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Statistical distributions 
 

These endpapers provide a convenient summary of most of the 

distributions that are used in this book.  The density (for continuous 

variables) or the probability function (for discrete variables) is shown 

along with its mean and variance.  The density or probability function is 

zero outside of the listed range.  We also refer to the section in which the 

distribution is discussed and to the associated quantile table in the 

appendix, if applicable. 

Striving for internal consistency in this book has meant that we have 

made some changes in the notation used in much of the modern 

statistical literature.  We use y to denote the running variable for each 

distribution shown.  This notation differs from that used in the text for 

some distributions, where we use a more conventional notation.  

Specifically, we use Z, t, and χ 
2
 to denote the standard normal, Student’s 

t, and the chi-square distribution, respectively. 

The distributions in these endpapers are shown in the order they are 

presented in the book. 
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NOTICE 

 

This book was prepared as an account of work sponsored by an agency of 

the United States Government.  Neither the United States Government nor 

any agency thereof, or any of their employees, makes any warranty, 

expressed or implied, or assumes any legal liability or responsibility for 

any third party's use, or the results of such use, of any information, 

apparatus, product, or process disclosed in this book, or represents that its 

use by such third party would not infringe privately owned rights. 



 

 

 

 

Preface 
 

The function of the Nuclear Regulatory Commission (NRC) is to regulate the 

nation's nuclear power industry and the civilian use of special nuclear materials.  

Its mission is to ensure adequate protection of public health and safety, to 

promote the common defense and security, and to protect the environment.   

Activities in support of the NRC mission include licensing, monitoring, and 

research.  Data and statistical issues arise in all these activities, so that using data 

and statistical analysis appropriately is an important part of the NRC mission.  

The goal of this book is to provide the NRC staff with a reference and text on 

statistical concepts and methods that meet NRC’s needs.  

The authors include two statisticians and a nuclear engineer who is experienced 

as a probabilistic risk analyst. The statisticians have a combined total of nearly 

70 years of experience at the NRC in applying statistical concepts and 

techniques to a wide variety of issues in nuclear regulation. These include 

analysis of licensee data submissions and probabilistic risk assessment of 

nuclear plants.  Although the authors have retired or are about to retire from the 

NRC, we continue to follow many of the statistical and probabilistic issues that 

concern the NRC. 

We intend this second edition of Applying Statistics to be both a reference book 

on statistical methods and a textbook that may be used in a classroom for 

teaching this material.  While the first edition of this book was written to be used 

primarily for the licensing and regulation of nuclear power plants, the scope of 

this edition has been expanded to accommodate the wider variety of applications 

within the NRC.     

Knowledge of statistics can prove invaluable to anyone facing the tasks of 

organizing and displaying information, formulating quantitative problems, 

analyzing data, interpreting findings, and evaluating risks.  We believe this book 

can provide that knowledge to readers with a grasp of college algebra.  Much of 

the material can be understood by readers who have  a basic background in 

mathamatics..     
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The title, Applying Statistics succinctly expresses our rationale for preparing this 

material and presenting it in this fashion.  To effectively use Applying Statistics 

in your work, it is not necessary to remember on-command results such as 

formulas for regression lines or procedures for testing hypotheses.  Rather, you 

should be able to recall the essentials of the relevant methods and know where to 

refresh your knowledge of them. 

The presented material is divided into segments, each of which explores a 

particular aspect of statistics.  These segments are organized into chapters, each 

examining a set of linked statistical ideas.  This encourages a pick-and-choose 

approach, and it allows the presentation of specific illustrative information.  

Many of the segments contain examples of data that were encountered in the 

application of statistics at the NRC.  Because statistical ideas connect across all 

of our lives and interests, we also include a number of examples that are not 

directly related to nuclear regulation. 

Chapters 1 through 6 introduce some fundamental statistical concepts and 

methods.  They include definitions, terminology, graphics, probability, and 

descriptive statistics.  These concepts and methods give the reader the 

beginnings of the vocabulary of statistics and demonstrate how much can be 

done with just a few basic statistical techniques. 

Chapters 7 and 8 present a number of basic continuous and discrete 

distributions.  These functions, being the foundation of statistical estimation and 

inference, are referenced frequently throughout the book and are used by the 

NRC in a variety of applications. 

Chapters 9 and 10 introduce the main foci of statistics: estimation and inference.  

Here we explain the philosophy of these concepts and illustrate them with 

practical examples. 

Chapters 11 and 12 present methods for examining data before proceeding with 

a data analysis.  These methods aim to verify assumptions about the structure of 

the data that justify the use of specific analysis procedures. 

Chapters 13 through 19 present methods for drawing inferences from data from 

continuous distributions.  These chapters show how to test statistical hypotheses 

about data structure for various experimental designs.   

Chapter 20 describes the Bayesian methodology and provides examples of its 

use in risk assessments.  

Chapters 21, 22, and 23 focus on three discrete distributions–hypergeometric, 

binomial, and Poisson–and illustrate their application. 
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Each of the remaining chapters addresses a specific topic.  Chapter 24 focuses on 

quality control and quality assurance monitoring and testing.  Chapter 25 presents a 

number of nonparametric tests that are used when the distribution from which a 

sample is drawn is not known.  Chapter 26 shows how to identify and deal with 

outlying observations that may distort statistical inferences from a sample.  Chapter 

27 introduces the topic of simulation, which is a powerful tool for modeling and 

analyzing random events. 

No discipline is without its jargon–its peculiar, sometimes colorful, phraseology.  

As they are introduced, the special statistical terms and concepts used in this 

book are fully defined and explained.  They are also highlighted and indexed in 

the left margin of the text for easy reference.  

This publication includes an extensive bibliography that you may find useful in 

itself, independent of the text.  Many of the bibliographic entries are referenced 

in this book.  Some of those entries are general sources whose titles are 

sufficiently descriptive to help you decide whether you want to explore them 

further.   

This edition of Applying Statistics is written under the auspices of the NRC, 

which recognized the need for this publication and patiently supported our work.  

We hope this book will meet NRC’s expectations and that it will prove valuable 

in the many activities that require data analysis.   

Finally, with respect to errors–of any sort whatsoever–that may still be present 

in these pages, we are of one mind: They are the result of something that another 

one of us did or did not do. No one else can share them. 

DL 

LRA 

JAV 

 

March 2011 
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1 
Introduction 

1.1  What to look for in Chapter 1 

Chapter 1 introduces the discipline and the practice of statistics in commonly 

understood terms, thereby setting the stage for the ensuing chapters.  Along the 

way, you may find that some accepted statistical conceptions are, in fact, 

statistical misconceptions.  You will soon be equipped with a straightforward set 

of criteria you can use to appraise many statistical notions or statements.  

Among the fundamental statistical concepts developed and illustrated in this 

chapter—and expanded upon in the rest of the book—are the following: 

 statistics (the discipline), §1.2 

 deductive and inductive reasoning, §1.3 

 qualitative and quantitative information, §1.4 

 discrete and continuous variables, §1.4 

 scales of measurement, §1.5 

      nominal (categorical) scale  

     ordinal (relative) scale 

     interval (metric, continuous) scale 

     ratio scale 

 population, §1.6 
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 sample, §1.6 

 parameter, §1.6 

 statistic (a summary of data), §1.6 

 Huff’s criteria, §1.7 

Section 1.7 also provides a set of five criteria—called Huff’s criteria—to be 

used in evaluating statistical statements.  Although these criteria are intuitive, 

we sometimes fail to check whether they are met.  The chapter presents 

examples where one or more of Huff’s criteria are violated.  

Section 1.9 concludes with general guidelines for the use of Excel
®

’s 

spreadsheet functions and routines in carrying out statistical calculations and 

analyses.  Excel is the only spreadsheet discussed in this text as it is the official 

spreadsheet program used at the U.S. Nuclear Regulatory Commission (NRC). 

Although Excel can perform most common statistical analyses, it is not a 

statistical package.  Several statistical packages on the market are capable of 

many specific and general tasks, but this book does not discuss any of these 

packages.  The interested reader who requires a specific or general package may 

refer to any of the many articles available on the Internet.  A readily available 

source that reviews most of these packages may be found on the Internet.  Look 

for ―Comparison of Statistical Packages‖ in Wikipedia. 

1.2  What is statistics? 

One can approach an unfamiliar or little-understood subject in many ways.  One 

useful technique is to settle on some definitions of the basic elements of the 

subject and then build on those definitions as additional topics and details arise.  

This will allow you to develop enough knowledge and comfort to form a basis 

for learning about the subject in more depth. 

statistics There is no universally accepted definition of statistics.  Many 

definitions or characterizations of statistics have been suggested, 

some of which are listed below:   

 A science of collecting, interpreting, and representing data 

 An art and science of treating data  

 A science that deals with the collection of limited data to form appropriate 

conclusions about the general case 

 A language, a mechanism for creating and communicating quantitative 

concepts and ideas 

 A science of decision making in the face of uncertainty 

 A mathematical science pertaining to the collection, analysis, interpretation 

or explanation, and presentation of data 
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As this list suggests, statistics is a discipline with many facets.  However, for the 

purpose of this book, there is no need for a formal definition of statistics.  

Rather, we will use statistics as a generic term that refers to whatever topic is 

being considered at the time. 

1.3  Probability and statistics  

 

 

deductive 

reasoning  

inductive 

reasoning 

Statistics is often considered a branch of mathematics, and so is 

probability.
1
  However, whereas the subject of probability is based 

on a formal development and rigorous proofs, the practice of 

statistics also involves empirical information that may or may not 

represent the entire story.  Probability uses deductive reasoning in 

its development, whereas statistics uses primarily inductive 

reasoning.  Probability starts with mathematical assumptions and 

deduces the probabilities of specific outcomes.  Statistics begins 

with data and works backwards to infer what sort of probabilistic 

structure could have given rise to the observed data.  The 

following examples illustrate the difference between deductive and 

inductive reasoning. 

Suppose that a jar contains 10 red marbles, 20 white marbles, and 30 black 

well-mixed marbles.  Blindfolded, we reach into the jar and remove one marble.  

Under the assumption that every marble has the same probability of being 

selected, we can calculate the probability that the marble we picked is, say, red.  

Similarly, we may remove five marbles and answer questions such as what is the 

probability that the marbles are all of the same color, that there is exactly one 

red marble, that there are at least two white marbles, or that there are more black 

marbles than any other color.  The answers to these questions are all examples 

of deductive reasoning, which in this case, can be described as making 

statements about the unknown contents of our closed hand based on the known 

contents of the jar.  

Contrast this scenario with the situation where we draw five marbles from a jar 

containing unknown quantities of red, white, and black marbles.  We open our 

hand and see that we have three red and two white marbles.  Now we can 

answer questions about the contents of the jar, such as what is the ratio of red to 

white marbles or what is the proportion of black marbles in the jar, even though 

we did not see a single black marble in our hand.  This is an example of 

inductive reasoning, which in this case can be described as making statements 

about the unknown contents of the jar based on the known contents of our hand.   

                                                           

1
 Probability is defined and discussed in Chapter 4. 
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In summary, probability makes inferences about a potential sample
2
 from a 

known population using deductive reasoning.  Statistics makes inferences about 

an unknown population from a known sample using inductive reasoning.  

1.4  Data 

Statistical investigations are based on data.  Understanding processes, products, 

and issues generally involves identifying a pertinent set of items and measuring 

or recording various characteristics of these items.  These recorded 

characteristics, or variables, are the data from which we try to extract 

information.  For example, the items of interest could be nuclear power plants, 

on which the NRC collects much data pertaining to operational reliability.  The 

investigation may address issues such as how reliability changes with age and 

differs among manufacturers or designs. 

A characteristic can be classified in one of two ways: 

quantitative 

qualitative 

quantitative, when it can be assigned a numeric value (such 

as 0, 1, 7.5, 17,  or -¼) 

qualitative, when it cannot be assigned a compelling numeric 

value (such as name, birthplace, or gender) 

variable 

value 

 

measurement 

 

observation 

datum 

Be it quantitative or qualitative, a characteristic is called a 

variable because its specific value or nature is not known 

before the item is examined.  We determine a value for a 

characteristic or variable by making a measurement of it (e.g., 

how big is it? how strong is it?) with an instrument or by 

making an observation of it (e.g., what color is it? what kind 

is it?) by examining it.  The value for a characteristic of a 

specific item is called a datum. 

 

 

data 

 

 

 

Generally, when gathering information, we will examine more 

than one item and, for each characteristic of interest, 

determine its value.  The reason we examine more than one 

item is that, almost always, items identical in name and in 

definition are not necessarily—or even probably—identical 

with respect to all of their characteristics.  Now we have data 

(the plural of datum) to work with, and the door to statistical 

ideas and procedures is open.   

Working with and discussing several items and several 

variables can be difficult in many settings and with many 

                                                           

2 The terms ―sample‖ and ―population‖ are defined in Section 1.6. 
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dataset 

                         

audiences.  A useful device, with both theoretical and practical 

benefits, is the dataset, literally a set of data.  Datasets are 

commonly displayed in two-way tables, with the rows 

representing the items and the columns representing the 

variables. 

record 

 field       

cell 

 value 

 observation 

 file 

discrete 

variable 

 

 

continuous 

variable 

Modern database management theory and statistical computing 

practice strongly influence this dataset structure.  In these 

disciplines, each row of the table is a record, each column is a 

field, each entry at a row-column intersection (often called a cell) 

is a value, or observation, and the entire table is a file. 

A variable is said to be discrete if it can assume only a finite or 

countably infinite number of values.  Examples of discrete 

variables include the number of defective units in a batch of 

manufactured items and the number of atomic disintegrations in 

a sample of radioactive material in a given unit of time. 

In contrast, a variable is said to be continuous if it can assume 

any value within its range.  Examples of continuous variables 

include linear dimensions, such as weight, height, volume, and 

temperature, and wavelengths associated with the color 

spectrum.  

Quantitative variables can be either discrete or continuous, while qualitative 

variables must be discrete.  Because the mathematics of working with 

continuous variables is usually easier than that for discrete variables, it is often 

preferable to treat discrete variables as continuous.  Examples are the cost of 

printing a page of text on a modern printer or the cost of fueling your car.  

Consequently, we recommend treating them as continuous, unless there are 

compelling reasons to the contrary.  

1.5  Scales of measurement 

scales of 

measurement 
Variables (i.e., measured values or observations) can be 

categorized as arising from one of four scales of measurement, 

beginning with a nominal scale.  The other three scales, called 

ordinal, interval, and ratio, are successively built from a nominal 

scale by adding certain conditions.  Without knowing the scale 

used in making the observations, we risk producing erroneous 

analyses because each scale’s defining conditions determine 

which set of tools is appropriate for the analysis. 
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nominal 

scale 

 categorical 

scale 

A nominal scale (sometimes called a categorical scale) employs 

words, symbols, or numbers to identify the categories or groups 

to which the items of interest belong.  Thus, a nominal scale 

implies no special sequencing or ordering; that is, the {yes, no} 

scale carries no more information than the {no, yes} scale.  

Similarly, the {Democrat, Independent, Republican} scale carries 

no more information than the {Republican, Democrat, 

Independent} scale.  A nominal scale applies only to qualitative 

variables. 

ordinal scale, 

relative scale 

 

An ordinal scale (sometimes called a relative scale) adds an 

ordering or ranking of the characteristics designated by a 

nominal scale.  Thus, an ordinal scale captures additional 

information, such as when ordering vehicles by their weight or 

horsepower (e.g., {truck, auto, motorcycle}).  An ordinal scale 

also applies to qualitative variables.  For example, ordering 

employees by their highest degree (i.e., bachelor, master, or 

Ph.D.).   

interval scale 

  

metric scale 

  

continuous 

scale 

An interval scale (sometimes called a metric scale or 

continuous scale) preserves the characteristics of an ordinal 

scale and, in addition, assigns a value or numerical ―distance‖ 

between each pair of objects.  Thus, the differences between 

values are important in an interval scale.  For example, an 

interval scale that measures distances between pairs of cities 

permits the determination of which two cities are closest, 

which two are farthest apart, and which pairs of cities are the 

same distance apart.  An interval scale applies only to 

quantitative variables.  

ratio scale A ratio scale is an interval scale with a physically meaningful 

and definable zero value, which is the value reported when a 

characteristic is not detected by the measuring process.  An 

important property of a ratio scale is that the ratio of any two 

measured values of the same type is independent of the unit of 

measurement (e.g., the ratio of the width to the length of a 

rectangle is independent of whether both measurements are 

made in inches, feet, kilometers, or furlongs).  Some other 

examples of ratio scales are weight (kilograms or pounds), 

length (meters or inches), and volume (gallons or liters); the 

ratios of all of these are independent of whether metric, 

English, or other units are used.  In contrast, temperature, an 

interval-scale variable, is not a ratio-scale variable.  For 

example, the ratio of 50 degrees Celsius
 
(°C) to 40

 
°C is 1.2, 

while the ratio of their Fahrenheit (°F) equivalents, 122
 
°F and 

77
 
°F, is 1.58.  Because it is also an interval scale, a ratio scale 

applies only to quantitative variables. 
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1.6  Four basic concepts in statistics 

Four concepts form the basis for statistical procedures and inference.  

Consequently, it is essential to address them at the beginning of any statistical 

investigation.   

population A population is a collection of measurements made on items 

defined by some characteristic of the items.  To be exact, an 

observation (such as weight or activity status) is associated 

with each item.  (There can also be more than one observation 

for each item, usually written as a vector.)  The collection of all 

of these items’ characteristics makes up the population.  

Examples are the population of 20,000 pellet enrichments (e.g., 

the set {85.4%, 86.1%, 86.0%, …}) and the population of the 

ages of the employees in our organization (e.g., the set {37, 74, 

66, 62, …}). 

sample 

census 

A sample is a subset of the population containing one or more 

items.  If the sample contains all the items in the population, 

that sample is termed a census.  

parameter A parameter is a numerical characteristic of the population; its 

value is a function of the values of the variables of the items in 

the population.  Examples of parameters are the average of all 

the hourly wages in the population and the percentage of 

defective items in the population. 

statistic A statistic (note the singular form!) is a numerical measure of a 

sample; its value is a function of the values of the variables of 

the items in the sample.  Thus, the sample average is a statistic.  

The ratio of the number of defective items in the sample to the 

number of items in the sample is another statistic. 

 A population may be a collection of measurements (or responses) rather 

than the individual physical items (e.g., automobiles, houses, 

employees) that were examined to obtain the measurements (or 

responses).   

universe 

parent 

population 

In some contexts, the terms universe or parent population are 

used instead of population.  The term parent population serves 

as a reminder that a sample is an ―offspring‖ of the population 

of interest. 

 A population’s size (i.e., the number of its elements) can be finite or 

infinite.  A population can, and usually does, have more than one 

associated parameter. 
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A sample can, and usually does, have more than one statistic. 

To make valid statistical inferences about a population from a sample, the 

sample must be random.  This will be discussed later in Chapter 6. 

Example 1.1, in which the air mass leakage rate from a pressurized containment 

is determined, illustrates the four concepts of this section.   

Example 1.1.   Containment integrated leakage rate testing.   In 

determining whether the leakage rate from a pressurized containment is 

acceptable, the licensees conduct periodic tests.  The leakage rate is determined 

by changes in containment air mass over time.  At any specific time, air mass is 

determined by the spatial distribution of the temperature, pressure, and relative 

humidity within the containment.  By use of sensors carefully placed within the 

containment, these three distributions are concurrently sampled.  The relevant 

sensor statistics are the average temperature, pressure, and relative humidity of 

the respective samples.  The population parameters that are estimated from the 

samples are the average temperature, pressure, and humidity over the entire 

containment air mass.  

1.7  Evaluating statistical statements 

To evaluate any statistical statement, it is necessary to ascertain the relevance 

and validity of both the data and the analysis on which the statement is based.  

It’s not necessary to be a statistician to react sensibly to a statistical statement or 

analysis.  Almost all problems attributed to ―bad‖ data or to ―bad‖ statistics are 

avoidable.  We simply must be aware of pitfalls along the way and take proper 

precautions in dealing with them. 

Huff’s criteria The following five questions, adapted from Huff (1954) and 

hereafter called Huff’s criteria, provide a first line of defense 

against an incorrect interpretation of any statistical statement: 

 Who says so?  (Does he/she have an axe to grind?)  

 How does he/she know?  (Does he/she have the resources to know the 

facts?) 

 What’s missing?  (Does he/she give us a complete picture?) 

 Did someone change the subject?  (Does he/she offer us the right answer to 

the wrong problem?) 

 Does it make sense?  (Is his/her conclusion logical and consistent with what 

we already know?) 

Throughout these discussions and, even more importantly, long afterwards, as 

we go about our regular business, personal, or professional activities, it is 

important to maintain a healthy skepticism about statistical claims and 
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counterclaims.  Try to evaluate statistical statements with Huff’s criteria in 

mind.  Indeed, we will find them applicable to nonstatistical statements as well, 

adding vigor and rigor to our analyses and value and meaning to our 

conclusions. 

Note that the first of Huff’s criteria is the only one that does not involve the 

content of the statement; rather, it deals with motivation.  It is important to note 

that any incorrect interpretation of a statement because one or more of the other 

criteria implied by Huff’s questions is violated does not depend on whether the 

violation is deliberate.  While motivation might certainly be a factor in 

understanding why Huff’s criteria are violated, it is irrelevant in assessing their 

applicability.  

Example 1.2.   Evaluating the regulator.   A group of utilities surveyed 

opinions on the efficiency, fairness, and impact of the agency that regulates 

them.  The associated report was highly critical and stated that the great majority 

of the people interviewed agreed that the agency was detrimental to the safe and 

efficient operation of their facilities. 

Sounds bad, doesn’t it?  The question is, ―Who said so?‖  It turns out that the 

participants in the survey were all employees of the utilities involved.  Those 

participants surely have their own axes to grind; they did not invite the regulator 

to oversee them, and they would be more flexible in their operations without 

someone looking over their shoulder.  Whether they agree or whether their 

intentions are good, their opinion is biased.  Therefore, the survey violated the 

first of Huff’s criteria, ―Who says so?‖  It also violated Huff’s third criterion, 

because it reflected only the utilities’ perspective and was therefore incomplete. 

Example 1.3.   Challenger’s O-ring failure.   You may remember the cold 

morning of January 28, 1986, when the space shuttle Challenger broke apart in 

mid-air.  The cause of the accident was the failure of one or more of the six 

O-rings in the shuttle to seat properly, resulting in a burn through the external 

gas tank.  A chart similar to Figure 1.1 was instrumental in convincing managers 

from the National Aeronautics and Space Administration and their contractors 

that it was safe to launch despite a predicted launch temperature of about 32 °F 

(much lower than any previous launch) on the grounds that the launch 

temperature does not have an effect on the integrity of the O-rings.   
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Figure 1.1.   Distressed O-rings vs. temperature, 7 launches 

scatter plot Figure 1.1 is a variation of a graph called a scatter plot.  It plots 

the number of incidents of O-ring degradation as a function of 

temperature.  Even though the highest number of incidents (3) 

occurred at the lowest temperature, the second highest number 

of incidents (2) occurred at the highest temperature.  Based on 

the absence of any obvious pattern, it is plausible to conclude 

from the data in Figure 1.1 that temperature does not affect 

O-ring performance. 

However, Figure 1.1 is based only on the seven previous launches where there 

were one or more incidents of O-ring degradation.  In fact, there were a total of 

24 previous space shuttle launches, of which 17 had no such incidents.  Clearly, 

this analysis violates the third of Huff’s criteria.  Crucial information is missing 

in Figure 1.1!   

Figure 1.2 provides the full picture of the relation between temperature and 

O-ring performance.  It shows that there were 17 launches, all conducted at joint 

temperatures above 65
 
°F, without O-ring distress.  When added to the previous 

launches from Figure 1.1, the data clearly indicate that the likelihood of O-ring 

distress increases as the temperature decreases below 65
 
°F.  So what went 

wrong with the Challenger?  The launch temperature was 31
 
°F.  A clear 

extrapolation of the given data implies a significant increase in the likelihood of 

O-ring distress over previous launches (the lowest previous temperature was 

53 °F).  Although we cannot be certain that managers would have changed the 

decision to launch on January 28 if the data in Figure 1.2 had been available, 

this incident is a case where appropriate statistical analysis may literally have 

been a matter of life and death. 
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Figure 1.2.   Distressed O-rings vs. temperature, 24 launches 

A detailed discussion of the analysis of the Challenger disaster is given in Dalal 

(1989).   

Example 1.4.   Stolen cars.   A newspaper reported that the top five car 

models stolen over 5 consecutive years in the State were all Toyota Camrys.  

Based on this information, some readers decided not to buy a Camry.  Their 

interpretation of the report may be faulty.  Could it be that more Camrys are 

stolen simply because more Camrys are on the road?  Or could it be that they are 

more desirable?  And if more desirable cars are likely to be stolen, why isn’t 

Ferrari on the list?  What’s missing is, at the very least, the number of each 

model on the road and the number of each model that is stolen.  Without this 

information, Huff’s third and fourth criteria are violated. 

Example 1.5.   Drunk drivers.   It was reported that drunk drivers caused 

15% of the fatal accidents on the road.  This means that sober drivers caused 

85% of the accidents.  Should we then conclude that sober drivers should not be 

allowed to drive? 

This example clearly illustrates the violation of Huff’s third and fifth criteria.  

What is missing is the proportion of fatal accidents involving drunk drivers to 

the number of drunk drivers on the road and a similar proportion for sober 

drivers.  One should also ask whether the conclusion makes sense or whether it 

conflicts with common knowledge.   

1.8  Misconceptions about statistics 

The credibility and quality of statistical investigations depend on the data and 

the analysis.  Deliberate or inadvertent biases can adversely affect an 

investigation.  Except for the last one, the following book titles (all of which are 

real) reflect some of the many misconceptions and biases held by many people 

about statistics (and about statisticians):  

Use and Abuse of Statistics (Reichmann, 1971) 
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How to Lie with Statistics (Huff, 1954) 

Flaws and Fallacies in Statistical Thinking (Campbell, 1974) 

How to Tell the Liars from the Statisticians (Hooke, 1983) 

The Tyranny of Numbers (Eberstadt, 1995) 

Of course, no discourse on statistics escapes the canard ―there are three kinds of 

lies—lies, damned lies, and statistics.‖
3
  We really don’t have to look very hard 

or very far to find such ―wisdom‖ and/or gobbledygook.  All we have to do is to 

pay attention to the news media, read a few technical journals, listen to our 

doctors and dentists, take note of our politicians, and participate in everyday life.  

The fact is that everyone is well acquainted with situations in which statistics are 

used and misused.  The real need is to develop and improve the insights and the 

tools to sort through the blizzard of quantitative ―facts‖ that surrounds us.  

Indeed, our load is lightened considerably if we never lose sight of Mosteller’s 

insightful rejoinder, ―It’s easy to lie with statistics.  But it is easier to lie without 

them.‖
4
 

1.9  Spreadsheet computation 

Displaying data and extracting and communicating information from data in a 

convincing manner require data plots and computational analyses.  Having 

software to do this work is very useful, and much software is available.  Many 

basic plots and analyses can be done with Excel, which is the official 

spreadsheet of the NRC.  We will illustrate and provide guidance on the use of 

Excel throughout this book. 

Statistical functions often operate on a selected set of values.  The collection of 

those values must be identified to the function by selecting (either listing or 

highlighting) the cells that contain these values.  In Excel, for data listed in a 

single column or a rectangular array, the upper left-most cell and the lower 

right-most cell (separated by one or two periods) must be listed (e.g., A1..B100), 

or highlighted by dragging the mouse from cell A1 to cell B100.  Data that are 

not in a column or a rectangular array can be entered as multiple segments 

separated by commas, such as A1..B25,C7..F35.  For example, the average 

function is written as =AVERAGE(A1..A100) or 

=AVERAGE(A1..B25,C7..F35).   

 Excel requires an equal sign as a prefix in all functions. 

                                                           

3 Attributed by Mark Twain (Samuel Clemens, 1835–1910) to the British Prime Minister Benjamin 

Disraeli (1804–1881), Source:  The Pocket Book of Quotations, edited by Henry Davidoff, Pocket 

Books, Inc., New York, NY, 1952.   

4 Frederick Mosteller, quoted in Chance, Vol. 6, No. 1, 1993, pp. 6–7.   
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 Excel uses a colon (:) to separate cells, such as A1:B25.  However, if a 

period, two periods, or three periods are used as separators (such as 

A1.B25, A1..B25, or A1...B25), Excel accepts them but automatically 

converts these separators to single colons. 

To see a hypertext listing of the statistical functions available from within Excel, 

click on Help—Table of contents—Working with data—Function reference—

Statistical functions.  Click on any of these functions, and a help panel will drop 

down with an explanation and an example of the function and its use.   

In some instances, Excel offers complete routines that produce a set of relevant 

calculations.  The use of such routines requires that Excel’s Data Analysis Tools 

(sometimes called Data Analysis Pack) be installed first with Excel’s Options 

Add-ins.  Calls to routines are made by clicking on Data—Data Analysis—

routine name and then following the instructions on the screen.  Help and 

instruction are also available to execute the routine.  The use of such routines is 

explained and illustrated in this book in the context of their applications.   

 

 



14 Applying Statistics 
 

 

 

 



 

 

 

2  
Descriptive statistics 

2.1  What to look for in Chapter 2 

Studies and investigations often involve datasets of various sizes.  To 

communicate essential and informative characteristics of such datasets, we use 

descriptive statistics.  Properly presented, descriptive statistics, along with 

appropriate graphical representations,
5
 are the first steps in the examination and 

analysis of data.  Descriptive statistics topics in this chapter include the 

following: 

 measures of centrality, §2.3 

arithmetic mean 

median 

mode 

midrange 

trimmed mean 

Winsorized mean 

geometric mean 

harmonic mean 

     weighted mean, §2.4  

                                                           

5
 Chapter 3 discusses graphical representations.  
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 measures of dispersion, §2.6 

range 

percentiles, quartiles, and quantiles 

interquartile range 

 variance, standard deviation, and degrees of freedom, §2.7 

 statistics for coded data, §2.10 

 measures of symmetry and peakedness, §2.11 

 estimating portions of a dataset that lie in selected intervals, §2.12 

 estimating the standard deviation of a dataset from its range, §2.13 

 Chebyshev’s inequality, §2.14 

 spreadsheet functions for descriptive statistics, §2.5, §2.8 

2.2  Descriptive statistics 

 

descriptive 

statistics 

Numeric values calculated from a dataset of values or one or more 

variables with the purpose of characterizing the behavior of the 

variable(s) are called descriptive statistics.  If the dataset is a 

random sample, the descriptive statistics often are the basis for 

making inferences about the population from which the sample is 

believed to have been drawn. 

data 

reduction
Note that sometimes the term data reduction is used in reference 

to descriptive statistics.  Data reduction is the process of 

condensing a dataset into a few useful and informative statistics. 

Descriptive statistics are present in many forms in daily life.  To name a few: 

 average wind velocity or the year’s extreme temperatures at a nuclear plant 

 minimum water temperature at a nearby lake 

 maximum weight of fuel hauled by a tractor trailer 

 proportion of funds allocated to research out of the total budget 

 average cost of inspection (routine or ad hoc) of a facility 

 average security cost for a facility or a group of facilities 

 average and range of income of a starting nuclear engineer 

Many commonly used descriptive statistics are easily calculated using a 

hand-held calculator or a computer spreadsheet program.  Because descriptive 

statistics are so readily available and because the casual, even thoughtless, use of 

them may have serious consequences, it is important to make sure that only 

appropriate statistics are used. 
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2.3  Measures of centrality 

measure of 

centrality 

 central 

value 

 central 

location 

central 

tendency 

 

A measure of centrality (central value, central location) is a 

quantity that is often used to describe a dataset, be it a 

population or a sample, by a single value.  An example of such 

a measure is the average number of fuel assemblies that were 

shipped annually from a facility in the last 8 years.  An often-

used alternate term, central tendency, is inappropriate because 

the name suggests a measure of the proclivity of a set of values 

to cluster around a central value rather than a measure of the 

central value itself. 

This chapter presents several measures of centrality; choose among these 

carefully.  Often, the mean (arithmetic mean) is the most intuitive and most 

useful measure of centrality.  However, other measures may be preferred, 

depending on the type of data and the use to which the measure is put.  

The following measures of centrality apply to any group of n values, regardless 

of whether that group is a sample or a population.   

arithmetic 

mean 
The arithmetic mean of n values is the sum of the values divided 

by n. 

mean 

 average

Note that when there is no ambiguity, the arithmetic mean may 

be referred to as the mean or the average. 

For the five values {83.44, 83.49, 84.11, 85.06, 85.31}, the mean is calculated 

as:   

(83.44 + 83.49 + 84.11 + 85.06 + 85.31) / 5 = 421.41 / 5 = 84.282  

(note the number of decimal places)  

Consistent with accepted statistical practice, the mean is reported in the final 

presentation to one more decimal place than the data show.  Intermediate steps, 

however, should be carried with as many significant figures as the computing 

facility permits. 

Mathematically, the mean of n values, Y1, Y2, …, Yn is denoted by Y   
(pronounced ―Y-bar‖) and is defined as:  

1

1 n

i
i

Y
n

Y  
(2.1) 

 

In Equation (2.1),  is the standard summation notation, and i is the index 

variable, running from 1 to n.   
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When there is no ambiguity, any of the following, less detailed, expressions in 

Equation (2.2) could be used: 

1

1 1 1 1n n

i i
i

Y Y Y Y Y
n n n n

 (2.2) 

 

 Note the convention:  Variables are symbolized by upper case Latin letters 

such as Y, Yi, or Y .   Once these values are known or observed, they are 

denoted by lower case letters such as y7 = 30.6 or y  = 0.06. 

median The median of a group of n values is the ―middle‖ of that group.  

The definition of the median depends on whether n is odd or even.  

The median of an odd number of ordered (listed from the smallest to the largest) 

values is defined as the middle value.  As an example, for the dataset of n = 5 

values {83.44, 83.49, 84.11, 85.06, 85.31}, the median (underscored here) is 

84.11. 

The median of an even number of ordered values is the average of the two 

middle values.  As an example, consider the ordered set of n = 6 values 

{1.4, 1.7, 2.8, 3.2, 3.2, 4.6} (two middle values underscored).  For this set, the 

median is calculated as (2.8 + 3.2) / 2 = 3.0.  Note that, in this example, the 

number of decimal places for the median is the same as that for the raw data.  

However, if the middle values were, for example, 3.1 and 3.2, the median 

(3.1 + 3.2) / 2 = 3.15 would have one additional significant figure. 

The median has several noteworthy properties.  When doing hand calculations 

on ordered data, the median is easier to calculate (especially for a small value or 

values) than the mean because the middle value (or values) is often easy to spot.  

The median is also insensitive (―robust‖) to extremely high or extremely low 

values.  As an example, in the set {1.4, 1.7, 2.8, 3.2, 3.2, 4.6}, the median would 

still be 3.0, even if the largest value were a figure such as 460 rather than 4.6.  

For example, economic data are often summarized by medians (e.g., median 

salaries or home sale prices), because averages can be distorted by a few very 

high values.   

The median is used in the construction of box plots (Section 3.9) and stem-and-

leaf displays (Section 3.11). 

mode The mode of a set of values is the measurement that occurs most 

often in the set.  For the set of six values {1.7, 3.2, 3.2, 4.6, 1.4, 

2.8}, the mode is 3.2 because 3.2 appears more often than any 

other value in the set.  There is no mode for the set {83.44, 83.49, 

84.11, 85.06, 85.31} because no value is repeated.  

 A dataset may have more than one mode.  Thus, the set             
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Bimodal 

trimodal 

multimodal 

{2, 3, 3, 4, 4, 4, 4, 5, 6, 6, 7, 8, 8, 8, 8, 9, 11} has two modes: 

 4 (appearing four times) and 8 (appearing four times).  In this 

example, we have a bimodal dataset.  Similarly, a dataset may be 

trimodal or multimodal.   

Multimodality is not a useful measure of centrality.  In fact, multimodality 

suggests that a single measure of centrality may be inappropriate because the 

sample could have been drawn from a mixture of several populations. 

midrange The midrange of a set of values is the average of the smallest and 

the largest values in the set.  For the set of values              

{1.4, 1.7, 2.8, 3.2, 3.2, 4.6}, where the smallest value (denoted 

here as y min and sometime as ―minimum‖ or ―min‖) is 1.4 and the 

largest (y max , ―maximum,‖ or ―max‖) is 4.6, the midrange is 

calculated as (1.4 + 4.6) / 2 = 3.0.  Whereas the midrange may be 

easily calculated, it is sensitive to extreme values that are very 

large or very small.   

trimmed 

mean 
The trimmed mean of a set of values is the average of the set 

after the smallest and the largest values have been removed.  For 

the set of values {1.4, 1.7, 2.8, 3.2, 3.2, 4.6}, removal of the 

smallest (1.4) and the largest (4.6) values gives the trimmed mean 

as: 

(1.7 + 3.2 + 3.2 + 2.8) / 4 = 10.9 / 4 = 2.725, rounded to 2.72 

rounding 

rule 
Note the rounding rule:  Most statistics should be calculated to 

one more significant digit than the raw data.  When the last digit 

before rounding is 5, round up or down to the nearest even 

integer.  For example, 2.725 is rounded down to 2.72, whereas 

2.735 is rounded up to 2.74. 

An example of using a trimmed dataset is found in scoring for some 

competitions, where the highest and the lowest scores are removed in an attempt 

to eliminate or reduce judges’ biases. 

Trimmed means are sometimes calculated after a certain proportion of the 

dataset’s smaller and larger values are removed.  For example, a 10% trimmed 

mean is calculated after removing the smallest 5% and the largest 5% of values 

in the dataset. 

Winsorized 

mean  
The Winsorized mean is a modification of the trimmed mean.  If 

we replace the largest value in the dataset with the next-to-largest 

value and, symmetrically, the smallest value with the next-to-

smallest value, the mean of the modified dataset is called the first-

level Winsorized mean.  (The adjective first-level refers to the 

replacement of only one value at each extreme of the data.)  For 
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the set of values {1.4, 1.7, 2.8, 3.2, 3.2, 4.6}, the first-level 

Winsorized mean is calculated as: 



Both the trimmed and the Winsorized means are attempts to define a measure of 

centrality that is not overly influenced by extremes at either end of the dataset.  

Even though these extremes may be legitimate data points, they have no 

influence whatsoever on the trimmed mean.  The Winsorized mean may allow 

the extremes to have some, although less, influence on the measure of centrality. 

For a more complete discussion of trimmed and Winsorized means, see Dixon 

and Massey (1983), p. 380.  

geometric  

mean 
The geometric mean, denoted here by G, is the n

th
 root of the product 

of n positive values.  Mathematically,   

                     

1

1/ 1/

i i

i

n

iY Y Y

n n

nG

            

 (2.3) 

                      Using logarithms (to any base!), Equation (2.3) can be written as: 

                          
i

1
log logG Y

n  
(2.4) 

                      and G is calculated as the antilog of (log G). 

As an example of the geometric mean, suppose that three experts estimate the 

probability of a specific accident as 0.01, 0.001, and 0.00001.  The arithmetic 

mean of these values is calculated as (0.01 + 0.001 + 0.00001) / 3 = 0.00367.  

The geometric mean is calculated as 3 .(0.01)(0.001)(0.00001) 0.000464   We see 

that the geometric mean is considerably smaller than the arithmetic mean.  In 

examples like this, the geometric mean is often considered a more appropriate 

measure of centrality because the arithmetic mean is much more influenced by 

the largest value in the dataset than is the geometric mean when dealing with 

numbers spanning several orders of magnitude.   

harmonic 

mean 

Other measures of centrality are found in the literature, some of 

them developed for specific situations.  One such measure is the 

harmonic mean, which is denoted here by H and is given by: 

                      

1 2
1 / 1 / ... 1 /

n
Y Y Y

H
n                                                        (2.5) 

Thus, the harmonic mean of the six values 1.4, 1.7, 2.8, 3.2, 3.2, and 4.6 is: 
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6
6 / 2.502 2.40

1/1.4 1/1.7 1/ 2.8 1/ 3.2 1/ 3.2 1/ 4.6
H  

 

Although the harmonic mean does not have many direct and practical 

applications, it has indirect uses.  For example, it is an intermediate step in 

Duncan’s Multiple Range Test (Section 16.8). 

 

 
population 

mean 

The definitions of measures of centrality discussed above are 

applicable to values coming from either a sample or a population.  

When the group values comprise the entire population, the 

arithmetic mean is called the population mean and is denoted   

by μ. 

When the population contains a finite number of items, the size of the 

population is denoted by N, and the population mean is defined by any of the 

following equivalent expressions: 

1

1 1 1N

i i

i

Y Y Y
N N N  (2.6) 

That is, the population mean is the arithmetic average of the values of the N 

elements in the population.  To calculate the population mean, add all the values 

in the population and divide the sum by N.  

2.4  The weighted mean 

weighted 

mean 
The weighted mean arises in circumstances in which certain values 

in a dataset are considered to be more ―important‖ than others and, 

therefore, are given more ―weight‖ than others when the data are 

summarized.  The weighted mean is a statistic constructed to 

accommodate these different weights.  

Suppose we have k distinct Yi values, each associated with its own weight wi.  

The weighted mean is denoted as ,WY  and calculated as: 

1 1

i i i

i i

k k

YY w w
W

 

(2.7) 

Example 2.1 illustrates the use of the weighted mean in an academic institution, 

where some examinations carry more weight than other, less important 

examinations or quizzes. 

Example 2.1.   Final score in a course.   The weights assigned to three 

classroom examinations are 20 percent to the first, 20 percent to the second, and 
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60 percent to the final.  A student scored 70, 60, and 95 on his first, second, and 

final examination, respectively.  Calculate the course score. 

Data: 70, 60, 95; k = 3  

Values: y1 = 70, y2 = 60, y3 = 95     

Weights: w1 = 20, w2 = 20, w3 = 60 

3 3

1 1

100, (20)(70) (20)(60) (60)(95) 8300

8300 /100 83.00

i i i

i i

w

w w y

y
 

Note that this example uses weights of 20, 20, and 60.  However, the same result 

is obtained when one uses, respectively, weights of 2, 2, and 6, or of 1, 1, and 3.  

Thus, the ratios of the set of weights, rather than their specific values, are all that 

matter. 

 

class marker 

class interval 

The weighted mean is also used when values are reported in 

intervals and each interval is represented by a single value 

iy , called the class marker, which may be the midpoint of 

interval i or another convenient value. The interval i is the 

i
th

 class interval.  The number of values falling into interval 

i becomes the weight associated with y1.  For example, time 

to accident may be 71, 76, 78, and 78 days, but all four 

values (interval weight = 4) in the interval between 70 and 

79 are reported as 74.5, 74, or 75,  depending on how the 

class marker is determined. 

Sometimes, a dataset is reported only as grouped data.  Example 2.2 illustrates 

the calculation of the weighted mean for grouped data. 

Example 2.2.   Force to break.   Eleven measurements of the force, in 

kilopounds (kip), required to break a specific weld, are listed and grouped into 

intervals.  The unweighted mean of the n = 11 values is y  = 5.42.   

Data:  2.1, 2.6, 2.7, 3.4, 5.2, 5.5, 5.9, 6.6, 7.4, 7.8, 10.4; n = 11; k = 9 intervals 

The values are grouped into k = 9 intervals, each one kip wide, starting at 2 and 

ending at 11.  The value for each interval is set at the midinterval as shown 

below. 

Values: y1 = 2.5, y2 = 3.5, y3 = 4.5, y4 = 5.5, y5 = 6.5, y6 = 7.5, y7 = 8.5, 

y8 = 9.5, y9 = 10.5 
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Weights: w1 = 3, w2 = 1, w3 = 0, w4 = 3, w5 = 1, w6 = 2, w7 = 0, w8 = 0, 

w9 = 1 

9 9

1 1

11, 59.5, 59.5 /11 5.41
i i i

i i

ww w y y   

As expected, the weighted mean based on interval grouping is a close 

approximation to the mean of the raw data.  The difference between the 

unweighted and the weighted means results from the loss of some resolution in 

the process of grouping. 

Still another use of the weighted mean is to expedite the calculation of the mean 

when some data are repeated.  In this case, each distinct value yi has an 

associated weight wi, which is the number of repetitions of the weight of that 

value. 

Example 2.3 illustrates the application of the weighted mean in calculating the 

average time before a metal container begins to rust.   

Example 2.3.   Time to rust.   Data for the time (years) to first indication of 

rust taken on nine metal containers are shown below.  Of the nine values, k = 6 

values are distinct.  The (unweighted) mean of the values is y  = 5.30. 

Data: 2.3, 3.4, 3.4, 3.4, 5.2, 5.2, 6.6, 7.8, 10.4; n = 9 

Values: y1 = 2.3, y2 = 3.4, y3 = 5.2, y4 = 6.6, y5 = 7.8, y6 = 10.4; k = 6 

Weights: w1 = 1, w2 = 3, w3 =2, w4 = 1, w5 = 1, w6 = 1  

6 6

1 1

9, 47.7, 47.7 / 9 5.30
i i i w

i i

w w y y  

Notice that the weighted mean is identical to the unweighted mean of all nine 

values.  In this case, the weighted mean is simply another way to calculate the 

mean. 

2.5  Spreadsheet functions for measuring centrality 

Spreadsheets have special functions to calculate selected measures of centrality.  

Suppose that a given dataset is located in cells A1 through A100 of the 

spreadsheet.  We illustrate the use of these functions in Excel, and call your 

attention to possible departures from other spreadsheet functions. 

To calculate the mean of the dataset, use the function =AVERAGE(A1..A100).  

 In some spreadsheets, AVERAGE is abbreviated as AVG.  
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To calculate the median of the dataset, use the function =MEDIAN(A1..A100).  

To calculate the mode of the dataset, use the function =MODE(A1..A100). 

 Warning:  If more than one mode is found in the dataset, the spreadsheet 

will display only one of them. 

To calculate the geometric mean of the dataset, use the function 

=GEOMEAN(A1..A100).  

To calculate the harmonic mean of the dataset, use the function 

=HARMEAN(A1..A100).  

No spreadsheet function yields the midrange of a dataset.  However, the 

midrange can be easily calculated by summing the largest (ymax) and the smallest 

(ymin) values in the dataset and dividing the sum by 2.  Specifically, 

=(MAX(A1..A100)+MIN(A1..A100)) / 2. 

Excel does not give the measures of centrality for trimmed data.  To obtain a 

trimmed mean or a Winsorized mean, perform the trimming by hand first, and 

then apply the average to the trimmed dataset.  Similarly, there is no single 

command function to calculate the weighted mean.  The weighted mean may be 

calculated by entering the values and the weights in two columns, calculating 

and adding their cross products, and dividing the latter by the sum of the 

weights. 

2.6  Measures of dispersion:  range and quantiles 

 

measure of 

dispersion 

 spread 

 variability 

A measure of centrality—be it mean, median, mode, or some 

other—is generally considered to be the most important 

parameter/statistic associated with a set of values.  However, a 

measure of centrality does not tell the whole story about a 

variable.  For a more complete description of a variable, some 

measure of dispersion (spread, variability) of the data is required. 

range 

quantiles  

percentiles  

quartiles 

Measures of dispersion described in this section are the range, and 

functions of quantiles are points taken at regular intervals from the 

cumulative distribution function (such as percentiles and 

quartiles).  Section 2.7 discusses the variance and the standard 

deviation, which are also measures of dispersion. 

The range is defined as the difference between the largest value (Ymax) and the 

smallest value (Ymin) in a set of values.  Formally, 

 

range = Ymax - Ymin (2.8) 
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As an example, in the ordered dataset {1.4, 1.7, 2.8, 3.2, 3.2, 4.6}, the largest 

value (ymax) is 4.6 and the smallest value (ymin) is 1.4, so that the range is 

ymax - ymin = 4.6 – 1.4 = 3.2. 

The range is an intuitive measure of data dispersion, as a large (or small) range 

suggests large (or small) variability.  If the largest and the smallest values are 

easy to spot, the calculation of the range is very easy. 

We may have a sample range, and, in parallel, there may be a population range.  

However, for some populations and samples, the range cannot be determined.  

This may be caused by the lower detection limit, the higher detection limit, or 

other instrument or technician limitations.   

 The sample range cannot be larger than the population range; indeed, very 

seldom are the two equal. 

Percentiles apply to any set of values on an ordinal or an interval scale.  As the 

term suggests, they are based on the division of an ordered (from smallest to 

largest) dataset into 100 equal parts.  However, if the number of values in the 

dataset is not a multiple of 100, there may be no clear-cut definition of 

percentile.  One definition in use is the following:  

For any p, 0 ≤ p ≤ 1, the (100p
th

) percentile is a value (not necessarily in the 

dataset) such that at most (100p) percent of the values are less than this 

value and at most 100(1 – p) percent are greater.   

One problem with this definition is that a percentile may not have a unique 

value.  For example, consider the set {1.0, 2.0, 3.0, 4.0}, where any value 

between 2.0 and 3.0 can qualify as a 50
th

 percentile.  Another problem is that a 

single value may represent a range of percentiles.  For example, what is the 80
th

 

percentile of this dataset?  From the second part of the definition, at most 20% 

of the values are greater.  Therefore, the 80
th

 percentile is 4.0, the largest value.  

Similarly, the 76
th

 to the 100
th

 percentiles are all equal to 4.0. 

To avoid these problems with the definition of percentile, it is necessary to 

interpolate between the values in the dataset.  However, as Example 2.4 

illustrates below in a slightly different context, there is more than one way to 

interpolate.  All the interpolation methods yield similar results, and no method 

appears to have a distinct advantage over others.   

A quartile is one of three particular percentiles of special interest in describing 

sets of data: 

 The first quartile is the 25
th

 percentile of a dataset.   

 The second quartile is the 50
th

 percentile of a dataset.  The second quartile is 

also the median.  (See Section 2.3.  The median as defined in 
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Section 2.3 will always be equal to the 50
th

 percentile as defined 

below.) 

 The third quartile is the 75
th

 percentile of a dataset. 

interquartile 

range 

 

 

quintiles 

 deciles 

A common measure of dispersion is the interquartile range, defined 

as the difference between the first and third quartiles.  We may think 

of it as the range of the middle half of the data.  The interquartile 

range is used in the construction of box plots (Section 3.9). 

Clearly, the quartiles divide the dataset into four approximately 

equal parts.  Division points related to the quartiles are the quintiles 

(five approximately equal parts) and the deciles (10 approximately 

equal parts). 

Quantile is the collective term for the percentiles, deciles, quartiles, and 

quintiles, or other ―-iles.‖  A quantile is often written as a decimal fraction.  

Thus, we define the 0.85 quantile of a set of data to be a value on the scale of the 

data that divides the data into two groups, so that a fraction of about 0.85 of the 

values falls at or below that value and a fraction of about 0.15 falls above it.  

Such a value is often denoted as Q(0.85).  The only difference between 

percentile and quantile is that percentile refers to a percentage of the dataset, and 

quantile refers to a fraction of the dataset.   

  A quantile multiplied by 100 yields the corresponding percentile. 

 A percentile divided by 100 yields the corresponding quantile. 

fractile Some writers use the word fractile instead of quantile, perhaps to 

emphasize that it is a quantity (fraction) between 0 and 1. 

Example 2.4.   Water impurity.   Twenty-five aliquots of water were taken 

at random locations from an aquifer to establish a baseline for water impurity in 

parts per million (ppm).  Table 2.1 lists the 25 values in ascending order.  

Suppose, for regulatory purposes, we need to calculate Q(0.85), the 85
th

 quantile 

of the dataset.  Since none of the values serves to set a value for Q(0.85), some 

arbitrariness cannot be avoided, as different approaches lead to different results.  

Since 0.85 of 25 is 21.25, Q(0.85) should be between 42.91 and 42.93, the 21
st
 

and 22
nd

 ordered values, respectively.  The fractional part of 21.25 suggests that 

the 85
th

 quantile be 0.25 of the distance between the 21
st
 and 22

nd
 ordered 

values.  Thus, Q(0.85) is calculated as 42.85 + (0.25)(42.91 – 42.85) = 42.865.  

Alternatively, Q(0.85) can be calculated as (0.75)(42.85) + (0.25)(42.91) = 

42.865.  The equivalence of these two alternative calculations can be verified 

algebraically. 
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Table 2.1.   Water impurities from 25 aliquots, (PPM) 

42.31 42.32 42.40 42.42 42.45 

42.45 42.48 42.49 42.50 42.59 

42.61 42.61 42.62 42.63 42.65 

42.67 42.72 42.82 42.83 42.83 

42.85 42.91 42.93 42.97 43.17 

 

A second method to calculate quantiles of a dataset is the following.  For a 

dataset with n values, rearrange the values in increasing order of magnitude.  

Denote the ordered values with subscripts in parentheses so that                       

Y(1) ≤ Y(2) ≤…≤ Y(n).  The p
th

 quantile is then defined as follows: 

For any p, 0 ≤ p ≤ 1, set p(n + 1) = k + d, where k is an integer and               

0 ≤ d ≤ 1.  Denote the (100p
th

) percentile by Y(p).  Then,  

Y(p) = Y(k) + d (Y(k+1) –  Y(k) ) for 0 < k < 1 

Y(p) = Y(1)  for k = 0 

Y(p) = Y(n) for k = n 

With this definition, every percentile has a unique value, although two or more 

percentiles can have the same value if p is close to 0 or 1, or if two or more 

consecutive values in the dataset are equal. 

In Example 2.4, where n = 25, we see that 0.85 of n + 1 = 26 is 22.10, and 

Q(0.85) should be 10 percent of the way between the 22
nd

 and 23
rd

 ordered 

values.  Thus, Q(0.85) = 42.91 + (0.10)(42.93 - 42.91) = (0.90)(42.91) + 

(0.10)(42.93) = 42.912.  This shows that the second method of calculating 

quantiles or percentiles can yield different values than those obtained by the first 

method.  

Finally, using Excel’s =PERCENTILE(data range, 0.85) function, we get 

Q(0.85) = 42.874.  This value is the result of a compromise between the two 

methods discussed above.   

  In practice, any of these methods for calculating percentiles is acceptable. 

 In computer spreadsheets, all ―-iles‖ must be entered as a quantity between 

0 and 1.  Thus, the 67
th

 percentile is entered as 0.67, the third quartile 

as 0.75, the second quintile as 0.40, and the seventh decile as 0.70.  See 

Section 2.8 for the explicit function to be used in a spreadsheet.  
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2.7  Variance and standard deviation  

variance 

 standard 

deviation 

The variance and the standard deviation are the most common 

measures of dispersion.  These measures are defined first for 

populations and then for samples. 

variance of 

a finite 

population 

The variance of a finite population of size N, with mean μ and 

values {Yi, i = 1, …, N}, is defined by:  

                   

2

2 1

( )
N

i

i

Y

N  
               (2.9) 

 
population 

standard 

deviation  

The standard deviation of a population is the positive square root 

of the variance.  Mathematically, 

  

                 
2

  

(2.10) 

  The standard deviation is generally easier to relate to than the variance 

because the standard deviation is expressed in the same units of 

measurement as the original data, whereas the variance is expressed in 

the square of those units. 

The variance and standard deviation of a sample are measures that imitate their 

population counterparts. 

sample 

variance 
For a sample of size n, the sample variance is defined by one of 

two expressions, according to whether we know (either by 

historical data, by manufacturer specifications, or by assumption) 

or do not know the value of the mean  of the population from 

which the sample is drawn.   

 

                       On those rare occasions when μ is known, the sample variance is:  

                       

2

2
( )iY

S
n  

(2.11) 

For example, if n = 6 sample values are 1.4, 1.7, 2.8, 3.2, 3.2, 4.6, and the 

population mean is known to be 2.5, the sample variance is calculated by 

Equation (2.9) as: 

s 
2
 = [(1.4–2.5)

2 
+(1.7–2.5)

2 
+(2.8–2.5)

2 
+(3.2–2.5)

2 
+(3.2–2.5)

2 
+(4.6–2.5)] / 6         

= 7.330/6 = 1.22. 
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When μ is not known, μ is estimated by the sample mean ,Y and the sample 

variance is calculated as: 

2

2
( )

1

iY Y
S

n  

(2.12) 

 

Equation (2.12) is called the definition formula for the sample variance.  

An alternative to Equation (2.12), called the working formula for the sample 

variance, can be written in several forms, all of which are mathematically 

equivalent to Equation (2.12): 

2 222 22
2

/

1 1 ( 1)

i i i ii
Y Y n n Y YY nY

S
n n n n

 
(2.13) 

Similar to the population standard deviation, the standard deviation for the 

sample is the positive square root of the sample variance: 

2

( )

1

iY Y
S

n
 (2.14) 

 

 

degrees of 

freedom 

The denominator of S 
2
, either n when μ is known (Equation (2.11)) 

or n - 1 when μ is not known (Equation (2.12)), is called the 

degrees of freedom.  Degrees of freedom is often denoted by the 

Greek letter nu (ν).  

 Degrees of freedom is generally used as a singular noun.  It corresponds to 

the number of independent observations on which the sample statistic is 

based.  Degrees of freedom is seldom equal to the number of data 

points.   

 It can be puzzling that the denominator of the sample variance is divided by 

n - 1 (degrees of freedom) rather than n.  An explanation is that, while 

the numerator of S 
2
 is the sum of n deviations squared, the deviations 

sum to zero.  Thus, if n - 1 of the deviations were freely chosen, the n
th

 

one is obtained by subtraction, so that S 
2
 is based on only n-1 

independent observations.  

2.8  Spreadsheet functions for measuring dispersion  

Spreadsheets have special functions to calculate selected measures of dispersion.  

Again, without loss of generality, assume that a given dataset is located in cells 

A1 through A100 of the spreadsheet.  We illustrate the use of these functions in  
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Excel and call your attention to possible differences from other spreadsheet 

notations. 

As stated earlier, there is no direct spreadsheet function to calculate the range, 

but it can be calculated by subtracting the smallest value from the largest value 

in the dataset: 

=MAX(A1..A100) – MIN (A1..A100) 

Also, as discussed earlier, the quantile is calculated using the percentile 

function.  So, for the 85
th

 quantile, we use the function: 

= PERCENTILE(A1..A100, 0.85) 

  Note that the quantity q must be entered as a decimal fraction between 0 

and 1. 

When using spreadsheet software, be aware that some built-in functions may be 

confusing in their notations.  Note, for example, that the VAR function is not the 

same for Excel and some other spreadsheet programs, so stay alert!  

To find the variance of a population (or of a sample when μ is known), use the 

function =VARP(A1..A100).  

  In some spreadsheets, the population variance is written as VAR. 

To find the variance of a sample (μ unknown), use the function 

=VAR(A1..A100).  

   In some spreadsheets, the sample variance is written as VARS. 

To find the standard deviation of a population, use the function 

=STDEVP(A1..A100).  

   In some spreadsheets, the population standard deviation is written as STD. 

To find the standard deviation of a sample, use the function 

=STDEV(A1..A100).  

   In some spreadsheets, the sample standard deviation is written as STDS.  

2.9  Descriptive statistics with a hand-held calculator  

A personal (hand-held) calculator may be all we need to generate the necessary 

descriptive statistics, especially when the dataset is small.  Unfortunately, the 
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notation, or symbols, displayed on the calculator may differ from one calculator 

to another.   

The average may be labeled as x , y , or ―avg.‖  But don’t take our word for it; 

check the manual. 

The variance and standard deviation may also be calculated on a scientific 

calculator.  Just be careful that you know which button to push, as it may be 

confusing.  Some personal calculators use n and n – 1 to denote the standard 

deviations for the population and the sample, respectively.  Some calculators use 

 and s to make the same distinction.  Other calculators fail to differentiate 

between the two in any way.  To see what a given calculator does, enter the 

values 1, 2, and 3 and press the standard deviation key.  If the display shows 

exactly 1.000, the calculator uses (n – 1) as the denominator.  If the display 

shows a value in the neighborhood of 0.816, the calculator uses n as the 

denominator.  If any value other than1.000 or 0.816 appears in the display, 

check the operator’s manual or buy another calculator (no, it’s not that the 

batteries have gone bad!).  

Note that personal calculators use the working formula for the variance 

calculations—any of the equations of the Equation (2.13) variety.  On rare 

occasions, the working formula may lead to serious errors, depending on the 

number of digits (―working digits‖) the calculator uses in its operation.  If the 

entered data have many significant digits and those entries are squared and 

summed, the calculator may have an ―overflow‖ that will give a completely 

erroneous result. 

For example, in containment integrated leakage-rate testing, the air mass, 

measured in pounds, may be written with 10 significant digits.  When such 

values are squared and added, the results are unpredictable.  One of the solutions 

is to code the data, as discussed in the next section. 

2.10  Descriptive statistics for coded data 

Data coding 

Spreadsheets, like hand-held calculators, are not entirely immune 

to the problem of limited precision.  Spreadsheets, however, use 

more significant digits and are less likely to encounter calculation 

errors.  Data coding is one way to overcome the problem of 

insufficient working digits.  Consider a set of n values {y1, y2, …, 

yn} with a mean y and a standard deviation S.  Multiply every yi 

by a constant c1 and then add another constant c2. 

The resultant coded values, {x1, x2, …, xn}, can be written as:   

1 2 1i ix c y c , i , ..., n  (2.15) 
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The mean and standard deviation of the xi are x = c1 y  + c2 and Sx = c1S, 

respectively.  Note that the addition operation does not affect the standard 

deviation.  Once the mean and standard deviation of the coded data{xi}are 

calculated, a reverse transformation is made to obtain values for y and S.  The 

mean and standard deviation of {yi} are equal to ( x – c2) / c1 and Sx / c1, 

respectively.   

Example 2.5.   Containment air mass.   On one day, 33 measurements of 

air mass are collected at random from inside containment for the purpose of 

establishing a baseline.  The mean and standard deviation of the raw data are 

calculated as 173808.52 and 11.82, and counterpart statistics from the coded 

data are 8085.2 and 118.2.  From the coded statistics, the raw data statistics are 

restored as   = 8085.2 / 10 + 173000 = 173808.52.  The standard deviation of the 

raw data is 118.3 / 10 = 11.83.  The last value should be squared to get the 

variance. 

  

Table 2.2 presents the raw data and the coded data, where each containment air 

mass value is first transformed by adding a negative constant c2 = -173000 and 

then multiplying by a constant c1 = 10.  
 
The mean and standard deviation of the raw data are calculated as 173808.52 

and 11.82, and counterpart statistics from the coded data are 8085.2 and 118.2.  

From the coded statistics, the raw data statistics are restored as y  = 8085.2 / 10 

+ 173000 = 173808.52.  The standard deviation of the raw data is 

118.3 / 10 = 11.83.  The last value should be squared to get the variance.  

Table 2.2.   Data coding containment air mass measurements 

  Air mass Coded   Air mass Coded   Air mass Coded 

Point (lb) data Point (lb) data Point (lb) data 

1 173825.3 8253 12 173799.7 7997 23 173806.5 8065 

2 173817.0 8170 13 173817.2 8172 24 173797.8 7978 

3 173801.9 8019 14 173829.0 8290 25 173812.4 8124 

4 173828.0 8280 15 173814.5 8145 26 173809.1 8091 

5 173785.7 7857 16 173788.0 7880 27 173819.1 8191 

6 173798.5 7985 17 173819.3 8193 28 173808.0 8080 

7 173800.3 8003 18 173815.3 8153 29 173820.1 8201 

8 173795.3 7953 19 173815.2 8152 30 173806.4 8064 

9 173804.2 8042 20 173800.6 8006 31 173794.7 7947 

10 173822.3 8223 21 173822.9 8229 32 173817.8 8178 

11 173794.7 7947 22 173799.1 7991 33 173795.2 7952 

Coded data:   mean = 8085.2,          standard deviation = 18.2 

  

  

Raw data:      mean = 173808.52,    standard deviation = 11.82 
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2.11  Skewness and kurtosis 

skewness Skewness is a measure of the lack of symmetry about the mean.  

When a distribution is symmetric, the coefficient of skewness is 

zero.  Positive skewness is associated with a long ―tail‖ or ―drag‖ 

at the right of the distribution.  Negative skewness is associated 

with a long tail at the left of the distribution.  Larger numerical 

skewness values are associated with stronger departures from 

symmetry. 

The sample coefficient of skewness is defined as: 

3

3 3

( )Y Y
m

nS
 (2.16) 

 

 Skewness is sometimes used as one of several criteria in testing for 

normality.  However, better procedures for testing normality are 

available (see Chapter 11). 

 Some writers consider a distribution to be essentially symmetric if 

|m3| < 0.5. 

 The definition of skewness is not unique.  Other definitions may be found in 

Zwillinger and Kokoska (2000), p. 18.   

kurtosis Kurtosis is a measure of the peakedness of a distribution.  The 

sample coefficient of kurtosis is defined as: 

                 

4
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 (2.17) 

For a large sample size (say, n > 20), the following applies: 

 For a sample from a normal distribution (see Chapter 6), m4 is about 3. 

 If m4 < 3, the sample is flatter than is expected from a normal distribution. 

 If m4 > 3, the sample has more of a peak than is expected from a normal 

distribution. 

 The definition of kurtosis is not unique.  Some authors define kurtosis as 

m4 -3, where m4 is defined by Equation (2.17).  Still other definitions of 

kurtosis, along with worked examples, can be found in Zwillinger and 

Kokoska (2000), p. 18.  
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 Kurtosis is sometimes used jointly with skewness to test whether a 

distribution is normal.  However, skewness and kurtosis are of limited 

use in testing for normality, as more efficient procedures for such 

testing are available.   

2.12  An empirical rule for a mound-shaped dataset 

Many sets of`measurements yield mound-shaped graphs when displayed as a 

histogram.
6
  That is, when all the measurements are plotted as a histogram, 

where the horizontal axis represents the measurements and the vertical axis 

gives the frequencies (or the relative frequencies) of the measurements, the 

result is a relatively symmetric, relatively smooth curve with tapering tails to the 

left and to the right of its center. 

Histograms of datasets are seldom truly symmetric with smoothly tapering tails. 

However, the histograms of many datasets are roughly mound shaped (see Ott 

and Mendenhall (1984), p. 76).   

For a histogram that is mound-shaped:  

The interval from (Y – S) to (Y + S) contains approximately 68% of 

the measurements. 
(2.18) 

The interval from (Y – 2S) to (Y  + 2S) contains approximately 95% 

of the measurements. 
(2.18a) 

The interval from ( Y – 3S) to (Y  + 3S) contains all, or nearly all, of 

the measurements. 
(2.18b) 

This empirical rule provides convenient estimates of portions of a dataset falling 

in selected intervals, as illustrated by the following example. 

Example 2.6.   Weights of uranium ingots.   Suppose we have 150 

uranium ingot weights, as displayed in Table 2.3 (taken from Bowen and 

Bennett (1988), pp. 12).   

                                                           

6
 See Section 3.7 for a discussion of histograms. 
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Table 2.3.   Weights of 150 uranium ingots, in kilograms 

425.0 426.7 423.3 429.4 427.9 425.9 422.1 

422.5 424.4 427.8 428.9 425.3 425.4 427.3 

424.9 422.4 426.1 424.8 432.4 427.9 421.9 

431.7 432.2 422.4 427.3 427.3 423.7 425.7 

426.3 427.8 424.8 428.0 426.3 428.6 425.9 

424.5 431.3 431.2 427.3 418.5 428.8 431.6 

426.1 425.8 429.8 429.5 425.3 424.5 424.6 

423.1 426.8 430.9 423.9 421.9 425.1 421.8 

428.3 424.8 427.0 425.1 425.2 424.4 432.3 

423.2 423.6 427.9 427.9 428.5 424.7 428.8 

428.2 424.8 421.0 423.6 428.0 427.7 425.7 

429.1 429.7 419.6 421.3 426.8 421.2 425.2 

424.2 430.3 424.6 430.0 423.5 427.2 430.0 

429.7 423.2 428.8 425.4 427.5 429.4 424.9 

424.8 431.0 427.9 423.6 421.7 425.9 426.6 

427.2 428.0 428.0 429.7 427.4 426.6 426.2 

428.3 426.6 428.4 427.1 427.5 425.5 426.2 

429.3 425.4 423.1 426.9 425.7 429.2 434.2 

421.8 427.3 425.2 427.3 425.7 426.5 420.4 

424.0 426.0 424.9 430.5 426.3 426.3 424.9 

428.0 423.3 431.1 426.4 429.0 429.9 423.3 

427.4 424.2 428.2 
    

 

Figure 2.1 shows the histogram of these weights, which is mound-shaped.  The 

mean is y  = 426.40, the standard deviation is s = 2.83, and the range is 15.7.   

 

Figure 2.1.   Histogram of uranium ingot weights in Table 2.3 
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Table 2.4 displays the grouping of the uranium ingot data into intervals and their 

corresponding percentages.  Note the close agreement between the sample 

percentages and the empirical rule. 

Table 2.4.   Actual and approximate contents of intervals  

Interval defined by Evaluates as 

Contains by 

the empirical rule 

(approximately) 

Sample 

contains 

(Y – S), (Y + S) (423.58, 429.23) 68% 69.3% 

(Y – 2S), (Y + 2S) (420.75, 432.06) 95% 95.3% 

(Y – 3S), (Y + 3S) (417.93, 434.88) 100% 100% 

 

2.13  Estimating the standard deviation from the range 

Related to the mound-shaped conditions that define the empirical rule in 

Section 2.12 is an inequality involving the ratio of the range and the standard 

deviation that may hold for many sets of data: 

range
3 6

standard deviation
 (2.19) 

This relationship could be used to check on the calculation of the standard 

deviation.  For example, if the ratio of the range to the standard deviation is 10, 

this suggests that something is either extremely unusual or just plain wrong. 

   It can be shown mathematically that no matter what the shape of the 

distribution, the ratio of the range to the standard deviation cannot be 

smaller than 1.4142 (the square root of 2).  So if the ratio of the range 

to standard deviation is very small, further investigation is warranted.  

In a pinch, one could use another empirical rule to obtain rough 

estimates of the standard deviation from the range, as shown in 

Table 2.5.  

We applied this rule to the uranium ingot data in Table 2.3, where n = 150 and 

the range = 15.7.  The rough estimate of the standard deviation is calculated as 

15.7 / 6 = 2.62.  Recall that the correct standard deviation is 2.83.   

These two empirical rules provide useful, albeit informal, computational and/or 

―eyeball‖ checks in many statistical investigations.  However, because they do 

not always apply to every set of data (not even to those that are mound shaped), 

caution is needed in their use.  They should never be used as substitutes for 

exact calculations in formal studies.  Indeed, many writers frown on the use of 

this rule, and we share their sentiments for other-than-informal use.  
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Table 2.5.   A rough estimate of the sigma from the range   

Measurement set Estimate 

Small 

(say, 20 measurements or fewer) 

 

Range / 4 

Large 

(say, between 20 and 100 measurements) 

 

Range / 5 

Very large 

(say, more than 100 measurements) 

 

Range / 6 

 

2.14  Chebyshev’s inequality 

 
Chebyshev’s 

inequality 

One of the best known theorems in probability is called 

Chebyshev’s inequality, which is a rule of thumb to characterize 

spread in a dataset.  It provides an upper bound for the 

probability that the values in a dataset or distribution differ from 

its mean in units of its standard deviation.  While this inequality 

is mathematically correct, it is rarely of any practical use and is 

given here only for the sake of completeness. 

Let Y be an arbitrary dataset or distribution with mean  and standard deviation 

σ, and let k > 0 be a constant.  Then, 

Pr{|Y-  > k  < 1/k
2  

        (2.20) 

Table 2.6 shows Chebyshev’s probability bounds for selected values of k.  

Table 2.6.   Chebyshev’s selected probability bounds   

Multiple 

k of σ Probability content  

k = 1 Pr{|Y – | > < 1 

This statement, obviously, provides useless information.   
(2.21) 

k = 2 Pr{|Y – | > 2 (2.22) 

k = 3 Pr{|Y – | > 3
 (2.23) 

The approximate probability content from the empirical rule for mound-shaped 

distributions and the probability bound of Chebyshev’s inequality are checked 

against the data from Table 2.3.  Table 2.7 summarizes the results.  The 

empirical rule provides an excellent approximation, while Chebyshev’s 

inequality is of little use. 
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Table 2.7.   Comparison of probability content    

Interval defined by Evaluates as 

Content from 

the empirical 

rule for mound-

shaped 

distributions 

Content from 

Chebyshev’s 

inequality 

Actual 

sample 

content 

( y – s), ( y + s) (423.58, 429.23) 68% > 0% 69.3% 

( y – 2s), ( y + 2s) (420.75, 432.06) 95% > 75% 95.3% 

( y – 3s), ( y + 3s) (417.93, 434.88) 100% > 89% 100% 
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3  
Statistical graphics 

3.1  What to look for in Chapter 3 

Graphical presentations are essential to almost any statistical analysis of data.  

Analysts often recommend that the data be plotted before the data analysis 

begins as the visual inspection may identify patterns and irregularities in the data 

and, consequently, may suggest an approach to the analysis.   

This chapter presents some of the popular statistical graphs used to convey 

information, including the following: 

 pie chart, §3.3, §3.4   

 bar chart, §3.5, §3.6 

 line plot, §3.5 

 histogram, §3.7, §3.8 

Two special-purpose data presentations are motivated and demonstrated: 

 box plot, § 3.9, §3.10 

 stem-and-leaf display, §3.11, § 3.12 
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Simplified guidelines for the construction of these statistical graphics are 

offered.  Also, wherever Excel routines are available, we list Excel’s relevant 

steps for such construction. 

The discussion of graphical presentation is not restricted to this chapter.  Other 

statistical graphics, such as scatter plots and regression plots, are presented in 

the contexts in which they are introduced.  Furthermore, the graphical methods 

presented in this and other chapters do not begin to cover the many methods and 

improvisations thereof that are available in the literature, in software packages, 

and in the minds of professionals and laypersons.    

3.2  What’s in a graph? 

Since the dawn of human recordkeeping on the walls of caves, graphical 

methods and statistical procedures have been intertwined.  Charts of all types, 

using all sorts of colors and designs and even combining with sound effects, are 

part of the fabric of modern life.  In a variety of forms, some certainly more 

useful than others, statistical graphics appear on television, on the Internet, and 

in newspapers, magazines, and other media.  As simple as some of these chart 

types may be, they scarcely can be equaled as powerful devices to convey 

information contained in a collection of data.   

Because statistical graphics are so powerful and so influential, they are subject 

to a range of ill use, from the deliberate hiding of facts to the inadvertent ―chart 

junk.‖  To use a concept emphasized by Tufte (1983), ―They can tell the truth, 

the whole truth, and nothing but the truth—and yet mislead the reader.‖  

Statistical graphics can lead to under-interpretation (as when one fails to see a 

pattern) or to over-interpretation (where one perceives a pattern that is not real) 

of a study.  Thus, honesty, integrity, caution, and introspection must guide the 

selection and building of graphs to convey a message. 

Quality statistical graphics are more than just a means to present data.  Essential 

statistical graphics must: 

 display their source data in a readily apparent fashion 

 be ―self contained,‖ as much as possible (i.e., convey the message without a 

need for additional text or supplementary material) 

 contain all the necessary axis labels, axis units, and applicable captions 

 be free of irrelevancies 

 be simple and not overwhelm with details 

 identify elements of the study (such as potential rounding errors) that may 

not be obvious to every reader 
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Whether deliberately or not, charts may be misleading.  We need to examine a 

chart carefully as we examine data.  Huff’s criteria may be a good start for such 

examination.  

A classic source on graphical presentation of quantitative information is a book 

by Tufte (1983) entitled The Visual Display of Quantitative Information.  An 

interesting exposition on the vulnerability of the public to bad graphs may be 

found in How to Display Data Badly by Wainer (1984), p. 137.  

The menu of potential graphical representations is wide and varied.  The 

selection from this menu must be made with the recognition of the audience and 

the level of sophistication that the study warrants.  Thus, we were cautioned 

before and we are cautioned again:  Incidents where graphs distort facts 

(deliberately or not) abound.  Such graphs may be self-serving.  They may be 

derived from real data but represent an incomplete truth (as in the case of the 

Challenger disaster as discussed in Chapter 1).  

Finally, we humbly suggest that you stick to traditional charts and avoid fancy 

or ―creative‖ charts.  Creative charts may distort reality.  If the same information 

can be presented in two as well as three dimensions, choose the two-dimensional 

presentation.  Similarly, an oval chart may look prettier than a plain, round pie 

chart, but it has the potential to mislead the reader. 

Most statistical packages and spreadsheet programs have an extensive menu for 

selecting graphs and charts.  Use keen judgment and good taste to select a 

display that is both appropriate and appealing. 

3.3  The pie chart 

pie chart A pie chart is a graphical display designed to show and sometimes 

emphasize the relative proportions of several values of a nominal 

scale where each value is assigned to one and only one group or 

category.  This is illustrated by the following example  

Example 3.1   Energy source distribution.   Table 3.1 is a typical set of 

data that is often displayed by a pie chart.  For each of several values of a 

variable on a nominal scale—in this case, the energy source (e.g., coal, gas)—

there is an associated value of an interval scale—in this case, the amount of 

energy.  We convert each of these values to a percentage (or proportion) of their 

total.  Then we convert those percentages into proportional segments of a circle 

to form the ―slices of the pie.‖  Figure 3.1 presents the data in Table 3.1 as a pie 

chart. 
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Table 3.1.   2005 U.S. electric capacity by energy source 

Source Gigawatts Percent of total 

Coal 313 33 

Gas 227 24 

Dual fired* 172 18 

Nuclear 100 10 

Hydroelectric 98 10 

Petroleum 34 4 

Other 19 2 

Total 963 100 
* Dual-fired units can burn oil or gas. 

Note:  Due to rounding, the total may not add up to 100 percent. 

 

Figure 3.1.   Pie chart derived from data in Table 3.1 

A pie chart, typically, does not stand by itself.  The status quo may be 

interesting, but no less interesting is any change relative to other configurations, 

such as the electric capacity for another country, or to some previous year.  Two 

or more pie charts may be drawn next to each other to show the changes. 

Despite the pie chart’s popularity, venerability, and ubiquity, it is not universally 

endorsed as a statistical display of data.  For example, Stein, et al. (1985) lists 

the pie chart, among others, as not recommended.  They go on to say, 

specifically: 
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The pie chart has the distinct advantage of indicating the data must add up 

to 100 percent.  At the same time, it is difficult to see the relative size of 

two slices, especially if they are within 10 percent of each other. 

And, in a similar vein, statisticians often cite the following maxim:  

A pie chart is never better than the second best way to plot data. 

With this caveat in mind, we continue with suggestions for the construction of 

pie charts. 

3.4  Suggestions for constructing pie charts 

The following rules are intuitive and consistent but sometimes should be broken: 

1. The number of slices of the pie should be between 4 and 10.  Having too 

many slices clutters the chart, while having too few slices may appear trivial 

and insult the reader. 

2. If necessary, collapse several groups into a single category to reduce the 

number of slices.  If necessary, combine them as ―Other.‖ 

3. Arrange the slices in increasing or decreasing order of magnitude, with the 

possible exception of ―Other.‖  ―Other‖ should be the very last category, 

unless there are compelling reasons to place it elsewhere. 

4. Begin the first slice at the 12 o’clock position, followed clockwise by the 

other slices.   

 Counter-clockwise direction works as well; just be consistent. 

5. Show the raw data as well as the percentages.  Remember that if the raw 

data are given, percentages can be calculated and verified.  In contrast, if 

only percentages are given, the data cannot be reconstructed. 

 Caution:  Avoid using a pie chart for ordered categories because of the 

difficulty of seeing the ordering around a circle.   

Pie charts may be constructed using Excel by following the steps listed below.  

Details of the many associated options may be found by clicking Excel’s help 

icon and panel. 

1. List the category labels in one column.  Thus, in Example 3.1, we may list 

the seven energy sources (―Coal‖…―Other‖) in ascending or descending 

order in cells A1..A7. 
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2. List the corresponding numerical values next to their labels in the next 

column—in this example, in cells B1..B7.  

3. Select the cells that include the labels and the values.  In this example, 

select cells A1..B7. 

4. Click the graph icon.  If the graph icon is not visible, click Chart in the 

Insert menu. 

5. In the Chart type box, click Pie. 

6. Click Finish to view the pie chart. 

7. Embellish the chart by selecting frame, color, font, shading, and other 

options.  

8. Be consistent, especially if you display more than one pie chart. 

3.5  The bar chart 

bar chart A bar chart is a graphical representation used to display nominal or 

ordinal data.  Example 3.2 illustrates the use of the bar chart. 

Example 3.2.   Monthly rejects of fuel rods.   The monthly number of fuel 

rods rejected in a fuel facility is listed for a full year (Bowen and Bennett, 1988, 

p. 12).  This example illustrates features of the bar chart relative to the data 

displayed in Table 3.2.  

Table 3.2.   Monthly rejects of fuel rods 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Rejects 5 4 4 2 4 7 6 2 2 5 4 4 

 
 

 

 

 

 

 

 

 

 

 

row chart 

 

column 

chart 

Table 3.2 contains a set of data that typically leads to a bar chart, 

such as that shown in Figure 3.2.  Each month has a frequency of 

occurrences.  Each bar in the bar chart is intended to represent 

1 month, with the bar’s height representing the month’s frequency 

of rejects.  By default, the width of the bars is constant, as is the 

space between each pair of consecutive bars.  If either of these two 

defaults is violated, the bar chart’s message is subject to 

misinterpretation.  If the categories are on an ordinal scale (as they 

are in Table 3.2), the bars are placed in sequence, usually 

chronologically or from the smallest to the largest.  The bar chart 

may be oriented horizontally (sometimes called a row chart) or 

vertically (sometimes called a column chart).  Figure 3.2 renders 

the data from Table 3.2 as a vertical bar chart. 
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Figure 3.2   Bar chart for monthly fuel rod rejects 

line plot The same data can be presented in a different display called a line 

plot, which is a line that connects the values of the heights of the 

histogram, as shown in Figure 3.3.  The selection of a bar chart or 

line plot (or other plots) may be a matter of personal choice or may 

be determined by historical practice of presenting similar data. 

 

Figure 3.3.   Line plot for monthly fuel rod rejects  

Table 3.2 and Figures 3.2 and 3.3 are all missing some important data—the total 

number of fuel rods that were inspected.  The effect of this deficiency may be 

illustrated by considering the data from 2 consecutive years, given in Table 3.3. 
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Table 3.3.   Monthly rejects of fuel rods 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Rejects, 

year 1 
5 4 4 2 4 7 6 2 2 5 4 4 

Rejects, 

year 2 
3 2 3 2 4 4 6 7 8 9 6 10 

The data in Table 3.3 are plotted in Figure 3.4, which is a multibar graph.  The 

first impression from this graph is that performance in the second year of 

operation (―Year 2‖) deteriorated, since the number of rejects increased.  

However, this pattern may have several plausible explanations without such 

negative implications.  One explanation is that increased production in the 

second year resulted in a greater number of rejects but a smaller percentage of 

defective rods.  Another explanation is that towards the middle of the second 

year, the production line instituted a more sensitive quality control process that 

classified more rods as defective.  And there may be still other explanations. 

 

Figure 3.4.   2-year monthly fuel rod rejects, stacked 

Alternatively, we may plot the same data in sequence, as shown in Figure 3.5.  

The difference between Figures 3.4 and 3.5 reflects a difference in the purpose 

of the study.  If we believe that there is a seasonal variation, Figure 3.4 is 

constructed to allow month-by-month comparison.  If this is not the case, 

Figure 3.5 may be more appropriate.  
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Figure 3.5.   Line plot for 2-year monthly fuel rod rejects 

3.6  Suggestions for constructing bar charts 

The construction of bar charts, like that of the pie chart, has subjective and 

esthetic aspects.  However, we must not let our artistic and creative impulses 

carry us too far.  The following rules are provided: 

1. The number of bars in the chart should be between 5 and 20.  Having too 

many bars clutters the chart, while having too few bars may lessen the value 

of the chart. 

2. If possible, the bars should have the same width, unless other considerations 

take precedence. 

3. Bars are generally separated to emphasize the discrete nature of the 

grouping. 

4. If possible, the distance between the bars should be constant, unless 

emphasis is needed. 

5. One axis (typically the left) shows the actual frequency (also called 

frequency or absolute frequency).  If both absolute frequency and relative 

frequency are shown, they could be reported using different vertical (y) 

axes. 

Using Excel, bar charts may be constructed by following the steps listed below:   

1. List the category labels in one column.  Thus, for the data from Table 3.3, 

list the months (Jan through Dec) in cells A1..A12. 
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2. List the corresponding numerical values next to their labels in the adjacent 

columns (in this example, in cells B1..C12).  

3. Select the cells that include the labels and the values.  In this example, 

select cells A1..C12. 

4. Click the Chart icon. 

5. Click Column. 

6. Select the button labeled Column. 

7. Click Finish to display the bar chart. 

8. Embellish the chart by selecting frame, color, font, shading, and other 

options as desired. 

3.7  The histogram 

histogram 

 

class 

intervals 

 

class 

marker 

A histogram is a specialized type of bar chart; it is used primarily 

for displaying frequencies of a variable measured on an interval 

(metric, continuous) scale.  The measurements are grouped into 

class intervals, usually of equal widths.  The middle of each 

interval is called the class marker.  For the purpose of display, all 

measurements falling into a particular class interval are considered 

to have the same value as the class marker.  A histogram, by 

default, shows the relative frequencies (i.e., the fractions of the 

measurements that fall into each class interval) on the vertical axis.  

Since the variable is continuous, the spaces between the bars of the 

histogram are seldom shown. 

Example 3.3.   Water impurity measurements.   In a test for impurities, 

25 buckets of water were drawn randomly from a reservoir that was used to cool 

the reactor.  Table 3.4 lists water impurities for each of the buckets, measured in 

parts per million (ppm), in ascending order of magnitude.  

Table 3.4.   Water impurities measured for 25 buckets, (ppm) 

42.31 42.32 42.40 42.42 42.45 

42.45 42.48 42.49 42.50 42.59 

42.61 42.61 42.62 42.63 42.65 

42.67 42.72 42.82 42.83 42.83 

42.85 42.91 42.93 42.97 43.17 
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I  In Table 3.4, the smallest value is 42.31, and the largest value is 43.17.  Now, 

suppose we decide upon a class interval width of 0.1 ppm and set up a scheme 

of class intervals that have ―nice‖ (i.e., easily set and managed) class markers.  

For these particular data, we might decide on this set of class markers 

{42.3, 42.4, 42.5…43.2}.  Given this choice, the first class interval contains all 

measurements less than or equal to 42.35 ppm; the second contains all those 

greater than 42.35 ppm and less than or equal to 42.45 ppm, and so on.  In this 

fashion, every one of the 25 values can be placed unambiguously into one of the 

10 intervals so defined.  This process yields the frequencies that are the basis for 

the heights of the bars.  In this example, two values out of 25, (or 2/25 = 0.08) 

are associated with 42.3, four values out of 25, (or 4/25 = 0.16) are associated 

with 42.4, and so on, and one value out of 25, (or 1/25 = 0.04) is associated with 

43.2.  With these associations, we can proceed to construct the histogram, as 

shown in Figure 3.6. 

 

Figure 3.6.   Histogram for data in Table 3.4 

Histograms have several shortcomings that warrant our attention.  Some detail is 

lost by assigning individual values the value of their class marker.  Additionally, 

the number of class intervals, as well as the determination of the class markers, 

may be arbitrary.  Consequently, the analysis and the interpretation of the 

histograms may differ if constructed by different analysts. 

 

 
dot plot 

When the number of observations is small, plotting these values in a 

histogram may be unwarranted.  Thus, in Example 3.3, we may plot 

the data in a so-called dot plot that preserves the recorded value, as 

shown in Figure 3.7.  The choice between a dot plot and a 

histogram, however, depends on the subject matter, management 

preference, and historical and traditional practice. 



50 Applying Statistics 
 

       

 

 
Figure 3.7.   Dot plot for data in Table 3.4 

3.8  Suggestions for constructing histograms 

The rules for constructing a histogram are essentially the same as the rules for 

constructing a bar chart: 

1. The number of bars in the histogram should be between 5 and 20.  Having 

too many bars clutters the chart, while having too few bars may lessen the 

value of the histogram. 

2. Be sure that every data point belongs to one and only one class interval. 

3. Class intervals should have the same width, unless other considerations take 

precedence. 

4. One axis (typically the left) shows the relative frequency.  If both frequency 

and relative frequency are shown, they are reported using different vertical 

(y) axes. 

5. Bars should be drawn without spaces between them.  

Excel may be used to produce a histogram in several ways, and we present one 

of them.  We start by building a column chart, and instead of group labels, we 

use class markers.  Class markers, however, must be entered as alphanumeric 

characters rather than pure numeric.  This can be accomplished in Excel by 

placing an apostrophe before each class’s numeric value, such as ′42.5.  Then 

follow these steps: 

1. List the class markers in alphanumeric form in one column.  Thus, in the 

data from Table 3.4, where we have 10 classes, enter the values in cells 

A1..A10 as ′42.3, ′42.4, …′43.2. 
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2. List the corresponding fraction (proportion) of the values for each class next 

to their class marker in the adjacent columns (in this example, in cells 

B1..B10).  Since we have 25 values, the fraction entered in cell B1 is 

2/25 = 0.08.  

3. Select the cells that include the class markers and their associated values.  

In this example, select cells A1..C10. 

4. Click on the Chart icon. 

5. Click on Column. 

6. Click on 2D Column.  

7. Click on Finish to display a bar chart. 

Since a histogram usually contains no gaps between the class markers, we 

continue: 

8. Right-click any column on the bar chart. 

9. Click on Format data series. 

10. Click on Gap width. 

11. Move the slider to No gap. 

12. Embellish the chart by selecting frame, color, font, shading, and other 

options as desired.  

3.9  The box plot 

box plot A box plot is a graphical display designed to represent a set of data 

in a relatively small amount of space and yet give a picture of the 

extent of the dataset, as well as some of its distributional features.  

There are many versions of the box plot, with various levels of 

detail.   

The five fundamental quantities that determine a box plot are obtained as shown 

below.  These fundamental quantities are illustrated using the water impurity 

data in Table 3.4. 

minimum The minimum (min) is the smallest value in the dataset. 

 The minimum of the 25 water impurities values is 42.31. 

maximum The maximum (max) is the largest value in the dataset. 

 The maximum of the 25 water impurities values is 43.17. 
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Median 

 second 

quartile  

The median (second quartile, 50
th

 percentile) is the middle value 

after the values are arranged in ascending order of magnitude.    

The median divides the dataset into two equal-sized groups.  As 

defined in Section 2.3: 

 

 The median is the middle value if the number of values is odd. 

 The median is the average of the two middle values if the 

number of values is even. 

The median of the 25 water impurities values is 42.62. 

lower 

quartile 

(LQ) 

The lower quartile (LQ) is the median of the group containing the 

values below the dataset’s median.   

For the 25 water impurities values, LQ = (42.45 + 42.48) / 2  

= 42.465.   

For this dataset, the lower quartile equals the 25
th

 percentile or first quartile (see 

Section 2.6).  In general, the lower quartile may only approximate the 25
th

 

percentile of the dataset.   

 From the definition of percentile in Section 2.6, it can be shown that the 

lower quartile and 25
th

 percentile are always equal if the number of 

points in the dataset n = 4k + 1, for some integer k.  Table 3.4 satisfies 

this condition because 25 = (4)(6) + 1. 

upper 

quartile 

(UQ) 

The upper quartile (UQ) is the median of the group containing the 

values above the dataset’s median.   

 

For the 25 water impurities values, UQ = (42.83 + 42.83) / 2  

= 42.83. 

In parallel with the lower quartile, the upper quartile is equal to the 75
th

 

percentile, or third quartile, for this dataset.  Also, in general, the upper quartile 

may only approximate the 75
th

 percentile of the dataset. 

Figure 3.8 illustrates a box plot summarizing the water impurity data in 

Table 3.4. 
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Figure 3.8.   Box plot of 25 water impurity measurements  

box 

 

whiskers 

The lower and upper quartiles in Figure 3.8 are enclosed in a box.  

That box also shows the location of the median by a vertical line.  

The two protruding lines outside the box are called whiskers.  In a 

simple version of a box plot, one whisker is drawn as a line from 

the minimum to the lower quartile, and the second whisker is 

drawn as a line from the upper quartile to the maximum.     

box and 

whisker 
A box plot is sometimes called a box and whisker plot. Box plots 

can also be erected vertically with the whiskers extending upward 

and downward. 

Box plots are of special value for a visual comparison of two or more sets of 

data with respect to the same variable.  

Example 3.4.   Shipper and receiver reported weights.   Table 3.5 lists 

shipping weights of uranium hexafluoride (UF6) cylinders reported by both 

shipper and receiver for 10 shipments and their weight differences.  This table 

also presents selected statistics.  Note, however, that the last four statistics in the 

table are not relevant to the immediate discussion but will be introduced and 

discussed later in the chapter. 
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Table 3.5.   Shipper’s and receiver’s weights of UF6 cylinders, in 
kilograms 

Shipment          Shipper    Receiver Difference 

  1 1471.22 1468.12 3.10 

  2 1470.98 1469.52 1.46 

  3 1470.82 1469.22 1.60 

  4 1470.46 1469.26 1.20 

  5 1469.42 1465.96 3.46 

  6 1468.98 1470.80 -1.82 

  7 1469.10 1467.89 1.21 

  8 1470.22 1472.28 -2.06 

  9 1470.86 1469.02 1.84 

10 1470.38 1470.16 0.22 

Minimum 1468.98 1465.96 -2.06 

Lower quartile 1469.42 1468.12 0.22 

Median:  50
th

 percentile 1470.42 1469.24 1.34 

Upper quartile 1470.86 1470.16 1.84 

Maximum 1471.22 1472.28 3.46 

Range 2.24 6.32 5.52 

IQR 1.44 2.04 1.62 

Lower fence 1467.26 1465.06 -2.21 

Upper fence 1473.02 1473.22 4.27 

 

Figure 3.9 shows box plots of shipper’s and receiver’s data.  It is easy to see 

from that figure that the receiver is reporting fewer kilograms of material than 

the shipper is claiming.  In addition, the receiver’s values are more variable than 

the shipper’s, as reflected in the receiver’s much larger range.  The box plot 

clearly conveys these impressions.   

 

 

Figure 3.9.   Box plots of shipper’s and receiver’s weights 
of UF6 cylinders 
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Box plots or, for that matter, any plot or analysis must be constructed with 

careful attention to the content.  For example, in Table 3.5, it is useful to 

examine the differences between the shipper and receiver entries.  These 

differences, reported in the last column of Table 3.5, are plotted as a box plot in 

Figure 3.10.  That figure shows that, in a majority of the cases, the receiver 

claims to have received less than the shipper claims to have shipped.  However, 

if we wish to discover whether these differences are related to other factors, 

further statistical investigation may be warranted.  For example, a regression 

analysis (Chapter 18) may be run to investigate whether these differences are 

related to the size of the shipment, the shipping date, or the distance the 

shipment traveled. 

 

Figure 3.10.   Box plot of shipper-receiver differences 

If two or more plot boxes are shown below (or next) to each other, the thickness 

(width) of the boxes may be drawn proportionally to reflect different sample 

sizes. 

Embellishments of the box and whiskers in a box plot are often added to make 

the presentation more informative.  Such embellishments require additional 

definitions.  These definitions are associated with various measures of the 

variability of the data. 

interquartile 

range (IQR) 
The interquartile range (IQR) is the length of the box, which is 

the difference between the upper and the lower quartiles.  For 

Table 3.4, IQR is calculated as 42.83 – 42.465 = 0.365.  For the 

Shipper, Receiver, and Difference columns of Table 3.5, IQR 

values are calculated as  

1470.86 - 1469.42  = 1.44, 1470.16 – 1468.16 = 2.04,                 

and 1.84 – 0.22 = 1.62, respectively.   

fence The fences are defined, relative to the box plot, as follows: 
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lower fence The lower fence is equal to LQ – 1.5(IQR).  For Table 3.4, the 

lower fence is calculated as LF = 2.465 – 1.5(0.365) = 41.918. 

For Table 3.5, the three lower fences are1467.26, 1465.06, and     

-2.21. 

upper fence The upper fence is equal to UQ + 1.5(IQR).  For Table 3.4, the 

upper fence is calculated as UF = 42.83 + 1.5(0.365) = 43.378.  

For Table 3.5, the three lower fences are 1473.02, 1473.22, and 

4.27. 

outlier An outlier is defined in the context of the box plot as a data value 

that is smaller than the lower fence or larger than the upper fence.  

Outliers are marked with a special symbol, such as a circle.  

Chapter 26 gives other definitions of outliers, and the 

methodology for their identification. 

 Box plots may be embellished in various ways. Embellished box plots typically 

have different whisker construction.  For example, one such embellished 

construction draws one whisker from the left side of the box to the smallest 

value that is not an outlier; the second whisker is drawn from the right side of 

the box to the largest value that is not an outlier.   

Owing to its particular power as a data analysis tool, the box plot can be 

embellished even further.  See Chambers, et al. (1983), p. 21, for an extended 

discussion of the box plot. 

3.10  Suggestions for constructing box plots 

The rules for constructing a box plot vary according to the level of detail that the 

data deserve: 

1. Calculate the minimum, maximum, median, and lower and upper quartiles 

from the data. 

2. Draw a rectangular box, with vertical ends at the lower and upper quartiles. 

3. Draw a vertical line inside the box at the median and parallel to the hinges. 

4. Calculate the IQR, the difference between the upper and lower quartiles. 

5. Calculate the upper fence as the upper quartile plus 1.5(IQR) and the lower 

fence as the lower quartile less 1.5(IQR). 

6. Draw a line (whisker) from the upper quartile to the maximum and, 

similarly, from the lower quartile to the minimum.   
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 Note that there are competing versions of the box plot e.g. a vertical 

oriented box, rather than a horizontal box used in this chapter.  Should 

your report contain a box plot, include some explanation of its features. 

7. More than one box plot may be drawn on the same chart. 

8. Different box plots on the same chart may have different thicknesses 

(widths) to reflect another variable, such as count or volume. 

Finally, be aware that Excel does not offer a direct routine for plotting box plots.  

In contrast, box plotting is available in many, if not most, statistical packages.  

3.11  The stem-and-leaf display 

Histograms display the structure of the data by grouping them into intervals.  

Such groupings may lead to a loss of detail.  For example, in Table 3.4, the 

water impurities of 42.67 and 42.72 are both assigned the value of 42.7.  Loss of 

detail may be detrimental to a sensitive analysis. 

stem-and-

leaf 

display 

A stem-and-leaf display tends to overcome this obstacle by 

providing a short-hand notation that shows almost all the details of 

the data.  The following simplified example explains this display. 

Example 3.5.   Stem-and-leaf display.   Consider the numbers 5231, 5234, 

5234, and 5236.  Their common leading digits 523 are called the stem.  Each 

trailing digit (1, 4, 4, and 6) is called a leaf.  The stem-and-leaf notation for these 

four numbers is 523|1446.  Similarly, the stem-and-leaf notation 20|13477888 

represents the eight numbers 201, 203, 204, 207, 207, 208, 208, and 208. 

In this notation, the stem is written to the left of the vertical bar.  Most datasets 

have more than one stem, and those stems are written in ascending order.  The 

leaves, written to the right of the vertical line, are also written in ascending 

order.  

In a similar manner, Figure 3.11 lists the data from Table 3.4 in a stem-and-leaf 

display.  Note that not only are all the data retrievable, but the stacking of the 

leaves generates a histogram that can be easily read by turning the page 90 

degrees. 
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Stem | Leaf 

     42.3|12 

     42.4|025589 

     42.5|09 

     42.6|112357 

     42.7|2 

     42.8|2335 

     42.9|137 

     43.0| 

     43.1|7 

Figure 3.11.   Stem-and-leaf display for data in Table 3.4 

 

Figure 3.12 is an embellished display that adds two features.  The first feature 

omits the decimal point in the stem and replaces it with two equivalent 

statements.  The first statement, ―Unit = 0.01,‖ indicates that each leaf is 

equivalent to a multiple of 0.01.  The second statement indicates, in a simpler 

manner, that the first leaf of the first stem is 42.31 and is represented by 4231.  

Clearly, with either of these two statements, the display is fully defined. 

                  Depth    Stem | Leaf 

      2     423|12 

      8     424|025589 

    10     425|09 

    (6)     426|112357 

     9      427|2 

     8     428|2335 

     4       429|137  

     1     430| 

                    1              431|7 

Unit = 0.01 423|1 represents 42.31  

Figure 3.12.   Embellished stem-and-leaf display  

 

 

 
depth 

A third feature of the embellished Figure 3.12 is that it counts and 

accumulates the number of leaves in each row separately for each 

side of the distribution about the median.  The counts in the 

accumulated column characterize the depth (i.e., the total number 

of leaves in the rows counting from either end of the display).  

Thus, there are two leaves in the first row and six in the second for 

an accumulated total depth of 6 + 2 = 8.  The row that includes the 

median shows the frequency (in parentheses) of that row alone, 

rather than the accumulated count.  Also note that the total number 

of values in the dataset is equal to the sum of the counts for the 

median row, the row above the median, and the row below the 

median.  For Figure 3.11, that count is 6 + 9 + 10 = 25.    
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The value of the stem-and-leaf display may not be evident for a small dataset 

such as is found in Table 3.4.  The value of this display is more obvious when 

dealing with a large dataset.  To demonstrate the display, we used combined 

data from Bowen and Bennett (1988), p. 13 of weights (in kilograms) of 150 

uranium ingots.   The raw data are not reproduced here, but the stem-and-leaf 

display is constructed and shown in Figure 3.13.  Although not required for the 

construction of a stem-and leaf display, other statistics are presented at the 

bottom of Figure 3.13 to allow the construction of a box plot for the same data. 

Depth Unit = 0.1 418|5 represents 418.5 

1 418|5 

3 419|27 

4 420|4 

11 421|0237889 

15 422|1445 

28 423|1122333566679 

47 424|0224455667888889999 

67 425|01122233444577778999 

(18) 426|011223333456667889 

65 427|0122333333445578899999 

43 428|0000022334568889 

7 429|012345677789 

15 430|00359 

10 431|012367 

4 432|234 

1 433| 

1 434|2 

Minimum 418.5 

Maximum 434.2 

Lower quartile 424.7 

Median 426.3 

Upper quartile 428.2 

IQR 3.5 

Lower fence 419.45 

Upper fence 433.45 

Figure 3.13.   Stem-and-leaf display for 150 uranium ingot weights 

As Figure 3.13 illustrates, the raw data can be completely recaptured from the 

stem-and-leaf display.  That display also gives a histogram, although the class 

markers are restricted to the leading digits. 
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An interesting feature of the stem-and-leaf display is that when turned on its 

side, the empirical distribution of the data may be seen.In Figure 3.12, that 

distribution appears as a mound-shaped distribution. 

