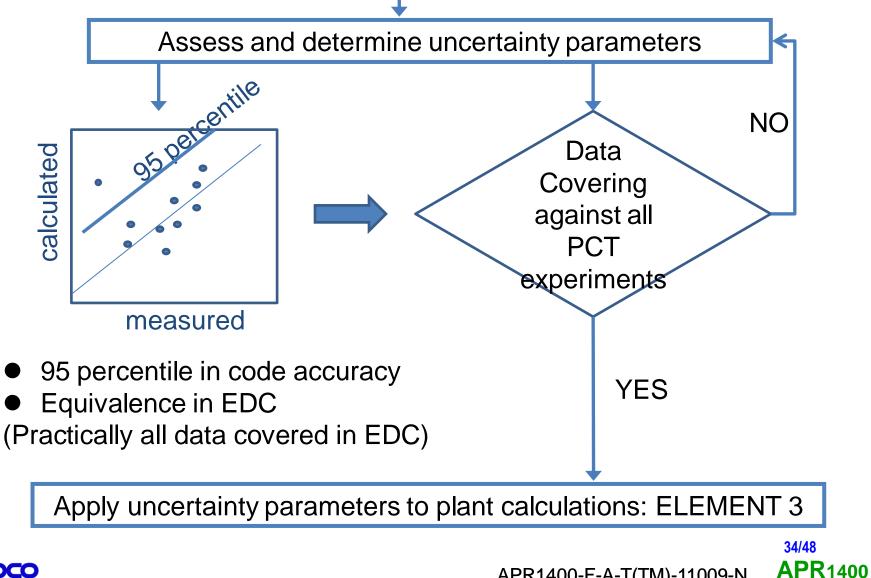
• Scale Biases

- Downcomer, lower plenum, and upper plenum of the vessel are known to have scale distortions in power-to-volume scale law.
- ECC bypass and liquid carry-over to steam generator are affected.
- The phenomena are basically multi-dimensional and have strong correlation with many parameters and flow regimes.
- Instead of uncertainty evaluation for these phenomena, scale biases are evaluated separately and accounted in the overall calculational uncertainty.
 - ECC bypass during refill
 - ECC bypass during reflood (downcomer level depression during reflood)
 - Steam binding during reflood

re -Submittal M

Check Experimental Data Coverings (1/4)

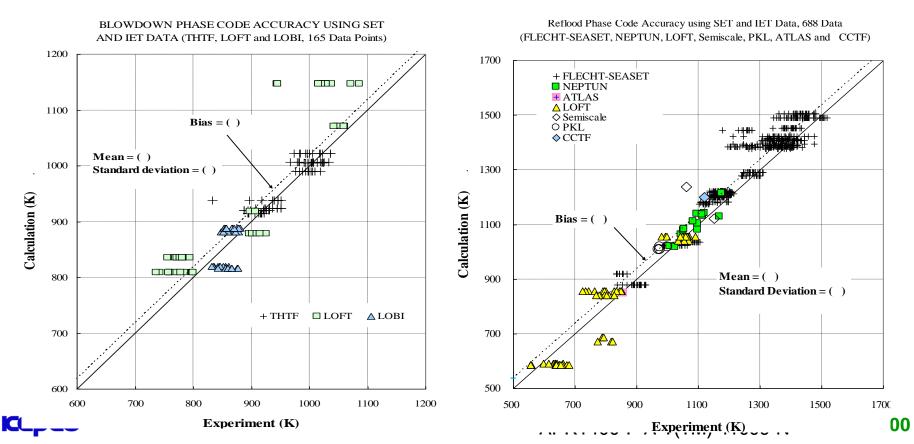
- To confirm the uncertainty parameters as a set
- To confirm the predictability of the experiment PCT using the set of uncertainty parameters.
- To reflect the combined effect of the neglected phenomena in the PIRT.