There is much more to the stem-and-leaf display than presented here.  For 

further discussion of stem-and-leaf displays and various embellishments, see 

Tukey (1977, p. 8 ) or Velleman and Hoaglin (1981).   

3.12  Suggestions for constructing a stem-and-leaf 
display 

As for the box plot, the rules and the embellishments of the stem-and-leaf 

display vary according to the taste and the sophistication of the developer and 

the audience.  The basic rules are as follows: 

1. Use a stem-and-leaf display for a reasonably large database.  A display for a 

small database may not yield additional information. 

2. Arrange the data in ascending order. 

3. Determine the structure of the stems and the leaves. 

4. Arrange the stems in ascending order from top to bottom and the leaves in 

ascending order from left to right. 

5. Count the leaves for each stem. 

6. Determine the number of leaves in the row that includes the median.  Place 

this number in parentheses to the left of that stem. 

7. For each stem below the median, record, to the left of the stem, the 

accumulated number of leaves at and below that stem.  

8. For each stem above the median, record, to the left of the stem, the 

accumulated number of leaves at and above that stem.  

9. If the decimal place is omitted, indicate how the leaves and the stem 

represent the data. 

 



 

 

4  
Basics of probability  

4.1  What to look for in Chapter 4  

This chapter introduces probability, which is the foundation for the 

statistical topics covered in the remainder of this book.  These topics 

concepts and topics include:    

 probability,  § 4.2 

 experiment,  § 4.3 

 outcome,  § 4.3 

 event,  § 4.3 

 sample space,  § 4.3 

 Venn diagram,  § 4.4 

 complementary events,  § 4.4 

 mutually exclusive events,  § 4.4 

 union of events,  § 4.4 

 intersection of events,  § 4.4 

 basic rules of probability,  § 4.5 

 marginal probability and joint probability,  § 4.6 

 conditional probability,  § 4.7 

 independent events,  § 4.7 

 Bayes’ theorem,  § 4.8 

 probability quantification,  § 4.9 
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4.2  The concept of probability 

Many phenomena and events in the real world are uncertain.  For example, we 

may be uncertain whether it will rain tomorrow, who will be elected the next 

president, and whether a nuclear power plant will suffer a core damage accident 

in its lifetime.  All these situations have elements of uncertainty, some larger 

than others.  Uncertainty about phenomena or event outcomes is often described 

by such terms such as ―unlikely,‖ ―possible,‖ ―likely,‖ and ―probable.‖  These 

expressions are often preceded by adverbs such as ―very,‖ ―highly,‖ and 

―extremely.‖   

probability Probability may be characterized as a numerical measure of 

uncertainty.  The concept of probability is illustrated by the 

following example. 

All nuclear power plants have emergency diesel generators (EDGs) that are 

designed to provide power in the event of a loss of offsite power.  A key 

parameter in the risk assessment of such an event is the probability Pstart that an 

EDG will start when activated.  Because this book is about the application of 

statistics to problems in nuclear regulation rather than a theoretical treatise on 

statistics, we will consider Pstart for a specific EDG operating in a specific 

environment at a specific plant.  This means that Pstart, like all probabilities, 

depends on the specific conditions for which it is defined.  While these conditions 

may vary from one EDG activation to another, we assume that they are 

sufficiently constant so that the operating conditions of the EDG are identical for 

each activation.   

In common English usage, probability is synonymous with chance or likelihood.  

In this book, probability will always mean a numerical measure of the uncertainty 

associated with the outcome of an uncertain or unpredictable event.  Thus, Pstart is 

a number that is a measure of the chance that the specific EDG will start when 

activated.   

Although it may not be immediately apparent, this definition of the probability 

Pstart is directly analogous to other characteristics of the specific EDG such as its 

weight, w.  Here, w is a measure of the force of attraction between the mass of the 

EDG and the Earth, and whose numerical value must be determined by 

measurement.  At this point, one might object that the analogy between weight 

and probability breaks down because a single measurement is sufficient to 

determine a value for w, while Pstart can only be estimated.  However, a single 

measurement can never determine the exact value of w.  For example, if a scale 

accurate to a kilogram is used to weigh the EDG, it is plausible that repeated 

measurements (weightings) may all yield the same value, w0, for w.  In such a 

situation, we might assert that w = w0, but this would not be correct.  In fact, all 

that could be claimed is that w0 - 0.5 ≤ w ≤ w0 + 0.5.  If a more accurate scale is 

used (e.g., one accurate to a gram or a milligram), then no two measurements are 

likely to be the same.  Thus, regardless of the accuracy of the scale, no single 
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measurement can determine the exact value of w.  (In practice, only one 

measurement may be necessary if it is sufficiently accurate for the application.  

However, the exact value of w will not be known.)  

A continuation of the above discussion serves to clarify the analogy between 

weight and probability.  To obtain a value for w with less than half a kilogram 

uncertainty, a number of measurements might be made and the average used.  

However, this average would still be an approximation for w and not its exact 

value.  Thus, no matter how accurate a scale is, or how many measurements are 

made, it is impossible to obtain an exact value for w.  This is the same situation as 

determining an exact value for Pstart.  No matter how many measurements are 

made, it is impossible to obtain an exact value for Pstart; it can only be estimated. 

It is important to distinguish between the definition of Pstart and a determination 

of its value.  In practice, probabilities are quantified by using some combination 

of modeling, data, and judgment.  The result can be an exact number if it is based 

on a completely specified model or an approximation if it is based on data or 

judgment.  Section 4.9 will discuss approaches to quantifying probability. 

 

4.3  Sample spaces and events 

 
experiment 

 

 
outcome 

 

 

 
sample space 

An activity or investigation for which the results are uncertain is 

called an experiment.  Examples of experiments are tossing a 

coin, rolling a die, counting failures over time, and measuring 

time to failure of an electric bulb.  The result of one execution of 

the experiment is referred to as an outcome.  Repetitions of a 

defined experiment would not be expected to produce the same 

outcomes due to the uncertainty associated with the process.  The 

set of all possible outcomes of an experiment is defined as the 

sample space.  We denote a sample space by S. 

Example 4.1.   Tossing a coin.   In the experiment of a coin tossing, we have 

two outcomes:  heads (H) and tails (T).  The sample space S = {H, T} consists of 

these two outcomes. 

Example 4.2.   Rolling a die.   In rolling a die, the outcomes are the six faces 

of the die.  The sample space S = {1, 2, 3, 4, 5, 6} is the set of the six faces.  

Example 4.3.   Rolling a die (continued).   Let the event E denote the roll 

of an even number.  Then E = {2, 4, 6} consists of these three outcomes. 
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event 

Sample spaces can contain discrete points (such as pass, fail) or 

points in a continuum (such as measurement of time to failure).  

An event E is a specified set of possible outcomes in a sample 

space S and is written as E ⊂ S, where the symbol ⊂ denotes 

―subset of.‖   

empty set 

null set 

A special set is the set without any elements.  It is called the 

empty set or null set and is denoted by Ø.
  

elementary 

event 

compound 

event 

If an event cannot be decomposed into smaller parts, we call it an 

elementary event.  Otherwise, we call it a compound event.  All 

of the outcomes in a sample space such as the outcomes 

described in Example 4.1 and 4.2 are elementary events.  Most 

events of interest in practical situations are compound events, 

formed by some composition of two or more elementary events, 

such as receiving an A in math and a B in chemistry. 

4.4  Basic set theory  

 

 

 
 

sample points 

universal set 

A systematic development of probability sometimes uses the 

mathematical theory of sets.  Composition of events can occur 

through the union, intersection, or complement of events, or 

through some combination of these.  The outcomes in a sample 

space are also called sample points.  In the language of set 

theory, a sample space is called the universal set. 

union For two events, E1 and E2, in a sample space S, the union of E1 

and E2, denoted by E1 E2, is defined to be the event containing 

all sample points in E1 or E2 or both.  Thus, the union is the event 

that either E1 or E2 or both E1 and E2 occur. 

intersection For two events, E1 and E2, in a sample space S, the intersection of 

E1 and E2, denoted by E1 E2, is defined to be the event 

containing all sample points that are in both E1 and E2.  Thus, the 

intersection is the event that both E1 and E2 occur. 

 The intersection symbol  is often omitted (i.e., A B is written as AB). 
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complement The complement of an event E in a sample space S is the set of 

all sample points in S that are not in E.  The complement of E is 

denoted in this book by E
c
 but is often denoted by the symbol Ē 

(read E-bar) or E′ (read E-prime).  

 

mutually 

exclusive 

 

disjoint events 

disjoint 

Two events, E1 and E2, in a sample space S are said to be 

mutually exclusive if the event E1 E2 contains no outcomes in 

the sample space S.  That is, the intersection of the two events     

is Ø.  Mutually exclusive events are also referred to as disjoint 

events.  Three or more events are said to be mutually exclusive, 

or disjoint, if each pair of events is mutually exclusive.  In other 

words, no two events can occur together. 

Venn 

diagram 
Figure 4.1 shows a schematic picture, called a Venn diagram, of 

10 outcomes and 3 events.  In this example, the event E1 contains 

three outcomes, event E2 contains five outcomes, and event E3 

contains three outcomes.  The intersection of E1 and E2 contains 

one point, and E3 is disjoint from E1 and from E2. 

 

E1
E2

E3

 

Figure 4.1.   Venn diagram showing 10 outcomes and 3 events 

Example 4.4.   Three Sets.   Consider the sample space illustrated in     

Figure 4.2.  The three circles, denoted by A, B, and C, correspond to three events.  

The complement of their union, denoted by VIII, is also an event.  As shown, the 

three circles and their complement can be decomposed into eight mutually 

exclusive events denoted by I, II, III, IV, V, VI, VII, and VIII.      
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Figure 4.2.   Decomposition of three sets 

The relationships of Table 4.1 are shown below. 

Table 4.1.   List of sets in Figure 4.2 

 

 

c

c

c

A I II V VI

B II III IV V

C IV V VI VII

A III IV VII VIII

B I VI VII VIII

C I II III VIII  

c c

c

c c

c

c

c c

c c c

I AB C

II ABC

III A BC

IV A BC

V ABC

VI AB C

VII A B C

VIII A B C  

 
Example 4.5.   Valve failures.   Suppose that 10 valves in a nuclear plant are 

actuated.  Let Ai denote the event that valve i operates successfully and Fi denote 

the event that valve i fails, i = 1, 2, …, 10.  Then the sample space is S = {A1, 

F1, ..., A10, F10}. 

 

Example 4.6.   Time to failure.   Suppose that 10 pumps in a nuclear plant 

are required to operate continuously over a 1-year period (8,760 hours).  If pump 

i, i = 1, 2, …, 10 operates successfully for 1 year, denote this event by Bi; if 

pump i fails after ti hours, denote this event by Fi (ti) for 0 < ti ≤ 8760 hours.  

The sample space for this example is S = {B1, F1 (t1), …, B10, F10 (t10)}.   

II 

C 

B 
A 

I III 

IV 
V 

VI 

VII 

VIII 
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Set operations can be combined in many ways.  Table 4.2 lists the most common 

combinations and their properties. 

Table 4.2.   Properties of set operations  

Complement laws 

( )

c

c c

A A S

A A  
CA A  

Commutative laws A B B A

A B B A  

DeMorgan’s laws ( )

( )

c c c

c c c

A B A B

A B A B  

Associative laws ( ) ( )

( ) ( )

A B C A B C

A B C A B C
 

Distributive laws ( ) ( ) ( )

( ) ( ) ( )

A B C A B A C

A B C A B A C
 

Null set properties A A

A  

Universal set properties A S S  

A S A  

CA A S   

 

4.5  Basic rules and principles of probability  

 

 

 

 

probability 

model 

In Section 4.2, probability is characterized as a numerical 

measure of the uncertainty associated with the outcome of an 

uncertain event.  Although the events we are concerned with all 

involve physical objects and phenomena, we will represent and 

analyze them using a probability model.  This is completely 

analogous to the use of mathematical constructs such as 

Newton’s laws and Einstein’s theory of relativity to describe the 

behavior of physical objects and phenomena in the real world.    

probability 

function 

axioms of 

probability 

A probability model consists of a sample space, S, together with a 

probability function associated with each event E in S, written 

Pr{E}, such that the following conditions, called the axioms of 

probability, apply: 
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Axiom 1.  0 ≤ Pr{E} ≤ 1 for every E in S. (4.1) 

Axiom 2.  Pr{E1 E2 ∙∙∙} = Pr{E1 } + Pr{E2 } +  ∙∙∙   for any set     

of disjoint events {E1, E2, ∙∙∙ } in S. 

(4.2) 

Axiom 3.  Pr{S} = 1. 

 

(4.3) 

probability 

function 
A probability function specifies how the probability is 

distributed over various subsets E of a sample space S.  The 

axioms of probability imply a number of rules of probability 

that provide additional properties of a probability function. 

An important special case of Equation (4.2) occurs when the union of the disjoint 

events E1, E2, is the entire sample space S (i.e., S = E1 E2  ∙∙∙ for any set of 

disjoint events {E1,  E2, ∙∙∙} in S).  It follows from Equations (4.2) and (4.3) that: 

Pr{E1} + Pr{E2} +  ∙∙∙   = 1 (4.4) 

partition In such a case, the set {E1, E2, ∙∙∙} is called a partition of the 

sample space. 

If E is any event in a sample space S and {S1, S2, ∙∙∙} is a partition of S, then Pr{E} 

can be written as:  

Pr{E} = Pr{E  S1} + Pr{E  S2} +  ∙∙∙ (4.5) 

Equation (4.5) is based on a generalization of the second distributive law in 

Table 4.2 whereby:  

E  (S1  S2  ∙∙∙ ) = (E  S1)  (E  S2)  ∙∙∙ (4.6) 

Because {S1, S2, ∙∙∙} is a partition of S, the left side of Equation (4.6) can be 

written as:  

E  (S1  S2  ∙∙∙ ) = E  S = E (4.7) 

Because the sets on the right side of Equation (4.6) are disjoint, Equation (4.5) 

follows from the application of Equation (4.2) to Equation (4.6). 

empty set  

null set 

The probability of an impossible event (the empty set or null set, 

denoted by ) is zero.  Symbolically,  Pr{ } = 0.  This result 

follows from Equation (4.2) because E  = E for any event in S. 
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The probability of the complement of event E is given by: 

Pr{ E 
c
 } = 1 – Pr{E}           (4.8) 

Equation (4.8) follows from Equations (4.2) and (4.3) and the relation  

E E 
c
 = S for any event E.  

In general, the probability of the union of any two events is given by: 

1 2 1 2 1 2{ } { } { } { }Pr E E Pr E Pr E Pr E E
 (4.9) 

A visual proof of Equation (4.9) follows from consideration of sets A and B in 

Figure 4.2.  From the figure, the probability of the intersection of A and B is 

double-counted by summing their probabilities and must therefore be subtracted 

to get the probability of their union.   

If E1 and E2 are mutually exclusive, then:  

1 2

1 2 1 2

{ } { } 0,  and

{ } { } { }

Pr E E Pr

Pr E E Pr E Pr E
 

(4.10) 

addition rule 

for 

probabilities 

The second relation in Equation (4.10) is the second axiom of 

probability for two events.  Equation (4.2) is sometimes referred 

to as the addition rule for probabilities. 

For three events, 

1 2 3 1 2 3

1 2 1 3 2 3

1 2 3

{ } { } { } { }

{ } { } { }

{ }

Pr E E E Pr E Pr E Pr E

Pr E E Pr E E Pr E E

Pr E E E

 
(4.11) 

 

 

inclusion-

exclusion 

principle 

 

This result follows from the decomposition in Figure 4.2 in a 

similar manner to the derivation of Equation (4.9).  This rule 

is also referred to as the inclusion-exclusion principle and can 

be generalized to n events.  It is widely used in probabilistic 

risk assessment (PRA) to calculate the probability of an ―or‖ 

gate (a union of events) in a fault tree used for accident 

sequence quantification (NRC (2003), p. A-3). 
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rare event 

approximation 

The inclusion-exclusion principle also provides useful upper 

and lower bounds on the probability of the union of n events 

that are not mutually exclusive.  One such upper bound, 

referred to as the rare event approximation, is: 

Pr{E1  E2  ...  En} ≤  Pr{E1} + 

 Pr{E2} + ... + Pr{En} 
(4.12) 

 

If the n events are mutually exclusive, the error in the rare event approximation is 

zero.  Otherwise, the rare event approximation should be used only when the 

probabilities of the n events are all very small (NRC, 2003, p. A-3).   

An approximation of the error in the rare event approximation is                           
 

[n(n-1)/2] max [Pr{Ei}], which is valid regardless of the relationships between 

the events (NRC (2003), p. A-3).  This approximation is frequently used in 

accident sequence quantification. 

4.6  Marginal and joint probabilities  

 

marginal 

probability 

The probability that an event will occur, regardless of whether 

other events occur, is called the marginal probability of that 

event.  For example, the probability Pr{R} of a car jumping the 

red light at a given time at a given intersection, regardless of 

whether a pedestrian is in the crosswalk, is a marginal 

probability.  Similarly, the probability Pr{P} that a pedestrian is 

in the crosswalk at a given time, regardless of the traffic, is also 

a marginal probability. 

 

 

 

 

 
joint event 

  

joint probability 

On the other hand, many situations arise where the outcomes 

are defined by two or more events occurring simultaneously.  

For example, a catastrophic event takes place when, at a given 

time and place, a car runs a red light and a pedestrian is in the 

crosswalk. The simultaneous occurrence of two or more events 

(the intersection of events) is called a joint event, and its 

probability is called a joint probability.  Using the notation of 

Section 4.5, the joint probability of both events E1 and E2 

occurring simultaneously is written as Pr{E1  E2} or 

Pr{E1 E2}. 
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statistically 

independent 
events  

A very important special case of a joint event is that of 

statistical independence.  Two events E1 and E2 are said to be 

statistically independent events if the joint probability of  E1 

and E2 equals the product of their marginal probabilities of  E1 

and E2.  Mathematically, 

    Pr{E1  E2} = (Pr{E1 })(Pr{E2}) (4.13) 

Example 4.7.   Rolling two dice.   A die is said to be fair if the probability of 

any face coming up is the same for each face of the die.  When rolling two fair 

dice, there are 36 outcomes, as listed in Table 4.3.  Because each die has six 

faces, it follows from Axioms 2 and 3 that the probability of any face is equal to 

1/6.  If it is further assumed that the rolls are physically independent (i.e., the 

separate outcomes of the two rolls do not influence each other), then the separate 

outcomes are statistically independent.  It follows from Equation (4.11) that the 

probability of each outcome listed below is equal to 1/36.  (As a check, note that 

the sum of the probabilities of all the outcomes is 36(1/36) = 1.)  Table 4.4 lists 

the probabilities of the 36 outcomes in Table 4.3.   

Table 4.3.   Sample space of rolling two dice   

    

Die 2 

  

Die 1 1 2 3 4 5 6 

1 {1,1} {1,2} {1,3} {1,4} {1,5} {1,6} 

2 {2,1} {2,2} {2,3} {2,4} {2,5} {2,6} 

3 {3,1} {3,2} {3,3} {3,4} {3,5} {3,6} 

4 {4,1} {4,2} {4,3} {4,4} {4,5} {4,6} 

5 {5,1} {5,2} {5,3} {5,4} {5,5} {5,6} 

6 {6,1} {6,2} {6,3} {6,4} {6,5} {6,6} 

 

The outcomes in Example 4.7 can be characterized in terms of two sample 

spaces, one describing the outcome of rolling the first die (S1) and the other 

describing the outcome of rolling the second die (S2).  The sample space for the 

joint outcome can be written as T = (S1, S2), where T consists of the 36 sample 

points listed in Table 4.3.  Table 4.4 gives the probability distribution of T, along 

with the marginal probability distributions for each of the two dice.  For each 

outcome of Die 1 (corresponding to a row of Table 4.4), the marginal probability 

is the sum of the joint probabilities for that outcome (i.e., the sum of the 
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probabilities over all possible outcomes of Die 2 [corresponding to the columns 

of the table]).  The marginal probabilities for Die 1 are listed in the last column in 

the table.  Note that the marginal probability distribution for Die 1 is identical to 

the probability distribution for Die 1 (i.e., the probability distribution of its 

sample space, S1).  Similarly, the marginal probabilities for Die 2 are the sums 

over the rows of the table and are listed in the last row of the table.   

Table 4.4.   Joint and marginal probabilities for two fair dice 

 
Die 2 

 

Die 1 1 2 3 4 5 6 
Marginal 

Probability 

1 1/36 1/36 1/36 1/36 1/36 1/36 1/6 

2 1/36 1/36 1/36 1/36 1/36 1/36 1/6 

3 1/36 1/36 1/36 1/36 1/36 1/36 1/6 

4 1/36 1/36 1/36 1/36 1/36 1/36 1/6 

5 1/36 1/36 1/36 1/36 1/36 1/36 1/6 

6 1/36 1/36 1/36 1/36 1/36 1/36 1/6 

Marginal 

Probability 
1/6 1/6 1/6 1/6 1/6 1/6 1 

Example 4.7 illustrates the case where S1 and S2 are independent sample spaces.  

The joint probabilities are then probabilities of statistically independent events 

and, from Equation (4.10), are equal to the products of the marginal probabilities.  

However, S1 and S2 are not always independent.  In such cases, the joint 

probabilities are probabilities of dependent events.  This means that the 

probability of an outcome of the sample space S2 depends on the outcome of the 

sample space S1.  This is illustrated by the following example. 

Example 4.8.   Weather on successive days.   Weather tends to be 

persistent.  This means that a day is more likely to be sunny than cloudy or rainy 

if the previous day has been sunny.  Consider the possible weather combinations 

on two successive days at some location.  Let Di = {Si, Ci, Ri} be the sample space 

of weather on either the first (i = 1) or second (i = 2) day, where the outcomes are 

sunny (Si), cloudy (Ci), or rainy (Ri ).  Suppose that Table 4.5 gives the joint and 

marginal probabilities for D1 and D2. 
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Table 4.5.   Joint and marginal probabilities for weather on 
successive days 

                       Day 2 
 

Marginal 

probability 

(Day 1) Day 1 Sunny (S2) Cloudy (C2) Rainy (R2) 

Sunny (S1) 0.40 0.05 0.05 0.50 

Cloudy (C1) 0.05 0.15 0.10 0.30 

Rainy (R1) 0.05 0.10 0.05 0.20 

Marginal 

probability  

(Day 2) 
0.50 0.30 0.20 1.00 

 
 

 

 

 

 

unconditional 

probability 

As in Example 4.7, the marginal probabilities for each of Days 1 

and 2 are the sums of the joint probabilities over the columns and 

rows, respectively, of Table 4.5.  Note that the probability of 

either Day 1 or Day 2 being sunny, cloudy, or rainy is 0.5, 0.3, or 

0.2, respectively.  This example illustrates the general result that 

a marginal probability is the unconditional probability of an 

event.  As the term indicates, the unconditional probability of an 

event E is simply the probability of E, calculated without 

knowing whether other events related to E may or may not have 

occurred.   

The probability, marginal probability, and unconditional probability of an event 

always have the same value.  

4.7  Conditional probability  

 
 

conditional 

probability 

 

 

 

Two events E1 and E2 are often related in such a way that the 

probability of occurrence of one depends on whether the other 

has occurred.  The conditional probability of one event, given 

that the other has occurred, is equal to the joint probability of the 

two events divided by the marginal or unconditional probability 

of the given event.  Thus, the conditional probability of event E2, 

given that event E1 has occurred, denoted Pr{E2|E1}, is defined 

as:   
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1 2
2 1 1

1

{ }
{ | }  for { } 0.

{ ]

Pr E E
Pr E E Pr E

Pr E
 (4.14) 

 If Pr{E1} = 0, Pr{E2∣E1} is undefined. 

This formula for conditional probability can be applied in Example 4.9, which is 

an extension of Example 4.8. 

Example 4.9.   Weather on successive days.   Suppose that the observed 

frequencies for 100 pairs of successive days are exactly equal to the theoretical 

frequencies implied by Table 4.5.  For example, the number of two successive 

sunny days is exactly 40, because the probability of two successive sunny days is 

0.40.  Table 4.6 gives the frequencies of all nine weather combinations, along 

with the marginal frequencies. 

Table 4.6.   Joint and marginal frequencies for weather on 100 pairs  
of successive days 

                       
Day 2   

Day 1 Sunny (S2) Cloudy (C2) Rainy (R2) 

Marginal 

frequency 

(Day 1)  

Sunny (S1) 40 5 5 50 

Cloudy (C1) 5 15 10 30 

Rainy (R1) 5 10 5 20 

Marginal 

frequency  

(Day 2) 

50 30 20 100 

Note that Day 1 is sunny a total of 50 times.  Of these 50 times, Day 2 is also 

sunny 40 times.  Therefore, based on the frequencies from Table 4.6, the 

observed or empirical conditional probability of a sunny day given that the 

preceding day is sunny is 40/50 = 0.80.  Formally,   

Pr{S2 │S1} = (100)(0.40)/(100)(0.50) = 0.40/0.50  

                   = Pr{S1  S2 } / Pr{S1}        (4.15) 

Note that Equation (4.15) yields the same result as Equation (4.14), the defining 

equation for conditional probability.   
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Based on Table 4.5 and using Equation (4.15), Table 4.7 gives the conditional 

probabilities of the weather on Day 2 given the weather on Day 1.   

Table 4.7.   Conditional probabilities of weather on successive days   

  
Day 2 

 

Day 1 

Pr{S2 │Day 1     

weather} 

Pr{C2 │Day 1 

weather} 

Pr{R2 │Day 1 

weather} 

Sunny (S1)        0.80 0.10 0.10 

Cloudy (C1)        0.17 0.50 0.33 

Rainy (R1)        0.25 0.50 0.25 

By interchanging the roles of E1 and E2 in Equation (4.13), the joint probability of 

E1 and E2 can be written in two ways in terms of conditional probabilities: 

1 2 1 2 2

2 1 1

{ } { | } { }

{ | } { }

Pr E E Pr E E Pr E

Pr E E Pr E
 

(4.16) 

Let E1 and E2 be any two events in a sample space S.  From the properties of set 

operations in Table 4.2, E2 can be written as  

12 2 2 1 1 2 1 2( ) = ( ) ( )C CE E S E E E E E E E  
(4.17) 

Because the two events in parentheses on the right side of Equation (4.17) are 

disjoint, it follows from Equation (4.2) that:  

12 2 1 2{ }= { }+ { }CPr E Pr E E Pr E E             (4.18) 

Using Equation (4.15), Equation (4.18) can be written as: 

2 2 1 1 2 1 1{ } { | }Pr{ } { | } { }c cPr E Pr E E E Pr E E Pr E  (4.19) 

law of total 

probability 
for any events E1 and E2.  This formula is called the law of total 

probability.  It is the basis for quantifying event trees, which are 

frequently used to diagram the possibilities in an accident 

sequence. 
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From Equation (4.13), the joint probability of two statistically independent events 

is the product of their individual unconditional probabilities.  If E1 and E2 are 

statistically independent, it follows from Equation (4.16) that, if neither E1 nor E2 

has probability 0,  then equations (4.20) and (4.21) hold. 

Pr{E1} = Pr{E1│E2} 
(4.20) 

Pr{E2} = Pr{E2│E1} (4.21) 

 

 

statistically 

dependent 

events 

From these equations, if two events are statistically independent, 

the probability of either event does not depend on whether the 

other event occurs.  If two events are not statistically 

independent, they are said to be statistically dependent events. 

The concepts of mutually exclusive events and statistically independent events 

are often confused.  If E1 and E2 are mutually exclusive events, 

1 2{ } { } 0.Pr E E Pr   If neither event has probability 0, from Equation 

(4.13), Pr{E1 ∩ E2} ≠ 0.  Thus, the two events are not independent.  Mutually 

exclusive events cannot be independent and vice versa.  Another explanation is 

that mutually exclusive events cannot be independent because the occurrence of 

either one precludes the occurrence of the other. 

Equation (4.16) can be generalized to calculate the probability of the intersection 

of any number of events (the probability that all the events occur simultaneously).  

In general, the probability of the simultaneous occurrence of n events can be 

written as: 

1 2 1 2 1 3 2 1 1 1{ } { } { | } { | } { | }n n nPr E E E Pr E Pr E E Pr E E E Pr E E E        
(4.22)

  

chain rule of 

probability 

 

 

Equation (4.22) is referred to as the chain rule of probability.  

This rule can be used to calculate the probability that a given 

accident sequence occurs, with E1 denoting the initiating event 

and the remaining events corresponding to the failures or 

successes of the systems that must function in order to mitigate 

such an accident. 

If E1, E2, …, En are statistically independent events, the probability that at least 

one of the n events occurs is equal to 1 minus the probability that none of the n 

events occurs.  Formally, 

Pr{E1  E2 …  En}  

                        = 1 − (1 − Pr{E1})(1 − (Pr{E2})…(1 − Pr{En})                         (4.23)  
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Expansion of the right side of Equation (4.23) leads to the general inclusion-

exclusion principle, as illustrated in Equation (4.11) for n = 3.  For the simple 

case where Pr{E1} = Pr{E2} =…= Pr{En} = p, the right side of Equation (4.23) 

reduces to 1 − (1 − p)
n
. 

Probabalistic 

Risk 

Assesment 

 

 

minimal cut set 

The general result in Equation (4.22) has applications in fault tree 

analysis used in Probabalistic Risk Assesment (PRA).  For 

example, for a system where system failure occurs if any one of n 

independent events occurs, Equation (4.23) gives the probability 

of system failure.  One such example could be failures of critical 

system components.  In general, the events represent the modes 

by which system failure (the top event of the fault tree) can occur.  

These modes are referred to as the minimal cut sets of the fault 

tree.  The events are independent if no minimal cut sets have 

common component failures.  See Vesely et al. (1981) for further 

discussion of fault trees and minimal cut sets. 

 

 

 

 

 

 

 

min cut upper 

bound 

If the n events are not independent, the right side of Equation 

(4.23) may be larger than or smaller than the left side.  However, 

for an important situation that frequently arises in PRA, the right 

side of Equation (4.23) forms an upper bound for the left side.  If 

the n events are cut sets that are positively associated, then the 

right side is an upper bound for Pr{E1  E2 …  En} and is 

known as the min cut upper bound (NRC (2003), p. A-3).  This 

designation arises from common PRA applications where Ei is 

the i
th

 minimal cut set of a system or accident sequence of 

interest.  In this case, the min cut upper bound is superior to the 

rare event approximation in Equation (4.12) and can never exceed 

unity (as can happen with the rare event approximation).  If the n 

events satisfy conditions similar to those of the rare event 

approximation, the min cut upper bound is a useful 

approximation.  Note that, because they are negatively associated, 

the min cut upper bound is not applicable to mutually exclusive 

events. 
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4.8  Bayes’ Theorem 

 

 

 

 

 

 

 

 

Bayes 

Theorem 

In PRA applications, the true values of many input parameters are 

unknown and must be estimated.  If relevant data are available, 

either from observation or experimentation, a common approach 

is to calculate the probabilities of the possible input parameters 

given the observed data.  In a probability framework, this means 

calculating the conditional probability of an event A given that 

another event B has occurred.  In the PRA context, A represents a 

specified hypothesis or state of nature and B is the observed data.  

This calculation is carried out using Bayes’ Theorem, a general 

result in the theory of conditional probability.   

 

Bayes’ Theorem states that if {A1, A2, …, An} is a partition of the sample space 

(see Equation (4.4)) and if B is any event such that Pr{B} > 0, then, for all            

i = 1, 2, …, n,  

{ | } { }
{ | }

{ }

i i
i

Pr B A Pr A
Pr A B

Pr B
   

(4.24) 

where the denominator of Equation (4.24) is given by: 

1

{ } Pr{ | } { }
n

j j

j

Pr B B A Pr A

 

(4.25) 

 

Equation (4.24) follows from the relations in Equation (4.14), which can be 

written as:  

{ | }iPr A B Pr{B}  = { | }iPr B A  Pr{Ai} (4.26) 

Equation (4.22) follows by using Equation (4.5) with E = B and Sj = Aj  and then 

using Equation (4.16) with E1 = B and E2 replaced by Aj. 
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prior 

probability 

 
posterior 

probability 

In Bayes’ Theorem, the partition {A1, A2, …, An} represents all 

possible states of nature or hypotheses and B represents data from 

observation or experimentation.  Pr{Ai} is the prior probability 

of Ai before the data B are known.  The conditional 

probability { | }iPr B A is the probability of observing B if Ai is true.  

The conditional probability { | }iPr A B is the posterior probability 

of Ai once B is known.  The denominator Pr{B} of Equation (4.24) 

is the unconditional probability of the data averaged over all 

possible hypotheses or states of nature and serves as a 

normalizing constant. 

 

 

 

 
Bayesian 

inference 

As Equation (4.24) indicates, the posterior probability { | }iPr A B  

for a specified value of i depends not only on the prior probability 

of Ai and the conditional probability of the data given Ai but also 

on all the other prior probabilities and conditional probabilities of 

the data.  Thus, Bayes’ theorem is the basis for Bayesian 

inference, which refers to the process of converting the prior 

distribution of the partition {A1, A2, …, An} to a posterior 

distribution. 

More on Bayesian inference may be found in Chapter 20. 

4.9  Probability Estimation 

This chapter has focused on the basic definitions and relationships among the 

probabilities of various types of events.  The numerical examples presented have 

all been based on assumed values for the probabilities involved.  In practice, 

however, probability estimation is usually based on information from 

observation, experimentation, or judgment.  The assignment of numerical values 

to event probabilities is carried out by a combination of one or more of three 

approaches:  modeling, data-based probability, or subjective probability.  

It must be emphasized that all of the approaches outlined below have associated 

uncertainty.  Uncertainty is associated with the assumptions required for each 

approach, and statistical uncertainty is associated with the data.  The 

characterization and evaluation of statistical uncertainty are the subjects of much 

of this book.  However, while no less important, the uncertainty associated with 

the assumptions is beyond the scope of this book.  Nevertheless, whatever the 

approach or combination of approaches used for probability estimation in any 

application, a complete analysis requires an assessment of all the uncertainties. 
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modeling 

approach to 

probability  
 

 

The simplest modeling approach to probability is to assume a 

probability model that allows the probability of any event to be 

calculated using the axioms of probability without any reference 

to data or experimentation.  The simplest assumption is that all 

outcomes or points in the sample space are equally likely.  If 

there are N points in the sample space, then each point must then 

have probability 1/N.  It follows immediately that, if an event E 

consists of k outcomes, Pr{E} = k/N.  Examples are tossing any 

number of fair coins or fair dice.   

Another modeling approach is to assume a probability model with a completely 

specified structure, which allows the calculation of the probabilities using the 

axioms of probability.  Examples are radioactive decay of a known isotope or 

reliability of a component with an extensive failure history.  

Although assuming a completely specified probability model allows the exact 

calculation of the probability of any event, this approach has limited applicability 

to practical problems.  A more common modeling approach is to assume a 

probability model with a specific structure but with one or more unknown 

parameters.  Examples are a normal model (Chapter 6) or a Poisson model 

(Chapter 23) with unknown means.  With this approach, it is necessary to 

estimate the unknown parameter(s), but once this is done, the estimated 

probability of any event can be calculated. 

data-based 

approach to 

probability 

 

 

relative 

frequency 

The data-based approach to probability uses observed or 

experimental data together with statistical estimation techniques 

(Chapter 9) to estimate unknown probabilities or parameters.  For 

example, if an experiment is independently repeated n times and 

the event E occurs nE times, then an estimate of Pr{E} is nE/n.  

This is the relative frequency estimate of Pr{E}.  More generally, 

data are used to estimate the parameters of assumed probability 

models (e.g., the mean of an assumed binomial distribution used 

to model component reliability).  Because such estimates depend 

on the amount of available data as well as their random 

characteristics, uncertainty is associated with them. 

It is important to clarify a common misconception about the relative frequency 

estimate of Pr{E}.  The limiting value of nE/n as n   is sometimes taken as the 

definition of Pr{E}.  This approach has two problems.  First, to define a 

probability as a limiting value is highly problematic because it cannot be 

evaluated in the real world, and furthermore, it is necessary to assume that such a 

limit exists.  Second, this definition is not a proper definition because it is a 

theorem in the theory of probability (i.e., it is a consequence of the axioms of 

probability). 
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subjective 

probability 

approach 

Another approach to estimating probabilities is the subjective 

probability approach (see Chapter 20).  Probabilities obtained 

from the opinions of people are examples of subjective 

probabilities.  Here, probability can be thought of as a measure of 

belief.  Any past information about the problem being considered 

can be used to help estimate the various probabilities.  In 

particular, information about the relative frequency of occurrence 

of an event could influence the results. 

 

 

proposition 

Martz and Waller (1991, Chapter 5) present subjective 

probability as dealing not only with repeatable events but also 

with propositions.  A proposition is considered to be a collection 

of events that cannot be conceived as a series of repetitions (e.g., 

a meltdown at a specified nuclear power plant).  The degree of 

belief in proposition A, the subjective probability Pr{A}, 

represents how strongly A is believed to be true.  At the extremes, 

if A is believed to be certain or true, Pr{A} = 1; if A is believed to 

be impossible or false, Pr{A} = 0.  Values between 0 and 1 

represent intermediate beliefs between false and true. 

The subjective probability approach is often used in Bayesian inference to 

estimate the prior probabilities used to calculate the posterior probabilities 

(Section 4.8).  Accordingly, the posterior probabilities must also be considered as 

subjective probabilities.  While Bayesian inference can certainly be carried out 

without using subjectively determined priors (e.g., differential diagnosis of 

possible diseases based on a large medical database of symptoms and test 

results), for many PRA applications, it is necessary to estimate the prior 

probabilities using the subjective probability approach. 

There are two sources of uncertainty in the subjective probability approach.  The 

first stems from uncertainty about the chance of occurrence of an event in the real 

world based on someone’s subjective judgment.  The second stems from the 

diversity of results when more than one subjective probability is elicited (e.g., 

when a panel is used in an expert elicitation process).  Consideration of these 

uncertainties is beyond the scope of this book.   
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5 
Errors 

5.1  What to look for in Chapter 5 

Chapter 5 alerts us to the sources and characterization of errors we may 

encounter in everyday life and in data.  These underlie the statistical methods 

presented in future chapters.  The concepts discussed in this chapter are: 

 measurement system,  §5.3 

 metrology,  §5.3 

 error,  §5.3 

 accuracy,  §5.3 

 bias, systematic error,  §5.3 

 precision,  §5.3 

 uncertainty,  §5.4 

5.2  Errors, errors, … everywhere 

Did this ever happen to you? 

You weigh yourself in the morning.  You don’t like the reading of the scale.  

You rationalize that the scale is in error.  Further, you decide that this dubious 
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measurement could be the result of one or more of the following errors
7
:  

instrument error, resolution error, calibration error, replication error, sampling 

error, accuracy error, design error, day-of-the-week error, time-of-the-day error, 

seasonal variation error, rounding-off error, or ―something I ate‖ error. 

Some of these listed errors are clearly redundant, some are clearly irrelevant, 

and some possible errors are missing from the list.  As a rule, we consider all the 

errors we can imagine that are relevant and then weed down the list.  For 

example, we calculate the air mass inside a reactor containment from measured 

physical variables, such as pressure, temperature, and relative humidity.  

However, we should consider whether we have left out any other variables, such 

as outdoor temperature changes, voltage fluctuations, and neighborhood air 

traffic, just in case any of those affects the air mass measurements.  Then, using 

engineering and statistical judgment, we focus on those effects that are relevant.  

In this way, we may reduce the error that would otherwise be ignored.  

If we read one number on a scale but report another, we made a mistake.  

Mistakes can be accidental or intentional (e.g., a deliberately erroneous report 

intending to deceive).  If we calculate the containment air mass and change the 

record, part of the record, or the final calculation, we have made a mistake.  This 

book does not deal with mistakes, although some mistakes can be detected 

statistically or mathematically.  We assume the database given to us to analyze 

is free of mistakes.  We conduct an honest analysis based on what we believe is 

an honest collection of information. 

5.3  Characterizing errors:  accuracy and precision 

measurement Measurement is the assignment of a number to some 

characteristic or property of an object such as its length, weight, 

or temperature.  Measurements are typically obtained by 

employing a measuring device such as a yardstick, scale, or 

thermometer.  Measurements always relate to properties of 

objects, not to the objects themselves.  Hence, we don’t measure 

a fuel rod, but we do measure its length, weight, and enrichment. 

metrology

The science that studies and codifies the measurement process is 

called metrology.  Metrology is concerned not only with the 

measurement of a property but also with the error associated with 

such a measurement and the probability that the measurement is 

within a predetermined distance from the true value of the 

property.  Chapter 9, ―Statistical Estimation,‖ presents a detailed 

discussion of error quantification.

                                                           

7 The following section presents a formal definition of error.  For now, an intuitive understanding of 
error will suffice. 



Errors 85 
 

 

 

 

 

 

 

measurement 

system 

The measurement device is not the only source of error in a study 

or experiment.  In addition to the value of the characteristic we 

wish to measure, the measurement, and consequently the error 

depend on a combination of other factors.  These factors include 

errors stemming from the physical characteristics of a sensor, its 

fabrication, the technician who reads the sensor, and the clerk 

who writes down and transmits the reading.  All of the factors 

that contribute to a measurement and its associated error are 

called a measurement system.  

true value  A measurement is designed to measure the true value of the 

property being measured.  Because of measurement error, the 

true value of a property may never be exactly determined.  

However, it is conceptually useful in modeling a measurement 

system.  The concept of a true value is analogous to the concept 

of a probability as discussed in Section 4.2.  Although true values 

and probabilities associated with physical objects can never be 

determined, they are both conceptually useful for modeling. 

 

 

error 

In this discussion, a true value is designated by the Greek letter  

(tau).  Let Y be a measurement produced by a measurement 

system.  That measurement may or may not be ―close‖ to τ.  The 

difference between Y and τ is called an error, which is 

traditionally denoted by the Greek letter  (epsilon).  We write 

that difference as: 

                       = Y – τ (5.1) 

 

 

accuracy 
 

precision 

Consider a sequence of measurements {Y1, Y2, …, Yi, …} 

produced by a measurement system and their corresponding 

errors{ 1, 2, …, i, …}.  The concepts of accuracy and 

precision are defined in terms of the behavior of the errors in the 

sequence{ 1, 2, …, i, …}. 

Each measurement system has an associated accuracy.  Accuracy is assessed in 

terms of the mean of .  Because  is a random variable (to be discussed in 

Chapter 6), its mean has not yet been defined.  However, for the purpose of this 

discussion, the mean of  can be thought of as a long-run average (i.e., the 

arithmetic mean of a large number of errors (see Section 2.3)).  If the mean of  

is zero, then the system is said to be accurate.  If the mean is not zero, the 

system is said to be inaccurate. 

The accuracies of two or more measurement systems are often compared.  

Consider a second measurement system, also aimed at determining the same true 

value, .  If the mean of the error of the first system is closer to zero than the 
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mean of the error of the second system, then the first system is said to be more 

accurate than the second system.    

The concept of accuracy can be illustrated by rifle target practice.  Even if we 

aim carefully at the target, sometimes we shoot to the left of the target and 

sometimes to its right, sometimes high and sometimes low.  If, on the average, 

we score a bull’s-eye, the system (we, the rifle, the weather, the shooting range, 

etc.) is considered accurate.  Note that the measurement system can be accurate, 

even if we never hit the bull’s-eye.    

bias 

 
A measurement system is said to have a bias (or to be biased) if it 

is inaccurate.  Whether the magnitude of the bias is critical 

depends on the system and the use to which it is applied.  If the 

long-run average of the measurements is τ , the difference τ - τ is 

the system bias.  Mathematically, the bias may be written as: 

                    b = τ′ - τ (5.2) 

unbiased 

 
If b = 0, the measurement system is said to be unbiased.  

Equivalently, the system is unbiased if the long-run average of the 

errors is zero (i.e., the system is accurate).   

systematic 

error 
Bias is sometimes referred to as systematic error. 

precision A second characteristic of a measurement system is precision.  

The idea behind precision is how repeatable the measurements are 

(i.e., how close the measurements are to each other).  The 

precision of a series of measurements may be measured by the 

variance of Y.  Because Y, like , is a random variable (to be 

discussed in Chapter 6), its variance has not yet been defined.  

However, for the purpose of this discussion, the variance of Y may 

be thought of as the long-run sample variance (i.e., the sample 

variance of a large number of measurements (see Section 2.8)).  In 

this sense, one measurement system is said to be more precise than 

a second system if it has a smaller variance than the second 

system. 

As with accuracy, the concept of precision may be illustrated by rifle target 

practice.  Regardless of where our bullets hit, the system is precise if all the hits 

are in exactly the same place.  Clearly, if we and our rifle are simultaneously 

accurate and precise, we have a statistically superb system. 

Figure 5.1 displays four combinations of good/poor accuracy and good/poor 

precision in a one-dimensional measurement system. 
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   Figure 5.1.  Accuracy and precision illustrated 

The combinations of accuracy and precision illustrated in Figure 5.1 do not tell 

the whole story.  In particular, suppose we have an accurate and precise 

measurement system with a great deal of variability in the error about the true 

value.  This would be illustrated by the top line in Figure 5.1 with the 

measurements much more spread out.  In such a case, we would not have a 

―good‖ measurement system. 

5.4  Uncertainty 

 

uncertainty 
Related to accuracy (or the lack of) and precision (or the lack of) is 

the concept of uncertainty.  Uncertainty is broadly used as a 

measure of the ―incorrectness‖ in a set of data arising from 

inaccuracy, imprecision, variability, or some combination of these.  

The term itself is troublesome because, unless it is precisely 

defined, it may convey a broad spectrum of meaning and suffer 

from an equally broad spectrum of interpretation.  The term itself 

does not have an accepted meaning in statistics.  One global 

measure of uncertainty that is sometimes used is that of mean-

square error (see Section 6.10).  On the whole, it seems best to 

avoid using ―uncertainty‖ in technical discussions unless it is 

carefully defined and, if possible, quantified. 
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6 
Random variables 

6.1  What to look for in Chapter 6 

A random variable is a quantification of a probability model that allows us to 

model random data.  It is an essential element in the application of statistical 

methods to data.  The concepts discussed in this chapter are: 

 random variable discrete and continuous,  § 6.2 

 probability mass function (pmf),  § 6.3 

 probability function (pf),  § 6.3 

 cumulative distribution function (cdf),  § 6.3 

 probability density function (pdf),  § 6.4 

 bivariate distribution, joint distribution,  § 6.5, § 6.6 

 marginal distribution,  § 6.5 

 conditional distribution,  § 6.5 

 probabilities of  independent events,  § 6.6 

 expected value, mathematical expectation,  § 6.7 

 linear combinations and their variance,  § 6.8 

 standard error of the mean,  § 6.8 

 contrast and linear contrast,  § 6.9 
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6.2  Random variables 

 

 

random 

variable 

discrete 

random 

variable 

An outcome of an experiment may be either a quantitative or a 

qualitative variable.  Because statistical methods deal with 

numerical data, it is necessary to assign numerical values to the 

outcomes of the experiment in order to analyze the results.  A 

random variable is a function that assigns a unique numerical 

value to each outcome of an experiment along with an associated 

probability.  We distinguish between two types of random 

variables:  discrete and continuous.  A discrete random variable 

corresponds to an experiment that has a finite or countably infinite 

(e.g., the set of positive integers) number of outcomes.  

(Continuous random variables will be discussed following the 

examples presented below.) 

In terms of the concepts introduced in Chapter 4, a discrete random variable is a 

quantification of a special case of a probability model defined in Section 4.5.  

Let S = {E1, E2, …, Ei, …} be a sample space such that all the sample points are 

disjoint elementary events.  Let pi = Pr{Ei}, where ∑ pi = 1.  To quantify S, let 

Y = {y1, y2, …, yi, …} be a function of S (i.e., yi is a real number corresponding 

to the point Ei.  Then Y is a discrete random variable with probability 

distribution {pi}.   

By convention, we denote random variables by capital letters and the values 

they take on by lower case letters.  Thus, the diameter of a fuel rod is denoted by 

the random variable Y, but once it is measured, the diameter is denoted by y, 

(e.g., y = 1.07 cm). 

Example 6.1.   Tossing a fair coin.   The sample space consists of two 

points, T and H, each with probability p = 1/2.  Define a random variable Y to  

be 0 if T occurs and 1 if H occurs.  The random variable Y is the number of 

heads in one toss of a fair coin.   

Example 6.2.   Rolling a fair die.   The sample space consists of the six 

points corresponding to the six faces of the die, each with probability p = 1/6.  

Define a random variable Y to be equal to the number of spots showing on the 

face of the die.  The random variable Y takes on the values 1, 2, …, 6.  

Example 6.3.   Valve status.   The sample space consists of the two points 

corresponding to two positions of the valve:  closed, with probability p, and 

open with probability 1 – p.  Define a random variable Y to be 0 if the valve is 

closed open and 1 if it is open.   
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continuous 

random 

variable 

A continuous random variable is a random variable for which the 

set of possible outcomes (i.e., the sample space) is continuous.  

Examples of continuous sample spaces are weight, length, and 

time to failure; these may assume any value in the interval between 

0 and ∞.  A continuous random variable may also be negative, 

(e.g., temperature, loss in weight, or a loss in the value of a share 

in the stock market).  A formal mathematical definition of a 

continuous random variable is beyond the scope of this book. 

In the strictest sense, measurements are never continuous; they are always 

discrete.  For example, time is measured to the nearest hour, minute, second, or 

fraction of a second, depending on the application.  Therefore, all random 

variables are necessarily discrete.  However, because it is generally easier to 

deal mathematically with continuous rather than discrete random variables, 

discrete random variables are often replaced by continuous random variables for 

modeling and analysis purposes.  For example, if the time to failure of a pump is 

measured to the nearest hour, then time to failure is a discrete random variable 

taking on the values 1, 2, ….  However, for analysis purposes, it may be 

convenient to assume that time to failure is a continuous random variable taking 

on any positive value.  Most importantly, in replacing a discrete random variable 

with a continuous random variable, we must be sure that the effect of the 

replacement on the result of the analysis is negligible. 

6.3  Distributions of discrete random variables  

probability 

mass 

function  

For a discrete random variable Y, the probability mass function 

(pmf) gives the probability associated with each possible value y 

of Y.  That probability may be denoted by Pr{Y = y}, Pr{y}, or 

f(y).  Consistent with the definition of probability, we have: 

                       Pr{y}  0 (6.1) 

                       ∑ Pr{y} = 1 (6.2) 

probability 

function,  

distribution 

When there is no ambiguity, a probability mass function is 

sometimes referred to as a probability function or a distribution. 

Two examples of discrete random variables are given below.  Note that all 

probabilities are nonnegative and sum to 1, in accordance with Equations (6.1) 

and (6.2). 

Example 6.4.   Sum of dots.   Suppose two fair dice are rolled.  Let Y be the 

total number of dots.  Table 6.1 gives the values, y, of Y and their associated 

probabilities, Pr{y}.  (The second and third rows of Table 6.1 will be considered 

later in this section.)  Table 6.1 also highlights three selected values of y (y = 8, 

y = 9, and y = 10) and their probabilities.  If in this example we wish to find the 
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probability of obtaining any of these (mutually exclusive) values, we add their 

probabilities to get Pr{8 ≤ y ≤ 10} = 5/36 + 4/36 + 3/36 = 1/3.   

  Table 6.1.   Probability distribution for the sum of two fair dice 

Y 1 2 3 4 5 6 7 8 9 10 11 12 

Pr{Y = y} 0 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36 

F(y) 0 1/36 3/36 6/36 10/36 15/36 21/36 26/36 30/36 33/36 35/36 1 

1 - F(Y) 1 35/36 33/36 30/36 26/36 21/36 15/36 10/36 6/36 3/36 1/36 0 

 
The probabilities in Table 6.1 are plotted in a bar chart in Figure 6.1, where the 

three shaded columns correspond to the selected probabilities in Example 6.4.  

 

Figure 6.1.   Distribution of sum of dots for two fair dice  

Example 6.5.   Snubber failure.   Let Y be the number of snubbers in a 

population of 1000 snubbers that fail during the first 5 years of operation.  Table 

6.2 gives a hypothetical probability distribution for Y.   

To find the probability that one or more snubbers will fail in the first 5 years, we 

calculate Pr{1} + Pr{2} + Pr{3} = 0.10 + 0.03 + 0.02 = 0.15.  Alternatively, 

since the probabilities sum to 1, we calculate this probability as 1 less than the 

probability of 0 failures, or 1 – Pr{0} = 1 – 0.85 = 0.15. 
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Table 6.2.   Probability distribution for snubber failures  

Y 0 1 2 3 

Pr{Y = y} 0.85 0.10 0.03 0.02 

F(y) 0.85 0.95 0.98 1.00 

1- F(y) 0.15 005 0.02 0.00 

 
The probabilities in Table 6.2 are plotted in Figure 6.2, where the shaded 

columns correspond to the probabilities selected in the example. 

  

Figure 6.2.   Distribution of snubber failures  

Note that a function of a discrete random variable Y is also a discrete random 

variable, with a distribution determined by the distribution of Y.  For instance, in 

Example 6.4, let Z = Y 
2
.  That is, Z is the square of the sum of dots.  Then Z 

takes on the 11 values 4, 9, …, 144, with distribution given by the second row in 

Table 6.1, labeled Pr{Y = y}.   

cumulative 

distribution 

function 

(cdf) 

Probability functions provide point probabilities for discrete 

random variables.  A related function is the cumulative 

distribution function (cdf), denoted by F(y) and defined as the 

probability that the random variable takes on values less than or 

equal to the value y.  For a discrete random variable Y, F(y) is the 

sum of the probabilities of all values of Y  y.  Mathematically, 

 

( ) { } { }
Y y

F y Pr Y y Pr y    (6.3) 

The cdf for Example 6.4 is shown in Table 6.1 in the row labeled F(y).  
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Table 6.2 shows the F(y) values for Example 6.5.  From that table, we see that 

the probability of 0 or 1 snubber failure in 5 years is F(1) = 0.95.   

 When there is no ambiguity, the cdf is also called the distribution.  Thus, the 

term distribution applies to both the pmf and the cdf. 

The cdf for Example 6.4 is plotted from the line labeled F(y) in Table 6.1.  In 

this case, Figure 6-3 may be easier to read and interpret than the table.  For 

example, the probability of the sum of the dots in a throw of two fair dice being 

as much as 4 is F(4) = 6/36 = 1/6. 

 

Figure 6.3.   Cumulative distribution function for Example 6.4 

In Figure 6-4, the cdf for Example 6.5 is plotted from the line labeled F(y) in 

Table 6.2.  For example, the probability of two or fewer snubber failures is 0.98. 

 

Figure 6.4.   Cumulative distribution function for Example 6.5 

complementary 

cumulative 

distribution 

function 

A sometimes useful function related to the cdf is the 

complementary cumulative distribution function.  For a value y, 

this function is defined as 1 - F(y).  From Equation 6.3, 

F(y = Pr{Y > y}.  In Example 6.4 and Table 6.1, the values of    
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1 - F(y) are shown in the last line of Tables 6.1 and 6.2, 

respectively.   

Figure 6.5 shows the complementary cdf for Example 6.4.  Here we see that the 

probability of two or more snubber failures is only 0.02, or 2%.  

 

Figure 6.5.   Complementary cumulative distribution function for 
Example 6.5  

6.4  Distributions of continuous random variables  

 

probability 

density 

function 

 density 

Whereas a discrete random variable can take on only some of 

the values in an interval, a continuous random variable Y may 

take on any value in an interval.  In parallel with the discrete 

mass function, we have a probability density function (pdf), or 

simply density, also denoted by f(y).  The density is defined as a 

nonnegative integrable function with the following properties: 

                          ( ) 0f y  
 

(6.4) 

                         

( ) 1f y dy  (6.5) 

 

For any continuous random variable Y and for any two points a and b where 

a < b, the density has the following property:   

( ) { }

b

a

f y dy Pr a y b     (6.6) 

This equation is illustrated in Figure 6.6.  As Equation (6.6) indicates, the 

shaded area is the probability that a continuous random variable Y falls between 

the values of a and b.  
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Figure 6.6.   Probability of occurrence in interval (a, b)  

In parallel with the probability mass function, continuous random variables also 

have a cumulative distribution function (cdf).  This function, also denoted F(y), 

is defined as the probability that the continuous random variable takes on values 

less than (or equal to) the value y.  Mathematically, 

( ) { } ( )

y

F y Pr Y y f y dy    (6.7) 

Here are some relevant points: 

 Since F(y) represents probability, 0  F(y)  1.   

 F(y) is a nondecreasing function of y, that is, if y1 ≤ y2, then F(y1) ≤ F(y2). 

 f(y) is the first derivative of F(y) with respect to y. 

 If Y takes on only positive values, the limits of integration are 0 to y.   

 If Y has a restricted range, with a ≤ Y ≤ b, then F(a) = 0 and F(b) = 1. 

 For both discrete and continuous random variables: 

Pr{y1 < Y  y2} = F(y2) - F(y1) (6.8) 

If Y is a continuous random variable, Equation (6.8) implies that: 

Pr{Y = y} = 0 for any y (6.9) 
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We are often concerned with extreme outcomes, as they may present an unusual 

risk or a specific interest.  For concerns about the probability of obtaining a 

small value of Y (say smaller than or equal to a), we investigate Pr{Y ≤ a}, 

which is F(a).  For concerns about the probability of obtaining a large value of Y 

(say larger than or equal to b), we investigate Pr{b ≤ Y}, which is 1 - F(b).   

Parallel to discrete random variables, the term 1 – F(y) is the complementary 

distribution function of Y. 

6.5  Distributions of discrete bivariate random variables 

 

 

 

 

joint probability 

function  

The concepts of joint, marginal, and conditional probability, 

discussed in Chapter 4, also pertain to random variables and 

probability distributions.  To apply these concepts we first 

consider two discrete random variables, X and Y, where X 

may take on any of m values x1, x2, …, xm, and Y may take on 

any of n values y1, y2, …, yn.  The probability that X will take 

on a value xi, and, simultaneously, Y will take on a value yj, is 

given by the joint probability function (joint pf), denoted by 

f(xi, yj). 

                              f(xi, yj) = Pr{X = xi, Y = yj}  (6.10) 

                              where  

                             ,( ) 0i jf x y  (6.11) 

                             ,

( , ) ( , ) 1i j i j

i j i j

f x y f x y  
(6.12) 

 
discrete bivariate 

random variable 
The ordered pair (X, Y) is a discrete bivariate random 

variable with a joint pf given by Equation (6.10). 

 
The joint pf is tabulated in the shaded area of Table 6.3. 
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Table 6.3.   Joint and marginal distributions of (X,Y) 

 
Y = y1 Y = y2  Y = yn Marginal 

X = x1 f(x1, y1) f(x1, y2)  f(x1, yn) fX(x1) 

X = x2 f(x2, y1) f(x2, y2)  f(x2, yn) fX(x2) 

      

X = xm f(xm, y1) f(xm, y2)  f(xm, yn) fX(xm) 

Marginal fY(y1) fY(y2)  fY(yn) 1 

 

(marginal) 

probability 

function 

The probability that X will take on a specific value (say xi) is 

calculated as the sum all the probabilities f(xi, yj) that involve 

xi , regardless of the associated values yj of Y.  This sum is 

called the (marginal) probability function of X evaluated at 

X = xi and is denoted by fX(xi).  Mathematically, 

                            

( ) { } ( , )X i i i j

j

f x Pr X x f x y  (6.13) 

 
(marginal) 

distribution 
The set {fX(xi)} of marginal probabilities in the last column of 

Table 6.3 is the (marginal) distribution of X.   

Similarly, the marginal probability function fY(yj) of Y is given by: 

( ) { } ( , }Y j j i j

i

f y Pr Y y f x y  (6.14) 

The set {fY(yj)} of marginal probabilities in the bottom row of Table 6.3 is the 

(marginal) distribution of Y. 

As in Section 6.3, the discrete bivariate random variable (X, Y) has a cumulative 

distribution function, FXY(x, y).  Here, FXY(x, y) is the probability that X  ≤  x and 

Y ≤ y.  Symbolically, 

( , ) ( , )
i j

XY i j

x x y y

F x y f x y  (6.15) 

The following example illustrates the joint and marginal distributions for 

discrete bivariate random variables. 
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Example 6.6.   Sex discrimination.   A large organization’s hiring practice 

is investigated to see whether there is statistical evidence of sex discrimination.  

Based on data collected over 5 years, the joint and marginal probabilities of 

hiring decisions for male and female applicants are shown in Table 6.4.  

Chapter 12 gives an analysis of count data that is related to this example.  This 

example illustrates some of the concepts covered in this and subsequent 

chapters. 

Table 6.4.   Data for Example 6.6 

 

Gender 

 

Hiring status 

Male           

(y = 1) 

Female       

(y = 2) 

Marginal 

probability 

Not hired (x = 1) 0.24 0.36 0.60 

Temporary (x = 2) 0.12 0.18 0.30 

Permanent (x = 3) 0.04 0.06 0.10 

Marginal 

probability 
0.40 0.60 1.00 

 
The joint probabilities f(x,y) are shown in the shaded area, and the marginal 

probabilities fX(x) and fY(y) are shown in the margins of the table.  For example, 

the joint probability f (3, 1) that an applicant will be both male and hired for a 

permanent position is 0.04.  The marginal probability fX(3) of an applicant being 

hired for a permanent position is 0.10, and the marginal probability fY(1) of an 

applicant being male is 0.40.  In other words, there is a 10% chance that an 

applicant will be hired for a permanent position and a 40% chance that an 

applicant is male. 

The concepts of joint and marginal distributions for discrete random variables 

can be extended to more than two discrete random variables.  See Bowen and 

Bennett (1988), p. 76, for details 

 

 

 

 

conditional 

probability 

At times we may wish to know the probability that a discrete 

random variable Y will attain a specific value yj if a second 

discrete random variable is known to have attained a value xi.  

For example, we may wish to know the probability that an 

applicant will be hired for a permanent position if the applicant 

is known to be male.  In the notation of Table 6.3, this is the 

conditional probability that Y = yi, given that X = xi.  This type 

of probability, previously discussed in Section 4.7, is denoted 

by g(yj | xi), is read as the ―conditional probability of yi given 

xj,‖ and is calculated by: 
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                             ( , )
( | )

( )

i j

j i

X i

f x y
g y x

f x
 (6.16) 

 

The conditional probability in Equation (6.16) is defined only if fX(xi) ≠ 0. 

To find the probability that a male applicant in Example 6.6 will be hired for a 

permanent position, we calculate from Equation (6.16) and Table 6.4 that: 

(3,1) 0.04
(3 |1) 0.10

(1) 0.40Y

f
g

f
 

That is, there is a 10% chance that a male applicant will be hired for a 

permanent position. 

In analogy to Equation (6.16), the conditional probability of xj given yi, we 

have:  

( , )
( | ) , ( ) 0

( )

i j

i j Y j

Y j

f x y
h x y f y

f y
 (6.17) 

 
conditional 

distribution 
The set of conditional probabilities {g(yi | xi)} for all values of i 

and j is called the conditional distribution of Y given X.  

Similarly, the set of conditional probabilities {h(xi | yj)} for all 

values of i and j is the conditional distribution of X given Y. 

The definitions and calculations of conditional distributions may also be 

extended to more than two discrete random variables.  See Bowen and Bennett 

(1988), p. 77, for details. 

independent 

random 

variables 

Two discrete random variables X and Y are independent 

random variables if their joint distribution is equal to the 

product of the two marginal distributions.  That is, 

                           f(xi, yj) = fX(xi) fY(yj)  (6.18) 

The cumulative distributions of independent discrete random variables also 

multiply.  That is,  

F(xi, yj) = FX(x1) FY(yj)  (6.19) 

Equations (6.18) and (6.19) may be extended to more than two discrete random 

variables.  Formally, discrete random variables Y1, Y2, …, Yn are independent 

random variables if and only if the joint distribution of Y1, Y2, …, Yn is equal to 

the product of their respective marginal distributions, that is: 
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1 2 1 2..., 1 2 1 2( , ,..., ) ( ) ( ) ... ( )
n nYY Y n Y Y Y nf y y y f y f y f y  (6.20) 

Similarly for the cdf s, discrete random variables Y1, Y2, …, Yn are independent 

random variables if and only if the joint cumulative distribution of Y1, Y2, …, Yn 

is equal to the product of their respective cumulative marginal distributions, that 

is: 

1 2 1 2, ,..., 1 2 1 2( , ,..., ) ( ) ( ) ... ( )
n nY Y Y n Y Y Y nF y y y F y F y F y  (6.21) 

6.6  Distributions of continuous bivariate random 
variables  

In parallel with distributions of discrete bivariate random variables, we have 

distributions of continuous bivariate random variables.  The switch from discrete 

to continuous random variables is made by replacing summation by integration.  

The continuous counterpart of the discrete probability function is the probability 

density function (pdf) or density.  The continuous counterpart of the cumulative 

distribution function for discrete bivariate random variables is also called a 

cumulative distribution function. 

 

joint density 
Let X and Y be two continuous random variables whose 

densities are fX(x) and fY(y), respectively.  A joint density of X 

and Y is a function f(x,y) that satisfies the following conditions: 

                            ( , ) 0f x y  (6.22) 

                           

( , ) 1f x y  (6.23) 

 
A graph of f(x,y) would be three dimensional, with a surface of height f(x,y) 

above the point (x,y) in the x-y plane. 

marginal 

density 
The marginal density of X is obtained by integrating the joint 

density over y: 

                          

( ) ( , )Xf x f x y dy  (6.24) 

The marginal density of Y is obtained by integrating the joint       

density over x:  

                            

( ) ( , )Yf y f x y dx  (6.25) 
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conditional 

density 
The conditional density of Y given X is defined as: 

                             
|

( , )
( | )

( )
Y X

X

f x y
f y x

f x
 (6.26) 

 

                             Similarly, the conditional density of X given Y is defined as: 

|

( , )
( | )

( )
X Y

Y

f x y
f x y

f y
 (6.27) 

 
 

independent 

random 

variables 

In parallel with the discussion of independent discrete random 

variables, two continuous random variables X and Y are 

independent random variables, or simply independent, if their 

joint density equals the product of the two marginal densities.  

That is, 

                          f(xi, yj) = fX (xi) fY (yi)  (6.28) 

The cdfs of independent continuous random variables also multiply.  That is,  

F(xi, yj) = FX (xi) FY (yj)  (6.29) 

Both Equations (6.28) and (6.29) can be generalized:  Y1, Y2, …, Yn are 

independent random variables if and only if: 

f(y1, y2, …, yn) = f1(y1) f2(y2)…fn(yn) (6.30) 

or if:  

F(y1, y2, …, yn) = F1(y1) F2(y2)…Fn(yn) (6.31)  

Throughout the remainder of this book, provided there is no ambiguity, we will 

use the term random variable for either a discrete or continuous random 

variable.  

6.7  Expected value and variance 

 

 

expected value 

In studying the properties of a random variable Y, it is often 

convenient to evaluate one or more descriptive characteristics 

of Y.  One key characteristic is the expected value of Y, 

denoted by E[Y].  If Y is discrete, the expected value of Y is the 

weighted average of the values taken on by Y, with the weights 

equal to their probabilities.  If Y is discrete, its expected value  



Random variables 103 
 

 

is calculated as: 

                            
i i i i

i i

E Y y Pr Y y y f y  (6.32) 

                             where the summation is over all values of Y. 

mean 

expectation 

The expected value is sometimes called the mean or 

expectation and is often denoted by the Greek letter .     

Another key characteristic of a random variable Y is its variance, denoted by 

V[Y].  The variance of Y is defined as the expected value of the square of the 

difference between Y and its mean μ, that is:  

V[Y] = E[(Y- )]
2  (6.33) 

If Y is discrete, the variance is calculated as: 

2 2 2[ ] [ ] ( ) ( )i i i i

i i

V Y E Y y Pr Y y y f y  (6.34) 

 The variance is often denoted by 
 2
, the square of the Greek letter . 

The standard deviation of a discrete random variable Y is defined as the positive 

square root of its variance and is usually denoted by .  Thus,  

V(Y )  (6.35) 

 
Example 6.7 illustrates the expected value in a familiar setting. 

Example 6.7.   A Lottery.   A lottery offers three prizes:  $250, $100, and 

$50.  If 1000 tickets are sold at $1 each, what is the expected value of a ticket?    

Let Y represent the winnings with y1 = 0, y2 = 50, y3 = 100, and y4 = 1000.  The 

probability of not winning any prize is 997/1000, of winning $50 is 1/1000, of 

winning $100 is 1/1000, and of winning $250 is 1/1000.  Using Equation (6.32), 

the expected winnings for one ticket are:  

E[Y] = (0)(0.997) + (50)(0.001) + (100)(0.001) + (250)(0.001) = 0.40.   

If all 1000 tickets are sold, the total paid out in prizes is $400, or $0.40 per ticket 

sold.  Thus, the expected value of the winnings is equal to the average paid out 

per ticket sold. 
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The variance of Y in this example is calculated using Equation (6.34) as: 

σ 
2 
 = (0 - 0.40)

2 
(0.997) + (50 - 0.40)

2 
(0.001) + (100 - 0.40)

2 
(0.001) + 

         (250 - 0.40)
2 
(0.001) = 74.84   

The standard deviation is σ = 8.65.   

Whereas the variance and standard deviation appear to be irrelevant for this 

example, they may be important in a statistical analysis of the honesty and 

integrity of such lotteries.  

expected value 

mean 

If Y is a continuous random variable, its expected value, E[Y], 

or mean, μ, is defined analogously to the definition of the 

expected value of a discrete random variable in 

Equation (6.32).  It is the integral of the values taken on by Y 

multiplied by its density function, where the integral is 

evaluated over the entire domain of Y.  Formally, 

                          ( )E Y y f y dy   (6.36) 

 

domain 

support 

The domain of Y is a set of values such that f(y) > 0.  It is also 

called the support of Y. 

If Y is a continuous random variable, its variance, V[Y], is defined analogously 

to the definition of the variance of a discrete random variable in Equation (6.34).  

It is given by Equation (6.37), where  = E[Y] and the integral is evaluated over 

the entire domain of Y. 

2( ) ( )V Y y f y dy  (6.37) 

For both discrete and continuous random variables, it can be shown that the 

variance can also be calculated as:  

V[Y] = E[Y
 2
] - (E[Y])

2
 (6.38) 

 

The standard deviation of a continuous random variable is defined as the square 

root of its variance, the same as for a discrete random variable, and is also 

usually denoted by .  

6.8  Linear combinations  

linear 

combination 
A function g = g(Y1, Y2, …, Yn) of n random variables is called 

a linear combination if it can be written as: 
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                            1 2 0 1 1 2 2
( , ,..., ) ...

n n n
g g Y Y Y c cY c Y c Y   (6.39) 

                             where c0, c1, …, cn are constants. 

If g = g(Y1, Y2, …, Yn) is a function of n random variables, g itself is a random 

variable.  Theory shows that the mean E[g] of a linear combination g can be 

written as follows:   

0 1 1 2 2
( ) ...( ) ( ) ( )

n n
E g c c Y c Y c YE E E  (6.40) 

If the random variables Y1, Y2, …, Yn are independent, then the variance V[g] of 

a linear combination g can be written as follows: 

2 2 2

1 1 2 2( ) ) ) ... )( ( (n nV g c Y c Y c YV V V  (6.41) 

If the random variables are not independent, Equation (6.40) still holds but 

Equation (6.41) is incomplete.  For example, if the random variables represent 

temperature readings on consecutive days, they will be correlated.  To account 

for the lack of independence, Equation (6.41) must include one or more 

additional terms.  The additional terms may be positive or negative, thus 

increasing or decreasing the value of V[g].  See Bowen and Bennett (1988), 

p. 89, for details.  

random sample 

 

observations 

 

 

sample mean 

A key statistical concept is that of a random sample of n points 

or observations.  A random sample is usually modeled by a set 

of independent random variables, each having the same 

distribution.  In the remainder of this chapter, we describe 

some properties of the sample mean.  The sample mean is the 

arithmetic mean of a random sample of n points such that: 

 Repeated observations are drawn from a single random variable Y with 

mean μ and variance  
2
. 

 The sample observations are independent. 

From Equation (6.39), the sample mean is a linear combination with c0 = 0 and 

all other constants c1, c2, …, cn = 1/n.  Denoting the sample mean byY  (read as 

Y bar), we have: 

1 2

1 1 1
0   ...    

n
Y Y Y Y

n n n
 (6.42) 

The sample mean Y defined by this equation is a random variable.  In practice, 

we calculate its value by replacing each Yi in Equation (6.42) with its observed 

value yi to get y .  We then use y to make statistical inferences about the 
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population represented by Y.  These tests are usually based on the expected 

value and variance of .Y    

From Equations (6.40) and (6.41), the expected value and variance of the sample 

mean Y are: 

1

1 1 1 1 n

i

E(Y ) = . . .
n n n n

  (6.43) 

2 2 2

2 2 2

 

2 2

2

 

1 1 1
     

1

 . . .V Y
n n n

n
n n

 
 

(6.44) 

The standard deviation of Y is: 

2

 
 ( )

Y
  / nV Y / n  (6.45) 

standard error 

of the mean 

 standard error 

The standard deviation of the sample mean is also called the 

standard error of the mean or simply the standard error. 

6.9  Linear contrasts  

 

 

linear contrast 

 

contrast 

A special case of a linear combination is when the sum of the 

coefficients c1 + … + cn in Equation (6.39) is equal to 0.  This 

linear combination is called a linear contrast or simply a 

contrast.  A common example of a contrast is the difference 

between two independent sample means.  From 

Equation (6.39), the contrast is: 

 

                           1 2g Y Y  (6.46) 

where 
1 2andY Y are sample means based on sample size n1 and 

n2.  Here, c0 = 0, c1 = 1, and c2 = -1. 

From Equation (6.40), we have:  

1 2 1 2( ) ( ) ( )E g E Y E Y  (6.47) 
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From Equations (7.41) and (7.44), we have:  

2 2

1 2
1 2

1 2

( ) ( ) ( )V g V Y V Y
n n

 
(6.48) 

 

and the standard deviation of g is: 

2 2

1 2

1 2

g
n n

 
(6.49) 

 
standard error 

of mean 

differences 

 

The last expression is also called the standard error of mean 

differences.    

An important special case of Equation (6.44) is when n1 = n2 = 1.  We have 

g =Y1 – Y2  (6. 50) 

where Y1 and Y2 are two independent random variables.  From Equation (6.46), 

the variance of g is   

V(g) = 1
2
 + 2

2
  (6.51) 

In other words, the variance of the sum of two independent random variables is 

the sum of their variances.  This result also follows from Equation (6.39) by 

setting n = 2, c0 = 0, c1 = 1, and c2 = -1 in Equation (6.37). 

6.10  Mean square error 

 

 

mean square 

error (MSE) 

 

Measurements are often biased (see Section 5.3).  The 

combination of known bias (from manufacturer’s specs, for 

example) and sampling error is often expressed by the mean 

square error, also known as MSE, given in Equation (6.52).   

A discussion of mean square error can be found in Cochran 

(1977), p. 15. 

                                   MSE(measurement) =  

                                       (variance of measurement)         (6.52)  

                                       + (bias in measurement)
2       

MSE is a measure of uncertainty that reflects both the bias and the random 

component of the measurement system. 
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7 
Continuous distributions 

7.1  What to look for in Chapter 7 

In this chapter, we study selected continuous distributions and their associated 

densities and cumulative distribution functions (cdfs).  We start with a simple 

distribution: 

 uniform distribution, §7.2 

 standard uniform distribution, §7.3 

Next, we focus on the most commonly used continuous distribution: 

 normal distribution, §7.4 

 standard normal distribution, §7.5 

Procedures for normal distribution probability calculations are shown using: 

 table lookup, §7.6 

 spreadsheet routines, §7.7 

We continue with several distributions that are related to the normal distribution, 

which are needed later in the book: 
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 sample mean distribution and the Central Limit Theorem, §7.8 

 lognormal distribution, §7.9 

 chi-square distribution, §7.10 

 Student’s t-distribution, §7.11 

 F-distribution, §7.12 

 exponential distribution, §7.13  
 gamma distribution,  §7.14 

 beta distribution,  §7.15 

For each distribution presented, the mathematical forms and graphs of its density 

and cdf are given along with its mean and variance.  Also, where available, 

spreadsheet functions for the densities and cdf s are shown along with examples 

of their use. 

7.2  Uniform distribution   

uniform 

distribution 

 

rectangular 

distribution 

A uniform distribution, also called a rectangular distribution, 

models situations where a random variable Y takes on values only 

in a specified interval (a, b) such that Y falls in any two 

subintervals of (a, b) of equal length with the same probability. 

The uniform distribution is denoted by U(a, b).  Its density is:  

1

0 otherwise

f ( y ) , a y b
b a

,

 
(7.1) 

Figure 7.1 shows a graph of the density of U(a, b).  The dashed vertical lines at 

y = a and y = b indicate that f(y) is discontinuous at these points.  

 

Figure 7.1.   Density function of the uniform distribution U(a, b) 
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The cdf of U(a, b) is calculated using Equation (6.7) as:   

( 0

1

F y ) , y a

y a
, a y b

b a

, b y

 

(7.2) 

Suppose that I is a subinterval of (a, b) with length w < b – a.  Then, from 

Equations (6.8) and (7.2), the probability that a random variable Y from U(a, b) 

falls in I is:  

{ ( , ) }
w

Pr Y in a b
b a

 
(7.3) 

The cdf for U(a, b) is graphed in Figure 7.2. 

   

Figure 7.2.   cdf of a uniform distribution 

To obtain the mean, variance, and standard deviation of Y = U(a, b), substitute 

the density from Equation (7.2) into Equations (6.36) and (6.37).  As in 

Section 6.7, we use the Greek letter notation to denote these parameters.  

( )
( )

2

b a
E Y  

(7.4) 

 
2

2 ( )

12

b a
V(Y )  

(7.5) 

12

b a  
(7.6) 
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Example 7.1.   Fuel pump gauge.   A pump at the gas station is read to the 

nearest 0.01 of a gallon.  The error Y associated with the reading is a rounding 

error which is uniformly distributed between a = -0.005 and b = 0.005.  The 

mean, variance, and standard deviation of Y, respectively, are calculated as:   

0.005 ( 0.005)
0

2
 

2

2
0.005 ( 0.005)

0.00000833
12

 

0.00289  

7.3  Standard uniform distribution  

standard 

uniform 

distribution 

Of special interest is U(0, 1), the uniform distribution on the 

interval (0, 1),  called the standard uniform distribution or simply 

the standard uniform.  Its density and cdf are:  

f(y) = 1, 0 ≤ y ≤ 1 

F(y) = y 

(7.7) 

 

(7.8) 

The mean, variance, and standard deviation of Y = U(0, 1) are: 

0 5.  (7.9) 

2
2 (1 0) 1

0 0833
12 12

.  (7.10) 

0 0833 0 289. .  (7.11) 

An important use of the standard uniform distribution is to generate random 

numbers from any distribution for which the cdf is explicitly known or well 

approximated.  Details are given in Chapter 27, ―Simulations.‖ 

Additional information about the uniform distribution may be found in the 

following texts: 

Krishnamoorthy (2006), p. 115 

Hastings and Peacock (1975), p. 116 

Patel et al. (1976), p. 33 
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7.4  Normal distribution 

normal 

distribution 
The normal distribution plays a prominent role in statistical 

analyses.  The importance of the normal distribution cannot be 

overstated because, apart from its mathematical tractability, it 

provides a model for many natural phenomena and supports a wide 

variety of decisionmaking processes.  Moreover, many phenomena 

and measurement systems that do not follow the normal 

distribution can be transformed into an approximate normal 

distribution by relatively simple mathematical manipulations. 

 

 

 

 

 

 

Gaussian 

distribution 

The modern mathematical formulation of the normal distribution is 

derived from a function developed by Carl Friedrich Gauss (1777–

1855) in his 1809 book Theoria Motus Corporum Coelestium in 

Sectionibus Conicis Solem Ambientium (Theory of the Motion of 

the Heavenly Bodies Revolving Around the Sun in Conic Sections).  

Consequently, some authors refer to the normal as the Gaussian 

distribution, after its developer.  

normal 

density 
The normal density is given by: 

                     

2

21
2

( )
1

( ) ,
2

y

f y ye  (7.12) 

The two parameters shown in Equation (7.12) are μ and σ
2
, where μ is the mean 

and σ
2 
is the variance of the normal distribution.  A plot of the normal density is 

shown in Figure 7.3, where the familiar ―bell-shaped‖ curve centered about the 

mean μ is recognized.   

  

Figure 7.3.   Normal density function 
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In examining Figure 7.3, the following characteristics of the normal density are 

apparent.  These are characteristics that some other, nonnormal densities may 

also have: 

 The symmetry of the curve about μ means that observations from a normal 

distribution are as likely to occur above μ as below μ. 

 The decrease in the curve as we move away from the center means that 

large deviations from μ are less likely to occur than are small 

deviations. 

It is important to note that not every bell-shaped density is normal.  Indeed, 

throughout this text, we will study other distributions that are similar to the 

normal distribution.  In performing statistical procedures, it is important to 

distinguish between a normal distribution and a similar but different distribution.  

Accordingly, there are statistical procedures that test the validity of the 

assumption of normality.  See Chapter 11, ―Goodness-of-Fit Tests,‖ for details. 

For descriptive and statistical purposes, datasets are often modeled by a normal 

distribution.  The following example presents a dataset where normality is 

plausible. 

Example 7.2.   U.S. natural uranium concentration (1993 map, 

downloaded from U.S. Geological Survey site).   Figure 7.4 presents a 

pictorial dataset that appears to be normal.  In this figure, every dot, or pixel, has 

an associated value, typically between 0 and 6 ppm, of natural uranium 

concentration.  Because not every point in the continental United States is 

represented in Figure 7.4, the values associated with Figure 7.4 are only a 

sample from the population of natural uranium concentrations in the continental 

United States.  We make no claim that the dataset is a random sample that could 

be used for statistical investigations.  For this example, the dataset is used only 

for descriptive purposes.   
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Figure 7.4.   Natural uranium concentration  
Source: U.S. Geological Survey:  Digital Data Series DDS-9 

If the data in this example are arranged in ascending order, we could sketch a 

histogram similar to that shown in Figure 7.5.  This histogram (when properly 

scaled) is analogous to a density function.  Because Figure 7.5 is approximately 

symmetric and bell-shaped, it is plausible to conjecture that the dataset of 

uranium concentrations in that figure is normally distributed.  See Chapter 11 

for a discussion of statistical procedures that could be used to test this 

conjecture.  

 

Figure 7.5.   Histogram of natural uranium concentration 
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The cdf for the normal distribution is given by F(y), where: 

2

2
1
2

( )
1

( ) { } ,
2

y w

F y Pr Y y dw ye  (7.13) 

The conventional notation used for the normal distribution is N(μ, σ 
2 
).  A 

shorthand notation such as Y ~ N(μ, σ
2 
) is read as ―Y is distributed normally with 

a mean μ and variance σ
2
.‖  

 Note that the second parameter, σ
2
, is the variance, not the standard 

deviation.  For example, the standard deviation of N(10, 25) is 5, 

not 25.   

 The normal distribution has the useful property that any linear function of a 

normal distribution is also normal, although the mean and/or variance 

might change.  Specifically, if Y ~ N(μ, σ
2
) and U = aY + b, where a 

and b are any constants, then: 

       U ~ N(aμ + b, a
2
σ

2
) (7.14) 

7.5  Standard normal distribution 

standard 

normal 

distribution 

Let Y ~ N(μ, σ
2 
).  Of particular importance is the standard normal 

distribution, commonly denoted by Z, defined as: 

                      

Y
Z  (7.15) 

To find the mean and variance of Z, set a = 1/σ and b = - /σ in Equation (7.14) 

to get:  

 

Z ~ N(0, 1) (7.16) 

In other words, the mean of a standard normal is always 0 and its variance is 

always 1.  That is why it is called a standard normal.  

The density of Z is obtained from Equation (7.12) by setting μ = 0 and σ = 1.  

The resultant density is: 

2

2
1

( ) ,
2

z

f z ze  (7.17) 
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The cdf for the standard normal is commonly denoted by   (z) where  is the 

upper case Greek letter phi.  Setting μ = 0 and σ = 1 in Equation (7.13), we 

have: 

1
2

21
( ) { } ,

2

z w
z Pr Z z dw ze  (7.18) 

 Some texts use the notation N(z; 0, 1) or, simply, N(z), rather than   (z), to 

denote the cumulative standard normal distribution. 

Figure 7.6 shows the graph of   (z).   

  

Figure 7.6.   Standard normal CDF 

In probabilistic and statistical analyses of normally distributed variables, we 

often need to calculate probabilities associated with a specific quantile or to 

calculate the quantile associated with a specific probability.  In either case, we 

need to evaluate integrals in the form of Equation (7.13).  Unfortunately, that 

integral cannot be evaluated in closed form (i.e., in terms of standard 

mathematical functions).  However, there are two approaches to evaluating a 

normal cdf.  One of these approaches uses a table lookup, while another 

approach resorts to a spreadsheet subroutine call.  Section 7.6 discusses table 

lookup steps, and Section 7.7 addresses spreadsheet function calls. 

7.6  Table lookup for the normal distribution 

In principle, a table of the cdf for the normal distribution Y ~ N(μ, σ
2 
) should 

allow us to determine (with interpolation as necessary) the probability that Y ≤ y 

for just about any specific quantile.  Unfortunately, it would be impossible to 

create such a table for every combination of μ and σ that would be needed for 

applications.  However, because of the special relation between an arbitrary 

normal Y and the standard normal Z as expressed in Equation (7.15), the cdf of 

any normal Y can be evaluated in terms of the cdf   (z) of Z.    
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For example, suppose we wish to evaluate F(b), where F(y) is the cdf of 

Y ~ N(μ, σ 
2
).  From Equation (7.13), we have F(b) = Pr{Y ≤ b}.  Using the 

definition of the standard normal from Equation (7.15), we see that:  

( ) { }
Y b b

F b Pr Y b Pr Pr Z   (7.19) 

From the definition of   (z) in Equation (7.18), we have: 

F(b) =   ((b - )/ ) (7.20) 

standard 

normal 

table 

 z-table 

Thus, Equation (7.19) provides a formula for the cdf of Y in terms 

of the cdf of Z.  Table T-1, ―The cumulative standard normal 

distribution,‖ of the appendix gives the values of (z).  This table 

is also called a standard normal table or a z-table.   

We notice that Table T-1 covers z values up to z = 3.49.  This should not present 

a problem because the probability of z exceeding 3.49 is less than 0.0002, a 

negligible amount for most applications.  If  (z) is needed for z > 3.49, 

extended tables or approximations are available and could be used for this 

purpose.  Also, a spreadsheet routine call could be used, as shown in 

Section 7.7.  

In obtaining probability values from a standard normal table, bear in mind the 

following properties: 

 The probability that Z is less than or equal to a value a is: 

            Pr{Z ≤ a} =   (a) 
(7.21) 

 The probability that Z is larger than a value b is:   

            Pr{Z > b} =  1 - Pr{Z ≤ b}  = 1 -   (b) 
(7.22) 

The probability that Z is between two values a and b, where a < b, is:  

       Pr{a < Z < b} = Pr{a < Z ≤ b} =  Pr{a ≤ Z < b }  

                               =  Pr{a ≤ Z ≤ b}=   (b) -   (a) 

(7.23) 

Equation (7.23) follows from the fact that Pr{Y = y} = 0 for any continuous 

random variable Y (see Equation (6.9)).     
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By the symmetry of the normal distribution about its mean, it also has the 

following property: 

 The probability that Z is less than a value a, where a < 0 is equal to 1 minus 

the probability that Z is greater than a.  That is: 

       Pr{Z < a} = 1 - Pr{Z > -a} = 1 -  (-a) (7.24) 

Thus, although a standard normal extends from -∞ to +∞, only positive values of 

z are needed in seeking probabilities in the standard normal table.  

To make these probability calculations more concrete, turn now to Table T-1.  

To find the probability that corresponds to a given positive z value, look up the 

first two leading digits of z in the left column (table entries showing from 0.0 to 

3.4), and then look up the next digit as a column heading.  The desired 

probability is found at that row and column intersection.  As an example, the 

probability that corresponds to z = 1.23 is found at the intersection of the row 

listed as 1.2 and the column listed as 0.03.  The table value reads 0.8907, which 

is the probability that Z ≤ 1.23.  If we require the probability that corresponds to 

z = 1.234, then interpolation between 0.8907 (for which z = 1.23) and 0.8925 

(for which z = 1.24) would be required.  A linear interpolation would be 

0.8907 + (1.234 - 1.230)(0.8925 - 0.8907)/(1.24 - 1.23) = 0.8914. 

Before use of Table T-1, making a rough sketch of the normal density is often 

very valuable.  That sketch would indicate which area of the distribution should 

be added and which subtracted to obtain the desired probability.  The following 

example shows such sketches. 

Example 7.3.   UO2 enrichment.   An extensive history of powder-batch 

measurements supports the assumption that the stoichiometric factor for percent 

of uranium dioxide (UO2) powder manufactured at a given facility is normally 

distributed with a mean μ = 87.5 and a standard deviation σ = 0.4.  Suppose that 

a sample of a single measurement is to be taken.   

 What is the probability that this measurement will be less than or equal 

to 88.0? 

 87 5 88 0 87 5
{ 88 0} { 1.25} 1 25 0 8944

0 4 0 4

Y . . .
Pr Y . Pr Pr Z ( . ) .

. .  
 

The probability area of interest is sketched in the hashed part of Figure 7.7 for 

the original normal Y and in Figure 7.8 for the standard normal Z. 
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Figure 7.7.   Sketch of Pr{Y ≤ 88.0} 

 

Figure 7.8.   Sketch of Pr{Z ≤ 1.25}    
 
 What is the probability that this measurement will be larger than 88.0?  

87 5 88 0 87 5
{ 88 0} { >1.25} 

0 4 0 4

=1 - { <1.25} 1 0 8944 0 1056

Y . . .
Pr Y . Pr Pr Z

. .

Pr Z . .

 

The probability area of interest is sketched in the hashed part of Figure 7.9 in 

terms of Z only. 
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Figure 7.9.   Sketch of Pr{Z > 1.25} 

 What is the probability that this measurement will be between 87.0 

and 88.1? 

87 0 87 5 88 1 87 5
{87.0 < 88 1} {-1.25 < Z 1.50} 

0 4 0 4

= {Z 1.50} - {Z  -1.25} 0 9332 (1 0 8944)

0 9332 0 1056 0 8276

. . . .
Pr Y . Pr Z Pr

. .

Pr Pr . .

. . .
 

 

The probability area of interest is sketched in the shaded part of Figure 7.10. 

 

Figure 7.10.   Sketch of Pr{-1.25 < Z ≤ 1.50} 

7.7  Spreadsheet functions for normal probabilities 

Much of the tedium of evaluating an integral such as Equation (7.18), or even 

the effort of table lookup and interpolation, could be alleviated by using a 

spreadsheet call.  Excel provides three functions for this purpose:  
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=NORMDIST, =NORMINV, and =NORMSINV.  We explain the use of these 

functions below. 

=NORMDIST(y, μ, σ, 1) returns the probability that a normal random variable Y 

with a mean μ and standard deviation σ will be as large as y.  The constant ―1‖ is 

an indicator that tells the function that a cumulative normal (rather than a 

density) is desired.  Graphically, =NORMDIST(y, μ, σ, 1) returns the area under 

the curve for which -∞ < Y < y, as sketched in Figure 7.7. 

As an example of the use of the =NORMDIST function, we show the following 

values obtained by this function in support of the calculations in Example 7.3. 

 =NORMDIST(88.0, 87.5, 0.4, 1) = 0.8944 

 =NORMDIST(87.0, 87.5, 0.4, 1) = 0.1056 

 =NORMDIST(88.1, 87.5, 0.4, 1) = 0.9332 

These values are the same as those obtained from Table T-1.  Discrepancies 

between Table T-1 values and Excel’s value may occur if Table T-1 is 

interpolated.  Generally, such discrepancies are inconsequential.  

 If the last entry in the =NORMDIST is given as 0 rather than 1, the density 

of the distribution (height of the curve) is returned.  Using the 0 entry is 

useful in plotting the normal density, as was done for Figure 7.5.  

=NORMINV(p, μ, σ) is Excel’s function that performs the inverse operation of 

=NORMDIST.  =NORMINV(p, μ, σ) returns a quantile q so that p (or 100p%) 

of the area under the N(μ, σ 
2 
) distribution curve is less than q.  For example, to 

find a value y such that 95% of the distribution of N(75, 0.16) is below y, a call 

to =NORMINV(0.95, 75.0, 0.4) yields y = 75.658. 

=NORMSINV (note the letter ―S‖ in =NORMSINV which stands for 

―standard‖) performs a function similar to that of =NORMINV for the standard 

normal distribution.  In this case, the parameters μ and σ are not needed as they 

are assumed to be 0 and 1, respectively.  Accordingly, the call to this function is 

=NORMSINV(p) and the only function input is the probability p such as 

=NORMSINV(p) or (100p%).  An example of a call to this function is 

=NORMSINV(0.95), which returns the value of q0.95 = 1.645. 

The spreadsheet normal inverse functions =NORMINV and =NORMSINV are 

used extensively in statistical tests of hypotheses.  For this purpose, Table 7.1 

lists commonly used quantiles along with the values returned by Excel’s 

=NORMINV and =NORMSINV functions.  These values can also be found for 

selected probabilities at the bottom of Table T-1 in the appendix to this book. 
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Table 7.1.   Selected values for the standard normal distribution 

Quantile, 

q 

Excel’s standard normal 

inverse function 

Excel’s general normal 

inverse function 

z value 

  0.005 =NORMSINV(0.005) =NORMINV(0.005, 0, 1) -2.576 

      0.01 =NORMSINV(0.01) =NORMINV(0.01, 0, 1) -2.326 

0.025 =NORMSINV(0.025) =NORMINV(0.025, 0, 1) -1.960 

0.05 =NORMSINV(0.05) =NORMINV(0.05, 0, 1) -1.645 

0.01 =NORMSINV(0.01) =NORMINV(0.01, 0, 1) -1.282 

0.02 =NORMSINV(0.02) =NORMINV(0.02, 0, 1) -0.842 

0.05 =NORMSINV(0.5) =NORMINV(0.5, 0, 1) 0.000 

0.80 =NORMSINV(0.8) =NORMINV(0.8, 0, 1) 0.842 

0.90 =NORMSINV(0.9) =NORMINV(0.9, 0, 1) 1.282 

0.95 =NORMSINV(0.95) =NORMINV(0.95, 0, 1) 1.645 

0.975 =NORMSINV(0.975) =NORMINV(0.975, 0, 1) 1.960 

0.99 =NORMSINV(0.99) =NORMINV(0.99, 0, 1) 2.326 

0.999 =NORMSINV(0.995) =NORMINV(0.995, 0, 1) 2.576 

Note that the 0.025 and the 0.975 quantiles of the standard normal distribution 

are -1.96 and 1.96, respectively.  This means that 95% of the N(μ, σ
2
) lies 

between μ – 1.96σ and μ + 1.96σ.  This is consistent with the empirical rule of 

Chapter 2 that claims that about 95% of a mound-shaped distribution lies within 

2 standard deviations of the mean.  We can also verify, using Table T-1 or Excel 

=NORMSINV, that nearly 2/3 of the distribution lies between μ – σ and μ + σ 

and that nearly the entire distribution lies between μ – 3σ and μ + 3σ. 

7.8  The Central Limit Theorem    

Section 6.8 introduced the key statistical concepts of a random sample and a 

sample mean.  If a random sample of size n is drawn from a random variable Y 

with mean μ and standard deviation σ, the sample mean Y has mean μ and 

standard deviation / n .  If μ is unknown, as is usually the case, the sample 

mean can then be used to estimate μ.  However, to make statistical statements 

about the uncertainty of this estimate, it is also necessary to know something 

about the distribution of Y .  The problem is that the distribution of Y  is 

determined by the distribution of Y, which is usually unknown.  A commonly 

used resolution to this dilemma stems from a remarkable property of the normal 
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distribution.  In many cases of interest, the distribution of Y turns out to be 

approximately normal.  Thus, for a large class of possible distributions of Y, 

statistical inferences about μ can be made from a knowledge of Y  and the 

known properties of the normal distribution. 

Central 

Limit 

Theorem 

(CLT) 

The theoretical basis for this approach is called the Central Limit 

Theorem or CLT.  When its conditions are met, this theorem 

provides powerful ways of answering a variety of statistical 

questions.   

There are several versions of the CLT.  Here we focus on one version, which 

reads:  

Suppose that a random sample of n observations is drawn from a 

distribution of a random variable Y with mean μ and standard deviation σ, 

satisfying certain regulatory conditions.  Then the distribution of the sample 

mean Y  is asymptotically normal with mean μ and standard 

deviation / n .  Mathematically, this means that if Y ~?(μ,  
2
) then :  

2( / ) as Y N , n n  (7.25) 

where the question mark indicates ―any distribution‖ and the symbol  → means 

―converges to‖ or ―approaches.‖   

To summarize, here are the conditions and implications of the CLT: 

 A random sample of size n from a distribution of a random variable Y is 

observed.  The parameters of Y and its distribution are not necessarily 

known. 

 Assume that the distribution of Y has a mean μ and a standard deviation σ. 

 As the sample size, n, increases, the distribution of the sample mean 

Y approaches that of the normal distribution. 

 The mean of Y  is μ, the same mean as that of the original distribution Y. 

 The standard deviation of Y  is / n. 

The benefits of the CLT are three-fold: 

 The sample mean, on the average, is the same as the distribution mean. 

 The distribution—or at least the approximate distribution—of the sample 

mean is now known.  

 The standard deviation (standard error)
Y

/ n of Y  is smaller (by a 

factor of n ) than the standard deviation of Y. 
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Equation (7.25) can also be written in terms of the standard normal variable Z.   

2If ?( ) then (0 1) as 
/

Y
Y ~ , Z N , n

n
 (7.26) 

A proof of this version of the CLT stated above may be found in Mood et al. 

(1974), p. 195.   

The key conclusion of the CLT is that the distribution of the sample mean is 

asymptotically normal.  The key assumption in its proof is that the sample mean 

is essentially a sum of identical independent random variables.  Although the 

CLT as stated above applies only to the sample mean, other versions of the CLT 

apply to other sums of independent random variables, which may not even be 

identical.  Because real world measurements can often be modeled as sums of 

independent components, this explains why so many measurements are, at least 

approximately, normally distributed. 

Another version of the CLT applies the sum of independent and identical 

random variables, as follows: 

Suppose that a random sample of n points is drawn from a random variable 

with a mean μ and a standard deviation σ.  Then the distribution of the 

sample sum ∑Y = n Y  is asymptotically normal with mean nμ and standard 

deviation n .   

Table 7.2 lists the basic parameters of the sample mean Y  and sum ∑Y.  

Table 7.2.   Parameters of the sample mean and sample sum 

Variable 

Sample 

size Mean Variance 

Standard 

deviation 

Y 1 μ 
2

  

Y  n μ 
2/n  / n  

Y nY  n n μ 
2n  n  

The CLT states that the sample mean is asymptotically normal (i.e., its 

distribution approaches a normal distribution as the sample size n approaches 

infinity).  The practical question remains as to how large n has to be in order for 

the approximate normality to be useful.  Here are some rough guidelines: 

According to Hines and Montgomery (1980), p. 183: 

If observations come from a near-normal distribution (near bell-shaped; 
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symmetric about the mean; tapering away from the mean) a sample as 

small as 4 may be adequate.  

If observations come from a flat (uniform) continuous distribution, a 

sample of size 12 is adequate.  In fact, early computers generated 

random normal observations by repeatedly taking averages of 

12 uniform observations from the U(0,1) distribution. 

Also, according to Hald (1952a), p. 201:   

In many cases it has been found that for n > 30, the distribution of the 

sample mean is fairly normal and even for smaller values of n the 

normal distribution is often sufficiently accurate. 

The sample sizes cited above may be used to decide whether we are close 

enough to normality.  However, considerations other than sample size may 

sometimes take precedence.  Sample size determination for some cases will be 

discussed later in this book. 

7.9  Lognormal distribution 

lognormal 

distribution 
The use of the lognormal distribution has become increasingly 

widespread.  It is commonly used as a distribution for failure 

frequency and in maintainability analysis.  It has also been widely 

used as a prior distribution for unknown positive parameters in 

Bayesian analyses.  See Chapter 20 for details. 

A random variable Y is defined to be lognormal if the natural logarithm of Y is 

normal.  Equivalently, Y is lognormal if:  

Y = e
W

, where W  N(μ, σ
2
) 

 
(7.27) 

 
underlying 

normal 
We write Y  LN(μ, σ

2
).  The normal W is sometimes called the 

underlying normal of the lognormal Y. 

The density of a lognormal random variable Y is:  

2

2
2

1

2
[ ]1

0 0
2

ln( y )
f ( y ) , y , ,

y
e  (7.28) 

The mean, variance, median, and mode of a lognormal distribution are, 

respectively: 
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2

2[ ]E Y e  (7.29) 

2 22[ ] 1V Y e e  (7.30) 

[ ]Median Y e  (7.31) 

2

[ ]Mode Y e  (7.32) 

Sometimes ,e the median of Y, is used as a parameter in the description of the 

lognormal distribution, so be vigilant.   

The mode indicates the position of the peak of the density. 

To calculate probabilities for Y = ln(μ, σ
2
), the table for the standard normal can 

be used.  Specifically, for any number a, 

( )  ( )

( )

 

Pr Y a Pr ln Y ln a

ln a
Pr Z

 (7.33) 

where Z is the standard normal. 

Because Y = e
W

 is an increasing function of W, the quantiles of Y correspond to 

the quantiles of W.  Thus, if qp is the p
th

 quantile of W, then pq
e is the p

th
 quantile 

of Y.  In particular, because  is the median of W, it follows that e  is the median 

of Y. 
 
 

error factor A commonly used parameter of a lognormal Y is the error factor 

(EF), defined as the ratio of the 0.95 quantile (95
th

 percentile) of Y 

to its median.  Because of the logarithmic symmetry of the 

lognormal, the error factor is also equal to the ratio of the median 

to the 0.05 quantile.  As shown in Table T-1 of the appendix, the 

0.95 quantile of the underlying normal W is  + 1.645 .  From 

Equation (7.27), the
 
0.95 quantile of Y is

1.645e .  Because e  

is the median of Y, we have: 

                    EF = 1 645.e  (7.34) 

Note that the error factor does not depend on . 
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Figure 7.11 shows three lognormal densities.  The value μ = −7 corresponds to a 

median of e −7
, or about 0.0009.  The value μ = − 6.5 corresponds to a median of 

about 1.5x10
−3

.  The value σ = 1.4 corresponds to an error factor EF = e
1.6457 σ

 

= e
1.645(1.4)

 = 10 and σ = 0.67 corresponds to an error factor EF = e
1.645(0.67)

 = 3. 

 

Figure 7.11.   Three lognormal densities  

The two lognormals with σ = 0.67 and different values of μ but the same EF = 3 

have essentially the same shape, but with different scales.  The larger μ 

corresponds to spreading the distribution away from zero.  The lognormal with  

σ = 1.4 and EF = 10 is much more skewed than the lognormal with EF = 3. 

The lognormal distribution often arises from the product of several independent 

random variables.  If Y is the product of n independent positive random variables 

that are identically (or nearly so) distributed, then:  

1 2

11

( ) ( )( ) ( ) ( )
n n

n i i

ii

ln Y ln Y Y ... Y ln Y ln Y  (7.35) 

is approximately normal because of the CLT property of sums of independent 

and identical random variables.  Consequently, Y is approximately lognormal. 

Use Excel’s spreadsheet function =NORMDIST(ln(y), μ, σ, 1) to calculate F(y).  

Alternatively, use Excel’s spreadsheet function =LOGNORMDIST(y, μ, σ) to 

calculate F(y).  Note that the function =NORMDIST requires ln(y), whereas 

=LOGNORMDIST requires only y.  The input terms for the =LOGNORMDIST 

function are: 

y = the value at which to calculate the cdf 

μ = the mean of ln(Y) 

σ = the standard deviation of ln(Y) 

As examples, we have the following functions and their returns: 
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 LOGNORMDIST(0.001, -7, 4) = 0.526 

 NORMDIST(ln(0.001), -7, 4, 1) = NORMDIST(-6.91, -7, 4, 1) = 0.526 

where ln(0.001) = -6.91 

Additional information about the lognormal distribution may be found in the 

following texts: 

Krishnamoorthy (2006), p. 247 

Hastings and Peacock (1975), p. 84 

Patel et al. (1976), p. 28  

7.10  Chi-square distribution 

chi-square 

distribution 
The chi-square distribution is a widely used distribution because, 

under reasonable assumptions, many statistics follow that 

distribution.  Specific uses of the chi-square distribution include 

goodness-of-fit tests (Chapter 11), contingency table analyses 

(Chapter 12), and tests of variance (Chapter 14).  This section 

defines and characterizes the distribution; other chapters 

demonstrate and explain the applications. 

 

degrees of 

freedom  

 

The chi-square distribution is denoted by χ
2
(  ), where the symbol 

χ is the lower case Greek letter chi and the parameter   is the 

lower case Greek letter nu.  In statistical applications,  is a 

positive integer and is also known as degrees of freedom. 

The density of a random variable Y that has the chi-square distribution with  

degrees of freedom is given by:  

2 ( 2) 2

( 2)
( ) 0 1 2 3

2 ( 2)

y/ /

/

e y
f y , y , , , , ...

/
  (7.36) 

The symbol  in Equation (7.36) is the Greek capital letter gamma.  It is the 

standard notation for the gamma function that is defined for w > 0 as: 

0

1w xw x dxe  (7.37) 

 For a positive integer k, (k) = (k-1)! = (1)(2) … (k-1).  Note that 

(1) = 0! = 1.  
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 The chi-square distribution with ν degrees of freedom can also be defined as 

the sum of squares of ν independent and identically distributed standard 

normal random variables.  Mathematically,  

2

1

i

i

Y Z  (7.38) 

where Zi indicates independent standard normal variables. 

The density of the chi-square distribution is plotted in Figure 7.11 for selected 

values of ν. 

 

Figure 7.12.   Chi-square density for 1, 2, 5, and 10 degrees of 
freedom 

The mean and variance of Y are simple functions of ν.  

E[Y] = ν (7.39) 

V [Y] = 2 ν (7.40) 

Selected quantiles of the chi-square distribution for selected degrees of freedom 

are given in Table T-2, ―Quantiles, 2( ),q
 for the chi-square distribution with ν 

degrees of freedom,‖ of the appendix.   The q
th

 quantile of Y, denoted by yq, is a 

value such that 100q% of the χ
2
( ) distribution is below yq and (1-q)100% of the 

distribution is above. yq.  To find yq, look at Table T-2 under the row for ν and 

the column for q.  As an example, Table T-2 shows the 0.95 quantile 2

0.95(5)
 
of 

the chi-squared distribution for 5 degrees of freedom as 11.1.   
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Figure 7.13 shows this graphically.  The shaded area under the curve for 

0 < y < 11.1 represents 95% of the chi-square distribution with ν = 5 degrees of 

freedom.  Accordingly, the probability that χ
2
(5) will exceed 11.1 is only 0.05, 

or 5%, as reflected in the unshaded area to the right of y = 11.1.  

 

Figure 7.13.   95% cumulative probability for the χ
2

 (5) distribution 

As an alternative to table lookup, you can use a spreadsheet function that, for a 

selected probability, returns the associated quantile.  Excel’s spreadsheet 

function =CHIINV(1- p, ) returns the value y0 that is associated with a 

probability q that a random variable χ
2
() will be less than y0.  For example, the 

call =CHIINV(0.05, 5), for the 95
th

 quantile of the χ
2
(ν) distribution, returns the 

value of y0 = 11.1.   

A related spreadsheet function is Excel’s =CHIDIST(y,) which returns the 

probability Pr{Y > yo} for a given value of y = y0.  For example, 

=CHIDIST(11.1, 5) returns the value of 0.05. 

Note that Excel does not give the density of the chi-square distribution.  For that 

matter, the density is not very useful for data analysis.  However, if we wish to 

calculate that chi-square density (perhaps for plotting the distribution), we can 

calculate it directly from Equation (7.36). 

 To calculate the density of χ
2
(ν) from Equation (7.36), it is necessary to 

evaluate the gamma function in Equation (7.37).  Excel provides the 

function =GAMMALN, the natural logarithm of the gamma function, 

but not the gamma function itself.  Thus, to calculate Г(w), use a 

combination of Excel’s functions such as =EXP(GAMMALN(w)), 

where =EXP( ) is Excel’s natural antilogarithm function. 

Additional information about the chi-square distribution may be found in the 

following texts: 



132 Applying Statistics 
 

 

Johnson and Kotz (1970), p. 166 

Hastings and Peacock (1975), p. 124 

Krishnamoorthy (2006), p. 155 

7.11  Student’s t-distribution   

t-distribution Student’s t-distribution is a widely used distribution because, 

under reasonable assumptions, many statistics follow that 

distribution.  Specific uses of the t-distribution include estimation 

techniques (Chapter 9) and testing hypotheses about population 

parameters (Chapters 13, 15, and others).  This section defines 

and characterizes the distribution; other chapters demonstrate and 

explain the applications. 

Student’s 

t-distribution 
The mathematical foundation of Student’s t-distribution or 

simply, the t-distribution was laid in 1908 in a publication by 

W.S. Gosset, who served as a brewmeister with the Guinness 

brewery in Dublin.  The brewery forbade research publications by 

its staff (because an earlier paper contained trade secrets), and 

consequently, Gosset published his work under the pseudonym of 

―Student.‖ 

The mathematical definition of the t-distribution is as follows.  Suppose Z has a 

standard normal distribution, X has a chi-square distribution with  degrees of 

freedom, and Z and X are independent.  Then, 

Z
Y

X /
 (7.41) 

has a t-distribution with  degrees of freedom, where  is a positive integer.   

The t-distribution is denoted by t(ν).  Its density is given by:  

1
2 2

1

2
( ) = 1

2

y
f y , y

   
(7.42) 

where Γ  is the gamma function from Equation (7.37).  The density of t(ν) is 

symmetric about 0, and, as  increases, approaches the density of the standard 

normal distribution. 

The mean of Y is:  
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E[Y] = 0,   ν = 2, 3, ... (7.43) 

 The mean of Y is not defined when ν = 1. 

The variance of Y is:  

[ ] = 3 4
2

V Y , , , ...  (7.44) 
 

   The variance of Y is not defined when ν = 1 or ν = 2. 

Figure 7.14 shows the density of Y for ν = 1, 4, and 100.  As ν increases, the 

density converges quickly to the standard normal density.  Indeed, if a graph of 

the standard normal density were superimposed on Figure 7.14, it would be 

indistinguishable from the t-distribution density for ν = 100.  In fact, it would be 

essentially indistinguishable for ν = 30. 

 

Figure 7.14.   Student’s t density for  = 1, 4, and 100  

Selected quantiles q of the t-distribution for selected degrees of freedom ν are 

given in Table T-3, ―Quantiles, tq(ν), for Student’s t-distribution with ν degrees 

of freedom.‖ of the appendix.  The q
th

 quantile of t(ν), denoted by tq(ν), is a 

value such that 100q% of the t(ν) distribution is below tq(ν) and (1 - q)100% of 

the distribution is above tq(ν).  To find a specific quantile q, look at Table T-3 

under the row for ν and the column for q.  As an example, Table T-3 shows the 

0.975 quantile t0.95(30) of the t-distribution for 30 degrees of freedom as 2.04.  

This is shown graphically in Figure 7.15, where the shaded area to the left of 

2.04 represents 97.5% of the distribution, and the unshaded area greater than 

2.04 represents 2.5% probability of the Student’s t-distribution with  = 30 

degrees of freedom.  
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Figure 7.15.   97.5% cumulative probability for the t-distribution with 

 = 30 

Just as for the normal distribution, the t-distribution is symmetric about its mean 

of 0.  Thus, Table T-3 shows only positive quantiles (i.e., only for values of 

q  0.50).  If q < 0.50, the required quantile is the negative of the (1 – q)
th

 

quantile (i.e., – t1-q( )).  Thus, the 0.025 quantile of t(30) is -t0.975(30) = -2.04. 

As an alternative to table lookup, use a spreadsheet function that, for a selected 

probability q, yields the associated quantile.  Excel’s =TINV function returns the 

complement quantile, but assumes that a two-sided interval is requested.  Hence, 

to get tq(v), the call to Excel is =TINV(2(1- q), υ).  Thus, to find the 

0.975 quantile of t(30), call =TINV(0.05, 30) and obtain the value of 2.04 

(rounded). 

A less practical spreadsheet function is Excel’s =TDIST(y0,, k).  When k = 2, 

this function returns the probability of Y exceeding a point y0.  When k = 1, this 

function returns half that probability.  Examples of the use of this function are 

=TDIST(2.04, 30, 2) which returns a value of 0.05, and =TDIST(2.04, 30, 1) 

which returns a value of 0.025.  

Additional information about the t-distribution may be found in the following 

texts: 

Hastings and Peacock (1975), p. 120 

Krishnamoorthy (2006), p. 172 
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7.12  F-distribution 

F-distribution The F-distribution is a widely used distribution because, under 

reasonable assumptions, many statistics follow that distribution.  

Specific uses of the F-distribution include tests of equality of 

means of several distributions (Chapters 16 and 17), tests of 

equality of variances (Chapter 14), and equality of regression 

lines (Chapter 18).  This section defines and characterizes the 

distribution; other chapters demonstrate and explain the 

applications. 

The F-distribution was originally defined by Sir Roland A. Fisher in 1920 as the 

distribution of the ratio of two independent chi-square variables.  George E. 

Snedecor later modified this distribution as the ratio of two independent 

chi-square variables, each divided by its degrees of freedom.  Formally, 

Snedecor’s F (so named to honor Fisher’s contribution) is defined as:  

2

1 1

2

2 2

/
F

/
 (7.45) 

where 2 2

1 2and  are independent chi-square variables and  ν1 and ν2 are the 

corresponding degrees of freedom.  

The F-distribution is denoted by F(ν1, ν2).  The parameters ν1 and ν2 are usually 

referred to as degrees of freedom of the numerator and degrees of freedom of the 

denominator, respectively. 

A distinguishing property of the F-distribution is that the reciprocal of an 

F-distribution is also an F-distribution.  From Equation (7.45), we have: 

2 2

1 1 2 2
1 2 2 12 2

2 2 1 1

1

1
/ /

/ F v ,v F ,v
/ /

 (7.46) 

For ν1 and ν2 positive integers, the density function of the F-distribution is: 

2

1

(2 1

1 2 2

1

1 2

2) 21
2

( ) = 1 0

2 2

/

/
f y , y

B ,

yy  
(7.47) 

where the denominator is the beta function, defined for positive a and b by: 



136 Applying Statistics 
 

 

1 11

0
1

baB a,b w w dw  (7.48) 

The mean of the F-distribution, defined for ν2 > 2, is: 

2
2

2

[ ] 3 4
2

E Y , , , ... (7.49) 

The variance of the F-distribution, defined for ν2 > 4, is: 

2

2 1 2

2

1 2 2

2

2 2
[ ] 5 6

2 4
V Y , , , ... (7.50) 

Figure 7.16 shows the density of the F-distribution for several combinations of 

ν1 and ν2.  Figure 7.16 is reproduced from NIST Handbook (2006), 

Section 1.3.6.6.5. 

 

Figure 7.16.   Density function of the F-distribution for selected 
combinations of degrees of freedom 

Table T-4, ―Quantiles, fq(ν1, ν2), for the F-distribution,‖of the appendix gives 

selected quantiles of F(ν1, ν2) for various combinations of ν1 and ν2.  To find a 

quantile, follow these steps: 
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 Locate the row that corresponds to the degrees of freedom of the 

denominator, ν2. 

 Locate the column that corresponds to the degrees of freedom of the 

numerator, ν1. 

 Locate the sub-row that corresponds to the required quantile. 

As an example, the 0.95 quantile of the F-distribution with ν1 = 5 and ν2 = 20 is 

f0.95(5,20) = 2.71. 

Because of space limitations, Table T-4 provides only commonly used quantiles.  

For the same reason, only selected degrees of freedom for the numerator and 

denominator are listed.  If necessary, use interpolation, or better yet, an 

appropriate spreadsheet function, as discussed later. 

Note that Table T-4 lists only quantiles q  0.90.  To obtain quantiles q  0.10, 

we exploit the reciprocal property of the F-distribution as expressed by 

Equation (7.46).   

Let Y be any distribution that takes on only positive values, and let yq be the q
th

 

quantile of Y.  Then, 

q = Pr{Y < yq} = Pr{Y > 1/yq} = 1 - Pr{1/Y < 1/yq}                  (7.51) 

From Equation (7.50), Pr{ 1/Y < 1/yq} = 1-q.  In other words, 1/yq is the (1-q)
th

 

quantile of 1/Y.  Now set Y = F(ν2, ν1) and let fq(ν2, ν1) be its q
th

 quantile.  Then, 

1/fq(ν2, ν1) is the (1-q)
th

 quantile of 1/F(ν2, ν1 ) = F(ν1, ν2), using Equation (7.46).  

We conclude that the (1-q)
th

 quantile of F(ν1, ν2) is 1/fq(ν2, ν1).  We write: 

(1 ) 1 2

2 1

1
( , )

( , )
q

q

f
f

 (7.52) 

Note the reversal of the degrees of freedom from Equation (7.51).   

As an example, to find the 0.05 quantile of the F-distribution with ν1 = 5 and 

ν2 = 20, we first look up the table value for the 0.95 quantile, f0.95(20,5) = 4.56.  

Then the reciprocal of that value, 1/4.56 = 0.219, is the 0.05 quantile of F(5,20). 

Excel provides two spreadsheet functions that are related to the F-distribution:  

=FDIST and =FINV. 

Excel’s =FDIST function may be used to calculate a complementary cumulative 

probability—the probability that a random observation from the F-distribution 

will exceed a specified value, y0.  The call to this function is =FDIST (y0, ν1, ν2), 

where ν1 is the degrees of freedom in the numerator and ν2 is the degrees of 

freedom in the denominator.  Examples of the use of the =FDIST function are: 
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 =FDIST(9.45, 24, 2) = 0.100 

 =FDIST(1.80, 4, 30) = 0.155 

 =FDIST(1.80, 30, 4) = 0.303 

The first example states that the probability of a random observation from 

F(24, 2) exceeding 9.45 is 0.100.  The value of the cdf at y0 = 9.45 is 

1 - 0.100 = 0.900. 

The last two examples of the =FDIST function show that if the degrees of 

freedom are interchanged, different results are returned. 

Excel’s spreadsheet function =FINV determines the quantile whose probability 

of exceedance is a specified value p0.  This function is used to obtain values 

such as in Table T-4 for any combination of degrees of freedom and p0 and with 

more significant figures. 

The call to this function is =FINV (p0, ν1, ν2), where: 

p0 is the probability for which the value of F is calculated 

ν1  is a the degrees of freedom in the numerator 

ν2 is the degrees of freedom in the denominator 

Examples of the use of the =FDIST function are: 

 =FINV(0.100, 24, 2) = 9.45 

 =FINV(0.05, 1, 100) = 3.94 

Note that the =FINV’s returned value is given from the complementary 

distribution of F.  Hence, to obtain the q
th

 quantile, the first entry in this function 

must be the complementary probability (i.e., 1 – p0). 

Additional information about the F-distribution may be found in the following 

texts: 

Hastings and Peacock (1975), p. 124 

Krishnamoorthy (2006), p. 202 
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7.13  Exponential distribution 

exponential 

distribution 
The exponential distribution is widely used for modeling time to 

failure of a component or system.  Denote the time to failure by the 

random variable Y = Y(λ), where λ > 0 is a parameter. 

The density of Y is given by:  

f(y) = λe
−
 
λ y 

, y > 0 (7.53) 

The cdf of the exponential distribution is: 

F(y) = 1 - e
-λy

 

(7.54) 

The mean and variance of T are: 

E[Y] = 1/λ (7.55) 

V [Y] = 1/λ
2  

(7.56) 

failure 

frequency 
Here, λ is the failure frequency and is equal to 1/E(Y).  Therefore, 

λ has units of failures per unit time. 

Figure 7.17 shows two exponential densities for two values of λ.  The intercept 

(height of the curve when y = 0) equals λ.  Thus, the figure shows that the 

distribution is more concentrated near zero if λ is large.  This agrees with the 

interpretation of λ as a failure frequency and t as time to failure. 

 

Figure 7.17.   Two exponential densities 
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failure rate  

 

hazard rate 

The exponential parameter λ is referred to as the failure rate if the 

component or system is repaired and restarted immediately after 

each failure.  It is called the hazard rate if the component or 

system can fail only once and cannot be repaired.  The hazard rate 

is defined as modeling duration times with an arbitrary density 

f(y): 

                      

( )
( )

1 ( )

f y
h y

F y
 (7.57) 

From Equations (7.52) and (7.53), the exponential hazard rate is constant and is 

equal to λ. 

 

 

mean time 

to failure 

mean time 

to repair 

A different and sometimes useful parameterization of the 

exponential  uses μ = 1/λ = E[Y].  If Y is the time to failure, μ is 

called the mean time to failure.  If Y is the time to repair, or to fire 

suppression, or to some other event, μ is called the mean time to 

repair, or another appropriate name.  With parameter μ, the density 

of Y is given by: 

                   

/1( ) , 0yf y ye  (7.58) 

                      and the cdf is:  

                     F(y) = 1- e 
-y/μ

 ,   y > 0
  

(7.59) 

The units of μ are the same units of time as the data.  The mean and variance 

are: 

E[Y] = μ  

V [Y] = 
 2

 

(7.60) 

(7.61) 

 

Additional information about the exponential distribution may be found in the 

following texts: 

Hastings and Peacock (1975), p. 56 

Krishnamoorthy (2006), p. 179  

Patel et al. (1976), p. 212 
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7.14  Gamma distribution   

The gamma distribution is a generalization of both the exponential and chi-

square distributions.  Also, the sum of independent exponential random 

variables has a gamma distribution.  The gamma distribution has a number of 

useful applications, including confidence intervals for exponential data, waiting 

time to the n
th

 event in a Poisson process, and a failure time model (Martz and 

Waller, 1991, Section 4.2).  It is also often used as a prior distribution in 

Bayesian estimation (Chapter 20) of the failure rate parameter  from Poisson or 

exponential data.  

The density of a gamma random variable Y is: 

1( ) = 0 0 0
( )

y
f y , y , ,y e  (7.62) 

where  (α) is defined in Equation (7.37) but is reproduced here for 

convenience: 

0

1w xw x dxe  

A gamma distribution with parameters α and β is denoted by Gamma(α, β).  Its 

mean and variance are: 

[ ]E Y /  (7.63) 

2[ ]Var Y /  (7.64) 

The parameters α and β are referred to as the shape and scale parameters, 

respectively.  By varying α we change the appearance of the density.  If α is near 

zero, the distribution is highly skewed.  When α = 1, the gamma distribution 

reduces to an exponential distribution.  

Figure 7.18 shows gamma densities with four shape parameters, α.  When α < 1, 

the density becomes infinite at 0. When α = 1, the density is identical to an 

exponential density. When α is large, the distribution is approximately normal.  
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Figure 7.18  Gamma density distributions for  = 1 with four shape 
parameters. 

Excel’s spreadsheet function for gamma(α, β)  is GAMMADIST(y, α, β, 1), 

where y is the value at which we want to evaluate the distribution.  The last term 

in parenthesis of this function is 1, instructing the spreadsheet to return the cdf 

evaluated at y.  In contrast, the function =GAMMADIST(y, α, β, 0), returns the 

density at y, which is not very useful. 

Example:  To obtain the probability that a gamma random variable will not be 

larger than y = 105 when  =20 and  = 100 is 

=GAMMADIST(55, 1, 10,1) = 0.393. 

Additional information about the gamma distribution may be found in the 

following texts: 

Hastings and Peacock (1975), p. 68, 

       Patel et al (1976), p. 30.    

7.15  Beta Distribution 

Many continuous quantitative phenomena take on values that are bounded by 

known numbers a and b.  Examples are percentages, proportions, and ratios.  

The beta distribution is a versatile family of distributions that is useful for 

modeling phenomena that can range from 0 to 1 and, through a transformation, 

from a to b. 

The beta distribution family includes the uniform distribution and density shapes 

that range from decreasing to uni-modal right-skewed to symmetric to U-shaped 
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to uni-modal left-skewed to increasing (Martz and Waller 1991, p. 103).  It can 

serve as a reliability model for the probability that a system or component would 

operate for at least t units of time. The beta distribution is also widely used in 

Bayesian estimation and reliability analysis as a prior distribution for the 

binomial  parameter p that represents a reliability or failure probability (see 

Chapter 20). 

The density of a beta random variable Y is: 

 1 1(1 ) 0 1 0 0f y y y , y , ,  (7.65) 

A beta distribution with parameters α and β is denoted by Beta(α, β).  Its mean 

and variance are: 

[ ]E Y  (7.66) 

2
[ ]

1
V Y  (7.67) 

Various beta densities are shown in Figures 7.19 and 7.20.  Figure 7.19 shows 

beta densities with α = β, and therefore with mean 0.5.  When α < 1, the density 

becomes infinite when y = 0, and when β < 1, the density becomes infinite when 

y = 1.  When α = β = 1, the beta density reduces to the uniform.  When               

α = β = 0.5, the density is U shaped and is the Jeffreys noninformative prior for a 

binomial likelihood function (see Chapter 20).  When α and β are large, the 

density is approximately normal. 

 

Figure 7.19.   Four beta distributions with mean 0.5   
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Figure 7.20 shows four densities with mean 0.1. Again, when α < 1, the density 

becomes infinite at 0, and when α > 1, the density is zero at 0.  When α and β are 

large, the density is approximately normal. 

 

Figure 7.20.  Four beta distributions with mean 0.1 

Another parameterization of the beta distribution uses the parameters x0 = α and 

n0 = α + β.  This parameterization is used by Martz and Waller (1991) because it 

simplifies the formulas for Bayesian estimation.  The density of a Beta(x0, n0) 

distribution is 

0 00
110

0 0

0 0 0

1 0 1 0
n xxn

f y y y , y , x n
x n x

 

(7.68) 

The mean and variance of a Beta(x0, n0) distribution are 

0 0[ ]E Y x / n  (7.69) 

0 0 0

2

0 0

[ ]
1

x n x
V Y

n n
 (7.70) 

Excel’s call function for the cdf of Beta(α, β) is =BETADIST (y, α, β, a, b), 

which returns the probability that Y < y and where a and b are general bounds on 

Y.  For the standard beta with boundaries 0 and 1, the call function is 

=BETADIST (y, α, β, 0, 1).  Some examples for beta(2,18) are: 

=BETADIST (0.1, 2, 18, 0, 1) = 0.580 

=BETADIST (0, 2, 18, 0, 1) = 0. 0 

=BETADIST (1, 2, 18, 0, 1) = 1 
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The last two examples are trivial but may be used as a check on our function 

setup. 

To illustrate the generalized distribution, suppose the random variable 

Beta(2,18) was divided by 10 and its boundaries shifted from (0, 1) to (0.1, 0.2).  

Then  y = 0.1 is transformed to y = 0.11 and the corresponding point on the cdf is 

=BETADIST (0.11, 2, 18, 0.1, 0.2) = 0.580, the same probability as for the 

standard beta.  

Additional information about the beta distribution may be found in the following 

texts: 

Hastings and Peacock (1975), p. 70, 

       Patel et al (1976), p. 216.    
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8 
Discrete distributions 

8.1  What to look for in Chapter 8 

 

discrete 

distribution 

Chapter 8 lays the background for several discrete distributions.  

A discrete distribution is a distribution that applies to 

experiments where the set of values that can be observed is 

finite or countably infinite. 

The distributions covered in this chapter are:   

 discrete uniform distribution, §8.2 

 Bernoulli distribution, §8.5 

 hypergeometric distribution, §8.6 

 binomial distribution, §8.7 

 geometric distribution, §8.8 

 negative binomial distribution, §8.9 

 Poisson distribution, §8.10 
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probability 

function 

 pf 

This chapter presents several discrete distributions.  For each 

distribution, we give the probability function or pf and the 

associated mean, variance, and standard deviation, and point to 

typical situations where these distributions are applicable.  We 

also give some spreadsheet functions that ease the calculations 

associated with these distributions. 

 
probability mass 

function 

 pmf 

Recall that the probability function for discrete variables is 

sometimes called the probability mass function or pmf rather 

than pf. 

Because of their importance, three of the listed distributions also have their own 

chapters with extensive discussion of their applications.  These distributions are 

the hypergeometric distribution (Chapter 21), the binomial distribution 

(Chapter 22), and the Poisson distribution (Chapter 23).   

As background for the Bernoulli and hypergeometric distributions, we also 

discuss: 

 sampling for attributes, §8.3 

 sampling with and without replacement, §8.4 

8.2  Discrete uniform distribution 

discrete 

uniform 

distribution  

The discrete uniform distribution is a probability distribution 

taking on a finite number of equally probable values.  If a 

random variable Y may attain any of n possible values y1, y2, …, 

yn, each with probability 1/n, then Y is said to have a discrete 

uniform distribution.  The pf for Y is given by: 

f (y; n) = 1/n, y = y1, y2, …, yn (8.1) 

The n possible values are often the integers 1, 2, …, n.  For example, if we need 

to randomly select a single individual from a class of size n, we can assign the 

members of the class consecutive numbers 1 through n and then draw (from a 

hat or otherwise) a random number between 1 and n to select one individual.   

Example 8.1.   Die rolling.   When a fair die is rolled, each face is equally 

likely to turn up.  Let Y equal the number of dots that turn up.  Then Y has a 

discrete uniform distribution with pf: 

f (y; 6) = 1/6, y = 1, 2, 3, 4, 5, 6 (8.2) 
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If the n possible outcomes are in [a, b], that is, starting at a number a and ending 

in b, we have n = b - a + 1 consecutive numbers, each with equal probability of 

being selected.  The pf for this discrete uniform distribution is given by: 

f(y; b – a + 1) = 1/(b – a + 1), y = a, a+1, …, b (8.3) 

Example 8.2.   Travel vouchers.   The travel office numbers travel vouchers 

consecutively, starting with 1 at the beginning of the year.  Suppose we wish to 

randomly select a voucher from the month of March, where the vouchers are 

numbered from 392 through 516.  From Equation (8.3), a = 392, b = 516, 

n = (516 – 392 +1) = 125, and the probability that any specific voucher will be 

selected is 1/125 = 0.008. 

Let Y be a discrete uniform distribution assuming values 1, 2, …, n.  Its mean, 

variance, and standard deviation are:  

( 1)

2

n  (8.4) 

12/)1)(1(2 nn  (8.5) 

( 1)( 1) /12n n  (8.6) 

If Y is a discrete uniform distribution assuming n = b – a + 1 values in [a, b], its 

mean is different than in Equation (8.4), but its variance and standard deviation 

are the same as in Equations (8.5) and (8.6): 

µ = (a + b)/2 (8.7) 

12/)1)(1(12/))(2(2 nnabab  (8.8) 

12/)1)(1(12/))(2( nnabab  (8.9) 

The graph of the pf is the familiar bar chart of Section 3.5.  It is plotted in 

Figure 8.1 for Example 8.1 (die rolling). 
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Figure 8.1.   Probability function for die rolling  

discrete 
random 

number 

A discrete random number is defined as an observation from a 

discrete uniform distribution.  In practice, there are several ways 

to select a random number.  To select a random number from 

among n values, we write the n values on n cards, place the 

cards in a box and, while blindfolded, draw a card.  Alternativly, 

use a table of preselected random numbers, such as Table T-12, 

―Two thousand random digits‖ of the appendix.  

 

However, either of these methods of obtaining random numbers may be slow 

and cumbersome, especially if more than one random number is required.  The 

selection process can be expedited by resorting to computer routines.  Excel, for 

example, offers the function =RANDBETWEEN(a, b) to select a single value 

between, and including, a and b.   

Many hand-held calculators provide a random number routine that, by the push 

of a button, yields a random number between 0 and 1.  This function is typically 

labeled as ―Rand‖ or ―Rnd.‖  To obtain a random integer between 1 and 1000 

(say), multiply the calculator’s random number by 1000, drop the fraction after 

the decimal point, and add 1.  The reason for adding 1 is to avoid 0 (which is not 

on the list) and to allow the possibility of selecting 1000. 

8.3  Sampling for attributes 

 

 

 

 

 

Inference based on data measured on an interval or a ratio scale 

typically focuses on parameters such as the mean and the 

variance.  Inference based on discrete data typically focuses on 

the composition of a population (e.g., the proportion of the 

population having a specific characteristic or attribute).           
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attribute 

 

dichotomous 

binary 

An attribute is a qualitative characteristic of an item that it 

either possesses or does not possess.  This implies that every 

item in the population can be classified unambiguously into one 

of two groups.  Such a classification is called dichotomous or 

binary.  Binary classifications are modeled by the Bernoulli 

distribution, introduced in Section 8.5. 

sampling for 

attributes 
Sampling for attributes is the process by which information 

about the composition of a population is investigated by 

classifying selected items (usually chosen at random) with a 

binary classification.   

In regulatory work, sampling for attributes is very important:  An item, record, 

or unit is either in compliance or not in compliance; a circuit may be open or 

not; a security guard may be present on location or not.  Other examples of 

binary classification are {yes, no}, {on, off}, {defective, not defective}, 

{employed, unemployed}, and {married male and employed, otherwise}. 

If an outcome or observation results in a grey area (e.g., maybe, almost, or 

undetermined), then we must modify our approach to binary classification.  For 

example, we may classify a grey area outcome such as ―slightly defective‖ 

consistently and unambiguously as one attribute or the other.  In either case, it is 

imperative that the disposition of the ―close-call‖ outcomes be determined 

before data collection in order to avoid the introduction of bias. 

8.4  Sampling with and without replacement   

Suppose we wish to infer the composition of a population of dichotomous items 

based on a random sample of n items from the population.  For our statistical 

analysis, we need to take account of the probabilities of drawing the possible 

random samples.  These probabilities depend on the method of drawing the 

sample as well as on the composition of the population.  This is illustrated by a 

simple example.  Suppose we have an urn with four marbles, any of which may 

be white or red.  We will draw a sample of two marbles by first drawing one 

marble, putting it aside, and then drawing a second marble, all while we are 

blindfolded.  Suppose further that the urn contains two white and two red 

marbles and that we wish to calculate the probability that the sample will consist 

of two white marbles.  Clearly, the probability of drawing a white marble from 

the urn in the first draw is 1/2.  The probability of drawing a white marble in the 

second draw depends on the composition of the urn after the first draw.  Because 

one white and two red marbles remain after the first draw, the probability of 

drawing a white marble in the second draw is 1/3.  Hence, the probability of 

drawing two white marbles is (1/2)(1/3) = 1/6. 

sampling 

without 
A sampling scheme where an item is not returned to its 

population after being drawn and classified is called sampling 

without replacement.  Destructive assays are a good example 
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replacement 

 

 

hypergeometric 

distribution 

of sampling without replacement; a fire cracker tested for 

usability cannot be tested a second time.  The statistical 

properties of sampling without replacement can be modeled by 

the hypergeometric distribution, introduced in Section 8.6.  

The hypergeometric distribution and its applications are 

described in greater detail in Chapter 21.   

sampling with 

replacement 

 

 

 

 

 

binomial 

distribution 

An alternative sampling scheme is called sampling with 

replacement, where each item in the sample is returned to the 

population after it is drawn and classified.  In the urn example 

above, the probability of drawing a second white marble 

remains unchanged so that the probability of drawing two 

white marbles is (1/2)(1/2) = 1/4.  Sampling with replacement 

is popular in fish and wildlife migration studies, where 

captured animals are measured and released back to the wild, 

where they may be captured again.  Sampling with replacement 

is also used in traffic control, where, after being caught, a 

violator may resume his trip only to be caught speeding again 

later.  The statistical properties of sampling with replacement 

can be modeled by the binomial distribution, introduced in 

Section 8.7.  This distribution and its applications are described 

in greater detail in Chapter 22.  Alternatively, when the 

presence of an attribute is a rare event, the applicable 

distribution is the Poisson distribution.  The Poisson 

distribution is introduced in Section 8.10 and described in 

greater detail in Chapter 23. 

 To test your understanding, verify that if an urn contains two white and 

three red marbles, then: 

…if we draw one marble, the probability of drawing red is 3/5. 

…if we draw (and keep) a red marble on a first trial, the probability of 

drawing a red marble on a second trial is 1/2. 

…if we draw (and keep) a white marble on a first trial, the probability of 

drawing a red marble on a second trial is 3/4 

…if each drawn marble is returned to the urn, the probability of drawing a 

red marble on the next draw is always 3/5. 

8.5  Bernoulli distribution 

Bernoulli 

distribution 
The simplest discrete distribution is the Bernoulli distribution, 

which assumes only two possible values, 0 and 1.  It is used to 

model an experiment with two possible outcomes (often labeled 
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Bernoulli 

trial 

 trial 

―success‖ or ―failure‖) or an observation that either has a 

specified attribute or does not.  The experiment or observation is 

sometimes called a Bernoulli trial or simply a trial.  These 

applications are often combined by labeling the experimental 

outcome a ―success‖ when the attribute is present or a ―failure‖ 

when it is absent.  The usual convention for the Bernoulli 

distribution is to label a success as ―1‖ and a failure as ―0.‖ 

 The Bernoulli distribution is named after the Swiss theologian-cum-

mathematician Jacob (a.k.a. Jakob or James or Jacques) Bernoulli, 

(1654–1705).  He was in a family of several generations of 

mathematicians and physical scientists, Bernoulli is credited with 

coining the term integral. 

The following are examples of Bernoulli trials: 

 a coin toss that may be either ―heads‖ or ―tails‖ 

 a statement that is either ―correct‖ or ―incorrect‖ 

 a die roll that may be either ―6‖ or ―not 6‖ 

 a pipe weld that is either ―acceptable‖ or ―not acceptable‖ 

 a person who is either ―infected‖ or ―not infected‖ 

 an accident that was either ―avoidable‖ or ―unavoidable‖ 

 If ―heads‖ is a success, a fair coin has probability 0.5 of success.  

 If ―6‖ is a success, a fair die has probability 1/6 of success.  

 

If Y has a Bernoulli distribution, we use π (Greek letter pi) to denote Pr{1}.  The 

pf for the Bernoulli distribution is: 

f(1) = Pr{1} =  

f(0) = Pr{0} = 1 -  
(8.10) 

The mean, variance, and standard deviation of Y are:  

μ =  (8.11) 

σ 
2 
= (1 - ) (8.12) 

σ = (1 )  (8.13) 

 

The pf for a Bernoulli distribution is graphed in Figure 8.2 for p = 0.5 (as in a 

toss of a fair coin) and in Figure 8.3 for  = 0.1333 (as in a roll of a fair die if 

success is defined as rolling a ―6‖). 
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Figure 8.2.   Bernoulli pf: fair coin 
 

  

 

 

   Figure 8.3.   Bernoulli pf:  fair die  

 

 

8.6  Hypergeometric distribution 

hypergeometric 

experiment 
A hypergeometric experiment is a sampling scheme that 

samples a population for attributes without replacement and 

which satisfies the following conditions: 

 The sampled population is finite. 

 Once an item is selected, it cannot be selected again. 

 The size of the population is known. 

 The number of items with the attribute of interest is known. 

 Each item in the sample is drawn at random. 
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hypergeometric 

distribution 
Let Y = the number of items in the sample with the attribute of 

interest.  Then Y has a hypergeometric distribution.  The 

probability that Y = y, given a sample of size n and a population 

of N items, M of which have the attribute of interest, is: 

 

                          

( ) ( )

{ } =

0 ( )

f y f y; N ,M ,n

M N M
y n y

Pr y| N ,M ,n ,
N
n

y max( ,n M N ), ...,min M ,n

 
(8.14) 

 The lower limit max (0, n – N + M) placed on y in Equation (8.14) is 

needed if the sample size n is larger than the number of items without 

the attribute in the population (N – M).  In such a case, the number of 

items in the sample with the attribute y is minimized if all of the items 

without the attribute are in the sample (i.e., y  n – (N – M) > 0).  The 

upper limit min (M, n) placed on y in Equation (8.14) is needed because 

the number of items with the attribute in the sample (y) cannot be larger 

than the number of items with the attribute in the population (M), nor 

can it be larger than the number of items in the sample (n). 

 
 

binomial 

coefficient 

The mathematical expression a
b

 in Equation (8.14) is called a 

binomial coefficient and is read as ―a items taken b at a time.‖      

This expression counts the number of ways one may select b        

items out of a collection of a distinct items.  For integers a and b   

with 0  b  a, a formula for 
a
b  is:  

 

!

!( )!

aa
b b a b

 (8.15) 

 Note that a! is the product (1)(2) … (a) of the first a positive integers. 

 Note also that 0! is defined as 1 (unity). 

 The name ―binomial coefficient‖ is derived from the fact that it is the 

coefficient of x
b
 in the expansion of the binomial expression (1 + x)

a
. 
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The mean, variance, and standard deviation of the hypergeometric distribution 

are given by: 

N

nM  (8.16) 

2

1

nM N M N n

N N N
 (8.17) 

1N

nN

N

MN

N

nM  (8.18) 

The shape of the hypergeometric distribution depends on the parameters of the 

distribution:  the population size (N), the number of items with the attribute in 

the population (M), and the sample size (n).  Figures 8.4 and 8.5 show two 

hypergeometric distributions with the same N and M but with different sample 

sizes.   

 

Figure  8.4.   Hypergeometric pf, N = 25, M = 5, n = 10 
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Figure  8.5.   Hypergeometric pf, N = 25, M = 5, n = 5 
 

The calculations for Figures 8.4 and 8.5 are somewhat lengthy.  Instead, you 

may use Excel’s function =HYPGEOMDIST(y, n, M, N) to calculate f(y).  The 

calculation used for Figures 8.4 and 8.5 are shown in Table 8.1. 

Table 8.1.   Hypergeometric distribution calculations 

N M n y f(y) N M n y f(y) 

25 5 10 0 0.06 25 5 5 0 0.29 

25 5 10 1 0.26 25 5 5 1 0.46 

25 5 10 2 0.39 25 5 5 2 0.21 

25 5 10 3 0.24 25 5 5 3 0.04 

25 5 10 4 0.06 25 5 5 4 0.00 

25 5 10 5 0.00 25 5 5 5 0.00 

 
 Note that, apart from rounding error, the f(y) values add up to 1. 

Chapter 21 gives an extensive treatment of the hypergeometric distribution with 

examples and references.   
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8.7  Binomial distribution 

binomial 

experiment 

 

Let Y = the number of successes in n independent Bernoulli 

trials, where the probability of success, , is constant across the 

n trials.  This is called a binomial experiment and Y has a 

binomial distribution, denoted by B(n, ).  A binomial 

experiment models quality control, survey sampling, and 

reliability issues.  The requirements for a binomial experiment 

are listed below, with the understanding that some of these 

requirements may overlap. 

 The number of trials, n, is fixed.  

 A binomial experiment does not allow for a variable number of trials.  In 

contrast, some experiments continue until a fixed number of successes 

is achieved (see Sections 8.8 and 8.9). 

 All trials are conducted in an identical manner. 

 This requirement need not be taken literally.  In a coin tossing experiment, 

for instance, we need not insist that the same coin be tossed n times.  

Alternatively, we could toss n identical coins once each.  The important 

principle is that the conditions that affect the experiment’s results must 

be the same. 

 The i
th

 trial must result in either a success (recorded as yi = 1) or failure 

(recorded as yi = 0). 

 This requirement means that the result of each trial must be binary, or 

dichotomous. Whether you toss a coin or inspect a valve for 

compliance, the trial must lead to a success or a failure.  A coin that 

lands on its edge does not meet this requirement nor does a valve that is 

―almost completely‖ closed.  To satisfy the requirement, it is necessary 

to either disregard the result (e.g., the coin) or redefine what ―closed‖ 

means (e.g., the valve).  

 The probability of success is constant from trial to trial. 

 This requirement is not satisfied if the experimental conditions of the 

experiment change, e.g., if the quality of an inspection improves due to 

experience or deteriorates due to fatigue. 

 The n trials are independent. 
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 The sequence of trials has no ―memory.‖  If you win eight times in a row in 

a coin-tossing contest, the probability of winning the next toss is the 

same as for any previous toss. 

The pf of B(n, ) is: 

( ) ( ; , ) Pr{ | , } (1 )

!
(1 ) , 0 1, 0,1, ...,

! ( )!

y n y

y n y

n
f y f y n Y y n

y
n

y n
y n y

      

         

(8.19) 

where: 

 = probability of success in a single trial, 0 <  < 1 

 n = number of trials 

 y = number of successes 

The mean, variance, and standard deviation of B(n, ) are:  

µ = n  (8.20) 

  
2 
= n  (1 − ) (8.21) 

 = )1(n  (8.22) 

Two plots of the binomial distribution are shown below, both with the same 

sample size, n = 10, but with different values of π.  The purpose of these figures 

is to show how the binomial distribution becomes more like the normal 

distribution as π gets closer to 0.5.  In Chapter 22, we will show that the 

binomial approaches a normal as n increases.  

 

 

Figure 8.6.   Binomial pf:  π = 0.1, n = 10  
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Figure 8.7.   Binomial pf:  π = 0.5, n = 10  

Hand calculations for Figures 8.6 and 8.7 are relatively easy, but they are even 

easier using Excel’s function =BINOM(y, n, π, 0) to calculate f(y).  Table 8.2 

shows the probabilities that went into Figures 8.6 and 8.7.  Note that the last 

function entry of ―0‖ in =BINOM(y, n, π, 0) is an indicator that calls for the 

marginal probability.  If the indicator were ―1,‖ the cumulative probability 

would be returned. 

Table 8.2.   Binomial distribution probabilities 

π  n y f(y) π N y f(y) 

0.1 10 0 0.35 0.5 5 0 0.00 

0.1 10 1 0.39 0.5 5 1 0.01 

0.1 10 2 0.19 0.5 5 2 0.04 

0.1 10 3 0.06 0.5 5 3 0.12 

0.1 10 4 0.01 0.5 5 4 0.21 

0.1 10 5 0.00 0.5 5 5 0.25 

0.1 10 6 0.00 0.5 5 6 0.21 

0.1 10 7 0.00 0.5 5 7 0.12 

0.1 10 8 0.00 0.5 5 8 0.04 

0.1 10 9 0.00 0.5 5 9 0.01 

0.1 10 10 0.00 0.5 5 1 0.00 

 
Chapter 22 presents an extensive treatment of the binomial distribution with 

examples.   
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8.8  Geometric distribution 

 

geometric 

distribution 

In a variation of a binomial experiment, continue Bernoulli trials 

until a success occurs.  Let Y = the number of independent 

Bernoulli trials until the first success, with constant probability 

of success .  Then Y has a geometric distribution, denoted by 

G( ).  The probability that Y = y is the probability that (y – 1) 

successes are followed by a success.  Accordingly, the pf of 

G( ) is: 

f(y) = f(y;  ) = Pr{Y = y | π} = π (1 - π )
 y-1

,    y = 1, 2, …    (8.23) 

The mean, variance, and standard deviation of the geometric distribution are: 

µ = 1/π
 
       (8.24) 

2 2(1 ) /      (8.25) 

/)1(  (8.26) 

Two probability functions are graphed below, one for π = 0.2 and one for 

π = 0.4.   

 

 

Figure 8.8.   Geometric pf, π = 0.2  
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Figure 8.9.   Geometric pf:  π = 0.4 

Excel does not have a routine for calculating geometric distribution 

probabilities.  However, since the geometric distribution is a special case of the 

negative binomial distribution (see Section 8.9), we can calculate such 

probabilities using Excel’s =NEGBINOM(y-1, 1, π) function.  In that function, 

the middle term, 1, indicates that only one success is required after y – 1 failures.  

For example, the probability of the first success at the sixth trial when π = 0.4 is 

=NEGBINOMDIST(5, 1, 0.4) = 0.031.  Excel’s calculations for Figures 8.8 

and 8.9 are summarized in Table 8.3, rounded to two decimal places. 

Table 8.3.   Geometric distribution probabilities 

π y f(y) π y f(y) 

0.2 1 0.20 0.4 1 0.40 

0.2 2 0.16 0.4 2 0.24 

0.2 3 0.13 0.4 3 0.14 

0.2 4 0.10 0.4 4 0.09 

0.2 5 0.08 0.4 5 0.05 

0.2 6 0.07 0.4 6 0.03 

0.2 7 0.05 0.4 7 0.02 

0.2 8 0.04 0.4 8 0.01 

0.2 9 0.03 0.4 9 0.01 

0.2 10 0.03 0.4 10 0.00 

0.2 11 0.02 0.4 11 0.00 

0.2 12 0.02 0.4 12 0.00 

0.2 13 0.01 0.4 13 0.00 



Discrete distributions 163  

 

Example 8.3.   Russian roulette.   Suppose that a revolver with five 

chambers is loaded with a single bullet.  If the chambers are spun before the 

trigger is pulled, the number of tries until the revolver discharges has a 

geometric distribution with  = 0.2.  From Table 8.3, the probability that the 

revolver discharges on the first, second, or third try is 0.20, 0.16, or 0.13, 

respectively. 

For further reading on the geometric distribution, see Evans, et al. (2000), 

p. 106.   

8.9  Negative binomial distribution 

 

 

negative 

binomial 

experiment  

negative 

binomial 

distribution 

Another variation of a binomial experiment is to perform 

Bernoulli trials until s successes occur, where s is specified 

before the trials begin.  Let Y = the number of independent 

Bernoulli trials until s successes occur, where each trial has a 

constant probability of success .  This is called a negative 

binomial experiment, and Y has a negative binomial 

distribution, denoted by NEGB(s, ).  In contrast to a binomial 

experiment where the number of trials, n, is fixed and the 

number of successes is a random variable, a negative binomial 

experiment is one where the number of successes, s, is fixed and 

the number of trials is a random variable.  One example is to 

play a casino game until we win three times; another is to 

examine oranges in a produce department until we find five ripe 

oranges. 

 Note that the geometric distribution is a special case of the negative 

binomial, with s = 1. 

The probability that Y = y is the probability that there are (s–1) successes in 

(y-1) trials followed by a success in the y
th

 trial.  Accordingly, the pf is: 

 

1
( ) ( | , ) { | , } (1 )

1

( 1)!
(1 ) , , 1, ...

( 1)! ( )!

s y s

s y s

y
f y f y s Pr y s

s

y
y s s

s y s

 (8.27) 

            where y = s, s + 1, …. 
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The mean, variance, and standard deviation of the negative binomial distribution 

are: 

s  (8.28) 

2

2

(1 )s  (8.29) 

2

(1 )s  (8.30) 

Example 8.4.   Coin tossing.   Let Y be the number of tosses before three 

heads are obtained when tossing a fair coin.  Figure 8.10 plots the pf of Y.  

 

Figure 8.10.   Negative binomial pf:  π = 0.5, s = 3 

Negative binomial probabilities can be calculated using Excel’s 

=NEGBINOMDIST(y-s, s, π), where s is the number of successes required, 

(y - s) is the number of failures before s successes are reached, and π is the 

probability of a single success.  Note that y cannot be smaller than s, as we 

cannot reach s successes in fewer than s trials.   

Based on the use of Excel, the values used to construct Figure 8.10 are given in 

Table 8.4. 
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Table 8.4.   Negative binomial probabilities 

 s y - s y f(y) 

0.5 3 0 3 0.125 

0.5 3 1 4 0.188 

0.5 3 2 5 0.188 

0.5 3 3 6 0.156 

0.5 3 4 7 0.117 

0.5 3 5 8 0.082 

0.5 3 6 9 0.055 

0.5 3 7 10 0.035 

0.5 3 8 11 0.022 

0.5 3 9 12 0.013 

0.5 3 10 13 0.008 

0.5 3 11 14 0.004 

0.5 3 12 15 0.003 

Further discussion of the negative binomial distribution may be found in: 

Krishnamoorthy (2006), p. 97 

Patel et al. (1976), p. 204 

Evans et al. (2000), p. 140 

8.10  Poisson distribution 

Poisson 

process 

 

 

Poisson 

distribution 

A Poisson process models counts of events occurring in time or 

space.  Examples are counts of system or component failures 

and defects on a surface or within a volume of material.  Let 

Y = the total number of events occurring in some interval of 

time t with an occurrence rate  per unit time.  Instead of time, 

the events might be occurring in space, so that time might be 

replaced by length, area, or volume.  The variable Y has a 

Poisson distribution with parameter λ = θt.   

A Poisson process has several prerequisites, or assumptions, which are described 

in detail in Chapter 23.  These assumptions can be informally stated as follows: 

 The probability of an event occurring in a small interval is proportional to 

the length of the interval. 

 The occurrence of an event in one interval is independent of that of any 

other disjoint interval. 

 The probability of occurrence of more than one event in a small interval is 

negligible. 
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Under these assumptions, the pf of Y is: 

( ) ( ) { } = 0 1 2
!

ye
f y f y; Pr Y y| , y , , , ...

y
 (8.31) 

A remarkable property of the Poisson distribution is that its mean and variance 

are the same.  We have: 

E[Y] = λ  

 

(8.32) 

 

V[Y] = λ  

 

(8.33) 

Figures 8.11 and 8.12 show two Poisson probability functions, with means 1.0 

and 5.0, respectivly.   

 

Figure 8.11.   Poisson pf, λ = 1 

 

 

Figure 8.12.   Poisson pf, λ = 5 
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The Poisson distribution is related to the exponential distribution introduced in 

Section 7.13.  For the time-based Poisson defined in here, both distributions 

model a failure process over time.  As an example, consider a component that 

can fail from time to time and is then repaired and returned to service.  (The 

repair time is short enough to be considered instantaneous.)  Assume the failure 

process satisfies the assumptions listed at the beginning of this section.   

The Poisson distribution counts the number of failures in a specified time and 

the exponential distribution measures the time to the first failure.  Under the 

Poisson assumptions, the time to the first failure has an exponential distribution 

with a failure frequency or rate that is the same as the constant failure rate of the 

Poisson process.  This is a consequence of a key property of a Poisson process, 

namely, that it has no memory.  This means that if the component is still 

functioning at any time, it remains as good as new, and its remaining life has the 

same distribution as when it started functioning.  Once the first failure occurs, 

the clock starts again, and the time to the second failure has an exponential 

distribution that is independent of the first exponential distribution, and so on. 

The relation between the Poisson and exponential distributions can therefore be 

stated as follows:  For any fixed time period t and constant failure rate , let Y be 

the number of failures in time t.  Let t1, t2, …, tY be the times between successive 

failures.  Then Y has a Poisson distribution with parameter  =  t and t1, t2, …, 

tY  have independent exponential distributions with parameter . 

References to the Poisson distribution may be found in: 

Krishnamoorthy (2006), p. 71 

Hastings and Peacock (1975), p. 108 

Patel et al. (1976), p. 21 

Chapter 23 presents an extensive treatment of the Poisson distribution with 

examples.  
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9 
Estimation 

 9.1  What to look for in the remainder of this book  

Chapters 1–8 focus on distributions with known parameters, on the properties of 

the distributions, and on associated probability calculations.  These chapters lay 

the groundwork for the application of statistical techniques to data, which is the 

subject of the remainder of this book.   

Recall the example presented in Section 1.3, where probability and statistics are 

contrasted.  In that example, while blindfolded, we draw a handful of marbles 

from a jar whose contents we know and make probability statements about the 

contents of our hand.  In statistics, the process is reversed:  We draw a handful 

of marbles from a jar, examine them, and make inferences about the contents of 

the jar.  Starting with Chapter 9, we dip into the jar and make inferences about 

what is in that jar.   

The jar represents a population and the contents of our hand represent data.  

Data are generated by experiments, processes, or observations.  Here, data will 

be regarded as a sample from a population either with an unknown probability 

distribution or with an assumed probability distribution but with unknown 

parameters.  We will use statistical inference from the data to identify 

relationships that help us understand and improve processes, to identify 
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plausible families of distributions, and to estimate the parameters of those 

distributions that are relevant to the issues that motivated our investigation.  

Statistical inference will be used to answer questions such as:  

 Are the data consistent with the requirement that a particular reactor 

component be able to operate for at least t hours with 99% reliability? 

 Given the data we have (and the way we obtained them), how high might 

the probability of failure-to-start for the diesel generator reasonably be, 

and is that level acceptable?   

 Are the apparent differences between components provided by different 

suppliers real, or could they just be random?   

9.2  What to look for in Chapter 9 

In this chapter, we are first reminded of several terms that are already in our 

vocabulary: 

 parameter, §9.4 

 estimator, §9.4 

 estimate, §9.4 

 

Some properties of estimators are then explained: 

 point estimator, §9.5 

 unbiased estimator, §9.5 

 minimum variance estimator, §9.5 

 interval estimator, §9.6 

 
Some practical concepts and procedures will be defined and illustrated: 

 estimation and inference, §9.3 

 confidence intervals for a mean, §9.6 – §9.11 

 tolerance limits for a normal distribution, §9.12 

 confidence intervals for a variance, §9.13 

 sample size determination, §9.14,  §9.15 

9.3  Estimation and inference 

 

estimation 

 inference 

The principal objectives of statistics are often characterized as 

estimation and inference.  These two objectives are strongly 

interrelated.  In their practical aspects, they both involve the design, 

collection, organization, analysis, presentation, and interpretation of 

data.  In their theoretical bases, they both depend on mathematical 

formulations of probabilistic and statistical concepts.  Estimation 



Estimation 171 
 

 

and inference are distinguishable as follows: 

 The goal of estimation is to assign values to population parameters.   

 The goal of inference is to draw conclusions about the population 

from which the data came.   

Chapter 9 focuses on estimation processes; inferential processes are described in 

Chapter 10.  Once established, both concepts are explored in a variety of 

analyses in the remainder of the book. 

9.4  Elements of estimation 

Statistical estimation consists of three elements.  These elements were 

introduced earlier (Section 1.6) and are now restated. 

parameter A parameter is a quantity we wish to estimate.  In Government 

parlance, a parameter is an ―estimee.‖  While both populations and 

random variables have parameters, in this book, we estimate only 

population parameters.  A function of a parameter is also a 

parameter (e.g., the variance σ
2
 is a parameter and so are σ and 3σ).  

Random variables and their associated distributions are 

mathematical tools used to model samples and populations.  Unless 

stated otherwise, ―random variable‖ and ―distribution‖ will be used 

only in the context of a discussion about a sample or a population. 

Examples of parameters are a population mean μ and a population proportion . 

Specific examples of parameters are:  

 Average weight μ of all ice baskets in an ice condenser reactor 

 Proportion  of all employees who would test positive in a drug test if the 

test were conducted today 

 Wherever practical, we use Greek letters to denote parameters.   

estimator 

random 

sample 

sample 

An estimator is a function of data (usually expressed by a formula) 

used to estimate a population parameter.  Because data are modeled 

by a random variable, an estimator is also a random variable.  The 

data come from a random sample, which is a set of independent 

observations from a specified population or the distribution that 

models it.  (Unless stated otherwise, a random sample will 

sometimes be simply referred to as a sample.) 

Examples of estimators are a sample meanY and a sample variance S 
2
. 
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Specific examples of an estimator are:  

 Average response time Y to an alarm, obtained from a random sample of 

challenges 

 Proportion P of payable invoices that were not paid within 30 days of 

receipt, obtained from a random sample of invoices 

  Wherever practical, we use upper case Latin letters to denote estimators.  

However, sometimes an estimator is written as the parameter with a 

―hat‖, such as ˆ .  The use of a hat is appropriate as it reminds us that 

this is not a parameter (an unknown constant) but is rather an estimator 

(a random variable) used to estimate a parameter.   

estimate An estimate is the numerical value obtained by applying an 

estimator to the data.  Once calculated, an estimate is a numerical 

value (i.e., it is an observation of the random variable defined by the 

estimator). 

Specific examples of estimates are: 

 A calculated value y = 67.1, the average height (in inches), based on a 

sample of students in the school  

 A calculated proportion p = 0.40 of responses that were incomplete, based 

on a sample of examination questions  

 Wherever practical, we use lower case Latin letters to denote estimates.   

There are two major categories of statistical estimators:  point estimators and 

interval estimators.  These are discussed in Sections 9.5 and 9.6, respectively. 

9.5  Point estimators 

point 

estimator 
A point estimator is a rule that produces a single number to 

estimate a population parameter.  Given a sample from a 

population, examples are: 

 The sample mean Y is a point estimator of the population mean. 

 The sample variance S 
2 
is a point estimator of the population variance. 

 The proportion P of defects in the sample is a point estimator of the 

population proportion of defects. 

 
Books on theoretical statistics have identified a number of desirable properties 

of estimators.  Those properties may be used to choose an estimator from among 

several competing estimators of the same parameter.  This book, however, 
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focuses on only two important properties (introduced below) of an estimator:  

being unbiased and having minimum variance.  Other properties of estimators 

are discussed in texts such as Wilks (1963), Chapter 12.  

unbiased A point estimator is said to be unbiased if its expected value is 

equal to the parameter of interest.  This means that, theoretically,  

the average value of estimates, based on many samples of the same 

size repeatedly drawn from the same population under identical 

conditions, is equal to the parameter of interest. 

 Unless the sample consists of only one observation, there is almost always 

an infinite number of unbiased estimators of the same parameter based 

on the sample.  In such cases, another criterion may be used to choose 

an unbiased estimator that is ―better‖ than other unbiased estimators. 

minimum 

variance 
A point estimator is said to have minimum variance if it has a 

variance no larger than that of other estimators of the same 

parameter from the same sample. 

minimum 

variance 

unbiased 

A point estimator is said to be minimum variance unbiased if it is 

both unbiased and has minimum variance. 

Some facts about estimators: 

 The sample mean Y is an unbiased estimator of the population mean μ.   

 If the random variable that models the population is symmetric about its 

mean, the sample midrange, mode, and median are also unbiased 

estimators of μ.   

 The sample mean Y has a variance σ 
2
/n that is no larger than the variance of 

any other unbiased estimator of μ.  Thus, Y is a minimum variance 

unbiased estimator of μ. 

 The sample variance S 
2
 is an unbiased estimator of a population’s 

variance σ 
2
.  

 Because square root is a nonlinear function, S is not an unbiased estimator 

of a population’s standard deviation σ.   

The following example is used here to illustrate point estimators and later in the 

chapter to illustrate interval estimators and tolerance limits.  The principles 

applied here are applicable to all types of distributions, not just to the normal 

distribution properties. 

Example 9.1.   Natural uranium concentration.   Natural uranium 

concentration, in parts per million (ppm), was measured in a random sample of 
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41 wells in a neighborhood.  Table 9.1 reports the measurements in ascending 

order.  We wish to estimate the mean and variance of natural uranium 

concentration in the neighborhood, denoted by  and σ 
2
, respectively. 

Table 9.1.   Natural uranium concentration (ppm) 

0.012 0.012 0.074 0.090 0.099 0.103 0.109 0.117 0.127 0.139 

0.148 0.156 0.159 0.165 0.189 0.197 0.200 0.209 0.220 0.223 

0.250 0.255 0.261 0.268 0.283 0.286 0.292 0.293 0.309 0.310 

0.320 0.346 0.366 0.402 0.425 0.436 0.440 0.611 0.661 0.689 

0.750          

From the n = 41 observations in Table 9.1, we may obtain several point 

estimates of µ, such as y  = 0.2683, median = 0.250, and midrange = 0.3810.  If 

the distribution from which this sample is drawn is symmetric, then all these 

estimators are unbiased.  However, our preferred estimate of µ is y  = 0.2683, 

because it was derived from ,Y  which is an unbiased minimum variance 

estimator of µ.  An unbiased estimate of σ 
2 
is the sample variance s

2
 = 0.0305.  

9.6  Interval estimators 

A point estimator may well be a satisfactory tool to estimate a population 

parameter.  However, a point estimate, even if calculated from a large amount of 

data, is very rarely equal to the parameter being estimated.  Furthermore, a point 

estimate may not even be a good approximation to the parameter being 

estimated.  An alternative to a point estimator is an interval estimator that 

produces an interval containing the parameter of interest with a specified 

probability.  The balance of this chapter will focus on interval estimators.   

interval estimator An interval estimator is a function of data that produces 

one or two finite bounds on a population parameter.  The 

intervals can be one-sided (a lower bound or an upper 

bound) or two-sided (both upper and lower bounds).   

confidence interval  

confidence level  

confidence coefficient 

confidence limits 

 confidence bound 

The most widely used type of interval estimator is called 

a confidence interval.  A confidence interval is 

accompanied by a probabilistic statement that provides a 

measure of assurance that the interval contains the 

parameter being estimated.  This probabilistic measure 

of assurance is called the confidence level or confidence 

coefficient.  The end-points of a confidence interval are 

called confidence limits or confidence bounds. 

Note that various writers, and we are no exception, use a variety of notations and 

expressions in quantifying the confidence coefficient.  For instance, we see 
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phrases such as ―95% confident,‖ ―95% confidence,‖ ―95% sure,‖ or, 

occasionally, ―0.95 confidence.‖ 

For a more detailed discussion of interval estimators, see Kendall and Buckland 

(1971), p. 145, or Hahn and Meeker (1991). 

two-sided  

confidence 

 interval 

Confidence intervals that state both finite upper and lower 

confidence limits are called two-sided confidence intervals.  

Each of the following statements is an example of a two-

sided confidence interval: 

 We are 95% confident that the mean population weight is between 9.4 and 

10.1 kilograms. 

 We have 90% confidence that the proportion of cables that are traceable to 

control unit X is between 7% and 11%. 

 We are 0.9999 confident that the percentage of plutonium by weight in a 

batch of plutonium dioxide lies in the interval (87.16, 89.02). 

 
 

one-sided confidence 

intervals 

Confidence intervals that state either an upper or a lower 

finite confidence limit are called one-sided confidence 

intervals.  Each of the following statements is an example of 

a one-sided confidence interval: 

 We are 75% confident that the mean-time-between-failure of electric 

motors produced by a specific manufacturer is at least 28,600 hours. 

 We are 95% sure that the average cost of travel is less than $925.  

(Managers may use this figure in travel budget projections.) 

 
 

lower confidence  

bound 

  

lower confidence  

limit 

The first of the one-sided confidence bounds above is called a 

lower confidence bound or a lower confidence limit.  We 

could also write the interval as (28,600, ∞), showing a finite 

value of 28,600 as the lower limit and an unbounded upper 

limit, even though we know that no motor will function 

forever. 

upper confidence 

 bound  

 

upper confidence 

 limit 

The second of the one-sided confidence bounds above is 

called an upper confidence bound or an upper confidence 

limit.  We could also write the interval as    (-∞, 925), which 

is mathematically correct but may raise eyebrows. 
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9.7  Confidence intervals for a mean   

Suppose we have a random sample of size n with sample mean Y from a 

population with mean μ and standard deviation σ.  We wish to construct a 

confidence interval for  based on Y .  However, to clarify the general 

construction, we will start by constructing special confidence intervals under 

some specific assumptions.  We will then relax these assumptions one by one to 

construct more general confidence intervals.  The assumptions we make at this 

point are: 

Assumption 1.    Y is distributed normally.  

Assumption 2.    A two-sided confidence interval for μ is required.  

Assumption 3.    The confidence level is 95%.   

Assumption 4.    The standard deviation σ is known.  

 

Assumption 1 holds whenever the population is distributed normally.  However, 

even when the population is not distributed normally, if the sample size is 

―large,‖ the sample mean will be approximately normal, courtesy of the Central 

Limit Theorem (Section 7.8).  In such cases, the confidence intervals based on 

Assumption 1 will be approximately correct.  For cases where this assumption 

does not hold, we may be able to use a nonparametric approach (see 

Chapter 25).  

All the confidence intervals constructed in this chapter are based on 

Assumption 1.  We can test whether the sample came from a normal population 

by applying one of several available procedures, some of which are given in 

Chapter 11. 

9.8  Two-sided 95% confidence intervals for a mean    

When all four assumptions of Section 9.7 are met, we may proceed to construct 

a 95% two-sided confidence interval for μ.  To that end, we look up Table T-1 of 

the appendix, where the 0.975 quantile is z0.975 = 1.960.  This quantile sets off 

2.5% of the distribution at the right end (sometimes called the ―tail‖) of the 

distribution.  By symmetry, 2.5% of distribution lies to the left of z0.025 = -1.960, 

and therefore 95% of the standard normal distribution lies between -1.960 and 

+1.960.   

 As stated in Chapter 7, we may use Excel’s function =NORMSINV(q) to 

obtain the desired quantile.  We find that =NORMSINV(0.975) returns 

1.960 and =NORMSINV(0.025) returns -1.960.  Accordingly, we have 

the following inequality: 
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Pr{-1.960 < Z < 1.960} = 0.95 (9.1) 

where Z is the standard normal variable:  

/

Y
Z

n
 (9.2) 

Applying Equation (9.2) to Equation (9.1), we have: 

1.960 1.960 0.95
/

Y
Pr

n
 (9.3) 

Algebraic manipulation of the inequality in the brackets in Equation (9.3) leads 

to the following successive inequalities: 

1.960 / 1.960 /

1.960 / 1.960 /

1.960 / 1.960 /

n Y n

n Y n

Y n Y n

 

One more reversal of the last inequality yields the conventional form of a 

confidence interval (i.e., with the lower limit at the left and the upper limit at the 

right):  

1.960 / 1.960 /Y n Y n  (9.4) 

Written in interval form, the inequality in Equation (9.4) is a two-sided 95% 

confidence interval for the mean μ of a normal population when the standard 

deviation σ is known. 

1.960 / , 1.960 /Y n Y n  
(9.5) 

The interval in Equation (9.5) is sometimes written as:  

1.960 /Y n  (9.6) 

Note that the confidence interval is centered at the sample mean Y .  Its width 

(or length, if we wish) is:   

1.960 / 1.960 / 2(1.960 ) /Y n Y n n  
(9.7) 

From Equation (9.7), we note that when σ is known, the width of the confidence 

interval is constant since it is free of random variables.  Repeating the sampling 
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process under the same assumptions will yield a different sample mean, but the 

width will remain the same. 

The interpretation of a 95% two-sided confidence interval is as follows:  If we 

were to repeat the sampling process any number of times, we would construct a 

number of intervals, each centered on a sample mean but all having the same 

width as given in Equation (9.7).  Because of the random nature of the sample 

mean, some of these intervals would include μ while others would not.  From 

theoretical considerations, the probability that any one of these intervals would 

contain the parameter μ is 0.95.  In this sense, we have 95% confidence that the 

two-sided interval we constructed includes μ. 

Suppose that the variance σ 
2
 of natural uranium concentration of Example 9.1 is 

known to be σ 
2
 = 0.05 so that σ = 0.2236.  Using the sample, 

0.2683, with 41,y n  we calculate the end points of a 95% two-sided 

confidence interval as: 

0.2683 (1.960)(0.2236) / 41 0.1999

0.2683 (1.960)(0.2236) / 41 0.3368

 

In this example, we do not use the sample standard deviation to estimate σ 

because σ is known. 

Example 9.2.   Beam momentum measurements (Frodesen et al. (1979), 

p. 171).   Measurements of the momentum of monoenergetic beam tracks on 

bubble chamber pictures have led to the following sequence of 10 readings, in 

GeV/c : {18.87, 19.55, 19.32, 18.70, 19.41, 19.37, 18.84, 19.40, 18.78, 18.76}.  

Based on extensive previous experience, we assume that this sample originated 

from a normal population with a known standard deviation of σ = 0.3 GeV/c.  

Find a two-sided 95% confidence interval for the beam momentum, μ. 

The calculated sample mean for n = 10 is y  = 19.100.  Since σ is given, there is 

no need, at least not at this point, to calculate the sample standard deviation.  

The lower and upper 95% confidence limits for μ, respectively, are therefore 

calculated as: 

19.100 (1.960)(0.3) / 10 18.914

19.100 (1.960)(0.3) / 10 19.286

 

Thus, a 95% confidence interval for μ is (18.9, 19.3), where the units are in 

GeV/c. 

In the construction of a 95% two-sided confidence interval, we elected to split 

off  2.5% of the distribution of Y at the lower end and 2.5% at the upper end of 
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the distribution.  Using equal probability splits at the ends of the distribution is 

the usual way of constructing a confidence interval, and its advantage is that the 

resulting confidence interval is shorter for any other split, such as 4% and 1%.  

For example, with a 1% and 4% split, the confidence interval would be:  

0.99 0.99( / , / ) ( 2.32 / , 2.32 / )Y z Y z Y Yn n n n  

 

 

with width 4.077 / n .  From Equation (9.7), this is larger than the width of 

3.920 / n  of the 95% confidence interval with an even split.  

9.9  One-sided 95% confidence intervals for a mean 

Two-sided confidence intervals (Assumption 2) are not always appropriate.  

Many, if not most, practical applications require a one-sided confidence interval 

to guard against excess in one direction (either too much or too little).  We 

construct a 95% one-sided confidence interval for μ based on the assumptions of 

normality (Assumption 1), 95% confidence requirement (Assumption 3), and 

knowledge of σ (Assumption 4). 

A 95% lower confidence limit for μ is: 

1.645 /Y n  
(9.8) 

A 95% upper confidence limit for μ is: 

1.645 /Y n  
(9.9) 

where the number 1.645 is the 0.95 quantile of the standard normal distribution 

(Table T-1) or from Excel’s =NORMSINV(0.95).   

Applying Equation (9.8) to the data in Example 9.1 where y  = 0.2683 and        

the known σ = 0.2236, yields the lower 95% confidence limit for μ, and 

Equation (9.9) yields the upper 95% confidence limit: 

0.2683- (1.645)(0.2236)/ 41=0.2109

0.2683 + (1.645)(0.2236)/ 41=0.3258

 

Similarly, for Example 9.2, where y = 19.100 and σ = 0.3, we obtain the lower 

and upper 95% one-sided confidence limits:  

19.100 (1.645)(0.3) / 10 18.944

19.100 (1.645)(0.3) / 10 19.256
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The interpretation of a one-sided 95% confidence interval is similar to that of 

the two-sided case:  If we were to repeat the sampling process m times, we 

would construct m intervals.  Because of the random nature of the data, some of 

these intervals would contain μ while others would not.  From theoretical 

considerations, the probability that any one of these intervals would contain the 

parameter μ is 0.95.  This means that if m is large, about 95% of the intervals 

would contain μ. 

9.10  Confidence intervals with an arbitrary confidence 
level 

The 95% level is the most common confidence level used by the NRC and as 

such is regarded as a default value.  However, the confidence level can be any 

value between 0 and 1 (0% and 100%), and the selection of that value should be 

made considering management priorities and constraints.  Thus, if our two-sided 

confidence quantile is 100q%, you can consult a standard normal table to find 

z1- (1-q)/2 = z(1+q)/2, or obtain this value from Excel’s =NORMSINV((1+q)/2) 

function.  The confidence limits of the two-sided confidence interval for μ are 

then calculated as: 

(1 )/2 /qY nz  (9.10) 

In Example 9.1, suppose a two-sided 99% confidence interval is desired.  We 

look in Table T-1 and find z0.995 = 2.576, and then calculate: 

0.2683 (2.576)(0.2236) / 41   

yielding the 99% two-sided confidence interval for  of (0.1783, 0.3583). 

In Example 9.2, suppose a two-sided 98% confidence interval is desired.  We 

find z0.99 = 2.326 and calculate:  

19.100 (2.326)(0.3) / 10   

yielding the 98% two-sided confidence interval for µ of (18.878, 19.321).   

For a 90% one-sided confidence limit for µ, the associated z value 

is z0.90 = 1.282.  The lower confidence limit for μ in Example 9.2 is calculated 

as19 100 (1 282)(0 3) 10 18 977. . . / . .   Similarly, the 90% upper confidence 

limit for μ is 19 100 (1 282)(0 3) 10 19 222. . . / . .  

It is often convenient to refer to the complement of q, denoted by α, in looking 

up quantiles in a table.  For that matter, we may find texts where some table 

headings are labeled quantile (q), some are labeled α, while still others show 

both labels.   
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9.11  Confidence intervals for unknown σ  

Assumption 4 of Section 9.7 states that the standard deviation σ is known.  This 

assumption is rarely satisfied, and hence the equations used in Sections 9.8–9.10 

for constructing confidence intervals are rarely applicable.  Lacking knowledge 

of σ, we modify the Z-statistic by replacing σ in those equations by the sample 

standard deviation S, given by Equation (2.12) as: 

2 22 2 2/

1 1 1

Y Y n n Y YY Y
S

n n n n
 

(9.11) 

where S has ν = (n - 1) degrees of freedom. 

Equation (9.2) is modified accordingly.  Instead of Z, the modified standard 

statistic is called a T-statistic and is written as:   

/

Y
T

S n
 (9.12) 

Where T is sometimes written as Tν to remind us of the associated degrees of 

freedom. 

The distribution of the T-statistic is given in Section 7.11.  Quantiles of the 

T-statistic are obtained from Table T-3 of the appendix.  As an example, the 

quantile that corresponds to a 95% two-sided confidence interval when ν = 9 is 

t0.975(9) = 2.26.  Excel’s =TINV function returns the complementary quantile and 

always assumes that a two-sided interval is requested.  Hence, to get tq(v), the 

call to Excel is =TINV(2(1 - q), υ).  Thus, =TINV(0.050, 9) = 2.26. 

In parallel with the construction of confidence intervals when σ is known, we 

have the following confidence intervals when σ is not known and is estimated 

by S.   

For a 100q% two-sided confidence interval for µ: 

(1 )/2(1 )/2( ) / , ( ) /( )
qqY t s Y t s nn  (9.13) 

For a 100q% lower confidence limit for μ:   

( ) /qY t s n  (9.14) 

For a 100q% upper confidence limit for μ:   

( ) /qY t s n  (9.15) 
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We return to Example 9.1 and use the sample standard deviation s to estimate .  

In Example 9.1, y  = 0.2683 and s = 0.1747, with  = n – 1 = 40 degrees of 

freedom.  We construct 95% two-sided and one-sided confidence intervals for µ. 

The required quantiles are obtained from Table T-3 as t0.975(40) = 2.02 and 

t0.95(40) = 1.68 or from Excel’s =TINV function, as =TINV(0.05, 40) = 2.02 and 

=TINV(0.1, 40) = 1.68.   

For a 95% two-sided confidence interval for µ, Equation (9.13) yields: 

0.2683 (2.02)(0.1747) / 41 (0.2132 , 0.3234)   

For a 95% lower confidence limit for µ, Equation (9.14) yields: 

0.2683 (1.68)(0.1747) / 41 0.2224  

For a 95% upper confidence limit for µ, Equation (9.15) yields: 

0.2683 (1.68)(0.1747) / 41 0.3142  

Example 9.3.   Weight of ice baskets.   Out of more than 1,000 ice baskets 

that surround an ice condenser reactor, 25 ice baskets were selected at random to 

estimate the average basket weight.  Construct a lower 95% confidence limit for 

the average basket weight.  This limit, when multiplied by the number of baskets 

around the reactor, will provide 95% assurance that at least that amount of ice is 

available for cooling in case of emergency.  Table 9.2 gives the weights, in 

kilograms, of the sample of 25 ice baskets.  Assume that the weights of the ice 

baskets are normally distributed. 

 To maintain confidentiality of information, all numbers in this example are 

greatly distorted. 

Table 9.2.   Weight of ice baskets (in kg) 

892  893  894  900  901  901  913  914  916  924  931  

932  932  932  935  936  938  941  942  943  943  946  

950  951  963 

The statistics from this dataset are 926.52, 20.51, and 25.y s n   From Table 

T-3, t0.95(24) = 1.71.  The 95% lower limit for μ is:   

926.52 (1.711)(20.51) / 25 919.5 

Thus, if N baskets surround the reactor, we are 95% sure that 919.5 N kg are 

available for cooling. 
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The interpretation of a 100q% confidence interval when σ is not known is the 

same as when σ is known.  If the sampling procedure were repeated m times and 

m confidence intervals were constructed, then the probability that any one of the 

m confidence intervals would contain μ is q.  

9.12  Statistical tolerance limits for a normal population 

 

tolerance 

limits 

The quality of a manufactured product is often specified by setting a 

range, the bounds of which are called tolerance limits.  These limits 

have the property that a specified percentage of the product is 

expected to fall within them.  For example, in an NRC application, 

we might require that at least 95% of a specific set of cable 

diameters fall between 3.52 millimeters (mm) and 3.84 mm.  As 

another example, we might specify that the response time to a fire 

alarm must be less than 12 minutes at least 90% of the time. 

If we have the entire population at our disposal, we can easily check whether our 

requirements are met.  For instance, if we know the diameters of all the cables in 

the specific set, we can determine what percentage is within the limits.  If we 

have a long history of fire responses and if conditions remained unchanged, then 

we can check if the 90% criterion is met.  However, in practice, we may have 

only a sample from the population on which to base our evaluation.   

statistical 

tolerance 

limits 

 tolerance 

interval 

 

In such cases, we can construct statistical tolerance limits and a 

tolerance interval.  Given a random sample from a population, a 

tolerance interval (L, U) is such that we have 100 % confidence 

that (L, U) contains at least 100 % of the population, where L, U, 

, and  are specified.  Such an interval is often denoted as a 

100  /100 tolerance interval (e.g., a 95/95 tolerance interval).   

Note the difference between a statistical tolerance interval and a confidence 

interval.  A confidence interval is used to estimate a population parameter, while 

a statistical tolerance interval is used to make a statement about a specified 

proportion of items in a population.  However, both types of intervals have 

associated confidence levels, because both are based on estimates and are 

therefore uncertain. 

two-sided 

tolerance 

interval 

A tolerance interval that has both upper and lower finite tolerance 

limits is called a two-sided tolerance interval.  Each of the 

following statements is a two-sided tolerance interval: 

 We are 95% confident that at least 95% of cables diameters are between 

3.52 mm and 3.84 mm (a 95/95 tolerance interval). 

 We are 90% confident that at least 99% of our employees earn between 

$39,014 and $57,755 per annum (a 90/99 tolerance interval). 
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 We are 99% confident that the annual per-house savings from residential 

energy conservation is between 156 and 1,942 kilowatt-hours for at 

least 85% of the population (a 99/85 tolerance interval). 

 
one-sided 

tolerance 

interval 

A tolerance interval that has either an upper or a lower finite 

tolerance limit is called a one-sided tolerance interval.  Each of the 

following statements is a one-sided tolerance interval:   

 We are 75% confident that at least 90% of the response time to a fire alarm 

will be less than 12 minutes (a 75/90 upper tolerance limit). 

 We are 95% confident that at least 80% of the crates weigh more than 

1.2 tons (a 95/80 lower tolerance limit). 

    
The 95/95 specification is the most common specification for tolerance intervals 

at the NRC.  It is usually regarded as the default tolerance interval specification.  

 

 

 

 

 

tolerance 

limit 

factors 

To calculate tolerance limits, it is necessary to specify the 

distribution of the population.  For most applications, the population 

is assumed to be normally distributed.  The tolerance limits are 

based on factors k2, for two-sided tolerance intervals, and k1, for 

one-sided tolerance intervals.  These are called tolerance limit 

factors.  The factors are functions of the sample size n, the 

confidence level γ, in percent, and the desired population proportion 

π, also in percent.  The factors k2 and k1 are found in Tables T-11a 

and T-11b of the appendix, respectivly. 

More extensive tables of the tolerance factors may be found in Odeh and Owen 

(1980) on pp. 85–113 for k2 and on pages 17–69 for k1.  Approximations to these 

coefficients are given by Howe (1969), p. 610, for two-sided, and by Natrella 

(1963), pp. 2–15) for one-sided tolerance limits. 

Tolerance limits are calculated as follows: 

2Y k S   
for two-sided tolerance limits, where k2 is taken 

from Table T-11a  

1
Y k S  

for an upper tolerance limit, where k1 is taken from 

Table T-11b   

1
Y k S  for a lower tolerance limit, where k1 is taken from 

Table T-11b  
 

 

Suppose we have a random sample of size n = 10 from the normal distribution 

with y = 120.5 and s = 8.8.  For a 95/90 two-sided tolerance interval, we use 

Table T-11a under  = 0.95,  = 0.90, and n = 10 to find k2 = 2.856.  The desired 



Estimation 185 
 

 

lower and upper tolerance limits are calculated as 120.5 - (2.856)(8.8) = 95.4 

and 120.5 + (2.856)(8.8) = 145.6, respectively.  

For a 95/90 one-sided tolerance limit, we use Table T-11b under  = 0.95, 

 = 0.90, and n = 10 to find k1 = 2.355.  A lower tolerance limit is calculated as 

120.5 - (2.355)(8.8) = 99.8.  An upper tolerance limit is calculated as 

120.5 + (2.355)(8.8) = 141.2. 

Example 9.4.   Tolerance limit for the critical power ratio.   Critical 

power can be calculated by an algorithm or measured directly.  The ratio of the 

calculated to the measured values, called the Experimental Critical Power Ratio 

(ECPR), was determined from a random sample of 150 measured values with a 

mean of 1.0211 and a standard deviation of 0.0061.  Find the 95/95 upper 

tolerance limit for ECPR.   

Table T-11b shows the 95/95 factor for a one-sided tolerance limit for n = 150 to 

be 1.870.  The upper tolerance limit for the ECPR is therefore calculated as 

1.0211 + (1.870)(0.0061) =1.033. 

9.13  Confidence intervals for a variance 

We have learned thus far to put bounds on a population mean, μ.  At times, 

however, we need to place a bound on a population variance.  We need to know 

when the variability of a measurement system is out of control, even if the mean 

appears stable.  To construct such bounds, we refer to some theoretical findings. 

Theory shows (Mood et al. (1974), p. 245) that the ratio (n - 1)S 
2
/σ 

2
 has a 

chi-square distribution with ν = (n - 1) degrees of freedom.  We thus have the 

following relation that occurs with probability 1 - α: 

2
2 2

2 1 /2/ 2
( ) ( )

S  
(9.16) 

Algebraic manipulation of Equation (9.16) leads to the following:   

2

2 2 2

1 /2 /2

1 1

( ) ( )S

 
(9.17) 

Accordingly, a 100(1 - α)% two-sided confidence interval for σ
2 
 is: 

2 2

2 2

/21 /2

,
( ) ( )

S S  
(9.18) 
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One-sided confidence intervals are similarly obtained:   

2
2

2

1

,  for a 100(1- )%  lower confidence limit for 
( )

S  (9.19) 

2
2

2
,  for an 100(1- )% upper confidence limit for 

( )

S  (9.20) 

The confidence limits for σ are the square roots of the limits for σ 
2
. 

Almost always we need an upper rather than a lower confidence limit on σ 
2 
or

 
σ.

  

We are concerned about excessive variability rather than a process that is 

relatively stable.  (One exception to this rule is the stock market, where some 

investors might want to take advantage of market volatility.) 

As an example, suppose a random sample of size 10 (for which ν = 9) has a 

standard deviation of s = 1.47, and we want a 95% upper confidence limit for σ.  

First, from Table T-2, the 0.05 quantile for the chi-square distribution with ν = 9 

degrees of freedom is 3.33.  Next, the upper confidence limit for σ 
2 

is 

calculated as (9)(1.47)
2
/3.33 = 5.840.  Finally, the desired upper limit for σ is 

5.840 2.417.     

 Note that confidence limits for σ
2
 (or σ) do not depend on μ orY .  This 

makes sense even though confidence limits for μ depend on σ (if σ is 

known) or S (if σ is not known).  Confidence limits for a parameter 

always depend on the variability in the estimator of the parameter and 

thus depend on σ both for μ and σ.  The mean μ is a measure of the 

location of the distribution and does not affect its variability.  

The interpretation of a 95% confidence interval for σ
2
 (or σ) is the same as for a 

confidence interval for µ.  If we were to repeat the sampling process any number 

of times, each time constructing a 95% confidence interval for σ
2
 (or σ), then 

each of these confidence intervals has probability 0.95 of containing σ
2
 (or σ).  

9.14  Sample size determination:  σ known 

Perhaps the most common question asked of a statistician is ―How large a 

sample do I need?‖  The answer is not simple.  It depends on several factors and 

assumptions.  This section considers a situation in which our problem is the 

estimation of the mean of a population.  Furthermore, we seek reasonable 

assurance that the resulting estimate of the mean does not deviate from the true 

mean by more than a specified amount.  
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To make the problem more specific, suppose we wish to estimate the mean μ of 

a normal population and require 100(1 - α)% confidence that the estimate will be 

within a margin of d units of μ.  In other words, for specified  and d, we want 

to find a sample size n and construct a 100(1 - α)% two-sided confidence 

interval in the form of .Y d   There are two cases to consider:  σ known and 

σ unknown. 

When σ is known (an unlikely case), then, from Equation (9.10), the required 

confidence interval is 
/2 / .Y Z n   We set the margin specification d equal to 

/2 /Z n and solve for n to find: 

/2

/2

2 2
2z

n
d d

z   
(9.21) 

 

If  = 0.05, zα/2 = 1.96 and Equation (9.21) becomes: 

2 2
21.96 , rounded to 4n

d d
 

(9.22) 

 

Since σ is known and d is given, we substitute those values in Equation (9.22) to 

obtain the required sample size. 

Example 9.5.   Travel voucher error.   We wish to calculate the number of 

travel vouchers to sample to estimate average voucher error (either over- or 

under-reported) within $10, all with 95% confidence.  Assume that the voucher 

error is distributed normally with a known σ = $50. 

Using Equation (9.22), we have:  

2
50

4 100
10

n   

 

Even if σ is not known, we can still use Equation (9.22) if the required margin of 

error is specified as a multiple of σ.  In other words, if r = d/  is given, we can 

calculate the required sample size.  For instance, the same sample size of 

n = 100 in Example 9.5 would have been obtained if all we are given is that 

r = 0.2.  

9.15  Sample size determination:  σ unknown 

 

 

 

Even if we do not know the standard deviation σ, we can still 

achieve the error margin d with 100(1 - α)% confidence as in 

Section 9.14 by using a two-stage approach.  In this approach, we 
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Stein’s 

procedure 

first estimate σ with a preliminary sample and then draw a second 

sample so that the required error margin can be achieved with the 

combined sample.  This approach is called Stein’s procedure (or 

Stein’s two-stage procedure), as discussed and slightly modified by 

Desu and Raghavarao (1990), p. 4.   

Stage 1:  Take an initial random sample of size n1 of at least three observations.  

Calculate the sample mean, denoted by
1Y , and the sample standard deviation, 

denoted by S1. 

 Although we have considerable liberty in selecting the initial sample size, 

we should avoid taking an initial sample that is too small.  The idea is 

to choose n1 so as to get a reasonable estimate of σ without having n1 

larger than necessary to meet our requirements. 

Next, use Table T-3 of the appendix to find t(1-α/2)(n1 - 1).  Determine n0 from 

Equation (9.23): 

0 1 (1 /2) 1

2
( ) /n S t d  (9.23) 

where ν1 = n1 – 1 degrees of freedom.  

Stage 2:  Let n2 = n0 - n1.  That is, we need to collect n2 observations above and 

beyond the n1 observations we have already collected in the first stage. 

If n2 ≤ 0, no additional observations are required and 
1Y  is within the prescribed 

margin of error d (with the prescribed 100(1 - α)% confidence.  Otherwise, make 

n2 additional observations.   

Denote the sample mean of the n2 observations by 
2.Y  

Let Y be the sample mean of the n1 + n2 observations.  Y may be calculated as: 

1 1 2 2

11 2

n Y n Y
Y

n n
 (9.24) 

 

Then Y is an estimator that is within a margin of error d for estimating μ with 

100(1 - α)% confidence. 

Example 9.5, continued.   In this part of the example, σ is not known, but we 

still want d = $10.  We follow the prescribed procedure: 

Stage 1:  We take an initial random sample of size n1 = 15 observations.  

Suppose the sample yields
1y  = 30.43 and S1 = 28.33. 
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From Table T-3, we find t0.975(14) = 2.14.  So, n0 = [(28.33) (2.14) /10)]
2
 = 

36.76, rounded up to 37. 

Stage 2:  We calculate n2 = n0 - n1 = 37 - 15 = 22.  Hence, we take 22 additional 

observations.  Suppose the mean of that sample is 
2y  = 38.07.  Now we 

calculate the mean of the combined sample of 37 observations: 

(15)(30.43) (22)(38.07)
34.97

15 22
y   

Thus, we are 95% confident that our estimate 34.37y does not differ by more 

than $10 from the population mean.   

See Desu and Raghavarao (1990) for an extended treatment of sample size 

determination.  
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10 
Inference 

10.1  What to look for in Chapter 10 

hypothesis 

testing 
Statistical inference is based on a procedure called hypothesis 

testing.  Chapter 10 defines hypothesis testing and explains the 

rationale behind it, thus building a foundation for specific 

material developed in later chapters.  Among the terms 

employed in hypothesis testing are the following: 

 statistical significance, §10.2 

 null hypothesis, H0, §10.3 

 alternative hypothesis, H1, §10.3 

 test statistic, §10.3 

 critical point, §10.3 

 critical and noncritical regions, §10.3 

 power of a test, §10.3 

We will also encounter two types of errors that can occur in hypothesis testing: 

 Type I error, probability of Type I error, §10.3 

 Type II error, probability of Type II error, §10.3 
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10.2  Testing statistical hypotheses:  setting the stage 

 

statistically 

significant 

 significant 

Statistical investigations look for statistical significance that 

may be demonstrated by the data.  A finding from an 

investigation is called statistically significant or simply 

significant if it unlikely to have occurred by chance alone.  For 

example, suppose you flip a coin 10 times, only to realize 10 

disappointing tails.  The sequence of 10 consecutive tails could 

have occurred as described by chance alone.  However, if the 

coin is fair, the probability of a sequence of 10 tails is (0.5)
10

, or 

about 0.001.  This small probability could lead us to state that 

the sequence of tails we observed is significant.  In this context, 

any event that is unlikely to occur is significant if the probability 

of its occurrence is small, relative to a preset determination of 

what constitutes small. 

Statistical investigations (including experiments, procedures, tests, etc.) must be 

conducted in an orderly fashion.  They must be designed carefully, executed as 

planned, analyzed correctly and interpreted properly.  The steps in the conduct 

of the investigation must be understood and, preferably, written down and 

agreed upon by all stakeholders before the start of the actual investigation.  The 

protocol should list the model for the data and all the assumptions made about 

the data structure.  For a focused investigation, the objectives of the 

investigation should be written as a pair of hypotheses:  a null hypothesis and an 

alternative hypothesis.   These hypotheses are defined in Section 10.3. 

Two seemingly unrelated examples explain the logic of testing statistical 

hypotheses.  Example 10.1 involves a traffic violation.  Example 10.2 examines 

response time to security violations. 

Example 10.1.   Traffic violation.   We are driving our car leisurely when a 

police officer pulls us over and suggests that we just ran a stop sign.  

Adamantly, but respectfully, we disagree, contending that we did not do such a 

thing.  Just as adamantly, the officer holds an alternative opinion and invites us 

to traffic court to resolve the matter.  How do we deal with this problem?  

Indeed, what is the problem? Is there a hypothesis to be tested?  What does it 

have to do with statistics anyhow? 

Example 10.2.   Response time to intrusions.   Suppose agency 

regulations require that a security system should pinpoint the location of 

peripheral intrusions within an average of 10 seconds.  To investigate whether 

the system is in compliance, the system is tested by a number of random 

provocations.  At each such provocation, the system’s response time is recorded, 

and the average response time to these provocations is calculated.  The observed 

average response time is compared with the regulatory requirement, and a 

statistical analysis is performed to determine if the system is in compliance. 
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How do we deal with this problem?  Indeed, what is the problem?  Is there a 

hypothesis to be tested?  What do Examples 10.1 and 10.2 have in common?  

Consider next the following parallel statements comparing traffic court 

processes with statistical hypothesis testing:   

Table 10.1.   Traffic court processes and hypothesis testing  

Example 10.1 Example 10.2 

Traffic courts in the United States 
work under a process where 

evidence is examined to see whether 

it contradicts the accused’s claim of 

innocence.  What evidence is there 

to contradict the accused’s claim 

that he did not run a stop sign? 

Statistical hypothesis testing is a 

process by which a set of data is 

examined to see whether the data 

contradict some statement about the 

population from which the data were 

drawn.  What data are there to 

contradict the claim that the average 

response time does not exceed 

10 seconds? 

The claim of innocence is a 

hypothesis about the accused.  One 

is innocent until proven guilty with 

a high degree of certainty (i.e., 

―beyond a reasonable doubt‖). 

The statement is a hypothesis about 

the population.  The claim that the 

system average response time is 

10 seconds is accepted unless the data  

suggest otherwise. 

The protocol for examining 

evidence in traffic courts is well 

defined; if applied properly, it is an 

orderly sequence of rational and 

defensible steps leading to a finding 

of guilty or not guilty.  We are 

assured that we can face the 

accuser, question evidence, examine 

the witnesses, and present evidence 

in our defense during the trial. 

The protocol for statistical 

hypothesis testing is well defined; if 

applied properly, it is an orderly 

sequence of rational and defensible 

steps leading to rejection or 

nonrejection of the null hypothesis.  

Data must be selected according to 

established rules; they must be 

analyzed according to a prescribed 

protocol, and the results must be 

properly interpreted. 

This parallel structure illuminates the logic of hypothesis testing.  We see that 

there are strong similarities between court procedures, in which material is 

examined as evidence of a violation, and hypothesis testing, in which data are 

examined as evidence of the falseness of a claim about a population. 
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10.3  Terminology  

statistical 

hypothesis 

 

null 

hypothesis 

A statistical hypothesis is a statement about a population.  In 

most statistical investigations, this is a quantitative statement 

that can be written in mathematical notation.  

A null hypothesis (symbolized by H0) is a statement about a 

population’s parameters, a function of those parameters, or the 

structure of the population.  In Example 10.2 (response time), 

the null hypothesis about the population mean is understood to 

be  < 10 but is conventionally written as H0:  = 10.  (This 

book follows the usual practice of writing the null hypothesis as 

an equality.) 

 The subscript 0 in H0 (read and pronounced ―zero‖ or ―naught‖) sometimes 

implies ―no difference,‖ ―no change,‖ or ―status quo.‖   

alternative 

hypothesis 
An alternative hypothesis (symbolized by H1) is a statement that 

contradicts a null hypothesis.  In testing hypotheses, we accept H1 

if there is sufficient evidence to reject H0 (i.e., if the data are 

inconsistent with H0).  An alternative hypothesis is usually stated 

as an interval.  Thus, as in Example 10.2, if the null hypothesis is 

H0:  = 10, then the alternative hypothesis could potentially be 

any one of the following:  H1:   > 10, H1:  < 10, or H1:   10.  

However, because the actual claim is that    10, the correct 

alternative hypothesis for Example 10.2 is H1:   > 10. 

 Some writers denote the alternative hypothesis by HA. 

right-sided and 

left-sided 

hypotheses 

one-sided and 

two-sided 

hypotheses 

 

An alternative hypothesis written with a greater than sign (e.g., 

 > 10) is a right-sided hypothesis.  An alternative hypothesis 

written with a less than sign (e.g.,  < 10) is a left-sided 

hypothesis.  Both left-sided and right-sided alternative 

hypotheses are one-sided alternative hypotheses.  An 

alternative hypothesis written with the not-equal symbol (e.g., 

  10) is a two-sided hypothesis. 

working 

hypothesis 

 research 

hypothesis 

 

 

In some disciplines, an alternative hypothesis is called a 

working hypothesis or a research hypothesis because this is 

the hypothesis the researcher usually hopes to validate.  For 

example, if a new drug is investigated, the usual null 

hypothesis is that it is no different than the old drug (or a 

placebo).  If the data are inconsistent with H0, the alternative 

hypothesis is accepted, and the happy researcher may be ready 

to write and publish his findings. 



Inference 195 
 

 

test statistic  

hypothesis test 

test of 

hypothesis  

A test statistic is a function of the data that is used to test a null 

hypothesis.  A hypothesis test or test of hypothesis is a 

procedure that leads to rejection or non-rejection of the null 

hypothesis.  In Example 10.2, the test statistic would be the 

standard normal variable: 

                       

0

/

Y
Z

n
 (10.1) 

where 0 is the value of  specified by H0.  The statistical test is 

detailed in Chapter 13.   

In a courtroom situation, the element analogous to a test statistic is a witness, 

such as a bystander or police officer, or a recording device.  

level of 

significance 

 α  

A level of significance (symbolized by α) is a measure of the 

risk, quantified as a probability, which we are willing to take in 

rejecting H0 when in actuality H0 is correct.  In most work at 

the NRC, α is set at 0.05.  In this book, unless otherwise 

specified, we use α = 0.05 as a default value. 

  The choice of α is somewhat arbitrary.  Studies and investigations that set α 

at 0.05 often do so because it is ―conventional,‖ and there is no 

compelling reason to choose another level of significance.  Historical 

(and, perhaps, psychological) reasons for choosing this level of 

significance can be found in the literature.  One such source is a paper 

by Stiegler (2008), which traces the selection of this level to 

R. A. Fisher, the most prominent founder of modern statistics. 

critical region 

 rejection 

region 

 

Given a test statistic, a critical region (also called a rejection 

region) is the set of all possible values of the test statistic that 

lead to the rejection of H0, and, hence, the acceptance of H1.  

The critical region should be chosen to be consistent with the 

alternative hypothesis.  For one-sided alternatives, the best 

critical region is a one-sided interval.  Thus, for H1:   > 0, the 

critical region is y  > c1 for some constant c1, and for       

H1:   < 0, the critical region is y  < c2.  For two-sided 

alternatives, the best critical region consists of two one-sided 

intervals.  Thus, for H1:   0, the critical region is { y  < c3,  y  

> c4}.   

noncritical 

region 
A noncritical region is the complement of a critical region.  It 

is the set of all possible values of the test statistic that do not 

lead to the rejection of H0.   
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critical point 

 critical value 

                                                                                               

critical point or a critical value is any point that separates the 

critical region from the noncritical region.  A test of hypothesis 

may involve more than one critical point.  Thus, neither a 

critical region nor a noncritical region is necessarily 

contiguous.  For example, if the alternative hypothesis is two-

sided, there are two critical points, c3 and c4, because we reject 

H0 if y is smaller than c3 or larger than c4. 

All of the terminology introduced so far deals only with performing hypothesis 

testing.  We now introduce the terminology dealing with its evaluation.  

 

 

truth table 

Because the null hypothesis can be either true or false, we will 

commit an error if we draw the wrong conclusion from our 

hypothesis testing.  We distinguish two types of errors, 

depending on the true underlying state of affairs.  These errors 

are shown in Table 10.2.  In some disciplines, this is sometimes 

called a truth table. 

Table 10.2.   Possible outcomes of a test of hypothesis 

 
Reality 

Statistical decision Ho is true Ho is false 

Do not reject Ho Correct decision Type II error 

Reject Ho Type I error Correct decision 

Type I error, 

false alarm, 

false positive 

A Type I error is the error committed if we reject the null 

hypothesis when, in fact, it is true.  In some disciplines, a Type I 

error is also called a false alarm or a false positive. 

In Example 10.1, if we are judged guilty when we did not actually run a stop 

sign, the judge committed a Type I error.  

In Example 10.2, if the true average response time is no higher than 10 seconds 

but the sample happened to reject the null hypothesis, we committed a Type I 

error. 

probability of 

a Type I error 

 

The probability of a Type I error is denoted by .  This is the 

same  as the level of significance.  This probability is usually 

set at our (or our manager’s) discretion.  As stated above, the 

default value used by the NRC for α is 0.05 (5%).  
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probability of 

exceedance 

 

If the alternative hypothesis is right-sided, is sometimes 

called the probability of exceedance, because it is the 

probability that the test statistic will exceed the critical value.  

The term ―probability of exceedance‖ is sometimes extended to 

denote the probability of breaching any critical point, even if a 

left-sided or a two-sided alternative hypothesis is involved. 

Type II error 

false negative 

A Type II error is the error committed if we do not reject the 

null hypothesis when, in fact, it is false (i.e., when the 

alternative hypothesis is true).  In some disciplines, a Type II 

error is called a false negative. 

In Example 10.1, if we are not convicted when we actually did run a stop sign, 

the judge committed a Type II error.  

In Example 10.2, if the true average response time is higher than 10 seconds but 

the sample did not reject the null hypothesis, we committed a Type II error. 

probability of 

a Type II 

error 

operating 

characteristic 

(OC) 

The probability of a Type II error is denoted by .Because the 

alternative hypothesis allows for many different values of the 

parameter (call it  ) being tested,  will be a function of .  This 

is in contrast to the probability  of a Type I error, that depends 

only on the single value for  specified by the null hypothesis.  

As a function of , is called the operating characteristic (OC) 

of the test.   

consumer’s 

risk 
In business,  is sometimes called the consumer’s risk. 

 

power of the 

test  

The probability 1-  of rejecting the null hypothesis as a function 

of  is called the power of the test.  In addition to accepting the 

null hypothesis when it is true, we want our hypothesis test to 

reject the null hypothesis when it is false.  In other words, we 

want the test to be sensitive (―powerful‖) to the falseness of the 

null hypothesis.   

Chapter 13 illustrates the calculation of the power and the operating 

characteristic of the test.  