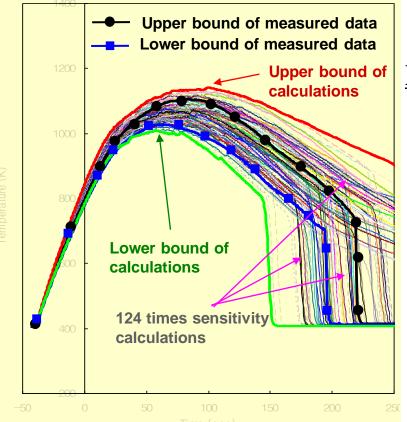
APR1400-F-A-T(TM)-11009-N

33/48

APR1400-F-A-T(TM)-11009-N


Check Experimental Data Coverings (2/4)

CEDCO

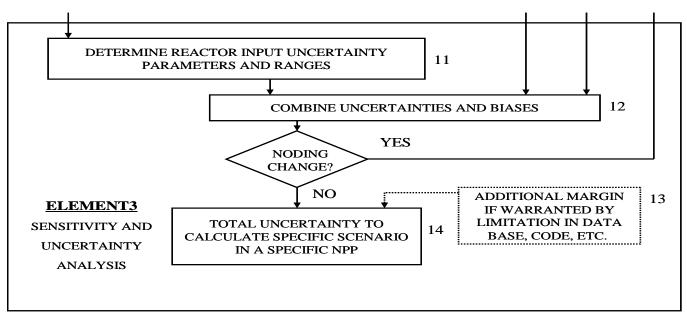

Check Experimental Data Coverings (3/4)

- Quantification of Code Accuracy
- This step is to make an evaluation of the code predictive capability.
- Statistical analysis and scatter plots are used to determine the code accuracy.

<u>Check Experimental Data Covering (4/4)</u>

- EDC was confirmed against 39 tests where cladding temperatures were measured.
 - Flecht-Seaset, ATLAS, THTF, LOFT, Semi-Scale and so on.
 - 39 tests cover entire LBLOCA transient period.

re-Submittal M


EDC of FLECHT-SEASET 30817

Using the candidate parameters, measured PCT is successfully predicted.

APR1400-F-A-T(TM)-11009-N

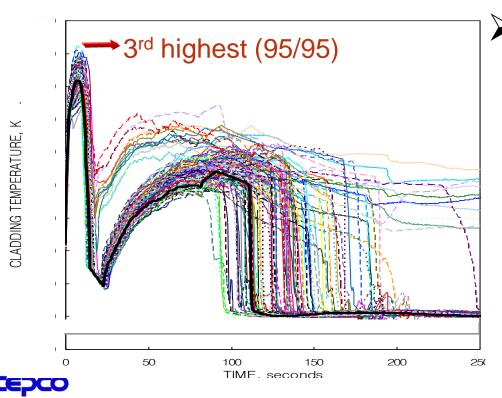
^{36/48} APR1400

Element 3 Sensitivity and Uncertainty Analysis

- Important plant-specific parameters are addressed.
- Reactor input parameters and code uncertainty parameters are taken together into the plant calculations.
- Scale biases are evaluated and added to 95 percentile PCT.
- Total uncertainty is evaluated including additional uncertainties.

Determination of reactor input parameters

- Address plant specific parameters
 - Core power distributions, total power, Fq, Axial Power Shape
 - Decay heat
 - Safety Injection Tank pressure, temperature, volume
 - Safety Injection Pump flow rate, temperature
 - RCS loop flow rate, RCS Pump performance
 - Pressurizer pressure etc.
- Containment Back-Pressure Calculation
 - CONTEMPT4/MOD5 + conservative input and wall HTC



<u>Combination of Uncertainties and Biases</u>

Plant Calculations

- Limiting Break Size was determined from sensitivity calculations.
- 124 sensitivity calculations for the limiting break.
- Code parameters and reactor operational parameters are considered together.