Surely you have noticed some imbalance in the treatment of the null and the 

alternative hypotheses:  We accept H1 when the data suggest that H0 be rejected, 

but we do not accept H0 when the data do not suggest rejection.  Here is a brief 

explanation.  If H0 is not rejected (i.e., if there is insufficient evidence to reject 

H0), that does not mean that H0 is proven correct.  It means only that the 

statistical evidence was not strong enough to reject H0.  In other words, we can 

never prove the null hypothesis; we can only disprove it. 
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We don’t always practice what we preach.  We sometimes say that we ―accept 

the null hypothesis‖ when we fail to reject it, although statisticians try to avoid 

this expression.  Even though we know that to prove the truth of H0 would 

require infinite data, we often act as though H0 is true simply because we did not 

reject it.  However, when we do this, we must be convinced that the sample was 

large enough so that H0 had a reasonable chance of being rejected if it were 

false. 

10.4  Null and alternative hypotheses:  examples 

This section gives examples of competing hypotheses (null and alternative) in 

various environments and points to the chapters where the statistical tests are 

developed. 

Testing a single mean (Chapter 13) 

Claim:  Mean response time to an alarm is no more than 10 seconds.  

H0:  = 10    H1:  > 10  

Claim:  Average percent of fuel enrichment is at least 78%. 

H0:  = 78    H1:  < 78 

Claim:  Average piston displacement is 2 millimeters.  

H0:  = 2     H1:  ≠ 2 

Claim:  Average radiation exposure during time t is no more than 0.10 rads.  

H0:  = 0.10     H1:  > 0.10 

Claim:  Control rods are activated within 3 seconds of demand.  

H0:  = 3.0     H1:  > 3.0 

Comparing two means (Chapter 15) 

Claim:  The average readings of two instruments are the same.  

H0: A = B     H1: A ≠ B 

Claim:  The average salinity of tank A is no higher than that of tank B. 

H0: A = B     H1: 1 > B 
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Comparing several means (Chapter 16) 

Claim:  All four laboratories yield the same average reading.    

H0: 1 = 2 = 3 = 4       H1: not all ’s are equal     

or    H1: i ≠ j,  some i, j 

Claim:  Average construction time for nuclear plants is the same for countries A,        

B, and C. 

H0: A = B = C     H1: not all ’s are equal 

Testing slope (Chapter 18) 

Claim:  The coefficient of expansion of this metal is the same as that of gold 

(14.43x10
-6

 per C).  

H0:  = 14.43x10
-6

     H1:  ≠ 14.43x10
-6

 

Claim:  The net increase in net count produced by nondestructive assay 

measurement per gram of material is equal to 70.1.   

H0:  = 70.1     H1:  ≠ 70.1 

Testing correlation (Chapter 19)  

Claim:  The cost of fuel at the pump and the price of tea in China are not 

correlated. 

H0:  = 0     H1:  ≠ 0 

Contingency table analysis (Chapter 12) 

Claim:  Gender (G) and promotion (P) are independent. 

H0: Pr{G&P} = (Pr{G}) (Pr{P})      

H1: Pr{G&P}  (Pr{G}) (Pr{P}) 

10.5  Consequences of hypothesis testing 

Because the amount of data is always finite, the possibility of making an error in 

hypothesis testing is always present.  Table 10.3 summarizes the consequences 

of statistical hypothesis testing in light of this possibility.  The first column in 
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that table lists the consequences of rejecting the null hypothesis, while the 

second column lists the consequences of not rejecting it. 

Table 10.3.   Consequences of hypothesis testing 

After the hypothesis is tested and… 

…if the test statistic falls into the 

critical region, we reject the null 

hypothesis H0. 

…if the test statistic does not fall into 

the critical region, we do not reject 

the null hypothesis H0. 

The story told by the data is not 

consistent with H0. 

We may have made an error in 

rejecting H0. 

If H0 is true, we committed a Type I 

error. 

The probability of committing a Type 

I error, , is ―small‖; we know its 

value (typically 5%), and we are 

prepared to live with this small 

chance. 

The story told by the data is consistent 

with H0. 

We may have made an error in not 

rejecting H0. 

If H0 is false, we committed a Type II 

error. 

The probability of committing a Type 

II error, , is not known but we hope 

it’s small.   is a function of the 

departure from the null hypothesis 

(i.e., the specific value of the 

parameter under the alternative 

hypothesis). 

We cannot have both α and β be small, as there is a balance between the two.  If 

we allow α to increase, we automatically decrease the size of β, and vice versa.  

The question then becomes how much of a larger probability of a Type I error 

are we willing to tolerate to get a smaller β.  Another option is to increase the 

sample size while keeping α constant because our statistical test will then 

become more sensitive to departures from the null hypothesis.  But, regardless 

of the sample size, the proper balance between  and  as a function of the 

separation between the null and alternative hypotheses will always be an issue. 

10.6  Guilty until found innocent 

A test of hypothesis should be sensitive to an incorrect null hypothesis.  In 

statistical terms, the test should have a reasonably small , even if we don’t 

know its actual size.  The sensitivity (power) of the test is influenced by several 

factors, one of which is the sample size, n.  For a fixed α and a fixed alternative 

to H0, the probability of rejecting H0 is an increasing function of n.  In other 

words, the power increases as n increases.  If, in Example 10.2, the Director of 
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Security does not want the null hypothesis (H0: µ = 10) to be rejected, it is to his 

advantage to have n be as small as possible. 

 Note also that it would serve the Director’s purpose to have the variability 

in the system as large as possible so that any departures from the null 

hypothesis would be lost in the noise. 

In the interest of ensuring a quick response system, we may reverse the roles of 

H0 and H1.  Now we claim that µ = 10.1 (say) and ask the Director of Security to 

reject this hypothesis in favor of H1: µ < 10.1.  Now it is to the Director’s 

advantage to have a large sample size and a low variability. 

In a similar vein, consider the following example:  A processing plant for 

nuclear material measures and records its inventory and compares it to the book 

records.  Discrepancies between the two can be attributed to random fluctuations 

resulting from sampling errors, loss due to processing, or even loss or diversion.  

If we set H0 = 0 to reflect random fluctuations and no loss, real losses may be 

undetectable with potentially dire consequences. 

A switch between the traditional H0 and H1 addresses this problem.  We select a 

quantity of concern Q (say, 1 kilogram) and require the plant to demonstrate that 

if a quantity Q of material is unaccounted for, corrective action would be taken.  

Statistically, we set H0 = Q and H1 < Q. 

Another example is the release of a decommissioned area after scrubbing.  We 

claim (H0) that the area’s radiation level is at some permitted level, and the 

licensee must demonstrate that the contamination level is significantly below 

that level. 

10.7  Finally… 

The framework for testing statistical hypotheses involves designing the 

experiment, selecting the sample size, drawing the sample, specifying the 

hypotheses, selecting a test statistic, running the analysis, reporting the results, 

and interpreting the findings.  If any of these elements is inappropriate or 

inadequate, the findings may be faulty. 

We also assume that the data are collected, recorded, and transmitted correctly.  

We assume that no data laundering takes place and that care is taken to protect 

the integrity of the data at the source, at the recording station, during 

transmission, and during the analysis. 

Hypothesis testing is very closely related to the construction of confidence 

intervals covered in Chapter 9.  Consider, for example, a two-sided confidence 

interval (L, U) for μ.  This interval is a set of plausible values of μ consistent 

with the data.  Any value outside (L, U) is considered an unlikely value of μ.  It 
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turns out that a test of hypothesis at the same level of significance will reject the 

null hypothesis if and only if the sample mean does not fall in the confidence 

interval (L, U).  The same result holds for a one-sided confidence interval.  If the 

sample mean does not fall in the confidence interval, the corresponding null 

hypothesis will be rejected and vice versa.  In this sense, hypothesis testing and 

confidence interval construction are two sides of the same coin; for each test of 

hypothesis, there is an equivalent confidence interval and vice versa.   

 



 

 

11 
Goodness-of-fit tests 

11.1  What to look for in Chapter 11 

goodness-of-

fit test 
A goodness-of-fit test is a procedure that investigates whether a 

sample could have come from a specified distribution.  

Chapter 11 presents several goodness-of-fit tests and discusses 

their applicability.  Terminology used in this presentation 

includes: 

 empirical distribution function, §11.7 

Four goodness-of-fit tests are examined in detail: 

 chi-square test for discrete distributions, §11.3  

  chi-square test for normality, §11.5 and §11.6 

 Kolmogorov-Smirnov test for continuous distributions, §11.8 

 Shapiro-Wilk test for normality for small samples, §11.9 

 D’Agostino test of normality for moderate and large samples, §11.10 



204 Applying Statistics 
 

 

11.2  Testing goodness-of-fit 

test of fit A goodness-of-fit test, often refered to as a test of fit, is designed 

to examine whether a sample has come from a postulated 

distribution.  Here are a few examples where assumptions about 

the structure of the distribution are made and where a test of fit 

may be applicable. 

 In rolling a die, we wish to test whether we play with a fair die, that is, 

whether all faces of the die are equally likely to come up.  Similarly, in 

playing a casino’s roulette wheel, we test whether, when played for a 

long time, each of the 38 possible outcomes comes up with essentially 

the same frequency. 

 In grading a class on the ―bell curve,‖ we wonder whether the proportions 

of A’s, B’s, C’s, D’s, and F’s are consistent with the proportions 

expected from the normal distribution. 

 In selecting employees for drug testing, we wish to test whether the random 

number generator that is used for employee selection follows the 

discrete uniform distribution.  

 In testing hypotheses about the population mean, we sometimes make an 

assumption that the sample came from a normal distribution and ask 

whether this is a reasonable assumption.   

The following notations are used: 

 F*(y) is the hypothesized, or postulated, cumulative distribution function.  

 F(y) is the actual cumulative distribution function that gave rise to the 

sample. 

 Fn(y) is the cumulative distribution function that is constructed from the 

sample of size n (section 11.7). 

 f*(y) is the hypothesized, or postulated, probability function. 

 f(y) is the actual probability function of the distribution that gave rise to the 

sample. 

 fn(y) is the probability function that is constructed from the sample of size n. 

Suppose we have a sample from F(y)—or, equivalently, from f(y)—and we wish 

to test whether F(y) is the same as F*(y)—or, equivalently, if f(y) is the same as 

f*(y).  Formally stated: 
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H0:  F(y)  =  F*(y)      or  f(y)  =  f*(y) 

(11.1) 
H1:  F(y)    F*(y)      or  f(y)    f*(y) 

Intermediate steps in testing H0 may involve one of the following: 

 Construction of a histogram fn(y) from the data to mimic f(y) (similar to 

that which is shown in Figure 6.2). 

 Construction of a cumulative distribution function histogram Fn(y) 

from the data to mimic F(y) (similar to that shown in Figure 6.3).    

empirical 

distribution 

function 

Fn(y) is called the empirical distribution function.  Section 11.7 

outlines the construction of the empirical distribution function. 

In this chapter, we present several tests of fit.  Some of the tests are quite general 

in that they can apply to just about any distribution, while other tests are more 

specific, such as tests that apply only to the normal distribution.  Also, some 

tests apply to distributions that are completely specified (i.e., with all parameters 

given), whereas other tests are applicable even when not all parameters are 

known and specified. 

Among the methods for testing goodness-of-fit, some are superior to others in 

their sensitivity to different types of departures from the hypothesized 

distribution.  For example, some tests are more likely to detect discrepancies 

between F(y) and F*(y) when the discrepancy is present in the neighborhood of 

the center of F(y), while other tests are more sensitive to a discrepancy around 

the tail of the distribution.  Thus, we may not always choose the best test since 

we don’t always know where the two distributions are likely to differ. 

In the following sections, we present several of the most widely used tests of fit.  

However, it must be emphasized that, in order for the statistical statements about 

the tests to hold, only one test should be used, and the selection of that test 

should be made before the data are seen. 

Finally, like every test of hypothesis, a test of fit can at best indicate, at a 

prespecified significance level, that if the null hypothesis is rejected, the sample 

is not from the hypothesized distribution.  However, if the null hypothesis is not 

rejected, this does not mean that the sample necessarily came from the 

hypothesized distribution.  It usually means that it is reasonable to proceed as 

though the hypothesis were true.    
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11.3  Chi-square test for discrete distributions  

chi-square 

goodness-of-

fit test 

 

The chi-square goodness-of-fit test compares frequencies of 

sample values with the frequencies of a hypothesized probability 

function f*(y).  This test usually involves grouping the sample 

data into predetermined and mutually exclusive classes 

(sometimes called bins) which cover the full range of the 

population from which the sample is drawn.  For each class, the 

number of observed data values is compared to the number that 

is theoretically expected from f*(y).  Practical considerations 

determine the number of classes in a test.  Such considerations 

are discussed in the context of the examples we present. 

 The chi-square test of fit is a popular test because of its relative ease of 

calculation.  On the other hand, the chi-square test has several 

shortcomings.  First, the grouping of the data is not unique, and different 

groupings can lead to different conclusions about the agreement between 

the data and f*(y).  Second, the grouping of the data may lead to a loss of 

detail and hence to some loss of sensitivity to departures from f*(y).   

 

 

chi-square 

statistic 

Given a sample of size n, we wish to test the null hypothesis 

H0:  f(y) = f*(y) against a two-sided alternative, where f(y) is the 

probability function of the distribution that gave rise to the 

sample and f*(y) is a hypothesized probability function.  We 

group the sample data into c classes and use a test statistic called 

the chi-square statistic, denoted by
2 ( 1)c , calculated as: 

2

1

2

( 1)
c

i i

i i

O E
c

E
                                     (11.2) 

where:  

 i = class index  

O i = count of observations in class i 

E i = expected count in class i 

c  = number of classes 

expected 

count 
The expected count Ei in class i is n times the probability of an 

observation falling in class i, based on the hypothesized 

probability function f*(y).  Note that E i is not necessarily an 

integer.  
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A mathematically equivalent form of Equation (11.2) is given by:  

2
2 ( 1)

c
i

i i

O
c n

E
 (11.3) 

Although Equations (11.2) and (11.3) are algebraically equivalent, 

Equation (11.3) is usually easier to calculate.  However, the form of 

Equation (11.2) is more useful because it emphasizes that the chi-square test is 

based on the differences between the two distributions. 

Under the null hypothesis, 2 ( 1)c has a chi-square distribution with c - 1 

degrees of freedom (see Section 7.10).  

Example 11.1.   Rolling a die.   In an experiment designed to test whether a 

specific die is fair, the die is rolled n = 600 times.  If the die is fair, then the 

probability i of showing face i (i = 1, 2, …, 6) is 1/6 and the expected count 

(also called the expected frequency) in class i is (n)(i) =(600)(1/6) = 100.  The 

null and alternative hypotheses and the level of significance are: 

H0:  f(i) =i = 1/6, i = 1, 2, …, 6 

 

H1:  f(i) =i 1/6, for some i 

α = 0.05 

 The alternative hypothesis means that not all i are equal (i.e., at least two 

i’s, are different). 

In each of the 600 rolls, the number of the face showing is recorded.  Table 11.1 

gives the class counts. 

Table 11.1.   Observed and expected frequencies of rolling a die   

Face (dots), i 1 2 3 4 5 6 Total 

Observed count, Oi 123 131 84 95 96 71 600 

Expected count, Ei 100 100 100 100 100 100 600 

Difference, Oi - Ei   23   31  -16   -5   -4  -29 0 

 

The calculated chi-square statistic, using Equation (11.2) with c - 1 = 5 degrees 

of freedom, is: 

2 2 2 2 2 2
2 23 31 ( 16) ( 5) ( 4) ( 29)
(5) 26.28

100 100 100 100 100 100
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From Table T-2 of the appendix, the critical point for  = 0.05 is 
2

0.95(5) 11.10.   Since 2 (5) 11.07,  we reject the hypothesis of equal 

probability.  We have statistical evidence that the die is not fair (p < 0.05).  Note 

that the statement ―p < 0.05‖ indicates that the test is significant at the 0.05 

level.  

   The conclusion may also be worded to state that the sample proportions 

differ significantly from the hypothesized proportions. 

Example 11.2.   Grading a class.   School policy suggests that overall 

grades throughout the campus be awarded in the following proportions:  

A: 10%, B: 20%, C: 55%, D: 10%, F: 5%.  A class of 81 students was graded, 

and the administration wonders whether the grades for the class are consistent 

with school policy.  

The null and alternative hypotheses are written as: 

H0:  A = 0.10; B = 0.20; C = 0.55; D = 0.10; F = 0.05   

 

H1:  At least one of the stated proportions is not met.  

Table 11.2 gives the data obtained from the instructor.  

Table 11.2.   Observed and expected count in class grades   

Grade A B C D F Total 

Observed count, Oi 4 8 54 10 5 81 

Expected proportion, 

 i 
0.10 0.20 0.55 0.10 0.05 1.00 

Expected count, Ei 8.10 16.20 44.55 8.10 4.05 81.00 

Difference, Oi - Ei -4.10 -8.20 9.45 1.90 0.95 .00 

 

The calculated chi-square statistic, per Equation (11.2), is: 

 

2 2 2 2 2
2 ( 4.10) ( 8.20) 9.45 1.90 0.95
(4) 2.20

81 81 81 81 81  

From Table T-2 of the appendix, the critical point for α = 0.05 is 2

0.95(4) 9.49.  

Since 2(4) 2.20 9.49, we have no reason to claim that school policy was 

violated.  We conclude that random fluctuations most likely explain the grade 

distribution for this class. 
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Example 11.3.   Random selection.   Random selection of employees for 

drug testing is made using a computer routine, which randomly selects n = 150 

out of N = 1,491 employees for the test.  Responding to numerous employee 

complaints, the selection system is tested for randomness.  For this test, we 

arbitrarily divide the employees into seven groups according to their last name.  

The null and alternative hypotheses are similar to those of Example 11.2.  

Table 11.3 shows the count of the employees in each group in the agency and in 

the sample and the relevant calculations.   

Table 11.3.   Testing randomness in employee selection 

Last name A–C D–G H–K L–N O–R S–W X–Z Total 

Agency count 310 253 177 163 244 268 76 1,491 

Agency proportion, 

 i 
0.21 0.17 0.12 0.11 0.16 0.18 0.05 1.00 

Observed count, Oi  28 24 19 23 30 16 10 150 

Expected count, Ei  31.19 25.45 17.81 16.40 24.55 26.96 7.65 150 

Difference  

Oi –Ei
 -3.19 -1.45 1.19 6.60 5.45 -10.96 2.35 0.00 

(Oi –Ei)
2 10.16 2.11 1.42 43.58 29.73 120.16 5.54  

(Oi –Ei)
2
 / Ei

 
0.33 0.08 0.08 2.66 1.21 4.46 0.72 9.54 

 

From Table 11.3, the chi-square statistic is calculated as 2 (6) 9.54.  From 

Table T-2 of the appendix, the critical point for α = 0.05 is 2

0.95(6) 12.6.   

Since the critical point is not exceeded, we have no reason to claim that the 

selection is not made at random. 

11.4  Chi-square test:  sample size considerations  

 

The use of the chi-square statistic to test goodness-of-fit may be inappropriate 

for small sample sizes.  Recommended rules for tackling this problem exist in 

the statistical literature.  They often include cautions about interpreting the 

results.  These rules are stated in terms of the classes’ expected counts rather 

than the number of observed counts.  One such widely used rule, known as the 

―Rule of 5,‖ states that no class should have a smaller expected count than 5.  

Because there must be at least two classes, this rule implies that the sample size 

must be at least 10.  To satisfy the rule, the data must be partitioned so that the 

sample size multiplied by the smallest class proportion is no smaller than 5.   
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Some authors offer alternatives to the Rule of 5.  For example, Dixon and 

Massey (1983), p. 277, allow chi-square tests that meet either one of two 

conditions: 

 Condition 1:  No expected count is smaller than 2 for any class. 

 Condition 2:  At least 80% of all the classes have expected counts of at 

least 5, with none of the expected counts less than 1. 

There are two strategies to use if a rule is not satisfied.  One is to increase the 

sample size, and the other is to consolidate classes.  It is preferable to increase 

the sample size because this will increase the sensitivity of the test to detect 

departures from the null hypothesis.  Consolidating classes will decrease that 

sensitivity.  

11.5  Chi-square test for normality:  known parameters  

The chi-square test applies equally well to data from a continuous distribution.  

This section illustrates the use of the chi-square test for testing normality when 

the hypothesized normal distribution is completely specified (i.e., the parameters 

μ and σ
 2
 are given).  Section 11.6 will consider the case where the parameters 

are not given and are estimated from the sample. 

In both cases, the sample data are sorted into classes, and the chi-square statistic 

is calculated from the difference between the expected and observed counts.  We 

illustrate the use of the chi-square test of fit by the following example, borrowed 

from Bowen and Bennett (1988), p. 525.  

Example 11.4.   Uranium content of air filters.   A fuel fabrication facility 

routinely monitors its gaseous effluents by using an alpha counter to measure the 

uranium content of air filters.  The alpha counter output is the number of counts 

observed in 1 minute, which can be translated into a quantity of uranium given 

the appropriate calibration relationship.  The facility purchased a new alpha 

counter and must test the manufacturer’s claim that the counter’s random 

measurement errors follow a normal distribution with a standard deviation of 10 

counts/minute for samples yielding between 200 and 400 counts/minute.  A 

standard rated at 310 counts/minute was measured 30 times, yielding the 

counts/minute arranged in ascending order of magnitude, as shown in Table 

11.4.  
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Table 11.4.   Uranium count per minute 

267 270 278 280 283 284 287 296 299 300 

300 304 306 313 314 314 315 316 316 316 

317 317 319 321 325 326 331 342 351 354 

 

Given μ = 310 and σ
 2
 = 100, we proceed to test: 

0 :  ~  310,  100H Y N   

1 :  ~  310,  100H Y N   

where the symbol ~ is read as ―distributed as‖ and the symbol ~  indicates ―not 

distributed as.‖ 

We elect to divide the domain of the hypothesized distribution into four equally 

likely intervals, where the split points for the intervals are the quartiles.  

Interpolating in Table T-1 of the appendix, we find z0.25 = -.674,  z0.00 = 0.000, 

and z0.75 = .674.  Thus, the quartiles of the hypothetical distribution are:  

y.25 = 310 + (z.025)(10) = 310 + (-0.674)(10) = 303.3 

y.50 = 310 + (z0.50)(10) = 310 + (0.00)(10) = 310.0 

y.75 = 310 + (z0.75)(10) = 310 + (0.674)(10) = 316.7 

Table 11.5 shows the calculation of the chi-square statistic with c - 1 = 3 degrees 

of freedom. 

Table 11.5.   Testing normality:  known parameters 

Class: < 303.3 

303.3 –

310.0 

310.0 –

316.7 > 316.7 Total 

Observed count, Oi  
11 2 7 10 30 

Expected count, Ei  
7.5 7.5 7.5 7.5 30 

Difference, Oi - Ei 
3.5 -5.5 -0.5 2.5 0.0 

(Oi - Ei)
2
 12.25 30.25 0.25 6.25  

(Oi - Ei)
2
 / Ei 1.63 4.03 0.03 0.83 6.53 

From Table 11.5, the calculated chi-square is 6.53.  From Table T-2 of the 

appendix, the critical point for α = 0.05 is 2

0.95(3) 7.81.  Because the critical 
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point is not exceeded, we have no statistical evidence to reject the hypothesized 

distribution at a 5% significance level. 

 Had we chosen α = 0.10, H0 would have been rejected because 
2

0.90 (3) 6.25,  which is exceeded by the calculated chi-square.  

However, because H0 states that the data come from a normal 

distribution with specified mean and variance, it is possible that the 

data are from a normal distribution with a different mean and/or 

variance.  This possibility is considered in Section 11.6.   

11.6  Chi-square test for normality:  unknown 
parameters  

Parameters of a distribution are rarely known or specified.  Hence the chi-square 

test for normality may not be applicable, at least not in the format presented, as 

both normal parameters are used in the determination of the class boundaries.  

We continue with the data in Example 11.4, this time without having the mean 

or the variance specified.    

Example 11.5.   Uranium content of air filters:  unknown parameters.   
The data are the same as in Table 11.4, except that the information did not come 

from measuring a standard with a known mean.  We test the null hypothesis that 

the data came from a normal distribution with unspecified mean and variance. 

Without knowledge of μ and , class boundaries cannot be tied to quantiles of 

the normal distribution as was done in Section 11.5.  Instead, we begin by 

arbitrarily grouping the data in Table 11.4 into four classes as shown in Table 

11.6, where the midpoint of each class is also shown.  Note that these classes do 

not cover the full range of the normal distribution.  The only requirement is that 

the classes cover the full range of the sample data in Table 11.4.  

Table 11.6.   Class selection 

Class 

Class 

boundaries 

Class 

midpoint, mi 

Observed 

count, oi 

1 (260, 285) 272.5 6 

2 (285, 310) 297.5 7 

3 (310, 335) 322.5 14 

4 (335, 360) 347.5 3 
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Next, as in Section 2.4, we calculate the sample weighted mean as:  

1 1

/
c

W i iY O m n  (11.4) 

     = [6(272.5) + 7(297.5) +14(322.5) + 3(347.5)] / 30 = 309.167  

and the sample weighted variance as: 

2 2 2

1

/
c

W i i W

i

S O m n Y  (11.5) 

      = [6(272.5)
2
 + 7(297.5)

2
 +14(322.5)

2
 + 3(347.5)

2
] / 30  - (309.167)

2 

         
= 530.35 

 

from which the standard deviation SW is calculated as sW = 23.03.  

We now use the estimated mean and standard deviation instead of specified 

parameters to calculate the chi-square test statistic as in Section 11.5.  First, we 

add a lower class (- , 260) and an upper class (360, ) to the four classes in 

Table 11.6.  The lower class is designated Class 0 and the upper class as Class 5, 

with the four classes in Table 11.6 becoming Class 1 – 4.  Table 11.7 lists the 

class boundaries.   

Table 11.7.   Class boundaries and expected counts 

 

Class 

 

Class boundaries 

Probability, 

i 

Expected count, 

Ei 

0 ≤ 260 0.0164 0.49 

1 (260, 285) 0.1306 3.92 

2 (285, 310) 0.3674 11.02 

3 (310, 335) 0.3546 10.64 

4 (335, 360) 0.1173 3.52 

5 > 360 0.0137 0.41 
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Next, the proportion i assigned to each class is calculated.  For Class 1, we 

have: 

1 = Pr{260 < Y ≤ 285} 

    
260 309.167 285 309.167

23.03 23.03
Pr Z  

    = Pr {-2.135 < Z ≤ -1.049} 

    = Pr{Z < -1.049} - Pr{Z ≤ -2.135} 

    = (1.0000 – 0.8530) – (1.0000 – 0.9836)         

    = 0.1470 – 0.0164 = 0.1306 

from which the expected count in Class 1 is calculated as (.1306)(30) = 3.92. 

Similarly, we find that: 

2 = Pr{285 < Y ≤ 310} = 0.3674.  The expected count for Class 2 is 

30(0.3674) = 11.02. 

3 = Pr{310 < Y ≤ 335} = 0.3546.  The expected count for Class 3 is 

30(0.3546) = 10.64. 

4 = Pr{355 < Y ≤ 360} = 0.01173.  The expected count for Class 4 is 

30(0.1173) = 3.52. 

Table 11.7 summarizes these calculations.  Note that the sum of the expected 

counts for the four classes is 29.10.  The missing expected count of 0.90 stems 

from the omission of the expected counts for Class 0 and Class 5.  The 

probabilities of falling in these end classes are:    

260 309.167
 260   { 2.1346} 0.0164

23.03

360 309.167
 360   { 2.2069} 0.0137

23.03

Pr Y Pr Z Pr Z

Pr Y Pr Z Pr Z

 

The expected counts for Class 0 and Class 5 are 30(.0164) = .49 and 

30(.0137) = .41, respectively.  The calculations for Table 11.7 are now 

complete.  Because the expected counts for the end classes are so small, we 

combine Class 0 with Class 1 and Class 5 with Class 4.  Table 11.8 shows the 

revised class boundaries, observed counts, and expected counts. 
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Table 11.8.   Class boundaries and counts (revised) 

 

Class 

 

Class boundaries Observed count, Oi 

Expected 

count, Ei 

1 (- , 285) 6 4.41 

2 (285, 310) 7 11.02 

3 (310, 335) 14 10.64 

4 (335, ) 3 3.93 

 

The chi-square statistic is now calculated in Table 11.9. 

Table 11.9.   Testing normality:  unknown parameters 

Class < 285 285–310 310–335 > 335 Total 

Observed count, Oi  6 7 14 3 30 

Expected count, Ei  4.41 11.02 10.64 3.93 30 

Difference, Oi - Ei 1.59 -4.02 3.36 -.93 0.00 

(Oi - Ei)
2 2.53 16.16 11.29 .86  

(Oi - Ei)
2
 / Ei 0.57 1.47 1.06 0.22 3.32 

The calculated chi-square statistic is 3.32.   

When the parameters of the distribution are completely specified, the number of 

degrees of freedom for the chi-square test is c - 1, where c is the number of 

classes.  When one or more parameters are not specified, the number of degrees 

of freedom is reduced by the number of parameters that are estimated.  If k 

parameters are estimated from the sample, then the number of degrees of 

freedom is: 

ν = c – k – 1  (11.6) 

In this example, we have four classes and two estimated parameters.  From 

Equation (11.6), we have  = 1.  Hence, we look up the 0.95 quantile in Table  

T-2 of the appendix for df = 1 to get 2

0.95(1) 3.84.   Since 3.32 < 3.84, we do 

not have enough statistical evidence to reject normality at the 5% level of 

significance.  However, had we set the level of significance at 10%, then the 

critical value would have been 2.71, and we would have rejected the null 

hypothesis of normality.  One interpretation of these apparently contradictory 

results is to conclude that there is moderate but not strong statistical evidence 

that the sample did not come from a normal distribution.  This is because 
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rejecting a null hypothesis at the 5% level of significance requires stronger 

statistical evidence than rejecting it at the 10% level.   

11.7  Empirical cumulative distribution function 

empirical 

cumulative 

distribution 

function 

empirical cdf 

Several goodness-of-fit tests for continuous distributions are 

based on an estimate of the underlying cumulative distribution 

function.  Consider a sample {y1, y2, …, yn} of size n from a 

continuous distribution with cdf F(y).  The empirical cumulative 

distribution function, or empirical cdf, denoted by Fn(y).   

Fn(y) = [1 / n][number of observations that are less than or equal to y] (11.7) 

To write Equation (11.7) in mathematical notation, we rearrange the n 

observations in the sample in ascending order and denote the i
 th

 ordered 

observation by y(i) so that:  

y(1) ≤ y(2) ≤ … ≤ y(n)  (11.8) 

 Note the subscripts in parentheses that are used to denote ordered 

observations.  Some writers use a superscript, such as y 
(i)

, for the same 

purpose.  Still other writers elect to use different letters to denote order 

statistics, thus avoiding parentheses around the subscripts.  For 

example, they may use z1 to denote the smallest observation, z2 the 

second smallest, and so on. 

rank The subscript i in y(i) assigned to the i
th

 ordered observation is 

called the rank of that observation. 

Using the ordered observations, Equation (11.7) can be written as: 

                        

(1)

( ) ( 1)

( ) 0,

/ , if , 1, 2, ...,  - 1

          = 1,

n

k k

n

F y if y y

k n y y y k n

if y y

 

(11.9) 

 

 

 

step 

function 

Fn(y) is a step function, which is illustrated in Figure 11.1 for a set 

of 10 observations {8, 3, 7, 9, 9, 5, 8, 6, 11, 10}.  We first order 

the observations in ascending order to yield the set {3, 5, 6, 7, 8, 8, 

9, 9, 10, 11}.  Then we proceed to plot Fn(y) against y.  Note that 

when r observations are tied, (like when y(i) = y(i) = 8), Fn(y) steps 

up by r/n.  
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Figure 11.1   Empirical cumulative distribution function 

The empirical cdf can be used to test whether a dataset came from a 

hypothesized distribution.  For example, to test whether the 10 observations 

from Figure 11.1 came from the normal distribution with mean μ = 7.0 and 

standard deviation σ = 2.0, we can superimpose the cdf for N(7.0, 4.0) on 

Figure 11.1, as in Figure 11.2.  To have a statistically valid goodness-of-fit test, 

it is necessary to quantify the graphical discrepancies between the two cdfs in 

Figure 11.2.  The next section discusses one such test.  

 

Figure 11.2.   Hypothetical and empirical cdfs 

11.8  Kolmogorov-Smirnov goodness-of-fit test 

Kolmogorov-

Smirnov test  

K-S test 

The Kolmogorov-Smirnov test or K-S test is used to decide if a 

sample comes from a population with a specified cdf F*(y).  The 

test is based on the difference between the empirical cdf Fn(y)   

and F*(y).  One advantage of the K-S test over the chi-square 

test is that it does not depend on arbitrary classification of the 

data.   
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 Also, for small sample sizes, the K-S test can always be carried 

out, where as the chi-square test may not be appropriate for 

small samples. 

The K-S test however does have its limitations.  The test is designed to be used 

with continuous variables, and the associated cdf must be completely specified.  

Also, the test is quite insensitive to discrepancies between the empirical and the 

hypothesized cdfs in the tail areas of the distributions. 

 Technically, the K-S test could be used for testing distributions of ordinal 

variables.  However, such cases are rather limited and are usually 

handled better with a chi-square test.  

As with the chi-square test, the K-S test is usually performed with a two-sided 

alternative: 

H0:  F(y) = F*(y)      

(11.10) 

H1:  F(y) ≠ F*(y)
 

The K-S test is based on the maximum discrepancy between Fn(y) and F*(y).  

The test statistic is: 

*

( ) ( )max | ( ) ( ) |i n i
i

D F y F y  
(11.11) 

where y(i) is the i
th

 ordered observation as in Equation (11.8).  

Because both F*(y) and Fn(y) are nondecreasing functions, the maximum 

discrepancy between the two must be either just before or just after a step is 

made in Fn(y).  Accordingly, D can be calculated as:   

* *

( 1) ( )

1
max ( ) , ( )i i

i

i i
D F y F y

n n
 (11.12) 

The K-S test rejects the null hypothesis if D exceeds the critical value dq(n) for 

sample size n and q = 1 – α.  These values are given in Table T-13, ―Quantiles, 

dq(n), of the Kolmogorov-Smirnov D statistic,‖ of the appendix.  If H0 is 

rejected, we conclude that the statistical evidence does not support the claim that 

the sample came from a distribution with the hypothesized cdf F*(y).   

Example 11.6.   Example 11.4 revisited.   In Example 11.4, we used the 

chi-square test to test whether the sample came from a normal distribution 

N(310, 100).  We now test the same sample using the K-S test.  This test is 

shown using an Excel spreadsheet with step-by-step instructions.  Again, the 

null and the alternative hypotheses are: 
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Ho:  F(y) = F*(y)  

H1:  F(y) ≠ F*(y) 

Step-by-step intermediate calculations for this example are given for Excel, and 

the numerical values are displayed in Table 11.10.   

Step 1.   In columns A2..A31, enter the sequential numbers of the observations. 

Step 2.   Enter the data in Excel in cells B2..B31.  If the data are not sorted 

already, sort the data in ascending order by clicking ―Data‖ then    ―Sort 

A Z‖ from the menu to indicate sorting in ascending order. 

Step 3.  Calculate sample size n in cell C37 (not shown) using 

=COUNT(B1..B31). 

Step 4.   Calculate the height of the empirical distribution function for the 

smallest observation y(1) in cell C2, using 

=FREQUENCY(B$2:B$31,B2)/$C$37.  Copy cell C2 to cells C3 

through C33.  

Step 5.   Use =NORMDIST(B4,310,10,1) in cell D2 to enter the cumulative 

N(310,100) value distribution for y(1) in cell D2.  (The last entry of 1 in 

this function indicates that the cumulative, rather than marginal, value 

is requested.)  Copy cell D2 to cells D3 through D33. 

Step 6.   In cell E2, enter = ABS(D4 - A4/$C$37) to calculate |F*(y(1)) - Fn(y(1)|.  

Copy cell E2 to cells E3 through E33. 

Step 7.   In cell F2, enter =ABS(D4 - (A4-1)/$C$37) to calculate 

|F*(yi) - Fn(y(i-1)|.  Copy cell F2 to cells F3 through F33. 

 Since i - 1 = 0 when i = 1, Fn(y(i-1)) is defined as .000 for cell F2.  

From the last two columns thus created, we find their maximum value, 

D =MAX(E4..E33), which is D = 0.222.   

From Table T-13 of the appendix, the critical value d0.95(30) = 0.242.  Since D 

does not exceed the critical value, we have no statistical evidence to reject the 

N(130, 100) hypothesis at the 5% level of significance.  However, had we used a 

10% level of significance, the critical value would have been d90(30) = 0.218, 

and we would have rejected the null hypothesis.  These are the same conclusions 

as drawn in Example 11.4.  Neither the chi-square test nor the K-S test rejects Ho 

at the α = 0.05 level of significance, and both would have rejected H0 if we had 

used α = 0.10 instead. 

In general, Conover (1980) suggests that the K-S test may be preferred over the 

chi-square test if the sample size is small, because exact critical values are 

readily available for the K-S test.  Conover also states that the K-S test is more 
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powerful than the chi-square test for many situations.  For further details and 

comparisons, see Slaktor (1965).  

Table 11.10.   Kolmogorov-Smirnov test applied to Example 11.4 

  A B C D E F 

1 Rank, (i) y Fn(y(i)) F*(y(i)) |F*(y(i))-Fn(yi)| |F*(y(i))-Fn(y(i-1))| 

2 1 267 0.033 0.000 0.033 0.000 

3 2 270 0.067 0.000 0.067 0.033 

4 3 278 0.100 0.001 0.099 0.066 

5 4 280 0.133 0.001 0.132 0.099 

6 5 283 0.167 0.003 0.164 0.130 

7 6 284 0.200 0.005 0.195 0.162 

8 7 287 0.233 0.011 0.222 0.189 

9 8 296 0.267 0.081 0.186 0.152 

10 9 299 0.300 0.136 0.164 0.131 

11 10 300 0.367 0.159 0.174 0.141 

12 11 300 0.367 0.159 0.208 0.174 

13 12 304 0.400 0.274 0.126 0.093 

14 13 306 0.433 0.345 0.088 0.055 

15 14 313 0.467 0.618 0.151 0.185 

16 15 314 0.533 0.655 0.155 0.188 

17 16 314 0.533 0.655 0.122 0.155 

18 17 315 0.567 0.691 0.124 0.158 

19 18 316 0.667 0.726 0.126 0.159 

20 19 316 0.667 0.726 0.093 0.126 

21 20 316 0.667 0.726 0.059 0.093 

22 21 317 0.733 0.758 0.058 0.091 

23 22 317 0.733 0.758 0.025 0.058 

24 23 319 0.767 0.816 0.049 0.083 

25 24 321 0.800 0.864 0.064 0.097 

26 25 325 0.833 0.933 0.100 0.133 

27 26 326 0.867 0.945 0.078 0.112 

28 27 331 0.900 0.982 0.082 0.115 

29 28 342 0.933 0.999 0.066 0.099 

30 29 351 0.967 1.000 0.033 0.067 

31 30 354 1.000 1.000 0.000 0.033 
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11.9  Shapiro-Wilk test for normality 

Shapiro-Wilk 

test 

  

W-test 

The Shapiro-Wilk test, also known as the W-test, tests whether 

the distribution from which a sample {y1, y2, …, yn} is taken is a 

normal distribution.  The test requires a table of coefficients to 

compute the test statistic in addition to a table of critical values.   

  The W-test is also applicable to distributions that can be related to the 

normal distribution by a transformation.  For example, if we wish to 

test whether the observations came from a log-normal distribution, we 

take the logarithm of each observation and then apply the test to the 

transformed observations. 

The W-test is applicable when neither μ nor σ is specified.  The W-test is 

considered an omnibus test for normality because of its superiority to other 

procedures over a wide range of problems and conditions that depend on an 

assumption of normality.  Based on comparison studies by Shapiro, Wilk, and 

Chen (1968) and LeBrecque (1977), the W-test appears to be superior to the chi-

square test in many situations where n is no larger than 50.  Its only limitation is 

that it is applicable only to sample sizes between 3 and 50. 

The null and alternative hypotheses are:  

Ho:  The sample comes from a normal distribution.  
(11.13) 

H1:  The underlying distribution is not normal. 

In this section, we first present the general structure of the test and then illustrate 

the test in detail with an Excel spreadsheet.  The calculations are lengthy but 

straightforward and are best carried out with a spreadsheet. 

Let {y(1) , y(2) , …, y(n)} be a random sample of n independent observations 

arranged in ascending order.  The test statistic is:   

2

2( 1)

B
W

n S
 (11.14) 

where: 

B  = ( 1) ( )

1

( –  )         
k

i n i i

i

a y y  

k  = n/2 if n is even or (n - 1)/2 if n is odd  

S 
2
 = sample variance  

ai = coefficient obtained from Table T-6a, ―Coefficients {an – i + 1} for the W-test 

for normality,‖ in the appendix  
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The null hypothesis H0 of normality is rejected at the α level of significance if w, 

the calculated value of W, is less than the critical value wq(n) = w1 - α (n) obtained 

from Table T6-b, ―Quantiles, wq(n), for the W-test for normality,‖ in the 

appendix.  Note that in this table, the quantile q = .  Also note that Tables T-6a 

and T-6b are limited to sample sizes between 3 and 50. 

The W-test is illustrated in Example 11.7, taken from Bowen and Bennett 

(1988), p. 532).  The procedure is detailed in 11 steps and is illustrated with an 

Excel spreadsheet. 

Example 11.7.   Testing normality with the W-test.   Table 11.11 shows 

the percent uranium for 17 cans of ammonium diuranate (ADU) scrap.  We wish 

to test whether the data come from a normal distribution. 

Table 11.11.   Percent uranium for ADU scrap 

 35.5 79.4 35.2 4.1 25.0 78.5 

78.2 37.1 48.4 28.6 75.5 34.3 

29.4 29.8 28.4 23.4 77.0  

Excel’s spreadsheet calculations are shown in Table 11.12 and the steps, keyed 

to the spreadsheet, are detailed along with that table.   

The W-test is described here in an 11-step procedure.  

Step 1.   Arrange the n observations in ascending order, and enter the ordered 

data in cells B2..B18.  Alternatively, enter the raw data in cells 

B2..B18, select those cells, and click ―Data‖ and then ―Sort A Z‖ to 

sort the data in ascending order. 

Step 2.   If n is even, set k = n/2; if n is odd, set k = (n - 1)/2.  For Example 11.7, 

where n = 17, set k = 8.  

Step 3.   Rearrange the observations in descending order of magnitude, and 

enter the first k of them as shown in column C of Table 11.12.  In 

Excel, you may first copy cells B2..B18 to cells C2..C18 and click 

―data‖ and then ―Sort Z A‖ to sort the data in descending order.  In 

Example 11.7, where k = 8, only 8 values are needed, and those are 

shown in cells C2..C9.  To avoid confusion, delete cells C10..C18. 
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Table 11.12.   W-test calculations for Example 11.7 

 A B C D E F 

1 Rank          

(i) 

Data,  

ascending 

order           

y(i) 

Data, 

descending 

order         

y(n-i+1) 

Difference,       

y(n-i+1) - y(i) 

Table T-6a 

coefficients,       

ai                                                

n = 17, k = 8 

Cross product,    

ai(y(n-i+1)-y(i)) 

2 1 23.4 79.4 56.0 0.4968 27.8208 

3 2 25.0 78.5 53.5 0.3273 17.5106 

4 3 28.4 78.2 49.8 0.2540 12.6492 

5 4 28.6 77.0 48.4 0.1988 9.6219 

6 5 29.4 75.5 46.1 0.1524 7.0256 

7 6 29.8 48.4 18.6 0.1109 2.0627 

8 7 34.3 40.1 5.8 0.0725 0.4205 

9 8 35.2 37.1 1.9 0.0359 0.0682 

10 9 35.5     

11 10 37.1   B =  77.1796 

12 11 40.1     

13 12 48.4   S
2
 = 476.5968 

14 13 75.5   n - 1 =  16 

15 14 77.0   w =  0.7811 

16 15 78.2                        w.05(17) = 0.892 

17 16 78.5      

18 17 79.4         

  

Step 4.  Calculate the differences between the corresponding entries of 

column C and Column B of Table 11.12, and enter those differences in 

the corresponding D column.  In Excel, enter = C2 - B2 in cell D2, and 

then copy cell D2 onto cells D3..D9.    

Step 5.  From Table T-6a of the appendix, copy the k coefficients {a1, a2,…, ak} 

associated with sample size n onto column E of Table 11.12.  In Excel, 

these coefficients are entered in cells E2..E9. 

Step 6.  Multiply the associated elements of column D and column E onto 

column F of Table 11.12.  In Excel, enter =D2*E2 in cell F2, and then 

copy cell F2 onto cells F3..F9. 
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Step 7.  Sum the last column of Table 11.12.  In Excel, enter =SUM(F2..F9) in 

cell F11.  Denote the sum by B.  In Example 11.7, the value of B is 

77.1796.  

Step 8.  Calculate S
  2
, the sample variance of the n observations.  In 

Example 11.12, the sample variance is 476.5968.  In Excel, enter 

=VAR(B2..B1) in cell F13. 

Step 9.  The test statistic, W, is computed from Equation (11.14) as:  

             
2

77.1796
0.7811

(17 1)(476.5968)
w  

In Excel, enter n -1 = 16 in cell F14, and calculate w in cell F15 as 

=F11^2/(F13*F14).   

Step 10.  From Table T-6b of the appendix, obtain the critical point 

wq(n) = w1-α(n) for the corresponding sample size and the appropriate 

level of significance.  In Example 11.7, use α = 0.05 and n = 17 to find 

w0.05(17) = 0.892. This value is reported in cell F16 of the spreadsheet. 

Step 11.  Compare w from Step 9 to wq(n)  in Step 10.  If w is smaller than 

wq(n), the null hypothesis of normality is rejected.  Because           

0.781 < 0.892, the null hypothesis in Example 11.7 is rejected.  This 

indicates that the observations are unlikely to have come from a 

normal distribution.  

It is important to note that, in practice, observations probably never come from a 

distribution that is exactly equal to a hypothesized distribution.  In particular, 

samples rarely, if ever, come from a normal distribution.  As a consequence, 

almost any goodness-of-fit test will result in rejection of the null hypothesis if 

the number of observations is very large.  Thus, the outcome of such a test 

should be carefully interpreted.  Goodness-of-fit tests provide a criterion for 

determining whether the agreement between the actual and hypothesized 

distributions is close enough that the hypothesized distribution provides a 

satisfactory approximation to the actual distribution.  If the approximation is 

deemed satisfactory, then statistical methods based on the hypothesized 

distribution can be applied with some assurance that the results (inferences) are 

valid.  

11.10  D’Agostino test for normality  

D’Agostino 

test  

 

D’ test 

The D’Agostino test, also known as the D’ test, tests whether 

the distribution from which a sample {y1, y2, …, yn} is drawn is a 

normal distribution.  Like the W-test, the D’ test is applicable 

when neither μ nor σ is specified. 

  Just like the W-test, the D’ test is also applicable to distributions that can be 

related to the normal distribution by a transformation.  For example, if 

we wish to test whether the observations came from a log-normal 
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distribution, we take the logarithm of each observation and then apply 

the D’ test to the transformed observations. 

Just like the W-test, the D’ test is considered an omnibus test for normality 

because of its superiority to other procedures over a wide range of problems and 

conditions that depend on an assumption of normality.  The D’ test complements 

the W-test, which is applicable only to samples no larger than 50, and can be 

used for any sample size greater than 50.   

The test presented here is derived from D’Agostino’s original paper (1971), 

pp. 341–348. 

A protocol for the test may also be found in the American National Standards 

Institute (ANSI) N15.15-1974, p. 12.  

The null and alternative hypotheses are: 

Ho:  The random sample comes from a normal distribution. 

 

H1:  The underlying distribution is not normal. 

In this section, we first present the general structure of the test and then illustrate 

the use of the test in detail with an Excel spreadsheet. 

Let {y(1), y(2), …, y(n)} be a random sample of n independent observations 

arranged in ascending order.  The test statistic is:  

2
'

( 1)

T
D

S n

 
(11.15) 

where:  

(1) (2) ( )

( )

1

   1 (  1) / 2 2  1 / 2   . . . – (  1) / 2                         

 (  1) / 2      

( ) ( )

( )

( ) n

n
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i

T n y n y n n y

i n y

 
(11.16) 

S
 2 

= sample variance 

  Be aware that the definition of S 
2
 used in the ANSI N15.15 standard differs 

from our definition of S 
2
.  Whereas we use S 

2
 to denote the sample 

variance, ANSI uses S 
2
 to denote the adjusted sum of squares, which is 

(n – 1) times the sample variance.  Also, the ANSI test statistic is n
2
 

times the test statistic that is described below.   

Because the values of the D’ test have a small range for any given size sample, 

calculations should be carried out to at least five significant digits. 
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The D’ test involves a comparison of the calculated D’ value with two quantiles 

from Table T-14, ―Quantiles, D’q(n), of the D’ statistic,‖ of the appendix.  The 

test is two-sided and requires two critical values that bound a noncritical region.  

For each combination of n and α, the critical values are found in Table T-14 

under the row that corresponds to n and the columns for qα / 2(n) and q1- α/2(n).  As 

an example, for n = 100 and α = 0.05, the critical values are 274.4 and 286.0.  If 

the calculated D’ is not between these two values, the null hypothesis is rejected. 

Example 11.8.   Testing normality with the D’ test.   Table 11.13 

lists 68 measurements (in microcuries) in ascending order of surface area 

considered for clearance.  

Table 11.13.   Data for Example 11.8 

3.15 4.48 8.27 10.52 10.52 11.09 11.2 11.2 11.2 13.5 

15.1 15.2 15.3 15.7 15.89 16.1 17.66 19.85 20 20.2 

20.2 20.2 20.4 20.4 20.4 20.4 22.4 22.6 22.98 23.27 

25.1 25.2 27.2 27.2 27.5 27.7 29.3 29.7 33.7 35 

35.5 38.1 39.5 44.2 44.2 46.71 50.84 52.96 53.8 55.65 

63.3 70.1 71.6 74.5 74.9 81.1 90.9 149 163.84 204.7 

251.3 306.6 311.83 327.42 356.66 445.15 462.21 502.97   

Before any further investigation, we wish to test whether the data are distributed 

normally.  The test is conducted in the following steps.  The steps are keyed to 

the Excel spreadsheet in Table 11.14.  Note that the table is divided into two 

groups of columns to accommodate the calculations on one page. 

Step 1.  Enter the numbers 1, 2, …, n onto the column labeled ―Rank, i.‖  In the 

spreadsheet, these are entered in cells A2..A35, E2..E35. 

Step 2.  Enter the n sample observations in ascending order onto the column 

labeled y(i).  In the spreadsheet, these are entered in cells B2..B35, 

F2..F35. 

Step 3.  Calculate, for each i, the quantity i - (n+1)/2, and enter that quantity 

onto the column so labeled.  For n = 68, this entry would be i - 34.5.  In 

the spreadsheet, these are entered in cells C2..C35, G2..G35.  Thus, in 

cell C2, enter =A1-34.5.  Copy this cell onto cells C3..C35, G2..G35. 

Step 4.  For each i, multiply (i - (n+1)/2) by y(i), and enter the product in the 

column so labeled.  In the spreadsheet, enter =B2*C2 in cell D2.  Copy 

this cell onto cells D3..D35, H2..H35. 
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Step 5.  Add the values in the columns labeled (i - (n+1)/2)y(i).  Denote the 

calculated sum by t, and enter it in any empty cell.  In the spreadsheet, t 

is calculated as =SUM(D2..D35, H2..H35).  In this example,  

              t = (-105.53) 
 
+ (-145.6) + … + 16849.495 = 111392.84. 

 

Step 6.  Calculate the sample variance, S 
2
.  In Example 11.8, S 

2
 = 13730.78.  In 

Excel, this is calculated as =VAR(B2..B35, F2..F35).   

Step 7.  Calculate D’ using Equation (11.15).   In Example 11.8, we calculate: 

              111392.84
' 116.14

(13730.78)(67)
D   

Step 8.  Consult Table T-14 of the appendix.  Under the row that corresponds to 

n = 68, obtain the critical points D’0.025(68) = 152.8 and D’0.975(68) = 

160.6.  Since D’ does not lie between these two values, the null 

hypothesis is rejected.   
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Table 11.14.   D’ test calculations for Example 11.8 

 A B C D E F G H 

1 Rank, i y(i) i-(n+1)/2 (i-(n+1)/2)y(i) Rank, i y(i) i-(n+1)/2 (i-(n+1)/2)y(i) 

2 1 3.15 -33.5 -105.53 35 27.5 .5 13.75 

3 2 4.48 -32.5 -145.6 36 27.7 1.5 41.55 

4 3 8.27 -31.5 -26.51 37 29.3 2.5 73.25 

5 4 1.52 -3.5 -32.86 38 29.7 3.5 103.95 

6 5 1.52 -29.5 -31.34 39 33.7 4.5 151.65 

7 6 11.09 -28.5 -316.07 40 35 5.5 192.5 

8 7 11.2 -27.5 -308 41 35.5 6.5 23.75 

9 8 11.2 -26.5 -296.8 42 38.1 7.5 285.75 

10 9 11.2 -25.5 -285.6 43 39.5 8.5 335.75 

11 10 13.5 -24.5 -33.75 44 44.2 9.5 419.9 

12 11 15.1 -23.5 -354.85 45 44.2 1.5 464.1 

13 12 15.2 -22.5 -342 46 46.71 11.5 537.165 

14 13 15.3 -21.5 -328.95 47 5.84 12.5 635.5 

15 14 15.7 -2.5 -321.85 48 52.96 13.5 714.96 

16 15 15.89 -19.5 -309.86 49 53.8 14.5 78.1 

17 16 16.1 -18.5 -297.85 50 55.65 15.5 862.575 

18 17 17.66 -17.5 -309.05 51 63.3 16.5 1044.45 

19 18 19.85 -16.5 -327.53 52 7.1 17.5 1226.75 

20 19 20 -15.5 -310 53 71.6 18.5 1324.6 

21 20 2.2 -14.5 -292.9 54 74.5 19.5 1452.75 

22 21 2.2 -13.5 -272.7 55 74.9 2.5 1535.45 

23 22 2.2 -12.5 -252.5 56 81.1 21.5 1743.65 

24 23 2.4 -11.5 -234.6 57 9.9 22.5 2045.25 

25 24 2.4 -1.5 -214.2 58 149 23.5 3501.5 

26 25 2.4 -9.5 -193.8 59 163.84 24.5 4014.08 

27 26 2.4 -8.5 -173.4 60 204.7 25.5 5219.85 

28 27 22.4 -7.5 -168 61 251.3 26.5 6659.45 

29 28 22.6 -6.5 -146.9 62 306.6 27.5 8431.5 

30 29 22.98 -5.5 -126.39 63 311.83 28.5 8887.155 

31 30 23.27 -4.5 -104.72 64 327.42 29.5 9658.89 

32 31 25.1 -3.5 -87.85 65 356.66 3.5 10878.13 

33 32 25.2 -2.5 -63 66 445.15 31.5 14022.225 

34 33 27.2 -1.5 -4.8 67 462.21 32.5 15021.825 

35 34 27.2 -0.5 -13.6 68 502.97 33.5 16849.495 

 



 

 

12 
Contingency tables 

 
12.1  What to look for in Chapter 12 

Chapter 12 brings us to contingency tables and their analyses.  Such analyses 

have many applications in experiments involving enumeration data.  Special 

topics and ideas include:   

 general structure of contingency tables, §12.3 

 independence and interaction, §12.4, §12.5 

 chi-square statistic, §12.5 

 r×c contingency tables, §12.5 

 shortcut formula for 2×2 contingency tables, §12.6 

 Fisher’s exact probability test, §12.7 

 Simpson’s paradox, §12.8 

 McNemar’s test statistic, §12.9 
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12.2  Contingency tables 

contingency 

table 
Contingency table analysis is used for enumeration data to test 

whether two data classification criteria, such as gender and 

performance, are related.  The main test for investigating such 

relations is a chi-square test.  This test is very similar to the 

chi-square test for goodness-of-fit described in Chapter 11. 

This chapter breaks a long-standing tradition honored in many books on applied 

statistics where the treatment of contingency table analysis is positioned near the 

end of the text—if the topic is discussed at all.  In this chapter, you will find 

material on the construction, analysis, and interpretation of contingency tables 

that is of special value in the development of this text for the following reasons: 

 Contingency tables can be described and illustrated with very little, and 

usually uncomplicated, data.   

 Contingency tables can be used to illustrate many of the concepts required 

in making statistical inferences without the need for complex 

calculations. 

 Contingency tables arise naturally in many data-driven situations, their 

analysis is straightforward, and they provide a valuable tool that can be 

used in dealing with daily problems. 

 Contingency tables can illustrate situations where statistical naiveté can lead 

to incorrect inferences. 

12.3  Structure of contingency tables 

factor 

level 

 

category 

Contingency tables deal with counting data, where observations 

are classified by two qualitative variables, called factors.  For 

example, one factor may be education and the other may be 

company position.  Each factor has two or more levels or 

categories.  For example, the levels of the education factor may 

be high school, college, and graduate school, while the levels of 

the company position factor may be management and 

nonmanagement.  The goal of contingency table analysis is to 

investigate if there is any relation between the factors 

(e.g., whether education and company position are related).    

The term ―related‖ does not imply cause and effect.  It does, however, imply 

mutual dependency, or ―contingency,‖ where the level of one factor may be 

related to the level of the other factor.  Regardless of the degree of relatedness 

found by any contingency table analysis, the question of whether there is any 

causal relation between the factors is beyond this analysis.  This question is not 

a statistical one and can be investigated only with a separate subject-specific 

analysis.   
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Here is one definition, paraphrasing Kendall and Buckland (1971, p. 32): 

A contingency table is an array of observations set out in a two-way table, 

the rows and the columns of which are any two qualitative characteristics 

(i.e., factors) possessed by the items, provided that no row or column is 

completely empty.  For example, if the first characteristic A is r-fold (i.e., 

r levels) and the second characteristic B is c-fold (i.e., c levels), then the 

resulting display is said to be an r x c contingency table; that is, it is a two-

way table with r rows and c columns.  

 

 

 

marginal totals 
 

grand total 

Table 12.1 shows a general r x c contingency table, where the 

unshaded area shows the count for each of the r x c cells.  The 

count of observations in cell (i,j) is denoted by Oij.  By 

convention, the first subscript, i, denotes the row, and the 

second subscript, j, denotes the column.  The totals shown in 

the last row and the last column of Table 12.1 are the 

marginal totals.  The sum of the marginal totals (for either 

the rows or the columns) is the grand total and is typically 

denoted by n. 

Table 12.1.   Structure of a contingency table 

 
                                          Factor 2:  Columns    
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r c
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In this chapter, Oij will always denote the actual count in cell (i,j), i.e., Oij 

denotes a number and not a random variable.  This notationis consistant with the 

standard notation for contingency tables. 
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plus notation 
The notation for the marginal and grand totals follows a 

convention, called the plus notation, where the plus in the 

subscript indicates the sum over the index of the ―plussed‖ 

subscript.  Thus, O2+ is the sum of all Oij observations whose 

first subscript is 2, and O+3 is the sum of all Oij observations 

whose second subscript is 3.  Following the same notation, the 

sum n of all observations, may be written as O++ . 

dot notation Note that many authors use the dot notation (such as O2•, O•3, or 

O••) to denote the various sums.  We use the plus notation to 

remind us of the summation operation involved and to avoid 

confusion when using a dot at the end of a sentence. 

 

Example 12.1.   Computer literacy and age.   A computer literacy test 

was given to 80 men between the ages of 20 and 50.  The results are 

summarized in Table 12.2, where the rows represent three age groups, and the 

columns represent passing or failing grades on the test.  The natural question 

that one may ask is whether passing the test depends on one’s age.  Because this 

question implies a causal relation, which contingency table analysis does not 

address, a more appropriate question is whether age and test grade are related.  

Table 12.2.   A 3×2 contingency table for Example 12.1 

 Pass Fail Row totals 

Age:  20–29 24 6 O1+ = 30 

Age:  30–39 16 14 O2+ = 30 

Age:  40–50 7 13 O3+ = 20 

Column totals O+1 = 47 O+2 = 33       n = O++ = 80 

Section 12.5 presents the analysis of the data in Example 12.1.  

12.4  Independence 

Suppose for a moment that Table 12.1 represents an entire population of n items.  

If an item is selected at random from this population, the probability that that 

item would be in cell (i,j) is pij = Oij /n.  Similarly, the probability that it would 

be in row i is pi+ = Oi+ /n, and the probability that it would be in column j is p+j 

 = O+j  /n. 

Suppose further that the rows and columns are independent (i.e., the two 

classification factors are independent).  Then, by Equation (6.18), the following 

equation holds: 

pij = (pi+)(p+j ),    i = 1, …, r,    j = 1, …, c (12.1)  
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interaction 

 
The absence of independence is called interaction.  If the rows 

and columns are not independent, they are said to interact or be 

interacting.  For interacting factors, Equation (12.1) does not 

hold. 

Equation (12.1) may be regarded as a null hypothesis in testing whether the two 

classification factors (rows and columns) are independent or interact.  The null 

and alternative hypotheses are:  

H0:  Rows and columns are independent. 

H1:  Rows and columns interact. 
(12.2)  

12.5  Testing independence 

Now suppose Table 12.1 presents the results of a random sample of size n from 

a population.  For this population, pij is estimated by Oij /n, pi+ is estimated by 

Oi+ /n, and p+j is estimated by O+j /n.  Suppose for a moment that these estimates 

of pi+ and p+j are exact.  If the rows and the columns are independent, from 

Equation (12.1), the expected value of the random variable whose observed 

value is Oij /n is:  

ij ji
E OO

n n n
 

(12.3)  

expected 

count 
Under these assumptions, the expected count Eij for cell (i,j) is: 

                         

( )( )i j

ij

O O
E

n
 (12.4)  

expected 

frequency 
Eij is also called the expected frequency. Note that Eij does not 

have to be (and very rarely is) an integer. 

Note from Equation (12.3) that the expected count for any cell is the 

cross-product of the marginal (row and column) totals of that cell divided by the 

grand total.  For example, the expected count for cell (1,1) of Table 12.2 is 

(30)(47)/80 = 17.625.  

Only on very rare occasions do the observed counts exactly agree with the 

expected counts.  Failure to agree may be attributed to one or both of two 

reasons: 

 There are random fluctuations.  

 Rows and columns are not independent. 
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To summarize, for every cell in the r x c table, we have an observed count Oij 

and, under the assumption of independence, an expected count Eij.  The 

differences Oij - Eij are the key elements in testing the null hypothesis of 

independence.    

The test statistic for independence, developed by Karl Pearson (1904), is given 

by the chi-square statistic, χ  
2
, where:  

22
2

all cells 1 1

( )(observed count expected count)

expected count

r c
ij ij

i j ij

O E

E
 

(12.5)  

 Note the similarity of this chi-square statistic to the chi-square statistic from 

Equation (11.2) used for the chi-square goodness-of-fit test.  

A mathematically equivalent form of Equation (12.5) is given by 

Equation (12.6): 

22
2

all cells 1 1

( )(observed count )

expected count

r c
ij

i j ij

O
n n

E
 (12.6)  

The chi-square statistic has associated degrees of freedom, denoted by ν.  For an 

r x c contingency table, the degrees of freedom is:  

ν = (r - 1)(c - 1) (12.7)  

The chi-square statistic is typically written with the degrees of freedom in 

parentheses, as in χ 
2
 (ν).  

  The chi-square test is a one-sided test.  Only values larger than the critical 

value lead to the rejection of H0.  

   Be aware that although the statistic is called chi-square, its distribution only 

approximates the χ 
2
 distribution.  However, this approximation is 

excellent even for small samples, provided that the expected count of 

each cell is not too small, as discussed in Section 11.4.   

Applying Equation (12.5) or (12.6) to the contingency table, we obtain the 

calculated chi-square, χ
2
(ν).  This is used to test H0 in Equation (12.2).  

Returning to Example 12.1, the calculations for Equations (12.5) and (12.6) are 

shown in Table 12.3.  Note that the expected count exceeds 8 in all cells, thus 

satisfying the criterion in Section 11.4.  
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Table 12.3.   Calculations for the 3×2 contingency table of 
Example 12.1 

Row Column Observed, O Expected, E (O – E) (O – E)2 (O – E)2/E O 2/E 

1 1 24 17.625 6.375 40.641 2.306 32.681 

1 2 6 12.375 -6.375 40.641 3.284 2.909 

2 1 16 17.625 -1.625 2.641 0.150 14.525 

2 2 14 12.375 1.625 2.641 0.213 15.838 

3 1 7 11.750 -4.750 22.562 1.920 4.170 

3 2 13 8.250 4.750 22.562 2.735 20.485 

Total 80 80.000  10.608 90.608 

Calculated chi-square:       Using Equation (12.5), 
2

2( )  = 10.608 

 ν = (3 - 1)(2 - 1) = 2          Using Equation (12.6), 
2

2( )  = 90.608 – 80 = 10.608                             

   Note that if Equation (12.5) is used, the column labeled O 
2
/E is 

superfluous.  If Equation (12.6) is used, the columns labeled (O – E), 

(O – E)
 2
, and

 
(O – E)

 2
/E are superfluous.  This demonstrates that 

Equation (12.6) is easier to use, especially for hand calculation.  

Next, the calculated χ 
2
(2) is compared to a critical value to determine statistical 

significance.  For α = 0.05 and ν = 2, we consult Table T-2 of the appendix 

under the quantile q = 1 - α = 0.95 to find the value of 5.99.  Since                      

χ 
2
(2) =10.608 is greater than 5.99, we reject H0.  The statistical evidence 

indicates that participant age and passing the literacy test are not independent. 

   There may be more to this story.  Other factors may affect passing of the 

test, such as education, gender, and related experience. 

Any one of the following statements could summarize our findings: 

 The statistical test finds that age and test performance are not independent 

(p < 0.05). 

 We conclude that age and test performance are dependent (p < 0.05). 

 Age and test performance interact at the 0.05 level of significance.  

If χ 
2
(2) were not larger than 5.99, our findings could be summarized as follows: 

 There is no statistical evidence that age and test performance are dependent. 

 Age and test performance do not appear to be dependent. 
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12.6  Special case:  2×2 contingency tables 

The 2×2 contingency table warrants special attention as such a table can 

represent many situations.  We start with Equation (12.8) which, for a 2×2 

contingency table, is mathematically equivalent to Equations (12.5) and (12.6).  

Equation (12.8) is a special shortcut formula for 2×2 contingency tables only.  

There is no equivalent formula for larger contingency tables. 

2
2 1 2 2 1

1 2 1 2

1
n O O O O

O O O O

( ) ( )( ) ( )( )
( )

( )( )( )( )

[ ]   
(12.8)  

From Equation (12.8), we can see the pattern in using the shortcut formula. 

 The term in brackets is the difference between the products of the diagonal 

cells.  

 The numerator is the square of the term in brackets multiplied by the grand 

sum, n. 

 The denominator is the product of all the marginal sums. 

 Example 12.2.   Weld inspection.   Two teams, A and B, perform a welding 

operation.  A regional inspector periodically evaluates their welds for 

acceptability.  Table 12.4 summarizes the inspection results for 100 welds, 

selected at random from a single day’s work.   

Table 12.4.   A 2×2 contingency table for weld inspections 

 Column 1: 

Acceptable 

Column 2:  

Not Acceptable 
Row totals 

Row 1:  Team A 30 0 30 

Row 2:  Team B 50 20 70 

Column totals 80 20 100 

We note that each data cell has an expected count of at least 6, thus satisfying 

the criterion of Section 11.4. 

Using Equation (12.8), the chi-square statistic is calculated as:  

2

2 100 30 20 50 0
10 71

80 20 30 70
1

( ) ( )( ) ( )( )
.

( )( )( )( )
( )

[ ]
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The critical value from Table T-2 is 
2

0.95(1) , or 3.84.  Since the critical value is 

exceeded, we conclude that team affiliation and weld quality interact (i.e., they 

are dependent).   

Example 12.3.  Mastering technical material.   We examine whether 

Internet support is related to students’ mastery of technical material.  A class of 

170 students was classified into four groups as shown in Table 12.5.  The 

expected count for each cell is sufficient for running a chi-square test. 

Table 12.5.   A 2×2 contingency table for the mastery study 

 
Mastered Did not master Row totals 

Internet 46 14 60 

No internet 19 91 110 

Column totals 65 105 170 

The calculated chi-square statistic is:  

2

2
170 (46)(91) (19)(14)

(1) 58.0
(60)(110)(65)(105)

  

The critical value is
2

0.95(1) = 3.84.  Since χ 
2
 exceeded the critical value, we 

conclude that mastering the material and having Internet support are dependent.  

Note that we cannot conclude that having Internet support helped the students 

master the material.  Another possible explanation is that the better students 

were more likely to get Internet support and would have mastered the material 

even without it.   

Example 12.4.   Age discrimination.   In a large agency, 76 secretaries at a 

low grade level were promoted during a given calendar year.  In the same year, 

213 secretaries at the same grade level were not promoted.  All 76 + 213 = 289 

secretaries were classified according to whether they had reached age 40 when 

the promotions were made.  Table 12.6 presents the data. 

Table 12.6.   A 2×2 contingency table for testing age discrimination 

 Promoted Not promoted Row totals 

Age <40 44 104 148 

Age  40 32 109 141 

Column totals 76 213 289 
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The calculated chi-square is:  

2

2289 (44)(109) (104)(32)
(1) 1.84

(148)(141)(76)(213)
  

The critical value is
2

0.95(1) = 3.84.  Since the test statistic does not exceed the 

critical value, we conclude that there is no statistical evidence of age 

discrimination for secretaries at the grade level we investigated. 

In this study, we note the following: 

 We don’t have a random sample here because everybody of concern is 

included.  However, the data in Table 12.6 may be regarded as a 

sample of the agency’s practice over the years. 

 This study is restricted to a single occupation at a single grade level and 

does not necessarily reflect promotion practices at other grade levels or 

occupations. 

 The test does not account for other possible factors, such as performance, 

education, or time in grade. 

In our treatment of contingency tables, we address only two-factor data 

classification.  The extension of contingency tables to k dimensions is not a 

trivial matter.  Until the general availability of substantial and inexpensive 

computing resources in the 1970s and 1980s, researchers were limited to 

particular extensions of the two-dimensional contingency table to only three or 

four dimensions.  However, methods for dealing with k-dimensional tables have 

been developed.  The interested reader is referred to Rosner (2010), Section 13; 

Agresti (1990); and Upton (1978). 

12.7  Fisher’s exact probability test 

Sample size considerations that apply to the chi-square goodness-of-fit test also 

apply to the chi-square test used in a contingency table analysis.  Section 11.4 

gives two rules for sample size stated in terms of the expected count in each cell.  

One rule suggests that in none of the cells should the expected count be smaller 

than 5.  This rule is especially applicable to a 2×2 table.   
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Fisher’s exact 

probability 

test  

 

Fisher’s exact 

test 

One way to satisfy a minimum expected count rule is to reduce 

the number of rows or columns so as to increase the expected 

count in the deficient cells.  Such a reduction, however, cannot 

be done in a 2×2 contingency table.  Failing that, we resort to 

Fisher’s exact probability test (Fisher (1970), Section 21.02), 

also known as Fisher’s exact test, for independence in a 2×2 

contingency table.  This test is based on the hypergeometric 

distribution introduced in Section 8.6.   

Using the notation of Table 12.1, a general 2×2 contingency table is shown in 

Table 12.7.   

Table 12.7.   A general 2×2 contingency table 

 Column 1 Column 2 Row totals 

Row 1 O11 O12 O1+ 

Row 2 O21 O22 O2+ 
Column totals O+1 O+2 O++ = n 

Let 
11 12 21 22, , ,O O O O

denote the probability of observing the specific values      

{o11, o12, o21, o22} of the random variable when the marginal totals are fixed.  

From Equation (8.14), this probability is:  

11 12 21 22

1 2 1 2
, , , .

11 12 21 22

! ! ! !

! ! ! !

( )( )( )( )

!( )( )( )( )
O O O O

o o o o

n o o o o
   

(12.9)  

Fisher’s exact test considers all possible table configurations that would yield 

the same marginal totals as those of the observed data.  Using Equation (12.9), 

the probability of the observed configuration and all possible configurations that 

are more inconsistent with H0 than the observed configuration are summed.  If 

that sum is smaller than the level of significance α, we reject H0 and conclude 

that the statistical evidence shows that the two factors (row and columns) are 

dependent.  We illustrate this test in Example 12.5. 

Example 12.5.   Paint adhesion.   A laboratory tests two paints for adhesion 

to concrete surfaces.  A scratch test is performed on 10 surfaces painted with 

Paint A and on 18 surfaces painted with Paint B, where all surfaces are of equal 

size.  Table 12.8 shows the results (pass/fail) of the tests.  The null hypothesis is 

that passing the test and the type of paint are independent. 

  An equivalent way to word the hypothesis of independence is: 

H0:  The proportion of Paint A surfaces that passes the test is the same as 

that of Paint B surfaces. 

The topic of equality of proportions is considered in Chapter 22, ―Binomial 

Experiments.‖ 
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Table 12.8.   Testing paint adhesion 

 Pass Fail Totals 

Paint A 2 8 10 

Paint B 13 5 18 
Totals 15 13 28 

Using Equation (12.9), we calculate the probability of obtaining the specific 

values of 2, 8, 13, and 5 when the marginal totals are as shown in Table 12.8.  

This probability is:  

  
2,8,13,5

10!18!15!13!
0.01030

28!2!8!13!5!
 

 

Under the assumption of independence, the expected count in cell (1,1) is 

(15)(10)/28 = 5.4.  Hence, the only counts in cell (1,1) that would be more 

inconsistent with H0 than the observed count of 2 would be counts of 1 and 0.  

Tables 12.8a and 12.8b give the configurations and probabilities for these 

hypothetical counts.   

  Note that all the other cell counts are determined once the cell (1,1) count is 

given.  For example, in Table 12.8a, the cell (1,2) count is 10 - 1 = 9, 

the cell (2,1) count is 15 - 1 = 14, and the cell (2,2) count is 

18 - 14 = 13 - 9 = 4.   

 In this example, we chose cell (1,1) as the ―pivot cell‖ for our calculations 

because there are fewer additional configurations to be evaluated if the 

pivot cell has the smallest count.  If two or more cells have the same 

smallest count, then any one may be chosen as the pivot cell.  

Table 12.8a.   Testing paint adhesion, cell (1,1) count = 1  

 Pass Fail Totals 

 
1,9,14,4

10!18!15!13!
0.00082

28!1!9!14!4!
 Paint A 1 9 10 

Paint B 14 4 18 

Totals 15 13 28 

 

Table 12.8b.   Testing paint adhesion, cell (1,1) count = 0 

 Pass Fail Totals 

 
0,10,15,3

10!18!15!13!
0.00002

28!0!10!15!3!
 Paint A 0 10 10 

Paint B 15 3 18 
Totals 15 13 28 
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The sum of the probabilities of the observed and more extreme configurations 

(i.e., configurations more inconsistent with H0) is 0.01030 + 0.00082 + 0.00002 

= 0.011.  Since this probability is smaller than α = 0.05, we reject H0 and 

conclude that passing the test and the type of paint are dependent. 

Most statistical packages provide a routine for Fisher’s exact probability test.  

Some of these packages provide this routine by default whenever a chi-square 

test for a contingency table is requested, while other statistical packages provide 

this routine by command.  Check the software manual for instructions. 

12.8  Simpson’s paradox—better watch out! 

Simpson’s 

paradox 

 

 

Simpson’s paradox refers to the reversal in conclusions when 

data in groups are combined to form a single group.  This 

paradox is illustrated by a celebrated example taken from 

Science (Bickel et al. (1975)) in which female students claimed 

discrimination in admission to one of the school’s graduate 

programs.  The investigation showed, however, that in virtually 

every department, females had a higher admission rate than that 

of their male counterparts.   

We simplify the problem by using hypothetical numbers for a fictitious 

university consisting of only two schools. 

Example 12.6.   Admission records in two schools.   Each of the two 

schools in a university processes 600 applications for a total of 1,200 

applications.  Table 12.9 gives the admit/deny versus male/female records for 

both schools.  We test the null hypothesis of independence at the 5% level of 

significance. 

Table 12.9.   Admission records aggregated for two schools  

 Admit Deny Totals 

Male 250 300 550 

Female 250 400 650 

Totals 500 700 1200 

x
2
(1) = 5.99 

The chi-square test statistic is calculated from Equation (12.8) as x
2(1)

 = 5.99.  

This exceeds the critical value 2

1 3.84, thus rejecting H0.  We conclude that 

gender and admission in the university are dependent and claim that this 

constitutes statistical evidence of possible gender discrimination.  

Next, the same records are tabulated for each school separately.  Table 12.9a 

presents the records for School A. 
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Table 12.9a.   Admission records for School A  

 Admit Deny Totals 

Male 200 200 400 

Female 100 100 200 

Totals 300 300 600 

x
2
(1) = 0.00 

Table 12.9b presents the records for School B: 

Table 12.9b.   Admission records for School B  

 Admit Deny Totals 

Male 50 100 150 

Female 150 300 450 

Totals 200 400 600 

x
2
(1) = 0.00 

The chi-square statistics for both schools are exactly zero.  Thus, there is 

absolutely no statistical evidence of gender discrimination in admission to either 

school.   

The paradox arises if we aggregate the data for both schools and conclude that, 

for the university as a whole, there is statistical evidence of possible gender 

discrimination.  The resolution to the paradox is the realization that combining 

the two schools ignores the fact that different schools attract students with 

different interests and have different admission policies and admission rates.   

Obviously, in the example cited, combining the individual contingency tables is 

inappropriate.  In practice, when the data are broken into groups with multiple 

contingency tables, we should perform the analysis both ways:  individual and 

aggregate.  If the results all agree, it is appropriate to present the aggregate 

analysis as a summary.  Otherwise, we should present each individual analysis 

and state that the individual groups should not be combined. 

12.9  A contingency table look-alike:  McNemar’s test 
statistic 

McNemar’s 

test 

 

McNemar’s test (McNemar (1947)) is designed for situations 

where it is planned to treat the items in a population to enhance 

their performance or quality.  However, before applying the 

treatment, we wish to test whether the treatment has any effect.   
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 sample items are treated and are then retested.  We evaluate the 

treatment by comparing the test results before and after 

treatment.  In this situation, all items in the sample serve as their 

own before/after controls. 

The data structure for McNemar’s test bears a strong resemblance to the usual 

contingency table data structure discussed earlier in this chapter.  However, 

although the data are assembled in a 2×2 table, it is not a contingency table as 

defined in Section 12.2, because the rows and columns do not correspond to 

factors.  Consequently, the purpose, calculation, and interpretation of 

McNemar’s test are quite different from those of the chi-square test for 

contingency tables. 

Table 12.10 shows the data assembled in a 2×2 table.  The cell counts are 

denoted by a, b, c, and d, as indicated.  McNemar’s test statistic employs the 

sensible principle that only those cases that show a change from one state to the 

next (fail followed by pass or pass followed by fail) are relevant.  In the table, 

these are the circled cells whose counts are given by b and c. 

Table 12.10.   2×2 table for McNemar’s test statistic  

 State 2 

State 1 Pass Fail Totals 

Pass a 
 

a + b 

Fail 
c 

d c + d 

Totals a + c b + d a + b+ c + d 

The test statistic is given by Equation (12.10).  Under the null hypothesis of no 

treatment effect, χ
 2
 is approximately distributed as a chi-square variable with 

ν = 1. 

2

2 b c

b c
 (12.10)  

If b = c, the treatment obviously has no effect, and no statistical test is needed.   

The literature contains two variations of Equation (12.10), and each is also 

approximately distributed as a chi-square variable.  These variations are given 

by Equations (12.11) and (12.12).  

 b 

c 
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2

2 | | 0.5b c

b c
 (12.11)  

2

2 | | 1b c

b c
 

(12.12)  

We use Equation (12.10) because it is more commonly used than either 

variation.   

We illustrate the operation of McNemar’s test with an example. 

Example 12.7.   Effect of laundering on protective mask filters.        
A manufacturer wants to test the effect of laundering on a mask filter used to 

protect inspectors who enter a contaminated area.  Each filter in a sample of 

70 filters is first exposed to the same contaminated environment.  A chemical 

test is then conducted to determine the acceptability (on a pass/fail basis) of each 

filter by comparing the contaminant’s contents on the two surfaces (i.e., the 

exposed and the protected surfaces) of the filter.  The filters are then laundered, 

and the exposure and the chemical test protocols are repeated.  Some filters pass 

both pre- and post-laundry tests, others fail both, and still others pass one test 

and not the other.  Table 12.11 shows the results of this investigation. 

Table 12.11.    Laundering effect on protective mask filters 

       State 2:  After laundry 

State 1:             

Before laundry 
Pass Fail Totals 

Pass 24 

 

40 

Fail 
c 

    17 30 

Totals 37 33 70 

Using Equation (12.10), we obtain: 

2

2
|16 13 |

0.310
16 13

  

 
 

 
16 

13 



Contingency tables 245 
 

 

We test the null hypothesis at  = 0.05.  The calculated test statistic does not 

exceed the critical value 
2

0.95(1)  = 3.84.  We conclude that there is no 

significant statistical evidence of a laundering effect. 
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13 
Tests of statistical 

hypotheses:  One mean 

13.1  What to look for in Chapter 13 

Chapter 13 formalizes the process of statistical inference about the mean of a 

normal distribution.  This chapter is the first chapter that tests hypotheses about 

a population mean; Chapter 15 tests the equality of two means, and Chapter 16 

tests the equality of several means.  The presentation identifies the 

circumstances when such inferences are valid and points out issues of concern.  

Special terms and concepts, both new and revisited, are: 

 model, §13.2 

 power of a test, §13.4 

 power curve, §13.4 

 operating characteristic (OC) curve, §13.5 

 sample size for testing a mean when σ is known, §13.9 

 sample size for testing a mean when σ is not known, §13.10 
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This chapter provides a general procedure for testing a hypothesis about the 

mean of a normal distribution.  The procedure has two versions:   

 when σ is known, §13.2 

 when σ is not known, §13.10 

  For each version, we consider both one-sided and two-sided alternatives.  

This chapter is also applicable to samples from a nonnormal distribution when 

the distribution of the sample mean Y is approximately normal.  When this 

requirement fails, we can use a nonparametric test, as described in Chapter 25. 

13.2  A test of the mean:   known  

We begin by revisiting an earlier example. 

Example 13.1.   Response time to alarm.   We return to Example 10.2, 

where we investigated the claim by the Director of Security that the system’s 

mean response time to an intrusion is no more than 10 seconds by testing the 

null hypothesis that μ = 10 seconds against a right-sided alternative.  For this 

example, we assume that the standard deviation is σ = 3 seconds.  Based on a 

sample of n = 100 responses to random intrusions, we calculate a mean response 

time of y = 10.4 seconds.  The assumptions and facts are: 

 The intrusions occur at random times and the response times are mutually 

independent. 

 The response times come from a normal distribution.  (Chapter 11 presents 

the tools to test such an assumption. 

 The standard deviation is σ = 3 (σ
 2
 = 9).  (In Chapter 14, we will learn how 

to test assumptions about variances or standard deviations.) 

 The sample size is n = 100. 

 The null hypothesis is H0: μ = μ0 =10.  Under H0, we write μ with a zero 

subscript to emphasize that this is the hypothesized mean. 

 The alternative hypothesis is H1: μ > 10.  H1 is a right-sided alternative 

since we are concerned about an excessive average response time.  

However, we shall reconsider the alternative hypothesis in section 13.3. 

 The level of significance is set at the default value of α = 0.05. 

model The response Yi can be written as a model.  In this context, a model 

is a mathematical expression of the response as a function of the 

parameters and assumptions.  Specifically, 

                     Yi = μ + εi,    i = 1, …, n (13.1) 
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where εi denotes the error (departure from the mean) of the i
 th

 

observation and 

                     εi ~ N(0, σ
 2
) (13.2) 

The sample meanY is normally distributed with a mean μ and standard 

deviation / n . The test statistic used for testing H0 is the standard normal 

statistic: 

0
0( ) /

/

Y
Z Y

n
n  

(13.3) 

From Equation (13.3), we see that the Z statistic comprises four components, 

and the statistical test essentially examines how these components fit together.  

These components are: 

 what we know (here, n = 100) 

 what we assume (here, σ = 3) 

 what the data show (here, y = 10.4) 

 what is hypothesized (here, H0: μ = μ0 = 10) 

Substituting these values into Equation (13.3), we get: 

10.4 10.0
1.333

3 / 100
z  

From Table T-1 of the appendix, the critical value is z0.95 = 1.645.  Since 

z = 1.333 is not larger than the critical value, we do not reject H0.  We conclude 

that there is no statistical evidence that the mean response time μ is larger than 

10 seconds. 

13.3  A one-sided test:  A different view 

Example 13.1 focuses on testing a claim by Security that the mean response time 

μ is no more than 10 seconds.  Although not explicitly stated in the example, 

there may well be a second party involved—a regulator who does not want  to 

be too large, and who expresses this concern by the right-sided alternative 

hypothesis H1: μ > 10.  However, the test of hypothesis in Example 13.1 is 

structured to protect Security’s interest but not necessarily a regulator’s interest.  

To see why this is so, we show in Section 13.4 that H0 would not have been 

rejected even for y as large as 10.494.  Recall that the mean of Y is  and that 

there is a 50% probability that Y will be greater than its mean.  Then, if 

 = 10.494, the probability of rejecting H0 would be only 0.50.  From a 
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regulator’s perspective, it might be unacceptable to have such a low probability 

of rejection when the value of  is almost half a second larger than the 

maximum average response time claimed by Security.  

The answer to this dilemma is suggested in Section 10.6.  If a regulator wishes 

to ensure a mean of no more than 10 seconds, H1 needs to take a different 

direction.  Specifically, we must use a left-sided alternative hypothesis written 

as H1:  μ < 10.  With this switch, the test is now structured to protect the 

regulator’s interest.  In the original setup in Example 13.1, Security’s claim that 

μ  10 is supported if H0 is not rejected.  With the switched setup, the regulator’s 

interest that μ not be too large is supported only if H0 is rejected.   

The test statistic is still Z from Equation (13.3), but now H0 is rejected if z is less 

than the critical value.  From Table T-1 of the appendix, the critical value is now 

z0.05 = -1.645.  Clearly, H0 is not rejected for any positive value of z, so the result 

of the switched test of hypothesis is the same as that for the original test in 

Example 13.1.  This time, however, we conclude that the statistical evidence 

does not rule out the possibility that μ > μ0 = 10.  (Because the observed y  > μ0, 

this conclusion could have been reached without actually performing the test of 

hypothesis.)  In fact, Equation (13.3) implies that H0 would not have been 

rejected even for y as small as 9.507, which would have yielded z = -1.645.  

Thus, with the switched test of hypothesis, y can be no larger than 9.507 to 

reject H0 and conclude that the statistical evidence supports Security’s claim that 

μ  10.  

The following is another example of the use of a left-sided alternative 

hypothesis.  

 

 

 

inventory 

difference 

(ID) 

Example 13.2.   Inventory differences.   A facility that 

produces special nuclear material (SNM) conducts a monthly 

inventory of its SNM and reports any significant shortage.  For every 

item of SNM produced, the inventory difference (ID) is defined as 

the difference between the physical weight and recorded (book) 

weight of the item.  The observed ID values can differ from zero 

because of accounting errors, measurement errors, and/or losses or 

diversions.  We assume that the total accounting and measurement 

error for any ID measurement is normally distributed with a mean of 

zero and, based on historical data, a standard deviation of 

σ = 0.4 kilograms (kg).  We wish to test whether there have been any 

losses or diversions.  To ensure protection against a serious loss or 

diversion, we choose a strategic quantity of 1 kg, and the facility is 

required to show that any observed loss from the ID measurements 

is significantly smaller than 1 kg. 
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Suppose that n = 12 independent ID measurements are made in a given month 

and the average ID is calculated as 0.66y .  We test the null hypothesis of μ0 = 1 

against a left-sided alternative.  The setup for this test is:  

H0: μ = μ0 = 1, H1: μ < 1, σ = 0.4, n = 12, α = 0.05.    

The test statistic is: 

1.00 0.66 1.00
2.94

0.4 / 12 0.4 / 12

y
z  

Since z is less than the critical value z0.05 = -1.645, we reject the null hypothesis 

and conclude that any loss experienced by the facility is less than the strategic 

quantity of 1 kg (i.e., the facility is in compliance).  If the test statistic had been 

larger than the critical value, we would not have rejected the null hypothesis and 

concluded that the facility did not prove compliance.  

13.4  Power of a test of hypothesis 

If the null hypothesis is not rejected, the temptation is to accept it.  However, 

this action is generally improper and ill advised, as acceptance is not necessarily 

the other side of rejection.  As a wise man once said, an absence of evidence is 

not evidence of an absence.  We are ready to elucidate. 

First, consider 0( ) /YZ n from Equation (13.3).  Using Z to test H0 

against a right-sided alternative, we reject H0 if Z is greater than the critical 

value z1- α.  Equivalently, there is a value
0y of Y such that we reject H0 if y is 

greater than
0y .  To find 

0y , set Z to z1- α and solve for 
0y  to get: 

0 10
/y z n  (13.4) 

Returning to Example 13.1, we substitute μ0 = 10, σ = 3, n = 100, and 

z1-α = 1.645 to calculate
0y  as: 

0 10 (1.645)(3) / 100 10.494y  

Thus, in Example 13.1, we reject H0 if y  > 10.494.  We feel comfortable with 

this decision because we know that the critical value of 10.494 is chosen so that 

the probability of making a Type I error (see Section 10.3) and being wrong 

when H0 is true is α = 0.05.  However, the same cannot be said about not 

rejecting H0 (i.e., accepting H0) if y   10.494, because the probability of 

making a Type II error and being wrong when H0 is false is not known.  From 

Section 10.3, this probability is denoted by  and depends on the true value of μ, 
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which is unknown.  To evaluate the possible consequences of a test of 

hypotheses, it is necessary to calculate the operating characteristic of the test, 

β = β(μ), or the power of the test, 1 – β = 1 - β(μ), as a function of the possible 

values of μ. 

power of 

the test 
The power of the test (or simply the power) is the probability of 

rejecting H0 as a function of μ.  We have: 

Power( ) = 1 - β (μ) = Pr{Y  > 
0y }               (13.5) 

In general, the sample meanY is normally distributed with a mean μ and 

standard deviation / n .  From Equation (13.4), we have:  

0

0

1

Y n y n
Power( ) Pr

n
Pr Z z

 (

(13.6) 

 

where Z is the standard normal evaluated in Table T-1 of the appendix.  When 

μ = μ0, Equation (13.6) becomes: 

Power(μ0) = Pr{Z > z1 - α} = 1 - Pr{Z < z1 - α} = 1- (1 - ) =  (13.7)  

  Equation (13.7) is equivalent to the definition of the level of significance. 

Note that Equation (13.6) is the power for testing H0 against a right-sided 

alternative.  To test H0 against a left-sided alternative, the critical value z1- α is 

replaced by zα and each greater-than symbol (>) is replaced by a less-than 

symbol (<) in Equations (13.5) and (13.6).  For a left-sided alternative, the 

power is given by: 

0( )
( )

n
Power Pr Z z

                     

(13.8) 

To test H0 against a two-sided alternative, there are two critical values and the 

power is a combination of Equations (13.6) and (13.8), using /2 and 1 - /2, for 

the two critical values.  

Continuing with Example 13.1, the probability of rejecting H0, which is the 

probability thatY is larger than 10.494, is illustrated in Figure 13.1.  In that 

figure, the normal density on the left is the distribution of Y under H0 with its 

center at μ0 = 10 and a critical point at 10.494.  The dark shaded area to the right 

of the critical point represents α, which in our case is α = 0.05.   
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Figure 13.1.   Probability of rejection of the null hypothesis 

Now suppose that μ = 10.8.  The normal density on the right side of Figure 13.1 

is the distribution of Y for μ = 10.8.  The probability of rejecting H0 is 

represented by the area under that curve to the right of the critical point of 

10.494.  This probability, schematically shown as the sum of the dark and light 

shaded areas, is calculated as: 

10.494 10.80
{10.494 }

3 /10 /

{ 1.020} { 1.020} 0.846

Y
Pr Y Pr

n

Pr Z Pr Z

 

Thus, the power of the test for μ = 10.8 is 1 - 
 
(10.8) = 0.846.  The probability 

of a Type II error is β = 
 
(10.8) = 0.154. 

Using Equation (13.6), we can calculate the power of the test for any other value 

of μ.  Table 13.1 shows the power for selected values of μ. 
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Table 13.1.   Power of the test for Example 13.1 

μ Power, 1- β β 

10.0 0.050 0.950 

10.2 0.164 0.836 

10.4 0.377 0.623 

   10.494 0.500 0.500 

10.6 0.638 0.362 

10.8  0.846 0.154 

11.0  0.954 0.046 

11.2 0.991 0.009 

11.4 0.999 0.001 

11.6 1.000 0.000 

 
power 

curve 
Figure 13.2 shows a graph of the power function, called a power 

curve, as given by Equation (13.6).  Note that when μ = μ0 = 10, 

the power is α = 0.05 and that when μ = z1-α = 10.494, the power 

is 0.50.  A key feature of the power curve is that it increases as a 

function of  and asymptotically approaches 1.  This follows 

directly from Equation (13.6) where Power( ) approaches 0 as  

approaches -  and Power( ) approaches 1 as  approaches .  

This makes sense because the larger μ is than μ0, the larger the 

probability that the test will ―sense‖ that H0 is incorrect and reject 

it.  For this reason, the power of the test is sometimes referred to 

as the sensitivity of the test. 

 

Figure 13.2.   Power curve for Example 13.1 
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13.5  Operating characteristic curve 

 

 

 

 

 

operating 

characteristic 
(OC) curve 

The power curve is a plot of the probability of rejecting H0 as 

a function of the true value of μ.  In many investigations, 

however, it is more convenient to plot the probability of 

accepting H1 (i.e., not rejecting H0 as a function of μ).  That 

plot is called the operating characteristic curve, or OC curve.  

Mathematically, the OC curve is 1 minus the power of the test.  

The last column of Table 13.1 shows selected values of the OC 

for Example 13.1.  The corresponding OC is plotted in 

Figure 13.3. 

 

 

Figure 13.3.   Operating characteristic curve for Example 13.1 
13.6  More power to you 

If we are concerned that we may fail to reject a null hypothesis that is false, we 

must address the power of the test and see where that power can be improved.  

We return to Example 13.1 and its associated power curve depicted in 

Figure 13.2. 

The power of the test quantifies the sensitivity of the test to departures from the 

null hypothesis.  What can we do to make the test more sensitive?  Three options 

are considered here, although we recognize that these options are not always 

practical or available: (1) increase the probability of a Type I error, (2) increase 

the sample size, or (3) decrease the standard deviation.  

Option 1.  Increase the probability of a Type I error.  As α increases, β 

necessarily decreases.  As we increase α, we increase the size of the critical 

region, thereby increasing the probability 1 - β of the test statistic falling into the 

critical region.   
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Option 2.  Increase the sample size.  As the sample size n increases, from 

Equation (13.6), the power of the test also increases.  Of course, large samples 

are more costly and may even be impossible to obtain at any cost.  Also, the 

increase in power is not linearly proportional to the sample size.  For example, 

increasing the sample size from 100 to 200 has far less effect on the power than 

increasing the sample size from 10 to 20.   

Option 3.  Decrease the standard deviation.  As the standard deviation  

decreases, from Equation (13.6), the power of the test increases.  In a 

manufacturing process, this requires tighter quality control, by controlling or 

accounting for more factors that may affect the product or process.   

13.7  Testing a mean when σ is unknown 

Rarely will we be fortunate enough to know the true standard deviation, σ, 

which is associated with a population that we examine.  The steps necessary to 

test a hypothesis about a population mean, however, are natural extensions of 

the case where σ is known.  As we might expect, given a sample of size n, σ is 

estimated by the sample standard deviation S with (n - 1) degrees of freedom.  

From Equation (13.3), the test statistic used when σ is known is Z.  Our intuition 

tells us that the σ in the denominator of the Z statistic should be replaced by S.  

The test statistic thus constructed, however, is not normally distributed; it has a 

Student’s t-distribution with (n - 1) degrees of freedom.  The test statistic is:  

/

Y nY
T

S n S
 (13.9) 

Once the sample data are collected, the values of Y , S, and n and the value of μ 

stated under the null hypothesis are substituted in Equation (13.9).  The 

calculated value t is then compared to the appropriate quantile of the 

t-distribution, denoted by t1-α(n - 1), in Table T-3 of the appendix for df = n - 1 

and q = 1 - α. 

Example 13.3.   Fuel pellets and solid lubricant additive.   The percent 

of solid lubricants added to fuel composition before compaction into pellets is 

recorded for a random sample of size 7 as 1.13, 0.93, 1.06, 1.08, 1.11, 1.19, and 

0.97.  Does this sample support a claim that the mean percent of solid lubricant 

does not exceed 1.00? 

This is a one-sided test, where H0: μ = 1.00 and H1: μ > 1.00.  We have α = 0.05, 

n = 7, df = 6, and t0.95(6) = 1.94. 

We calculate:  y   = 1.0671, s = 0.0907, and  
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1.0671 1.00
1.956

0.0907 / 7
t  

Since the calculated test statistic is larger than t0.95(6), the null hypothesis is 

rejected.  We conclude that the statistical evidence does not support the claim 

that μ  1.00. 

Example 13.4.   Ice weight in an ice condenser reactor.  We return to 

Example 9.3 and test whether the average ice basket weight μ is at least 900 kg, 

so that enough ice is available for cooling in case of accident.  A random sample 

of n = 25 baskets is collected.  Investigate whether the reactor is in compliance.  

To test for compliance, we resort to the test strategy in Section 13.3 and use an 

alternative hypothesis of μ > 900.  Also to conclude compliance, the null 

hypothesis would need to be rejected.  The test setup is: 

H0: μ = 900, H1: μ > 900, α = 0.05, n = 25,  = 24, and, from Table T-3, 

t0.95(24) = 1.71. 

From Table 9.2, the sample mean is y = 926.52, and the sample standard 

deviation is s = 20.51.  Using Equation (13.6), the test statistic is   

926.52 900
6.47

20.51/ 25
t  

Since t =6.47 > t0.95(24) = 1.71, H0 is rejected and we conclude that the reactor is 

in compliance.  Note that this conclusion is consistent with the 95% confidence 

interval for  in Example 9.3, where the lower limit for μ is 919.5. 

13.8  Hypotheses with two-sided alternatives 

On some occasions, we will find that the alternative hypothesis is best written as 

a two-sided alternative.  In that case, we have a critical region composed of 

disjoint parts.  Such a critical region guards against a mean that is too large or 

too small, as compared with the mean specified by H0.  A test that uses a 

two-sided alternative hypothesis is illustrated by the following example. 

Example 13.5.   Piston diameter.   Twelve pistons are taken at random 

intervals from an assembly line, where the average piston diameter is claimed to 

be 8.0 centimeters (cm).  The 12 observations are 7.7, 7.9, 8.4, 8.0, 8.1, 8.3, 7.9, 

8.2, 8.4, 7.8, 8.0, and 8.0.  The mean of these observations is y  
= 8.058. 

The hypotheses for this test are H0: μ = 8.0 and H1: μ  8.0.  Since the test is 

two-sided, we have two critical values:  one at the α
 
/
 
2 quantile and one at the 

(1 – α
 
/
 
2) quantile of the distribution of the test statistic.   
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We consider two cases:  one when  is assumed known and one when  is not 

known. 

Assume that  = 0.25.  From Equation (13.3), the test statistic is calculated as:  

8.058 8.00
0.804

0.25 / 12
z   

Since we have a two-sided test, we look up the 1 - α/2 quantile of the standard 

normal distribution (Table T-1) where z0.975 = 1.960.  Since |z| < 1.960, we do 

not reject H0 and conclude that the data support the claim that the average piston 

diameter is 8.0 cm. 

If  is not known, we estimate  from the sample by s = 0.2275.  From 

Equation (13.6), we have:  

8.058 8.00
0.883

0.2275 / 12
t  

Having a two-sided test, we look up the 1 - α/2 quantile of the Student’s 

t-distribution (Table T-3) to find t0.975(11) = 2.20.  Since |t| < 2.20, we do not 

reject H0 and conclude that the data support the claim that the average piston 

diameter is 8.0 cm.  This is the same conclusion we reached when   is assumed 

to be 0.25.  

13.9  Required sample size to test a mean:    known 

The subject of sample size is first introduced in Section 9.14 where a confidence 

interval for the mean μ of a normal population at a specified level of 

100(1 - α)% is required.  In this case, σ is assumed known and a margin of error 

d is specified.  The required sample size n as a function of , , and d is given 
by Equation (9.21), which is copied here for reference.    

/2

/2

2 2
2z

n
d d

z   
(13.10) 

For hypothesis testing, the role that the margin of error plays for confidence 

intervals is replaced by the distance between μ0 and a specified alternative value 

of μ.  To see why this is so, consider the power function given by 

Equation (13.6) for testing H0: μ = μ0 against H1: μ > μ0.  What happens as the 

sample size n increases?  Suppose first that H1 is true so that μ > μ0.  As n → ∞, 

Power( ) → Pr{Z > - } = 1. Now suppose that μ < μ0.  Then, as n → ∞, 

Power( )→ Pr{Z > } = 0.  Both of these limiting results make sense because, 

as the sample size increases, the sample mean Y approaches its mean .  Finally, 
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if μ = μ0, Power( ) = Pr{Z > z1- α} = .  In summary, as n  , the power curve 

approaches the ideal power curve, which is a step function equal to 0 for μ < μ0 

and 1 for μ > μ0.  Figure 13.4 illustrates this. 

 

Figure 13.4.   Ideal power curve for a right-sided alternative 

For finite n, the power curve can at best approximate the ideal power curve, as 

illustrated in Figure 13.5.  In practice, in addition to specifying the Type I error 

, the Type II error  is often also specified for a specified alternative μ1 > μ0.  

In other words, besides being equal to  when μ = μ0 (see Equation (13.7)), the 

power curve is constrained to be equal to 1 -  when μ = μ1, as indicated in 

Figure 13.5. 

 

Figure 13.5.   Power curve for specified Type I and Type II errors 

 

Given μ0 and , the sample size n is determined once μ1 and  are specified.  

From Equation (13.5): 

1 1 1 1( ) 1 ( ) 1 { } { }Power Pr Z z Pr Z z     (13.11) 

where Z is the standard normal.  From Equation (13.6), we have  
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0 1
1 1

( )
( )

n
Power Pr Z z  (13.12) 

next, equate the right-hand sides of Equations (13.11) and (13.12) and solve for 

n to get: 

2

1 1

2

1 0

( )

( )

z z
n  (13.13) 

    Because sample sizes are integers, a noninteger value calculated from 

Equation (13.13) is rounded up to the next largest integer.   

    Although derived from the power function for a right-sided alternative, 

Equation (13.13) also holds for a left-sided alternative.  Furthermore, if 

 is replaced by /2, it is a good approximation of the required sample 

size for a two-sided test. 

    Comparison of Equations (13.10) and (13.13) reiterates that the role of the 

margin of error d for a confidence interval is played by μ1 – μ0 , the 

distance between the null hypothesis and the specified alternative.  

Example 13.6.   Response time to alarm, continued.   We revisit 

Example 13.1.  Suppose we wish to determine n so that the power at μ1 = 10.4 is 

0.95.  We have  =  = 0.05,   = 3, and μ1 – μ0 = 0.4.  Substituting these 

values into Equation (13.13) yields n = 608.9, which is rounded up to n = 609.  

If we relax our power requirements and set μ1 = 11, then the required sample 

size is 97.4, rounded up to n = 98.  Hence, the sample size of n = 100 in 

Example 13.1 is barely adequate to meet this power requirement.   

If σ is not known, then, as for a confidence interval, the required sample size 

could be determined if the ratio rH = μ1 – μ0 /σ could be specified.  If 

 =  = 0.05, from Equation (13.13), we have: 

 
2

2 2

(1.645 1.645) 10.8

H H

n
r r

  

 

 

 



Tests for statistical hypotheses:  One mean 261 
 

 

13.10  Required sample size to test a mean:   unknown  

When σ is unknown, we use a two-stage procedure to make a preliminary 

estimate of σ and then use this estimate to find the required sample size.  This 

approach is completely analogous to the procedure used in Section 9.15 for 

confidence intervals. 

As in Section 13.9, suppose we wish to test H0: μ = μ0 against H1: μ > μ0 for a 

specified  and with power equal to 1 -  when μ = μ1 for specified  and 

μ1 > μ0.  We use a two-stage test based on the t-distribution.   

Stage 1:  Take an initial random sample of size n1 of at least three observations.  

Calculate the sample mean, denoted by 1Y and the sample standard deviation, 

denoted by s1.  Next, use Table T-3 of the appendix to find t1-α (n1 - 1) and t1-  

(n1 - 1).  Determine n from Equation (13.14) as:  

2
2

1 1 1 1 1

2

1 0

( 1) ( 1)

( )

t n t n s
n  (13.14) 

Because sample sizes must be integers, n is rounded up to the next largest 

integer.  

Stage 2:  Let n2 = n - n1.  If n2 ≤ 0, no additional observations are required.  

Otherwise, take n2 additional observations and denote the mean of this second 

sample by 2Y .  

Let Y  be the sample mean of the n = n1 + n2 observations.  Then Y may be 

calculated as:  

1 21 2

1 2

n Y n Y
Y

n n
 (13.15) 

The critical region for testing H0: μ = μ0 against a right-sided alternative is: 

1
0 1 1( 1)

s
Y t n

n
 

(13.16) 

With this two-stage procedure, the power when μ = μ1 is at least 1 - . 
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14 
Tests for statistical 

hypotheses:  Variances 

14.1  What to look for in Chapter 14 

Chapter 14 provides a methodology for testing various hypotheses about 

variances.  The discussion begins with an exploration of testing hypotheses 

about a single variance, then moves on to compare two variances, and concludes 

with a procedure for comparing several variances.  Topics to look for are:   

 chi-square statistic for testing a single variance, §14.3 

 one- and two- sided tests of a single variance, §14.4 

 F statistic for testing equality of two variances, §14.5  

 Fmax statistic for testing homogeneity of several variances, §14.5 

 pooling variances, §14.6 

 Bartlett’s test for homogeneity of several variances, §14.7 
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14.2  Why worry about variances? 

Any production line that claims output quality must maintain control over the 

variability of its product, as well as its average value.  It is simply not enough to 

have good average quality; it is equally important for quality variability to be 

controlled.  Recall the context of the precision of a measurement system from 

Chapter 6.  The variance is a measure of precision.  A precise measurement 

system is one with a small variance. 

 If a manufacturer knows both the variability as well as the average life 

expectancy of his product, he can use this information to select an 

appropriate period to warrant his product.   

From a statistical perspective, many statistical procedures make specific 

assumptions about the variance of a population or about the relationships 

between the variances of several populations.  If these assumptions are 

inappropriate, so are the procedures.  These assumptions are often checked by 

using techniques described in this chapter.  Thus, being able to assume that the 

variances are equal allows us to use analytical techniques such as the analysis of 

variance (Chapter 16).  If the variances cannot be assumed equal, we need to 

rethink the analysis and, perhaps, use a nonparametric statistical procedure 

(Chapter 25). 

This chapter covers three distinct scenarios in which variances are subjected to 

statistical tests.  These tests are used to determine whether: 

 A population variance equals a given value.  

 Two populations have equal variances. 

 Several populations have equal variances.   

Throughout this chapter, all populations are assumed to be normally distributed 

with unknown means. 

 Note that every test presented in this chapter addresses a question about a 

population variance (or variances) rather than a population standard 

deviation.  However, because of their functional relationship, any 

inference about a variance is automatically applicable to the standard 

deviation. 

 Because no assumptions or claims are made about the means of the 

populations whose variances we test, we must estimate these means 

because our variance tests are all based on the sample variances.  

Otherwise, the sample means are not explicitly used in the variance 

tests.  Contrast this with tests of hypotheses about a mean (Chapter 13) 

or means (Chapters 16 and 17), where assumptions or estimates about 

the variances are an integral part of the tests.   
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14.3  Testing a single variance 

We have a sample of size n.  The null hypothesis about a specified value 
2

0
 of 

the variance is written as:  

2 2

0 0:H  (14.1) 

The alternative hypothesis can take one of the following three forms:   

2 2

1 0

2 2

1 0

2 2

1 0

:

:

:

H

H

H

 

(14.2) 

(14.2a) 

(14.2b) 

The choice among the three alternative hypotheses is not always obvious.  

Considerations in making this choice depend on our priorities and concerns.  

However, Equation (14.2) is usually the alternative hypothesis because we are 

generally concerned only about variances that are too large (i.e., larger than the 

hypothesized value).
  

The formulation of the problem is completed by stating the desired level of 

significance.  While the choice of the level of significance also depends on 

priorities and concerns, this book generally uses the default value of α = 0.05.   

In testing whether 2 2

0
, we compare the sample variance S 

2
 to the 

hypothesized σ
2.  

Equation (14.3) gives the test statistic.   

2
2

2

0

( 1)
( 1)

n S
n  (14.3) 

Under the null hypothesis, the test statistic in Equation (14.3) has a chi-square 

distribution with  = n – 1 degrees of freedom, the same number of degrees of 

freedom that is associated with S 
2
.  The critical point

2

1
( ) for the alternative 

hypothesis in Equation (14.2) is obtained from Table T-2 of the appendix, 

although some interpolation of the table may be needed.  Alternatively, the 

critical point may be obtained using Excel’s function =CHIINV(1 – α, ν).  If the 

calculated test statistic
2
( ) exceeds

2

1
( ), H0 is rejected, and we conclude 

that the population variance is larger than the hypothesized 2
0

.    

Example 14.1 illustrates this test. 

Example 14.1.   Testing a single variance.   A manufacturer claims that 

the standard deviation associated with construction steel rod length is no more 
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than σ = 10 millimeters (mm) (or, equivalently, σ 
2
 = 100 mm

2
), a claim we need 

to verify.  A random sample of n = 20 observations yields a sample variance of 

177.13 mm.  The hypotheses for this test are written as H0:  σ 
2
 = 100 and 

H1:  σ 
2
 > 100.    

The calculated test statistic is: 

2 (19)(177.13)
(19) 33.65

100
 

From Table T-2, the critical point for the test is
2

0.95
(19) 30.1 .  Excel yields 

=CHIINV(0.05, 19) = 30.14.    

Since the calculated chi-square exceeds the critical point, we reject H0 and 

conclude that the statistical evidence does not support the claim that σ
 2 

 100. 

Had the alternative hypothesis been σ
 2 

< 100, the critical point would have 

been 2

0.05
(19) 10.1 and the test would have rejected H0 if the calculated 

2
(19) were less than 10.1. 

Had the alternative hypothesis been 2 100,  then two critical points would 

have been needed.  The lower critical point would have been 
2

0.025
(19) 8.91

 

and the higher critical point would have been
2

0.975
(19) 32.9.   If the calculated 

test statistic had been larger than 32.9 or smaller than 8.91, then H0 would have 

been rejected. 

An alternative to testing H0:  σ 
2
 = 

2

0
appears in Chapter 9, where a confidence 

interval for σ 
2
 is constructed.  If the confidence interval does not include

2

0
,  

H0 must be rejected.  We illustrate this by constructing a two-sided confidence 

interval for σ
2 
in Example 14.1.  From Equation (9.18), we have the following 

confidence interval for σ
 2: 

2 2

2 2

1 /2 /2

( 1) ( 1) (20 1) 177.13 (20 1) 177.13
, , 102.3, 377.7

( 1) ( 1) 32.9 8.91

n S n S

n n

 

Since the confidence interval does not include 
2

0
100,  H0 is rejected. 

14.4  Testing equality of two variances 

Many statistical procedures are based on the assumption that the variances of 

two or more populations are equal.  In this section, we show how to test such an 
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assumption for two populations.  Sections 14.5 and 14.7 show how to test the 

equality of variances when more than two populations are involved. 

Let 2

A
and 2

B  denote the variances of a product manufactured by 

Manufacturers A and B, respectively.  Although neither variance is known, we 

wish to test whether they are equal.  We start with the null hypothesis: 

H0: 
2 2

A B
 (14.4) 

The alternative hypothesis can take one of the following three forms: 

2 2

1

2 2

1

2 2

1

:

:

:

A B

A B

A B

H

H

H

 

(14.5) 

(14.5a) 

(14.5b) 

Depending on the context, any one of these alternatives may be appropriate.  If 

we just want to test the equality of the two variances, we use a two-sided 

alternative hypothesis, namely, H1: 
2 2.A B

 

As usual, we set α = 0.05. 

From the first population, we draw a random sample of nA observations and 

calculate the sample variance 2

AS  with A = nA – 1 degrees of freedom.  From the 

second population, we draw a random sample of nB observations and calculate 

the sample variance 2

BS with νB = nB – 1 degrees of freedom.   

Let 2

maxS and 2

minS  denote the larger and smaller of 2

AS  and 2

BS  respectively.   

Likewise, let νmax and νmin denote the degrees of freedom of 2

maxS  and 2

minS , 

respectively. 

 F statistic 

 F ratio 

 variance    

ratio 

The test statistic for examining equality of two variances is the 

F statistic (also called the F ratio or variance ratio).  That 

statistic is: 

                         2 2/max minF S S  
(14.6) 

Even though the alternative is two-sided, we have only one critical value 

because, as constructed, the F statistic cannot be smaller than 1.  We use 

Table T-4 of the appendix to obtain the critical value and reject H0 if the critical 

value is exceeded.  The table requires three input variables:  quantile, νmax, and 

νmin.  Since the alternative hypothesis is two-sided, the critical value is the 
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(1 - α/2)
th 

 = 97.5
th

 quantile of the F-distribution, denoted by f0.975(νmax, νmin),  

where the degrees of freedom in the numerator is νmax, and the degrees of 

freedom in the denominator is νmin.    

 Table T-4 is rather sparse and interpolation is often necessary. 

 Alternatively, we can use Excel’s function =FINV(α/2, νmax, νmin) to find the 

critical value.  

Example 14.2.   Testing equality of two variances.   Suppose we are 

given summary statistics calculated from two samples, A and B, as shown in 

Table 14.1.  

Table 14.1.   Testing equality of variance for two populations 

Sample Mean Variance n  = n - 1 

A 18.5 207 16 15 

B 21.6 317 25 24 

 

From Table 14.1, 2

maxS = 317, 2

minS = 207, max = 24, and min = 15.  The variance 

ratio is f = 317/207 = 1.531.  From Table T-4, we find f0.975(24, 15) = 2.70.  

Because 1.531 < 2.70, we do not have sufficient evidence to conclude that the 

variances are different. 

 Note that the sample means are not explicitly used in this test.   

The following example shows how to test a one-sided alternative. 

Example 14.3.   Warehouse temperature variation.   Temperature 

variation in a local warehouse is measured by its standard deviation.  

Management will consider switching to a remote warehouse if it can be shown 

that its standard deviation is lower than that of the local warehouse.  A sample of 

nL = 50 (νL = 49) temperature observations (in Fº) at the local warehouse yields a 

sample variance of
2

L
S  = 43.56 (S L = 6.6), and a sample of nR = 60 (νR = 59) 

temperature observations at the remote warehouse yields a sample variance of 
2

R
S = 11.56 (S R = 3.4).  The null and alternative hypotheses for this test are:  

2 22 2

0 1 0.05: , : ,
R RL L

H H  

The test statistic for this example is f = 43.56/11.56 = 3.768.  Because this is a 

one-sided test, the quantile used here is (1 - α) = 0.95.  Based on interpolation in 

Table T-4, the critical value is f0.95(49, 59) = 1.57.  The same value may also be 

obtained from Excel’s function =FINV(0.05, 49, 59).  Since f exceeds the 

critical value, we reject H0 and conclude that the remote warehouse has less 

temperature variation than the local warehouse. 
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14.5  Testing homoscedasticity with samples of equal 
size  

 

 

 
balanced 

experiment 

In Section 14.4, we learned how to test whether the variances 

of two populations are equal.  The remainder of this chapter 

is devoted to tests of equality of variances when there are two 

or more populations.  This section provides a test for a 

balanced experiment (i.e., an experiment where all sample 

sizes are the same).  Section 14.7 shows how to test with an 

unbalanced experiment. 

homoscedasticity 

heteroscedasticity 

A term used to describe equality of variances is 

homoscedasticity, and a term used to describe inequality of 

variances is heteroscedasticity.  

 

 
robust 

Many statistical procedures that assume equality of variances 

are not very strict about this assumption because these 

procedures are robust (i.e., the test results are not appreciably 

affected by minor departures from homoscedasticity).  

Accordingly, we will sometimes assume that the variances 

are similar or alike (i.e., they are approximately equal).  For 

the same reason, tests for homoscedasticity are often 

conducted at the 0.01 level of significance, because such tests 

are less sensitive to a departure from homoscedasticity.  In 

this Chapter, however, we will continue to use the default 

level of α = 0.05.   

 

 
Fmax  

Tests of homoscedasticity are typically lengthy and 

computationally tedious.  However, when the experiment is 

balanced, the following procedure, called the Fmax test, may 

be used. 

Hartley’s test The Fmax test, also known as Hartley’s test, tests the 

homoscedasticity of k populations, k > 2, where the sample 

sizes are equal (i.e., n1 = n2 = ··· = nk= n).  A reference to this 

test may be found in Beyer (1974), pp. 328–329.  The null 

hypothesis is: 

                              H0: σ1 
2
 = σ2 

2
 = … = σk 

2
 (14.7) 

                              The alternative hypothesis is: 

                              H1: σi 
2
 ≠ σj 

2
,  i ≠ j for at least one pair (i, j), i  j           (14.8) 

The level of significance for this test is set at α = 0.05. 

The test consists of the following steps: 
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Step 1.  Calculate the sample variances for each of the k samples, where each 

sample variance has  = n – 1 associated degrees of freedom.  

Step 2.  Set 2

maxS  = the largest of the k sample variances.  

Step 3.  Set 
2

minS  = the smallest of the k sample variances. 

Step 4.  Calculate Fmax by: 

             
2 2/max max minF S S  (14.9) 

Step 5.  Find fmax,q(k, ), the q
th
 = (1 – α)

th
 quantile, of the Fmax distribution for 

k groups and ν degrees of freedom in in Table T-5, ―Quantiles,         

fmax, q(k, ν), for the Fmax distribution,‖ of the appendix.   

Step 6.  Reject H0 if fmax, the calculated value of Fmax, exceeds fmax, q(k, ), and 

conclude that there is statistical evidence of heteroscedasticity.  

Otherwise, we do not have sufficient evidence to conclude that the 

variances are not all the same. 

Strictly speaking, each of the k samples must have exactly n observations.  

However, for most applications, this test is quite adequate if the number of 

observations is roughly equal.  The degrees of freedom for the test is set equal to 

the average number of degrees of freedom for the k samples.  

Example 14.4.   Testing equality of uranium concentration 
variances.   A study was conducted to see if materials supplied by six different 

uranium dioxide (UO2) suppliers were homoscedastic with respect to their 

uranium concentration.  Random samples of size n = 8 each were collected from 

each of the UO2 suppliers.  Table 14.2 summarizes the data. 

 
Table 14.2.   Uranium concentration (percent) in UO2 samples 

Supplier Mean, y  Variance, S  2 Size, n   = n - 1   

1 86.2 0.40 8 7 

2 88.1 1.49 8 7 

3 87.3 3.20 8 7 

4 89.9 1.93 8 7 

5 86.2 2.35 8 7 

6 89.2 1.58 8 7 

 

From this table, we calculate fmax = 3.20/0.40 = 8.00.  From appendix Table T-5, 

the critical value for the test is fmax, 0.95( 6, 7) = 10.8.  Since fmax is smaller than 

the critical value, we do not reject the null hypothesis of homoscedasticity.  The 
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statistical evidence is insufficient to conclude that the population variances are 

different. 

14.6  Pooling variances 

 

pooling 

variances 

Before introducing a test for equality of variances with an 

unbalanced experiment, we first introduce the concept of 

pooling variances. 

Suppose we are given k populations, k > 2, and have a reason, statistical or 

otherwise, to believe that the population variances are the same.  We collect 

k independent samples, one from each population.  Let 2,iS ni, and νi = (ni – 1) 

denote the sample variance, sample size, and degrees of freedom of the 

i
th

 sample, respectively.  If all the population variances are indeed the same, we 

have k independent sample variances, each estimating the same variance.  We 

wish to combine, or pool, all the sample variances to obtain a single estimate of 

the common population variance. 

 
weighted 

average 

 

Pooling variances means averaging the variances.  To be more 

exact, we form a weighted average of the k sample variances, 

where the weights are the degrees of freedom.  The pooled 

variance is denoted by
2

P
S , or simply as S 

2
, and is calculated as: 

2 2

1 12

1 1

( 1) ( 1)

( 1)

k k

i i i i
i i

k k

i i
i i

n S n S

S

n n k

 (14.10) 

The pooled variance has ν associated degrees of freedom, where 

1 1

( 1)
k k

i i

i i

n n k       (14.11) 

It can be shown that S 
2
 is the ―best‖ estimator of the common population 

variance (i.e., it has the smallest variance of all weighted averages of the k 

sample variances).  

 Note that we pool the variances, not the standard deviations. 

The following example illustrates the pooling of k = 4 sample variances. 

Example 14.5.   Pooling variances.   Table 14.3 summarizes the 

percentage of uranium contents for four samples.  We calculate the pooled 

variance. 
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Table 14.3.   Pooled variance for uranium content 

Sample, i 1 2 3 4 Sum 

Variance,
2

is  0.026 0.054 0.063 0.031  

Size, ni 11 15 14 16 56 

νi = (ni – 1) 10 14 13 15 52 

(ni – 1)
2

is  0.260 0.756 0.819 0.465 2.300 

The pooled variance is:  

2 10(0.026) 14(0.054) 13(0.063) 15(0.031)
0.0442

10 14 13 15
S  

14.7  Testing equality of variances with unequal sample 
sizes 

Bartlett’s test 

 

 

Bartlett’s test (Bartlett, 1937) is used for testing the 

homoscedasticity of several populations.  In contrast to the Fmax 

test, Bartlett’s test does not require that all samples be of equal 

size.  Bartlett’s test is the most commonly used test for 

homoscedasticity but has a shortcoming in that, while sensitive 

to heteroscedasticity, it is also somewhat sensitive to departures 

from normality.  This shortcoming is usually tolerated. 

 
Levene’s 

test 

               A test of homoscedasticity that is not sensitive to departures 

from   normality is Levene’s test (Levene, 1960).  This test is 

available  in most statistical software packages.  

The null and alternative hypotheses for comparing k populations, k  2, are the 

same as stated in Equations (14.7) and (14.8), respectivly. 

Let ni and
2

iS denote the sample size and the sample variance for sample i, 

respectively, and let 
1

k

i
i

N n denote the total number of observations.  

Bartlett’s test statistic, denoted by B, is given by: 

2 2

1

1

( ) ( 1)

1 1 1
1 ( )

3( 1) 1

k

i i
i

k

i i

N k ln S n ln S

B

k n N k

 
(14.12) 
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Here, 2S is the pooled variance, defined in Equation (14.10), and ln is the 

natural logarithm function. 

Under H0, Bartlett’s test statistic is distributed approximately as a chi-square 

variable χ 
2
(k – 1) with k – 1 degrees of freedom.  From Table T-2 of the 

appendix, the critical value is 2

1
( 1)k  and H0 is rejected if it is exceeded. 

Example 14.6.   Continuation of Example 14.5.   Table 14.3 presents the 

data for this example.  Table 14.4, which mirrors an Excel spreadsheet, shows 

the calculations for Bartlett’s test statistic.  The entries of Table 14.3 are copied 

onto the first four rows of Table 14.4, (cells B2 ... E5) and we continue with the 

following steps: 

Step 1.   In cell B6, enter =1/B4, the reciprocal of the degrees of freedom for 

Sample 1.  In our example, that entry is 1/10 = 0.100.  Copy that entry 

to cells C6..E6. 

Step 2.   In cell F6, enter =SUM(B6..E6), the sum of the reciprocals of the 

degrees of freedom.  In our example, that entry is 0.315. 

 Step 3.  In cell B7, enter =LN(B2), the logarithm of the variance of Sample 1.  

In our example, that entry is ln(0.026) = -3.650.  Copy that entry to 

cells C7..E7. 

Step 4.   In cell F7, enter =SUM(B7..E7), the sum of the logarithms of the 

sample variances.  In our example, that entry is -12.807. 

Step 5.   In cell B8, enter =B4*B7, the product of the degrees of freedom and 

the logarithm of the sample variance.  In our example, that entry is        

-36.497.  Copy that entry to cells C8..E8. 

Step 6.   In cell F8, enter =SUM(B8..E8).  In our example, that entry is -165.406. 

Step 7.   In cell C9, enter the number of samples, k.  In our example, k = 4. 

Step 8.   In cell C10, enter =F5/F4 the pooled variance. It is the same value that 

was calculated in Example 14.5.  Here, this entry is 0.044231. 

Step 9.   In cell C11, enter =(F4)*LN(C10), the first term in the numerator of 

Equation (14.11).  Here, we have (52) ln(0.044231) = -162.153. 

Step 10.  In cell C12, enter =C11-F8, the numerator of Equation (14.11).  Here, 

we have -162.153 - (-165.406) = 3.253. 
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Step 11. In cell C13, enter =F6-1/(F4), the term in the large parentheses in the 

denominator of Equation (14.11).  Here, we have 0.315 - 1/(52) = 

0.296. 

Step 12. In cell C14, enter =1+1/(3*(C9-1))*C13, the denominator of 

Equation (14.12).  Here, we have 1 + 1/((3)(4 - 1))(0.296) = 1.033. 

Step 13. In cell C15, enter =C12/C14, the calculated Bartlett’s test statistic.  

Here, we have B = 3.253/1.033 = 3.149. 

Table 14.4.   Spreadsheet calculations for Bartlett’s test 

 A B C D E F 

1 Sample, i 1 2 3 4 Sum 

2 Variance,
2

is  0.026 0.054 0.063 0.031  

 3 Size, ni 11 15 14 16 56 

4 (ni – 1) 10 14 13 15 52 

5 (ni – 1)
2

is  0.260 0.756 0.819 0.465 2.300 

6 1/(ni – 1) 0.100 0.071 0.077 0.067 0.315 

7 
2( )iln s  -3.650 -2.919 -2.765 -3.474 -12.807 

8 (ni – 1)
2( )iln s  -36.497 -40.863 -35.940 -52.107 -165.406 

9 k  4    

10 s
 2
 (pooled) 0.044231 

   

11 
2( )N k ln s  -162.153 

 
  

12 

2 2( ) ( 1)i iN k ln s n ln s

 
3.253    

13 
1 1

( )
1in N k

 
0.296    

14 
1 1 1

1 ( )
3( 1) 1ik n N k

 
1.033    

15 B 3.149    

 

The critical value is 2

0.95(3) 7.81.   Since B = 3.149 does not exceed 7.81, we 

do not reject H0, and we conclude that there is no statistical evidence of 

heteroscedasticity. 



Tests for statistical hypotheses:  Variances 275 
 

 

In this example, we might have used the Fmax test because this test is robust if the 

sample sizes are approximately equal.  The degrees of freedom is the average 

over the samples, or 52/4 = 13.  From Equation (14.9), we have:   

fmax = 0.063/0.026 = 2.42 

Interpolating in Table T-5 of the appendix, we find that the critical value 

fmax,0.95(4,13) is approximately 4.5.  Hence, the Fmax test would also conclude that 

there is no statistical evidence of heteroscedasticity. 
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15 
Tests of statistical 

hypotheses:  Two means 

15.1  What to look for in Chapter 15 

Chapter 15 introduces tools that allow us to compare the means of two 

populations by examining random samples from the populations.  In this 

chapter, we assume that the samples are either from normal distributions or that 

the sample sizes are large enough to allow us to invoke the central limit theorem 

and claim that the sample means are approximately normally distributed.  We 

use two important concepts: 

 variance and the standard deviation of mean difference, §15.4 

 pooled variance, §15.5 

 sample size requirements for comparing two means, §15.8 

Procedures for comparing two means are given for the following four cases: 

 observations are paired, §15.3 

 variances are known, §15.4 

 variances are unknown but assumed equal, §15.5 

 variances are unknown and unequal, §15.6 
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15.2  Hypotheses about the means of two populations 

We often need to compare the means of two populations.  Given random 

samples from each population, the tests in this chapter are based on the two 

sample means.  Furthermore, the statistical calculations of the tests are all based 

on the assumed normality of the sample means.  Accordingly, either (1) the 

populations are assumed to be normally distributed, and thus the sample means 

are also normally distributed, or (2) the sample sizes are large enough for the 

Central Limit Theorem (Chapter 7) to imply that the sample means are 

approximately normal.  If the second condition holds, then the statistical 

calculations of the tests are approximately correct.  If neither of these conditions 

is met, then a nonparametric procedure (Chapter 25) may apply. 

When comparing the means of two populations, we do not always test whether 

they are equal; we may also test whether they satisfy some other relationship.  

The tests of hypotheses for these comparisons may take several forms.  Three 

commonly encountered forms are defined below. 

Form 1.  The means are equal and the null hypothesis is:   

H0:  µ2 = µ1, or H0:  µ2 - µ1 = 0 
(15.1) 

The alternative hypothesis is one of the following:  

H1:  µ2 - µ1 ≠0 (two-sided alternative) (15.1a) 

H1:  µ2 - µ1 > 0 (right-sided alternative) (15.1b) 

H1:  µ2 - µ1 < 0 (left-sided alternative) (15.1c) 

As an example, suppose we test whether the average cost of electricity changed 

between 2009 and 2008 and write H0:  µ09 - µ08 = 0.  As the test is stated, the 

alternative hypothesis is written as H1:  µ09 - µ08 ≠ 0.  However, if we are really 

interested in whether the average cost of electricity increased (rather than just 

changed) from 2008 to 2009, then the alternative hypothesis would be 

H1:   µ09 - µ08 > 0.   

Form 2.  The two means differ by a constant c, and the null hypothesis is: 

H0:  µ2 = µ1 + c, or H0:  µ2 - µ1 = c 
(15.2) 

The alternative hypothesis is one of the following: 

H1:  µ2 - µ1 ≠ c (two-sided alternative) (15.2a) 
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H1:  µ2 - µ1 > c (right-sided alternative) (15.2b) 

H1:  µ2 - µ1 < c (left-sided alternative) (15.2c) 

  If c = 0, the Form 2 hypotheses are equivalent to the Form 1 hypotheses. 

 

As an example, suppose we test the claim that the response time for the new 

intrusion detection system is at least 2 minutes shorter than for the old system.  

The null and alternative hypotheses are: 

H0:  µold - µnew = 2, and H1:  µold - µnew > 2.  

 Form 3.  The second mean is a constant multiple k of the first mean. The null    

hypothesis is: 

H0:  µ2/µ1 = k, or H0:  µ2 - kµ1 = 0. 
(15.3) 

The alternative hypothesis is one of the following: 

H1:  µ2 – kµ1 ≠ 0 (two-sided alternative) (15.3a) 

H1: µ2 - kµ1 > 0 (right-sided alternative) (15.3b) 

H1:  µ2 - kµ1 < 0 (left-sided alternative) (15.3c) 

  If k = 1, the Form 3 hypotheses are equivalent to the Form 1 hypotheses. 

 

As an example, suppose we test whether the average cost to move an employee 

from Region X to Headquarters is at least 30% more than the cost of moving 

from Headquarters to Region X.  The null and the alternative hypotheses are 

written as:  

H0:  µXH / µHX = 1.3, or µXH - 1.3µHX = 0   

H1:  µXH  / µHX > 1.3, or µXH - 1.3 µHX > 0   

This chapter discusses four procedures for comparing two means.  The data 

structure and the assumptions made drive these procedures.  

15.3  Procedure 1:  Paired observations 

paired 

observations 

 treatments 

Paired observations are two observations made on a member of a 

population after it has been subjected to two different treatments.  

Because all other causes are presumably controlled, we tend to 

attribute any difference in the paired observations to the effects of 
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error 

blocked 

observations 

the treatment.  This is analogous to identical twins who are 

expected to grow and behave alike, unless they are treated 

differently or are exposed to different environments.  If one of the 

twins receives—or is deprived of—a specific food and grows 

faster than his/her sibling, the difference in diet is usually 

identified as the cause because the growth difference is unlikely to 

have been to the result of a genetic difference.  In a statistical 

context, diet is a treatment.  Of course, other factors may affect 

the observed difference between the paired observations, just as 

there are environmental differences that might affect the twins’ 

growth, but for our purposes, those other factors are considered 

irrelevant, unlikely, or uncontrollable.  The combination of all the 

other factors is termed error.  Paired observations that are 

expected to be alike if all individuals in a group receive the same 

treatment are called blocked observations. The number of 

observations in a block must be two or more. 

Examples of paired observations on individuals receiving different treatments 

include: 

 Participants who are given an injection of a drug in one arm and of another 

drug in the second arm 

 Welds that are inspected for quality by two inspectors 

 Aliquots of water that are tested for impurities by two different laboratories   

 Estimates for automobile repair from two different garages  

 

In paired observation experiments, the number of paired observations is denoted 

by n.  An individual observation is denoted by Yij, where the first subscript, i, 

identifies the treatment and the second subscript, j, identifies the individual.  

Typically, both i and j are positive integers, with the treatments denoted by 

1 and 2 and the individuals numbered sequentially from 1 to n.  We use 

Dj = Y2j - Y1j to denote the difference between the two observations on individual 

j.  The observed differences {Dj} have a distribution, and we use μD to denote its 

mean.   

   The subscript that identifies a treatment need not be numeric.  For example,         

the treatment may be denoted as A and B. 

Our strategy is to calculate the sample mean, ,D and the standard deviation, SD, 

of the n observed paired differences.  We assume that the paired differences Dj 

are normally distributed. 

   If Y1j and Y2j are normally distributed, then Dj will be normal.  However, it is 

possible for Dj to be normal even if Y1j and Y2j are not normal.  
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The model for paired observations is written as:  

Dj = D +  j    (15.4) 

where D = µ2 - µ1.  The error  j is assumed to be distributed  normally with 

mean 0 and unknown variance. 

The test statistic for any form of the null hypothesis is:  

1

( )

/

D

D

n

D
T

S n
 

(15.5) 

where Tn-1 has a Student’s t-distribution with ν = n - 1 degrees of freedom.   

As an example, suppose the null hypothesis in Section 15.2 is Form 2 with a 

two-sided alternative.  Then the null and alternative hypotheses are: 

1: , :o D DH c H c   (15.6) 

The critical value is t1- /2(n-1) from Table T-3 of the appendix.  We reject H0 if 

the absolute value of the test statistic is larger than the critical value and 

conclude that the statistical evidence implies that the average population 

difference is not equal to c. 

Example 15.1.   Paired scale measurements.   Suppose we wish to verify 

the equivalence of two scales used to weigh containers of special material, by 

weighing each of n = 10 containers once on each scale.  The hypotheses are 

given by Equation (15.6) with c = 0.  The associated degrees of freedom for the 

test is  = n - 1 = 9.   

Table 15.1 displays the data for the 10 pairs of measurements, in kilograms (kg), 

along with the relevant statistics. 

The test statistic is calculated as: 

0 0.06 0
0.896

0.067/
d

d
t

s n

 
 

Since | t | < t0.975(9) = 2.26, H0 is not rejected, and we have no reason to claim 

that the scales are different. 

 



282 Applying Statistics 
 

 

For Excel users:  Click on Data, Data Analysis (in some versions of Excel, 

click on Tools, Data Analysis), and scroll down to ―t-test Paired Two-Sample 

for Means.‖  Once a new panel is displayed, select and enter the range of each 

variable separately.  If the first row contains the group labels, check the ―Label‖ 

box, otherwise be sure that this box is not checked.  Enter the level of 

significance (default: α = 0.05) and the cell where we wish the output to begin.  

Under ―Hypothesized mean difference,‖ enter the value of c, the hypothesized 

μD in Equation (15.6), or select 0 as the default value.  Table 15. 2 shows 

Excel’s printout (in a slightly modified style) for Example 15.1.  The relevant 

output for this procedure gives the calculated t-statistic, as well as the critical 

points for both one- and two-sided tests. 

Table 15.1.   Container weights, in kg, measured by two scales 

Container Scale 1 Scale 2 Difference 

1 25.6 25.4 -0.2 

2 21.3 21.1 -0.2 

3 21.3 21.7 0.4 

4 28.4 28.4 0.0 

5 29.9 30.0 0.1 

6 30.0 29.9 -0.1 

7 23.4 23.1 -0.3 

8 29.5 29.6 0.1 

9 27.7 27.5 -0.2 

10 21.3 21.1 -0.2 

Descriptive 

statistics 

for paired 

differences 

n = 10 

 = 9 

d  = -0.06 

sd = 0.21 

d
/ 0.067s n  
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Table 15.2.   Excel output for Example 15.1 

  Scale  Scale 1 Scale 2 

  Mean 25.84 25.78 

  Variance 13.894 14.108 

  Observations 10 10 

  Hypothesized mean difference 0  

  Degrees of freedom (υ) 9  

  t-statistic 0.896  

  Pr {T ≤ t}, one-tail 0.197  

  t critical, one-tail 1.833  

  Pr{T ≤ t}, two-tail 0.394  

  t critical, two-tail 2.262 
 

The spreadsheet output provides some elementary statistics for each sample:  

mean, variance, sample size, and the degrees of freedom.  The result t-statistic 

and the degrees of freedom are the same as those in Table 15.1 and so is the 

critical point for a two-sided alternative.   

Excel also provides the critical point t0.95(9) for a one-sided alternative, as well 

as the probabilities of exceeding the calculated t values for one- and two-sided 

alternatives.  

A common application of the t-test for paired differences is to evaluate 

shipper-receiver differences.  Differences between the quantity shipped and the 

quantity received of shipments may be attributed to misstatements by the 

shipper, misstatements by the receiver, material lost in transit, or random error.  

The statistical test does not identify the source of the differences, but it may 

indicate when random error is an unlikely source. 

The value of collecting the data in pairs, when appropriate, cannot be 

overemphasized.  Two advantages are listed below: 

 The analysis of paired data is more sensitive to the population difference 

than an analysis that considers the data as coming from two 

independent samples.   

 The calculations used to analyze paired observations are considerably 

simpler than those used for two independent samples.  Indeed, pairing 

the observations allows us to analyze the data as if we have a single 

sample (of differences), a procedure covered in Chapter 13. 
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15.4  Procedure 2:  Variances known 

This procedure tests whether two normal populations, denoted here by A and B, 

have the same mean when the variances of the two populations,
2

A
and 

2

B
, are 

known.  The test statistic is constructed using the standard deviation of a 

difference in means derived as Equation (6.49) and presented below: 

2 2

A B

A B

Y Y

A Bn n
 (15.7) 

where and A BY Y are the sample means and nA and nB  are the sample sizes for 

populations A and B, respectively. 

From Equation (15.2), the null and alternative hypotheses for comparing µA and 

µB with a two-sided alternative are given by: 

H0:  µA - µB = c, H1:  µA - µB ≠ c 

The test statistic is a standard Z-statistic as given by Equation (15.8):  

2 2

( )

/ /

A B

A A B B

Y Y c
Z

n n

 
(15.8) 

If |Z| > z(1 - /2), H0 is rejected, and we have statistical evidence that µA - µB ≠ c.  

For  = 0.05, the null hypothesis is rejected if |Z| > 1.96.  If Z does not exceed 

1.96, then H0 is not rejected. 

Example 15.2.   Mean percent uranium in UO2 pellets.   A facility 

producing uranium dioxide (UO2) pellets wishes to compare the mean percent 

uranium produced by two different operating processes, A and B.  Given 

population variances and sample sizes nA = 8 and nB = 12, test whether the two 

process means are the same. 
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Table 15.3 gives the data and sample statistics. 

Table 15.3.   A Comparison of two processes for uranium 
enrichment 

Process (treatment) Process A Process B 

Data 88.056,    88.088 87.939,    87.883,    88.005 

 88.044,    88.015 88.064,    88.001,    87.977  

 87.897,    88.039 87.881,    87.946,    88.107  

 87.950,    88.113 87.970,    87.923,    88.119 

Sample size, ni 8 12 

Sample mean iy  88.0252 87.9846 

Population variance  0.0071 0.0066   

The calculated statistic is:  

88.0252 87.9846
1.073

0.0071 0.0066

8 12

z  

Since | z | is smaller than z0.95 = 1.960, there is no statistical evidence that the 

two processes have different means.   

 Note that the sample variances are not used in the test because the assumed 

knowledge of the population variances overrides any estimates.  The 

sample variances, however, may be used for other purposes, such as 

testing the individual variances or testing whether the population 

variances are equal.  Chapter 14 describes such tests.  

For Excel users:  Click on Data, Data Analysis (in some versions of Excel, 

Click on Tools, Data Analysis), and scroll down to ―z-test:  Two-Sample for 

Means.‖  Once a new pane is displayed, select and enter the range of each 

variable.  If the first row contains group labels, check the ―Label‖ box. 

Otherwise be sure that this box is not checked.  Enter the level of significance 

(default:  α = 0.05), and the cell where the output begins.  You may also enter 

the constant c (default is c = 0) under ―Hypothesized Mean Difference.‖  The 

output for this procedure gives the calculated t-statistic as well as the critical 

points for both one- and two-sided tests.  Table 15.4 shows Excel’s output, 

slightly modified.   
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Table 15.4.   Excel output (modified) for Example 15.2 

 z-Test:  Two Samples for Means 

 Process  A B 

 Mean 88.0230 87.9846 

 Known variance 0.0071 0.0066 

 Observations 8 12 

 Hypothesized mean difference 0  

 z 1.073  

 Pr{Z<=z}, one-tail 0.142  

 z critical one-tail 1.645  

 Pr{Z<=z}, two-tail 0.283  

 z critical two-tail 1.960  

15.5  Procedure 3:  Variances unknown but assumed 
equal 

Procedure 3 applies to perhaps the most common situation that involves a test of 

a hypothesis about two means.  The two populations, designated A and B, are 

assumed to have equal variances, so that pooling the variances is an important 

part of the process.  The sample sizes are nA and nB.  

Start by writing the null hypothesis that the group means differ by a constant c, 

where, typically, c = 0: 

H0:  A - B  = c    

Next, write the alternative hypothesis as one of the forms, as appropriate:  

H1:  A - B  ≠ c, or H1:  A - B  > c, or H1:  A - B  < c 

Let S 
2
 be the pooled variance of the two samples, as defined in Section 14.6.  

The formula for the pooled variance is a special case of Equation (14.10) where 

k = 2.  We have:   

2
2

2 2
12

2

1

( 1)
( 1) ( 1)

2( 1)

i i
i A A B B

A B
i

i

n S
n S n S

S
n nn

 (15.9) 
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The test statistic is Student’s T, given by any one of the three formulas: 

2 2

2 1 1 1 1

A B A B A B

A B A B A B

Y Y Y Y Y Y
T

S S
S S

n n n n n n

c c c  

(15.10) 

The calculated t-statistic is then compared to appropriate quantiles of Student’s 

T-distribution with nA + nB - 2 degrees of freedom from Table T-3 of the 

appendix. 

For a two-sided alternative hypothesis, reject H0 if |T| > t1- /2(nA + nB - 2).   

If the alternative hypothesis is H1:  A - B > 0, reject H0 if T > t1- (nA + nB - 2).   

If the alternative hypothesis is H1:  A - B < 0, reject H0 if T < -t1-  (nA + nB -2). 

Example 15.3 illustrates the procedure. 

Example 15.3.   Measuring radiological contamination.   Radiation 

contamination in a large area was measured, in disintegrations per minute (dpm) 

per 100 square centimeters (cm
2
), in one summer and in the following winter.  In 

each season, a random sample was taken to test whether there is any seasonal 

variation.  The null hypothesis is that the seasonal means are equal (i.e., c = 0).  

We assume that the seasonal variances are equal.  Table 15.5 summarizes the 

collected data.   

Table 15.5.   Radiological contamination, in dpm/100 cm
2
 

Sample Summer Winter 

Mean, 
iY  1,988 2,008 

Variance, Si
2
 2,051 2,447 

Size, ni 36 39 

i = ni – 1 35 38 

 

Because the population variances are assumed equal, we begin by pooling the 

sample variances.  The pooled variance is calculated as: 

2 (35)(2051) (38)(2447)
2257.14

36 39 2
s  

 

From Equation (15.10), the denominator of T is:   
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1 1
(mean difference) 2257.14 10.98

36 39
se ,    

 

from which the test statistic is calculated as: 

(1988 2008) (0)
1.82

10.98
t  

 

The degrees of freedom = 36 + 39 – 2 = 73.  Since |t| is less than 

t0.975(73) = 1.99, there is no statistical evidence that the two seasonal means 

differ. 

For Excel users:  Click on Data, Data Analysis (in some versions of Excel, 

click on Tools, Data Analysis), and scroll down to ―t-test:  Two-Sample 

Assuming Equal Variances.‖  Once a new pane is displayed, select and enter the 

range of each variable.  If the first row contains the group labels, check the 

―Label‖ box, otherwise be sure that this box is not checked.  Then enter the level 

of significance (default:  α = 0.05), and the cell where the output begins.  Under 

―Hypothesized Mean Difference,‖ enter the constant c (default:  c = 0) against 

which mean difference is tested.  Indicate where the analysis should be printed 

and Enter ―OK.‖  The output for this procedure gives the calculated t-statistic, as 

well as the critical points for both one- and two-sided tests. 

15.6  Procedure 4:  Variances unknown and unequal    

Procedure 4 is used in the following situation:  We have two independent 

samples from normal distributions with unknown variances 
2

A
 and 

2

B
 that 

cannot be assumed to be equal as in Procedure 3.  We wish to test the null 

hypothesis H0:  A - B = c.  Instead of using the pooled sample variance S 
2
 as in 

Equation (14.10), the test statistic uses the individual sample variances 2

AS  

and 2

BS .   

Behrens-

Fisher 

problem 

Welch 

approximation  

Satterthwaite 

approximation 

Known as the Behrens-Fisher problem, this problem has led to 

much research since the early decades of the 20th century, and 

no general exact solution has been found.  Brownlee (1965), 

p. 299, gives a succinct account of the problem—and explains 

and illustrates a solution in terms of the Welch approximation 

(1937, 1947).  The approximate solution we use is the 

Satterthwaite approximation (1946), which extends the Welch 

approximation from 2 to k groups.  The robustness and 

practicality of this approximation make it an important tool for 

testing H0. 
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We write the hypotheses and the test statistic as follows: 

H0:  A - B = c, H1:  A - B ≠ c 

*

2 2

( ) ( )A B

A B

A B

Y Y c
T

s s

n n

 

(15.11) 

If H0 is true, T 
*
 has an approximate Student’s t-distribution with approximate  * 

degrees of freedom given by:   

2 2 2

2 2 2 2

* [ ]

[ ] [ ]

1 1

A A B B

A A B B

A B

S n S n

S n S n

n n

 
(15.12) 

Because the degrees of freedom is supposed to be an integer, any noninteger 

value of  from Equation (15.12) is rounded down.  This equation is somewhat 

unusual; it is one of the few instances in hypothesis testing where the degrees of 

freedom is determined from the sample data. 

Example 15.4.   Yield stress of stainless steel pipes.   The average 

yield stress of stainless steel pipes, measured in kilopounds per square inch (ksi), 

made by two manufacturers is to be compared.  We are informed that the 

variances of the two manufacturers are definitely not equal.  Hence, we use 

Procedure 4.  Table 15.6 summarizes data from an experiment conducted at 

100 °F. 

Table 15.6.   Yield stress (in ksi) for two manufacturers of steel 
pipes  

Sample Manufacturer A Manufacturer B 

Size 5 8 

Degrees of freedom 4 7 

Mean  82.3 71.4 

Variance 108.16 7.84 

Standard deviation 10.4 2.8 

 

The hypotheses are: 

H0:  A - B = 0, H1:  A - B ≠ 0 
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The calculated test statistic is:  

* (82.3 71.4) 0
2.29

108.16 7.84

5 8

t  

 

The calculated degrees of freedom is: 

*

2

2 2

108.16 7.84

5 8
4.37

108.16 7.84

5 8

4 7

 

 

This is rounded down to 4 degrees of freedom.   

Because this is a double-sided test, the critical value is t0.975(4) = 2.78.  Since 

t* = 2.29 < 2.79, we do not reject H0.  There is insufficient statistical evidence to 

conclude that the two manufacturers’ stainless steel pipes are different with 

respect to yield stress. 

For Excel users.  Click on Data, Data Analysis (in some versions of Excel, 

Click on Tools, Data Analysis), and scroll down to ―t-test:  Two-Sample 

Assuming Unequal Variances.‖  Once a new pane is displayed, select and enter 

the range of each variable.  If the first row contains group labels, check the 

―Label‖ box; otherwise be sure that this box is not checked.  Then enter the level 

of significance (default: α =0.05), and the hypothesized mean difference (default 

c = 0), and the cell where the output begins.  The output for this procedure gives 

the calculated t-statistic as well as the critical points for α for both one- and two-

sided tests.  However, the quoted degrees of freedom is rounded and reported to 

the nearest integer. 

15.7  An example to summarize the four procedures 

In this section, we have two sets of n = 10 observations each.  The raw data 

represent 10 shipments of special material, measured in kilograms, as recorded 

by both the shipper and the receiver over a period of 1 year.  Assuming that all 

shipments were made by the same shipper and all were received by the same 

receiver, we know that the proper analysis is that of Procedure 1, paired 

observations, as given in Section 15. 3.  In this section, however, we present 

Excel’s printout for each of the four procedures, resulting from different 

assumptions about the data structure or the assumed variances.  We use balanced 

data (that is, n1 = n2) because the first procedure requires paired observations, 

meaning that the number of shipped shipments must equal the number of 

received shipments.  Table 15.7 presents the relevant shipper-receiver data. 
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Table 15.7.   Shipper-receiver differences 

Month  Shipper, Si  Receiver, Ri   Difference, di 

1 1471.22 1468.12 3.10 

2 1470.98 1469.52 1.46 

3 1470.82 1469.22 1.60 

4 1470.46 1469.26 1.20 

5 1469.42 1465.96 3.46 

6 1468.98 1470.80 -1.82 

7 1469.10 1467.89 1.21 

8 1470.22 1472.28 -2.06 

9 1470.86 1469.02 1.84 

10 1470.38 1470.16 0.22 

Mean, y    1.021 

Std. dev., s   1.818 

The setup for the test is:  

H0:  μd = 0, H1:  μd ≠ 0,  = 0.05 

Excel printouts of four procedures for comparing two means are given in Tables 

15.8a through 15.8d.    

Table 15.8a.   Procedure 1:  Paired observations 
 

 

  

t-Test:  Paired Two-Sample for Means  

 Shipper   Receiver     

Receiver Mean 1470.244 1469.223 
Variance 0.650738 2.942401 

Observations 10 10 

Pearson Correlation 0.104201  

Hypothesized Mean Difference 0  

Degrees of Freedom 9  

t Stat 1.776051  

P(T<=t) one-tail 0.054728  

t Critical one-tail 1.833113  

P(T<=t) two-tail 0.109456  

t Critical two-tail 2.262157   

   
Because the t statistic is smaller than t0.95 (9) = 2.26, we have no evidence of 

shipper and reciever difference. 
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Table 15.8b.   Procedure 2:  Variances known 
 
 z-Test:  Two-Sample for Means 

2 2

1 2
( 0.75, 1.75)  

   

 Shipper Receiver             

Mean 1470.244 1469.223 
Known Variance 0.75 1.75 

Observations 10 10 

Hypothesized Mean Difference 0  

Z 2.042  

P(Z<=z) one-tail 0.020576  

z Critical one-tail 1.644854  

P(Z<=z) two-tail 0.041152  

z Critical two-tail 1.959964   

 

 

 

 

 

 

 

  
Because the calculated |

 
z

 
| is larger than z(1 - /2), (9) we have statistical evidence 

of shipper and reciever difference. 

Table 15.8c.   Procedure 3:  Variances unknown but equal 

 t-Test:  Two-Sample Assuming Equal Variances 

  Shipper Receiver 

Mean 1470.244 1469.223 

Variance 0.650738 2.942401 

Observations 10 10 

Pooled Variance 1.796569  

Hypothesized Mean Difference 0  

Degrees of Freedom 18  

t Stat 1.703291  

P(T<=t) one-tail 0.052859  

t Critical one-tail 1.734064  

P(T<=t) two-tail 0.105717  

t Critical two-tail 2.100922   

Because the calculated |
 
t
 
| is smaller than t(1 - /2) (9) we have no statistical 

evidence of shipper and reciever difference. 
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Table 15.8d.  Procedure 4:  Variances unknown and unequal  

 t-Test:  Two-Sample Assuming Unequal Variances 

 
 
 

  Shipper Receiver 

Mean 1470.244 1469.223 

Variance 0.650738 2.942401 

Observations 10 10 

Hypothesized Mean Difference 0  

Degrees of Freedom 13  

t Stat 1.703291  

P(T<=t) one-tail 0.056143  

t Critical one-tail 1.770933  

P(T<=t) two-tail 0.112286  

t Critical two-tail 2.160369   

 

 

  
Because the calculated |

 
t
 
| is smaller than t0.95 (13) we have no statistical 

evidence of shipper and reciever difference. 

Note that our calculation of  * from equation (15.12) yields  * = 12.80.  We 

recommend rounding  * down (to 12),  Excel rounds  * to the nearest integer  

(to 13). 

 15.8  Required sample size 

As in Sections 13.9 and 13.10, we provide formulas for the required sample size 

to achieve a specified power at a specified value of the alternative hypothesis for 

each of the four procedures.   

Procedure 1.  Paired observations:  Because testing paired observations 

depends only on the differences between the pairs, it is identical to testing a 

mean with an unknown variance.  Accordingly, the procedure in Section 13.10 

applies, where n is the number of pairs. 

Procedure 2.  Variances known:  Referring to Section 15.4, we test 

H0:  µA - µB = c against H1:  µA - µB ≠ c at the  level of significance.  We assume 

that independent samples of equal sizes, nA = nB, are drawn from each 

population, and we wish to determine the common sample size such that the 

power is 1 -  when µA - µB = c0 for c0 ≠ c.  For testing a one-sided alternative, 

the required sample sizes are:  

2 22

1 1

2

0

( ) ( )

( )

A B

A B

z z
n n

c c
 (15.13) 
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Because sample sizes must be integers, round nA = nB up to the next largest 

integer, and use the test statistic from Equation (15.8).  Because 

Equation (15.13) is an approximation to the required sample size, the power 

requirement is only approximately satisfied.   

For testing a two-sided alternative, the required sample sizes are given by 

Equation (15.13) with z1-  replaced by z1- /2. 

Procedure 3.  Variances unknown but assumed equal:  Referring to 

Section 15.5, we test H0:  µA - µB = c against H1:  µA - µB ≠ c at the  level of 

significance.  As for Procedure 2, we wish to determine a common sample size 

such that the power is 1 -  when µA - µB = c0 for c0 ≠ c.  As in Section 13.10, we 

use a two-stage test.  First, we draw independent random samples of equal sizes, 

nA1 = nB1 = n1, from each population and calculate the pooled sample variance S
2
 

from Equation (15.9).  For testing a one-sided alternative, we determine  

nA = nB = n from Equation (15.14) as: 

2 2

1 A1 1 B1 2

1 A12

0

2 ( 1 ( 1
0.25 ( 1

( )

[ ]
][

S t n t n
n t n

c c
 (15.14) 

Because sample sizes must be integers, round n up to the next largest integer.  

Next, set n2 = n - n1.  If n2 < 0, no additional observations are required.  

Otherwise, draw n2 additional observations from each population, calculate the 

sample means from Equation (13.16), and use the test statistic from 

Equation (15.10).  Because Equation (15.14) is an approximation to the required 

sample size, the power requirement is only approximately satisfied. 

For testing a two-sided alternative, the required sample sizes are given by 

Equation (15.14) with t1-  replaced by t1- /2. 

Procedure 4.  Variances unknown and unequal:  Referring to Section 15.6, 

we test H0:  µA - µB = c against H1:  µA - µB ≠ c at the 1 -  level of significance.  

As for Procedures 2 and 3, we wish to determine a common sample size such 

that the power is 1-  when µA - µB = c0 for c0 ≠ c.  This procedure is a 

modification of Procedure 3 where we use the individual sample variances 2

AS  

and 2

BS
 
instead of the pooled sample variance S

2
.  Specifically, we use a two-

stage test as in Procedure 3, except that we replace 2S
2 
in Equation (15.14) 

by 2

AS + 2

BS
 
to calculate the total sample size n.  However, to achieve the power 

requirement, it may be advisable to increase the sample size to compensate for 

the inadequacy of the approximation in the replacement for Equation (15.14).   



 

 

16 
One-way ANOVA 

16.1  What to look for in Chapter 16 

 

analysis 

of 

variance 

(ANOVA) 

In Chapter 13, we learned how to test the mean of a normal 

population.  In Chapter 15, we learned how to test the equality of 

two such means.  This chapter provides a methodology, called the 

analysis of variance (often shortened to the acronym ANOVA), for 

testing equality of the means of several normal populations. 

ANOVA has many applications.  In its simplest application, it allows us to 

analyze data that are characterized by a single criterion, which is the topic of this 

chapter.  However, even the simplest application of ANOVA involves lengthy 

calculations.  Thus, although we provide the necessary formulas for the 

construction of the analysis, we recommend that ANOVA calculations be 

performed and interpreted using appropriate spreadsheet analyses or a full 

fledged statistical computer software package.  Furthermore, we learn to 

recognize when one-way ANOVA is applicable and when our problem exceeds 

the scope of this book. 

This chapter introduces the following concepts: 

 fixed and random effects, §16.2 

 balanced design, §16.2 

 treatments, §16.2 

 a model for a one-way ANOVA, §16.4 
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 total variability and its partition, §16.5 

 variability between groups, §16.5 

 variability within groups  §16.5 

 mean square error, §16.6 

 F-test for one-way ANOVA, §16.6 

 interpretation of one-way ANOVA, §16.6 

 spreadsheet calculations for one-way ANOVA, §16.7 

 Duncan’s multiple range test, §16.8 

 
16.2  One-way ANOVA:  Data structure 

ANOVA analyzes data from several populations or processes and investigates 

whether the population parameters are different.  The methods described here 

apply to data that are assumed to be normally distributed, although minor 

departures from normality can generally be tolerated.  Data, such as count data, 

that do not satisfy this assumption may be analyzed using nonparametric 

methods that do not require normality (see Chapter 25).    

Because of its complicated structure, we explain and illustrate one-way ANOVA 

in the context of an example.   

Example 16.1.   Enriched uranium from four production lines.   We 

investigate whether four production lines yield the same mean percent of 

enriched uranium.  Table 16.1 shows the data. 

Table 16.1.   Data layout for percent uranium from four production lines 

Group  
Production  

Line 1 

Production  

Line 2 

Production  

Line 3 

Production  

Line 4 

 87.2 87.7 88.5 87.5 

k = 4 groups 87.4 87.7 88.9 87.3 

 87.5 88.0 88.5 87.2 

n1 = 3  87.8 88.6 87.6 

n2 = 11  88.1 88.7 87.4 

n3 = 15  87.7 88.7 87.9 

n4 = 6  87.6 88.9  

  88.3 88.3  

  88.0 88.8  

  87.8 88.4  

n+ = 35  87.6 88.8  

   88.5  

   88.2  

   88.3  

   88.4  
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 The n+ in the first column in Table 16.1 is n1 + n2 + n3 + n4.  This is the plus 

notation introduced in Chapter 12, where the plus in the subscript 

indicates the sum over the index of the ―plussed‖ subscripts.   

data layout The data presentation in Table 16.1 is called a data layout 

because it lays out the data in a fashion that allows us to look at 

them in a useful way, regardless of their original formatting or 

the sequence in which they were acquired. 

 

treatments 

treatment 

group 

  

one-way 

classification 

one-way 

ANOVA 

The four production lines in Table 16.1 correspond to four 

populations.  For ANOVA, these populations are called 

treatments, and the data from each population is called a 

treatment group or simply a group.  A data layout such as 

Table 16.1 is called a one-way classification because each 

observation is classified according to a single classification 

criterion—its treatment.  The data layout shows k treatment 

groups, where each group is assumed to be a random sample 

from its respective population.  The data analysis for a one-way 

classification is called a one-way ANOVA. 

 

balanced 

design 

imbalanced 

design 

If the number of observations in each of the k groups is the same 

(i.e., n1 = … = nk = n), the experimental design is called a 

balanced design, and the layout is said to be balanced.  Besides 

being simpler to analyze, balanced designs are desirable because, 

for a fixed number n+ of observations, the power of ANOVA is 

generally higher than with an imbalanced design. 

 

fixed effect 

fixed effect 

model 

When the treatments are completely specified before the data are 

collected, as is usually the case, the analyses and conclusions 

apply only to the specified treatments.  In this case, the effect of 

the treatment on the data is called a fixed effect and the 

associated model for ANOVA is called a fixed effect model.   

 

 

 

random 

effect 

 random 

effects model 

In contrast, the treatments can be selected at random.  For 

example, suppose there are hundreds of companies competing for 

a contract to clean up a large contaminated area.  Because it is 

impractical to collect performance data from every company, we 

may simply investigate whether it makes any difference which 

company we select.  Thus, we may select several companies at 

random and investigate whether they are significantly different.  

In this case, the effect of the treatment is called a random effect, 

and the associated model for ANOVA is called a random effects 

model. 

In either case, the purpose of ANOVA is to investigate whether the treatment 

effects, whether fixed or random, are statistically different.   
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The calculations used in the one-way ANOVA of fixed and random effects are 

the same, but the interpretation and conclusions are different.  In more complex 

ANOVA, the analyses of the two models would be different.  In this book, we 

focus on the fixed effects model, be it one- or multi-way ANOVA. 

16.3  Descriptive statistics 

The first step is to look at the data.  Visualization may tell us whether we have 

any unexpected problems, such as observations that definitely do not belong 

with the dataset (i.e., outliers, discussed in Chapter 26).  Furthermore, the visual 

examination may sometimes suggest that normality is unlikely to be a feature of 

the data or of a specific group within the data.  If so, then visualization may 

suggest a transformation of the data to make it more normal (see Section 16.4).  

Figure 16.1 presents a graphic display of the data in Example 16.1 and also 

indicates the group means.  Examination of this figure does not reveal any 

evident problems with the data. 

 

Figure 16.1.   Observations plotted by treatment groups  

The next step is to calculate the basic descriptive statistics that are used in 

ANOVA, as shown in Table 16.2.  
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Table 16.2   Descriptive statistics for Example 16.1 

Descriptive statistics 
Production Production Production Production All 

Line 1 Line 2 Line 3 Line 4 Lines 

Group subscript: i 1 2 3 4 + 

Group size: ni 3 11 15 6 35 

   

262.10 966.30 1328.50 524.90 3081.80 

  

87.3667 87.8455 88.5667 87.4833 88.0514 

 

22898.85 84885.57 117661.53 46920.31 271366.26 

  

22898.80 84885.06 117660.82 45920.00 271356.89 

  

0.0467 0.5073 0.7133 0.3083 9.3674 

 

 
2 10 14 5 34 

Variance:  
2

iS  = SSi/ i 0.0233 0.0507 0.0510 0.0617 0.2755 

  Note that we obtain the adjusted sum of squares by subtracting the 

correction term from the unadjusted sum of squares. 

  Note that Table 16.2 gives only the descriptive statistics that are needed for 

the ANOVA.  Other descriptive statistics (such as minimum, 

maximum, range, and standard deviation) are useful for statistical 

investigations but are not needed for the ANOVA. 

16.4  Model and assumptions 

Recall that the purpose of the ANOVA is to investigate whether the treatment 

effects are statistically different.  From Figure 16.1, the group means do not all 

appear to be the same.  However, because conclusions from visual inspection are 

statistically inadmissible, we need a rigorous analysis to determine if the 

observed differences in the group means are statistically significant.  To that 

end, we begin with a model. 

1

Sum:
in

i j

j

i yy

1

Mean:
1 in

i i ij

ji

y y y
n

Degrees of freedom:

1
i i

n

1

2

2

1

  (Adjusted)

/

 sum of squares:

i j

i

j

i
n n

i j i

j

yi ySS n

2 2

1

       

 

Unadjusted sum of squares:

 
in

i i j

j

y y

2

1

2

         
Correction term:

/
j

in

ij i i iy n n y
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The following model is assumed to describe the data structure for the one-way 

ANOVA.  Let Yij be the j 
th

 observation in the i 
th

 treatment group.  We have:  

Yij = i + ij;  i = 1, …, k;   j = 1, …, ni (16.1) 

where: 

i = mean of the population associated with the i 
th

 group 

ij = random error associated with the j 
th

 observation of the i 
th

 group 

ij  N(0,  
2
) 

The ANOVA model can also be written in the following equivalent form: 

Yij =  + i + ij ;  i = 1, …, k;   j = 1, …, ni (16.2) 

where: 

 = average of the k population means = (1/k)  i   

i = i –  = contribution of the i 
th

 group = shift of the i 
th

 mean away from the 

average mean   

ij  N(0,  
2
)  

The random errors are also assumed to be independent from group to group.  

Note that the variances of the treatment groups are all assumed equal. 

The ANOVA uses a hypothesis test, where the null hypothesis for a fixed effects 

one-way classification states that the means of all k treatment groups are equal.  

Symbolically,   

0 1 2
:

k
H  (16.3) 

The alternative hypothesis states that not all the means are equal (i.e., at least 

two means are different).  Symbolically, 

1
: , some ,  

i j
H i j  (16.4) 

Note that if all the treatment means are equal, the contribution of every 

treatment is zero.  Therefore, the null hypothesis is equivalent to stating that all 

i are zero. 



One-way ANOVA 301 
 

 

As always, the level of significance α must be stated or tacitly understood.  By 

default, α = 0.05. 

It is essential to clearly understand the assumptions that underlie the ANOVA.  

If those assumptions are erroneous, so will be our conclusions.  If our 

assumptions are only approximately correct, so will be our conclusions.   

We list four assumptions.  These assumptions concern the population structure, 

sample selection, data variability, and distribution of errors. 

Assumption 1.  The population structure as given by the model is correct.  

Thus, in Example 16.1, we assume that the four production lines all produce the 

same uranium quality and that other factors are not involved.  For example, we 

assume that all lines run on the same days of the week, in identical weather 

conditions, and with supplies coming from the same sources. 

Assumption 2.  The observations are drawn randomly and independently from 

one production line to another.  Any other procedure runs the risk of introducing 

a bias into the results.  

Assumption 3.  The variation about the mean within a group (i.e., the variance) 

is the same for all groups.  As discussed in Chapter 14, this assumption of 

homoscedasticity can be tested using Fmax or Bartlett’s test. 

Assumption 4.  The data are distributed normally.  This assumption can be 

tested using methods discussed in Chapter 11. 

ANOVA is a robust procedure, and minor deviations from the last two 

assumptions are not necessarily serious.  Many extensive studies, using real and 

simulated data, have demonstrated the insensitivity, or robustness, of the 

analysis to minor departures from these assumptions. 

If Assumption 1 is not met, we must reformulate our problem.  The following 

adage may help:  It is better to have an approximate solution to an exact problem 

than an exact solution to an approximate problem. 

If Assumption 2 is not met, statistics does not help.  

If Assumption 3 is not met, it is sometimes advisable to subdivide the data into 

clusters of groups that are homogeneous in variance.  Often, the lack of 

homogeneity is the result of extreme values that inflate the variance of one or 

more groups.  In this case, because they are relatively insensitive to extreme 

observations, nonparametric methods might be useful (see Chapter 25).  

data 

transformation 

If Assumption 4 is not met, two options may be considered.  

The first is nonparametric analysis, and the second is data 

transformation.  The most common transformation is the 
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logarithmic transformation.  We often find that although the 

observations do not follow the normal distribution, their 

logarithms (to any base) do.  This is often the case with data 

that have a high degree of skewness.  If the data (such as wind 

velocity) contain zeros, then log(Y + c) should be used instead 

of log(Y).  Another transformation that could be tried on the 

data is the square root transformation.  This transformation is 

often applicable to data with very small values.  Further 

information about transformations may be found in Bartlett 

(1937).  

Discussions of the consequences of incorrect assumptions can be found in 

papers by Eisenhart et al. (1947) and Cochran (1977). 

16.5  Partition of the total sum of squares  

Many of the formulas in the next two sections involve lengthy calculations.  

Fortunately, all these calculations can be made by a spreadsheet routine, as 

shown in Section 16.7.  

As we shall see in Section 16.6, the test statistic for the hypotheses in 

Equations (16.3) and (16.4) is a function of two estimates of the common 

variance  
2
.  Each of these estimates is based on a sum of squares, which is the 

measure of variability used in the ANOVA analysis.  Specifically, ANOVA 

partitions the total data variability into two statistically independent 

components:  variability between the groups and variability within the groups.   

Modern communication theory offers a vocabulary that may be helpful.  Any set 

of data consists of two components:  signal and noise.  For ANOVA data, the 

signal corresponds to the differences in the treatment effects, and the noise 

corresponds to the statistical variability within the treatment groups.  ANOVA 

attempts to separate the signal from the noise. 

The basic relationship for the various sums of squares in ANOVA is:   

SSTotal = SSBetween + SSWithin (16.5) 

where: 

SSTotal = the (adjusted) sum of squares, calculated as if all the data belong to a                

single group 

SSBetween = the (adjusted) sum of squares, calculated as a function of the 

variability of the group means 
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SSWithin = the (adjusted) sum of squares, calculated as as a function of the 

population variability pooled across all groups  

The formula for calculating SSTotal is given by:   

2

1 1

ink

Total ij

i j

SS Y Y  (16.6) 

 

or by the equivalent working formula: 

2

1 1

ink

Total ij

i j

SS Y CT  (16.7) 

 
where CT is the correction term, calculated as: 

2

2

1 1

1 ink

ij

i j

CT Y n Y
n

        (16.8) 

 

and where: 

1 1

1 ink

ij

i j

Y Y
n

     

              (16.9) 

is the average of all n+ observations.  

The degrees of freedom associated with SSTotal is: 

Total = n+ – 1 (16.10) 

 
In Example 16.1, SSTotal is calculated from Table 16.2 and Equation (16.7) as: 

SSTotal = 271366.26 – 35(88.0514)
2
 = 9.3674, with Total = 35 – 1 = 34 

  Note that hand-held calculators may yield different results here and in other 

calculations.  These discrepancies depend on the number of significant 

figures that are used throughout the calculations, including intermediate 

results.  The calculations reported here agree with the Excel 

calculations, shown in Table 16.6.  SSBetween is calculated either by the 

definition formula (Equation 16.11) or by the equivalent working 

formula (Equation 16.12).   
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2 2

1 1 1

jnk k

Between i i i

i j i

Y Y n Y YSS    (16.11) 

22

1 1
Between i i i

k k

i i

CT CTSS YnY n  
 (16.12) 

 

where CT is the correction term from Equation (16.8) and CTi is the correction 

term for the i
th

 group, calculated as: 

2

2

1

1 in

i ij i i

ji

CT Y nY
n

 (16.13) 

The degrees of freedom associated with SSBetween is: 

Between = k – 1 (16.14) 

 

In Example 16.1, SSBetween  is calculated from Table 16.2 and Equation (16.12) 

as: 

SSBetween = 22898.80 + … + 45920.00 – 35(88.0514)
2
 = 7.7918, with 

Between  = 4 - 1= 3. 

  SSBetween is sometimes called among groups sum of squares and is written 

SSAmong.  Some texts prefer the notation SSGroup or SSTreatment. 

SSWithin is calculated by either of two methods.  The first method is to add the 

sums of squares of the individual groups.  SSWithin is calculated by the definition 

formula: 

2

1 1

SS
jnk

Within ij i

i j

Y Y  (16.15) 

 

or by the equivalent working formula: 

2 2

1 1 1

Adjusted sum of squares of group SS
ink k

Within ij i i

i j i

Y nY i

 

 

     (16.16) 

In Example 16.1, SSWithin is calculated from Table 16.2 and Equation (16.16) as: 

SSWithin = 0.0467 + 0.5073 + 0.7133 + 0.3083 = 1.5756 
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The second, and shorter, method to calculate SSWithin is to use subtraction.  From 

Equation (16.5): 

SSWithin  =  SSTotal – SSBetween (16.17) 

 
In Example 16.1, using this formula and the calculated values of SSTotal and 

SSBetween, we have SSWithin = 9.37 – 7.79 = 1.58, which agrees with the value 

calculated using the first method. 

The degrees of freedom associated with SSWithin  is: 

Within = n+ – k (16.18) 

The latter may also be obtained by subtraction as:  

Within = Total – Between = (n+ – 1) – (k – 1) = n+ – k (16.19) 

In Example 16.1, the associated degrees of freedom for SSWithin is: 

Within = 35 – 4 = 31 

16.6  The one-way ANOVA table 

Table 16.3 presents the general one-way ANOVA table showing all its elements.  

The new elements are the last two columns:  mean square and the F ratio.  The 

mean squares are estimators of the common variance  
2
, and F is the test 

statistic.  

Table 16.3.   General one-way ANOVA table   

 
between 

groups mean 

square 

The first mean square, called the between groups mean square, 

is denoted by MSBetween and is defined as: 

                         MSBetween = SSBetween  / Between  (16.20) 

Source of  

variation 

Sum of 

squares 

Degrees of 

freedom 

Mean 

square F 

Between groups SSBetween Between   Between
Between

Between

SS
MS

 Between

Within

MS
F  

MS

 
Within  groups SSWithin Within       Within

Within

Within

MS
MS

 
 

Total SSTotal Total   
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If the null hypothesis of equal means is correct, MSBetween is an unbiased 

estimator of  
2
. 

In Example 16.1, MSBetween is calculated as 7.79/ 3 = 2.5973. 

within 

groups mean 

square 

The second mean square, called the within groups mean square, 

is denoted by MSWithin and is defined as: 

                       MSWithin = SSWithin  / Within  (16.21) 

Because SSWithin is based on the means of the various groups (see 

Equation (16.15)), MSWithin is an unbiased estimator of  
2
 regardless of the 

correctness of the null hypothesis. 

                        In Example 16.1, MSWithin is calculated as 1.5756 / 31 = 0.0508.                                                                                         

The ratio  

                        F = MSBetween /MSWithin (16.22) 

F ratio 

variance 

ratio 

is the last entry in the ANOVA table.  The F ratio, sometimes 

called the variance ratio, is the test statistic.  If the null 

hypothesis is correct, this statistic is distributed as an F variable 

with Between degrees of freedom in the numerator and Within 

degrees of freedom in the denominator. 

In Example 16.1, the F statistic is calculated as 2.5973/ 0.0508 = 51.10. 

If H0 is not correct and not all the means are equal, then the sums of squares in 

the numerator MSBetween of F will have a component depending on the 

differences in the means and will tend to be larger than in a case where H0 is 

true.  Hence, the test is one-sided, and H0 is rejected if F exceeds the critical 

value.  The critical value is F1 - α ( Between, Within) from Table T-4 of the appendix.  

If the null hypothesis of equality of means is rejected, we conclude that there is 

statistical evidence that the group means are not all equal.  If H0 is not rejected, 

there is no statistical evidence that the groups are different. 

  If H0 is not true, the distribution of F will tend to be larger than if H0 is true.  

Hence, if the calculated value of F corresponds to a very low quantile 

of the F-distribution, we may suspect data tampering.  

For Example 16.1, Table 16.4 shows the calculated ANOVA table.  
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Table 16.4.   ANOVA table for Example 16.1 

 
In Example 16.1, using  = 0.05, we have F0.95(3, 31) = 2.91.  Since 51.1 > 2.91, 

we reject the hypothesis of equal means, citing statistical evidence that not all 

production lines have the same average. 

16.7  Constructing an ANOVA Table with Excel 

Excel is a convenient tool for the construction of an ANOVA table.  Under 

―Data‖ (in some versions of Excel under ―Tools‖), select ―Data Analysis,‖ and 

then select ―ANOVA:  Single Factor.‖  In the ANOVA panel, select the data 

array.  If the data are selected with labels as column headers, check the box 

―Labels in First Row.‖  Next, enter the level of significance (defaults to 0.05), 

and indicate the cell where the printout should start. 

Two tables show Excel’s output for the data in Example 16.1.  Table 16.5 

displays some summary (descriptive) statistics, while Table 16.6 displays the 

ANOVA table.  Note that Excel’s ANOVA also provides the critical value for 

the analysis, obviating the need for table lookup and interpolation. 

Table 16.5.   Excel’s summary statistics for Example 16.1 

Group Count Sum Average Variance 

Line 1 3 262.1 87.3667 0.0233 

Line 2 11 966.3 87.8455 0.0507 

Line 3 15 1328.5 88.5667 0.0510 

Line 4 6 524.9 87.4833 0.0617 

The Excel printout continues with the one-way ANOVA (called ―Single Factor‖ 

by Excel).  

 

 

Source of 

variation 

Sum of 

squares 

Degrees of 

freedom 

Mean 

squares F 

Between 

groups 
7.79 3 2.60 51.1 

Within  

groups 
1.58 31 0.05  

Total 9.37 34   
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Table 16.6.   Excel’s ANOVA table for Example 16.1 

Source of 

Variation SS df MS F   P-value      F crit 

Between   

Groups 
7.7918 3 2.5973  51.1013   4.18E-12      2.911 

Within  

Groups 
1.5756 31 0.0508    

Total 9.3674 34     

  
Because Excel calculates the ANOVA table from the raw data, it cannot 

construct the table from the intermediate descriptive statistics.  There is no Excel 

function or routine that constructs an ANOVA table from descriptive statistics 

such as those given in Table 16.2. 

   Excel gives the critical point for the selected  (here,  = 0.05) in the 

column labeled ―F crit.‖  In addition, Excel also gives the P-value, 

which is the probability of obtaining an F-value at least as large as the 

one that was actually observed (in our example, 51.1013), assuming 

that the null hypothesis is true.  That probability is reported as 

4.18 x 10
-12

, which is certainly smaller than  = 0.05. 

16.8  Duncan’s multiple range test 

Suppose we perform an ANOVA and reject the hypothesis of equal means.  If 

we have more than two means, a natural question is how the means are different.  

Is just one of the means very much different from the others?  Are there several 

clusters of means?  Or, is each mean different from all of the other means? 

We may be tempted to separately test all possible pairs of means.  For three 

groups, this would involve three tests:  Group A versus Group B, Group A versus 

Group C, and Group B versus Group C.  However, with more than two groups, 

the probability of a Type I error will be much larger than the nominal value of  

used for each of the tests.  This happens because the probability of having at 

least one statistically significant difference increases with the number of 

comparisons.  For example, if four groups are tested in a pair-wise fashion, each 

with  = 0.05, there is about a 25% chance that at least one of the six tests will 

incorrectly reject H0 if all the means are equal.  For a discussion of this problem, 

see Dixon and Massey (1983), p. 131.  
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multiple 

range tests 

multiple 

comparisons 

A widely used solution to this problem employs one of the many 

techniques that are called multiple range tests or multiple 

comparisons.  These techniques are designed to identify which 

means are different at a specified probability of Type I error.  

Caution is needed in choosing one of the many multiple range 

tests available, because applying different multiple range tests to 

the same set of multigroup data does not necessarily yield 

identical results.  The various multiple range tests are constructed 

under somewhat different assumptions and provide different 

degrees of conservatism.  A presentation showing the full variety 

of multiple range testing is beyond the scope of this text.  See 

Toothaker (1991) for an extended discussion of this knotty, often 

perplexing, and sometimes controversial problem. 

 

Duncan’s 

multiple 

range test 

However, despite these drawbacks, multiple range tests provide 

an important decisionmaking tool.  One of the most popular—

and, at the same time, most useful and intuitive—is Duncan’s 

multiple range test (Duncan, 1986) See Steel and Torrie (1980), 

Chapter 8, for a thorough discussion.  Bowen and Bennett (1988), 

p. 256, offer an exposition of Duncan’s multiple range test; 

Example 16.2 lays out their approach in the following 

continuation of Example 16.1. 

Example 16.2.   Duncan’s multiple range test.   For convenience, we 

assemble the relevant values and results from the analysis of Example 16.1.   

Experiment size:  n+ = 35 

Number of groups:  k = 4  

Group sizes:  nl = 3, n2 = 11, n3 = 15, n4 = 6 

Group means:  
1 2 3 487.37, 87.85, 88.57, 87.48y y y y  

Within groups mean square (from Table 16.6):  MSWithin = 0.0508   

Now proceed with the following steps: 

harmonic 

mean 
Step 1.  Calculate hn , the harmonic mean of the k sample sizes: 

1 2/ (1/ 1/ ... 1/ )h kn k n n n  (16.23) 

   If all groups are of the same size (i.e., n1 = n2 = … = nk = n), then .hn n  

In Example 16.1 we calculate: 

   hn  = 4 / (1/3 + 1/11 + 1/15 + 1/6) = 6.0829
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Step 2.   Calculate a pseudo standard deviation for the sample means: 

 

* Within

h
Y

MS
S

n
 (16.24) 

 

For Example 16.1, we have: 

* 0.0508
0.0914

6.0829
yS  

 

Step 3.   From Table T-7 of the appendix, find the values of q0.95(p, n+ – k) for 

p = 2, 3, …, k.  Table interpolation may be needed. 

 Table T-7 provides these values only for  = 0.05.  Table values for other 

levels of significance may be found in Duncan (1986). 

In Example 16.1, we have n+ – k = 35 – 1 = 31.  For  = 0.05, the following 

table values are found using interpolation:   

q0.95(2, 31) = 2.89 

q0.95(3, 31) = 3.04 

q0.95(4, 31) = 3.12 

Step 4.   Calculate 
*

pR for p = 2, 3, …, k.  These are the least significant ranges 

and will be the critical values for Duncan’s multiple range test.  

             

* *

(1 )( , )p
iY

R q p N k S  (16.25) 

 

For Example 16.1, we have:  

*

2

*

3

*

4

2.89(0.0932) 0.27

3.04(0.0932) 0.28

3.12(0.0932) 0.29

R

R

R

 

Step 5.   Arrange the sample means in ascending order.  For Example 16.1, the 

ordered means are displayed below.  For clarity, the spacing between 

the means is schematically proportioned to the numerical differences 

between successive means. 

1 4 2 3

87.37 87.48 87.85 88.57
y y y y  
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Step 6.   Denote the rank of the smallest sample mean by 1, the next smallest by 

2, …, and the largest by k.  For any two means, let p denote the 

difference between the corresponding ranks plus 1.  Thus, for the 

largest and the smallest of k means, p = (k – 1) + 1 = k. 

Step 7.  The ranges (or differences) of all pairs of sample means are tested for 

equality in k – 1 stages.The procedure for doing this is illustrated for 

Example 16.1, where k = 4 

The first stage tests the largest sample mean against each of the k – 1 = 3 smaller 

sample means by comparing the ranges of the (k – 1) pairs to their 

corresponding critical values from Step 4.  The first stage comparisons are as 

follows:  

*

3 1 4
*

3 4 3
*

3 2 2

88.57 87.37 1.20 0.29

88.57 87.48 1.09 0.28

88.57 87.85 0.72 0.27

y y R

y y R

y y R

 

Because all three ranges are larger than their critical values, we conclude that 

3y is significantly larger than any of the other smaller sample means. 

The second stage continues by testing the second largest sample mean against 

each of the k – 2 = 2 smaller sample means as in the first stage. The second stage 

comparisons are as follows: 

*

2 1 3
*

2 4 2

87.85 87.37 0.48 0.28

87.85 87.48 0.37 0.27

y y R

y y R
  

Because both ranges are larger than their critical values, we conclude that 
2y is 

significantly larger than either 
1y or

4y . 

The third and, for this example, the last stage tests the second smallest against 

the smallest sample mean. The last stage comparison is:  

*

4 1 287.48 87.37 0.11 0.27y y R   

We conclude that 
4y and 

1y are not significantly different. 

The result of each stage in Step 7 Is a set of conclusions that the differences 

between selected pairs of sample means are or are not statistically significant.  

However, it sometimes happens that two sample means that are significantly 

different fall between two means that are not significantly different.  To avoid 

contradictions, a difference between two sample means is considered non-

significant if both means fall between two other means that do not differ 
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significantly.  (The same conclusion holds if one of the first two means 

coincides with one of the non-significant means.)  With this convention, the test 

results are a list of the ordered sample means grouped into non-overlapping 

clusters, with all means in a cluster not significantly different and means in 

different clusters significantly different.   

A graphical display, described by Duncan (1986), p. 757, is useful for describing 

multiple range test results.  Write the means in an increasing sequence, left-to-

right, and underline those collections of means that are not significant by the 

multiple range test.  For Example 16.1, we have this display:  

1 4 2 3

87.37 87.48 87.85 88.57
______________

y y y y
 

This display indicates that only the means of Line 4 and Line 1 are not 

statistically significantly different (i.e., they form a cluster), as do each of the 

means of Line 2 and Line 3.   

16.9  T-test and ANOVA equivalence  

The one-way ANOVA tests the equality of two or more means.  However, in 

Chapter 15, we developed a t-test for comparing two means.  The natural 

question is:  Are the t-test and the ANOVA for two groups equivalent?  The 

answer is a definite yes, provided, that the tests are based on the same 

assumptions. 

We are given random samples from two normal populations with the same 

unknown variance and wish to test equality of the means, where the null and the 

alternative hypotheses are: 

H0:  1 = 2, and H1:  1 ≠ 2  (16.26) 

The t-test is described in Procedure 3 of Chapter 15 with test statistic T = T( ) 

from Equation (15.10), where  =nA + nB – 2 is the degrees of freedom for the 

pooled variances and the test is two-sided.  In the corresponding ANOVA, we 

have k = 2 groups and use the test statistic F = F( Between, Within) from 

Equation (16.22), where the degrees of freedom in the numerator and 

denominator of the F statistic are k – 1 = 1 and n+ – 2, respectively.  To begin, 

the total number of observations is nA + nB = n+, so that the degrees of freedom  

and Within are equal.  Continuing, it can be shown that:  

2
( ) (1, )T F  (16.27) 

In other words, the square of a t- statistic with  degrees of freedom is equal to 

an F- statistic with one degree of freedom in the numerator and  degrees of 
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freedom in the denominator.  Because the t-distribution is symmetric about zero 

and the F-distribution is positive, a tail probability for F is twice the 

corresponding right-tail probability for t.  It follows from Equation (16.27) that, 

for any ,  

2

1 /2 1( ) (1, )t F   (16.28) 

Because the quantiles in Equation (16.28) are the critical values for the 

two-sided t- and F-tests, these two tests will always give the same results when 

applied to the same data.  Therefore, the ANOVA for two groups is equivalent 

to the t-test.  As an example, for  = 0.10 and  = 9, from Tables T-3 and T-4 of 

the appendix, we have:  

2 2

0.95(9) 1.833113 3.360303t  and F0.90(9) = 3.360303. 

  Note that the tables in the appendix do not have enough significant figures 

for an exact comparison.  We used Excel for this verification. 
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17 
Two-way ANOVA 

17.1  What to look for in Chapter 17 

A natural extension of one-way analysis of variance (ANOVA) is two-way 

ANOVA, the subject of this chapter.  In a two-way ANOVA, we test the effects 

of each of two factors and their combination on the response variables 

(i.e., observations).  As in Chapter 16, the observations are assumed to be 

distributed normally.  When normality is not applicable, we may use a 

nonparametric analysis, as described in Chapter 25. 

This chapter discusses the following concepts and terms, some of which we 

have encountered previously: 

 factorial design, §17.2 

 factor, §17.2 

 level, §17.2 

 cross-classification, §17.2 

 main effect, §17.2  

 interaction, §17.2 

 experimental unit, §17.2 

 replication, §17.2 

 block, §17.3 
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 randomized complete block design, §17.3 

 fixed, random, and mixed effects, §17.4 

 two-way ANOVA without replication, §17.5,  §17.6 

 two-way ANOVA with replication §17.7 

17.2  Two-way factorial designs 

 

factorial 

design  

factor 

level 

 

 

 

complete 

factorial 

design 

The one-way ANOVA introduced in Chapter 16 investigates the 

effect of a single factor (i.e., the treatment) on the observations.  

A two-way factorial design is characterized by two classification 

criteria called factors, denoted here by Factor A and Factor B.  

(Although there are N-way factorial designs, this book discusses 

only two-way factorial designs, which will be referred to simply 

as factorial designs.)  Each factor has two or more levels, with 

Factor A having a levels and Factor B having b levels.  This data 

classification is analogous to the structure of a contingency table 

discussed in Chapter 12.  A factorial design is represented by an  

a × b data array, where rows refer to the levels of Factor A, 

columns refer to the levels of Factor B, and cell (i, j) refers to the 

intersection of the i
th

 row and the j
th

 column.  The entry in cell   

(i, j) includes all of the observations on the response variable at 

the corresponding factor levels.  A complete factorial design 

includes at least one observation at each of the a × b level 

combinations.   

cross-

classification  
A more descriptive name for factorial design is 

cross-classification design. 

response 

variable 

 effect  

 

main effect 

 

interaction 

As for the one-way ANOVA, the observations are denoted by Y, 

which is the dependent variable or response variable.  The effect 

of a factor is defined as the change in Y associated with a change 

in the level of the factor.  The effect of any one factor on Y is 

called a main effect.  The combined (or joint) effect of both 

factors separate from the main effects is called an interaction 

effect or simply an interaction.  If the main effects completely 

explain the effects of the factors on Y, we say that there is no 

interaction.   

For example, the effect of temperature (Factor A) without regard to pressure on 

the yield of a chemical process is a main effect, and so is the effect of pressure 

(Factor B) without regard to temperature.  The interaction is the effect on the 

process yield that is not explained by the separate main effects (i.e., temperature 

and pressure).  
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experimental 

unit 

run 

 trial 

An item or individual portion of material measured or tested 

during an experiment is called an experimental unit.  For 

example, if we measure the permeability of concrete by applying 

a ―scratch test‖ to 1-square-meter areas, each such area is an 

experimental unit.  The investigation or measurement of a single 

experimental unit is called a run or a trial. 

replication 

 

 

balanced 

design 

A repetition of all or part of an experiment is called a replication.  

For example, if we weigh each shipment twice before it leaves 

the facility, we have two replications.  Replications allow us to 

estimate the experimental error variance, which is the variance of 

experimental units that are treated alike.  If the number of 

replications is the same for every experimental unit, we have a 

balanced design.  The calculations involved in the analysis of a 

balanced design are simpler than those for an unbalanced design.  

Also, spreadsheets such as Excel do not include ANOVA routines 

for unbalanced designs, other than for a one-way ANOVA. 

This chapter is restricted to two-way factorial designs.  The analysis of 

three-way or higher factorial designs is complicated and requires specialized 

statistical software. 

17.3  Randomized complete block design  

randomized 

complete 

block design  

block 

A randomized complete block design is a special case of a 

complete factorial design.  The essence of a randomized complete 

block design is that the experimental units are divided into 

homogeneous groups called blocks that correspond to different 

levels of one factor, say, Factor A.  The experimental units within 

a block are randomly assigned to the levels of the second factor, 

say, Factor B, the factor being investigated.  In the absence of 

Factor B, observations within a block are expected to be alike, but 

the observations might differ from block to block.  Blocks play 

the same role in a randomized complete block design as do pairs 

in a paired observation design (Section 15.3).  The random 

assignment of treatments to blocks tends to reduce the 

experimental error and hence increase the sensitivity of the 

analysis to real differences among the various levels of Factor B. 

To illustrate this design, consider a farming experiment.  Suppose a farmer 

wishes to compare four varieties of apples for yield (total fruit weight per tree).  

The farmer randomly selects three sections of land throughout his farm, divides 

each section into four plots of equal size, randomly assigns the four varieties of 

apples to the four plots, and plants the same number of trees in each plot.  The 

three blocks are the sections of land, and Factor A has three levels.  The 

experimental units are the plots, and Factor B has four levels, one for each apple 
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variety.  In addition to being the same size and having the same number of trees, 

all plots receive similar amounts of water and fertilizer.  At harvest time, the 

farmer weighs the apple yield of each tree in each plot.  Note that, if the four 

varieties are supposed to be alike, we expect all trees within the same plot to 

have similar yields. 

In statistical terms, the yield is the dependent or response variable, denoted by Y.  

The three sections of land are the three blocks or levels of Factor A.  The four 

apple varieties are the four levels of Factor B.  The plots are the experimental 

units.  Multiple trees within the same plot are replications.   

Example 17.1.   Ice sublimation.   In an ice-condenser reactor, ice baskets 

are in arrays called sectors.  Each sector contains the same number of columns, 

and each column contains the same number of rows, where the first row is the 

closest to and the last row is farthest away from the reactor.  Because the 

position of the column is considered to have no effect, each column is a block. 

At the beginning of a year all ice baskets are assumed to have the same known 

weight.  Over the course of the year, the ice loses weight because of sublimation 

(i.e., evaporation).  At the end of the year, some baskets are weighed in order to 

estimate the average weight loss and to assess whether there is a row effect 

(i.e., whether proximity to the reactor affects weight loss). 

fixed 

effects 

random 

effects 

mixed 

effects 

If a study is designed so that only selected rows and columns are 

involved, the design is a fixed effects design, and the conclusions 

from the data analysis apply only to the selected rows and 

columns.  If both rows and columns are selected at random, the 

design is a random effects design, and the conclusions apply to the 

entire array.  If the columns are selected at random but the rows 

are specifically selected (or the other way around), the design is a 

mixed effects design and the conclusions apply only to the selected 

rows. 

17.4  Data structure and model:  No replication 

Table 17.1 shows the data structure for a complete two-way factorial design 

with no replication.  Factor B might be a block factor or a treatment.  

Section 17.7 considers factorial designs with replications 
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Table 17.1.   Data structure for a complete two-way factorial design  

Factor A 

levels 

Factor B levels 

1 2  b 

1 y11 y12  y1b 

2 y21 y22  y2b 

   

 

 

a ya1 ya2  yab 

 

Example 17.1 (continued).   Ice sublimation.   The plant management 

decides to conduct a pilot study to investigate whether proximity to the reactor 

affects sublimation.  Six ice baskets are selected from two columns and three 

rows, and their weight losses (in kilograms (kg)) are measured.  The columns 

selected are the two edge columns of the horseshoe, and from each column, an 

ice basket is selected from each of three rows: first, middle, and last.  Table 17.2 

shows the data.  The rows are the Factor A levels, and the columns are the 

Factor B levels, which are treated as blocks.  Table 17.2 also shows the 

intermediate calculations that are needed to construct the various sums of 

squares in the ANOVA. 

Table 17.2.   Ice weight loss (kg) in 1 year 

 ----- Factor B ----- 

Sum Mean 

SS, 

unadjusted 

Correction 

Term 

SS, 

adjusted  Factor A Column 1 Column 2 

 First row 50 54 104.0 52.0 5416.0 5408.0 8.0 

 Middle row 22 26 48.0 24.0 1160.0 1152.0 8.0 

 Last row 24 25 49.0 24.5 1201.0 1200.5 0.5 

 Sum 96.0 105.0 201.0     

 Mean 32.0 35.0  33.5    

SS,               

unadjusted  
3560.0 4217.0   7777.0   

 Correction 

Term 
3072.0 3675.0    6733.5  

 SS, adjusted 488.0 542.0     1043.5 

 

Corresponding to Table 17.1, let Yij be the observation at the i
 th

 level of Factor A 

and the j 
th

 level of Factor B in cell (i, j).  As for a one-way ANOVA, the model 
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for a complete two-way factorial design with no replication is an additive model.  

We write: 

Yij = μ + i + βj  + εij,   i = 1, …, a,  j = 1, …, b  (17.1) 

where: 

μ = overall mean response 

i = main effect of the i
 th

 level of Factor A averaged over the levels of Factor B 

βj = main effect of the j 
th

 level of Factor B averaged over the levels of Factor A 

εij = random error associated with Yij   

εij ~ N(0, σ 
2
) 

For a fixed effects model, the following holds: 

i = 0 and βj = 0 (17.2) 

For a random effects model, the factor levels are assumed to be random 

variables such that: 

i ~ N(0, σA 
2
) and j ~ N(0, σB 

2
)  (17.3) 

where 
2 2

and
A B

 are the variances of Factor A and Factor B effects, 

respectively. 

For a mixed effects model, only one of the following holds: 

i = 0 and j ~ N(0, σB 
2
)  

βj = 0 and i ~ N(0, σA 
2
) 

(17.4) 

Two null hypotheses are tested simultaneously.  For a fixed effects model, we 

test whether the factor levels are the same.  The hypotheses for Factor A are: 

H0:  i = 0, all i   vs. H1:  i ≠ 0, some i (17.5) 

Since i = 0, this test is equivalent to:  

H0:  1 = 2 = … = a   vs. H1:  i ≠ j, some i, j     (17.6) 
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The hypotheses for Factor B are: 

H0:   j = 0, all j   vs. H1:   j ≠ 0, some j   (17.7) 

Since  j = 0, this test is equivalent to testing:   

H0:  1 = 2 = … = b   vs. H1:   i ≠  j, some i, j  (17.8) 

For a random effects model, we test whether the factor variances are zero.  The 

hypotheses tests are:  

H0:  
2 0A

  vs. H1:  
2 0A

 and (17.9) 

H0:  
2 0B

  vs.  H1:  
2 0B

 (17.10) 

For a mixed effects model, where Factor A is a fixed effect and Factor B is a 

random effect, the hypotheses are:  

H0:  i = 0, all i    vs.  H1:  i ≠ 0, some i   

and 

(17.11) 

H0:  
2 0B

  vs.  H1: 
2 0B

 (17.12) 

The assumptions made in the analysis of two-way factorial designs are similar to 

those made for a one-way design in Section 16.4.  They concern the population 

structure, sample selection, data variability, and distribution of errors: 

Assumption 1.  The population structure as given by the model is correct.   

Assumption 2.  For random effects models, the experimental units are drawn 

randomly and independently. 

Assumption 3.  The variance of the responses is the same for all cells. 

Assumption 4.  The data are distributed normally. 
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17.5  ANOVA for a two-way factorial design without 
replication 

The ANOVA for a two-way factorial design is an extension of the one-way 

ANOVA in Chapter 16.  The ANOVA table has four lines, representing four 

sources of variation.  Each source of variation has an associated sum of squares 

(SS) and degrees of freedom. 

The sum of squares for total variability is partitioned as follows: 

SSTotal = SSA + SSB + SSError (17.13) 

where: 

SSTotal = the (adjusted) sum of squares for the variability of the data about the   

overall mean 

SSA     = the (adjusted) sum of squares for the variability of Factor A’s group 

means 

SSB     = the (adjusted) sum of squares for the variability of Factor B’s group 

means 

SSError  = the (adjusted) sum of squares for error  

  SSError is sometimes called SSResidual because it is the part of SSTotal that is left 

over after accounting for SSA and SSB.  

Equation (17.14) gives the degrees of freedom associated with the sums of 

squares. 

Total = n+ – 1 

A     = a – 1 

B     = b – 1 

Error = (a – 1)(b – 1) 

                    (17.14) 

where n+ = ab = total number of observations 

Table 17.3 displays the general ANOVA table with all its elements. The mean 

squares are the sums of squares divided by their corresponding degrees of 

freedom.  The two F ratios are the mean squares divided by the mean square for 

error.   

Note the similarity between Table 17.3 and Table 16.3.  Both tables show the 

total variability partitioned into independent components.  Both tables show an  
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estimate of 
 2
.  This estimate is the mean square of the ―within group‖ in Table 

16.3 and ―Error‖ in Table 17.3.  The difference between the two tables is that the 

―between groups‖ sources of variability of Table 16.3 is split in Table 17.3 

between two sources of variability that (in the context of example 17.1) are 

called ―Rows‖ and ―Columns.‖  

Table 17.3.   ANOVA table for a two-way factorial design 

Source of  

variation 

Sum of 

squares 

Degrees of 

freedom 

Mean 

square F 

Factor A SSA A   A
A

A

SS
MS

 A
A

Error

MS
F   

MS

 

Factor B SSB B       B
B

B

MS
MS

 
B

B

Error

MS
F   

MS

 

Error SSError Error       Error
Error

Error

MS
MS

 
 

Total SSTotal Total   

  

   The mean square for error is the estimator of the variance  
2
 of ij in 

Equation (17.1). 

To test the hypotheses stated in Section 17.4, compare each of the two 

F-statistics to an appropriate critical value.  For Factor A, the critical value is 

F1-α( A, Error), and for Factor B, the critical value is F1-α( B, Error).  If an 

F-statistic exceeds its critical value, the null hypothesis for the associated factor 

is rejected. 

The same ANOVA table and critical values are used to test hypotheses for all 

two-way factorial experiments with a single observation (no replication) per 

experimental unit.  Regardless of the design (randomized complete block or 

two-way factorial), or the model type (fixed effects, random effects, or mixed 

effects), all ANOVA calculations are the same.  The only difference in the 

analysis is in the interpretation of the results, as outlined at the end of 

Section 17.3. 

We return to Example 17.1.  Because this is a fixed effects design, the 

hypotheses are given by Equations (17.6) and (17.8):  

H0:  First = Middle = Last vs. H1:  i ≠ j, some i, j  

H0:   Column 1 =  Column 2  vs. H1:   Column 1 ≠  Column 2      

The calculations of the various sums of squares and mean squares for example 

17.1 are not shown here. These calculations, required for the ANOVA, can be 

obtained using the entries from Table 17.2 similarly to the way they are obtained 
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in Chapter 16 for Table 16.3.  The resulting ANOVA is presented in Excel’s 

ANOVA in Table 17.5 of Section 17.6. 

17.6  Excel calculations for the ANOVA table:                 
No replication 

The numerical entries for Table 17.3 can be made using Excel.  Under ―Tools‖ 

(in some versions of Excel under ―Data‖) select ―Data Analysis,‖ and then select 

―ANOVA: Two-Factor Without Replication.‖  In the ANOVA panel, select the 

data array.  If the data contain labels as column headers, check the box ―Labels 

in First Row.‖  Then enter the level of significance (defaults to 0.05), and 

indicate the spreadsheet cell where the printout should start. 

Two tables show Excel’s output for the data in Example 17.1.  Table 17.5 

displays selected summary (descriptive) statistics, while Table 17.6 displays the 

ANOVA table.   

Table 17.4.   Excel’s summary statistics for Example 17.1 

Summary Count Sum Average Variance 

First 2 104.0 52.0 8.0 

Middle 2 48.0 24.0 8.0 

Last 2 49.0 24.5 0.5 

Column 1 3 96.0 32.0 244.0 

Column 2 3 105.0 35.0 271.0 

The Excel printout continues with the ANOVA (called ―Single Factor‖ by 

Excel).  

Table 17.5.   Excel’s ANOVA table for Example 17.1 

Source 

of variation 
SS df MS F P-value F crit 

Rows 1027.0 2 513.5 342.3 0.003 19.00 

Columns 13.5 1 13.5 9.0 0.095 18.51 

Error 3.0 2 1.5    

Total 1043.5 5     

 



Two-way ANOVA 325 
 

 

 

Because this is a fixed effects design, the hypotheses are given by 

Equations (17.6) and (17.8): 

Similarly to its printout in Chapter 16, Excel gives the critical point for the 

selected  (here,  =  0.05) in the column labeled ―F crit,‖ thus eliminating the 

need for table lookup and interpolation.  In addition, Excel gives the ―P-value,‖ 

which is the probability of obtaining an F-value at least as large as the one that 

was actually observed, assuming that the null hypothesis is true.  A P-value is an 

indication of the strength of the test result.  If P < , the null hypothesis is 

rejected.  

In Example 7.1, the calculated F statistic for ―Rows‖ is 342.3.  The critical value 

for testing equality of row means (Equation 17.5) is f0.95(2,2) =19.00.  Because 

342.2 > 19.00, the null hypothesis of row equality is rejected and we conclude 

that there is a row effect and that proximity to the reactor affect the sublimation 

rate.  The calculated F statistic for ―Columns‖ is 9.0. The critical value for 

testing equality of column means (Equation 17.7)  is f0.95(1,2) =18.51.  Because 

9.0 < 18.51, the null hypothesis of column equality is not rejected, citing no 

statistical evidence to claim that ice sublimation varies among the selected 

(fixed) columns.  

We reemphasize that since both rows and columns were selected by design the 

study conclusions apply only to the selected columns and rows.   However, had 

we selected the columns at random, the ANOVA calculations would have been 

no different.  However, the conclusion would have been that we do not reject the 

null hypothesis that
2 0.B

 

17.7  Balanced two-way factorial designs with 
replication  

Many experiments are designed with more than one observation per 

experimental unit.  In this section, we consider balanced designs where the 

number of replications is the same for every experimental unit.  We denote the 

number of replications by n, where n > 1. 

In a two-way factorial design with replication, we still have two main factors, 

A and B, with a and b levels, respectively.  With n replications, the number of 

observations is n+ = abn.  By incorporating replication into the design, we can 

introduce another concept, namely interaction, into the model.  Interaction is a 

measure of the simultaneous effect of the main effects, A and B. 

In Example 17.2, we illustrate the concept of interaction with a modification of 

Example 17.1. 
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Example 17.2.   Ice sublimation with interaction.   The context for this 

example is the same as that of Example 17.1.  As in Example 17.1, we weigh ice 

baskets in three rows and two columns.  Suppose first that Figure 17.1 shows 

sublimation, as measured by the mean weight loss.  Here, Row 1 is closest to 

and Row 3 is farthest from the reactor.  Clearly, sublimation decreases with 

distance from the reactor.  The pattern is the same for both columns, with 

Column 2 sublimation 20 kg larger than Column 1 sublimation for each row.  