Bias Evaluation

- Biases are evaluated for selected cases from plant sensitivity calculations.
- 3 biases are evaluated separately.
 - ECC bypass during refill
 - ECC bypass during reflood
 - Steam binding during reflood

^{39/48} APR1400

Additional Uncertainty of Plot Frequency

Total Uncertainty

Licensing PCT = PCT95/95 + Δ PCTECCbypass_refill

+ ΔPCT ECCbypass_reflood

+ ΔPCT steam-binding

+ ΔPCT plot-frequency

Dre-Submittal Meetin

APR1400-F-A-T(TM)-11009-N

40/48

Contents of Topical Report

- TR is prepared in accordance with NUREG-1379, Editorial Style Guide
- Structured in the order of CAREM procedures of 3 Elements and 14 Steps
- 9 Appendices to describe the details of
 ✓ PIRT
 - ✓ Code modification
 - ✓ Code assessments against SETs & IETs

Topical Report Table of Contents (1/6)

> 1. Introduction

- General introduction of CAREM, APR1400 design feature, acceptance criteria
- > 2. Methodology Roadmap

> 3. Requirements and Capabilities

- 3.1 Scenario Specification (Step 1)
- 3.2 NPP Selection (Step 2)
- 3.3 Phenomena Identification and Ranking (Step 3)
- 3.4 Frozen Code Selection (Step 4)
- 3.5 Code Documentation (Step 5)
- 3.6 Determination of Code Applicability (Step 6)
 - constitutive equations, numerical solution method, component models, control functions, and overall code capability

Pre-Submittal

APR1400-F-A-T(TM)-11009-N

42/48

Topical Report Table of Contents (2/6)

> 4. Assessment and Ranging of Parameters

- 4.1 Establishment of Assessment Matrix (Step 7)
 ✓ Includes RELAP5 developmental assessments
- 4.2 Plant Nodalization and Experiment Evaluation (Step 8)
 - ✓ Plant nodalization (Step 8.1)
 - Determination of code uncertainty parameters and their ranges (Step 8.2)
 - Determination of code parameters for scale bias evaluation (Step 8.3)
- 4.3 Confirmation of Experimental Data Covering (Step 9)
 - ✓ Code accuracy (Step 9.1)
 - ✓ Check data covering (Step 9.2)
 - ✓ Determination of scale bias covering (Step 10)

Pre-Submittal M

Topical Report Table of Contents (3/6)

> 5. Sensitivity and Uncertainty Analysis

- 5.1 Determination of Plant Input Parameters and Their Ranges (Step 11)
- 5.2 Combining Uncertainty and Bias (Step 12)
 - ✓ Plant base calculation and SRS calculations
 - \checkmark Evaluation of scale biases
 - ✓ Quantification of total uncertainties (Step 13, 14)

6. Conclusion

APR1400-F-A-T(TM)-11009-N

44/48

Topical Report Table of Contents (4/6) <u>Appendices</u>

- Appendix A: APR1400 PIRT
- Appendix B: Modification to RELAP5/MOD3.3 and Validation
 - ✓ Modification of a portion of reflood model
 - ✓ Modification on gap conductance calculation
 - Modification to improve code fails due to non-condensable gases
- Appendix C: Code Assessment against SETs
 - ✓ FLECHT-SEASET: 17 tests
 - ✓ CCTF: 1 test ✓ THTF: 4 tests
 - ✓ NEPTUN: 7 tests ✓ PKL: 1 test

re -Submittal N

Topical Report Table of Contents (5/6) <u>Appendices</u>

Appendix D: Code Assessment against IETs

- ✓ LOFT: 4 tests
- ✓ SEMISCALE: 1 test
- ✓ LOBI: 1 test

Appendix E: Code Assessment against ATLAS Test

- Appendix F: Code Assessment for ECC Bypass
 - ✓ UPTF 21D: 1 test
 - ✓ MIDAS: 15 tests

APR1400-F-A-T(TM)-11009-N

46/48

Topical Report Table of Contents (6/6) <u>Appendices</u>

- Appendix G: Code Assessment for Downcomer Boiling
 DOBO: 4 tests
- > Appendix H: Code Assessment against VAPER Test
- Appendix I: Sampling Output for Plant Sensitivity Calculations

APR1400-F-A-T(TM)-11009-N

47/48

SUMMARY

- The effectiveness of APR1400 SIS design was confirmed by the tests specific to APR1400.
- CAREM has been developed according to the philosophy of CSAU.
- Uncertainty parameters are determined and their applicability as a set is validated by way of Experimental Data Coverage evaluation against SET and IET at various scales and at various conditions.
- Topical Report is prepared in accordance with NUREG-1379, Editorial Style Guide.
- Topical Report will be submitted in 3rd Qtr 2011.