Because the differences between the rows (levels of Factor A) are the same for 

each column (levels of Factor B), there is no interaction between the rows and 

the columns (i.e., between the factors). 

 

 

Figure 17.1.   Sublimation in the absence of interaction 

Suppose now that Figure 17.2 also gives the sublimation data.  Comparison with 

Figure 17.1 shows that the results for Rows 1 and 2 remain unchanged, but are 

interchanged for Row 3, where the Column 2 sublimation is now 20 kg smaller 

than the Column 1 sublimation.  We now have interaction, because the 

differences between the rows (levels of Factor A) depend on the columns (levels 

of Factor B).   

  

Figure 17.2.   Sublimation with interaction  
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Let Yijk be the k
th

 observation at the i
 th 

level of Factor A and the j 
th

 level of 

Factor B in cell (i, j).  Extending Equation (17.1), the model for a two-way 

balanced factorial design with replication is:   

Yijk = μ + i + βj + ( )ij + εijk, i = 1, …, a; j = 1, …, b; k = 1, …, n (17.13) 

where: 

μ = overall mean response  

i = main effect of the i 
th

 level of Factor A averaged over the levels of Factor B 

βj = main effect of the j 
th

 level of Factor B averaged over the levels of Factor A  

( )ij = effect of the interaction between the i 
th

 level of Factor A and the j 
th

 level 

of Factor B  

εijk = random error associated with Yijk  

εijk ~ N(0, σ 
2
) 

   Some writers use a different symbol (e.g., ) to denote two-factor 

interaction.  We treat ( ) as if it were a single Greek letter to indicate 

that it refers to the joint effect of two factors. 

The null and alternative hypotheses for this design are the same as those stated 

in Equations (17.5) through (17.11) with the addition of hypotheses for 

interaction.  For a fixed effects model, these are: 

H0:  (  β)ij = 0 all i, j vs.. H1:  (  β)ij ≠ 0, some i, j (17.16) 

With replications, the sum of squares for total variability is partitioned as 

follows: 

SSTotal = SSA + SSB + SSAB + SSError (17.17) 

where AB denotes the interaction between Factors A and B. 

Equations (17.18) gives the degrees of freedom associated with each of the sums 

of squares. 
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Total = n+ – 1 

A = a – 1 

B = b – 1 

AB = (a – 1)(b – 1) 

Error = ab(n – 1) 

(17.18) 

Table 17.6 shows the ANOVA table for a two-way design with replication. 

Table 17.6.   ANOVA table for a two-way factorial design with 
replication   

Source of 

variation 

Sum of 

squares 

Degrees of 

freedom 

Mean 

square F 

Factor A SSA A = a - 1 
  A

A

A

SS
MS

 

AF  

Factor B SSB B = b -1 
      B

B

B

MS
MS

 

BF  

Interaction 

AB SSAB AB = (a-1)(b-1) 
  AB

AB

AB

SS
MS

 AB
AB

Error

MS
F   

MS

 

Error SSError Error = ab(n-1) 
      Error

Error

Error

MS
MS

  

Total SSTotal Total = abn - 1 
  

The test statistic for interaction effect, regardless of which main effect is fixed 

and which is random, is:  

FAB = MSAB /MSError (17.19) 

The F-statistics for the main effects, Factor A and Factor B, depend on whether 

the effects are fixed, random, or mixed.  When both Factors A and B are fixed 

effects, the F-statistics are: 

FA = MSA /MSError and FB = MSB /MSError    (17.20) 

When both Factors A and B are random effects, the F-statistics are: 

FA = MSA /MSAB and FB = MSB /MSAB     (17.21) 

When Factor A is a fixed effect and Factor B is a random effect, the F-statistics 

are: 

FA = MSA /MSAB and FB = MSB /MSError       (17.22) 
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Example 17.3.   Lathe and coolant interaction (―NIST Engineering 

Statistics Handbook‖ (2006), Section 3.2.3.2.1).   A two-way factorial 

experiment is designed to test for differences in turned pin diameters (in inches) 

due to the use of different lathes or different coolants.  In this experiment, five 

samples are taken from each of five lathes, each using two different types of 

coolant.  Table 17.7 gives the data in the format required by Excel.  Because 

there are only five lathes and two coolants, this is a fixed effects design. 

Table 17.7.   Two-factor data for Example 17.3 in Excel format 

 A B C D E F 

1  Lathe 1 Lathe 2 Lathe 3 Lathe 4 Lathe 5 

2 Coolant A 0.125 0.118 0.123 0.126 0.118 

3 Coolant A 0.127 0.122 0.125 0.128 0.129 

4 Coolant A 0.125 0.120 0.125 0.126 0.127 

5 Coolant A 0.126 0.124 0.124 0.127 0.120 

6 Coolant A 0.128 0.119 0.126 0.129 0.121 

7 Coolant B 0.124 0.116 0.122 0.126 0.125 

8 Coolant B 0.128 0.125 0.121 0.129 0.123 

9 Coolant B 0.127 0.119 0.124 0.125 0.114 

10 Coolant B 0.126 0.125 0.126 0.130 0.124 

11 Coolant B 0.129 0.120 0.125 0.124 0.117 

The two factors involved are lathe, with five levels, and coolant, with two levels.  

Each lathe × coolant combination has five replications.  Excel’s analysis 

requires that the number of replications be the same for each such combination 

(i.e., that the design be balanced). 

Excel requires that all data entry headers must be included in the data range.  In 

Table 17.7, column headers are shown in cells B1..F1.  Row headers are shown 

in cells A2..A11, although they do not have to be repeated for every replication.  

Thus, we could enter ―Coolant A‖ and ―Coolant B‖ in cells A2 and A7 and leave 

the rest of the cells in Column A empty. 

Call Excel’s ANOVA routine as follows.  Under ―Data‖ (in some versions of 

Excel, under ―Tools‖), select ―Data Analysis,‖ and then select ―ANOVA:  

Two-Factor With Replication.‖  In the ANOVA panel, select the data array, 

which must include column and row headers(here, A1, ..., F11).  Under ―Rows 

per sample,‖ enter the number of replications (n = 5, in this example).  Select the 

level of significance (defaults to α = 0.05). 

Two tables show Excel’s output for the data from Table 17.7.  First, Table 17.8 

displays some summary (descriptive) statistics. 
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Table 17.8.   Excel’s summary statistics for Example 17.3 

   

SUMMARY Lathe 1 Lathe 2 Lathe 3 Lathe 4 Lathe 5 Total 

 Coolant A       

 Count 5 5 5 5 5 25 

 Sum 0.6310 0.6030 0.6230 0.6360 0.6150 3.1080 

 Average 0.1262 0.1206 0.1246 0.1272 0.1230 0.1243 

 Variance 1.70E-06 5.80E-06 1.30E-06 1.70E-06 2.25E-05 1.12E-05 

Coolant B       

 Count 5 5 5 5 5 25 

 Sum 0.6340 0.6050 0.6180 0.6340 0.6030 3.0940 

 Average 0.1268 0.1210 0.1236 0.1268 0.1206 0.1238 

 Variance 3.70E-06 1.55E-05 4.30E-06 6.70E-06 2.33E-05 1.64E-05 

Total       

 Count 10 10 10 10 10  

 Sum 1.2650 1.2080 1.2410 1.2700 1.2180  

 Average 0.1265 0.1208 0.1241 0.1270 0.1218  

 Variance 2.50E-06 9.51E-06 2.77E-06 3.78E-06 2.20E-05  

Table 17.9 shows the Excel printout of the ANOVA.  Note that Excel’s 

ANOVA also provides the critical values for the analysis, eliminating the need 

for table lookup and interpolation. 

Table 17.9.   Excel’s ANOVA for Example 17.3 

Source of 

Variation SS Df MS F P-value F crit 

Coolant 3.92E-06 1 3.92E-06 0.45 0.50470 4.08 

Lathes 0.000303 4 7.58E-05 8.77 0.00004 2.61 

Interaction 1.47E-05 4 3.67E-06 0.42 0.79017 2.61 

Error 0.000346 40 8.65E-06    

Because 0.45 < 4.08, the coolant effect is not significant.  Because 8.77 > 2.61, 

the lathe effect is statistically significant.  Because 0.42 < 2.61, the 

coolant × lathe interaction is not statistically significant.   

17.8  Other multifactor designs 

Many other experimental designs are used for ANOVA, such as nested 

(hierarchical), fractional factorial, and Latin square designs, both balanced and 

unbalanced.  These topics are beyond the scope of this book.  Interested readers 

can find details in Bowen and Bennett (1988) or Neter et al. (1990). 



 

 

18 
Regression 

18.1  What to look for in Chapter 18 

This chapter introduces the topic of regression, a set of statistical procedures 

designed to investigate the relationships among two or more variables.  The first 

part is restricted to one dependent and one independent variable.  In 

Section 18.16, we consider one dependent variable and several independent 

variables. 

In developing this subject, we will revisit some terms from algebra and 

geometry: 

 independent and dependent variables,  §18.2             

 slope and intercept,  §18.2 

 
We will also revisit some concepts and terms from the analysis of variance 

(Chapters 16 and 17) that play a similar role in regression analysis: 

 model and error,  §18.4 

 sum of squares and mean square error,  §18.7 

 partition of sum of squares,  §18.9 

 regression analysis of variance,  §18.10  
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We also introduce the following concepts and ideas: 

 curve fitting,  §18.3 

 simple linear regression,  §18.5 

 least squares,  §18.7 

 testing the slope and confidence interval for the slope,  §18.13 

 testing the intercept and confidence interval for the intercept,  §18.14 

 regression through the origin,  §18.15 

 multiple linear regression,  §18.16 

 prediction and prediction interval,  §18.17 

We also show detailed steps for using Excel: 

 for plotting a regression line,  §18.11 

 for regression analysis,  §18.12 

 
18.2  Concepts and terms from algebra and geometry 

independent 

variable 

dependent 

variable 

ordered 

pairs 

At some point in our mathematics training, we learned to plot 

mathematical functions of various types.  We usually started with 

an independent variable, usually called x, which was related to a 

dependent variable, usually called y.  The dependence of y on x 

was expressed as the function y = f(x).  We learned to build a table 

of ordered pairs of values, denoted by (x, y), and then to plot 

those pairs and connect them on a coordinate system. 

To illustrate, suppose we are asked to plot the function y = 3x + 2.  We pick 

some convenient values for the independent variable x and calculate the 

corresponding values of the dependent variable y.  Table 18.1 displays some 

selected (x, y) pairs for this function. 

Table 18.1.   Ordered pairs (x, y) for the function y = 3x + 2 

x -2 0 1 2 5 

y -4 2 5 8 17 

The (x, y) pairs are used to produce a graph of the given function, as shown in 

Figure 18.1.   
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Figure 18.1.   Graph of the function y = 3x + 2 

 

 slope 

 intercept 

The general equation of a straight line in an x,y coordinate system is 

y = mx + b, where m is the slope and b is the intercept (sometimes 

called the y-intercept).  Thus, for the line 3x +2, the slope is 3, 

meaning that y increases by 3 units for every unit increase in x.  

For the same line, the intercept is 2, which is the value of y for 

which x = 0.  Notice especially that the line passes through each of 

the points corresponding to the ordered pairs.   

  The coefficients m and b in the function y = mx + b are the parameters of the 

general straight line.  In a nonstatistical context, these parameters are 

written as lowercase Latin letters.  In contrast, we write statistical 

parameters as lowercase Greek letters, estimators of statistical 

parameters as uppercase Latin letters, and estimates of statistical 

parameters as lowercase Latin letters.  

Because two points determine a straight line, why did we use five points for 

plotting the line?  Operationally, it is simply good practice to plot a few extra 

points to be certain that we set up the graph correctly.   

18.3  The concept of regression 

Example 18.1.   Five points in search of a trend.   Consider Table 18.2, 

the points of which are plotted in Figure 18.2.  Although there is no straight line 

that passes through all of these points, it is often useful to find a straight line that 

fits the points reasonably well.  This is the problem that regression is designed to 

solve. 

Table 18.2.   Five ordered pairs (x, y) 

x 1 2 3 5 7 

y 4 3 4 8 9 
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Figure 18.2.  Graph of the data in Table 18.2 

 

The difference between Figures 18.1 and 18.2 reflects the essence of the 

regression approach.  In an algebraic or geometric setting, we know the function 

that links the values of y to the values of x, and our analysis is based on that 

knowledge.  By contrast, in a statistical setting, we are given the (x, y) pairs, and 

our task is to find a mathematical function that links the ordered pairs.  For 

example, the values of y in Figure 18.2 tend to increase as x increases, and 

regression can be used to find a straight line that expresses this trend. 

regression 

curve 

fitting 

The process of determining an approximate algebraic relationship 

between two or more variables is called regression.
8
  Because 

regression fits a model (an equation, a line, or a curve) to a set of 

points, regression is sometimes called curve fitting. 
At the risk of stating the obvious, statistical concepts and tools cannot perform 

miracles.  We cannot produce a straight line that goes through every one of an 

arbitrary set of points if the points are not already on a straight line.  Rather, 

regression produces a compromise line that meets some reasonable criteria. 

                                                           

8 According to Kendall and Buckland (1971), p. 127, the term regression ―…was originally used by 

Galton [Sir Francis Galton, 1822–1911, an English biostatistician and cousin of Charles Darwin] to 

indicate certain relationships in the theory of heredity but it has come to mean the statistical method 
developed to investigate those relationships.‖ 
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18.4  Regression models 

statistical 

model 
Regression begins with a statistical model that is a symbolic 

representation of the relationship between the variables involved in 

a study.  The model incorporates a functional relationship affected 

by unexplained, unknown, or random fluctuations.  In this chapter, 

we focus on a statistical model that relates a dependent variable, 

denoted by an uppercase Y, to an independent variable, designated 

by a lowercase x.  We assume that the independent variable is 

measured without, or with negligible, error. 

 

 

 

 

 

 

 

 

error  

As an example, consider the relation between time and distance as 

we drive on a road.  Whenever we pass a mile marker we record the 

distance covered since the beginning of the trip and the time it took 

to travel that distance.  The distance traveled is known, but the time 

depends on factors such as the weather and traffic conditions and is 

therefore a random variable.  The distance, being fixed, is denoted 

by x and the time, being a random variable, is denoted by Y.  Here, 

x is the independent variable and Y is the dependent variable.  We 

wish to find a linear function of the form Y = α + βx that relates the 

dependent to the independent variable.  In many applications, this 

function is used to predict the value of Y corresponding to a given 

value of x.  The equation Y = α + βx is, at best, an imperfect 

representation of data that do not all lie on a straight line, such as 

those in Table 18.2.  To account for this imperfection, we add an 

error term to the model.  Denoting the error by εi, we have the 

model:   

Yi = α + βxi + εi   i = 1, 2, …, n  (18.1) 

 

where: 

Yi = the value of the dependent variable for the i 
th

 point 

xi = the value of the independent variable for the i 
th

 point 

α = an unknown constant (intercept) 

β = an unknown constant (slope) 

n = number of (xi, Yi) points 

εi = the error associated with the i 
th

 point 

The error εi reflects the failure of the i 
th

 point to lie on the line described by the 

model.  This error may be attributed to experimental error, experimenter error, 

modeling error, random error, or a combination of these and other errors. 
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simple 

linear 

regression 

A model with a single independent variable, such as in 

Equation (18.1) is said to be simple.  If, in addition, the model is 

additive, then the model is also said to be linear.  The procedure for 

finding a line using such a model is called simple linear regression.  

Simple linear regression is the main topic of this chapter.   

A more complex model that involves several independent variables such as: 

 ...i i i i iY x w z  (18.2) 

 
multiple 

linear 

regression 

is analyzed by a multiple linear regression procedure, which is 

addressed in Section 18.16. 

If the independent variable in the model is raised to a power of 2 or higher, such 

as:  

 2 3 ...i i i i iY x x x  (18.3) 

 
polynomial 

regression 
the associated regression procedure is called polynomial 

regression.   

If the logarithm of the dependent variable is a linear function of the independent 

variable, such as: 

 log( ) ...i i iY x  (18.4) 

 
exponential 

regression 
the associated regression procedure is called exponential 

regression.   

Other complex models are found in the literature.  For detailed discussion of 

such models, see Neter, et al. (1996), Chapters 6 and 7.  

Some writers use a set of coefficients {βk} with different subscripts instead of α, 

β, γ, ….  Thus, the simple linear regression in Equation (18.1) uses β0 for the 

intercept and β1 for the slope, as shown below:   

Yi = β0 + β1xi + i, i = 1, 2, …, n (18.5) 
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Two advantages of the model in Equation (18.5) over that in Equation (18.1) are 

usually cited: 

 There is no confusion of the coefficients, α and β, with the probabilities of 

Type I and Type II errors in hypothesis testing. 

 The model can be extended to include many variables and combinations, 

such as Y = β0 + β1x + β2w + β3z + β12xw + βxxx
2
 + … + εi without 

exhausting the Greek alphabet.  

In dealing with simple linear regression, we prefer to use the model in 

Equation (18.1) because it is more commonly used when a single independent 

variable is considered. 

Note that the constant α in Equation (18.1) may be zero, in which case the model 

becomes: 

Yi = βxi + εi, i = 1, 2, …, n (18.6) 

 
 

regression 

through 

the origin 

This last model describes a line that goes through the origin (i.e., a 

zero-intercept line).  The process for constructing such a line is 

referred to as regression through the origin.  Many studies require 

such a model (e.g., the time and distance example at the beginning 

of this section).  Clearly, because it takes 0 time to go 0 distance, 

the regression line should go through the origin. 
18.5  Simple linear regression 

 

empirical 

line 

regression 

line 

Given data that we assume follow the model in Equation (18.1), we 

estimate the model parameters (i.e., the intercept and slope) and 

construct an empirical line that captures the relation between the 

independent and dependent variables.  If we use a regression 

process to construct an empirical line, it is called a regression line.  

For a simple linear regression, the regression line is written as:   
 

Ŷi = A+Bxi, i = 1, …, n
 

(18.7) 

where:  

A (sometimes written as( ˆ ) is an estimator of the model intercept α.   

B (sometimes written as ( ˆ ) is an estimator of the model slope β. 
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prediction 

equation 
The line in Equation (18.7) is also called the prediction equation 

because it can be used to predict a value of Y for a fixed value of x. 

 The term Ŷi, pronounced why-hat-sub-eye, is an estimator of the true-but-

unobserved random variable Yi and thus carries a ―hat‖ (caret) to 

distinguish it from the observed yi.  This notation follows the widely 

used practice of ―hatting‖ a symbol to distinguish an estimate from the 

value we are trying to estimate.   

The estimators of the intercept and the slope, A and B, are functions of the 

sample we happen to collect and of our method of estimation.  Because the 

sample contains random variables, it follows that A and B are also random 

variables.   

Any statistical treatment of data is based on a collection of assumptions about 

the dataset and its structure.  The assumptions for simple linear regression are of 

two types: 

 basic assumptions for the construction of the regression coefficients 

 one additional assumption for tests of hypotheses and confidence intervals 

The additional assumption is not needed for construction of the regression line, 

but it is needed for statistical analysis of the regression line. 

The basic assumptions for simple linear regression are: 

 The data follow the model in Equation (18.1).  

 Each xi is measured without error, or with negligible error. 

 The variance of Yi is a constant, denoted by σ 
2
, for all xi values.  This means 

that the variance of the population of all possible Y observations for any 

value of x is σ 
2
. 

   If the latter assumption cannot be met, then construction of a regression line 

requires weighted regression techniques that are beyond the scope of 

this book.  See Draper and Smith (1981) or Neter, et al. (1996) for an 

extensive treatment of this subject. 

The additional assumption needed for testing hypotheses or constructing 

confidence intervals for the model parameters is that the error εi associated with 

Yi is normally distributed with mean 0 and variance σ 
2
.  Symbolically, we write:   

εi ~ N(0, σ 
2
) (18.8) 

 
Figure 18.3 illustrates these assumptions. 
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Figure 18.3.   An Illustration of the assumptions for simple linear 
regression  

From Figure 18.3, we see the following:  

 Each of the five data points in the figure may be regarded as a bead capable 

of sliding on a fixed string (vertical line).  A bead cannot slide in a 

horizontal direction, reflecting the assumption that each x is measured 

without error. 

 In contrast with the no-error assumption about the x values, the Y’s are 

random variables.  That is, the beads can slide vertically, following 

their distribution.   

 A normal distribution with a constant variance is associated with every x 

value. 

Finally, the straight line superimposed on the figure illustrates the fitted 

regression line for the data points (see Section 18.7). 

18.6  Fitting a line to data 

In the following sections, we provide the basis for the construction of regression 

lines and identify the components of the regression analysis.  Readers who do 

not need this background may turn to Sections 18.11 and 18.12, which discuss 

the use of Excel to perform regression graphics and analysis. 

The model is given by Equation (18.1).  The intercept and the slope, α and β, are 

unknown constants to be estimated from the data.  Given a set of n (xi, yi) points, 

there are many ways to find a line that fits these points.  For instance, we could 

plot the data and simply draw a line that seems to fit (i.e., do an ―eyeball‖ fit).  

While such lines are usually pretty good fits, this procedure is unacceptable 
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because it is not reproducible.  Eyeball fit is very likely to yield different lines if 

done by different analysts or even by the same analyst at different times.  

Consequently, it would not be amenable to statistical analysis. 

Clearly, an objective and reproducible procedure is needed.  One possibility is to 

use a horizontal line that goes through the mean y
 
of the observations.  In 

particular, if the dependent and independent variables are unrelated, this line 

would make sense.  For example, if the dependent variable Y represents the 

yearly energy consumption by a household and the independent variable x 

represents the cost of tea, it makes sense to ignore the cost of tea and estimate 

the energy consumption of the i 
th

 household by Ŷi = y  (see Equation (18.7)).  

Moreover, even when x and Y are considered related for theoretical or practical 

reasons, it often is useful to use the horizontal line Ŷi = y  as a baseline, or 

standard, against which other lines may be compared. 

We now return to the five points in Table 18.2.  Their scatter diagram is plotted 

in Figure 18.4, which is the same as Figure 18.2 but with a horizontal line 

superimposed whose equation is 5.6iY y .  This line is our first candidate to 

fit the data in Table 18.2.   

 

Figure 18.4.   Five points from Table 18.2 and the line y = y
 

Figure 18.5 adds two more lines for consideration.  Line 2 is the equation 

y = -2 + 2x, and Line 3 is the equation y = 2 + (8/9)x. 
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Figure 18.5.   Three candidate lines for fitting the data in Table 18.2  

Which of the three candidate lines, if any, should be picked?  Some candidates 

are ―better‖ fits than others, and some are ―worse‖ fits.  Clearly, we need a 

criterion for choosing the ―best‖ line, and this is the subject of the next section. 

18.7  The method of least squares and the regression 
line 

The criterion we shall use for the selection of a best line is based on a definition 

of the ―distance‖ from the data points to any candidate line for fitting the data.  

We illustrate the distance from the data points to a line with the three lines in 

Figure 18.5.  Consider Line 3.  For each of the five points, draw a vertical line 

that connects the point to Line 3, as shown in Figure 18.6.  The length of each 

line is the vertical distance between the point and Line 3.   

 

Figure 18.6.   Vertical distances from Line 3 

Next, square each distance, add the squares to obtain a sum of squares of vertical 

deviations of the points from Line 3, and denote it by SS3.  This sum of squares 
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is the distance between Line 3 and the data points.  Repeat the process for Lines 

1 and 2 to form SS1 and SS2, respectively.  Table 18.3 shows the results of these 

calculations.   

Table 18.3.   Sums of squared deviations for the three lines in 
Figure 18.5  

                      Data    

X 1 2 3 5 7 Sum of 

Squares Y 4 3 4 8 9 

                      Line 1:  y = 5.6 

SS1 = 

29.2000 

 

ŷi 5.60 5.60 5.60 5.60 5.60 

yi - ŷi -1.60 -2.60 -1.60 2.40 3.40 

(yi - ŷi)
2
 2.5600 6.7600 2.5600 5.7600 11.5600 

                     Line 2:  y = 2x - 2   

 

SS2 = 

26.0000 

 

 

ŷi 0.00 2.00 4.00 8.00 12.00 

yi - ŷi 4.00 1.00 0.00 0.00 -3.00 

(yi - ŷi)
2
 16.0000 1.0000 0.0000 0.0000 9.0000 

                     Line 3:  y = (8/9)x + 2 

SS3 = 

5.3086 

 

 

ŷi 

2.8889 3.7778 4.6667 6.4444 8.2222 

yi - ŷi 1.1111 -0.7778 -0.6667 1.5556 0.7778 

(yi - ŷi)
2
 1.2346 0.6049 0.4444 2.4198 0.6049 

 
In general, the distance D between a line and a set of points is defined as the 

sum of the squared vertical deviations between the line and the points.  Using 

this definition, Line L1 is a better fit to a dataset than Line L2 if D1 is smaller than 

D2.  Of the three lines in Figure 18.5, Line 3 is the best fit because it has the 

smallest sum of squares (SS3 = 5.3086). However, there might be another line 

that has a smaller distance to the data and would therefore be a better fit to the 

data.  Clearly, our goal is to find a best line to fit the data (i.e., a line that 

minimizes the distance to the data points).   

least 

squares 

line 

method of 

least 

squares 

Using regression methodology, we can readily construct such a line.  

For any dataset with more than one point, there is only one such 

line, and it is called the least squares line.  The procedure for 

constructing a least squares line is the method of least squares.  

Details of this method may be found in Neter, et al. (1996), 

Chapter 1; Draper and Smith (1981), Chapter 2; and many other 

sources.   

 

 

 

The least squares approach to fitting a line to data is only one of 

several procedures called regression.  However, the least squares 

approach is, by far, the most common form of regression.  

Throughout this book, we use the term regression to mean a 



Regression 343 
 

 

 

regression 

line 

procedure for fitting a line (or sometimes a curve) to a dataset by 

the method of least squares.  This line is called the least squares line 

or the regression line.   

The method of least squares, as applied to a simple linear model, can be 

described as follows. 

We have a set of n ordered pairs {(xi, Yi)}, i = 1, 2, …, n, where n > 1 and at 

least two of the x values are different.  Then there is a unique least squares line 

with parameters given by Equation (18.7).  The formula for the estimator B of 

the slope is given by two mathematically equivalent equations.  The first is the 

―definition formula,‖ given by Equation (18.9), and the second is the ―working 

formula,‖ given by Equation (18.10).  The working formula is almost always 

more amenable to statistical calculations.  It is the formula used in hand-held 

calculators and in most statistical packages. 

1

2

1

( )( )

( )

n

i i

i

n

i

i

x x Y Y

B

x x

 

 (18.9) 
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i i i

n n

i i

i i

xY x Y n

B

x x n

 
 (18.10) 

Once the slope is calculated, the estimator A of the slope is obtained as: 

A Y B x  (18.11) 

   Mathematically, it can be shown that the regression line goes through the 

point ( , )x y .  This bit of information could be useful to hand-draw the 

regression line through a dataset.   

We introduce the following notation; where each summation runs from            

i=1 to i=n  

2
2 2 2 2( ) /xxS x x x x n x n x  (18.12) 

( )( ) /xYS x x Y Y xY x Y n xY n xY  (18.13) 

2
2 2 2 2( ) /YYS Y Y Y Y n Y nY  (18.14) 
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Using this notation, the formula for the slope is written as:  

B = SxY/Sxx (18.15) 

Note the mixture of subscripts in Sxx, SxY, and SYY in Equations (18.12) through 

(18.15).   

As these formulas are applied to the data, the random variables (written in 

uppercase) are replaced by the numerical values of their observations (written in 

lowercase). 

To construct the least squares line for Example 18.1, we start with some 

preliminary calculations: 

x = 1 + 2 + 3 + 5 + 7 = 18 

x
2
 = 1

2
 + 2

2
 + 3

2
 + 5

2
 + 7

2
 = 88 

y = 4 + 3 + 4 + 8 + 9 = 28 

y
2
 = 4

2
 + 3

2
 + 4

2
 + 8

2
 + 9

2
 = 186 

xy = (1)(4) + (2)(3) + (3)(4) + (5)(8) + (7)(9) = 125  

Sxx = 88 – (18)
2
/5 = 23.20 

Syy = 186 – (28)
2
/5 = 29.20 

Sxy = 125 – (18)(28)/5 = 24.20 

Although the term SYY is not used in the calculation of A or B, SYY comes 

into play at later stages, when the statistical properties of the regression 

line are examined and when correlation methods are used (Chapter 19). 

From Equations (18.15) and (18.11), the regression coefficients are: 

B = 24.20/23.20 = 1.0431 

A = 28/5 – (1.0431)(18/5) = 1.8448 

 

Thus, the regression line for Example 18.1 is: 

y = 1.8448 + 1.0431x  

The calculations in Table 18.4 yield the sum of squares = 3.9569.  This sum of 

squares is smaller than any sum of squares in Table 18.3, and because it is the 

sum of squares for the least squares line, we are guaranteed that we cannot find 

another set of A and B that would give us a smaller sum of squares. 
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Table 18.4.   The least squares line and sum of squares for 
Example 18.1 

 Data 

x 1 2 3 5 7 Sum of 

Squares y 4 3 4 8 9 

Least squares line:  y = 1.8448 + 1.0431x 

SS = 

3.9569 

 

ŷi 2.8879 3.9310 4.9741 7.0603 9.1465 

yi - ŷi 1.1121 -0.9310 -0.9741 0.9397 -0.1465 

(yi - ŷi)
2
 1.2368 0.8668 0.9489 0.8830 0.0215 

 

18.8  Geometric interpretation of regression 
components 

The following identity holds for the difference between any observation and the 

sample mean:  

ˆ ˆ( ) ( ) ( )
i i i i

Y Y Y Y Y Y  

 

(18.16) 

total deviation 

 

deviation due 

to regression 

deviation due 

to error 

The term ( )
i

Y Y  represents the total deviation of the i 
th

 

observation yi from the meanY of all the observations.  From 

Equation (18.16) it is the sum of two components:  

 ˆ( )
i

Y Y that represents deviation due to regression 

 ˆ( )
i i

Y Y  that represents the deviation due to error  

 

In terms of the deviations, Equation (18.16) can be written as:  

                                                                                                  

total deviation = deviation due to regression + deviation due to error   (18.17) 

 
residual The deviation due to error is often called the residual.  

Intuitively, the residuals are the parts of the observations that 

the regression line does not explain. 

 

Equation (18.16) has a geometric interpretation.  This interpretation is illustrated 

in Figure 18.7 at the fourth observation from Table 18.2, where (x4, y4) = (5, 8).  

From Table 18.4, the fitted value ŷ4  is 7.06, yielding the fitted point (5, 7.06). 
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Figure 18.7.   Geometric interpretation of regression components  

The total deviation (y4 - y ) is the vertical distance between the observed point 

(x4, y4) = (5, 8) and the observation mean y  = 5.60.  This deviation is calculated 

as 8 - 5.60 = 2.40.   

The deviation due to regression (ŷ4 - y ) is the vertical distance between the 

fitted point (5, 7.06) and the observation mean.  This deviation is calculated as 

7.06 – 5.60 = 1.46.  A small value for this deviation means that the regression 

line does little to improve the fit beyond that [which is] offered by the horizontal 

line y = y , at least near this data point. A large value for this deviation means 

that the regression line improves the fit to the data point over that [which is] 

provided by the sample mean.   

The deviation due to error is the residual y4 – ŷ4, which is the distance between 

the observed point (5, 8) and the fitted point (x4, ŷ4) = (5, 7.06).  This deviation 

is calculated as 8 – 7.06 = 0.94.  A small value for a residual means that the 

regression line provides a reasonable fit to the observation.  A large value for a 

residual means that the regression line does not fit the data well, at least in the 

neighborhood of the observed point. 

18.9  Partition of the total sum of squares  

A sensible question we may ask at this point is whether the effort involved in 

fitting a line to a given dataset is warranted.  Putting the question another way:  

Is there evidence of a trend in the data?  For a straight line, a trend is 

characterized by a non-zero slope, meaning that as x changes, there is a 

predictable change in Y.  If there is no trend, then we can simply use the sample 

mean to predict Y regardless of the value of x.   
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To answer this and other questions, we perform a statistical analysis of the 

regression.  From this point on, we need the assumption of a normal distribution 

of error as in Equation (18.8), because this assumption is the basis for the 

regression analysis.  This analysis is based on a partition of the sum of squares 

of the observations about the sample mean into two statistically independent 

components.   

Recall the identity ˆ ˆ( ) ( ) ( )
i i i i

Y Y Y Y Y Y  in Equation (18.16).  The 

following remarkably similar expression, also an identity, is a cornerstone of the 

regression analysis: 

1 1 1

2 2 2ˆ ˆ( ) ( ) ( )
i i i i

n n n

i i i

Y Y Y Y Y Y  (18.18) 

   The proof of this identity may be found in many textbooks on regression 

(e.g., Neter, et al. (1996), p. 72).  Also, because there is no ambiguity, 

we will henceforth omit the subscripts in the summations. 

While Equation (18.16) partitions the variation about the sample mean of an 

individual observation into two components, Equation (18.18) partitions the 

joint variation about the sample mean of all the sample points into two 

components.  This partition is quite similar to the partition described in 

Chapters 16 and 17 for the analysis of variance.   

total sum 

of squares 
The sum of squares 

2

( )Y Y is called the total sum of squares, 

denoted by SSTotal.  We have: 

                    SSTotal = SYY (18.19) 

where SYY is given by Equation (18.14).  The degrees of freedom    

associated with SSTotal is:  

                    νTotal = n – 1  (18.20) 

From Equation (18.18), SSTotal is the sum of two other sums of squares:   

regression 

sum of 

squares 

is the regression sum of squares, denoted by SSReg.  

From Equations (18.12) and (18.13), we have:  

                       SSReg = 
2

/
xY xx

S S  (18.21) 
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The degrees of freedom associated with SSReg is: 

νReg = 1 (18.22) 

error sum of 

squares 

 SSError 

is the error sum of squares, denoted by SSError .  It 

is calculated as: 

                        SSError  = SSTotal – SSReg (18.23) 

                        The degrees of freedom associated with SSError is: 

                        νError = n – 2 (18.24) 

residual 

sum of 

squares 

SSError is sometimes (Excel, for example) called the residual sum 

of squares. 

Note that not only are the sums of squares additive, per Equation (18.18), but so 

are the degrees of freedom, that is:  

νTotal = νReg + νError   
 

(18.25) 

18.10  Regression ANOVA for a single independent 
variable 

The three different sources of variation and their corresponding sums of squares 

and degrees of freedom are now entered into a regression analysis table, as 

shown in Table 18.5.   

Table 18.5.   A regression ANOVA table  

Source of 

variation 

Sum of 

squares 

Degrees of 

freedom 

 

Mean square 

 

F 

Regression SSReg νReg = 1 Reg
Reg

Reg

SS
MS  Reg

Error

MS
F

MS
 

Error 

(residual) 
SSError νError = n – 2 Error

Error
Error

SS
MS   

Total SSTotal νTotal = n – 1   
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Table 18.5 also includes the following entries: 

regression 

mean 

square 

Regression mean square, MSReg = SSReg / νReg (18.26) 

error mean 

square 
Error mean square, MSError = SSErr/ νError (18.27) 

 F = MSReg/MSError (18.28) 

mean 

square 

error  

The error mean square is often referred to as the mean square 

 error (MSE).  This is the estimate of σ 
2
 in the model, Equation 

(18.8). 

   Note that the ANOVA table does not display a mean square entry for the 

total sum of squares, as it is not needed. 

The F-statistic in the last column of Table 18.5 is the test statistic for testing the 

slope of the regression line.  The null and the alternative hypotheses are written 

as: 

H0:  β = 0 (18.29) 

H1:  β ≠ 0 (18.30) 

 
trend The alternative H1 is equivalent to saying that there is a trend in the 

data, meaning that as x changes, there is a predictable change in Y. 

If the calculated F-statistic is larger than the table value F1-α(1, n-2), H0 is 

rejected.  Otherwise, H0 is not rejected for lack of evidence to the contrary. 

For Example 18.1, the sums of squares are calculated using the intermediate 

calculations from Section 18.7 and Equations (18.19), (18.21), and (18.23); and 

SSTotal = Syy = 29.20 

SSReg = 
2

/
xy xx

S S  = (24.20)
2
/23.20 = 25.24 

SSError = SSTotal – SSReg  = 29.20 – 25.24 = 3.96 

Table 18.6 gives the regression ANOVA. 
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Table 18.6.   Regression ANOVA table for Example 18.1 

Source of  

variation 

Sum of  

squares 

Degrees of 

freedom Mean square 

 

F 

Regression 25.24 1 25.24 19.14 

Error (residual) 3.96 3 1.32 
 

Total 29.20 4 
  

 

From Table T-4 of the appendix, the critical value is F0.95(1,3) = 10.1.  Since the 

calculated F = 19.14 exceeds 10.1, we reject H0 and conclude that β ≠ 0 

(i.e., there is a trend in the data). 

18.11  Using Excel to construct the regression line 

The following example illustrates how to use Excel’s regression routines to plot 

and analyze data. 

Example 18.2.   Containment pressure stabilization.   The pressure 

inside a pressurized containment was monitored for several hours to determine if 

the pressure changed significantly during that time.  Three variables were 

recorded during the study, as shown in Table 18.7: 

 time elapsed (hours) since the beginning of the study, recorded, including 

the labels, in cells A1..A12 

 containment inside temperature (°F), recorded in cells B1..B12 

 containment inside pressure (pounds per square inch (psi)), recorded in cells 

C1..C12  
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Table 18.7.   Dataset for Example 18.2 

 

 
In this example, both time and temperature are independent variables, and 

pressure is the dependent variable.  For ease of presentation, we divide the 

example into two parts: 

 Example 18.2a, where the independent variable is time 

 Example 18.2b, where the independent variable is temperature 

Excel offers some simple functions for constructing a regression line.  For the 

intercept and slope, use the following function calls: 

 =INTERCEPT(Range of y values, Range of x values).  For Example 18.2a, 

use Table 18.7 and =INTERCEPT(C2..C12, A2..A12) = 34.828.  For 

Example 18.2b, use Table 18.7 and =INTERCEPT(C2..C12, B2..B12) 

= 24.078.  Note that this function does not include variable labels in the 

data range. 

 =SLOPE(Range of y values, Range of x values).  For Example 18.2a, use 

Table 18.7 and =SLOPE(C2..C12, A2..A12) = -0.008.  For 

Example 18.2b, use Table 18.7 and =SLOPE(C2..C12, B2..B12) 

= 0.124.  Note that this function does not include variable labels in the 

data range. 

To plot the data points in addition to constructing the regression line, use the 

Excel routine for regression graphics with the 10 steps below.  Step 1 applies to 

Example 18.2a. 
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Step 1.  Select the independent and dependent variables.  Since time and 

pressure are not listed contiguously, we select them using the Ctrl key.  

Hold down the Ctrl key, and select cells A2..A12.  Continue to hold 

down the Ctrl key, and select cells C2..C12.  If the variable names are 

included in the row above the data (as in columns A1 and B1), we may 

select them too, as in A1..A12, C1..C12. 

Step 2.  Select ―Insert‖ from the tool bar (Excel 2007) or the histogram-like 

icon in other Excel versions. 

Step 3.  Find the ―Charts‖ group (Excel 2007), or the x-y icon in other versions 

of Excel. 

Step 4.  Click on the icon that shows scattered unconnected points to display a 

chart of the data points. 

Step 5.  On the chart just produced, right click any of the plotted points 

(―markers‖). 

Step 6.  Click on the ―Add Trendline‖ button. 

Step 7.  Click on the button that says ―Linear.‖ 

Step 8.  Check the box that says ―Display Equation on Chart.‖ 

Step 9.  Click on the ―Close‖ button. 

Step 10. Embellish the chart as needed by adding titles to the axes, changing the 

appearance of the data markers, and moving the regression equation as 

needed.  For Example 18.2a, the finished chart should look similar to 

Figure 18.8. 

 

Figure 18.8.   Pressure vs. time for Example 18.2a 

Figure 18.8 suggests that pressure decreases over time.  In the next section, we 

investigate whether this trend is statistically significant.   



Regression 353 
 

 

 

For Example 18.2b, in Step 1, select cells B1..B12 instead of A1..A12.  All other 

steps are the same.  Figure 18.9 shows the regression chart for Example 18.2b. 

 

Figure 18.9.   Pressure vs. temperature for Example 18.2b 

Figure 18.9 suggests that pressure increases with temperature.  In the next 

section, we investigate whether this trend is statistically significant.   

18.12  Using Excel for regression analysis 

To test hypotheses about the regression coefficients, use Excel’s regression 

ANOVA routine.  We illustrate the use of this routine with Examples 18.2a 

and 18.2b. 

From Equation (18.1), the model that relates pressure to time is: 

Yi = α + βxi + εi,   i = 1, 2, …, n  

where Yi denotes pressure (psi) at time xi (hours).  From Equation (18.8), 

εi ~ N(0, σ
2
). 

To test whether the pressure inside the containment deteriorates over time, we 

test the slope with the following null and (one-sided) alternative hypotheses: 

H0:  β = 0 vs. H1:  β < 0  (18.31) 

On very rare occasions, there is a need to test the intercept.  We include this test 

in our example for purposes of illustration. 
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The null and alternative hypotheses for testing the intercept are:  

H0 : α = α0  vs.  H1:  α ≠ α0   (18.32) 

where α0 is a given constant. 

The regression ANOVA, unfortunately, has two drawbacks: 

 The F-test that is performed by the ANOVA is a two-sided test.  The 

ANOVA is not designed for a one-sided alternative hypothesis such as 

H1:  β < 0. 

 The F-test can test only if a parameter is zero.  Thus, the ANOVA cannot 

test whether the intercept specified in the null hypothesis is any value 

other than zero. 

Excel’s output, fortunately, provides some auxiliary information that allows us 

to overcome these drawbacks.  We illustrate the use of this information in 

Sections 18.13 and 18.14.  In this section, we run the slope analysis for a 

two-sided alternative hypothesis and the intercept analysis for a zero null 

hypothesis.  

We construct the regression line and perform the analysis using Excel’s 

regression data analysis routine, as shown in the following steps:  

Step 1.   From the tool bar, select the ―Data‖ tab (or ―Tools‖ in some versions of 

Excel). 

Step 2.   Click on ―Data Analysis.‖ 

Step 3.   Under analysis tools, scroll down and select ―Regression.‖ 

Step 4.   Next to ―Input Y Range,‖ enter the range that contains the Y values.  In 

Table 18.7, select cells C1..C12.  

Step 5.   Next to ―Input X Range,‖ enter the range that contains the x values for 

Example 18.2a.  In Table 18.7, we select cells A1..A12.  

Step 6.   Check the ―Labels‖ box if variable labels are included in Steps 4 and 5, 

as we have here. 

Step 7.   Be sure that the box labeled ―Constant is zero‖ is not checked. 

Step 8.   If a test of hypothesis is needed, check the ―Confidence Level‖ box and 

enter the value of 100(1 – α) next to that box.  For α = 0.05, enter the 

number 95. 

Step 9.   Indicate where you wish the output to print.   
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Step 10. Check the ―Line Fit Plots‖ box to obtain a display of the data and the 

least squares line.  However, the plotting procedure described in 

Section 18.11 is more amenable to reformatting and embellishment.   

Step 11. Click ―OK‖ to execute the routine.   

We extracted the following table from Excel’s output. 

Table 18.8.   Regression ANOVA:  Pressure vs. time (Example 18.2a) 

 

Excel’s output for Example 18.2a is explained below. 

 The F-statistic in the ANOVA table has 1 degree of freedom in the 

numerator and n – 2 = 9 degrees of freedom in the denominator.  The 

F-statistic is calculated as f = 1.474.  As noted, the F-statistic tests if 

the slope of the regression line differs from zero.   

 The critical value for this test is F0.95(1, 9) = 5.12.  Excel’s ANOVA table 

does not report this value, but it can be obtained from Table T-4 of the 

appendix, or calculated by the Excel function =FINV(0.10,1,9) = 5.12.  

Because 1.47 < 5.12, we cannot conclude that β ≠ 0.  

 Excel reports the probability (labeled ―significance F‖) of arriving at an    

F-value as low as the calculated F = 1.47 when β = 0.  In this example, 

that probability is 0.256, clearly not smaller than  = 0.05.  Hence, we 

conclude that the rate of change of pressure with respect to time is not 

significantly different from 0.  In other words, there is no statistical 

evidence of a trend.  

 Under the heading of ―Coeff.,‖ Excel’s output gives the intercept (34.8285) 

and the slope (-0.0076) of the regression line.  (The slope results are in 

the row labeled ―Time‖.)  Because both are estimates of the 

corresponding model parameters, they have associated standard errors, 

which Excel lists under the heading of ―Std. Error.‖   

 The standard errors are important, as we use them (Sections 18.13 and 

18.14) to test a one-sided alternative hypothesis or a null hypothesis 

that differs from zero. 
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 The ratio of a coefficient to its standard error, given under the heading of   

―t Stat,‖ is the t-statistic for testing if that coefficient equals zero.   

 The t-statistic for the intercept tests the hypothesis H0:   = 0.  In this 

example, the estimated intercept is 34.8285, the standard error of the 

intercept is 0.5843, the t-statistic is 59.6103, and the reported P-value is 

0.000 (actually, 5.3E-13).  Of course, we realize that, physically, the 

pressure at time 0 hours (and, for that matter, at any other time) cannot 

be 0. 

  Excel’s ANOVA does not report the critical value for any of the regression 

tests.  Instead, Excel provides the probability of obtaining (when the 

null hypothesis is correct) a statistic (be it F or t) as small a value as 

calculated.  In the first part of the table, Excel labels this probability as 

―Significance F.‖  In the second part of the table, Excel labels this 

probability as ―P-value.‖  If a reported probability is smaller than the 

level of significance α, the null hypothesis is rejected. 

 The columns labeled ―Lower 95%‖ and ―Upper 95%‖ give 95% lower and 

upper confidence limits of 33.5068 and 36.1502 for the intercept.  

These columns also give 95% lower and upper confidence limits of the 

slope as -0.0218 and 0.0066.  Note that this interval includes 0, 

confirming the conclusion of the ANOVA that the data do not 

contradict the null hypothesis of no trend in the pressure readings over 

time. 

In parallel with the ANOVA for testing pressure versus time, we run an 

ANOVA for pressure versus temperature (Example 18.2b).  The steps in 

preparation for this analysis are identical to the steps used in Example 18.2a, 

except that in Step 5, the ―X Range‖ refers to the temperature readings in cells 

B2..B12 from Table 18.7.   

Table 18.9 shows Excel’s output for Example 18.2b. 

Table 18.9.   Regression ANOVA:  Pressure vs. temperature 
(Example 18.2b) 

 

In contrast to Example 18.2a, the slope of the regression line (0.1237) is 

statistically significant.  This follows from Table 18.9 where the P-value for the 

slope (temperature) is less than 0.05 or, equivalently, where the confidence 
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interval for the slope does not include 0.  We conclude that there is a statistically 

significant trend in the temperature readings over time.  

18.13  Hypothesis testing and confidence intervals for 
the slope 

As noted earlier, the regression ANOVA provides only a two-sided test and is 

restricted to testing the null hypothesis that the parameter of interest is zero.  In 

the next two sections, we show how to use Excel’s output to relax these 

restrictions.  Refer to Tables 18.8 and 18.9 for examples. 

We begin by listing some properties of the estimator of the slope in a regression 

model (from Neter, et al. (1996), p. 45).  The estimator B of the slope β is a 

random variable.  

 B is a minimum variance unbiased estimator of β. 

 B is normally distributed.  

 The variance
2

B  of B (from Neter et al. (1996), p. 46) is: 

2 2 /B xxS  (18.33) 

where Sxx is defined by Equation (18.12). 

 The estimator of 
2

B is:    

2
/

B xxErrorS SMS  (18.34) 

    Note that, in the ANOVA table, Excel uses the label ―Residual,‖ whereas 

we use the label ―Error.‖ 

 The standard error of B is:  

/
xxB ErrorMS SS  (18.35) 

Using these properties, we construct the standardized statistic for testing  β= β0 

0

B

B
T

S
 (18.36) 

Then T has a Student’s t-distribution with (n – 2) degrees of freedom.  
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Excel provides the t-statistic for testing H0:  β = 0 in the column labeled ―t Stat,‖ 

which is calculated by B/SB from Equation (18.36) when β = 0. 

Now suppose the null hypothesis is H0:  β = β0 ≠ 0.  To test this, calculate the 

t-statistic by substituting β0 for β in Equation (18.36).  The three possible 

alternative hypotheses and their rejection regions are:  

H1:  β ≠ β0.   Reject H0 if  |T
 
| > t1-α/2(n – 2). (18.37) 

H1:  β > β0.   Reject H0 if  T > t1-α(n – 2). (18.38) 

H1:  β < β0.   Reject H0 if T < 0 and |T
 
| > t1-α(n – 2). (18.39) 

We continue with Example 18.2b, where pressure is regressed against 

temperature.  The values of xi are given in Column A in Table 18.7, for 

which x 82.40, x
2
 = 75374.00, and using Equation (18.12), Sxx = 86.64.  

From Table 18.9, we have MSError = 0.519, and from Equation (18.34), we have 

0.519 / 686.64 0.0275.
B

S   This value can also be found in the bottom 

row of Table 18.9 in the column ―Std. Error‖ and the row ―Temperature.‖ 

Excel also provides a 100(1 – α)% confidence interval about β.  The lower part 

of Table 18.9 shows the 95% lower and upper confidence limits.  If β0 does not 

lie between those limits and H1 is two-sided, we reject H0.  The statistics used 

for hypothesis testing can also be used to construct a confidence interval about 

the parameter β as follows: 

B  t1-α /2(n – 2)SB, for a 100(1 – α)% confidence interval (18.40) 

If H1 is one-sided, the t-statistic from Equation (18.36), also given at the bottom 

of Table 18.9, can be used as follows: 

B – t1-α (n – 2)SB, for a 100(1 – α)% lower confidence limit (18.41) 

B + t1-α (n – 2)SB, for a 100(1 – α)% upper confidence limit (18.42) 

Example 18.3.   Coefficient of expansion of metal rods.   Suppose we 

wish to test a manufacturer’s claim that the expansion coefficient β of metal rods 

produced by his process is significantly lower than β0 = 1.23E-5 = 0.0000123 

inch/°F.  From a sample of size n = 20 readings, we calculate b = 8.03E-6 = 

0.00000803, s
 2 

= MSError = 1.3E-6 = 0.0000013, and Sxx = 280810.  

We use a one-sided test of H0:  β = β0 against the alternative H1:  β < β0.  If we 

reject H0, this will provide 95% assurance that the rods will not expand by more 

than β0, thus confirming the manufacturer’s claim.  The test is H0:  β = β0 versus 

H1:  β < β0 at α = 0.05.  From Equation (18.35):  
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 0.0000013 / 280810 0.000002152.
B

S    

 

From Equation (18.36), the value of T is:   

0.00000803 0.0000123
1.985

0.000002151
t  

 

The critical value of the test (from Table T-3 of the appendix, for  = n – 2 = 18) 

is t0.95(18) = 1.73.  From Equation (18.39), we reject H0 because -1.985 < -1.734 

and conclude that the statistical evidence supports the manufacturer’s claim that 

the expansion coefficient is, at most, 0.0000123 inch/°F. 

18.14  Hypothesis testing and confidence intervals for 
the intercept 

As we did for the slope, we begin by listing some properties of the estimator of 

the intercept for a regression model.   

 The estimator A of the slope α is a random variable. 

 A is a minimum variance unbiased estimator of α. 

 A is normally distributed. 

 The variance 2

A
 of A is (Neter et al. (1996), p. 53): 

2

2 2

2
( )

( )

i

i

x
A

n x x

 
(18.43) 

An alternative formula from the same source for 2

A
 is:   

2
22

2

1
( )

( )i

x
A

n x x

 
(18.44) 

We estimate 2

A
by replacing σ 

2
 by MSError in Equation (18.44) to get:   

2
2 1
A Error

xx

x
S MS

n S
 (18.45) 
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 The standard error of A is:   

21
A Error

xx

x
S MS

n S
 (18. 46) 

 Using these properties, we construct the standardized statistic for testing A: 

21 / /Error xx

A
T

MS n x S

 
(18.47) 

Then T is distributed as Student’s T with ν = (n – 2) degrees of freedom.  

Now suppose the null hypothesis is H0:  α = α0.  To test this, calculate the 

t-statistic by substituting α0 for α in Equation (18.42).  We list the three possible 

alternative hypotheses and their rejection regions:    

H1:  α ≠  α0.  Reject H0 if |T | > t1-α/2(n – 2). (18.48) 

H1:  α > α0.  Reject H0 if T  > t1-α(n – 2). (18.49) 

H1:  α < α.  Reject H0 if T < 0 and |T | > t1-α(n – 2). (18.50) 

The statistics used for hypothesis testing can also be used to construct 

confidence intervals about the parameter α as follows: 

A  t1-α /2(n – 2)SA, for a 100(1 – α)% two-sided confidence interval  (18.51) 

A – t1-α (n – 2)SA, for a 100(1 – α)% lower confidence limit (18.52) 

A + t1-α (n – 2)SA, for a 100(1 – α)% upper confidence limit (18.53) 

As in the case of the regression slope, Excel’s printout produces both hypothesis 

tests and confidence intervals for the intercept.  In the lower part of Tables 18.8 

and 18.9, we find the lower and upper confidence limits about the intercept for 

the level selected (the default value is 95%).  For Example 18.2b, the 95% lower 

and upper limits for the temperature intercept are 18.93 and 22.23, respectively.  

This also means that a null hypothesis with a prespecified value α0 that is not 

within these limits would be rejected.   
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18.15  Regression through the origin 

zero-

intercept 

model 

Prior knowledge about the relation between x and Y may dictate 

that the model for the data would be a zero-intercept model 

because when x = 0, Y = 0.  For example, when we buy a product or 

material by weight, when the weight of a product is 0, so is the 

cost.  The zero-intercept model is written as: 

                     Yi = βxi + εi, i = 1, 2, …, n   

 

(18.54) 

                       where: 

                       Yi = the value of the dependent variable for the i 
th

 point 

xi = the value of the independent variable for the i 
th 

point 

β = an unknown constant (slope) 

n = number of (xi, Yi) points 

εi = the error associated with the i 
th

 point 

 
In analyzing the data, we usually assume that εi ~ N(0, σ

2
). 

The least square estimate of the parameter β is (from Neter et al. (1996)):  

2

i ix Y
B

x
 (18.55) 

which is an unbiased estimator of β. 

regression 

through 

the origin 

The least squares fit to the data, called regression through the 

origin, is:  

                       
ˆ
i iY Bx  (18.56) 

An unbiased estimator of σ 
2
 is: 

2 2ˆ( ) ( )

1 1

i i i i

Error

Y Y Y Bx
MS

n n
 (18.57) 

    Note that the denominator of Equation (18.57) has n – 1 degrees of freedom 

compared to n – 2 in the unrestricted model (i.e., a model that is not 

forced through the origin).  This is because in the unrestricted model 

we estimate only one parameter (β) rather than two parameters            

(α and β). 
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The MSError is the mean square error in the ANOVA table.  Excel gives this 

value under the column labeled ―MS‖ and the row labeled ―Residual.‖ 

The structure of the ANOVA table is similar to that of Table 18.5, except for the 

total and error degrees of freedom. 

Table 18.10.   A regression through the origin ANOVA table  

Source of 

variation 

Sum of 

squares 

Degrees of 

freedom 
Mean square F 

Regression SSReg νReg = 1 
Reg

Reg
Reg

SS
MS  Reg

Error

MS
F

MS
 

Error 

(residual) 
SSError νError = n – 1 

Error
Error

Error

SS
MS   

Total SSTotal νTotal = n   

 
We can construct the regression through the origin line and analyze that line 

using Excel’s regression procedure in the data analysis nodule.  This procedure 

is described in 11 steps in Section 18.12, except that in Step 7, we need to check 

the box labeled ―Constant is zero.‖  

Example 18.4 illustrates the regression analysis for the zero-intercept model. 

Example 18.4.   Home size and heating cost.   Table 18.11 gives the size 

of 10 single family homes (in ft
2
) in the same neighborhood and their annual 

heating cost (in dollars).  We know that when the home size is 0 (i.e., there is no 

home), the heating cost must be 0. 

Table 18.11.   Home size and heating cost 

Home 1 2 3 4 5 6 7 8 9 10 

Size (ft2) 900 1250 1410 1449 1670 1880 2050 2135 2660 2905 

Cost ($) 1050 1535 1617 1940 1714 2020 2333 2440 2736 3012 

Table 18.12 presents Excel’s ANOVA.  Note the degrees of freedom for ―Total‖ 

and error (labeled ―Residual‖) components. 
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Table 18.12.   Excel’s ANOVA for regression through the origin 

 

Excel leaves the line called ―Intercept‖ in the same format as the unrestricted 

regular regression analysis, but leaves the intercept as 0 and all other intercept 

statistics as not applicable (#N/A). 

As expected, there is a linear trend to the heating cost over the home size.  In 

looking at the raw data (Table 18.11), we can see that the yearly heating cost is 

nearly equal to the size of the home.  From the last line of the ANOVA, we see 

that, with 95% confidence, the annual heating cost is between 1.03 and 

1.16 times the size of the house. 

Regression through the origin is usually discouraged for several reasons: 

 The model may not be appropriate.  Thus, in Example 18.4, there may be 

some overhead or other fixed minimum fees that may escape our 

attention.  If actual measurements are involved, we may have 

calibration issues that may be masked by forcing the regression line 

through the origin. 

 The unrestricted least squares line is constructed to be the ―best‖ possible 

fit.  As such, it is better than a line that is subject to intercept 

restriction. 

To prove the last point, we ran an ANOVA on the data in Example 18.4 without 

forcing the regression line through the origin, as shown in Table 18.13.  In this 

configuration, the MSError (=18282) is nearly 35% smaller than that for the 

regression through the origin, for which MSError = 28283. 
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Table 18.13.   Excel’s ANOVA for unrestricted simple linear 
regression  

 

 

18.16  Multiple linear regression 

multiple 

linear 

regression  

In the previous sections of this chapter, we examined the relation 

between one dependent variable and a single independent variable.  

Multiple linear regression (MLR) examines the relation between 

one dependent variable and two or more independent variables.  

The calculations involved in MLR are long and complex.  The derivation of the 

regression coefficients and their analysis typically uses matrix algebra, which is 

beyond the scope of this book.  Because Excel’s regression routine offers only 

limited MLR support, we limit the coverage of MLR to scenarios that Excel can 

handle.  We use Example 18.2 for illustration. 

The general model for MLR is given by Equation (18.2).  For two independent 

variables, the model is: 

Yi = α + βxi + γui + εi, i = 1, 2, …, n (18.58) 

For Example 18.2, Y denotes pressure (psi) at time x (hours) and temperature u 

(°F).  As usual, we assume that i ~ N(0, σ
 2
). 

The data is analyzed using Excel by following the 11 steps listed in 

Section 18.12, except that in Step 5, the ―X Range‖ is selected as cells A1..B12.  

This selection includes both time and temperature data. 

Table 18.14 is a modified version of Excel’s output. 
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Table 18.14.   ANOVA for MLR with two independent variables 

 

It is useful to compare the analysis of the three-parameter model in Table 18.14 

to that of the two-parameter models in Tables 18.8 and 18.9.  The MLR in 

Table 18.14 regresses pressure simultaneously on time and temperature, while 

the simple linear regressions in Tables 18.8 and 18.9 regress pressure separately 

on time and temperature.  Recall that, from Table 18.9, the effect of temperature 

on pressure is statistically significant, while from Table 18.8, the effect of time 

is not. 

In the three-parameter ANOVA we have 2 degrees of freedom for regression.  

In the two-parameter case we have only 1 degree of freedom.  Recall that the 

number of regression degrees of freedom is the same as the number of 

coefficients (excluding the intercept) in the model.  The number of degrees of 

freedom for error (residual) in the three-parameter case is 8, compared to 9 in 

the two-parameter case.   

   The number of error degrees of freedom in the ANOVA may be important 

for statistical tests, especially with a small sample.  The more parameters 

included in the model, the smaller the number of degrees of freedom left for 

error. 

From the column Coeff. in Table 18.14, the regression equation for the three-

parameter case is y = 24.932 -0.005x + 0.118u, where x is time and u is 

temperature.  We compare this equation with the regression equation from Table 

18.9, which is y = 24.078 + 0.124u.  The question is whether we improve the 

regression fit by including time in the model, or should we just ignore time as 

insignificant.   

Excel does not test ―over and above‖ contributions of independent variables but 

we can do it ourselves by extracting the necessary entries from Excel’s output.  

Most commercial statistical software can do this with a single command. 

We focus on the incremental contribution of time.  First, we note that the 

regression sums of squares from the three-parameter and two-parameter cases 

are 11.440 and 10.510, respectively.  The difference 11.440 - 10.510 = 0.930 is 

attributed to the incremental contribution of time.  This difference has one 

associated degree of freedom.  The mean square for this contribution is  
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0.930/1 = 0.930. The ratio of the mean square divided by the mean square error 

of the three-parameter case is distributed as an F statistic with 1 and n - 3 

degrees of freedom.  In this example, F is calculated as 0.930/ 0.468 = 1.987.  

From Table T-4 of the appendix, the critical value f0.95(1,8) = 5.32.  Since 

1.987 < 5.32, the contribution of time over and above temperature is not 

significant at the 0.05 level.  

Excel can provide a multiple linear regression by following the 11 steps in 

Section 18.12 and selecting the data that correspond to the dependent variable 

and all the independent variables.  Since the regression calculations involve 

matrix manipulations and matrix inversions, the number of independent 

variables that Excel can handle is limited. 

Finally, we offer a note of caution.  In running a multiple linear regression, be 

sure that no independent variable is a linear combination, either exactly or 

approximately, of one or more of the other independent variables.  For example, 

if x1 is temperature measured in degrees Celsius and x2 is temperature measured 

in degrees Fahrenheit, Excel’s routine will not work correctly.  At best, the 

statistical package issues a warning of ―colinearity,‖ or ―singularity,‖ which 

means that the results are not to be trusted.  At worst, the package provides 

meaningless or incorrect results without a warning. 

18.17  Prediction 

We return to Example 18.2b, where we found that temperature (x) is a 

significant independent variable in predicting containment pressure (Y).  From 

Figure 18.9 and Table 18.9, the prediction equation is: 

Ŷ = 24.078 + 0.124x (18.59) 

For each value of x, the prediction equation calculates a predicted value of Y.  

We sometimes use the notation Y | x (read ―Y given x‖) to designate the predicted 

value for x.  Thus, for x = 78.7, we obtain Y | 78.7 = 33.84, and for x = 85.0, we 

obtain Y | 85.0 = 34.62.   

 

 

extrapolation 

Since the x values in the dataset (in °F) from Table 18.7 are 

between 66.6 and 95.4, prediction should be made only for that 

temperature range.  A prediction of pressure when the 

temperature is 120°F, for example, is an extrapolation.  

Extrapolations should be avoided because we have no assurance 

that the regression model is applicable outside the domain of the 

observed independent variables. 

Even assuming that the regression model is correct, there are two potential 

sources of error in using a prediction equation to predict Y at a given value of x.  

First, the coefficients in the equation are estimates of the true coefficients, and 
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second, the equation does not account for the random error term in the model.  

In fact, Ŷ is more accurately a prediction of the expected value of Y.  At best, we 

may expect the predicted value of Y to be near its observed value. 

 

prediction 

limits 

prediction 

interval 

Since the prediction is almost certainly in error, we hedge our 

prediction.  We do that by obtaining limits (bounds) called 

prediction limits that we are fairly sure, say, with 1 – α probability 

(typically 0.95), that the true (but unknown) value of Y | x is 

between those limits.  The interval defined by these prediction 

limits is called a prediction interval. 

A prediction interval may be two-sided or one-sided. A one-sided interval may 

be bounded by either a lower or an upper prediction limit.   

Prediction limits for a two-sided 100(1 – )% confidence interval for Y|x are 

given by (see Neter, et al. (1996), pp. 61–67):  

2

(1 /2)

1 ( )
( 2) 1

xx

x x
A Bx t n S

n S
 (18.60) 

where S is the square root of the error mean square cell in the regression analysis 

table and Sxx is defined in Equation (18.12).  In our example, we have s
2
 = 0.519 

(from Table 18.9), and from Table 18.7, we calculate sxx = 686.64 and           

x = 82.40. 

Similarly, a prediction limit for a one-sided lower 100(1 – )% confidence 

interval for Y | x is:  

2

(1 )

1 ( )
( 2) 1

xx

x x
A Bx t n S

n S
 (18.61) 

and a prediction limit for a one-sided upper 100(1 – )% confidence interval for 

Y|x is: 

2

(1 )

1 ( )
( 2) 1

xx

x x
A Bx t n S

n S
 (18.62) 
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confidence 

belt 

If we plot Equation (18.60), we will see two curves, one lying 

entirely above and the other lying entirely below the regression 

line.  Together, these curves form a confidence belt that is 

narrowest when x = .x  (Although this may be hard to detect from 

the graph, it should be obvious from the equation.)  Figure 18.10 

shows a confidence belt for Example 18.2b. 

 

Figure 18.10.   Confidence belt for Example 18.2b 

From Equation (18.59), Y | 88.0 = 24.078 + 0.124(88.0) = 34.99.  From 

Equation (18.60), the associated two-sided prediction interval is:  

21 (88.0 82.4)
24.078 0.124(88.0) (2.26) 0.519 1

11 686.64
 

which is reported, in interval form, as (33.254, 36.726). 

 



 

 

19 
Simple linear correlation 

19.1  What to look for in Chapter 19 

Chapter 19 provides tools to examine and quantify the relation between two 

normally distributed variables.  In this chapter, we will learn about:  

 scatter diagram, §19.2 

 correlation coefficient, §19.3 

 covariance, §19.3 

 using spreadsheet routines for correlation calculations, §19.4 

 Fisher’s Z transformation, §19.5 

  

We will acquire tools to test these hypotheses: 

 a correlation coefficient is zero, §19.5 

 a correlation coefficient is a constant other than zero, §19.5 

 two correlation coefficients are equal, §19.7 

 

We will learn to construct: 

 a confidence interval for a correlation coefficient, §19.6 
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19.2  Basics of Simple linear correlation 

 

scatter 

diagram 

scatter plot  

correlation 

coefficient 

correlation, 

perfect  

Chapter 19 examines the relationship between two normally 

distributedrandom variables, X and Y, where neither variable is 

necessarily a dependent or an independent variable.  Given a 

sample of n points, {(xi, yi)}, we plot these points on a grid to 

produce a scatter diagram or scatter plot and examine it to see 

whether the data suggest a relation.  A commonly used measure 

of a relationship is the correlation coefficient, denoted by r, a 

number lying between -1 and +1, inclusively.  The variables are 

said to have perfect correlation if r = +1 or r = -1. 

To gain insight into the meaning of the correlation coefficient, we consider three 

different types of scatter diagrams.  The first scatter diagram, constructed from 

50 points, is illustrated in Figure 19.1.  This plot exhibits no apparent relation 

between the variables.  In other words, knowing the value of one variable does 

not provide any information about the value of the second variable.  This 

absence of a relationship is quantified by the correlation coefficient, which in 

this case is almost 0.  

 

Figure 19.1.   Scatter diagram with near-zero correlation 

 
Although the points in Figure 19.1 are a random sample from uncorrelated 

X’s and Y’s, the calculated correlation coefficient is not identically 

zero.  Due to random fluctuations, very rarely will the calculated 

correlation be zero. 

The second and third types of scatter diagrams are illustrated in Figure 19.2.  

Each of the two scatter diagrams exhibits a strong linear relationship between 

the variables.  In the right-hand diagram, the points all lie close to a straight line 

with a positive slope (not shown).  This strong linear relationship is quantified 

by its correlation coefficient of r = 0.98, almost equal to the maximum value of 
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+1. Had these points all fallen precisely on a straight line, they would have had 

perfect positive correlation.  Similarly, the points in the left-hand diagram all fall 

close to a straight line and have an almost perfect negative correlation with  

r = -0.97. 

 

Figure 19.2.   Scatter diagram for nearly perfect linear correlation  

Note the adjectives ―simple‖ and ―linear‖ in the title of this chapter.  ―Simple‖ 

means that we deal with only two random variables and all our data plots have 

only two axes.  Multi-variable correlation would involve three or more variables 

and investigate the simultaneous relationships among several variables or the 

relationship between two variables in the presence of one or more other 

variables.   

―Linear‖ is used because the formula for the correlation coefficient is a measure 

of linearity and takes on its extreme values only when its variables are linearly 

related (see Section 9.3).  Indeed, some writers (e.g., Gilbert (1976, p. 276)) 

loosely define correlation as ―closeness to linearity.‖  This is illustrated by 

Figure 19.2.  From Figure 9.1, we see that the absence of any pattern, i.e., non-

linearity, leads to a correlation near zero.  However, the converse is not true.  It 

is possible for two variables to be functionally related and yet have zero 

correlation.  This is illustrated in Figure 19.3, where the formula for the 

correlation coefficient yields r = 0.00.  Although Y is a function of X, they are 

not linearly related. 



372 Applying Statistics 
 

 

 

Figure 19.3.   Nonlinear relationship with zero correlation 
 
In the remainder of this chapter, we omit the adjectives simple and linear as 

applied to correlation.   

19.3  The correlation coefficient   

This section provides the necessary tools to produce the quantitative measure of 

the correlation between two variables.  Given a sample of n points (Xi, Yi), we go 

on to construct the correlation coefficient.  We start with some intermediate 

steps where we calculate products and cross-products of X and Y and present 

both definition and working formulas.  The index i in these formulas runs from 

1 to n. 

2( ) (definition formula)XX iS X X  (19.1) 

2
2 1

(working formula)XX iiS X X
n

 (19.2) 

2( ) (definition formula)YY iS Y Y  (19.3) 

2
2 1

(working formula)YY iiS Y Y
n

 (19.4) 

( )( ) (definition formula)XY i iS X X Y Y  (19.5) 

1
(working formula)XY i i i iS X Y X Y

n
 (19.6) 
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sample 

correlation 

coefficient 

The sample correlation coefficient for the two variables X and Y 

is given by: 

                         

XY
XY

XX YY

S
R

S S

 
(19.7) 

Once the sample correlation coefficient RXY is calculated for a dataset, it is no 

longer a random variable and is thus written as rxy. 

The statistic RXY has no units.  For example, if X is measured in meters and 

Y in grams, both the numerator and denominator of RXY have units of 

meters times grams and therefore cancel out. 

    RXY is symmetric in X and Y; if we reverse the roles of X and Y, then          

RXY = RYX. 

If all x or y values are the same, we cannot calculate the sample correlation 

coefficient because the denominator is identically zero. 

It is easy to show that if yi = xi for all i then rxy= 1.  Similarly, if yi = - xi for 

all i, then rxy= -1.  More generally, if yi =  +  xi for positive  then  

rxy= 1. Similarly for negative , rxy= -1.  In other words, if Y is a linear 

function of X, then X and Y have perfect correlation (positive or 

negative). 

As stated in Section 9.2, RXY  1.  A proof of this relation can be found in 

Mood et al. (1974, p. 162). 

There also is a correlation coefficient for the population (X, Y).  This 

coefficient is denoted by the lower-case Greek letter XY (read:  rho-

sub-XY) and satisfies all of the properties of the sample correlation 

coefficient listed above. 

If X and Y are independent, i.e., there is no relationship between X and Y, 

then ρXY = 0.  A positive value of ρXY  indicates that larger values of X 

tend to be paired with larger values of Y, and a negative value of ρXY  

indicates that larger values of X tend to be paired with smaller values 

of Y.  

Some writers denote the sample correlation coefficient by ˆ  (read: rho-hat).  

As introduced earlier, the ―hat‖ symbol is used to emphasize that ˆ is 

an estimator of the population parameter XY. 

Note that SXX is the formula for the sum of squares of deviation about the 

mean for the variable X, and that SXX /(n - 1) is the sample variance for 

X, and similarly for SYY.  

In the remainder of this chapter, when there is no ambiguity, we omit the 

descriptive word sample from ―sample correlation coefficients.‖ 
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covariance The ratio SXY/(n – 1) is called the covariance between X and Y.  

If we change all the X’s to Y’s (or all the Y’s to X’s) in         

SXY/(n – 1), we will obtain the variance of Y (or the variance     

of X). 

The following example illustrates the calculation of the correlation coefficient. 

Example 19.1.   Cost of crude oil and gasoline.   Table 19.1 gives the 

average prices of a barrel of crude oil and the retail price of a gallon of gasoline 

at the pump in a fictitious location over 8 consecutive years.  Calculate the 

correlation coefficient for the two prices.   

Table 19.1.   Fuel cost at the source and at the pump  

  Crude 

oil, 

Gasoline,       

Year $/barrel $/gallon              Initial calculations 

i x y x
2
 xy y

2
 

1 19 0.82 361.00 15.5800 0.6724 

2 24 0.97 576.00 23.2800 0.9409 

3 31 1.15 961.00 35.6500 1.3225 

4 32 1.33 1024.00 42.5600 1.7689 

5 33 1.3 1089.00 42.9000 1.6900 

6 28 1.15 784.00 32.2000 1.3225 

7 30 1.35 900.00 40.5000 1.8225 

8 23 1.29 529.00 29.6700 1.6641 

Sums ∑ x = ∑ y = ∑ x 
2
 =  ∑ xy = ∑ y 

2
 = 

  220 9.36 6224.00 262.3400 11.2038 

Our intermediate calculations are: 

from Equation (19.2), Sxx = 6224 – (220)
2
/8 = 174  

from Equation (19.4), Sxy = 262.34 – (220)(9.36)/8 = 4.94 

from Equation (19.6), Syy = 11.2038 – (9.36)
2
/8 = 0.2526 

From Equation (19.7), the correlation coefficient is:   

4.94
0.7451, reportable with two significant figures as  = 0.75.

(174)(0.2526)
xyr r  

A number of cautions are in order when using a correlation coefficient.  For 

example, the interpretation of its magnitude may well depend on the application.  

In an exact science, such as physics or chemistry, a correlation coefficient 
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smaller than, say, 0.95, may suggest sloppy experimentation or irreproducible 

results.  In other disciplines, such as psychology or medical clinical trials, a 

correlation coefficient as large as 0.5, say, may be evidence of an important 

finding.   

The correlation coefficient may be the most abused and misinterpreted statistic, 

as it is often interpreted as demonstrating cause and effect.  But correlation is 

not causality.  To illustrate the point, take an extreme case:  A study conducted 

at the beginning of the 20
th

 century showed a strong correlation between the 

annual number of children born in Sweden and the annual number of storks 

reported in that country’s bird sanctuaries.  Should we conclude that babies are 

brought by storks?   

Another potential pitfall is the interpretation of the magnitude of a correlation 

coefficient.  For example, we cannot conclude that a correlation coefficient of 

0.80 is ―twice as good‖ as that of 0.40. 

 

 

 

intra-class 

correlation 

global 

correlation 

Before calculating the correlation coefficient for a sample, be 

sure that the sample comes from a homogeneous population and 

not from two or more distinguishable sub-populations.  It is in 

fact possible that each of several sub-samples is negatively 

correlated, but the combined sample is positively correlated.  

This phenomenon of misleading combined correlation is 

illustrated in Figure 19.4, where the correlation coefficient for 

each subsample (intra-class correlation) is negative, because 

each cluster of points leans to the upper left.  In contrast, the 

global correlation coefficient which is calculated from the 

combined groups is positive because we have two clusters of 

points and those clusters lean to the right, resulting in a positive 

correlation.   

 

Figure 19.4.   Intra-class correlation and global correlation 

 



376 Applying Statistics 
 

 

In the remainder of this chapter, we drop the subscript XY (or xy) of RXY, rxy, and 

ρxy, as it is obvious. 

19.4  Excel’s routines for calculating correlation 

When there are only two variables, the correlation coefficient may be calculated 

by Excel’s function =CORREL(range1..range2) where range1 and range2 are 

the locations of the first and the second variables, respectively.  Note that either 

variable may be listed in a row or a column.  For example, one variable may be 

listed is listed in a column as A1,..., A11 and a second variable is listed in a row 

as E21,..., O21. The call = CORREL(A1..A11,E21..O21) returns the required 

correlation coefficient.  Note that the variable name may be included as the first 

cell in the column (or row) of both variables. This name, however, must include 

non-numeric characters to assure that the name will not be included in the 

calculations.    

When we have more than two variables, Excel offers a routine that calculates the 

correlation coefficients for all combinations of variables.  The Excel data routine 

for multiple variables requires the data to be in a single array, like the one on the 

left side of Figure 19.5.  In this example, we have four variables W, X, Y, and Z 

with 10 observations each in the array A1..D11.  We listed variable names in the 

first row of the array.   

 

Figure 19.5.   Excel’s correlation input and output 

Excel’s correlation routine for multiple variables is conducted in the following 

steps: 

Step 1.  From the tool bar, select the ―Data‖ tab (or ―Tools‖ in some versions of 

Excel). 

Step 2.  Click on ―Data Analysis.‖ 

Step 3.  Under analysis tools, select ―Correlation‖ and click ―OK.‖ 
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Step 4.  Next to ―Input Range,‖ enter the range that contains the data.  In Figure 

19.5 we select cells A1..D11.  

Step 5.  Next to ―Group by,‖ select either ―Columns‖ or ―Rows.‖  In Figure 

19.5 we select ―Columns.‖ 

Step 6.  Check the ―Labels‖ box if variable labels are included in Step 5.  In our 

example, this box is checked. 

Step 7.  Indicate where you wish the output to print.  In our example, we 

selected cell F1. 

Step 8.  Click ―OK‖ to execute the routine.  

Excel’s output gives the correlation coefficients as shown on the right side of 

Figure 19.5.  The main diagonal of the matrix is 1, as every variable correlates 

perfectly with itself.  The correlation matrix is symmetric about the main 

diagonal because the correlation between X and Y  is always the same as the 

correlation between Y and X.  However, for display purposes, Excel leaves the 

upper right triangle of the matrix blank. 

19.5  Testing the correlation coefficient 

In this section, we show how to test whether the correlation coefficient of two 

normal variables is equal to a pre-specified constant ρ.  There are two available 

procedures.  The first procedure uses a Student’s t-statistic that is applicable 

only for testing whether  = 0.  The second procedure, called Fisher’s Z 

transformation, is more complex but it is applicable for any  between                

-1 and +1.  Neither test requires that the mean or the standard deviation of either 

variable be known. 

For the first procedure, the null hypothesis is: 

H0:   = 0 (19.8) 

with two- and one-sided alternatives.  Student’s t-test, with ν = n – 2 degrees of 

freedom is: 

2

2

1

n
T R

R
 (19.9) 
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Depending on the alternative hypothesis, we reject H0 if: 

H1:  ρ ≠ 0 and | t | > tα/2(n – 2) (19.10) 

H1:  ρ < 0 and  t < -t1-α(n – 2) (19.11) 

H1:  ρ > 0 and  t > t1-α(n – 2) (19.12) 

If H0 is rejected, we conclude that X and Y are correlated.   

Example 19.2.   Testing ρ = 0.   Suppose a sample of size n = 10 yields 

r = 0. 25.  With H0:   = 0, H1:   ≠ 0, and  = 0.05, we have: 

2

10 2
0.25 0.7303

1 (0.25)
t   

 

Since | t | = 0.73 is smaller than t0.975(8) = 2.31, we have insufficient evidence to 

reject the claim that  = 0.  Notice, however, that the test is very insensitive to 

departure from  = 0.  If we run a ―what if‖ analysis, we will find that for 

n = 10, ν = 8, the sample correlation coefficient must be as large as 0.64 (for 

which t = 2.36) to reject H0.  From another point of view, a sample correlation of 

r = 0.25 would be rejected only if it were calculated from a sample of at least 

n = 63, ν = 61 for which t = 2.00 and t0.975(61) = 2.00, to have reached 

significance.    

Fisher’s Z 

transformation 
To test whether the correlation coefficient differs from a non-

zero constant, we use a procedure called Fisher's Z 

transformation or Fisher’s Z.  The reason for the 

transformation is that the sample correlation coefficient, R, is 

not distributed normally unless  = 0.  Fisher’s Z , on the other 

hand, does follow the normal distribution.  Fisher’s Z 

transformation is given by the expression 

                          

1 1
ln

2 1

R
Z

R  

(19.13) 

 

The respective mean, variance, and the standard error of the random variable Z 

are given by: 
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1 1
[ ] ln

2 1
E Z  

(19.14) 

1
[ ]

3
VAR Z

n
 (19.15) 

1
[ ]

3
SE Z

n  
(19.16) 

where  is the population correlation coefficient of the normal variables X and Y.    



The mean E(Z) of Z is usually denoted by the Greek lowercase letter (read 

as ―ksee‖).   

 An historical fact about Fisher’s Z-transformation:  Mathematicians 

recognize it as arctanh(R) or tanh
-1

(R) (read: inverse hyperbolic tangent 

of R).  The development of this statistic led many mathematicians and 

statisticians to acknowledge the genius of Fisher who first used this 

transformation to ―normalize‖ the sample correlation coefficientand  

who derived its mean and variance.    

To use Fisher’s Z effectively, we need to bring it into the standard form by 

dividing [Z - E(Z)] by SE(Z).  Consistent with the notation established earlier in 

this book, this standardized normal should be denoted by Z.  Unfortunately, the 

symbol Z is preempted by Fisher’s use of Z.  So, for this section alone, we 

designate the standardized form of Z by W.  We have: 

1 1 1 1
ln ln

2 1 2 1

1

3

R

R
W

n  

(19.17) 

The null hypothesis H0:  = 0 is tested by substituting 0 for  in Equation 

(19.17).  Because W has a standard normal distribution if H0 is true, we reject H0 

if:      

H1: ρ0 ≠ 0 and | w | > z1-α/2 (19.18) 

H1: ρ0 < 0 and w < zα (19.19) 

H1: ρ0 > 0 and w > z1-α (19.20) 

where w is the calculated value of  W and zq is a quantile of the standard normal 

from Table T-1 of the Appendix.   
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To illustrate the use of the W statistic, return to Example 19.2.  Suppose we wish 

to test H0:  = 0.80 against H1:   ≠ 0.80, and the sample correlation coefficient, 

based on n = 8 observations, is r = 0.7451.  Complete the calculations as 

follows: 

Step 1.  Under H0:   = 0.80, from Equation (19.14) we have:  

1 1 0.80 1
[ ] ln ln (9.0) 1.0986

2 1 0.80 2
E Z  

 

Step 2.  For a sample of size n = 8, from Equation (19.16) we have:  

1
[ ] 0.4472

8 3
SE Z  

 

Step 3.  For r = 0.7451, from Equation (19.13) we have:  

1 1 0.7451
ln 0.9618

2 1 0.7451
z  

 

Step 4.  Putting the pieces together, the observed standardized normal variable 

is: 

0.9618 1.0986
0.3059

0.4472
w   

Step 5.  Since -1.96 < w < 1.96, we do not reject H0.  We conclude that we have 

insufficient statistical evidence to reject the claim that  = 0.80. 

In this example we used the alternative H1:   ≠ 0.80.  However, in the real 

world, the alternative hypothesis is more likely to be one sided, such as  > 0.80 

or  < 0.80.  Since |w| < 1.645, H0 would not be rejected with either of these 

alternatives. 

19.6  Confidence interval for the correlation coefficient 

Using procedures learned in Chapter 9, we can employ Fisher’s 

Z-transformation to construct one- or two-sided confidence intervals for the 

correlation coefficient .  This procedure is conducted in two stages.  In the first 

stage, we construct confidence limit(s) for the mean E[Z] of Fisher’s 

Z-transformation.  In the second stage, we transform the confidence limit(s) 

obtained in the first stage to capture the correlation coefficient  with the desired 

confidence. 

1 1 0.80 1
[ ] ln ln (9.0) 1.0986

2 1 0.80 2
mean z
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Assume that a 100(1 - )% two-sided confidence interval is desired.  The 

construction is as follows: 

First stage.  The endpoints of a two-sided confidence interval for E[Z] are:  

1 2 1 /2

1 1 1
( , ) ln

2 1 3

R
L L z

R n
 

(19.21) 

where z1- /2 is a quantile of the standard normal distribution.  From Equation 

(19.14), a 100(1 - )% two-sided confidence interval for E[Z] is:  

1 2 1 2

1 1
( ) ln

2 1
L E Z L L L  (19.22) 

Second stage.  We transform the double inequality in Equation (19.22) to a 

double inequality on  in terms of the endpoints L1 and L2 to obtain lower (R1) 

and upper (R2) confidence limits on   as:  

1

1

2

1 2

1

1

L

L

e
R

e
 (19.23) 

2

2

2

2 2

1

1

L

L

e
R

e
 (19.24) 

For Example 19.1, we calculate a 95% two-sided confidence interval for the 

correlation coefficient between the costs of crude oil and premium gasoline as 

follows: 

The relevant statistics are r = 0.7451, n = 8, and Fisher’s z = 0.9618. 

First stage.  From Equation (19.21) and  = 0.05, the endpoints for E[Z]  are: 

1
0.9618 1.960 0.9618 0.8765

5  

 

or l1 = 0.0853 and l2 = 1.8383.   

Thus, we are 95% confident that: 

1 1
0.0853 ln 1.8383

2 1
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Second stage.  From Equations (19.23) and (19. 24), the lower and upper 

confidence limits on are : 

2(0.0853) 2(1.8383)

1 22(0.0853) 2(1.8383)
0.0851 0.9506

1 1
and

1 1

e e
r r

e e
 

The considerable length of this interval (0.0851, 0.9506) is not very informative 

about the correlation coefficient, despite its seemingly ―large‖ value of about 

0.75.  This result is directly attributable to the small sample size.  

 

 

coefficient of 

determination 

Example 19.3.   Time and instrument drift.   Instrument 

drift is a measure of departure from calibration due to time in 

service, and a significant drift, positive or negative, is 

worrisome.  An engineer proposes to use R
2
 (sometimes called 

the coefficient of determination) as a measure of correlation 

between instrument drift (measured in milliamps) and time 

(measured in months).  This engineer believes that if r 
2
 is less 

than 0.30, this value is sufficient to convince us that drift does 

not change over time. 

We have two concerns about this approach: 

 r 
2 
= 0.30 may seem reasonably small, but the sample correlation coefficient 

is actually r = 0.30 = 0.55, which may not be considered small for a 

correlation coefficient.   

 The approach does not account for the sample size.  In particular, if n is 

small, a confidence interval for  could be wide enough to include both 

large and small values of .    

To illustrate this second concern, suppose for a moment that we consider a 

correlation coefficient with absolute value   < 0.30 to be ―small.‖  For what 

values of r and n can we conclude that  is small? 

To answer this question, Table 19.2 provides two-sided 95% confidence 

intervals about ρ for selected values of r and n.  All of the intervals have their 

lower limit  r1  < 0.30 and their upper limit r2. = 0.30, so that, with 95% 

confidence, we can conclude that  is small.  Clearly, for the tabulated value    

of r, this conclusion would hold only for sample sizes larger than the tabulated 

value of n.  For example, if r = 0.25, then n must be at least 1,316 in order to 

conclude that  is small.  Even for r as small as 0.01, n must be at least 46 to be 

able to conclude with 95% assurance that  is small.  
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Table 19.2.   Selected 95% two-sided confidence intervals 

  Equation                      Calculations     

r   0.25 0.2 0.15 0.1 0.05 0.01 

n   1316 340 157 91 61 46 

Fisher's z (19.16) 0.26 0.20 0.15 0.10 0.05 0.01 

se ( z ) (19.16) 0.03 0.05 0.08 0.11 0.13 0.15 

z(1-α/2)   1.96 1.96 1.96 1.96 1.96 1.96 

l1 (19.21) 0.20 0.10 -0.01 -0.11 -0.21 -0.29 

l2 (19.21) 0.31 0.31 0.31 0.31 0.31 0.31 

r1 (19.23) 0.20 0.10 -0.01 -0.11 -0.20 -0.28 

r2 (19.24) 0.30 0.30 0.30 0.30 0.30 0.30 

 

19.7  Testing equality of two correlation coefficients 

In this section we test whether the population correlation coefficients of two 

independent pairs of normal variables are equal.  No new tools are required for 

this test.  Table 19.2 presents the elements of the test. 

Let Z1 and Z2 be Fisher’s Z for samples from two independent pairs of normal 

variables, (X1, Y1) and (X2, Y2), with correlations 1 and 2 and sample sizes n1 

and n2, respectively.  To test H0: 1 = 2, we define Zd = Z1 - Z2.  Since Z1 and Z2 

are distributed normally, so is Zd.  The mean E(Zd )of Zd is E(Z1) - E(Z2).  From 

Equation (19.14), under H0 the means of Z1 and Z2 are equal and E(Zd) = 0.  To 

find the variance of Zd, recall that the variance of the difference of two 

independent variables is the sum of their variances (Section 6.9), so that the 

variance of Zd is given in the bottom right-hand cell of Table19.3. 

Table 19.3.   Statistics for testing equality of correlation coefficients 

Sample 1 2  

Difference Correlation R1 R2 

Fisher’s Z 
1

1

1

1 1
ln

2 1
Z

R

R
 2

2

2

1 1
ln

2 1
Z

R

R
 Zd = Z1 – Z2 

E(Z) 1

1

1

( )
1 1

ln
2 1

E Z  2

2

2

1 1
( ) ln

2 1
E Z  0, if ρ1 = ρ2 

V (Z) 1

1

( )
1

3
V Z

n
 

2

2

( )
1

3
V Z

n
 

1 2

1 2

( )

1 1

3 3

V Z Z

n n
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To test H0, we use a statistic we call W, defined by:  

1 1

1 21 1

1 2 1 2

1 1 1 1

2 1 2 1

1 1 1 1

3 3 3 3

R R
ln ln

Z ZR R
W

n n n n

 

(19.25) 

From Example 19.2, under H0, W has a standard normal distribution.  

Consequently, to test the null hypothesis H0:  1 =  2 against the alternative      

H1:  1   2 with  = 0.05, we reject H0 if W  > 1.96. 

 Example 19.4.   Comparing correlations.   The correlation between two 

measurement systems of water pollutants was calculated in one location from 

n1 = 80 observations as r1 = 0.65.  In a second location, the correlation was 

measured from n2 = 50 observations as r2 = 0.80.  We wish to test whether the 

correlations in the two locations are the same. 

For the first location we have, from Equations (19.13) and (19.15):   

1

1 1 0.65

2 1 0.65
z ln 0.7753, with variance = 

1
0.0130

80 3
 

Similarly, for the second location we have: 

2

1 1 0.80
1.0986,

2 1 0.80
z ln with variance = 

1
0.0213

50 3
 

From Equation (19.25), we have:   

0.7753 1.0986
1.746

0.0130 0.0213
w

 

Since |-1.746| < z0.975 = 1.960, we have no statistical evidence that the 

correlations at the two locations are different.   

19.8  Comparison of regression and correlation analyses 

Although regression and correlation analyses are based on different models and 

have different objectives, the two analyses have some common elements.  For 

example, ignoring the independent-dependent characterization of the variables X 

and Y in a regression analysis, the correlation coefficient can, and often does, 

apply to regression-type data.  Clearly, if it looks as though Y is linearly related 
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to X, we would expect that the regression slope and the correlation coefficient 

would both be statistically significant. 

There are also several calculational similarities between correlation and 

regression analyses.  First, both use Sxx and Sxy.  Also, the coefficient of 

determination R
2 
introduced in Example 19.3

 
can be calculated from the 

regression ANOVA table by dividing the regression sum of squares, SSR, by the 

total sum of squares SST.  In fact, the complete output of Excel’s regression 

analysis provides R
2 
(rather than R), even though we did not show it in Chapter 

18. 
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20 
Bayesian probability inference 

20.1  What to look for in Chapter 20 

This chapter introduces:  

 Bayesian inference and Bayes’ theorem,  §20.3 

 prior and posterior distributions,  §20.3 

 Bayesian parameter estimation,  §20.4 

 conjugate priors for Poisson, exponential, and binomial data,  §20.5 

 noninformative priors for Poisson, exponential, and binomial data,  §20.6 

 Bayesian hypothesis testing,  §20.8 

Some text and figures for this section were extracted and edited from materials 

provided to the NRC by the Idaho National Laboratory as training materials.  

20.2  Motivation for Bayesian inference 

The statistical estimation and inference methods introduced so far have all been 

exclusively based on data modeled as random samples from specified 

populations.  In practice, this approach has two potential drawbacks.  First, if the 

data are sparse, then the width of a confidence interval estimate of an unknown 

parameter may be wider than is useful for our application.  Second, if we have a 
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model with two or more unknown parameters as inputs, there is no known way 

to propagate confidence interval estimates through the model to evaluate the 

uncertainty in the model results.  An example is a probabilistic risk assessment 

(PRA) of a nuclear plant that calculates a core damage frequency from a logic 

model as a function of the reliabilities and failure probabilities of the plant 

structures, systems, and components. 

A commonly used approach for dealing with these drawbacks is Bayesian 

inference.  It uses information from the analyst or outside sources about the 

parameters that is not available from the observed data.  This is the subjective 

probability approach discussed in Section 4.9.  For parameter estimation, the 

additional information leads to less uncertainty than is provided by a confidence 

interval.  For model evaluation, this approach develops distributions for the 

unknown parameters and propagates them through the model by simulation to 

yield an uncertainty distribution for the model results.   

Although a theory of subjective probability has been developed based on the 

interpretation of probability as a degree of belief (see Laplace (1814), Jaynes 

(2003), and Jeffreys (1939)), it is not necessary to adopt this theory in order to 

use Bayesian inference.  This chapter shows how to calculate posterior 

distributions and use them for estimation and inference.   

 

classical 

statistical 

methods 

Before applying any statistical method, it is necessary to check 

the assumptions on which it is based.  The statistical estimation 

and inference methods introduced in this book, sometimes called 

classical statistical methods, are all based on a number of 

assumptions, as discussed in their presentation.  Because it is 

based on the same data used for the classical methods, Bayesian 

inference is necessarily based on the same assumptions.  While 

Bayesian inference claims to reduce the uncertainty associated 

with the classical statistical methods described in this book, this 

approach has two additional sources of uncertainty.  The first 

stems from uncertainty about the chance of occurrence of an 

event in the real world based on someone’s subjective judgment.  

The second stems from the diversity of results when more than 

one subjective judgment is elicited (e.g., when a panel is used in 

an expert elicitation process).  Although these uncertainties 

should be evaluated before applying Bayesian inference, their 

consideration is beyond the scope of this book. 

20.3  Bayesian inference 

Bayesian 

inference 

 Bayes’ 

Theorem 

Bayesian inference is a process, using Bayes’ Theorem, of 

combining data with additional information from an analyst’s 

experience and judgment and/or outside expert opinion to 

estimate parameters and evaluate the plausibility of  hypotheses. 
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Bayesian inference starts with three elements:  a hypothesis H, data D, and 

relevant information X.  H is a statement about a state of nature or about a 

parameter, D comes from the random sample from a population determined by 

H, and X is prior information about H from outside experts or the analyst’s 

experience or judgment before D is observed.  Using Bayes’ Theorem, these 

three elements are combined to calculate the probability of H based on both D 

and X.  This probability is the basis for Bayesian inference. 

As discussed in Section 4.8, Bayes’ Theorem provides a formula for the 

conditional probability of H given D in terms of the conditional probability of D 

given H and the probabilities of H and D.  From Equation (4.24), this can be 

written as: 

{  | }
{  | }  { }  

{ } 

Pr D H
Pr H D Pr H

Pr D
  (20.1) 

Bayesian inference departs from the classical approach by explicitly using the 

additional information X to determine the probabilities in Equation (20.1).  This 

results in the modified version of Equation (20.1) shown in Figure 20.1.  

 

Figure 20.1.   Bayes’ Theorem for Bayesian inference  
  

In Figure 20.1 the four terms are all labeled in accordance with the interpretation 

of Bayes’ Theorem for Bayesian inference.  Note that all of the probabilities are 

conditioned on X. 

prior 

informative 

prior 

 

non-

informative 

prior 

The prior is the probability of H before D is observed, and is 

based only on X.  Priors can be broadly classified as either 

informative or noninformative.  An informative prior, as the 

name suggests, contains substantive information about H.   

 

A noninformative prior, on the other hand, is intended to be in 

some sense objective and let the data speak for themselves; thus, 

it contains little or no substantive information about H.  Other 
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prior 

distribution 

terms for noninformative priors are diffuse priors, formal priors, 

vague priors, flat priors, and reference priors.  The set of priors 

over all possible values of H is called the prior distribution. 

likelihood The likelihood is the probability of observing the data if H is 

true and is calculated from an assumed model for D.  In PRA 

applications, the model is most often binomial, Poisson, or 

exponential. 

posterior 

posterior 

distribution 

The posterior is the updated probability of H after D has been 

observed and is the basis for Bayesian inference.  The set of 

posteriors over all possible H is called the posterior distribution. 

normalization 

constant 
The normalization constant is the unconditional probability of 

D.  It is calculated by summing the numerator (product of the 

prior and likelihood) over all possible H and guarantees that the 

sum of all possible posteriors is 1. 

Bayes’ Theorem in Equation (20.1) and Figure 20.1 is written in terms of 

probabilities when D comes from a discrete distribution.  However, it also 

applies when D comes from a continuous distribution and the probabilities are 

replaced by densities.  For the continuous case, Bayes’ Theorem is written as: 

dyf

yf
y

)()(

)()(
)(1

 (20.2) 

In Equation (20.2), H has been replaced by a parameter, denoted by θ, and D is 

replaced by y.  Corresponding to the discrete case, π(θ) is the prior distribution 

of θ, the likelihood f(y | θ) is the density of y as a function of θ, and π1(θ | y) is 

the posterior distribution of θ.  The denominator in Equation (20.2) is equal to 

f(y), the marginal or unconditional distribution of y.  Note that it is a weighted 

average of the likelihood, with the prior distribution for θ as the weighting 

function.  

20.4  Bayesian parameter estimation 

Let Y be a discrete random variable with an unknown parameter θ that can take 

on only discrete values θ = θ1, θ2, ….  Let H = {  = θi} be a statment about the 

specific value of θ, and let Pr{θ = θi} be a prior distribution for θ.  Given an 

observation y from Y, from Equation (20.1), the posterior is:  

{ } { }
{ }

{ } { }

i i

i

j j

j

Pr Y y Pr
Pr Y y

Pr Y y Pr
 (20.3) 
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If Y is continuous with density f(y), then Equation (20.3) becomes: 

( | ) ( )
( )

( | ) ( )

i prior i

post i

j prior j

j

f y g
g

f y g
 (20.4) 

 

credible 

interval 

The posterior for  in Equation (20.3) or (20.4) is a discrete 

distribution.  An interval of values for  from the posterior 

distribution is called a credible interval for . 

20.5  Conjugate distributions 

 

 

 

conjugate 

prior, 

conjugate 

Given a likelihood, the formula for calculating a posterior from 

a prior is given by Equation (20.2), (20.3), or (20.4).  While this 

formula can be evaluated by calculation (e.g., by a spreadsheet, 

numerical integration, or simulation), it is often convenient to 

have a closed form formula for the posterior.  If the posterior 

can be written in closed form, then the prior is called a 

conjugate prior and is said to be conjugate.  Whether a prior is 

conjugate depends not only on the form of the prior but also on 

the form of the likelihood. 

It is possible for a posterior to have the same functional form as that of a 

conjugate prior.  In this case, the interpretation of Bayesian inference is quite 

straightforward:  the data updates the prior to the posterior by simply updating 

the parameters of the prior.  

Poisson data.  For modeling initiating event frequency, failure to run, or 

standby unavailability, the likelihood is typically a Poisson distribution (see 

Chapters 8 and 23).  If Y is Poisson with parameter t, the probability of y 

occurrences in a specified time t is:   

( )
( | ) , 0,1,...

!

tyt e
f y y

y
    (20.5) 

 
gamma 

distribution 
For a Poisson likelihood, the conjugate prior turns out to be a 

gamma distribution, denoted by Gamma( , β), with parameters 

 > 0 and  > 0.  For a gamma prior, the prior probability of y is 

given by:   

                           
1

( )
( )

yy e
f y  (20.6) 
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for y > 0, where  ( ) is the gamma function.  The gamma 

distribution has mean α/ β and variance α/ β 
2
. 

  In the gamma distribution for y, α/ β has the same units as y. 

The gamma distribution is discussed in Section 7.14.  Figure 7.18 shows several 

examples of gamma distributions for  = 1.  

Let Y be the number of occurrences in a specified time t.  Suppose Y is Poisson 

with parameter λt, where λ is units of occurrences per unit time.  Assume that the 

prior for  is a gamma distribution, Gamma( prior, βprior).  Suppose that y 

occurrences are observed in the time period t.  Then the posterior also has a 

gamma distribution, Gamma( post, βpost), with:  

post = prior + y  

βpost = βprior + t 

(20.7) 

 

The prior can be interpreted as having observed a number of occurrences prior 

over a prior exposure time βprior before the y occurrences were observed.  It 

follows from Equation (20.7) that the posterior can be interpreted as observing a 

total number of occurrences post over a total exposure time βpost. 

The mean of the posterior distribution is:  

[ ]
prior

prior

y
E

t
 (20.8) 

and the variance is:  

2
[ ]

( )

prior

prior

y
V

t
 (20.9) 

Quantiles of the posterior distribution can be obtained using the 

=GAMMAINV(quantile, α, 1/β) function in Excel.  Note that Excel uses 1/β as 

the second parameter in =GAMMAINV(). 
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Jeffreys prior For purposes of Bayesian updating, the noninformative Jeffreys 

prior for Poisson data is a gamma distribution with the first 

parameter equal to 0.5 and the second parameter equal to 0.  

This can be interpreted as half an occurrence in zero time.  

Although this prior is an improper distribution, from 

Equation (20.7), it leads to a proper posterior distribution, 

Gamma(y + 0.5, t).  Another noninformative prior, useful with 

sparse data, is an improper gamma distribution with both 

parameters equal to zero.  This yields a proper posterior 

distribution Gamma(y, t), provided y > 0. 

Example 20.1.   Loss of offsite power.   Assume the prior distribution for 

loss of offsite power (LOOP) frequency is Gamma(1.737, 52.47).  The prior 

mean is 1.737/52.47 = 0.033 occurrences per year.  A plant experiences one 

LOOP in 9 years.  Find the posterior mean and a 90% credible interval for the 

LOOP frequency at that plant. 

The posterior distribution is Gamma(1.737 + 1, 52.47 + 9).  The posterior mean 

is therefore 2.737/61.47 yr = 0.045/yr.  This is larger than the prior mean of 

0.033/yr because the sample mean of the observed data is 1/9 = 0.11/yr, and the 

posterior mean is a weighted average of the prior and sample means.   

A symmetric 90% credible interval is bounded by the 0.05 and 0.95 quantiles of 

the posterior.  The 0.05 quantile is found using =GAMMAINV(0.05, 2.737, 

1/61.47) = 0.011/yr.  Similarly, the 0.95  quantile is found by changing the first 

argument of =GAMMAINV() to 0.95, yielding 0.096/yr.  Thus, a 90% credible 

interval for the LOSP frequency is (0.011, 0.096)/yr. 

Exponential data.  In PRA applications, exponential data will usually arise 

when the random variable being observed is time (e.g., time to failure, time to 

repair, time to recover from LOSP, or time to suppress a fire).  The observed 

data are t1, t2, …, where t1 is the time to the first event, t2 is the time between the 

first and the second event, and so on.  We assume that the intervals between 

events are independent and have an exponential distribution with parameter  

(see Section 7.13  Here,  is a frequency, with units of occurrences per unit time. 

If n events are observed, the likelihood is: 

 

(20.10) 
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The conjugate prior is again a gamma distribution, just as for Poisson data.  The 

posterior distribution will also be gamma, with parameters (αprior + n) and 

(βprior + Σti).  From Equation (20.8), the mean of the posterior is:   

n

i

iprior

prior

t

n
E

1

 
(20.11) 

For purposes of Bayesian updating, the Jeffreys prior for exponential data is an 

improper gamma distribution with both parameters equal to 0, yielding a proper 

posterior of Gamma(n, Σti).   

Example 20.2.   Cable fires.   We investigate the suppression rate for cable 

fires.  Assume that the prior distribution for the suppression rate is a gamma 

distribution with the first parameter equal to 0.5 and a mean value of 

0.2 minutes.  Suppose that the following times (in minutes) to suppress cable 

fires have been observed:  2, 2.5, 5, 10.  We wish to find the posterior mean and 

a 90% credible interval for the suppression rate. 

We first have to find the second parameter of the gamma prior.  We know that 

the mean is the ratio of the first parameter to the second, so we have 

0.5/βprior = 0.2.  Therefore, βprior = 0.5/0.2 = 2.5 minutes.  Thus, the prior is 

equivalent to data of 0.5 cable fires in 2.5 minutes. 

The observed data are four fires in a total of 19.5 minutes.  Therefore, the 

posterior distribution is a gamma distribution with parameters 0.5 + 4 = 4.5 and 

2.5 min + 19.5 min = 22 min.  Therefore, the posterior mean suppression rate is 

4.5/22 min = 0.20/min.  The 5
th

 percentile is found using =GAMMAINV(0.05, 

4.5, 1/22) = 0.08/min.  Similarly, the 95
th

 percentile is found by changing the 

first argument of =GAMMAINV() to 0.95, yielding 0.38/min.  Thus, a 90% 

credible interval for the posterior suppression rate is (0.08, 0.38)/min. 

Note that the prior and posterior means are the same to two decimal places.  This 

happens because the prior mean and the sample mean are nearly equal.  

However, a 90% credible interval for the prior is significantly broader than the 

corresponding posterior interval, so the uncertainty in the suppression rate has 

been reduced by the observed data.  

Binomial data:  For modeling failure to change state on demand (e.g., failure to 

start), we typically assume the number of failures in a specified number of 

demands is a binomial random variable Y with parameters n and p (see 

Section 8.7).  The likelihood is the binomial distribution: 

yny pp
y

n
pyf )1()( , y = 0, 1, …, n (20.12) 
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For the binomial likelihood, the conjugate prior is a beta distribution with 

parameters  and : 

 

(20.13) 

for  > 0,  > 0, 0  p  1, and where Beta( , ) is the beta function defined by: 

 

(20.14) 

Another form of the beta function, useful for calculation, is: 

( ) ( )
( , )

( )
 (20.15) 

From Equation 7.65, the mean of a beta distribution is the first parameter 

divided by the sum of the two parameters.  Hence,  

pE  (20.16) 

From Equation 7.66, the variance of a beta distribution is:  

2
( )

( ) ( 1)
V p  (20.17) 

As a prior, the beta distribution is equivalent to data, with α equal to the prior 

number of failures and α +β equal to the prior number of demands. 

Figures 7.19 and 7.20 give examples of the beta distribution for selected       

and . 

Assume a beta prior with parameters prior and βprior for p and data of y failures 

in n demands and a binomial likelihood.  The posterior distribution of p is also a 

beta distribution with parameters: 

post = prior + y  

βpost = βprior + n – y  
(20.18) 

Consistent with the interpretation of the prior, the posterior is equivalent to data 

with post failures in post + βpost demands. 

Quantiles of the posterior distribution can be obtained using the =BETAINV 

function in Excel, =BETAINV(quantile, α,  β).   
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For binomial data, the Jeffreys noninformative prior is a beta distribution with 

both parameters equal to 0.5.  Therefore, the posterior is Beta(y + 0.5, 

n - y + 0.5).  The posterior mean is (y + 0.5)/(n + 1), a formula sometimes used 

in PRA applications for parameter estimation.  Another nonnformative prior, 

which can be useful with sparse data, is a Beta(0, 0) distribution.  This is an 

improper prior, but if y > 0, the posterior will be a proper beta distribution with 

parameters y and n, and the posterior mean is y/n. 

Example 20.3.   Emergency diesel generators.   Assume an emergency 

diesel generator (EDG) has a prior distribution for demand failure that is 

Beta(0.957, 190).  Over the past evaluation period, there have been 26 valid 

demands on the EDG, with no observed failures.  We wish to find the posterior 

distribution for the demand failure probability, the posterior mean, and a 90% 

posterior credible interval. 

The posterior distribution is a beta distribution with parameters 

0.957 + 0 = 0.957 and 190 + 26 – 0 = 216.  Hence, the posterior mean is 

0.957/(0.957 + 216) = 0.0044. 

The 5
th

 percentile is found by =BETAINV(0.05, 0.957, 216) = 2 × 10
-4

.  

Similarly, the 95
th

 percentile is found by changing the first argument of 

=BETAINV to 0.95, yielding 0.013. 

20.6  Noninformative prior distributions 

As the name indicates, a prior distribution is supposed to be chosen before the 

data are observed.  While the analyst often has some prior information about a 

probability or parameter of interest, it may not be complete enough to specify a 

prior distribution.  In such cases, it may be tempting to wait until the data are 

observed to choose a prior, but this would contradict the basic premise that a 

prior should be chosen before the data are observed.  If the prior is chosen or is 

modified after the data are observed, then the data are being given more weight 

than they deserve.   

If a prior distribution based only on prior information cannot be specified, then a 

noninformative prior may be used.  As defined in Section 20.3, a noninformative 

prior contains little or no substantive information about the probability or 

parameter specified by the hypothesis.  How can such a prior be chosen?  

Reverend Bayes suggested a uniform prior and Laplace used this, but such a 

prior presents philosophical and mathematical problems.   

As an alternative, Jeffreys suggested a prior that was insensitive to variations in 

scale and location.  Consequently, such a noninformative prior is typically not 

uniform.  Instead, it depends on the process that generated the data and also has 

the property that the Bayesian credible intervals are approximately equal to 
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classical confidence intervals.  The Jeffreys noninformative priors for the data 

models introduced in Section 20.5 are as follows:  

 Poisson data:   Noninformative prior for λ is Gamma(1/2, 0) 

 Exponential data:  Noninformative prior for λ is Gamma (0, 0) 

 Binomial data:   Noninformative prior for p is Beta(1/2, 1/2) 

Figure 20.2 compares 90% confidence intervals with 90% credible intervals for 

p for three sets of binomial data:  0 failures in 5 demands, 1 failure in 

10 demands, and 3 failures in 30 demands.  The credible intervals are shorter 

than the confidence intervals, but they become more similar as the amount of 

data increases.  This occurs because the influence of a prior on the posterior 

decreases as the amount of data increases.  

 

Figure 20.2.   Confidence and credible intervals for binomial data 

20.7  Nonconjugate prior distributions 

If posterior distribution is Gamma( , β) or Beta( , β) with  small (much 

smaller than 0.5), then the lower tail of the posterior may be unrealistically 

small.  For this or other reasons, we may prefer to use a nonconjugate prior.  

When the prior is not conjugate, the posterior distribution must be found by 

numerical integration or by simulation.   

Sometimes we may have a prior, such as a nonconjugate prior, that we prefer not 

to use.  Instead, we may select a ―similar‖ prior of a different, but more 

convenient, functional form (such as a conjugate prior).  To replace one prior 

with another, the easiest way in most cases is to adjust them to have the same 
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mean and variance.  This matching approach can usually be done with algebra 

alone.  Other approaches, such as matching means and some specific percentile 

(e.g., the 95
th

), are typically harder to use. 

  Note that ―similar‖ priors do not necessarily have similar percentiles, or 

produce posterior distributions with similar percentiles. 

A random variable X has a lognormal distribution if ln(X) is normal.  Section 7.9 

describes the properties and characteristics of the lognormal.  The lognormal 

distribution is often used as a prior distribution in reliability estimates, even 

though it is not conjugate.  As with the general case of nonconjugate priors, 

either numerical integration or simulation (see Chapter 27) may be applied to 

construct the posterior or a conjugate distribution may be fitted to the lognormal 

prior (Hamada, et al. (2008)).  

20.8  Bayesian hypothesis testing  

We illustrate Bayesian hypothesis testing with an example.  

Example 20.4.   EDG performance.   We wish to have reasonable 

assurance that a specific EDG will start and load with a probability of 0.975 or 

greater.  Accordingly, we test a hypothesis about the EDG failure probability, 

denoted by p.  The null and alternative hypotheses are: 

H0:  p ≤ 0.025, and H1:  p > 0.025 (20.19) 

In the Bayesian framework, we start with a prior distribution for p, probably 

based on generic data from similar EDGs.  Accordingly, we assume that the 

prior distribution is Beta(0.92, 17.55).  From Excel, the mean is 0.05 and a 90% 

credible interval is (0.002. 0,15).   

The probability that H0 is true (i.e., p ≤ 0.025) is given by the area under the 

prior distribution to the left of 0.025.  This can be found using the =BETADIST 

function in Excel.  Applying this Excel function results in a probability of 0.40. 

We next collect data related to p, making our usual assumption that the number 

of failures, y, in n demands follows a binomial distribution with parameters n 

(specified) and p (unknown).  Assume that we see two failures in 15 demands on 

the EDG to start and load. 

Because we started with a beta prior and assumed a binomial model for the 

likelihood, the posterior distribution will also be beta, with parameters 

αpost = αprior + y = 0.92 + 2 = 2.92 and β post = βprior + n - y = 17.55 + 15 – 2 = 

30.55.  The posterior mean = αpost/(αpost + βpost), and the 5
th

  percentile is found 

using =BETAINV(0.05, αpost, βpost), yielding 0.024/yr.  Similarly, the 

95
th

 percentile is found by changing the first argument of =BETAINV to 0.95, 

yielding 0.178/yr.  A 90% credible interval is thus (0.024, 0.178).  The mean is 
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0.087.  Both the posterior mean and 90% credible interval bounds are larger than 

the corresponding prior values. 

From Excel, the posterior probability that H0 is true is 0.05.  Therefore, the 

Bayes update has decreased the probability (from 40% to 5%) that the EDG 

meets its performance criterion of less than 2.5 failures in 100 demands. 

20.9  Bayes factors   

Bayes factor 

odds of an 

event 

Bayesians often use what is called a Bayes factor to help make 

decisions.  The Bayes factor is defined in terms of odds.  The 

odds of an event (or a hypothesis) is defined as the ratio of the 

event probability to the complement of the event probability; 

that is, odds = event probability/(1 – event probability).  The 

Bayes factor against H0, denoted by Bf, is defined as the ratio of 

the posterior odds against H0 to the prior odds against H0.  In 

other words, Bf measures how the odds against H0 have been 

changed by the observed data.  In general, Bf  depends on both 

the data and the prior distribution.  Note that the Bayes factor is 

defined only for proper prior distributions; if the prior is 

improper (e.g., a Jeffreys prior for Poisson data), a Bayes factor 

cannot be calculated. 

For Example 20.4, the prior odds against H0 are: 

Pr{H0 false | prior} / Pr{Ho true | prior} = 0.602/0.398 = 1.51. 

The posterior odds against H0 are: 

Pr{H0 false | posterior} / Pr{H0 true | posterior} = 0.947/0.053 = 17.8. 

The Bayes factor against H0 is therefore: 

Bf  = 17.8/1.51 = 11.8. 

Once we have calculated a Bayes factor, how do we use it to make a decision?  

Harold Jeffreys (Jeffreys, 1961) suggested the following table to relate the 

Bayes factor to the strength of the evidence against H0. 

Table 20.1.   Bayes factors and the strength of evidence 

Values of Bf Evidence against H0 

1 < Bf < 3 Weak 

3 < Bf < 12 Positive 

12 < Bf < 150 Strong 

Bf > 150 Decisive 
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For Example 20.4, Bf is 11.8, so we have positive evidence against H0.  Hence, 

the EDG might warrant further investigation and closer monitoring during the 

next evaluation period. 

20.10  Consistency of the prior with the observed data 

Example 20.4 focused on testing whether p exceeds a specific value.  We may 

also be interested in whether the distribution of p appears to be consistent with 

the observed equipment performance.  

Example 20.5.   Tossing a coin.   Suppose someone we know offers to toss 

a coin.  Our knowledge of the person leads us to believe there is a significant 

chance that the coin is two-headed.  (For simplicity, we ignore the possibility of 

a two-tailed coin.)  Accordingly, we have two hypotheses:  

H1:  the coin is fair, and H2:  the coin is two-headed (20.20) 

The first step in the Bayesian approach is to assign a prior to the probabilities of 

the hypotheses.  Assume the following prior probabilities for the two 

hypotheses: 

Pr{H1} = 0.75, and Pr{H2} = 0.25 (20.21) 

The prior belief about the probabilities of the two hypotheses can be expressed 

in terms of odds.  From Equation (20.21), the odds that the coin is fair are 3:1. 

Now suppose the coin is tossed once, and it comes up heads.  Setting 

D = {heads}, the likelihood is:   

pi = Pr{D | Hi}  (20.22) 

where pi = Pr{the coin comes up heads on a single toss conditional on Hi }, 

i = 1, 2. 

From Equation (20.20): 

p1 = 0.5, p2 = 1 (20.23) 

The normalization constant Pr{D} in Figure 20.1 is found by summing the prior 

probabilities multiplied by the likelihoods over all possible hypotheses.  We 

have:  

Pr{D} = Pr{H1}p1 + Pr{H2}p2 = 0.75(0.5) + 0.25(1.0) = 0.625 (20.24) 
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From Equation (20.1), the posterior probabilities are then: 

Pr{H1 | D} = 0.6, Pr{H2 | D} = 0.4  (20.25) 

Table 20.2 presents the results after one toss.    

Table 20.2.   Bayesian inference after one toss in Example 20.5 

Hypothesis 

Prior 

Probability Likelihood 

(Prior) × 

(Likelihood) 

Posterior 

Probability 

H1:  fair coin 

(i.e., Pr{head} 

= 0.5) 

0.75 0.5 0.375 0.60 

H2:  two-

headed coin 

(i.e., Pr{head} 

= 1.0) 

0.25 1.0 0.250 0.40 

Sum 1.00  0.625 1.00 

 

As a result of tossing a single head, the odds that the coin is fair have decreased 

by a factor of 2 from 3:1 to 3:2.  Now suppose that we continue tossing the coin 

and keep getting heads.  Figure 20.3 shows the results for 10 tosses.  After five 

tosses, the probability that the coin is fair is less than 0.1 (i.e., the odds are about 

10:1 against having a fair coin).  After 10 tosses, the odds against a fair coin are 

extremely large.    

 

Figure 20.3.   Posterior probability of a fair coin as a function of the 
number of consecutive heads 
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21 
Hypergeometric experiments 

21.1  What to look for in Chapter 21 

Chapter 21 deals with the hypergeometric distribution, a distribution that applies 

to sampling without replacement.  The hypergeometric distribution was already 

introduced in Section 8.6; this chapter illustrates its applications.    

In our coverage of the hypergeometric distribution, we are reminded of several 

terms and concepts already covered in Chapter 8: 

 attributes, §21.2 

 hypergeometric distribution function, §21.2 

 mean and variance of the hypergeometric distribution, §21.2 

 sampling without replacement, §21.2 

 

In this chapter, we learn to: 

 calculate hypergeometric probabilities, §21.2 

 estimate the proportion and number of items with attributes, §21.3 

 test hypotheses about the number of items with attributes, §21.4 

 choose a sample size for a hypothesis test, §21.5   

 approximate the hypergeometric by a normal distribution, §21.6  
 



404 Applying Statistics 
 

 

21.2  Basics of the hypergeometric distribution 

hypergeometric 

distribution 

attribute 

The hypergeometric distribution is a discrete distribution that 

calculates the probability of selecting a random sample of items 

with a specific (binary) attribute from a finite population.  The 

distinguishing feature of the distribution is that it applies to 

sampling without replacement experiments. 

 

success 
Most statistical books refer to an item with an attribute, be it in 

the population or in the sample, as a success.  There is no 

implication that a success is good or that it is bad. 

From Section 8.6, the probability function of the hypergeometric distribution is: 

( ) ( )

{ }

(0 ) ( )

=

M

y

N M

n y

f y f y; N ,M ,n

Pr y| N ,M ,n
N

n

y max , n M N , ..., min M , n

,  (21.1) 

where: 

N = population size (finite) 

M = number of successes in the population  

n = sample size 

y = number of successes in the sample 

Pr{y} = Pr{y| N, M, n} = probability of obtaining exactly y successes,          

given N, M, n, and:   

 !

! ( )!

a a

b b a b
is the binomial coefficient, defined in Section 8.6. 

  Section 8.6 explains the minimum and maximum limits on y. 
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Example 21.1.  Hypergeometric probability calculations.  The 

calculations involved in Equation (21.1) are illustrated for a sample of size n = 5 

for a population of N = 50 items that includes M = 10 defective items.  

Calculated manually, the probability that the sample contains y = 1 defective 

items is:  

10 50 10

1 5 1 10! 40! 5! 45!
{1| 50,10,5} 0.4313

50 1! 9! 4! 36! 50!

5

Pr
 

The hypergeometric probability calculations in this chapter are made by calling 

Excel’s function =HYPGEOMDIST(y, n, M, N).  In this example 

=HYPGEOMDIST(1, 5, 10, 50)  returns the value of 0.4313. 

From Section 8.6, the mean, variance, and standard deviation of the 

hypergeometric distribution Y are:  

[ ]
nM

E Y
N

 (21.2) 

2[ ]
1

nM N M N n
V Y

N N N
 (21.3) 

[ ]
1

nM N M N n
SD Y

N N N
 (21.4) 

 

Using Equations (21.1) - (21.4) for Example 21.1, we calculate: 

(5)(10)
1.00

50
 

2 (5)(10) 50 10 50 5
0.735

50 50 50 1  

0.735 0.857  
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21.3  Estimates of the proportion and number of 
successes  

The estimator of the proportion of successes (items with a specific attribute) in 

the population, M/N, is obtained by the sample proportion, ˆ.  Formally:  

ˆ
y

n
 

(21.5) 

From Equation (21.5), the estimate of the number of successes in the population 

is:  

ˆ
y

N N
n

 
(21.6) 

Thus, if 3 out of a random sample of 12 records were found incomplete, the 

estimated proportion of incomplete records in the population is 3/12 = 0.25.  If 

the population contains 65 records, the estimated number of incomplete records 

in the population is (0.25)(65) = 16.25.  This number may be rounded down to 

16 or reported conservatively as 17. 

21.4  Tests of hypotheses  

 
defect 

For most applications, the attribute of interest is an undesirable 

property of the item, which we will call a defect.  With this 

interpretation, the null and the alternative hypotheses in a 

hypergeometric experiment are usually set as: 

H0: M = M0 (21.7) 

H1: M < M0 (21.8) 

where M0 is an acceptable upper limit of defects.  

 We reject H0 if Pr{y < M0} < α under the assumption that H0 is true.  

  Typically, M0 is expressed as a fraction of N.  Thus, if no more than 20% 

defectives can be tolerated in the population, then M0 is set at 0.20N.  If M0 is 

not an integer, round M0 down to the nearest integer. 

Example 21.2 demonstrates the calculation of hypergeometric marginal and 

cumulative probabilities for hypothesis testing. 

Example 21.2.   Emergency batteries.   A store carries N = 75 emergency 

batteries on the shelf and claims that, under normal use, no more than one-third 
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(M = 25 batteries) would fail to hold their charge during the first year.  Owing to 

the cost of the experiment, the store attempts to verify that claim with a sample 

of size n = 10.  What is the probability that, if we randomly select 10 batteries, 

none will fail during the first year of its use?  one?  two?  more than two?  How 

can we test the null hypothesis that the store’s claim is correct when  α = 0.05? 

Selected marginal and cumulative probabilities are calculated, using Excel’s 

=HYPGEODIST(y, n, 25 ,75) function, and recorded in Table 21.1 for n =10, 

11, and 12.  (Only the entries for n = 10 are needed for this example; the entries 

for n = 11 and  n = 12 will be needed for Section 21.5.)   

Table 21.1.   Hypergeometric probabilities for M = 25, N = 75 

 

  y 

 

n 

 

M 

 

N 

Marginal 

Pr{Y = y} 

Cumulative 

Pr{Y ≤ y} 

0 10 25 75 0.012 0.012 

1 10 25 75 0.076 0.088 

      0 11 25 75 0.008 0.008 

1 11 25 75 0.052 0.060 

      0 12 25 75 0.005 0.005 

1 12 25 75 0.036 0.040 

2 12 25 75 0.118 0.158 

 

The probabilities of finding y = 0 or 1 defective batteries when n = 10 are 0.012 

and 0.076, respectively.  The probability of finding more than one defective 

battery in the sample is therefore 1 - 0.012 - 0.076  = 0.912. 

To test the store’s claim that M  25, we set M0 = 25 in Equations (21.7) and 

(21.8).  The claim will then be supported if the null hypothesis is rejected.  

We have M0 = 25 and M0 /N = 0.333.  From Table 21.1, under H0: M = 25, the 

probability of finding y = 0 defective batteries in a sample of size n = 10 is 

Pr{0} = 0.012 < 0.05.  Hence, when  = 0.05, if y = 0 we reject H0 and claim 

statistical evidence that the fraction of defective batteries is less than 0.333. 

Suppose that y = 1, i.e., one defective battery is found in the sample.  From 

Table 21.1, under H0 the probability of no more than one defective battery in a 

sample of size n = 10 is Pr{0} + Pr{1} = 0.012 + 0.076 = 0.088.  Because  

0.088 > 0.05, we do not reject H0, and conclude that we do not have sufficient 

statistical evidence to claim that the fraction of defective batteries is less than 

0.333.  Therefore, with n = 10, the only result that supports the store’s claim is 

to have no defective batteries in the sample.  

This result may not be very reassuring to the store, because if their claim is 

correct at the margin (M = 25), the probability of rejecting H0 and supporting 
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their claim is only about 1%.  Unless the fraction defective is considerably less 

than the claimed one-third, H0 is not likely to be rejected.  The probability of 

rejection is given by the power of the test (see Section 13.4).    

The problem here is that the sample is too small to be sensitive to the 

correctness of H0.  One solution to this dilemma is, of course, to increase the 

sample size.  This option is considered in Section 21.5. 

  Although this example demonstrates the use of a one-sided test, the extension 

to a two-sided test can be similarly developed.  However, it is unlikely that a 

two-sided test would ever be needed.  For NRC applications, we are 

concerned about being either in compliance or out of compliance, which 

generally requires a one-sided test.  

21.5  Sample size considerations  

Chapter 13 considers the relation between the sample size and the power in 

hypothesis testing when the data came from a normal distribution.  In this 

section, we consider the relation between the sample size and the rejection 

region.  From Table 21.1, we see that, given N = 75, M = 25, and α = 0.05: 

 When n = 10, we can support H1: M < M0 if y = 0, because                      

Pr{Y = 0} = 0.012 < 0.05, but not if y = 1, because                           

Pr{Y ≤ 1} = 0.088 > 0.05. 

 When n = 11, we can support H1: M < M0 if y = 0, but not if y = 1, because 

Pr{Y ≤ 1} = 0.060 > 0.05. 

 When n = 12, we can support H1: M < M0 if y = 0 or if y = 1, because 

Pr{Y ≤ 1} = 0.040 < 0.05. 

We see that there are various combinations of sample sizes and rejection regions 

for testing H0.  We emphasize that the choice of the sample size must be made 

before the sample is drawn.  For example, it is inappropriate to start with a 

sample of size of n =10 and, if a single defective item is found, to increase the 

sample to n = 12.  An explanation why switching from one sample size to 

another is not permissible once the sampling has started is given, in a different 

context, in Chapter 24. 

As another example, suppose N = 1000 and M/N = 0.05.  Table 21.2 shows 

selected marginal and cumulative probabilities for N = 1000 and M = 50.   
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Table 21.2.   Hypergeometric probabilities for N = 1000 and M = 50 

 

  y 

 

n 

 

M 

 

N 

Marginal 

Pr{Y = y} 

Cumulative 

Pr{Y ≤ y} 

0 56 50 1000 0.052 0.052 

      0 57 50 1000 0.049 0.049 

1 57 50 1000 0.157 0.258 

      0 89 50 1000 0.008 0.008 

1 89 50 1000 0.043 0.052 

      0 90 50 1000 0.008 0.008 

1 90 50 1000 0.041 0.049 

2 90 50 1000 0.105 0.154 

  

As for Example 21.2, suppose we wish to test H0: M = M0 = 50 against a left-

sided alternative H1: M < 50 when α = 0.05.  From Table 21.2, we see that: 

 When n = 56, we cannot support H1 if y = 0 because                                 

Pr{y = 0} =  0.052 > 0.05. 

 When n = 57, we can support H1 if y = 0 because Pr{y = 0} = 0.049 < 0.05, 

  but not if y =1, because Pr{y ≤ 1} = 0.258 > 0.05. 

 When n = 89, we can support H1 if y = 0 because Pr{y = 0} = 0.008 < 0.05, 

  but not if y =1 because Pr{y ≤ 1} = 0.052 > 0.05. 

 When n = 90, we can support H1 if y = 0 or y = 1 

       because Pr{y ≤  1} = 0.049 < 0.05, but not if y =2 

              because Pr{y ≤ 2} = 0.154 > 0.05.  

 

We see that there are various combinations of sample sizes and rejection regions 

for testing H0.  By trial and error, we find that the minimum sample size for 

testing H0 is n = 57, because Pr{y = 0} > 0.05 for n < 57.  If the rejection region 

for H0 is increased to {y ≤ 1}, the minimum sample size is 90, because       

Pr{y ≤ 1} > 0.05 for n < 90. 

21.6  Normal approximation to the hypergeometric 
distribution 

Probability calculations associated with the hypergeometric distribution are 

involved and lengthy, especially when cumulative probabilities are required.  In 

some situations, however, the hypergeometric distribution can be approximated 

by other distributions.  In this section, we identify a guideline that allows us to 

approximate the hypergeometric by a normal distribution.  Chapter 22 considers 

approximation by a binomial distribution. 
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Hald (1952b), p. 691, states that a normal approximation to the hypergeometric 

distribution is reasonable if V(Y) > 9; that is, from Equation (21.3), if: 

[ ] 9
1

nM N M N n
V Y

N N N
 (21.9) 

If Equation (21.9) holds, then the standard statistic: 

[ ] [ ]

[ ][ ]

Y E Y Y E Y
Z

SD YV Y
 (21.10) 

is distributed approximately as a standardized normal variable.  A test of a 

hypothesis can be made by first substituting the hypothesized value for M/N for 

E(Y) in the numerator of Equation (21.10) and the calculated value of SD(Y) 

from Equation (21.4) in the denominator of Z.  We then compare the resulting 

statistic z to a normal quantile z1-α.  We demonstrate this approximation in 

Example 21.3. 

Example 21.3.   Cable installation.   A collection of 360 cables is audited 

for installation compliance.  The installer claims that at least 80% of the cable 

installations are compliant.  We examine a sample of size n = 100 and find that 

12 of the cables in the sample are not in compliance.  Do we have enough 

evidence to challenge the 20% upper limit on noncompliant cable installations 

claimed by the installer? 

In this example, we have N = 360 and n = 100.  The null and alternative 

hypotheses are H0:  M = 72 and H1:  M < 72.  We use  = 0.05. 

   

   Note that H1 is a left-sided hypothesis.  This means that H0 must be rejected 

to support the installer’s claim.   

To see if Hald’s criterion in Equation (21.9), is met, we calculate V(Y) under the 

null hypothesis.  Using Equation (21.5), we obtain:  

(100)(72) (360 72) (360 100)
[ ] = 11 59

360 360 (360 1)
V Y .  

Since 11.59 > 9, we can use the normal approximation to the hypergeometric 

distribution. 
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The mean and the standard deviation of Y under H0 are:   

(100)(72)
[ ] 20 00

360

[ ] 11 59 3 40

E Y .

SD Y . .

 

From Equation (21.10), the corresponding Z statistic is:  

12 20 00
2 35

3 40

.
z .

.
 

Because -2.35 < z0.05 = -1.645, we reject H0.  The statistical evidence supports 

the claim that the proportion of cables not in compliance is at most 20%. 

If we were to use the hypergeometric distribution directly, we would have to 

calculate and add the probabilities of finding 0, 1, 2, …, 12 unacceptable cables.  

Table 21.3 gives these probabilities.  

Table 21.3.   Hypergeometric probability calculations for 
Example 21.3 

y 0 1 2 3 4 5 6 7 

Pr{y} 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Pr{Y < y} 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

y 8 9 10 11 12 13 14 15 

Pr{y} 0.0001 0.0004 0.0012 0.0030 0.0068 0.0137 0.0249 0.0408 

Pr{Y < y} 0.0002 0.0006 0.0017 0.0047 0.0115 0.0252 0.0501 0.0909 

According to Table 21.3, statistical significance is realized for  = 0.05 and H0 

is rejected when y ≤ 13 since Pr{Y ≤ 13} = 0.0252.  Using the normal 

approximation when y = 13, we have z = (13 - 20)/3.40 = -2.05.  From Table T-1 

of the appendix, this corresponds to a probability of 0.0202.  Continuing the 

comparison of the exact hypergeometric probabilities with the normal 

approximation, from Table 21.3 we have Pr{Y ≤ 14} = 0.0501, which is not 

significant (although it borders on significance).  Using the normal 

approximation for y = 14, z = (14 - 20)/3.40 = -1.76, which corresponds to a 

probability of 0.0388 and is statistically significant.  When y = 15, neither the 

exact hypergeometric probability nor the normal approximation results in 

statistical significance.  
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22 
Binomial experiments 

 
22.1  What to look for in Chapter 22 

Chapter 22 focuses on the binomial distribution and its application to binomial 

experiments.  The binomial distribution, which is the mathematical foundation 

of the binomial experiment, is formally presented in Section 8.7, and some of 

the material from that section will be repeated and reinforced here.   As in 

Section 8.7, this chapter underscores the requirements that qualify experiments 

as binomial and provides tools for estimation and inferences associated with 

such experiments. 

This chapter shows how to calculate probabilities and make inferences about the 

structure and composition of the population from which a sample is taken.  This 

chapter will show how to: 

 recognize binomial experiments, §22.2 

 calculate probabilities associated with the binomial distribution, §22.3 

 recognize when binomial probabilities may be approximated, §22.3 

 estimate a population's proportion of attributes,  §22.3 

 test hypotheses about population proportion of attributes,  §22.6 
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 recognize when a binomial can be approximated by a normal distribution,  

§22.3 

 construct confidence intervals for proportions when  the normal 

approximation is used,  §22.6 

 construct confidence intervals for proportions when the normal 

approximation is not used,  §22.7 

 
22.2  Prerequisites for a binomial experiment 

binomial 

experiment 
Binomial experiments deal with binary outcomes.  However, 

whereas hypergeometric experiments require sampling without 

replacement, binomial experiments require sampling with 

replacement. 

The requirements under which an experiment qualifies as a binomial experiment 

are listed below.  Some of these requirements may overlap. 

Requirement 1.  The experiment is conducted in n trials, all of which are 

conducted under identical conditions.   

  The experiment comprises exactly n trials, and all n trials are conducted 

under the same set of circumstances.  This requirement for identical 

conditions, however, need not be taken literally.  In flipping a coin, for 

instance, we do not insist that the coin be flipped on the same day or at 

the same time.  For that matter, we may even permit another coin to be 

flipped.  The important principle to remember is that factors that may 

affect the experiment’s results must be the same for all trials in the 

experiment.  As an example, if we wish to assess the probability that 

pipe joints are welded properly, we must be sure that all the joints in 

our sample are welded by the same welder, or at least by welders with 

similar training and certification. 

Requirement 2.  The i 
th

 trial must result in either a success or a failure. 

  The response must be binary (dichotomous).  Whether we toss a coin or 

inspect a valve for compliance, the experiment must lead to a success 

or a failure.  Of course, when we define a success, we must have a 

frame of reference clearly in mind, since success to one person may be 

a failure to another.  To handle the results of a binomial experiment 

mathematically, we denote the result of the i 
th

 trial by Yi and assign 

Yi = 1 if the trial yields a success and Yi = 0 otherwise.  The advantage 

of this notation is that the sum Yi is the number of successes in the 

sample.   

Requirement 3.  The probability of success, denoted by π, is constant from trial 

to trial.  As with all probabilities, 0 ≤ π ≤ 1. 
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  If, for example, we throw a six-faced die, the probability of rolling a 6 is 

presumed to be unchanged from one throw to the next.  Indeed, a 

starting model for such an experiment could specify Pr{6} = 1/6.  In 

contrast, if the quality of the welding improves over time (perhaps 

owing to experience or to improved equipment), then this assumption 

of constant probability is violated.  Similarly, if the quality of welding 

deteriorates over time (perhaps owing to fatigue, overconfidence, or 

mere sloppiness), the binomial experiment is not the correct model to 

describe the experiment. 

Requirement 4.  The n trials are independent. 

  The system has no memory.  For example, if we win eight times in a row in 

a coin-tossing contest, our chance of winning on the ninth trial should 

not be different from that of any other toss.  Another example is a 

hiring practice that does not have a quota, and thus, one hiring does not 

affect who will, or will not, be hired next. 

The mathematical treatment of binomial variables involves either or both of two 

statistics: 

Y = Yi, the number of successes in a sample of n trials  (22.1) 

P = Y/n, the sample proportion of successes in the sample (22.2) 

22.3  Binomial probabilities 

The binomial probability function gives the probability Pr{Y = y} of y successes 

in n trials when the probability of a success in a single trial is π, 0 ≤ π ≤ 1.  We 

write this probability function as:  

( ) ( ; , )

{ } (1 )

(1 ) 0 1
! ( )!

y n y

y n y

f y f y n

n
Pr y | n,

r
n!

, y , , ..., n
y n y

 
(22.3) 

The parameters of the binomial distribution are n and π, as indicated in the 

expression for the probability function.  When n and π are obvious from the 

context, we may find it convenient to write Pr{y} instead of Pr{Y = y | n, π}. 

Although Equation (22.3) is not especially intimidating or difficult to evaluate, 

repeated evaluations of binomial probabilities for many different sets of the 

three arguments y, π, and n can be tedious.  Fortunately, we have several ―outs.‖ 
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First, we have Table T-8, ―Selected binomial probabilities‖ of the appendix.  It 

gives, to four decimal places, the binomial probabilities for combinations of       

π = 0.01, 0.05, 0.10, 0.25, and 0.50, y = 0, 1, …, 9 and n = 1, 2, …, 40. 

Second, we may have access to a variety of published detailed binomial tables.  

Among them are a pamphlet issued by the Ordnance Corps (1952), a book by 

Romig (1953), a compilation by the staff of Harvard University’s Computation 

Laboratory (1955), and tables by Beyer (1974), p. 182.   

Third, we may have a hand-held calculator with built-in binomial functions.  

Then, it is a matter of pressing buttons and reading displays. 

Fourth, we may have a spreadsheet program in our desktop computer.  Excel’s 

function =BINOMDIST(y, n, π, 0) returns the marginal probability Pr{Y = y} 

and =BINOMDIST(y, n, π, 1) returns the cumulative probability Pr{Y ≥ y}. 

Fifth, if certain conditions pertaining to the binomial’s parameters are met, we 

can use the normal approximation, discussed in Section 22.7, to approximate 

specific probabilities. 

Sixth, if certain conditions pertaining to the binomial parameters are met, we can 

use the Poisson approximation, discussed in Section 23.7, to approximate 

specific probabilities. 

22.4  Examples of binomial experiments 

Example 22.1 shows a classical binomial experiment. 

Example 22.1.   Head count.   What is the probability of throwing six heads 

in a row with a fair coin? 

We have y = 6, n = 6, and π = 0.5, from which we calculate: 

0 6 06!
{6} = 0 5 0 5 0 0156

6!0!
Pr . . .  

Table T-8 of the appendix also gives Pr{Y = 0, 6, 0.5} = 0.0156.  

Excel’s function returns =BINOMDIST(0, 6, 0.5, 0) = 0.0156.   

Because the chance of obtaining six heads in a row is rather small, the fairness 

of the coin may be suspect. 

Example 22.2.   Acceptance sampling.   A manufacturer advertises that at 

least 95% of the reed switches produced by his process will function perfectly 

―out of the box.‖  To verify his claim, he agrees to a random inspection of 
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124 switches.  The proposed sampling plan states that if the number y of failed 

switches is no higher than yA = 2, he will be awarded a contract as a vendor for a 

large order of switches.  If y > 2, the buyer will look for another vendor.   

  In quality assurance, the population from which we draw the sample is 

referred to as a ―lot.‖   

If the manufacturer is correct in his 95% claim, what is the probability of finding 

zero, one, or two failed switches in the sample?   

The probability that any switch in the sample is defective is π = 0.05.  Setting    

n = 124, we calculate: 

0 124124!
{0} (0.05) (0 95) 0 0017 reported here as 0.002.

0!124!
Pr . . ,

 

We continue our calculations and summarize them in Table 22.1. 

 Table 22.1.   Binomial probabilities for n = 124 and  = 0.05 

y 
Marginal 

Pr{Y = y} 

Cumulative 

Pr{Y ≤ y} 

Complement 

Pr{Y > y} 

0 0.002 0.002 0.998 

1 0.011 0.013 0.987 

2 0.037 0.050 0.950 

 
The probability of the contract award is Pr{Y ≤ 2}.  If that probability is small, 

the contract is awarded.  From Table 22.1, the probability of award when Y ≤ 2 

is 1 − 0.050 = 0.950.  

  In the sampling plan just described, the probability of accepting the entire 

lot is 0.95 when 95% of the items in the lot are ―good.‖  This sampling 

plan is often referred to as a 95/95 plan.  We consider this and similar 

plans in Chapter 24. 

We note that when n = 124 and y = 2 (122 good items in the sample), the 

proportion of acceptable switches in the sample is 122/124 = 0.984, which is 

better than the required 95%.  The margin of 98.4% over 95% is required for 

assurance that the population (not the sample!) proportion is at least 95%.  

Example 22.3.   Drug testing.   Every employee in a government agency is 

a candidate for drug testing.  In this example, tests are administered once a 

month, but the day of the month is selected at random.  (One problem with this 

scheme is that once a test is conducted during a given month, employees may be 

without a deterrence for the rest of that month.)  For each of those 12 days, 1/12 

(8.833%) of the employees are randomly selected to be tested.  The random 
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sample is selected independently of whether the employee was selected in any 

previous month.  Hence, some employees may be selected more than once in a 

year, while others may not be selected at all.   

Frequently asked questions about random drug testing are:  What is the 

probability that an employee will not be selected during the year?  What is the 

probability that an employee will be selected once, twice, or more than twice 

during the year? 

Drug testing is an excellent opportunity to misuse or interpret the term 

―sample.‖  Loosely speaking, we ―sample‖ the population 12 times a year; each 

time, we draw a ―sample‖ of, say, 100 employees and then we ask every 

selected employee to give a ―sample.‖   

Technically, the sample given by the selected employee should be called a 

specimen.  The question is then whether the sample size is n = 12 or n = 100.  

The answer depends on how we envision the process.  If we look at every month 

as another sample (with n = 100), we have a sampling without replacement plan 

because once an employee is selected, that employee cannot be selected again in 

the same month. 

On the other hand, we can look at the experiment as n = 12 trials, where a 

specific employee may be selected for one or more of these trials.  In this 

context, we have a sampling with replacement plan, which qualifies the 

experiment as a binomial.  This is the scenario in which we answer the question 

about the probability of being selected y times during the year. 

The probability of being selected at a given test is π = 1/12 = 0.0833.  With 

n = 100, we calculate: 

0 1212!
{0} (0.0833) (0 9167) 0 3521

0!12!
Pr . .  

We continue our calculations and summarize them in Table 22.2. 

Table 22.2.   Binomial probabilities for n = 12 and  = 0.0833 

 

y 

Marginal 

Pr{Y = y} 

Cumulative 

Pr{Y ≤ y} 

Complement 

Pr{Y > y} 

0 0.3521 0.3521 0.6479 

1 0.3840 0.7361 0.2639 

2 0.1920 0.9281 0.0719 
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Using the calculations in Table 22.2, we respond to the questions posed earlier.  

The probability of an employee not being selected even once during the year is 

0.3521, of being selected exactly once during a year of testing is 0.3840, and of 

being selected exactly twice is 0.1919.  The probability of being selected twice 

or less is 0.9281, and the probability of being selected more than twice is 

0.0719. 

  The sampling scheme described in Example 22.3 is typically labeled as a 

―100% sampling rate test.‖  This term is a common, but unfortunate, 

because it has the potential to mislead.  The label ―100% sampling rate‖ 

is meant to describe a plan in which the total number of individual drug 

tests conducted in a specific year is equal to the number of employees 

in the pool.  It does not mean that all employees (i.e., 100%) will be 

tested. 

Example 22.4.   Sampling memory chips.   Suppose that approximately 

 = 0.1 = 10% of special computer memory chips are defective.  For our 

computer to run a new batch of software properly, we must install eight of the 

special memory chips.  Our computer dealer carries those chips in a large 

container, but we can make only one trip to his warehouse.  What is the 

probability that, if we randomly select eight chips, all of them will work? 

The probability that all eight chips will function properly (i.e., that zero chips 

will fail) is given by:  

0 88!
{0} = (0 1) (0 9) 0 4305

0!8!
Pr . . .  

This probability, slightly larger than 0.43, reflects an uncomfortable ―likelihood‖ 

that our computer will be operational tonight.  Thus, we might decide to buy 

nine chips to improve our ―chances‖ of winding up with eight working chips.  

All we have to do is to calculate the probability that the number of defective 

chips in a sample of n = 9 would be either zero or one, because either outcome is 

acceptable.  Table 22.3 gives these calculations.  
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Table 22.3.   Binomial probabilities for  = 0.1 and varying n 

n y 
Marginal 

Pr{Y = y} 

Cumulative 

Pr{Y ≤ y} 

Complement 

Pr{Y > y} 

8 0 0.4305 0.4305 0.5695 

9 0 0.3874 0.3874 0.6126 

9 1 0.3874 0.7748 0.2252 

10 0 0.3487 0.3487 0.6513 

10 

110 

1 0.3874 0.7361 0.2639 

10 2 0.1937 0.9298 0.0702 

11 0 0.3138 0.3138 0.6862 

11 1 0.3835 0.6974 0.3026 

11 2 0.2131 0.9104 0.0896 

11 3 0.0710 0.9815 0.0185 

 
For eight out of the nine chips to be acceptable, we must have either zero or one 

bad chip.  Table 22.3 gives the associated probability as Pr{Y ≤ 1} = 0.7748, 

which is a considerable improvement over 0.4705.  

If the probability of 0.7748 is still inadequate, then how many chips shall we 

buy?  Even if we buy 50 chips, we have no absolute assurance that at least 

8 chips will be acceptable.  Hence, we have to set a confidence statement to give 

us an assurance of at least eight functioning chips.  Quite typically, we set that 

confidence at 95%.  Now we reformulate our question to ask how many chips 

we should buy so that we have at least 95% assurance that at least eight chips 

will function.  From Table 22.3, we see that this assurance may not be achieved 

unless we buy at least 11 chips (for which we actually have over 98% 

confidence). 

In this example, we set the confidence level at 95%.  Because this threshold is 

arbitrary, we are reminded that the decision concerning the sample size 

ultimately rests with the user.  Finances, convenience, and other considerations 

will enter into the decision.  Here are some guidelines:  Recognize and articulate 

constraints and limitations early in the planning process.  Once the goals and 

decision criteria are decided on, stick to them.  Adherence to the chosen goals 

and decision criteria will keep us out of the trouble we may encounter if we fall 

back upon ad hoc, spur-of-the-moment, changes in our approach.   

22.5  Mean and variance of a binomial variable 

If we observe Y defective items in a random sample of size n, the sample 

proportion of defective items is Y/n.  This sample proportion is a natural 

candidate as an estimator of the population proportion π. 
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Both Y (the sample count of items with the attribute) and Y/n (the sample 

proportion of items with the attribute) are important statistics.  Whereas many 

statistics books concentrate on the statistic Y, for its mathematical tractability, 

we prefer to emphasize the statistic Y/n for practical reasons.  For notational and 

mnemonic convenience, we set P = Y/n. 

Each of Y and P has a mean, a variance, and a standard deviation.  As expected, 

the mean of the proportion P of a sample is the proportion π of successes in the 

population.  Mathematically, we write:  

E[Y] = nπ   (22.4) 

E[P] = π     (22.5) 

V[Y] = (1 )n  (22.6) 

V[P] = (1 )/n  (22.7) 

[ ] = (1 )SD Y n  (22.8) 

[ ] = (1 )SD P / n  (22.9) 

The proof of Equations (22.4) and (22.5) may be found in Hoel (1971), p. 62.  

Table 22.4 summarizes the parameters of the binomial probability function.  

Table 22.4.   Parameters of the binomial probability function 

Measure 
Sum of successes,  

Y 

Proportion of successes,  

P = Y/n 

Mean: 

   Estimator: 

nπ 

nP 

 

P 

Variance: 

    Estimator: 1

(1 )

P P( )

n

n
 

1

(1 )

P( P )

/ n

/ n
 

Standard 

deviation: 

   Estimator: (1 )

(1 )

P P

n

n

 

(1 )

(1 )

P P

/ n

/ n
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22.6  Normal approximation to the binomial 

Although Y always is an integer in binomial experiments, certain conditions 

allow us to approximate the distribution of Y and, in parallel, the distribution of 

P = Y/n, by the ubiquitous normal distribution.  This approximation simplifies 

the term-by-term calculations inherent in the binomial by employing the 

easy-to-use standard normal table (such as Table T-1 of the appendix) and 

allowing solutions to many problems without the need for an extensive 

enumeration exercise.  The conditions for using the normal approximation are 

stated by writers such as Dixon and Massey (1983), p. 220, as: 

Both n π > 5 and n(1 − π) > 5  (22.10) 

If the binomial parameter π is not known, we can use P = Y/n to approximate π, 

yielding the following modified equivalent conditions: 

both nP > 5 and n(1 − P) > 5  (22.11) 

both n(Y/n) > 5 and n(1 − Y/n) > 5  (22.12) 

both Y > 5 and (n − Y) > 5  (22.13) 

When these conditions are satisfied, we can call on all the procedures involved 

in normal estimation and hypothesis testing processes.  Thus, we may test 

whether π is equal to a given value (using either a one- or a two-sided test), or 

we can produce a confidence interval (either one- or two-sided interval) for π. 

To test the null hypothesis H0: π = π 0, the test statistic is:  

0 0

0 0 0 0(1 ) (1 )

Y / n P
Z

n n

 

(22.14) 

We reject H0 if: 

H1:   ≠ 0 and | z | > zα/2 (22.15) 

H1:   < 0 and  z < -z1-α (22.16) 

H1:   > 0 and  z > z1-α (22.17) 

 
Examples 22.5 and 22.6 illustrates the test. 

Example 22.5.   Water impurity.   From a large area near a plant, 63 

aquifers were randomly selected and examined for impurities.  Excessive 

contaminants were found in 16 aquifers.  Is the sample proportion significantly 

higher than the prevalent 10% in that county? 
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We have n = 63, y = 16, p = y/n = 16/63 = 0.254.  The setup for the test is 

H0:  π = 0.10, H1:  π > 0.10, and α = 0.05.   

First note that, under H0 , Equation (22.13) is satisfied as np = 16 > 5 and       

n(1-p) = 144 > 5, so that the normal approximation to the binomial is 

appropriate.  We proceed by constructing a standard normalized test statistic and 

reject H0: π = 0.1 if the calculated statistic is larger than z0.95 = 1.645.  From 

Equation (22.14), we have: 

16 63 0 1
4 07

0 1(1 0 1)

63

/ .
z .

. .

 

Because 4.07 > 1.645, we reject H0, claiming statistical evidence that the level 

of contamination is larger than 10%. 

Example 22.6.   Mask filters.   Out of 100 masks tested in a random sample, 

1 failed to meet a standard criterion.  Since this may be a serious issue, we wish 

a proof that no more than π = 5% of the entire lot is unacceptable.  Since, under 

H0,  πn = (0.05)(100) = 5, we use the normal approximation.  We set the 

hypothesis in such a way that the test has to show that the percent of 

unacceptable masks is significantly less than 5%.  We have: 

H0:  π = 0.05, H1:  π < 0.05, α = 0.05  

1 100 0 05
1 84

(0 05)(0 95)

100

/ .
z .

. .

 

The critical point for this test is z0.05 = -1.645.  Because -1.84 < -1.645, we reject 

the null hypothesis in favor of a statement that the population proportion of 

unacceptable filters is below 5%. 

22.7  Confidence interval for a proportion: 
Normal approximation applies 

When the normal approximation applies, that is Y ≥ 5 and (n – Y) ≥ 5, the 

construction of the confidence interval is similar to the procedure used for the 

population mean in Chapter 9. 
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A two-sided confidence interval about π is constructed using the sample 

proportion P = Y/n: 

1 2

(1 )
two-sided:  /

P P
P z

n
 (22.18) 

For a one-sided confidence interval, use, as needed, either one of the following: 

1

(1 )
upper-sided:  

P(1 )
lower-sided:  

P P
P z

n

P
P z

n

 

 

(22.19) 

(22.20) 

Example 22.7.   Computer updates.   Of 100 computers selected at random 

from a large population, 7 are found to be outdated.  What is the 95% upper 

confidence interval (UCL) on the fraction of outdated computers? 

7 100 93 1007
UCL 1 645 0 07 0 042 0 112

100 100

/ /
. . . .   

This sets the 95% upper limit for the fraction of cables not meeting standard 

specifications at slightly more than 11%. 

22.8  Confidence interval for a proportion:  
Normal approximation does not apply 

If either Y < 5 or n - Y  < 5, the normal approximation to the binomial cannot be 

used to construct a confidence interval about the binomia1 proportion π.  

However, other approaches are available. 

Given a sample of size n with Y successes, we start by constructing a two-sided 

100(1- )% confidence interval on the binomial parameter π.  Denote the 

interval by (πL ,  πU) .   Let y be the observed number of successes, where            

0 < y < n.  Then π U  is the value of π for which:      

0

!
1 2

!( )!

y
n ii

i

n
/

i n i
 (22.21) 
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and πLis the value of π for which: 

!
1 2

! ( )!

n
n ii

i y

n
/

i n i

 
(22.22) 

If  0 < y < n and we wish to construct a one-sided confidence interval about , 

we replace /2 in  Equatio n (22.21) or (22.22) by  for upper and lower 

bounds, respectively.  If y = 0, we cannot rule out a value of 0 for  and 

therefore only a one-sided upper confidence interval makes sense.  Similarly, if 

y = n, we cannot rule out a value of 1 for  and therefore only a one-sided lower 

confidence interval makes sense.  These two special cases are discussed in 

Section 22.9. 

Equations (22.21) and (22.22) can be solved either by interpolating in a table of 

cumulative binomial probabilities or by iteratively solving a polynomial 

equation in π.  Alternatively, as shown by Bowker and Lieberman (1972), p. 

466, both πU  and πL  can be approximated by quantiles of the F-distribution.  

However, interpolation in a table of the F-distribution (Table T-4 of the 

Appendix) may be required for acceptable approximations to πU  and π L .  An 

easy alternative to table interpolation is to use a spreadsheet function, such as 

Excel’s =FINV, to calculate the required F values 

Using Bowker and Lieberman’s approach, we have:   

1 2

1 2

1 (2( 1) 2( )) (Two-sided upper

confidence limit for )( 1 (2( 1) 2( ))

/

U

/

y f y , n y

n y ) y f y , n y

 
     (22.23) 

1 2

(Two-sided lower

confidence limit for )1 (2( - 1) 2 )
L

/

y

y n y f n y , y

 
(22.24) 

where fq(ν1, ν2) denotes the q
th 

quantile of the F-distribution (Table T-5 of the 

appendix). 

In Excel, we use =FINV(α /2, 2(y+1), 2(n − y)) for the required f values in 

Equation (22.23) and =FINV(α /2, 2(n − y+1), 2y) in Equation (22.24). 

If a one-sided confidence interval is needed, then replace 1 – α /2 by 1 - α in 

both Equations (2.23) and (22.24) to yield: 

1

1

(One-sided upper1 (2( 1) 2( ))
       confidence limit for )( 1 (2( 1) 2( ))

U

y f y , n y

n y ) y f y , n y

 
(22.25) 
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1

(One-sided lower

confidence limit for )1 (2( - 1) 2 )
L

y

y n y f n y , y
  

(22.26) 

In Excel, we use =FINV(α, 2(y+1), 2(n-y)) for the required f values in Equation 

(22.25) and =FINV(α, 2(n-y+1), 2y) in Equation (22.26). 

Example 22.8.   Two-sided confidence interval for proportion.    
Bowker and Lieberman (1972, p. 467) illustrate their approach with the 

following example.  Suppose that 4 defects are observed in sample of 25.  The 

sample proportion is p = 0.16.  We wish to construct a two-sided 95% 

confidence interval for π with  = 0.05, n = 25, y = 4.  Using Equations (22.23) 

and (22.24), we find f0.975(2(4+1), 2(25-4)) = f0.975(10, 42) = 2.37 and   

f0.975(2(25-4+1), 2(4)) =  f0.975(44, 8) = 3.82.  We then have: 

5(2.37)
0 361

21 5 2 37

4
0 045

4 22 3 82

U

L

.
.

.
.

 

 

Thus, we have 95% confidence that the true population proportion π is between 

0.045 and 0.361. 

Example 22.9.   One-sided confidence interval for proportion.    
For most applications, a more realistic objective for Example 22.8 would be to 

construct a one-sided upper confidence limit for the proportion of defects in the 

population.  From Equation (22.25), we find f0.95(10, 42) = 2.06 and then 

calculate the 95% upper confidence limit for π as:   

5(2.06)
0 329

21 5 2 06
U .

.
  

22.9  Confidence interval for a sample with no defects 

It often happens that y = 0 in a binomial sample of size n, where  is the 

population proportion of defects   First, we note that the normal approximation 

does not apply because Equation (22.13) is violated.  With no defects in the 

sample, a lower bound of 0 for π cannot be ruled out.  Consequently, we look for 

a an upper confidence limit for π.   

From Equation (22.21) with y = 0 and α/2 replaced by , the upper confidence 

limit π U  i s  the value of π such that: 
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0 0!
(1 )

0! ( 0)!

nn

n
 (22.27) 

Since 01 and 1, Equation (2.27) is reduced to:
0

n!

!n!
 

(1 )n  (22.28) 

To find the value of π satisfying Equation (22.28), we take the logarithm of both 

sides and then exponentiate to get: 

[ ( ) ]

(1 ) ( )

(1 ) ( )

1
ln /n

n ln ln

ln ln / n

e  

It follows that: 

 

[ ( ) ]
1 (one-sided upper (1 - ) confidence limit)U

ln /ne  (22.29) 

Example 22.10.   Contaminated wells.  We wish to establish a limit on the 

proportion of wells in a population that are contaminated.  We draw a random 

sample of 25 wells and find none  contaminated.  From Equation (22.29), an 

upper 95% confidence limit is:   

(0.05)/25 2.996/25 0.1201 1 1 1 0.887 0.113U

ln
e e e  

Thus, we are 95% confident that no more than 11.3% of all the wells are 

contaminated.   

Suppose our goal is to demonstrate that only a few percent of wells, e.g., 3%, are 

contaminated.  If we are satisfied with only 90% confidence, then the UCL is 

8.8%.  With 85% confidence, the upper limit decreases to 7.3%, and with 80% 

confidence, to 6.2%.  The UCL is 3% with only 53% confidence.  Hence, it may 

not be possible to achieve our goal with any reasonable confidence level.  The 

only way to significantly improve these results is to increase the sample size.  Of 

course, the only way to be certain that none of the wells is contaminated is to 

test the entire population.  

22.10  Sample size for political polling 

In Example 22.10, we saw that, with a fixed sample size, the only way to 

decrease an upper confidence limit was to decrease the confidence level and, 
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furthermore, that a desired upper limit may not be achievable with any 

reasonable confidence level.  In this section, we show how increasing the sample 

size allows us to achieve a target goal with pre-specified confidence.     

We illustrate this with a polling example, a widely used application of binomial 

confidence intervals.  Suppose we need to determine the sample size required to 

predict a forthcoming national election with a specified margin of error.  We 

assume that two candidates are running neck-and-neck, so that the probability of 

either candidate being elected is approximately 0.5. 

We make the following assumptions: 

 There are only two candidates, A and B. 

 The persons polled are selected at random. 

 Each person polled will unequivocally favor either A or B.   

 Each person polled will vote for the same candidate on Election Day. 

 

Given a sample of size n, let Y be the number of people who support Candidate 

A.  The ratio P =Y/n is an estimate of π, the proportion of the electorate that will 

vote for Candidate A on Election Day.  For national pre-election polls, the 

margin of error is typically set at 0.03 = 3%.  This means that the end points of a 

two-sided 95% confidence interval about  will differ from  by no more than 3 

percentage points or 0.03. 

Because n is large (typically about a thousand) and y  n/2, Equation (22.13) 

holds and we can use the normal approximation to the binomial.  From Equation 

(22.18). a two-sided 95% confidence interval for  is:  

0 975

(1 )
.

P P
P z

n
 (22.30) 

Because the candidates are running neck-and-neck, we set P = 0.50.  Setting  

z0.975 = 1.960, we can satisfy the 3% margin of error requirement by equating 

half-width of the interval in Equation (22.30) to 0.03 to get:  

(0 50)(0 50)
1 960 0 03

. .
. .

n

 (22.31) 

Solving Equation (22.31) for n yields n = 1067.1, which is rounded up to 1068, 

and often rounded up further to 1100.  Many pre-election polling reports include 

a statement about a 3% ―margin of error.‖   Some also state that the results are 

based on a sample size of n = 1100, and some even explain that the margin of 

error corresponds to a 95% confidence level. 

When the cost of sampling is high, we may reduce the sample size by accepting 

a larger margin of error.  For example, if we use a margin of error of 0.05, 
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Equation (22.31) yields a sample size of 385.  If we are willing to use a lower 

confidence level, say 90% (for which z0.95 = 1.645), we can reduce the sample 

size to 271. 

22.11  Binomial approximation to the hypergeometric 
distribution  

 

 

 

sampling 

ratio 

Under certain conditions that are often easy to meet, binomial 

probabilities can be used to approximate hypergeometric 

probabilities.  Brownlee (1965, p. 167) states:  ―A rough criterion 

for the validity of the approximation is that the sampling ratio 

n/N < 0.1; i.e., for the sample size to be less than 10 per cent of 

the population size.‖   Furthermore, the smaller the sampling ratio 

n/N, the better the approximation.  The main advantages of the 

binomial over the hypergeometric distribution are that binomial 

probabilities are easier to calculate and there are more tables 

available for this task. 

Table 22.5 compares hypergeometric and binomial probabilities for a sample of 

size n = 10 from a population of size N = 100 with M = 25.  Because the 

probability of an item in the population having the attribute of interest is       

M/N = 25/100 = 0.25, we set  = 0.25 for the binomial distribution.     

Table 22.5.   Hypergeometric and binomial probabilities 
compared  

Successes y 

in sample of 

n = 100 

Hypergeometric 

distribution: 

Pr{Y= y|N = 100, 

M = 25, n = 10} 

Binomial 

distribution 

Pr{Y = y|n = 10, 

π  = 25/100} Difference 

0 0.048 0.056 -0.008 

1 0.181 0.188 -0.006 

2 0.292 0.282 0.011 

3 0.264 0.250 0.013 

4 0.147 0.146 0.001 

5 0.053 0.058 -0.005 

 
For this example, the two sets of probabilities differ by no more than 0.01.  Note 

that the sampling ratio for this example is 0.1, which is the minimal requirement 

for using the binomial approximation.  In addition to improving as the sampling 

ratio decreases, the approximation also improves as the sample size increases. 
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23 
Poisson experiments 

23.1  What to look for in Chapter 23  

The Poisson distribution
9
 was formally introduced in Section 8.10.  This chapter 

elaborates on the distribution and shows its applications.  

The Poisson distribution is a discrete distribution that is often used as a model 

for calculating probabilities of rare events associated with time and space.  For 

example, with the help of the Poisson distribution function, we will be able to 

calculate the probabilities of zero, one, two, or more failures of a component 

with a known constant failure rate, provided that we can satisfy certain 

prerequisites.  These prerequisites, some of which are shared with the 

prerequisites for the binomial experiments discussed in Chapter 22, are detailed 

in Section 23.2.  This chapter shows us how to: 

 recognize Poisson experiments, §23.2 

  calculate the probabilities associated with rare events, §23.3   

  test hypothesis about a Poisson parameter, §23.5 

                                                           

9
 After the French mathematician Siméon Denis Poisson (1781–1840). 
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 construct a confidence interval for a Poisson parameter, §23.5 

 approximate the binomial by the Poisson distribution, §23.6 

 approximate the Poisson by the normal distribution, §23.7   

 

23.2  Prerequisites for a Poisson experiment 

The Poisson distribution is often used as a model for calculating probabilities of 

the occurrence of rare events in a fixed time interval or in a fixed interval, area, 

or volume in space.  Indeed, every experiment that counts events is a potential 

candidate for modeling by the Poisson distribution.  Some examples of data that 

can be modeled by the Poisson distribution are counts of: 

 trucks overturned on the Beltway during a Winter month 

 babies born in a cab on the way to the hospital during a specific week 

 pumps failing to start at the push of the start button 

 lightning strikes within a one-kilometer circle around a specific power 

station during a specific month 

 deer hit by motorists on Interstate 270 on a given day 

 alpha particles emitted from a specific source in a 15-second time interval 

 kinks in 1,000 yards of stretched copper wire 

 flaws in 100 continuous yards of fabric 

  In the following discussion, we consider Poisson experiments occurring in 

time.  The discussion, however, is equally applicable to experiments 

occurring in space (length, area, volume).   

The requirements, or assumptions, for the application of the Poisson distribution 

are listed below.  We consider the probabilities of events occurring in small 

subintervals of a given period of time,   

  See Requirement 2 for a definition of what is meant by ―small‖ in this 

context. 

 

scale 

parameter  

Requirement 1.  The probability of observing one event is 

approximately proportional to the length of t. That is,          

Pr{1 event in t} is approximately equal to θt for some 

constant θ > 0. Here, θ is the scale parameter of the Poisson 

experiment. 

Requirement 2.  The probability of observing more than one 

event in the subinterval t is negligible. 

  A subinterval that satisfies Requirement 2 is considered small.   
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Requirement 3.  The occurrence of an event in any small 

subinterval is independent of the occurrence of an event in any 

other nonoverlapping subinterval. 

  The system has no memory.  What took place yesterday does not affect 

what will happen today. 

Requirement 4.  The probability approximations in 

Requirements 1 and 2 improve as t approaches zero. 

  This assumption allows the rigorous mathematical derivation of the Poisson 

distribution from the other assumptions. 

Because any interval can be thought of as a collection of adjacent 

nonoverlapping subintervals, it is a logical consequence of the assumptions that 

the probability of y events occurring in an interval of any length depends only on 

y and the length of the interval. 

   The probability of observing y events in a one-hour interval starting now is 

the same as for any other one-hour interval starting anytime after an 

hour from now. 

23.3  Poisson probabilities 

Given a time interval of length t, let the random variable Y be the total number 

of events occurring in a Poisson experiment with scale parameter θ.  The 

probability that Y equals y is given by: 

( )
{ | } , 0,1, 2, ...

!

t ye t
Pr Y y t y

y
 (23.1) 

  The Poisson distribution counts the number of events in a time interval of 

fixed length.  This is in contrast to the binomial distribution, which 

counts the number of events (successes) in a fixed number of trials. 

  If  is small, from Equation (23.1) with t = 1, we have Pr{Y = 1} =  e
-

  .  

In other words, for small , the probability of exactly one event in a 

unit time interval is approximately equal to . 

The mean of the random variable Y is (Mood et al. (1974), p. 93): 

E[Y]=  t (23.2) 
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The variance of Y, interestingly, is equal to the mean (ibid), so we write: 

V[Y] =  t (23.3) 

and the standard deviation of Y is: 

[ ]SD Y t  (23.4) 

Poisson 

parameter 
From Equation (23.1), we see that the Poisson distribution 

depends on a single Poisson parameter, denoted by λ.         

Setting λ =  t, we have: 

                       

( )
{ | } , 0,1, 2, ...

!

ye
Pr Y y y

y
 (23.5) 

                        E[P] =  

 

(23.6) 

                        V[Y] =  (23.7) 

                        and the standard deviation of Y is: 

                        [ ]SD Y  (23.8) 

The probabilities associated with various values of λ and y are easily calculated 

on a hand-held scientific calculator, provided you don't overflow its memory.  

Alternatively, you can use a source like Table T-9 ―Selected Poisson 

probabilities,‖of the appendix, which provides probabilities selected values of λ 

and y.   

We can also obtain the marginal probability Pr{Y = y | λ} using Excel’s function 

=POISSON(y,, 0), and the cumulative probability Pr{Y ≤ y | λ} using Excel’s 

function =POISSON(y, , 1).  As examples, we may wish to verify that:   

=POISSON(0, 2.5, 0) = 0.082 

=POISSON(1, 2.5, 0) = 0.205 

=POISSON(2, 2.5, 0) = 0.256 

=POISSON(2, 2.5, 1) = 0.544 
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23.4  Applications  

Two examples of the application of Poisson probabilities are shown below.   

Example 23.1.   Errors in message transmission.   A status report of 

plant operation is continuously updated and transmitted to the plant manager 

electronically.  Because the rate of transmission errors is low and constant and 

because they are independent, the number of transmission errors has a Poisson 

distribution.  From previous experience, the probability of transmission error in 

any one-hour segment is about one percent.  Therefore, we assume that the scale 

parameter  = 0.01.   What is the probability that during a 10-hour period no 

errors will be found?  Exactly one error?  Exactly two errors?  More than two 

errors? 

Setting t = 10 and   = 0.01, we have λ = (10)(0.01) = 0.10.  The marginal 

probabilities of exactly zero, one, or two errors can be calculated from Equation 

(23.1) or obtained from Table T-9 of the Appendix  = 0.10 and y = 0, 1, and 2.  

The probability of more than two errors is the complement of at most two errors.  

We have: 

Pr{0} = Pr{0 | 0.10} = (e
-0.1

)(0.1)
0
/0! = (0.9048)(0.1)

0
/0! = 0.9048 

Pr{1} = (0.9048)(0.1)
1
/1! = 0.0905 

Pr{2} = (0.9048)(0.1)
2
/2! = 0.0045 

Pr{more than 2} = 1 − Pr{0} − Pr{1} − Pr{2} 

               = 1 − 0.9048 − 0.0905 − 0.0045 = 0.0002 

  The calculated probabilities apply to any number of non-overlapping 

intervals that total to 10 hours.  

Example 23.2.   Elevator failure.   The probability of an elevator failure is 

certified to be 0.014 in an arbitrary 24-hour period.  What is the average number 

of elevator failures in a 5-day workweek?  What is the probability of no failure 

in 5 consecutive days?  In 5 consecutive Mondays? 

We set the scale parameter  = 0.014.  Setting t = 5, the average number of 

failures over five consecutive days is  = (5)(0.014) = 0.70.  From Equation 

(23.1), the probability of no failure is calculated as:   

Pr{0} = (e
-0.70

)(0.70)
0
/0! = (0.4966)(0.1)

0
/ 0! = 0.4966.  

Thus there is nearly a 50% chance of at least one elevator failure during the 

week.   
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The probability of no failure on five consecutive Mondays is 0.4966, the same 

as in any five non-consecutive days, or any collection of non-overlapping time 

intervals that sum up to five days. 

23.5  Parameter testing and confidence intervals  

As for other distributions, there are several options for testing whether the 

Poisson parameter is equal to a given value, λ0.  These are:  

0 0 1 0

0 0 1 0

0 0 1 0

: = : (two-sided test)

: = : (one-sided test)

: = : (one-sided test)

H , H

H , H

H , H

 

(23.9) 

(23.10) 

(23.11) 

  Most applications of interest consider only one-sided alternatives, since we 

are usually concerned about λ being too large or too small. 

Because of the equivalence between hypothesis testing and confidence interval, 

we will test a null hypothesis about  by constructing a confidence interval for 

.  If the event count falls outside the confidence limits, we will reject H0 and 

conclude that the statistical evidence is not consistent with the null hypothesis. 

As shown by Brownlee (1965), p 172, we can form a confidence interval about λ 

through the chi-square distribution, pertinent values of which are given in 

Table T-2 of the appendix or obtained from Excel’s =CHIINV function.  

To construct a 100(1 − )% confidence interval about ,we first determine Y, the 

count of events in total time t.  We then calculate the following degrees of 

freedom: 

νL = 2Y (23.12) 

νU = 2(Y +1) (23.13) 

For a two-sided confidence interval, the lower and upper 100(1 − )% 

confidence limits about  are: 

2

L2

1

2
L /

 (23.14) 

2

U1 2

1

2
U /

 (23.15) 

  If y = 0, set the lower limit of the confidence interval at L = 0. 
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When y > 0, a one-sided 100(1 - )% lower confidence limit on λis: 

2

L

1

2
L

 (23.16) 

If y = 0, set  λL = 0. 

When y > 0, a one-sided 100(1 - )% upper confidence limit on λ is: 

 

2

U1

1

2
U

 (23.17) 

Example 23.3.  Automobile accidents.  Suppose we wish to test whether 

the average number of accidents in a given intersection is no larger than five a 

year, when the record shows y = 7 accidents for the last year.  Let α = 0.05.  

From Equations (23.13) and (23.17), the upper 95% confidence limit is:  

νU = 2(y + 1) = (2)(8) = 16    

2

0 95

1 1

2 2
16 26 3 13 15U .

. .
 

Because 7 < 13.15, we do not reject the null hypothesis and conclude that the 

statistical evidence does not contradict the claim that the average annual number 

of accidents in the given intersection is no larger than five.  

An alternative to using Equations (23.14) to (23.17) to construct confidence 

limits is to use Table T-10 of the appendix for selected values of y from 0 to 50 

(denoted by p in the table) and for several choices of .  However, for one-sided 

confidence intervals, it is necessary to use the confidence level corresponding to 

/2 in the table.  Thus, for Example 23.3, we find U = 13.15 in the row for       

p = 7 and the column for /2 = 0.05.   

Example 23.4.   False alarms.   The number of false alarms in a security 

zone during a 1-month period is treated as a Poisson variable.  Suppose that, in a 

specific month, two false alarms were observed.  Based on these data, we seek a 

one-sided, upper 95% limit for the average number of monthly false alarms. 

Using Table T-10 with y = 2 and = 1-  = 0.95, we find the upper limit on the 

expected number of false alarms to be 7.22.   
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23.6  Approximations to the binomial distribution  

A second major application of the Poisson distribution is as an approximation to 

the binomial distribution.  Recall from Chapter 22 (Equation (22.10)) that the 

normal distribution provides a good approximation to the binomial distribution 

if n   5.  If n  < 5, it turns out that the Poisson distribution with  = n  

provides a good approximation to the binomial.  A proof may be found in Hoel 

(1971), p. 64. 

The Poisson approximation to the binomial is illustrated with two examples. 

Example 23.5.  Failures of coating adhesions.  The adhesion of urethane 

coating to concrete surfaces may be tested by a "scratch test" which is applied to 

a block of concrete with one square foot of surface area.  The manufacturer of a 

coating claims a 99% adhesion rate.  If 12 one-square-foot blocks of concrete 

are selected at random, what is the probability that at least 11 out of the 12 will 

pass the scratch test?  This is equivalent to asking what is the probability that 

none or one of the scratch tests will fail. 

For the binomial calculations, we have n = 12 and π = Pr{scratch test failure} = 

0.01.  From Equation (22.3), the probabilities of 0 and 1 failure are:   

0 1212!
{0 |12,0.01} 0.01 0.99 0.8864

0!12!
Pr

 

1 1112!
{1|12,0.01} 0.01 0.99 0.1074

1!11!
Pr  

Therefore, the probability that at least 11 out of 12 blocks will pass the scratch 

test is 0.8864 + 0.1074 = 0.9938. 

To apply the Poisson approximation, we first check whether n  < 5.  We have 

n  = 0.12, so we can use a Poisson approximation.  Setting  = 0.12, we may 

obtain the required Poisson probabilities from Table T-9 or use Equation (23.1) 

to get: 

Pr{0} = (e
-0.12 

)(0.12
0
)/0! = 0.8869 

Pr{1} = (e
-0.12 

)(0.12
1
)/1! = 0.1064 

Pr{at least 11 acceptable blocks} = Pr{0} + Pr{1} =  0.8869 + 0.1064 = 0.9933 

Comparing these results with the exact binomial probabilities, we see that the 

Poisson approximation is excellent, differing with the binomial by 0.001 or less.   
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Example 23.6.   Misprint Errors.   A large official publication has misprint 

errors on 5% of its pages.  If a random sample of 40 pages is examined, what is 

the probability that no pages in error will be found?  Exactly one page with at 

least one error?  Exactly two pages with at least one error each?  

We first find the exact probabilities using the binomial distribution and then use 

the Poisson approximation.  Although the probabilities can be easily calculated 

with a hand-held calculator, we use Table T-8 (n = 40,  = 0.05) for the 

binomial probabilities and Table T-9 (  = n  = (40)( 0.05) = 2.0) for the Poisson 

probabilities.  These probabilities are summarized in Table 23.1.  In the ranges 

of the values of interest, the two distributions agree to within 0.01 of each other. 

 Table 23.1.   Binomial and Poisson probabilities compared  

Event                   

probabilities 

Binomial probabilities 

(n = 40,  = 0.05) 

Poisson probabilities 

(  = n  = 2.0) 

Pr{0} 0.1285 0.1353 

Pr{1} 0.2706 0.2707 

Pr{2} 0.2777 0.2707 

 

  The close agreement between the binomial and the Poisson distributions is 

not surprising because, historically, the Poisson distribution was 

developed as a limiting distribution which approximates the binomial 

when n is large and  is small, and n  is constant.  The approximation 

improves as n increases or  decreases. 

23.7   The normal approximation to the Poisson 
distribution  

We end this chapter by discussing another approximation:  When λ is large, the 

Poisson distribution can be approximated by the normal distribution.  How large 

λ needs to be for the approximation to be useful depends on the application.  For 

most practical cases, λ = 10 suffices and the larger λ is, the better the 

approximation.  Because the mean and variance of a Poisson distribution are 

equal, a Poisson distribution Y with mean λ is approximated by the normal    

N(λ, λ) distribution.  Therefore, the standard statistic:   

Y
Z  (23.18) 

is distributed approximately as a N(0, 1) variable. 
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Figure 23.1 shows the Poisson distribution for λ = 2, 5, and 10, with a smooth 

curve connecting the  points of the Poisson.  Note that when λ = 10 the Poisson 

distribution is visually indistinguishable from a normal distribution. 

 

Figure 23.1.   Poisson distribution for  = 2, 5, and 10 

Example 23.7.   Power interruption.   A large warehouse experiences an 

average of 10 power interruptions a month.  What is the probability that we 

observe no more than16 interruptions during any month?   

We will first use the normal approximation and then check it against the exact 

answer, 

For the normal approximation, we set λ = 10 in Equation (23.18) to obtain:  

 16 10
1.897

10
z   

From Table T-1 for the standard normal distribution, Pr{Z  ≤  1.897} = 0.971,  

Hence the probability of no more than 16 interruptions during the month is 

about 0.97.   

To check on the normal approximation, we need the Poisson cumulative 

distribution for λ = 10 and y = 16.  We use Excel’s function 

=POISSON(16,10,1), which returns the value of Pr{Y ≤ 16 | 10} = 0.973.  This 

is in close agreement with the normal approximation of 0.971.



 

 

24 
Quality assurance 

 
24.1  What to look for in Chapter 24  

Chapter 24 focuses on those concepts that result in procedures designed and 

constructed to further the pursuit and the achievement of quality.  Those 

procedures may alert a manufacturer that a particular product may not meet its 

specifications, or they may call a manager’s attention to a fault in a service 

system.  Whatever the specific application, the concepts—and the procedures 

that evolve from them—are collected under the general rubric ―quality 

assurance.‖  In connection with these quality-driven procedures, we will 

encounter a number of concepts and specialized terms: 

 quality control,  §24.2 

 process control  §24.3 

 control charts for means  §24.4 

 run test for testing randomness,  §24.5 

 control charts for variability,  §24.6 

 control charts for attributes,  §24.7 

 acceptance sampling,   §24.8. 
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24.2  The concept of quality assurance  

quality 

assurance 
In its broadest terms, quality assurance encompasses all the 

things that an organization does to ensure that its products and 

services provide value and the expected performance.  Quality 

assurance efforts are usually associated with products, from 

sampling a day’s production of automobiles for fuel efficiency 

to proofreading responses to customer complaints to funding 

research into advanced technology.  But the basics of quality 

assurance apply equally to the treatment of employees in an 

organization or emergency plumbing repairs in residences. 

U.S. Code of Federal Regulations, Title 10 (Energy), Part 50, Appendix B 

(2009),  states:   

…―quality assurance‖ comprises all those planned and 

systematic actions necessary to provide adequate 

confidence that a structure, system, or component will 

perform satisfactorily in service.  Quality assurance 

includes quality control which comprises those quality 

assurance actions related to the physical characteristics 

of a material, structure, component, or system which 

provide a means to control the quality of the material, 

structure, component, or system to predetermined 

requirements. 

To augment this definition of quality assurance, here is Kendall and Buckland’s 

(1971), p. 121, definition of quality control which is …―the statistical analysis of 

process inspection data for the purpose of controlling the quality of a 

manufactured product which is produced in mass.  It aims at tracing and 

eliminating systematic variations in quality, or reducing them to an acceptable 

level, leaving the remaining variation to chance.  The process is said then to be 

statistically under control.‖ 

Quality assurance is a two-way street—all products and services have both 

producers (shipper) and customers (receivers), although sometimes the producer 

and the customer are one and the same.  Quality assurance criteria are 

constructed for specific purposes.  Some criteria are designed to protect the 

consumer from a ―raw deal‖ or from a health risk or from shoddy merchandise.  

Others are designed to protect the producer from excessive waste of time and 

material and overcrowded inventory.  Still others are designed with both the 

consumer and the producer in mind, although sampling designs with such a 

balanced intention usually require great effort and resources and cooperation 

among the affected parties. 

Do these criteria sound contradictory?  They are not if both consumer and 

producer have the same quality assurance objectives in mind.  Consider the 
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impacts of Japanese products on the American economy in the 1970s and 1980s.  

Quality was a major driving force:  consumers wanted high-quality automobiles 

and electronics, and producers found ways to ensure that quality.  Japanese 

industrialists understand quality assurance quite clearly.  The enduring irony is 

that they learned it from W. Edwards Deming, a well-known American 

statistician.  Deming tried to promote this philosophy to American industry 

during the 1940s and 1950s, but his message fell on the proverbial deaf ears. 

Quality assurance procedures are data-based.  The two main data types we are 

likely to encounter are continuous (such as weight or diameter) and discrete 

binary data (such as yes/no or in compliance/out-of-compliance).  We have 

already met both types in the preceding chapters. 

sampling by 

variables 

 sampling by 

attributes 

As we might expect, the practice of quality assurance has it own 

vocabulary.  The treatment of continuous variables is called 

sampling by variables, while the treatment of discrete binary 

data is called sampling by attributes. 

24.3  Process control:  Building in quality  

 

process 

control 

A cla      The claim that a product meets its promised specifications can 

be investigated during production, during post-production, or 

during both.  The testing of product quality during production is 

called process control.  Process control means that items are 

routinely sampled and checked to determine whether the 

production specifications are maintained during the product's 

manufacture.  If the specifications are not met, then production 

is said to be out of control, and corrective actions are usually 

taken.  These corrective actions can include a search for an 

assignable cause, an adjustment to the production process, 

and/or a retesting of the process before it is restarted.  However, 

even though corrective actions may be taken to tighten (or 

adjust) the ongoing production process, the items produced 

before the adjustment may or may not be discarded.  

Although process control is designed to guard against poor quality, it may also 

serve to indicate when the actual product is superior to that which is claimed by 

the manufacturer.  This sometimes provides the manufacturer an opportunity to 

restate the product’s specifications and to improve its competitive edge.  At 

other times, the manufacturer may choose to relax some overly tight process 

controls, resulting in time and material savings, while still maintaining the 

claimed product specification.  
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24.4  Control charts for means  

control charts Control of a production process is often monitored through 

control charts, which are graphic constructs that are designed to 

alert a quality control manager when a process is out of 

control—or, at least, appears to be heading in that direction.  

Duncan (1986), p. 417, summarizes the purposes and the 

consequences of using control charts: 

A control chart is a statistical device principally used for the 

study and control of repetitive processes.  Dr. Walter A. 

Shewhart, its originator, suggests that the control chart may 

serve, first, to define the goal or standard for a process that the 

management might strive to attain; second, it may be used as an 

instrument for attaining that goal; and, third, it may serve as 

means of judging whether the goal has been reached.  It is thus 

an instrument to be used in specification, production, and 

inspection and, when so used, brings these three phases of 

industry into an interdependent whole.  

 

 

 

control 

limits 

Each control chart focuses on one target quantity—Shewhart’s 

―goal‖ or ―standard‖—such as the claimed mean, the advertised 

standard deviation or range, or the promised maximum 

proportion of defective items.  A control chart for the mean, for 

instance, is constructed around the target quantity, which we 

designate by μtarget.  The sample means of consecutively 

produced samples are plotted on the control chart with control 

limits constructed above and below the target value.  

Example 24.1 illustrates these ideas. 

Example 24.1.   Control chart for percentage of uranium in UO2 
powder.   Jaech (1973), p. 68, gives an example involving the construction of a 

control chart for the average percent uranium in 19 batches of UO2 powder.  

Table 24.1 reproduces this chart.  Jaech assumes that the standard factor (i.e., the 

target mean, target) is 87.60% and uses  = 0.06%, where  is the standard 

deviation associated with each batch. 
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Table 24.1.   Percent uranium in batches of UO2 powder 

Batch 1 2 3 4 5 6 7 

Mean 87.54 87.56 87.50 87.47 87.64 87.56 87.71 

        
Batch 8 9 10 11 12 13 14 

Mean 87.61 87.60 87.60 87.47 87.60 87.69 87.78 

        
Batch 15 16 17 18 19   

Mean 87.69 87.72 87.77 87.79 87.78   

 

upper control 

limit (UCL) 

lower control 

limit (LCL) 

Figure 24.1 shows the associated control chart.  The horizontal 

centerline is plotted at the target value, target = 87.60%.  The 

upper control limit (UCL) is plotted at target + 3 = 87.60 + 

3(0.06) = 87.78, and the lower control limit (LCL) at target − 3 

= 87.60 − 3(0.06) = 87.42.  The individual values of the 19 

batches of UO2 powder are plotted from left to right, in the 

sequence in which they are produced.  The importance of 

ordering, usually by time, in control charts cannot be 

overemphasized.  As we will see, evidence of an out-of-control 

process can be revealed by the ordering. 

 

Figure 24.1.   A control chart for batches of UO2 powder (Table 24.1) 

Note that, if the data values in Table 24.1 were based on multiple readings (i.e., 

on sample size n > 1), the control limits would be written as / ,87.60 3 n  
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Shewhart 

charts 

action limits 

The selection of the value 3 as the coefficient of  is consistent 

with long-standing practice in the field of quality control.  

Indeed, control charts were introduced as ―3-sigma control 

charts‖ in Shewhart’s (1931) pioneering work on quality control; 

consequently, we may encounter references to 3-sigma control 

charts as Shewhart charts.  Sometimes, we find the ―3-sigma 

limits‖ referred to as action limits, a term designed to convey 

the urgency implied when observations fall beyond these limits. 

 

warning 

limits 

 alarm limits 

 2σ limit 

As control chart practice developed in the United States, 

especially during and immediately after World War II, a 

seemingly endless procession of modified control limits 

appeared.  For instance, warning limits (sometimes called alarm 

limits or 2σ limit) may be set at / ,2target n  with the 

implication of a warning—but with somewhat less urgency than 

action limits.  The generic terminology refers to ―k-sigma limits‖ 

which are set at / .target k n  

24.5  Run test for control charts  

When we see a point lying outside the control limits—that is, the 3-sigma 

limits—the time has come to act.  But how should we react to a point lying 

outside the 2-sigma limits, the ―warning limits‖?  Do we just note the warning?  

Do we call in the manager?  Do we have a committee meeting?   Do we make a 

public announcement?  Do we inform the regulating agency? The answer, 

depending on the production process, may be all, some, or none of the above. 

The most important thing to do is to watch what happens on the chart as 

successive points are plotted.  Do they fall between the warning limits, or do 

they continue to fall outside?  If the latter, how do we react to points falling 

between the warning and the action limits? 

Particularly powerful guidance, validated by decades of practice, can be found 

in a special area of statistics, ―run theory.‖  Run theory finds application in many 

quantitative problems.  Early references include Stevens (1939), Wald and 

Wolfowitz (1940), and Swed and Eisenhart (1943).  Attention here, however, is 

paid to its application to control charts.  Brownlee (1965), p. 224, and Duncan 

(1986), p. 417, make the necessary connections and guide the following 

discussion. 
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run Duncan (1986), p. 428, defines a run as a succession of items of 

the same class.  Thus, suppose we have a collection of nine 

items:  three of class A, two of class B, and four of class C.  If 

we draw them at random, one at a time, without replacement, we 

might get the sequence {BAACCCABC}, thus providing two 

runs of A (one of length 2 and one of length 1), two runs of B 

(each of length 1), and two runs of C (one of length 3 and one of 

length 1). 

With respect to control charts, we may look for several types of runs, such as 

outside certain k-sigma limits or above and/or below the target line.  Indeed, in 

some situations, we might be on guard against ―too many runs,‖ a situation that 

can develop when an inspector is helping us make ―things average out.‖ 

Here is a paraphrase of Duncan’s criteria (1986), p. 434, for suggesting an out-

of-control condition in our process: 

1. One or more points outside the control limits. 

2. One or more points in the vicinity of a warning limit.  A recommended 

step is the immediate collection and analysis of additional data to 

determine the actual level of production. 

3. A run of seven or more points.  Such a run may simply be above or 

below the target line.  Or it may be a ―run up‖ (a succession of 

increases in value) or a ―run down‖ (a succession of decreases in 

value). 

4. Cycles or other nonrandom patterns.  Because of their infinite variety, 

such cycles or patterns are difficult to specify.  Watch the charts—we’ll 

know them when we see them. 

5. A run of two or three points outside the 2-sigma limits. 

6. A run of four or five points outside the 1-sigma limits. 

To make these matters explicit, consider Figure 24.2, which is a re-rendering of 

the control chart in Figure 24.1. 
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Figure 24.2.   Figure 24.1 with σ and 2σ limits added  

Starting with Batch 1, we have a run up of length 1, immediately followed by a 

run down of length 2.  Only short runs occur until Batch 11, after which we see 

a run up of length 3.  Indeed, Batch 14 is right on the UCL.  Moreover, 

Batches 13 through 16 or 17 provide the alerting four or five points outside the 

1-sigma limits.  So we can see that, irrespective of Batch 14 being on the UCL, 

beginning with Batch 13, an out-of-control story is being told. 

This type of application of run theory applies to all types of control charts, not 

just the means charts, one of which is used here for illustration. 

  Some control chart practitioners, particularly those in Great Britain, use 

multipliers of 3.09 for control limits and of 1.96 for warning limits, 

instead of the 3  and 2  limits in Figures 24.1 and 24.2.   These 

multipliers are the exact numbers associated with the 0.999 and 0.975 

quantiles of the normal distribution.     

24.6  Control charts for variability 

In contrast to Example 24.1, most points plotted on a control chart are statistics 

derived from a sample of size n > 1.  Each sample can therefore yield a measure 

(indeed, measures) of its own dispersion.  Among these measures are the usual 

suspects:  the sample variance, the sample standard deviation, and the sample 

range.  Quality assurance practitioners use each of these according to the 

particular needs of the process being monitored. 

A claim of ―good production quality‖ requires not only a good average 

performance but also good consistency, or small variability, among the items 

being produced.  To this end, some measure of within-sample dispersion 
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variability of the samples is subjected to control charts and examined for its 

being ―in control‖ or ―out of control‖ in the same way that means are evaluated. 

Suppose we decide to apply control chart procedures to the standard deviations 

of the samples we’re using for controlling the mean.  Suppose further that we 

have chosen a target measure of variability, denoted σtarget.  We then construct a 

control chart for the sample standard deviations that is ―anchored‖ on the target 

standard deviation, σtarget. 

Our next task is to specify upper and lower control limits.  Because the standard 

deviation is the square root of the variance, these control limits are based on the 

fact that the statistic (n - 1)S
  2
/

  2
 is distributed as a chi-square variable with        

ν = n - 1 degrees of freedom, where S
  2
 is the sample variance and 

  2
 is the 

population variance.  To construct upper and lower control limits that 

correspond to the k-sigma limits associated with a tail probability , we do the 

following:   

Step 1.  Obtain the value χ
2

(1 - α/2)(n − 1) from Table T-2 of the appendix.  

Alternatively, obtain this value from Excel’s function            

=CHIINV(α/2, ν). 

Step 2. Equate the quantile from Step 1 to (n − 1)S
 2
/

2
target and solve for S

 2
 in 

terms of 
2
target.  This yields the upper control limit, 

  2
UCL, for the 

variance. 

Step 3. Obtain the value χ
2

(α/2)(n − 1) from Table T-2.  Alternatively, obtain this 

value from Excel’s function =CHIINV(1 – α/2, ν). 

Step 4. Equate the quantile from Step 3 to (n − 1)S
 2
/

2
target and solve for S

 2
 in 

terms of 
2
target. This yields the lower control limit, 

  2
LCL, for the 

variance. 

Step 5.  The control limits for the standard deviation are
 

UCL and LCL. 

The five steps above are written for a two-sided control limit.  If we require a 

one-sided control limit, then:  

 Use Steps 1, 2, and 5, with χ
2

(1 - α)(n − 1), to obtain 
  2

UCL. 

 Use Steps 3, 4, and 5, with χ
2

( α )(n − 1), to obtain 
  2

LCL. 

The upper and lower warning limits
 

UWL and LWL for   are constructed 

similarly to the upper and lower control limits with an appropriate value of . 

  We illustrate these five steps in Example 24.2. 
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Example 24.2.   Upper control and warning limits limits for σ.   
Suppose we wish to verify the assumption in Example 24.1 that the standard 

deviation of the process is 0.06%.  Construct a 99.5% upper control limit σUCL 

and a 95% upper warning limit σUWL, assuming that daily samples of size n = 10 

are available for the calculation of S. 

Step 1. From Table T-2, we obtain χ
2

(0.995)(9) = 23.6 and χ
2

(0.95)(9) = 16.9. 

Step 2. We equate each of the quantiles so obtained to                                      

(n − 1)S
 2
/

  2
target = 9S

2
/(0.06)

2 
and solve for S

2
.
   

 
We set 9S

 2
/(0.06)

2
 = 23.6 and solve for S

 2 
to obtain S

 2
 = 0.0094.  

Hence, 
  2

UCL = 0.00944. 

    We set 9S
 2
/(0.06)

2
 = 16.9 and solve for S

 2 
to obtain S

 2
 = 0.0094.  

Hence, 
  2

UWL = 0.00676. 

Step 3. (not required) 

Step 4. (not required)  

Step 5.  UCL = 0.00944 = 0.0972 and UWL = 0.0069 = 0.0822. 

Figure 24.3 shows the control chart for 
  2
.  Note that the sequence number is 

arbitrary. 

 

Figure 24.3.   Control chart for standard deviation  
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24.7  Control charts for attributes 

Consider next a process control where the specification of proportion of 

defective items in the lot or population is set at  = target.  If the sample size is 

large enough that both n( target) and n(1 − target) are larger than 5, then a normal 

approximation to the distribution of the sample proportion is reasonable, as 

discussed in Chapter 22.  The control chart is then constructed with a centerline 

at target, and the LCL and UCL may be set at: 

(1 ) (1 )
3 , 3

target target target target

LCL target UCL target
n n

 (24. 1) 

Lower and upper warning limits may be similarly constructed: 

(1 ) (1 )
2 , 2

target target target target

LWL target UWL target
n n

 (24. 2) 

As an example, if the target value of π = πtarget = 0.278 and n = 100, then control 

limits for  are: 

(0.278)(0.722)
0.278 3 0.278 0.134

100
 

from which LCL = 0.278 - 0.134 = 0.144 and UCL = 0.278 + 0.134 = 0.412. 

Further reading about process control in general, and control charts in particular, 

may be found in Burr (1976, 1979) and Duncan (1986). 

24.8  Acceptance sampling:  Verifying quality 

 

acceptance 

sampling 

lot 

Statistical quality assurance activities conducted after items are 

out of production (indeed, often after delivery is made to the 

consumer) fall into the domain of acceptance sampling.  The 

basic idea of acceptance sampling is simple:  A collection of 

items, usually called a lot, is examined, and the decision then is 

made to either accept or reject the entire collection—the lot—on 

the basis of that examination.  The consequences of a 

rejection—scrapping the product, reworking the product to 

improve it, bankruptcy of the manufacturer—are too 

multifarious to explore here.  Suffice it to say, rejection of any 

manufactured product is seldom taken lightly.  It is the practice 
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 of acceptance sampling that’s difficult; convincing a group of 

managers that a lot of material must be rejected often requires 

the sharpest of diplomatic skills.  Acceptance sampling follows 

an explicit and strict protocol that culminates in the acceptance 

or the rejection of an entire lot of items. 

   In most acceptance-sampling literature, a ―lot‖ is defined in terms similar to 

those used by Kendall and Buckland (1971), p. 88, as ―… a group of 

units of a product produced under similar conditions and therefore, in a 

sense, of homogeneous origin; e.g., a set of screws produced by a lathe 

or a set of light bulbs produced by a number of similar machines.  It is 

sometimes implicit that a lot is for inspection.‖  Thus, ―lot‖ fits the 

meaning of ―population‖ as used in this book. 

The value of acceptance sampling to the entire production process is captured in 

these excerpts from Duncan (1986), pp. 161–162: 

It is to be emphasized that the purpose of acceptance sampling 

is to determine a course of action, not to estimate lot 

quality…. 

It is also to be emphasized that acceptance sampling is not an 

attempt to ―control‖ quality.  The latter is the purpose of 

control charts…. 

The indirect effects of acceptance sampling on quality are 

likely to be much more important than the direct effects….  

Acceptance sampling…indirectly improves quality…through 

its encouragement of good quality by a high rate of acceptance 

and its discouragement of poor quality by a high rate of 

rejection. 

Furthermore, if acceptance sampling is used ... at various 

stages of production, it may have beneficial effects in general 

on the quality of production....  Production personnel will ... 

become quality conscious and there will be an interest in 

quality on the part of both inspection and production 

[personnel].  The rule will be: Make it right the first time. 

Duncan concludes his discourse by indicating the conditions under which 

acceptance sampling is likely to be used: 

1. When the cost of inspection is high and the loss from the 

passing of a defective item is not great.  It is possible in 

some cases that no inspection at all will be the cheapest 

plan. 
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2. When 100 percent inspection is fatiguing and a carefully 

worked-out sampling plan will produce as good or better 

results.  [Because]…100 percent inspection may not mean 

100 percent perfect quality,…the percentage of defective 

items passed may be higher than under a scientifically 

designed sampling plan. 

3. When inspection is destructive.  In this case sampling 

must be employed. 

 

 

consumer’s 

risk 

Acceptance sampling is essentially a test of a hypothesis in which 

a sample statistic is compared against a claimed product's 

characteristic (such as a mean or a standard deviation).  The key 

feature of acceptance sampling is to protect the consumer by 

limiting the consumer’s risk through controlling the probability of 

accepting poor quality material.  This translates into a small 

probability of a Type II error.  In this context, a Type II error is 

made when we accept a "bad" lot.  For further reading on 

acceptance sampling, refer to Duncan (1974), Burr (1976), or 

Schilling (1982). 

Just as process control differentiates between sampling by attributes and 

sampling by variables, so does acceptance sampling.  Here, we focus on 

sampling by attributes and assume that the attribute is undesirable, such as an 

item's being defective, broken, scratched, or not in compliance.   Suppose further 

that the product's specification claims the proportion of items in the lot with the 

attribute is not larger than a quantity we denote by πtarget.  

To be absolutely certain sure that the fraction of the lot with the attribute of 

concern does not exceed target, we may need to examine every item in the lot.  

Such an effort is usually an unacceptable burden.  Furthermore, for some 

products, such as sealed systems or single-use items, such inspection is 

impossible because the item's integrity is destroyed by the very act of inspection. 

Statistical sampling allows us to inspect only a fraction of each submitted lot, 

while providing some assurance—in lieu of an absolute guarantee—that the 

proportion of items with the attribute meets the stated specification.   

Quality assurance statements about a lot sampled for attributes convey a sense 

similar to these: 

 We are 95% assured that at least 95% of the items in the lot are in 

compliance. 

 We are 95% confident that at least 95% of the cables in a bundle are 

traceable to their source. 
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 We are 99% confident that at least 99% of the pipe supports are properly 

welded.   

 We are 90% certain that at least 80% of the invoices were paid within 

30 days of their receipt. 

But beware!  The last statement is not equivalent to: 

 We are 80% certain that at least 90% of the invoices were paid within 

30 days of their receipt.  

Suppose we are given a lot of reinforcing bars (rebars), which was subjected to 

statistical sampling for meeting strength specifications.  The quality statement 

issued for our review states:  ―We are 95% confident that at least 90% of the 

rebars in the lot are acceptable.‖  This specific criterion is often given the 

shorthand notation of 95/90.  Thus, the first number (95) designates the 

assurance, and the second number (90) designates the quality. 

 

assurance-to-

quality 

As a mnemonic for keeping track of these two values, consider 

this as being an assurance-to-quality statement and denote it by 

the symbol A/Q.  In many inspection programs in general, and in 

NRC programs in particular, the A/Q statement is set at 95/95.  

Thus, we focus here on the 95/95 criterion to illustrate the 

technique for sampling. 

24.9  The A/Q criterion:  Rules of the game 

The general A/Q criterion is accompanied by a strict set of rules.  Stick to these 

rules and avoid distracting debate.  Changes to the rules should be considered 

only on the conservative side and because of compelling arguments.  These rules 

are: 

 The sample size must be determined before sampling begins and the entire 

lot will be either accepted or rejected, depending on the results of the 

collected sample. 

 

 The lot must be unequivocally defined before sampling begins.  It is 

inappropriate to redefine the lot once the inspection begins.  Note, 

however, that the lot size does not necessarily have to be known. 

 The lot is made up of similar items that are treated alike (i.e., they are 

interchangeable in terms of their intended use). 

 If the lot is comprised of several sub-lots, we must address each sub-lot 

separately.   
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 The A/Q criterion is expressed as two numbers (e.g., 95/95, 90/95, 95/99).  

The first number (A) is the assurance that the acceptable proportion is 

met.  The second number (Q) is the acceptable percentage of ―good‖ 

items. 

 The assurance level (A) is a lower bound on the probability that the lot will 

not be accepted when the lot's quality is less than Q, e.g., when the 

percentage of defective items in the lot is greater than 100(1 – Q)%.  As 

such, A provides a ―comfort level‖ for the consumer. 

 The A/Q criterion provides the designed assurance to the consumer, but it is 

not designed to provide assurance to the producer.  The producer, 

however, may wish to know the probability that the lot will be accepted 

when the quality of the lot is at least as good as the product 

specification, Q.  This information is provided by the operating 

characteristic (OC) of the plan under consideration.  This OC is similar 

to the operating characteristic curve for testing a hypothesis.    See, for 

example, Duncan (1986), p. 363, or Schilling (1982). 

 Once we select a sampling plan and begin sampling, we do not switch 

plans.  We will see, by way of example at the end of this chapter, how 

changing horses in midstream is likely to cause a deterioration of the 

promised assurance. 

The calculation of probabilities associated with the A/Q process is based on the 

binomial distribution, the requirements of which are detailed in Chapter 22. 

For any specified values of A and Q, the sample size n required to satisfy the 

A/Q criterion is based on the probability of drawing a sample with a specified 

number of defective items from the lot.  Because a lot contains a finite number 

of individual items, this probability is governed by the hypergeometric 

distribution (see Chapter 21).  However, if the sample size is considerably 

smaller than the lot size N (say, n < N/10), then the binomial approximation to 

the hypergeometric distribution may be used (see Section 22.11).  Moreover, 

because the binomial approximation requires a larger sample size than does the 

hypergeometric distribution, the actual assurance level will be higher than the 

design level.  If the sample size is not small compared to the lot size, then the 

hypergeometric distribution should be used for the probability calculations.  In 

this case, see Sherr (1973) for the required sampling plan. 
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acceptance 

number 

Given A and Q, the sampling plan determines the sample size, 

denoted by n, and the maximum number of items with the 

attributes that can be tolerated in the sample.  This maximum is 

called the acceptance number, and is denoted here by c.  If the 

sample yields more than c defective items, the entire lot is 

rejected. 

Because the sample size is fixed in advance, this plan is called a single-sampling 

plan.  Once the number of defectives in the sample exceeds c, the lot must be 

rejected and there is no "second chance."  However, double- or multiple-

sampling plans may be designed (at the expense of a larger initial sample) to 

allow a second chance for acceptance if the number of defectives in the initial 

sample is not too large.  For details about these special plans, see Duncan (1986, 

p. 184) or Schilling (1982, p. 127).The A/Q is illustrated by an example, 

presented in the next section. 

24.10  Probability calculations for the 95/95 criterion 

The focus here is on the A/Q = 95/95 criterion for quality assurance.  Used 

routinely by the NRC, this criterion has a special role throughout the nuclear 

power industry. 

There are many sampling plans that satisfy the 95/95 criterion.  Three such plans 

are displayed side-by-side in Table 24.2, and are labeled as Plan A, Plan B, and 

Plan C.   

Table 24.2.   Three 95/95 sampling plans  

Plan A Plan B Plan C 

Select nA = 59 items at 

random from the lot. 

Select nB = 93 items at 

random from the lot. 

Select nC = 124 items 

at random from the lot.  

If 0 items fail, accept 

the lot. 

If 0 or 1 item fails, 

accept the lot. 

If 0, 1, or 2 items fail, 

accept the lot. 

If even 1 unacceptable 

item is found, reject 

the lot. 

If 2 or more 

unacceptable items are 

found, reject the lot. 

If 3 or more 

unacceptable items are 

found, reject the lot. 

For this plan, the 

acceptance number is 

c = 0. 

For this plan, the 

acceptance number is 

c = 1. 

For this plan, the 

acceptance number is 

c = 2. 
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To show that each of the three candidate plans meets the desired A/Q= 95/95 

criterion, we need to calculate some binomial probabilities for  = 0.05.  

Because appendix Table T-8 is restricted to probabilities for n ≤ 40, we 

constructed Table 24.3 to give the selected probabilities needed for our 

immediate task.  These probabilities can be derived with the methodology 

developed in Chapter 22 or using Excel’s =BINOMDIST(y, n, 0.05, 0) for 

marginal probabilities and =BINOMDIST(y, n, 0.05, 1) for cumulative 

probabilities. 

Table 24.3.   Selected binomial probabilities, π = 0.05  

 Marginal probabilities Cumulative probabilities 

n y = 0 y = 1 y = 2 y ≤ 0 y ≤ 1 y ≤ 2 

58 0.0510 0.1558 0.2337 0.0510 0.2069 0.4406 

59 0.0485 0.1506 0.2298 0.0485 0.1991 0.4289 

       

92 0.0089 0.0432 0.1035 0.0089 0.0521 0.1556 

93 0.0085 0.0415 0.1005 0.0085 0.0500 0.1504 

       

123 0.0018 0.0118 0.0378 0.0018 0.0136 0.0514 

124 0.0017 0.0113 0.0365 0.0017 0.0130 0.0495 

To show that each of the three plans meets the 95/95 criterion, we convert the   

A = 95% assurance requirement to the complementary statement that the 

probability of accepting the lot is no larger than 0.05 when the proportion of 

good items in the lot is Q = 95%.  Because the acceptance number c is the 

number of defective items in the sample, the probabilities in Table 24.3 are the 

maximum cumulative probabilities of y defective items in the samples. 

Using the same argument as for Plan A, we find that Plan C, for which n = 124 

and c = 2, satisfies the 95/95 criterion. 

We see that each of Plans A, B, and C satisfies the 95/95 criterion.  If we must 

use one of these plans, which one should we choose and why?  

From the consumer’s perspective, it doesn’t really matter since all three plans 

provide the same assurance.  However, from the producer’s perspective, there 

are two other considerations.  The first is the cost of the sample and the second 

is the probability of a good lot being rejected.  To minimize the sample size, the 

producer should opt for Plan A.  However, if Plan A were chosen, then the lot 

would be rejected if even a single item out of 59 (that's less than 2% of the 
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sample!) is defective.  If the producer is very confident that the lot quality is 

very high, say, 99%, he may choose to stay with Plan A.   On the other hand, to 

protect himself  if the lot quality is closer to 95%, he may prefer Plan C.  With 

its larger sample size, Plan C is less likely to reject the lot with 3 defectives out 

of 124 sampled (a 2.4% rate) than Plan B (2 out of 93 or 2.2%) and certainly 

less likely than Plan A (1 out of 59 or 1.7%).  

24.11  What’s wrong with this picture? 

As emphasized earlier, once we select a plan, we must stick with it.  This section 

discusses the common mistake of changing plans after sampling begins.  As an 

illustration, consider a hypothetical producer who agrees at the outset that each 

of the three sampling plans described in Table 24.2 satisfies the required 95/95 

criterion.  However, he sees nothing wrong with the following multiple-

sampling strategy that he believes will still satisfy the 95/95 assurance criterion.  

This plan would lead to the acceptance of the lot if any of the following four 

events occurs: 

Event 1.  Use the approved Plan A.  Collect 59 items.  If zero defective items 

are found, stop the sampling and accept the lot. 

 Event 2.  Use the approved Plan A.  Collect 59 items.  If exactly 1 defective 

item is found, collect 34 additional items.  This brings the total 

number of inspected items to 93, as required for the approved Plan B.  

If no defective items are found among the additional 34 items, stop 

the sampling and accept the lot.  

Event 3.  Use the approved Plan A.  Collect 59 items.  If exactly 2 defective 

items are found, collect 65 additional items.  This brings the total 

number of inspected items to 124, as required by the approved 

Plan C.  If no defective items are found among the additional 65 

additional items, stop the sampling and accept the lot.  

Event 4:  Use the approved Plan A.  Collect 59 items.  If exactly 1 defective 

item is found, collect 34 additional items, bringing the total number 

of items inspected to 93, as required for the approved Plan B.  If 

exactly 1 defective item is found among the 34 items, collect 

31 additional items, bringing the total number of items inspected to 

124, as required for the approved Plan C.  If no additional defective 

items are found, stop the sampling and accept the lot.  

At first glance, the producer’s multiple-sampling strategy appears reasonable 

and acceptable since each event satisfies one of the approved plans.  But it 

always pays to revisit first principles and calculate the assurance associated with 

this sampling plan.  To calculate that assurance, we start with some intermediate 

probability calculations.  Although we could obtain at least some of those 
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probabilities from a table, it is instructive to calculate them and present all the 

necessary calculations together.  Using Chapter 22 methodology, recall that: 

!
, | 1

! !

y n yn
Pr y n

y n y
 (24.3)

 

 

More specifically, 

!
Pr , | 0.05 0.05 0.95

! !

y n yn
y n

y n y
 (24.4)

 

where Pr{y, n| = 0.05} denotes the probability that Y defective items will be 

found in a sample of size n, given that the proportion of defective items in the 

lot is  = 0.05.  Relevant probabilities (some of which are already shown in 

Table 24.3) are given below: 

Pr{0, 31 | 0.05} = 0.2039 

Pr{0, 34 | 0.05} = 0.1748 

Pr{0, 59 | 0.05} = 0.0485 

Pr{0, 65 | 0.05} = 0.0356 

Pr{1, 31 | 0.05} = 0.3327 

Pr{1, 34 | 0.05} = 0.3128 

Pr{1, 59 | 0.05} = 0.1506 

Pr{2, 59 | 0.05} = 0.2298 

Next, calculate the probability of occurrence of each of the four events listed 

earlier: 

Pr{Event 1} = Pr{y = 0, n = 59}  

= Pr{0, 59} = 0.0485 

Pr{Event 2} = Pr{(y = 1, n = 59 and y = 0, n = 34} 

 = Pr{1, 59} Pr{0, 34} 

 = (0.1506)(0.1748)  

= 0.0263 
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Pr{Event 3} = Pr{y = 2, n = 59 and y = 0, n = 65} 

= Pr{2, 59} Pr{0, 65} 

= (0.2298)(0.0356)  

= 0.0082 

Pr{Event 4} = Pr{y = 1, n = 59 and y = 1, n = 34, and y = 0, n = 31} 

= Pr{1, 59} Pr{1, 34} Pr{0, 31}  

= (0.1506)(0.3128)(0.2039)  

= 0.0096  

Finally, put the pieces together.  These four events are mutually exclusive; 

therefore, the probability of accepting the lot is the sum of the four probabilities.  

This is calculated as: 

Pr{lot accepted} = 0.0485 + 0.0263 + 0.0082 + 0.0096 

              = 0.0926 

Hence, with 5% of the items being defective, the probability of accepting the lot 

is 0.0926—almost twice as large as the 0.05 that was intended.  The probability 

of rejecting the lot is 1.0000 − 0.0926 = 0.9074.  Thus, the assurance is only 

90.7%, not the claimed 95%. 

The reason for the decrease in the assurance level is that the combination of the 

three 95/95 plans provides many more possibilities for lot acceptance.  Because 

each of the three plans was designed to achieve the 95/95 criterion as closely as 

possible, any increase in the possibilities for lot acceptance without a change in 

the sample sizes or acceptance numbers necessarily leads to a decrease in the 

assurance level. 

Of course, legitimate multiple-sampling plans can be constructed so that the plan 

assurance will be 95/95—but such plans are by no means unique.  A discussion 

of multiple-sampling plans appears in, for example, Duncan (1986), 

pp. 204-213. 

Finally, keep in mind that this chapter’s acceptance sampling plans are based on 

infinite or at least ―large‖ lots where the binomial distribution is used as the 

theoretical base.  Small lots, however, are better served by sampling plans that 

are based on the hypergeometric distribution (Chapter 21).  The design of 

sampling plans for lots governed by the hypergeometric distribution is far from 

trivial.  A detailed treatment of A/Q procedures may be found in Duncan (1986), 

Burr (1979), or Schilling (1982). 

 



 

 

25 
Nonparametric statistics 

25.1   What to look for in Chapter 25 

Chapter 25 introduces statistical methods that examine data from populations 

with unknown or unspecified distributions.  This chapter provides the following 

statistical tests that may be used when the distribution of the population is not 

known or cannot be assumed: 

 Runs test for randomness,  §25.3 

 Sign test for testing location for a single population,  §25.4 

 Wilcoxon signed ranks test for a single population,  §25.5 

 Sign test for testing locations with paired samples, §25.6 

 Wilcoxon test for testing locations with paired samples,  §25.7 

 Wilcoxon test for comparing two locations,  §25.8 

 Median test for locations of several populations,  §25.9 

 Kruskal-Wallis test for locations of several populations,  §25.10 

 Rank ANOVA test for locations of several populations,  §25.11 

 Friedman test for locations of several populations,  §25.12 

 Squared ranks test for comparing two variances,  §25.13 

 k-sample squared ranks test for comparing variances,  §25.14 

 Spearman test of independence for two populations,  §25.15 
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25.2   Nonparametric methods 

 

 

 

parametric 

statistics 

nonparametric 

statistics 

 distribution-

free statistics 
 

Many statistical tests presented in previous chapters, especially 

those involving continuous distributions, assume that the given 

samples come from a normal distribution or from another 

distribution with defined parameters.  These distributions are 

called parametric distributions because the form of the 

distribution is assumed to be known.  For such distributions, 

parameter estimation and tests of hypotheses are the domain of 

parametric statistics.  However, if an assumption about the 

form of the distribution cannot be made, and if the central limit 

theorem is not applicable, we turn to nonparametric statistics.  

Nonparametric statistics, also called distribution-free statistics, 

is a sub-discipline of statistics that deals with procedures that 

do not require knowledge of the distribution that gave rise to 

the sample we wish to analyze. 

Nonparametric methods have several advantages over parametric methods: 

 There is no need to make assumptions about unknown populations.  Thus, 

nonparametric methods offer protection against misleading conclusions that 

may be drawn because of incorrect distributional assumptions.   

 Calculations are usually easier than calculations required by counterpart 

parametric methods.  

 Because interval data are transformed to ordinal data (see Section 1.5), 

outlying observations are not given undue weight. 

Nonparametric statistics methods, however, have one disadvantage: 

 When the form of the population distribution is known, more information 

can be extracted from the sample.  Specifically, nonparametric methods 

result in less sensitive hypothesis tests than parametric methods that take 

advantage of the assumed knowledge of the distribution.   

There are a great many nonparametric procedures in the literature, most of 

which address specific data irregularities.  In this chapter we present some of the 

most common procedures.  More detailed discussions of nonparametric 

procedures may be found in Conover (1980), Hollander and Wolfe (1973), and 

Siegel and Castellan (1988). 

Some of the material presented in this chapter is taken from Chapter 9 of Bowen 

and Bennett (1984).  
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25.3   Test of randomness:  The runs test  

 

 

runs test 

Distribution-free procedures are not assumption-free.  Just as 

in the parametric case, we assume that the collected sample 

is drawn at random.   However, it is possible to test this 

assumption with a nonparametric test of randomness.  This 

test, called the runs test, is based on the order in which the 

observations were collected. 

Consider a sequence of n observations recorded in the order in which they are 

collected.  Replace each observation that is larger than the sample median by a 

plus sign ―+‖ or by a minus sign ―-‖ otherwise.  

  Note that  an observation that is equal to the median is counted as a minus.  

The runs test tests for randomness by checking if there is a pattern to the 

sequence of observations.  To motivate it, we examine three sequences of 

plusses and minuses: 

Sequence 1 appears to be a random sequence, i.e., it has no pattern. 

 (Sequence 1) 

If we see clustering of signs, such as in the extreme case of Sequence 2, we are 

very likely to question the randomness of the sequence. 

 (Sequence 2) 

We would also be skeptical if we see Sequence 3. 

 (Sequence 3) 

To quantify the difference in the patterns of Sequences 1,2, and 3, we introduce 

the concept of a run, which is defined as a succession of identical signs.  In 

Sequence 1 we have a run of 1 plus, followed by a run of 2 minuses, followed 

by a run of 3 plusses, etc., for a total of 17 runs.  In Sequence 2 we have just 2 

runs, and in Sequence 3 we have 30 runs.  

  There is a similar concept in Section 24.5 -- the ―run test‖ (note the singular 

form), a  procedure for detecting irregularity used in quality assurance.  

Let U denote the number of runs in the ordered sample.  With a predetermined 

level of significance α, we use the runs test to check whether U is excessively 
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large or excessively small for a sample of size n.  The test of hypothesis is set up 

as: 

H0: Sequence is random  

 H1: Sequence is not random 

(25.1) 

(25.2) 

Let n1 denote the smaller of the number of pluses and the number of minuses, or 

either number if they are equal.  Let n2 = n - n1 be the number of minuses.  For n1 

≤ 10 and n2 ≤ 10, Swed and Eisenhart (1943) calculated the cumulative 

probabilities Pr{U ≤ u} for obtaining a number of runs as high as u.  A table of 

these probabilities, compiled by Draper and Smith (1981), is given in Table T-

15 of the appendix.  

The null hypothesis is rejected if: 

 

Pr{U ≤ u} ≤ α/2 (25.3) 

  We are not aware of any parametric test that tests the chronological 

randomness of a sequence.  From Gibbons (1976), p. 365, ―There is no 

parametric test that tests the chronological randomness of a sequence.‖  

Example 25.1.  Percent of uranium in UO2 powder (Bowen and 
Bennett (1988), p. 486)).  To estimate an average percent by weight uranium 

value for a production lot of UO2 powder, we analyze 14 aliquots drawn as the 

powder is produced.  The percent uranium values (in the order of production) 

are listed in Table 25.1.  The median of the 14 values is 87.600, the average of 

the middle two observations, 87.599 and 87.601.  The (+) and (-) signs below 

the observations are assigned according to the rule for the runs test.  Thus, the 

first three values are less than 87.600 and are replaced with minus signs, while 

the fourth and fifth values are greater than 87.600 and  are replaced with plus 

signs. 

Table 25.1.   Percent of uranium in UO2 powder, in their order of 
collection 
 

87.590 87.588 87.595 87.603 87.601 87.582 87.580 

(–) (–) (–) (+) (+) (–) (–) 

87.597 87.599 87.609 87.601 87.610 87.611 87.615 

(–) (–) (+) (+) (+) (+) (+) 

This process yields the sequence:  

 (Sequence 4) 
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We test the hypothesis that these observations are a random sample from the 

production lot using the runs test with α = 0.05.  In (Sequence 4) we have n1 = 7 

plus signs and n2 = 7 minus signs, with u = 4 runs.  From Table T-15, we have 

Pr{U ≤ 4} = 0.025.   

Because Pr{U ≤ 4} = 0.025 ≤ 0.05/2 = 0.025, the null hypothesis of randomness 

is rejected at the α = 0.05 [level of significance].  Thus, fewer runs were 

observed than would be expected if H0 were true, and the sample is not regarded 

as a random sample.  The implication of lack of randomness is important from 

an accountability viewpoint, because an average percent uranium for the lot has 

less meaning when the observations are not a random sample from the 

production lot. 

A table for testing H0 when n1 ≤ 20 and n2 ≤ 20 can be found in Table G by 

Siegel and Castellan (1988), which is modified from Swed and Eisenhard 

(1943).   That table, however, is restricted to α = 0.05. 

When n1 > 10 and n2 > 10, exact critical values for the runs test are not provided 

because a normal approximation to the distribution of U is satisfactory.  In such 

cases, the statistic  

-U a
Z  (25.4) 

is approximately distributed as a standard normal variable, where μ and σ are the 

mean and standard deviation of the discrete distribution of U under the null 

hypothesis of randomness.  These parameters are (Siegel and Castellan (1988), 

p. 62):   

1 2

1 2

2
1

n n

n n
 (25.5) 

1 2 1 2 1 2

2

1 2 1 2

2 (2 )

( ) ( -1)

n n n n n n

n n n n
 (25.6) 

The term a in Equation (25.4) is a continuity correction that helps to compensate 

for a continuous distribution used to approximate a discrete distribution.  It is 

equal to: 

 
0.5,  when testing for too few runs

0.5,  when testing for too many runs
a  (25.7) 

A two-sided test of randomness is performed by comparing the test statistics  

Ztoo many and Ztoo few against the standard normal quantiles zα//2 and z1-α /2 obtained 
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from Table T-1 of the appendix.  The null hypothesis of randomness is rejected 

if either Ztoo many > z1-α/2 or Ztoo few < zα /2.  

Example 25.2.  Runs test for a large sample.  For a problem similar to that in 

Example 25.1, analyses on 25 aliquots were performed with n1 = 12, n2 = 13, 

and U = 17.  We test the hypothesis of randomness at the α = 0.05 level of 

significance. 

The normal approximation is used with the test statistic Z computed from 

Equation (25.4), where μ is obtained from Equation (25.5) and σ from Equation 

(25.6) as: 

2(12)(13)
1 13.48

12 13
 

2

2(12)(13) 2(12)(13) 12 13
5.97 2.44

(12 13) (12 13 1)
 

Hence: 

too  many

17 13.48 0.5
1.24

2.44
z  

too  few

17 13.48 0.5
1.65

2.44
z  

The quantiles z0.025 = - 1.960 and z0.975 = 1.960 are obtained from Table T-1.  

Because ztoo few = 1.65 > -1.960, and ztoo many = 1.24 < 1.960, the null hypothesis 

of randomness is not rejected.  Thus, there is no statistical evidence for a non-

random sequence of the data.  

25.4   Test of location:  The sign test   

In Chapter 13 we tested the mean of a population from a normal distribution.  

When the variance is not known (the most common case) we use Student’s t-

statistic for the test (Section 13.7). Nonparametric procedures refer to tests of 

centrality as tests of location, with the center of the population typically being 

the median rather than the mean.  If the population is symmetric, the median is 

equal to the mean.   

This chapter presents two procedures for location testing -- the sign test in this 

section and the Wilcoxon signed rank test in the next section.  Both procedures 

test whether the sample comes from a population with median ξ0, using α as the 

level of significance.  In both procedures the null and alternative hypotheses are 

written as: 
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H0: ξ = ξ0 

H1: ξ ≠ ξ0 

(25.8) 

(25.9) 

where ξ is the Greek letter xi (pronounced ksi). 

The sign test assumes that a random sample is drawn from a single population 

and that the characteristic of interest is measured on at least an ordinal scale.  

Each observation is replaced with a ―+‖ if the observation is larger than ξ0, and 

with a ―–‖ if it is smaller than ξ0.  Observations  equal to ξ0,are discarded and the 

sample size is reduced accordingly.  Let n denote the reduced sample size.  

The test statistic for the sign test is T which is the number of plus signs.  We run 

a two-sided test to determine whether T is too large or too small compared to the 

number that is expected when H0 is true.   

Under H0, the test statistic T has a binomial distribution with π = 0.50, as 50% of 

the observations are expected to be above and 50% below the median ξ0.  (See 

Section 22.3.) 

Let t be the observed value of T.  For significance level , calculate the tail 

probability Q that T is equal to t or a more extreme value, and reject H0 if Q is 

too small.  Specifically, reject H0 if: 

Q  /2        (25.10) 

Using Equation (22.4), the formula for Q is a cumulative probability: 

0
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   The above equations do not include the case where t = n /2 because, with 

half the pluses above and half below ξ0, we do not reject H0. 
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Excel’s functions =BINOMDIST(t, n, 0.5, 1) and =BINOMDIST(n - t, n, 0.5, 1) 

return the values of the summations in Equations (25.11) and (25.12), 

respectively. 

For small samples, the required summations may be calculated by summing the 

marginal probabilities under π = 0.50 in Table T-8 of the appendix.   

Example 25.3.  Bias in solid waste measurement (Bowen and 
Bennett, 1988, p. 490).  A non-destructive assay (gamma scan) instrument is 

checked for bias by measuring the 
235

U (in grams) in a solid waste barrel 

working standard with an assigned value of 2.40 g.  During a six-month period, 

the standard is measured 12 times with the results given in Table 25.2.  Test the 

hypothesis that the population median is equal to 2.40 g.  Use the sign test with 

α = 0.05 level of significance.  

Table 25.2.   Grams of 
235

U in a solid waste barrel working standard 
 

2.92  2.35  2.44  2.21  2.58  2.65  

(+) (–) (+) (–) (+) (+) 

2.73  2.04  2.42  2.62  2.17  2.39  

(+) (–) (+) (+) (–) (–) 

The plus or minus signs in parentheses indicate whether the observation is above 

or below the hypothesized median of 2.40. 

In this example we have n = 12 and t = 7.  Since t > n/2 = 6, we use Equation 

(2.12) and Table T-8. With π = 0.50, n – t = 5, and y = 0, 1, 2, 3, 4, 5, we have  

Q = 0.0002 + 0.0029 + 0.0161 + 0.0537 + 0.1208 + 0.1934= 0.3871,  rounded to 

0.387. 

Alternatively, we can use Excel’s binomial function, =BINOMDIST(5, 12, 0.5, 1) 

which returns the value of 0.3872, rounded to 0.387. 

Because 0.387 > α/2 = 0.025 we do not reject H0.  We have no statistical 

evidence to claim that the population median  is different from 2.40. 

In the parametric counterpart of Example 25.3, we would assume that the 

sample comes from a normal distribution with unknown standard deviation and 

test H0: μ = 2.40 vs. H1: μ ≠ 2.40.  From Section 13.7, we use a t-test based on 

the sample mean y  = 2.460 and sample standard deviation s  = 0.253.  Using 

Equation (13.9), Student’s t is calculated as:  

2.460 2.40
0.822

0.253 / 12
t  
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From Table T-3 of the appendix, the critical value for a two-sided test with α = 

0.05 is t0.975(11) = 2.20.  Because |0.822| < 2.20, we have no statistical evidence 

against H0, thus reaching the same conclusion as the sign test. 

When n is large, we could use the normal approximation to the binomial 

distribution for testing whether the median is equal to ξ0 with the sign test.  To 

see how large n needs to be, recall from Equation (22.10) that the normal 

approximation to the binomial is adequate if both nπ ≥ 5 and n(1 - π) ≥ 5.  Since 

π = (1 - π) = 0.50, this means that the normal approximation can be used if 

n ≥ 5/0.5 = 10. 

To use the normal approximation to the binomial for a sample of size n, we use 

the larger of the following two Z statistics (see Gibbons (1976), Chapter 3, 

Equation (2.2)):  

0.5 0.5

0.5

T n
Z

n
 (25.13) 

( ) 0.5 0.5

0.5

n T n
Z

n
 (25.14) 

where the term 0.5 is the correction for continuity. 

Example 25.4.  Normal approximation to the sign test.  To verify the 

accuracy of a scale, a 1.077 kg standard was weighed n = 30 times on the scale.  

There were 8 observations below and 22 above 1.077 kg.  Use the sign test to 

test whether the scale is biased, with α = 0.05. 

The null hypothesis is H0: ξ0 = 1.077.  The larger of the two Z values in 

Equations (25.13) and (25.14)  is 

22 0.5 0.5(30)
2.37

0.5 30
z   

The critical value for this test is z1-α/2 = z0.975 = 1.960.  Since 2.37 > 1.960, we 

conclude that the scale is biased. 

25.5  Test of location:  Wilcoxon signed ranks test 

The Wilcoxon signed ranks test is another test of location for a single 

population.  The test assumes that the distribution is symmetric about its median, 

ξ, which is consequently equal to its mean.  The null hypothesis is H0: ξ = ξ0 .  

The alternative test may be two-sided, (H1: ξ ≠ ξ0)  or one-sided (H1: ξ  > ξ0 or 

H1: ξ < ξ0).  
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The Wilcoxon signed ranks test considers only observations that are not equal to 

ξ0.  Let y1, y2, …, yn be a (reduced) random sample of n observations of the 

random variable Y, where the characteristic of interest is measured on at least an 

ordinal measurement scale.   

For each yi, i = 1, 2, …, n, calculate di = ξ0 – yi and its absolute value | di |.  Then 

order the | di | in ascending order and rank them d from 1 to n, with the smallest   

| di | having rank 1 and the largest rank n.  If two or more of the | di | are equal, 

assign each the average of the ranks that would otherwise have been assigned.  

For example if the eighth and ninth ordered | di | are equal, each is given the rank 

of 8.5.  Similarly, if the 12
 th

, 13
th

, and 14
 th

 ordered | di | are equal, each of the 

three is given the rank of 13. 

  The ranking of a group of numbers may be done by calling on Excel’s 

=RANK(number, reference, order).  Place the cursor where you wish the 

rank to print.  The first entry in parenthesis is the value you wish to rank, 

―reference‖ is the range of the values to be ranked, and ―order‖ is any non-

zero number if the ranking is done in increasing order of magnitude, and 0 

otherwise.  For example, =RANK (A7, A1..A10, 1) returns the rank of the 

value in cell A7 if the values were ordered in increasing order of 

magnitude.  

Let Ri = 0 if di is negative and Ri = the rank of | di | if di is positive.  (Note that no 

di = 0.)  The test statistic for the Wilcoxon signed ranks test is: 

1

n

i

i

W R  (25.15) 

In other words, W is the sum of ranks for the positive di.  A value of W that is 

either too small or too large leads to the rejection of the null hypothesis.  

Specifically, when H0: ξ = ξ0: 

if H1 is ξ ≠ ξ0,  reject H0 if W > w1-α/2 or if W < wα/2 (25.16) 

if H1 is ξ > ξ0,  reject H0 if W > w1-α (25.17) 

if H1 is ξ < ξ0,  reject H0 if W < wα (25.18) 

where wq is obtained from Table T-16 of the appendix for n ≤  50 and q ≤  0.50.  

For q > 0.50 use wq = n(n+1)/2 - w1-q.  Table T-16 provides the values n(n + 1)/2 

in the column on the right. 
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For n > 50, quantiles for wα may be approximated by: 

 ( 1) / 4 ( 1)(2 1) / 24w n n z n n n  (25.19) 

where zα =1 - zq and zq is the q
th

 quantile of the standard normal distribution, 

obtainable from Table T-1 of the appendix. 

Example 25.5.   Bias in solid waste measurement (continued).  Use 

the Wilcoxon signed ranks test on the data from Table 25.2 (Example 25.3) to 

test whether ξ = ξ0, with α = 0.05 as the level of significance.  

Table 25.3 lists the ordered observations yi, the observed differences                  

di = 2.40 – yi, the ranks of the | di |, and the values ri . 

Table 25.3.  Wilcoxon signed ranks test  

yi di = 2.40 – yi Rank of  | di | ri 

2.04 0.36 11 11 

2.17 0.23 8 8 

2.21 0.19 6 6 

2.35 0.05 4 4 

2.39 0.01 1 1 

2.42 -0.02 2 0 

2.44 -0.04 3 0 

2.58 -0.18 5 0 

2.62 -0.22 7 0 

2.65 -0.25 9 0 

2.73 -0.33 10 0 

2.92 -0.52 12 0 

The test statistic, computed from Equation (25.15), is : 

W = 

12

1

i

i

r = 30     

 

For n = 12 and α = 0.05, the values w0.05 = 18 and w0.975 = [(12)(13) / 2] - 18 = 60 

are obtained from Table T-16.  Because 18 < 30 < 60, the null hypothesis is not 

rejected at the α = 0.05 level of significance.  There is insufficient statistical 

evidence to conclude that the median differs from 2.40.   This conclusion is in 

agreement with the results of the sign test (Section 25.4) and the parametric 

Student’s t-test that is also given in Section 25.4.  

 

In these last two sections, we have considered two single-sample nonparametric 

methods for testing hypotheses about the population median: the sign test and 

the Wilcoxon signed ranks test.  These are nonparametric counterparts of the 
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single sample t-test.  There is a hierarchy in the assumptions required for these 

three tests. The sign test assumes only a random sample from the population.  

The Wilcoxon signed ranks test adds the assumption that the distribution is 

symmetric about the median.  The t-test adds the assumption that the distribution 

is normal.  The choice of which test to use should be based on how realistic the 

assumptions of each test are for the problem at hand.  If the assumptions for a 

given test are valid, that test is more powerful for detecting deviations from H0 

than the tests lower in the hierarchy (i.e., tests with fewer restrictive 

assumptions).   

25.6  Test of locations with two matched samples:  
Sign test  

The nonparametric analysis of paired, or matched, observations is analogous to 

the parametric Student’s t-test for paired observations (Section 15.3).  With 

paired observations, we analyze the differences between members of the pairs, 

thus reducing two samples into one.  Obtaining data in pairs is quite common.  

Some examples are:   

 investigation of shipper-receiver differences.   

 comparison of travel expenses  as submitted by the traveller and as 

calculated by the auditor.   

 comparison of two analytical laboratories (or instruments, technicians, etc.) 

by having each of  them measure the same or identical items.  

 One nonparametric test for these situations is to compare the location 

parameters of the two populations using the paired observations.  Let y1i and y2i 

denote the i
th

 observations from populations 1 and 2, respectively, and let          

di = y1i - y2i.   

When we do not know the distribution function of di,  when the central limit 

theorem does not apply, and when we cannot assume that the distribution of di  
is symmetric about its median, we can use the sign test to test equality of the 

two population medians, ξ1 and ξ2.  Equivalently, we test the hypothesis that the 

median of the differences, ξd , is zero, namely: 

H0: ξd = 0 (25.20) 

The alternative hypothesis is either two-sided: 

H1: ξd ≠  0 (25.21) 

or one-sided, stated as one of the two following statements: 
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H1: ξd >  0 

H1: ξd <  0 

(25.22) 

(25.23) 

As in Section 25.4, the test statistic T is the total number of plus signs for the 

sample {di}.  Calculate the tail probability Q from Equation (25.11) or (25.12) 

and reject H0 if Q ≤ α/2, concluding that the two populations do not have the 

same median. 

Example 25.6.  Comparison of two scales.  In Example 15.1 (Section 

15.3), we tested the equivalence of two scales used to weigh containers of 

special material by weighing each of n =10 containers once on each scale.  We 

use a two-sided sign test for the same data, with α = 0.05.   

Table 25.4 is Table 15.1 with the plus and minus signs added for the sign test.  

Table 25.4.   Container weights, in kg, measured by two scales 

Container Scale 1 Scale 2 Difference Sign 

1 25.6 25.4 -0.2 - 

 2 21.3 21.1 -0.2 - 

3 21.3 21.7 0.4 + 

4 28.4 28.4 0.0 0 (ignored) 

5 29.9 30.0 0.1 + 

6 30.0 29.9 -0.1 - 

7 23.4 23.1 -0.3 - 

8 29.5 29.6 0.1 + 

9 27.7 27.5 -0.2 - 

10 21.3 21.1 -0.2 - 

The reduced sample size is n = 9.  We have 3 plus signs and hence t = 3.  The 

tail probability for t = 3, n = 9 is obtained from Equation (25. 11) and Table T-8 

as Q = 0.0020 + 0.0176 +0.0703 + 0.1641 = 0.2540 (rounded to 0.254).  Excel’s 

function =BINOMDIST(3, 9, 0.5, 1) returns the value of 0.2539 (also rounded to 

0.254).  Because Q > α/2 = 0.025, we do not reject H0, concluding that there is 

no statistical evidence that the two scale medians differ.  This conclusion agrees 

with the parametric test used for the same data in Example 15.1, where the test 

statistic is calculated as t = 0.896 and t0.975(9) = 2.26]. 

When a one-sided test is required, we use the same procedure but compare Q to 

either the α or 1 - α quantile of the binomial distribution, as appropriate. 
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 25.7  Test of locations with two samples:   
Wilcoxon matched pairs test 

Wilcoxon 

matched pairs 

test 

The Wilcoxon matched pairs test also tests whether the medians 

of two populations are the same when the sample observations 

are paired.  The test assumes that the distribution of the 

differences between the members of each pair is symmetric. 

The Wilcoxon matched pairs test is the Wilcoxon signed ranks test applied to 

the differences between the paired observations.  Let y1i and y2i denote the i
th

 

pair of observations from populations 1 and 2, respectively.  For each pair, 

calculate di = y1i - y2i and its absolute value | di |.  As for the signed ranks test, 

omit all di = 0 and adjust n accordingly.  Rank the | di | in ascending order and 

assign their average rank to all tied | di |.   Let Ri = 0 if di is negative and Ri = the 

rank of | di | if di is positive.   

As in Equation (25.15), calculate W = Σ Ri and compare it to wα/2 for a two-sided 

test and to wα or  1- wα, for a one-sided test, where wq is found in Table T-16.  

The null hypothesis of equality of the medians is rejected using Equation 

(25.16), (25.17), or (25.18), as applicable. 

The test is demonstrated by the data in Table 25.5, which augments Table 25.4 

by including the ranks of the differences and the associated Ri.  As in Example 

25.6, we use α = 0.05. 

Table 25.5.   Container weights and ranks  

Container Scale 1 Scale 2 Difference Rank Ri 

1 25.6 25.4 -0.2 3.5 0 

 2 21.3 21.1 -0.2 3.5 0 

3 21.3 21.7 0.4 9 9 

4 28.4 28.4 0.0 (omitted) (omitted) 

5 29.9 30.0 0.1 7.5 7.5 

6 30.0 29.9 -0.1 6 0 

7 23.4 23.1 -0.3 1 0 

8 29.5 29.6 0.1 7.5 7.5 

9 27.7 27.5 -0.2 3.5 0 

10 21.3 21.1 -0.2 3.5 0 

From Table 25.5 we get w = 9 + 7.5 + 7.5 = 24.  Using Equation (25.15) and 

Table T-16 for n = 9 we have w0.025 = 6 and w0.975 = 45 - 6 = 39.  Since 6 < w < 

39, we have no statistical evidence that the two scales are different.  This is the 

same conclusion we reached using the sign test and the parametric test in 

Example 15.1. 
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25.8  Test of locations; two independent samples:  
Wilcoxon rank sum test  

 

Wilcoxon rank 

sum test 

Mann-Whitney 

test 

WRS test 

This section presents a nonparametric test for comparing the 

locations of two populations based on two independent 

samples, one from each population.  The test was developed 

by Wilcoxon (1945) for equal size samples and generalized by 

Mann and Whitney (1947) to arbitrary sample sizes.  The test 

is referred to as the Wilcoxon rank sum test  or as the Mann-

Whitney test.  In this text we refer to it as the WRS test, as 

used by NRC in NUREG 1505 (1998). 

   A condensed version of the WRS test may be found in Wilcoxon and Wilcox 

(1964. p.7).    

Let {
11 12 1, , ..., ny y y } be a sample of size n from a population with median 

ξ1 and let { 21 22 2, , ..., my y y
  

} be an independent sample of size m from a 

second population with median ξ2.  We wish to test the hypothesis: 

H0:  ξ1 =  ξ2 (25.24) 

The alternative hypothesis H1 may be a one- or a two-sided alternative.   

The WRS test assumes that the two population distributions are the same except 

for a possible difference in their medians.  If the distributions are also 

symmetric, then the test for equality of medians is also a test of equality of 

means. 

The WRS test combines the m + n observations from the two samples and ranks 

the combined sample from 1 to m + n.  If any sample values are tied, each is 

assigned the average of the ranks that would otherwise have been assigned.  Let 

R(y1i) denote the rank assigned to y1i , i = 1, … n, and let R(Y2j) denote the rank 

assigned to y2j ,  j = 1, … m.   

The test statistic for testing H0 is the sum of the ranks from the first sample: 

1

1

( )
n

i

i

W R y  (25.25) 

  The test statistic could just as well have been defined as the sum of the ranks 

from the second sample, because the labeling of the populations is 

arbitrary. 
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  Even though the same symbol is used for the test statistic for the WRS test as 

for the Wilcoxon signed ranks test (Equation (25.15)), there should be no 

confusion.  

Critical values wq(n, m) of the W statistic are given in Table T-17 of the 

appendix for n ≤ 20 and m ≤ 20 for the lower quantiles q = 0.001, 0.005, 0,01, 

0.025, 0.05, and 0.10.  Critical values for the corresponding upper quantiles are 

given by: 

wq(n, m)  = n(n + m + 1) - w1-q(n, m)   (25.26) 

When either m >20 or n >20, the q
th

 quantile of the W statistic is approximated 

by: 

wq(m, n)  = n(n + m + 1)/2 + ( 1) /12
q

z nm n m    
(25.27) 

where zq is the q
th

 quantile of the standard normal distribution, Table T-1 of the 

appendix. 

For H0: ξ1 =  ξ2, the critical values for the various alternative hypothesis are 

given by:  

For H1: ξ1 ≠ ξ2, reject H0 if w > w1-α/2(n, m) or if w < wα/2(n, m) (25.28) 

For H1: ξ1 > ξ2, reject H0 if w > w1-α(n, m) (25.29) 

For H1: ξ1 <  ξ2, reject H0 if w < wα(n, m) (25.30) 

Example 25.7.  Comparison of two batches (Bowen and Bennett (1988), 

p. 497)).  A facility producing U02 powder wishes to check whether the percent 

uranium factor for two batches of powder is the same.  Eight samples from each 

of the two batches are drawn and the percent uranium determined.  The data are 

displayed in Table 25.6.  Use a two-sided WRS test with α = 0.05.  
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Table 25.6.  Percent uranium in U02 

Batch 1 Batch 2 

86.4 86.2 

86.8 85.8 

87.5 86.1 

88.2 84.8 

86.0 87.1 

86.9 86.5 

87.7 85.7 

86.8 86.7 

The validity of the assumptions underlying the WRS test should be checked.  

The samples from each batch are assumed to be randomly collected.  

Application of the runs test (Section 25.3) to each sample does not find any 

statistical evidence of non-randomness.   

The WRS test calls for ranking the observations in the combined sample.  This 

process is easier if the individual samples are ordered first, as shown in Table 

25.7, along with the combined ranks.  

Table 25.7.  Ranks of combined samples from Batches 1 and 2 

Batch 1 

Combined  

rank Batch 2 

Combined 

rank 

86.0 4 84.8 1 

86.4 7 85.7 2 

86.8 10.5 85.8 3 

86.8 10.5 86.1 5 

86.9 12 86.2 6 

87.5 14 86.5 8 

87.7 15 86.7 9 

88.2 16 87.1 13 

The test statistic is calculated from Equation (25.25), yielding:  

8

1

1

( ) 89i

i

W R y  
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For n = m = 8 and α/2 = 0.025, the values w0.025 = 50 is obtained from Table      

T-17.  Using Equation  (25.26), w0.975 = 8(8 + 8 +1) - 50 = 86.  Because 89 > 86, 

we reject H0, concluding that the percent uranium for the two batches are 

different.  

The parametric counterpart to the WRS test is the two-sample t-test of Section 

15.5, where the data are assumed to be drawn from two normal distributions 

with equal variances.  Assuming normality for the data in Example 25.7, we 

have the following results, using Excel’s data analysis routine: 

Table 25.8.  Parametric test for Example 25.7  

  Batch 1 Batch 2 

 Mean 87.04 86.11 

 Variance 0.52 0.50 

 Observations 8 8 

 Pooled variance 0.506   

 Hypothesized mean difference 0   

 Degrees of freedom 14   

 t-statistic 2.60   

 t critical, two-tail (α = 0.05) 2.14   

Since 2.60 > 2.14 we have statistical evidence that the two batches came from 

populations with different means.  This conclusion is the same that is reached 

using the WRS  test. 

An argument can be made for always using the WRS test for comparing two 

samples.  First, although the t-test is more powerful than the WRS test if the 

population distributions are normal, the difference in power is small.  However, 

because the t-test is not valid for non-normal distributions, the WRS test is more 

powerful than the t-test for many non-normal distributions.  Therefore, the WRS 

test is preferred if the population distributions are unknown or if there is any 

doubt about the normality assumption and it loses little if the distributions are 

actually normal.  

25.9  Test of locations with several samples:  
The median test 

This section presents a nonparametric test for comparing the locations of several 

populations.  The two most common nonparametric tests for comparing 

locations are the median test, presented in this section, and the Kruskal-Wallis 
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test, presented in the next section.  The parametric test that corresponds to these 

tests is the one-way ANOVA.   

median test The median test investigates whether k independent samples 

come from populations having the same median.  If the 

populations are symmetric, testing equality of the medians is 

equivalent to testing equality of the means. The test assumes 

that the samples are collected randomly and independently 

and that the observations are at least on an ordinal scale. 

Let ξ i denote the median of the i
th

 population and let ni be the number of 

observations in the i
th

 sample, i = 1,…, k.  The null hypothesis is:  

H0: ξ1 = ξ2 = … = ξk   (25.31   ) 

The alternative hypothesis may be written as:  

H1: ξi ≠ ξj , some i, j  (25.32   ) 

To use the median test, first calculate the grand median M of the combined 

samples.  Let O1i be the number of observations in the i
th

 sample that exceed M 

and let O2i be the number less than or equal to M.  Arrange the O1i and O2i, i = 1, 

2, ..., k, into a 2 x k contingency table as shown in Table 25.9, where a denotes 

the total counts of the observations larger than M and b, the total counts of the 

observations that are equal or smaller than M. 

 Table 25.9.  Contingency table for the median test 

 Sample 

 1 2 … k Total 

Observations 

> M 
O11 O12 … O1k A 

Observations 

≤  M 
O21 O22 … O2k B 

Total n1 n2 … nk a + b 

 

The test statistic is given by: 

1

22
2

1

( ) ( )
i

k

i i

Oa b a a b

ab n b
 

(25.33) 

Alternatively, we can use either Equation (12.5) or (12.6) for the r x k 

contingency table analysis of Chapter 12.  The numerical result obtained from 
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the equations in Chapter 12 are identical to that of Equation (25. 44), but the 

calculations from equation (25.44) are usually simpler.   

The test statistic  
2  is approximately distributed as a chi-square random variable 

with ν = k - 1 degrees of freedom.  Hence we reject H0 if 
2 2

1 ( 1)k , 

where 2

1 ( 1)k is obtained from Table T- 2 of the appendix.  

The chi-square approximation may not be very accurate if some of the ni are 

small.  Conover ((1980), p. 172) suggests that, in general, the approximation 

may not be satisfactory if more than 20% of the ni’s are less than 10 or if any of 

the ni’s are less than 2.  An exception to this rule can be made for larger values 

of k; if most of the ni’s are about the same, then values of ni as small as 2 are 

allowed.  

Example 25.8.  Comparison of four production lines (Bowen and 

Bennett, 1988, p. 502). A facility has four production lines that each create a 

liquid waste stream.  All four of the waste streams go to the same storage area, 

where they are sampled and analyzed (uranium concentration in ppm) for 

accountability purposes.  The facility must test whether the four waste streams 

are entering the storage area with the same uranium concentration.  Random 

samples from the four waste streams are collected and analyzed for uranium 

concentrations.  The results are displayed in Table 25.11.  Use the median test to 

test the null hypothesis that there are no differences between the four production 

lines, with α = 0.10.  

Table 25.10.  Uranium concentration (ppm) 

Line 1 Line 2 Line 3 Line 4 

13 34 17 33 

23 16 26 30 

23 20 11 23 

14 35 13 24 

25 17 24 32 

22 30 22 20 

35 27 8 17 

13 28 20 32 

24  23  

20    

The grand median of the combined samples is 23.  Accordingly, the following 

2 x 4 contingency table (Table 25.11) is constructed in the template of Table 

25.9. 
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Table 25.11.  Contingency table for Example 25.8 

 Line   

 1 2 3 4 Total 

> 23.0 3 5 2 5 15 

< 23.0 7 3 7 3 20 

Total 10 8 9 8 35 

The test statistic, calculated from Equation 25.33, is:  

2 2 2 2 2

2 (35) 3 5 2 5 (35)(15)
31.01 –  26.25  4.76

(15)(20) 10 8 9 8 20
  

From Table T-2, the critical value for ν = 3 and α = 0.10 is χ
2
0.90 (3) = 6.25.  

Because 4.76 < 6.25, H0 is not rejected.  There is no significant evidence that the 

median uranium concentrations for the four lines are different. 

The parametric counterpart of the median test is a one-way ANOVA.  Table 

25.12 displays Excel’s ANOVA for the data in Example 25.8, where α = 0.10.  

In that analysis the calculated F statistic is 2.94, and the critical value is 

f0.10(3,31) = 2.27. Because 2.94 > 2.27, H0 is rejected and we conclude that the 

mean uranium concentrations are not all equal.  This result is not that surprising 

since the parametric test, operating under more stringent assumptions, is more 

powerful than the median test in detecting differences between the populations. 

 Table 25.12.   Excel’s output for Example 25.8 
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25.10 Test of locations with several samples:  
The Kruskal-Wallis test 

Kruskal-Wallis 

test 
Like the median test, the Kruskal-Wallis test is used to 

compare the locations of several populations.  As for the 

median test, we assume that we have k mutually independent 

samples from k populations with data on, at least, an ordinal 

scale.  An additional assumption for the Kruskal-Wallis test 

is that the population distributions are identical, except 

possibly for their locations. 

      This assumption implies that the population variances are identical. 

Because equality of the medians is equivalent to equality of the means, the null 

and alternative hypotheses can be written as: 

H0: 1 = 2 = … = k   (25.34) 

H1: i ≠ j , some i, j  (25.35) 

where i is the mean of the i
th

 population, i = 1, 2,..., k. 

Denote the sample from the i
th

 population by yi1, yi2, …, yin, , where ni is the 

sample size, i = 1, 2,..., k.  Let n = ni be the total number of observations for the 

k samples. 

Rank the combined samples (smallest to largest) from 1 to n.  If several 

observations are tied, assign to each the average of the ranks that would 

otherwise have been assigned.  Let R(yij) denote the rank assigned to yij, and let 

Ri be the sum of the ranks assigned to the i 
th

 sample; thus,  

1

( ), 1, ...,
i

i ij

j

n

R R y i k   (25.36) 

The Kruskal-Wallis statistic for testing equality of the means is:   

2 2k

i 1

1 ( 1)

4

i

i

R n n
H

c n
 (25.37) 
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where  

( 1)

12

n n
c , when no ties are present (25.38) 

2
2

1 1

1 ( 1)
( ) ,

1 4

i

i j

ij

nk n n
c R Y

n
 

when ties are present 

(25.39) 

The H statistic is distributed approximately as a chi-square variable with            

ν = k - 1 degrees of freedom.  The null hypothesis of equal means is rejected the 

at α level of significance if H > χ
2
1-α(k - 1), and χ

2
1-α(k - 1) is the (1-α) quantile of 

the chi-square distribution of Table T-2 of the appendix.  

If we reject H0, all we can conclude is that at least two population means are 

different.  To identify which specific means are different, we run a multiple 

comparison test that compares all possible pairs of means.  For any two 

populations, i and j, we conclude that their means are different if the absolute 

value of the difference Ri /ni - Rj /nj between their average ranks exceeds an 

appropriate critical value.  Specifically, we reject the hypothesis that i = j if 

1 α/2

i j

1 1 1
( )  

ji

i j

RR n H
t n k c

n n n k n n
 (25.40)  

where H is given by Equation (25.37) and c is given by Equation (25.49) if the 

data contains no ties or Equation (25.39) otherwise.  The factor t1-α/2(n-k) is 

obtained from Table T-3 of the appendix for ν = n - k degrees of freedom.  The 

test is repeated for all pairs of populations. 

Example 25.9.   Comparison of four production lines (continued).  In 

Example 25.8, we tested the equality of uranium concentration medians of four 

production lines at the α = 0.10 level of significance using the median test.  

Assume that the four distributions may differ only in their locations so that we 

can use the Kruskal-Wallace test to compare the means.     
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The data are shown in Table 25.10.  They are copied in Table 25.13, along with 

their ranks in the combined sample of n = 35 observations, as required by the 

Kruskal-Wallace test.  The bottom row of the table shows Ri, the sum of the 

ranks for the i 
th

 sample. 

Table 25.14.  Data ranked for Example 25.9 

Line 1 

 

Line 2 

 

Line 3 

 

Line 4 

 
y1j Rank y2j Rank y3j Rank y4j Rank 

13 4 34 7 17 1 33 9 

23 4 16 9 26 2 30 12.5 

23 6 20 12.5 11 4 23 18.5 

14 12.5 35 26 13 9 24 22 

25 15.5 17 27 24 12.5 32 28.5 

22 18.5 30 28.5 22 15.5 20 30.5 

35 18.5 27 33 8 18.5 17 30.5 

13 22 28 34.5 20 22 32 32 

24 24   23 25   

20 34.5       

R1 =  159.5 R2 = 177.5 R3 = 109.5 R4 = 183.5 

Since some of the ranks are tied, we calculate c using Equation (25.50).  We 

have: 

2 2 2 2

1 1

[ ( )] 4 4 ... 32 14892
i

i j

ij

nk

R y  

21 35(36)
14892 104.47

34 4
c  

Next we calculate 

2 2 2 2 24

1

159.5 159.5 159.5 159.5
12023.59

10 8 9 8

i

i i

R

n
 

Finally, using Equation (25.37), Kruskal-Walis test statistic is calculated as: 

21
12024 35(36) / 4 6.55

104.47
H
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The critical value for the test is
2

0.90
(3) 6.25.  Because 6.55 > 6.25, H0 is 

rejected at the α = 0.10 level of significance.  This conclusion agrees with the 

parametric ANOVA shown in Table 25.13, but not with the conclusion of the 

median test for Example 25.8.  These divergent results are due to the greater 

sensitivity of the Kruskal-Wallis and the parametric tests to differences in the 

distributions of the different populations. 

Because the Kruskal-Wallis test rejected the hypothesis of equal population 

means, we continue with the multiple comparison test to identify which pairs of 

means are different.  From Equation (25.40), calculate     

1 α/2

1 35 1 6.55
 = (1.70) 104.47 16.35

35 4
( )

n H
C

n k
t n k  

Next, apply Equation (25.40) to all pairs of differences as shown in Table 25.14. 

Table 25.14.  Multiple comparisons for Example 25.9 

Population 

i         j  
ji

i j

RR

n n

 

i j

1 1
16.35  

n n

 

Significant at 

α =0.10 

1 2 6.24 7.76 No 

1 3 3.78 7.51 No 

1 4 6.99 7.76 No 

2 3 10.02 7.94 Yes 

2 4 0.75 8.18 No 

3 4 10.77 7.94 Yes 

These results indicate that the mean uranium concentration for Line 3 is 

significantly different (lower) than the mean concentrations for Lines 2 and 4.  

The same results are displayed schematically as in Duncan’s multiple range test 

of Section 16.8.  The number listed for each line is the average rank for the 

corresponding sample.  Means that are not underscored by the same line are 

significantly different. 
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Both the median and the Kruskal-Wallis tests are used for comparing the 

locations of several populations.  The median test requires only that the samples 

be independent but the Kruskal-Wallis test also requires that the populations all 

have identical distribution functions, except for possibly different means.  If this 

more stringent assumption holds, the Kruskal-Wallis test is more powerful for 

detecting population differences than the median test because ranking the data 

retains more information than does dichotomizing.  However, if the population 

distributions differ by more than location, then the Kruskal-Wallis test is not 

applicable and the median test should be used. 

25.11  Test of location for related samples:   
The rank ANOVA test  

Tests for comparing the locations of several populations using related samples 

are extensions of two-population comparisons when the observations are 

matched as pairs (Section 25.7).  The parametric equivalent of these tests is the 

two-way ANOVA for a randomized complete block design (Section 17.4). 

The analysis of randomized complete block designs compare the means 

resulting from k ≥ 2 different treatments, where the observations are arranged in 

blocks.  The blocks for these designs are groups of k experimental units where 

the units within a group are similar, but significant differences among the groups 

may be the results of the different experimental treatments.  If b batches of 

homogeneous material are split into k portions and each portion is analyzed by 

each of k laboratories, the k laboratories are considered treatment and the b 

batches are considered blocks.  

The purpose of the statistical analysis of the response data is to determine 

whether the k treatments are alike in their locations, such as medians or means.  

Denote those locations by ξi, i = 1, …, k.  The null and the alternative hypothesis 

are the same as stated for the median test (and also applicable to the Kruskal-

Wallis test) in Equation (25.31) and (25.32):  

H0: ξ1 = ξ1 = … = ξk = ξ   

and 

H1: ξi ≠ ξj , some i, j   
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Rank ANOVA 

test 

In this section we provide the Rank ANOVA test, which is 

considered to be the most powerful nonparametric (sensitive 

to departure from H0) test for many applications.  It should 

be used when the distributions we investigate are identical, 

with possible different locations.  However, if we have a 

reason to believe that the underlying distribution is rather 

flat, the Friedman Test of Section 25.12 would be a better 

choice. 

The Rank ANOVA test is identical to the randomized block design ANOVA of 

Sections 17.3 - 17.5, except that the observations are replace by their rank, 

where the ranking of the data is made across all b x k data cells.  Tied 

observations are assigned their average rank.   

The ANOVA calculations follow the identical steps that are outlined in Section 

17.5.  The test statistic is the F statistic with ν1 = k -1 degrees of freedom in the 

numerator and ν2 = (k - 1)(b - 1) degrees of freedom in the denominator. If the 

calculated value of F exceeds the critical value f1-α(ν1, ν2), H0 is rejected and we 

conclude that not all population locations are the same.   

The use of the rank ANOVA test is demonstrated in Example 25.11. 

Example 25.10.  Percent plutonium by weight (Bowen and Bennett,       

p. 612).  Each of three laboratories was given a sample of PuO2 from each of 10 

containers. The laboratories measured the plutonium by weigh of each sample.  

In turn, each weight was replaced by its rank.  We test whether the population 

location are equal, using α = 0.05 level of significance. 

Table 25.15 shows the weights and the ranks of the data by block (container) 

and treatment (laboratory) 
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Table 25.15.  Data and ranks of plutonium data 

Container Lab 1 Rank Lab 2 Rank Lab 3 Rank 

1 87.67 5 87.88 19 87.72 8.5 

2 87.64 3 87.99 25 87.80 14 

3 88.03 26.5 87.98 24 87.97 23 

4 87.50 1 87.84 17 87.65 4 

5 87.86 18 87.77 12 87.75 10 

6 87.71 7 87.93 20.5 87.76 11 

7 87.63 2 87.83 15.5 87.79 13 

8 87.83 15.5 87.94 22 87.93 20.5 

9 88.04 28 88.06 30 88.05 29 

10 87.72 8.5 88.03 26.5 87.68 6 

We could use all the steps given in Section 17.5 (ANOVA for a two-way 

factorial design without replication) to conduct the required analysis.  We 

elected instead to use Excel’s ―ANOVA: Two Factors Without Replication,‖ 

routine in the Data Analysis module.  In that routine, we identified the location 

of the data in the ―Input Range‖ box, checked the ―Label‖ box, provided the 

level of significance as 0.05 in the ―Alpha‖ box, and gave the address for the 

output in the ―Output Range.‖  Excel’s analysis (modified to fit this book style) 

is shown in Table 25.16. 

Table 25.16.   Excel’s output for Example 25.11 

 

The critical value for this test is f0.95 (9, 18) = 3.55.  Because 9.16 > 3.55, we 

have statistical evidence that not all population locations are the same. 
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25.12  Test of location for related samples:   
The Friedman test  

Friedman test As indicated earlier, there are several tests for testing equality 

of population locations for related samples.  This section 

introduces the Friedman test which is an extension of the 

matched pairs of the sign test to multiple populations. 

The data structure to which the Friedman test is applied is the randomized 

complete block design. In this design it is assumed that the k populations under 

consideration have the same distribution, with possibly different locations.   

The null hypothesis of the test is the same as in the rank ANOVA test, that is, 

the population locations of the treatments are the same.  The alternative 

hypothesis is that at least two treatments have different locations. 

In the setup of the Friedman test , the observations are arranged in k columns 

(corresponding to k treatments) and b rows (corresponding to b blocks).   Let yij 

denote the observation from the j
th

 block for the i
th

 treatment. Let R(yij) denote 

the rank of yij within the j
th

 block, and where tied observations receive their 

average rank.  We define three quantities: 

1

( )
i

b

j

ijR R y  (25.41) 

1 1

2
( )

k b

ij
i j

R yA  (25.42) 

2

1

1
i

k

i

B R
b

 (25.43) 

 The test statistic is given by:  

2
( 1)[ ( 1) / 4]b B bk k

F
A B

 (25.44) 

The test statistic  is distributed approximately as an F variable with ν1 = k - 1 

degrees of freedom in the numerator and ν2 = (b - 1)(k - 1) degrees of freedom in 

the denominator.  If the calculated F exceeds the critical value f1-α(ν1, ν2), the 

null hypothesis of equal population locations is rejected. 



490 Applying Statistics 
 

 

  The approximation of the test statistic in Equation (25.44) to the                   

F-distribution improves as the number of blocks b increases.   

We apply the Friedman test to the data in Example 25.10 where α = 0.05.  The 

observations and their within-block ranking are shown in Table 25.17. 

Table 25.18.  Data and ranks of plutonium data for the Friedman test 

Container Lab 1 Rank Lab 2 Rank Lab 3 Rank 

1 87.67 1 87.88 3 87.72 2 

2 87.64 1 87.99 3 87.80 2 

3 88.03 3 87.98 2 87.97 1 

4 87.50 1 87.84 3 87.65 2 

5 87.86 3 87.77 2 87.75 1 

6 87.71 1 87.93 3 87.76 2 

7 87.63 1 87.83 3 87.79 2 

8 87.83 1 87.94 3 87.93 2 

9 88.04 1 88.06 3 88.05 2 

10 87.72 2 88.03 3 87.68 1 

The calculations are:  

10 10 10

1 j 2 3 j

1 1 1

1 2 j 3
( ) 15, ( ) 28, ( ) 17

j j j

R y R y R yR R R   

3 10

1 1

2
( ) 140

ij

i j

R yA  

3

1

2

2 2 2
1

10

15 28 17
129.8

10i

i
B R  

The test statistic is calculated from Equation (25.44) as:  

2
(10 1)[129.8 (10)(3)(3 1) / 4]

8.65
140 129.8

f   

The critical value for the test, obtained by interpolation from Table T-4 of the 

appendix or by a call to Excel, is f0.95(2, 18) = 3.55.  Because 8.65 > 3.55 we 
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have statistical evidence that not all population locations are equal.  These 

results agree with the parametric ANOVA of Table 25.16. 

 

Quade test 
As stated earlier, there are other nonparametric tests for testing 

equality of population locations.  The Quade test, for example, 

is the chief competitor to the Friedman test.  We elected to 

present the Friedman test because it is more commonly used.  

The interested reader may refer to Conover (1980, p. 296) or to 

Bowen and Bennett (1988, p.610) for details about the Quade 

test. 

 25.13  Test of variances with two samples: Squared 
ranks test 

Except for the runs test for randomness, all of the nonparametric tests presented 

so far have been tests of location.  We now consider tests of variability, as 

measured by the variance. 

squared ranks 

test 
The variances of two populations can be compared with a 

nonparametric test called the squared ranks test, developed by 

Conover and Iman (1978).  We assume that the two populations 

have identical distributions, either continuous or discrete, except 

possibly for different means and variances.  For example, the 

populations might be normally distributed.  Denote their means 

by  μ1 and μ2 and their variances by
1

2 2

1 2
.and  

Let {y11, y12, ..., y1n }and {y21, y22, ..., y2m } be independent random samples of 

size n and m, respectively, from the two populations.  We test the null 

hypothesis:  

1

2 2

0 1 2:H  (25.45) 

against a two- or one-sided alternative hypothesis.    

       

The squared ranks test of H0 is performed as follows:   

ui = | y1i – μ1 |,  i = 1,2,..., n (25.46) 

vj = | y1j – μ2 |,  j = 1,2,..., m (25.47) 

If μ1 and μ2 are unknown, the test is still approximately valid if we use the 

sample means 
1 2

andy y instead.  Rank the n + m observations in the combined 

sample of ui’s and vj’s.  If any values of ui or vj are tied, assign to each the 
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average of the ranks that would have been assigned had there been no ties.  

Denote the resulting ranks by R(ui) and R(vj).   

If there are no ties, the test statistic is the sum of the squared ranks of the ui , 

denoted by T1:  

2

1

1

[ ]
n

i

i

T R u  (25.48) 

If there are ties, the test statistic is:   

2
* 1

1
2

4 2

1( )( 1) 1

n m

i

i

T nR
T

nm nm
R R

n m n m n m

 

(25.49) 

where:  

222

1 1

( )( )
1

ji

n m

i j

R vR uR
n m

 (25.50) 

and 

444

1 1 1

( ) ( )
n m n m

k i j

k i j

R R u R v  
(25.51) 

The quantiles for the squared rank test statistics are obtained as follows: 

 When n ≤ 10 and m ≤ 10 and when no ties are present, exact quantiles       

wq = wq(n, m), of the distribution of T1 are given in Table T-18 of the 

appendix.  

 When n ≤ 10 and m ≤ 10 and when ties are present, the test statistic  T1
*
 is 

distributed approximately as a standard normal distribution, with quantiles 

given in Table T-1. 

 When either n >10 or m >10, the q
th

 quantile wq of T1 is as approximated by 

( 1) (2 2 1)

6

( 1)(2 2 1)(8 8 11)

180

q

q

n m n n m
w

nm n m n m n m
z

 
(25.52) 

where zq is the q
th

 quantile of the normal distribution (Table T-1).  
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For H0:
2 2

1 2
, the critical values for the various alternative hypotheses are 

given by: 

For H1:
2 2

1 2
, reject H0 if T1 (or T1

*
) <  wα/2   

                                     or if T1 (or T1
*
)  >  w1-α/2  

(25.53) 

For H1:
2 2

1 2
, reject H0 if T1 (or T1

*
)  >  w1-α (25.54) 

For H1:
2 2

1 2
, reject H0 if T1 (or T1

*
)  < wα (25.55) 

Example 25.8.  (continued).  Comparison of percent of uranium in 
two batches.  We continue with a check on the assumptions of the WRS test, 

which requires that the population distributions be the same except for a possible 

location difference.  We apply the squared ranks test to the data in Example 25.7 

to test for equality of the variances, using α = 05.  

Because the population means are unknown, the sample estimates y 1 = 87.04 

and y 2 = 86.11 are used.  The absolute values of the deviations and their ranks 

in the combined sample are displayed in Table 25.18.  

Table 25.18.  Data sorted and ranked for Example 25.8 

Batch 1 

 (y1i) 

ui = 

| y 1i - y 1| 

 

R(ui) 

Batch 2 

(y2i) 

vi = 

| y 2i - y 2| 

 

R(vi) 

86.0 1.04 14 84.8 1.31 16 

86.4 0.64 11 85.7 0.41 8 

86.8 0.24 4.5 85.8 0.31 6 

86.8 0.24 4.5 86.1 0.01 1 

86.9 0.14 3 86.2 0.09 2 

87.5 0.46 9 86.5 0.39 7 

87.7 0.66 12 86.7 0.59 10 

88.2 1.16 15 87.1 0.99 13 

From Table 25.18 we calculate: 
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8 8
2 4

1 1

8 8
4 4

1 1

[ ( )] 816.5, [ ( )] 131880

[ ( )] 679.0, [ ( )] 111907

i i

i i

i i

i i

R u R u

R v R v

 

Because there are ties in the data, Equations (25.49), (25.50), and (25.51) are 

used.  

From Equation (25.50), we have 2 1
816.5 679.0 93.47

8 8
R  

From Equation (25.51), we have 

16

4

1

131880 111907 243787
k

k

R  

From Equation (25,49), we have: 

2

*

1

816.5 8(93.47)
0.41

(8)(8) (8)(8)
(243787) (93.47)

(8 8)(8 8 1) 8 8 1

T  

From Table T-1, we obtain w0.025 = -1.960 and w0.975 = 1.960.  Because                

-1.960 < 0.41 < 1.960, H0 is not rejected..  There is no statistical evidence that 

the variances of the two populations are different.  

 

The parametric counterpart to the squared ranks test is the F-test, described in 

Section 14.4.  For comparison, we can perform the F-test for Example 25.8.  

The two sample variances, listed in Table 25.8, are 0.52 and 0.50 with 7 degrees 

of freedom each.  The test statistic, which is the ratio of the larger to the smaller 

variance, is  f = 0.52/0.50 = 1.04.  The critical value for this test is f0.95(7,7) = 

4.99.  Since 1.04 < 4.99, we have no statistical evidence that the variances of the 

two populations are different.  

 

If the two samples are actually from normal distributions, the F-test would be 

the test statistic of choice, as the test is quite sensitive to variance differences.  

However, the F-test is also sensitive to departures from normality, and a 

statistically significant result may be due to non-normality and not to variance 

differences.  Thus, the squared ranks test is preferred if normality is in doubt. 

25.14  Test of variances with several samples:   
The k-sample squared ranks test   

k-sample squared 

ranks test 
The two-sample squared ranks test can be extended to the  

k-sample squared ranks test to compare the variances of k 
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populations.  As for the two-sample test, we assume that the 

k populations have identical distributions, either continuous 

or discrete, except possibly for different means and 

variances.    Denote the i
th

 population mean and variance by 

μi  and 
2,
i

 respectively, i = 1, 2, …, k. 

The null and alternative hypotheses for testing the equality of the k variances 

are: 

2 2 2

0 1 2
: ...

k
H  (25.56) 

2 2

1
, some , 

i j
H i j  (25.57) 

Denote a sample of ni observations from the i
th

 population by 

1 2, ,  , .
ii i iny y y   From each observation yij, subtract its population mean μi, 

or its sample mean 
iy  if μi is unknown.  Combine all k samples and rank the 

absolute differences | yij − μi | or | yij − 
i

y  | from smallest to largest, assigning 

average ranks in case of ties.  Denote the rank of | yij − μi | (or | yij − 
i

y  |) by 

R(Yij).  The test statistic is given by:  

2

2i

2

1

1
( )

k

i i

S
T n S

D n
 (25.58) 

where: 

ni = the number of observations in the i
th

 sample  

n = n1 + n2 + … + nk  

1

2
( )

i

i ij

n

j

S R y  

1

1
i

k

i

S S
n

 

i

2 2

1 1

41
( ) ( )

1 i j

nk

ij
D R y n S

n
 (25.59) 

If there are no tied ranks, then D
2
 and S reduce to:  

D 
2
 = n (n + 1) (2n + 1) (8n + 11) /180  (25.60) 
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and 

 S  = (n + l) (2n + l) / 6 (25.61) 

The critical value for the test is χ
2
1-α (k − 1), obtained from Table T-2 of the 

appendix.  We reject H0 at the α level of significance if T exceeds χ
2

1-α (k − 1).   

Rejection of H0 indicates that at least two of the populations have unequal 

variances, but the test does not identify which variances differ.  Multiple 

comparisons of the k populations are made by comparing two variances at a 

time.  We conclude that the variances 2 2andi j
 are different if: 

2

1 /2

1 1 1
( )

j

j

i

i i j

S

n

S n t
t n k D

n n k n n
 (25.62) 

where t1-α/2(n − k) is obtained from Table T-3 of the appendix.  

Example 25.10(continued).   Comparison of four production lines.  We use 

the k-sample squared ranks test and the data from Example 25.8 to test the 

hypothesis that the variances of the uranium concentrations of the four 

production lines are equal.  The level of significance of the test is set at α = 0.10.  

The sample means of the four lines are y 1 = 21.20,  y 2 = 25.86, y 3 =18.22, 

and y 4 =26.38.  Table 25.19 lists the absolute differences | yij - y i |, along with 

their ranks relative to the entire dataset.  The bottom row of the table shows ri, 

the sum of the squared ranks for the i 
th

 sample.   
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Table 25.19.  Ranks for Example 25.10 

Line 1 

 

Line 2 

 

Line 3 

 

Line 4 

 
1 1

| |
j

y y  

ȳ  

Rank 
2 2

| |
j

y y  Rank 
3 3

| |
j

y y  Rank 
4 4

| |
j

y y  Rank 

8.20 28.5 8.12 27 1.22 4 6.62 23 

1.80 6.5 9.88 33 7.78 26 3.62 12 

1.80 6.5 5.88 21 7.22 25 3.38 11 

7.20 24 9.12 31 5.22 17 2.38 9 

3.80 14 8.88 30 5.78 20 5.62 18.5 

0.80 1 4.12 15 3.78 13 6.38 22 

13.80 35 1.12 2 10.22 34 9.38 32 

8.20 28.5 2.12 8 1.78 5 5.62 18.5 

2.80 10   4.78 16   

1.20 3       

r1 =  3816.00 r2 = 4413.00 r3 = 3612.00 r4 = 3067.50 

The calculations are: 

4

1 1

4 4
[ ( )] 28.5 18.5 11265387...

i

ij

i j

nk

R y

2 2 2 21
3816.0 4413.0 3612.0 3067.5 425.96

35
S  

2 21
11265387 35(425.96) 144559

34
D  

1

2 2 2 2 2
3816.0 4413.0 3612.0 3067.5

6516317
10 8 9 8

k

i i

iS

n
 

2
6516317 (35)(425.96)

1.15
144559

T  

Because 1.15 < χ
2
0.90(3) = 6.25, H0 is not rejected.  There is no statistical 

evidence that the uranium concentration variances for the four production lines 

are different.  

It is of interest to compare the outcome of the squared ranks test to its 

parametric counterpart when normality is assumed.  As stated in Section 14.7, 

however, there are more than one such parametric tests.  In this section we use 

Bartlett’s test for homogeneity of variances, given in Section 14.7.  From 
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Equation (14.11), the test statistic is distributed approximately as χ 
2
 with ν = 3 

degrees of freedom and the critical value is
2

0.90
6.25.  The calculated statistic 

is b = 0.28.  Since 0.28 < 6.25, we have no statistical evidence to conclude that 

the variances are different.  Thus, the parametric test agrees with the 

nonparametric k-sample squared ranks test. 

25.15  Spearman’s test of independence for two 
populations     

The concept of correlation is introduced in Chapter 19 as a measure of the linear 

relation between two random variables X and Y.  However, this measure may be 

significantly affected by one or more outlying observation (Chapter 26) and thus 

provide a distorted view of the relation between X and Y.  Because a 

nonparametric correlation can be calculated using the ranks of the observations, 

the nonparametric correlation will not be unduly affected by such outlying 

observations.   

Assume that the data consist of n pairs of observations (xi, yi), i = 1, …, n, from 

two populations, X and Y.  The parametric coefficient of correlation for the 

sample is calculated using Equation (19.7), which is repeated here for 

convenience as Equation (25.63). 

 XY
XY

XX YY

S
R

S S

 
(25.63) 

where SXY, SXX, and SYY are the working sum of squares formulas: 

1
xy i i i i

x y x y
n

S  (25.64) 

22 1
iixx x x

n
S  (25.65) 

22 1
iiyy y y

n
S  (25.66) 

where the summations are made from i = 1 to i = n. 

Spearman’s rank 

correlation 

coefficient 

Spearman’s rho 

The most commonly used nonparametric measure of 

correlation is Spearman’s rank correlation coefficient, 

which is also referred to as Spearman’s ρ or Spearman’s 

rhoIt is calculated by essentially replacing the observations 

by their ranks.  Specifically, let R(xi) denote the rank of xi 

compared with the other observations on X, and  let R(yi) 
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denote the rank of yi compared with the other observations 

on Y.   In case of ties, assign the average of the ranks that 

would otherwise be assigned if there were no ties. 

   Spearman’s correlation coefficient, denoted by rS, is defined as: 

2

2 2

2

2 2

1 1

[ ( ) ( )]

[ ( )] [ ( )]

1

( 1)
4

( 1) ( 1)
4 4

S

n

i i

n n

i i
i i

R x R y

R x R y

i

n
n

r
n n

n n

 (25.67) 

If the data contain no ties, rS is simplified to: 

 

2 2

1 1

2 2
1

6 6[ ( ) ( )]

1
( 1) ( 1)

n n

i i i

i i

S

R x R y D

r
n n n n

 
(25.68) 

where Di  = R(Xi) -R(Yi) is the difference between the ranks of X and Y of the i
th

 

pair. 

It can be shown (Conover (1980), p. 253) that Equation (25.68) yields the same 

result as Equation (25.63) when the data are replaced by their ranks.  Hence we 

can use Excel’s =CORREL function to calculate rS if there are no tied data. 

Spearman’s rho is used to test whether X and Y are related.  The null hypothesis 

is:   

H0:  X and Y are independent. (25.69) 

The alternative hypothesis can be either two-sided or one-sided, depending on 

the relationship between X and Y.  The possibilities are:  

H1: There is either a tendency for larger values of X 

to be paired with larger values of Y or for 

larger values of X to be paired with smaller 

values of Y.   

(25.70) 

H1: There is a tendency for larger values of X to be 

paired with larger values of Y.   
(25.71) 

H1: There is a tendency for larger values of x to be 

paired with smaller values of Y.   
(25.72) 
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If the alternative is given by Equation (25.70), H0 is rejected if rS > w1-α/2 or if   

rS < wα/2. 

If the alternative is given by Equation (25.71), H0 is rejected if rS > w1-α.    

If the alternative is given by Equation (25.72), H0 is rejected if rS < wα.    

The quantiles w1-α are given in Table T-19, ―Quantiles, w1-α, of the Spearman 

statistic‖ of the appendix for n ≤ 30 and for α = 0.10, 0.05, 0.025, 0.01, 0.005, 

and 0.001. 

When n> 30, the w1-α quantile of rS is calculated as:  

1
1 ( )

1

z
w n

n
 (25.73) 

where z1-α is given in Table T-1 of the appendix.    

 

For example, when n = 50 and α = 0.05, the critical value for testing H0 when 

the alternative is a positive relationship (Equation (25.71)) is 

0.95(50) 1.645 / 49 0.235.w  

Example 25.11. Solid waste barrel standards (Bowen and Bennett, 

p.518). Two uranium-bearing solid waste barrel standards are counted on the 

same day using the same NDA counting instrument on 12 different days.  If 

there is no shift over time in the bias of the counter, the successive 

measurements will be independent.  However, if the bias of the counter changes 

over time, the paired measurements on the two barrels will be positively 

correlated.  Test whether there is a bias in the counter at an α = 0.05 level of 

significance.   

Table 25.20 shows the 12 measurements (denoted by xi and yi), their ranks 

within each barrel and the rank differences.   

Table 25.20.  Data and ranks for Spearman’s correlation 
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The null hypothesis is given by Equation (25.69) and the alternative by Equation 

(25.71),  Using the intermediate calculations shown in Table 25.20, rS is 

calculated using Equation (25.68) as:  

2

(6)(252)
1 0.12

12(12 1)
Sr

  

The critical value for n = 12 is found in Table T-19 of the appendix as            

w0.95 (12) = 0.4965.  Because 0.12 < 0.5804, we have no statistical evidence of 

correlation between the two standards, and conclude that there is no shift in the 

bias of the counter. 

In parallel with the nonparametric test of the null hypothesis in Example 25.11, 

we can also calculate the parametric correlation coefficient RXY.  Using Excel 

function =CORREL, or calculating RXY directly from Equation (19.7), we obtain 

rXY = 0.019.  Using Equation (19.9), we can also test the null hypothesis that      

ρ = 0 using the test statistic t = 0.060.  From Table T-3 of the appendix we have 

t0.975(10) =2.23.  Because -2.23 < 0.060 <2.23, we do not reject H0, reaching the 

same conclusion as Spearman’s test. 

Kendall’s rank 

correlation 

coefficient  

Kendall’s tau  

Another nonparametric measure of correlation is Kendall’s 

rank correlation coefficient, which is also referred to as 

Kendall’s τ or Kendall’s tau.  The interested reader may find 

details on Kendall’s procedure in Conover (1980), p.256, or 

Bowen and Bennett (1988), p. 521. 
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26 
Outliers 

26.1  What to look for in Chapter 26 

Sometimes it happens that some observations appear to be inconsistent with 

other observations in the same sample.  Such observations may be extreme 

manifestations of randomness or they may be the result of mistakes or errors or 

another factor of practical importance.  In this chapter, we present procedures to 

determine whether such apparently erroneous observations should be identified 

as outliers and removed from the sample when it is analyzed.  In this chapter we 

will: 

 discuss some possible sources of data inconsistency,  §26.2  
 discuss the consequences of a wrong decision to exclude, or fail to exclude, 

an observation, §26.6 

We present several statistical procedures for identifying outliers:   

 box plot rule, §26.3 

 Dixon’s test, §26.4 

 Grubbs’ tests, §26.5 
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 26.2   What is an outlier? 

There are numerous definition of an outlying observation, or outlier.  Barnett 

and Lewis (1994) define an outlier as an observation that ―deviates markedly 

from other members of the sample in which it occurs.‖ Hawkins (1980) defines 

an outlier as an observation that ―deviates so much from other observation as to 

arouse suspicion that it was generated by a different mechanism.‖ Others define 

an outlier as one of the set of values that lies unexpectedly distant from most of 

the other values in the set.  The identification of an outlier can be made 

subjectively, such as in a visual inspection of the observations, or objectively, by 

using one method from the plethora of methods that are found in the literature.   

This chapter presents only selected procedures for testing outliers.  More 

extensive procedures are given in books by Barnett and Lewis (1994) and 

Hawkins (1980), and a survey paper by Beckman and Cook (1983). 

outlier In this book, we define an outlier as an apparently erroneous 

observation that has been identified by some statistical 

procedure as due to error or some cause rather than randomness 

in the data. 

 
   The removal of an observation is made only for the data analysis.  It does 

not mean throwing away data, as every observation must be recorded. The 

choice of an outlier rejection procedure should be made with careful 

consideration of the data structure and the required degree of conservatism.  

Furthermore, the procedure should be chosen in the planning stage and not 

after the data are collected. 

 

An observation can deviate from the remaining observations in a sample either 

because of random fluctuation or because it does not really belong in the sample.  

If a deviant observation is a legitimate manifestation of randomness but is 

removed from the sample, the reduced sample is no longer an unbiased sample 

of the population from which it was drawn.  On the other hand, if an observation 

that does not belong in the sample is retained, the consequent analysis would be 

tainted.  These considerations are discussed in Section 26.6. 

 

There are many possible reasons for an observation to be erroneously included 

in a sample.  These include: 

 

 calibration error 

 instrument resolution error 

 hysteresis 

 error due to under- or over-sensitivity of an instrument in some data ranges  

 an unstable scale or instrument 

 computation error 

 transcription error 

 error due to a changing environment, such as a sharp change in temperature 
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In addition to error, an observation may be the result of malevolent action, such 

as 

 

 sabotage 

 theft 

 diversion 

 neglect 

 altered records  

 

   Altered records are not usually manifested by outlying observations.  On the 

contrary, records may be altered to cover up extreme values that otherwise 

may draw attention.  It is much harder, if not next to impossible, to identify 

data that were made to look ―normal.‖ 

 

Once an observation has been identified as an outlier, it is important to examine 

it to try to identify the reason why it was included in the sample.  In some cases, 

it may be possible to correct the error and restore the observation to the sample.  

For example, if a decimal point was incorrectly placed, we can correct the 

record and use the corrected observation.  However, if data repair is not 

possible, such as when there was a contaminated aliquot or an instrument 

failure, then corrective action might be taken to avoid future errors.   

 

26.3  Box plot procedure for outlier identification  
 
A procedure for identifying outliers in box plots has already been introduced in 

Section 3.9.  There, an outlier (there may be more than one) is defined as any 

data value that is either: 

 

 smaller than the lower fence, defined as LQ - 1.5(IQR), or 

 larger than the upper fence, defined by UQ +1.5(IQR) 

 

where LQ (lower quartile) and UQ (upper quartile) are the 25
th

 and 75th 

quantiles of the dataset, respectively and IQR (interquartile range) = UQ - LQ.  

 

We illustrate the box plot approach to outlier identification in Example 26.1, 

 

Example 26.1.  NIST data for outlier identification.  NIST (2003), 

Section 7.1.6, lists a dataset of n = 90 values to demonstrate the use of a box plot 

in outlier identification.  These values are listed in Table 26.1. 
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Table 26.1.  NIST data in ascending order of magnitude   

30 171 184 201 212 250 265 270 272 289 305 306 322 322 336 

346 351 370 390 404 409 411 436 437 439 441 444 448 451 453 

470 480 482 487 494 495 499 503 514 521 522 527 548 550 559 

560 570 572 574 578 585 592 592 607 616 618 621 629 637 638 

640 656 668 707 709 719 737 739 752 758 766 792 792 794 802 

818 830 832 843 858 860 869 919 925 953 991 1000 1005 1068 1441 

 

We calculate the following statistics for this data: 

 

lower quartile, LQ = 417.25  

upper quartile, UQ = 748.75 

interquartile range , IQR = 748.75 - 417.25 =331.50 

lower fence = 417.25 - 1.5(331.50) = -80.00    

upper fence = 748.75 + 1.5(331.50) = 1246.00 

 

   As noted in Section 2.6, there are several ways to define and calculate 

quantiles.  Using different definitions result in slightly different 

calculations of the statistics given above. 

 

The box plot for the data in Table 26.1 is shown in Figure 26.1.  The only value 

identified as an outlier is 1441 because 1441 is greater than 1246, the upper 

fence.   

 

 

Figure 26.1.  An outlier shown in a box plot 
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26.4  Dixon’s procedure for outlier identification 
 
Dixon’s test Dixon’s test for outlier identification (Dixon, 1950, p. 488) is 

one of the more common procedures developed for this 

purpose.  The procedure assumes that the distribution from 

which the sample is drawn is normal with unknown parameters 

and compares the extreme observations in the sample to what 

might be expected if the distribution were normal.   

 

Dixon’s test requires that the n observations y1, y2,…,yn in the sample be 

arranged in ascending order of magnitude.  Denote the ordered sample by {y(1), 

y(2), …, y(n) }, with y(1) ≤  y(2) ≤  … ≤  y(n) , and where y(i) is the i
th

 order statistic in 

the sample.  In particular, y(1) and y(n), the smallest and largest observations in the 

sample, respectively, are possible outliers.  Dixon’s statistic for testing whether 

either the smallest or the largest value (or both) is an outlier is given in Table 

26.2 for sample sizes between 3 and 25. 

 
Table 26.2.  Dixon’s statistics for identifying outliers 

n Smallest observation Largest observation Designation 

3-7 (y(2) - y(1)) / (y(n) - y(1)) (y(n) - y(n-1)) / (y(n) - y(1)) r10 

8-10 (y(2) - y(1)) / (y(n-1) - y(1)) (y(n) - y(n-1)) / (y(n) - y(2)) r11 

11-13 (y(3) - y(1)) / (y(n-1) - y(1)) (y(n) - y(n-2)) / (y(n) - y(2)) r21 

14-25 (y(3) - y(1)) / (y(n-2) - y(1)) (y(n) - y(n-2)) / (y(n) - y(3)) r22 

 
An extreme observation that is identified by Dixon’s test as an outlier is 

erroneously identified if all the sample values in fact came from a normal 

distribution.  Let α be the probability of erroneously labeling an observation as 

an outlier. 

 

 If the largest observation is suspect, calculate the statistic under the 

―Largest observation‖ column for n.  If its value is larger than P1-α in Table 

T-23 of the appendix, then Y(n) is declared an outlier.    

  If the smallest observation is suspect, calculate the statistic under the 

―Smallest observation‖ column for n.   If its value is larger than P1-α in 

Table T-23, then y(1) is declared an outlier. 

 

  Note that Dixon’s test does not allow both the smallest and the largest 

observations to be declared outliers. 

 

   An extension of Dixon’s table for r22 and 26 ≤ n ≤  30 may be found in 

 Bohrer (2008). 
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Although Dixon’s test can identify only one outlier in a single dataset, it can be 

applied a second time after identifying an outlier in a dataset by eliminating the 

outlier and then applying the test  to the reduced dataset with n replaced by n - 1.  

If an outlier is identified in the reduced dataset, the test can be repeatedly 

applied until no outliers are identified.  However, if Dixon's test is applied more 

than once to a single dataset, the overall significance of the test is larger than the 

specified α for the individual test.  Tietjen and Moore (1972) address the 

problem of repeated application of a test procedure to a single dataset.  

  

Example 26.2.  Cladding thickness (Bowen and Bennett, 1988, p. 556).  

Ten ordered observations of cladding thickness (in inches) on fuel rods are 

0.0284, 0.0285, 0.0285, 0.0285, 0.0286, 0.0286, 0.0286, 0.0289, 0.0292, and 

0.0298.  We wish to test the suspicious observation y(10) = 0.0298, the largest 

value in the dataset.  For n = 10, we compute r11 from Table 26.2: 

 

11

0.0298 0.0292
0.4615

0.0298 0.0285
r    

 

From Table T-23 of the appendix, the probability that a value of r11 larger than 

0.4615 would occur by chance is about 0.06, so this observation would be 

rejected and declared an outlier at the α = 0.10 level of significance but not at 

the α = 0.05 level. 

26.5   Grubbs’ tests for outliers  

 

Grubbs’ tests 

Dixon’s test can identify only one outlier in a dataset.  Grubbs 

(1969) developed an assortment of statistics, known as Grubbs’ 

tests, that test the largest, the smallest, the two largest, the two 

smallest, and the largest and smallest observations together.  

We present these procedures in this section, largely taken from 

Bowen and Bennett (1988, Section 10.4.2).  Grubbs also 

developed other procedures for far less common cases.  These 

procedures may be found in Grubbs’ original paper of 1969 and 

in Bowen and Bennett (1988, Section 10.4.2) 

Grubbs’ tests assume that the data come from a normal distribution with 

unknown parameters.  Tests for outliers from a lognormal distribution use the 

logarithms of the data values.  In other non-normal cases, the Grubbs’ tests can 

be used if a transformation of the data to approximate normality can be found. 

   

Statistics used by one or more of Grubbs’ procedures are given in Table 26.3. 
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Table 26.3.  Statistics used in Grubbs’ procedures 

Sample mean (i)

i 1

/
n

y y n  (26.1) 

Sample variance 

2 2

( ) ( )

1 12

/

-1

( )
n n

i i

i i

y y n

n
s  (26.2) 

Sample standard 

deviation 
2s s  

 

(26.3) 

 

Sample sum of squares 

 

SS = (n - 1)s
2
 (26.4) 

Sum of squares, 

omitting two smallest 

observations  

2 2

( ) ( )

3 3

1,2
-2

( )
n n

i i

i i

y y

SS
n

 
(26.5) 

Sum of squares, 

omitting two largest 

observations 

2 2
2 2

( ) ( )

1 1

-1, 
-2

( )
n n

i i

i i

n n

y y

SS
n

 (26.6) 

 

Sample range  

 

 

w = y(n) – y(1)  
 

(26.7) 

 

Outlier scenarios that are handled by Grubbs’ tests are given in Table 26.4.  
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Table 26.4.  Outlier scenarios and test Statistics (Bowen and  
Bennet, 1988, p .558) 

Task Statistic Comment 

Testing the 

largest value as 

an outlier 

 

 

Testing the 

smallest value as 

an outlier 

(n)

s
n

y y
T  

(1)

1
s

y y
T  

Critical values are provided in 

Table T-20 of the appendix for 

α = 0.001, 0.005, 0.01, 0.025, 

0.05, and 0.10, for n = 3 to 

n = 140.  If there is no reason for 

testing either a largest or a 

smallest value as an outlier, the 

actual significance levels are 

0.002, 0.01, 0.02, 0.05, 0.10, and 

0.20.  

Testing jointly 

the two extremes 

as outliers 

 

w/s 

Critical values for the ratio of the 

sample range and standard 

deviation are given in Table T-21 

of the appendix for α = 0.005, 

0.01, and 0.05 and selected values 

of n.  A value of w/s that exceeds 

a critical value is statistically 

significant at that level.  If 

significance is found, the smallest 

and largest values should be 

examined to determine the reason 

for significance. 

Testing jointly 

the two smallest 

observations as 

outliers 

 

Testing jointly 

the two largest 

observations as 

outliers  

 

SS1,2 / SS 
 

 

 

 

 

SSn-1, n / SS 
 

Small values of the statistic 

indicate significance.  Critical 

values are found in Table T-22 of 

the appendix for α = 0.001, 0.005, 

0.01, 0.025,0.05, and 0.10, for 

n = 3 to n = 140. 

 

Example 26.3.  Testing the largest observation in a sample.   The statistics T1 

and Tn from Table 26.4 are frequently recommended for testing extreme 

observations, particularly if n is relatively large. For the data in Example 26.1, 

the sample mean is y  = 0.02876 and the sample standard deviation is                 

s = 0.000435, so that T10 = (0.0298 - 0.02876)/0.000435 = 2.391. 

 

There was no prior reason to test the largest as opposed to the extreme deviation 

in either direction, and, accordingly, we need to run a two-sided test.  Table  

T-20 gives critical points for a one-sided test and therefore we have to look up 

the critical point under α/2 = 0.05/2 = 0.025.  For n = 10, the critical value for 
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T10 is 2.290.  Because 2.391 > 2.290 we identify y(10) = 0.0298 as an outlier.  

Note that Dixon’s test, applied to the same sample, does not identify y(10) as an 

outlier.  This suggests that if the data are normal or nearly so, Grubbs’ test is 

more sensitive to the presence of outliers. 

26.6   Considerations in outlier rejection  

When a statistical test identifies an outlier, there may be compelling reasons to 

remove the observation from the sample.  There may also be equally compelling 

arguments to keep the outlier in the sample.  In this section, we consider the 

consequence of a decision to reject or retain an outlier.  Some of the arguments 

presented here are intuitively obvious and some may merit further consideration. 

 

An observation that is far removed from the remaining observations in the 

sample could be the result of scenarios such as: 

 

 a contaminated datum, such as a chemical contamination of an aliquot 

 an instrument that failed during an experiment, such as during a power 

 interruption 

 a survey of employees’ salaries that included the company president’s 

 salary 

 a large credit card expense due to fraud 

 an extremely high electric bill due to incorrect reading of the meter 

 a drastically low inventory due to theft or diversion 

 an extremely high repair charge due to swindling 

 

In each of these cases, an analysis of the data that includes the outlier may lead 

to the wrong conclusion about the population of interest.  The researcher should 

investigate each apparently erroneous observation (whether identified as an 

outlier or not) for cause.  If a source of data contamination is identified, the 

researcher must determine whether to include or exclude the questionable 

observation.  In either case, the results of the investigation should be reported, 

including the rationale to include or exclude the observation of concern. 

 

If a source of data contamination cannot be identified, the decision to include or 

exclude an apparently erroneous observation is much harder.  If an outlier is 

excluded from the analysis (a ―sin of omission‖),  this would result in a smaller 

standard deviation, or some other measure of variability, than the data show.  

This may suggest that we have tighter control of the experiment, or a shorter 

confidence interval than is appropriate, and lead to an incorrect conclusion about 

the population from which the sample is drawn.   

 

On the other hand, if we wrongly leave the questionable observation in the 

sample (a ―sin of commission‖),  this may lead to biased results in the reported 

statistics and the associated inference.  The increased standard deviation would 
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lead to a longer confidence interval that covers a wider range of possibilities and 

is less likely to reject a null hypothesis. 

 

In taking account of the potential cost of an incorrect decision, many 

experienced researchers usually prefer to include questionable, but plausible, 

observations in the analysis.  The writers of this book do not make such a 

recommendation.  However, we do suggest that researchers run the analysis 

twice: once with and once without the outliers.  If the conclusions differ, then 

the more conservative (in the public’s interest) conclusion should be adopted.  

The final report, however, must indicate that two analyses were performed and 

explain why the report’s conclusion was adopted. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

27 
Simulation 

27.1  What to look for in Chapter 27 

This chapter discusses: 

 the role of simulation,  §27.2 

 generation of random numbers, §27.3 

 estimation of definite integrals,  §27.4 

 generation of normal variates,  §27.5 

 generation of arbitrary variates, §27.6  

 confirmation of the central limit theorem,  §27.7 

 

27.2  Introduction to simulation 

simulation Simulation is the process of modeling and analyzing random 

events using random variables.   Those random variables may be 

obtained from a variety of sources, such as a table of random 
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numbers, a flip of a coin, or radioctive decay.  Sources of 

random numbers include hand-held calculators, laptops, home 

computers, and mainframes.   

Monte Carlo Simulation is often performed using a Monte Carlo procedure, 

which is based on the observed fraction of random events 

satisfying a property of interest.  The term Monte Carlo was 

coined by S. Ulam, a mathematician who worked on the 

Manhattan project in Los Alamos.  It is named after the famous 

Monte Carlo gambling casino in Monaco, on the shore of the 

Mediterranean.  There, using paper and pencil, gamblers 

observed and recorded long series of cards, dice, and roulette 

wheel behavior to determine a possible trend that would give 

them an edge in their gambling.   

 
 

history 

We may conduct a simple Monte Carlo study by repeating an 

experiment many times.  Each repetition, called a history, must 

be conducted in an identical manner.  For example, we could 

roll a pair of fair dice 1000 times and count the number of times 

that the sum of the dots is 7 or 11.  Using this count, we can 

obtain an empirical estimate of the probability Pr{7 or 11} 

without resorting to mathematical calculations.  For example, if 

we rolled 7 or 11 in 211 out of 1000 histories, then our empirical 

estimate of  Pr{7 or 11} is 211/1000 = 0.211.   Our intuition 

also tells us that if we increase the number of histories, our 

estimate would be more precise. 

Simulation procedures have many applications in statistics, quality control, and 

many other sciences.  For example, we may use simulation methods to: 

 estimate the probability of an event for which the distribution is unknown  

or unspecified 

 estimate quantiles of a distribution 

 examine the validity of assumptions about a specific distribution 

 estimate parameters when analytical methods are not available 

 examine the claim of the probability of Type I and Type II errors 

 compare sample estimates with the known parameters of a distribution 

 select random combinations of treatment levels in multi-factor experiments 

when we cannot experiment with all combinations of all levels of all factors  

 verify that a procedure for selecting employees for drug testing is random . 

 validate (rather than prove) mathematical relations, such as the central limit 

theorem, without resorting to advanced calculus methods 

 determine which Blackjack strategy to use on our next visit to Las Vegas 
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System simulation may be used to create a model that duplicates the process (or 

system) behavior.  By manipulating the model, we can gain a better 

understanding of the process, examine ―what if‖ departures from a specified 

model, and determine the effect of such departures.  Many organizations, 

including the NRC, have been developing such models to describe and analyze 

safety, production, measurement, and quality control processes.     

Most simulations require a computer and one or more software routines to 

produce the appropriate random variables, record the outcomes, and perform the 

necessary calculations.  We can imagine that even the simple case of estimating 

Pr{7 or 11} by rolling a pair of fair dice 1000 times may take hours to roll, 

count, record, and calculate.  A home computer may simulate the process and 

provide the results in seconds.   

Some simple simulations may be performed using Excel.  Simulations that are 

more complicated may require a dedicated software package.  In this book, we 

use Excel’s functions exclusively. 

It is commonly known that no algorithm produces a truly random number.  

However, some algorithms can generate numbers that are ―close enough‖ to 

randomness for use in various investigations.  Excel and many other software 

packages can generate random samples from the uniform distribution U(0,1) that 

may be sufficient for many applications.  Some software packages (not 

including Excel) allow a user to input of a ―seed number‖ to allow a user to 

duplicate the sequence of variates, if necessary for validation purposes.   

The requirements for Monte Carlo simulations include (Sawilowsky, 2003): 

 a (pseudo) random number generator that has been tested extensively and 

verified using statistical tests for randomness 

 a random number generator that has a long sequence before it repeats itself 

 a sufficiently large number of histories to assure reliable results 

 a planned and proper sampling technique to assure that the study simulates 

the distribution or the phenomena of interest 

27.3  Computer generator of random numbers 

The generation of random numbers can be thought of as the statistical equivalent 

of throwing darts at a target.  
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variate 

Most modern computers have one or more routines to generate 

random numbers, called variates.  The most basic computer 

routine generates variates from the uniform U(0, 1) distribution, 

which is described in Section 7.2.  Excel has the following 

routines and options for such generation: 
 
=RAND() returns a variate between 0 and 1.  Note the empty parentheses!  

Excel’s =RAND function is volatile!  Thus, after we call this function from 
cell A1, just about any operation in the spreadsheet will cause the content of 
cell A1 to change.  The only way to keep a random number from changing is 
to use the Paste Special command and copy a cell (or cells) to itself as a 
―value.‖   This procedure is illustrated below where we wish to generate and 
keep (―freeze‖) 20 such variates in cells A1...A20. 

 Place the cursor in cell A1 and enter =RAND(). 

 Copy cell A1 to A1..A20. 

 Highlight cells A1..A20.  

 Place the cursor in cell A1. 

 Click on copy  

 Click on Paste, select Paste Special, select Values, and OK.  On some 

versions of Excel, we call the Paste Special command from the Edit 

panel. 

=RAND()*(b - a) + a  returns a variate between a and b, where a and b are any 

two real numbers and a < b.  For example, to generate a random number 

between number between 75 and 79, call =RAND()*(79-75)+75. 

=RANDBETWEEN (I1, I2) returns a variate integer I between I1 and I2, 

inclusively.  This function is especially helpful in generating random from 

discrete distribution of consecutive integers.  For example, if we wish to 

randomly select a record from set of records that are numbered 103 to 284, 

we call =RANDBETWEEN(103, 284) from cell A1.  If we need 10 records 

from the same set. we copy cell A1 to A2..A10. 

Note that the operation just described may yield duplicates.  To assure that we 

have 10 distinct records, we need to generate some extra records and replace 

each duplicate by the next available record from the list of extras.  Such list is 

useful when we call employees for drug testing or potential jurors for jury duty.  

If the randomly selected individual is unavailable, we pick the next available 

individual from the list of extras. 
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27.4  Evaluating definite integrals 

In this section we illustrate some of the uses of the U(0, 1) variates in simulation 

to address specific problems.  The first illustration shows how simulation can 

approximate the definite integral: 

( )

b

a

f y dy  
(27.1) 

where f(y)  0 is a known non-negative function.  Then I is the area under the 

curve f(y) for a  y  b.  (See Figure 27.1.)   

                

Figure 27.1. Estimation of a definite integral by simulation 

To estimate Equation (27.1) by simulation, start by constructing a rectangle that 

frames the function in the region of the integration.  The base of the rectangle is 

a horizontal line from a to b, the limits of integration, with width w = b − a.  

Choose the height h of the rectangle so that the function f(y) is inside the 

rectangle over the interval a ≤  y  ≤  b.  The area of the rectangle is then 

A = wh = (b − a)h.  This is illustrated in Figure 27.1.      

Next we choose random points within the rectangle.  Let M be the number of 

random points chosen, i.e., the number of histories, and let m be the number of 

times the random point falls in the shaded area in Figure 27.1.  An unbiased 

estimate of I is then:  

Î  = (m/M) A (27.2)     

The process just described is detailed in the following steps using Excel: 

Step 1.  Use a U(0, 1) generator, such as RAND(), to obtain u11, a U(0,1) 

 variate.  
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Step 2.  Calculate v11 = u11(b - a) + a, a uniform random variate from the interval 

 (a, b).  This is the abscissa of the first random point in the rectangle.  

 

Step 3.  Use an independent U(0, 1) generator to generate u12, a second U(0,1) 

 variate. 

 Step 4.  Calculate v12 = u12h, a uniform variate from the interval (0, h).  This is  

the ordinate of the first random point in the rectangle, which is (v11,  v12).    

Step 5. Calculate f(v11) , the height of f(y) at y = v11. 

Step 6.   Let c1 = 1 if v12 < f(v11), and 0 otherwise. 

Step 7.   Repeat Steps 1 through 6 M times, where M is the number of histories 

planned for the study, and determine c1, c2, …, ci, …, cM. 

Step 8.  Let m =  ci = the number of histories where the random point(vi1,  vi2) 

 falls in the shaded area of Figure 27.1.  

Step 9. Calculate the hit ratio m/ M and multiply that ratio by the area A of the  

  rectangle to obtain an estimate of Î , per Equation (27.2). 

In many applications, f(y) in Equation (27.1) is the density of a random 

variable Y, so that I is the probability that a < Y < b.  This is illustrated by the 

following example.   

Example 27.1.  Evaluation of a probability by simulation.  Following 

Bowen and Bennett, p. 580, we suppose Y is a standard N(0,1) variable and we 

wish to estimate the Pr{ -1.3 < Y < 1.6}.  This probability can be written as 

1.6

1.3

2

2
1

1.3  < 1.6
2

y

Pr Y dye  (27.3) 

This probability is the shaded area in Figure 27.1, with a = -1.3 and b = 1.6.  For 

Example 27.1, the width of the rectangle is w = 1.6 – (-1.3) = 2.9.  The 

maximum value of f(y) over the interval -1.3 ≤ y ≤ 1.6 occurs at y = 0, where f(y) 

= 1/ 2π 0.3989 .  Thus, the height of the framing rectangle must exceed 

0.3989.  For this example, we chose h = 0.5, and the area of the rectangle is 

A = 2.9(0.5) = 1.45.  For Steps 2 and 4, we have  

v11 = u11[1.6 -(-1.3) ] + (-1.3) = u1(2.9) - 1.3 and v12 = (u12)( 0.5). 

Bowen and Bennett ((1988), p. 581) generate M = 1000 histories and show the 

first five histories.  We repeated the experiment, also with 1000 histories and our 

first five histories are shown in table 27.1.  Of course, our histories differ from 

Bowen and Bennett’s because our random numbers are different.    
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Table 27.1.   First five histories in simulation  

u1 

(Step 1) 

v1 

(Step 2) 

u2 

(Step 3) 

v1 

(Step 4) 

f(v1) 

(Step 5) 

c: v2 < f(v1) 

 (Step 6) 

0.585171 0.396996 0.546777 0.273389 0.368711 1 

0.415463 -0.095159 0.637761 0.318880 0.397140 1 

0.874140 1.235006 0.628516 0.314258 0.186084 0 

0.313323 -0.391364 0.888004 0.444002 0.369531 0 

0.138010 -0.899771 0.173597 0.086779 0.266140 1 

 

In our simulation, Excel counted 578 histories where vi2 < f(vi1) so that ci = 1.  

The estimate of Pr{- 1.3 < Y  < 1.6} is therefore (578)(1.45)/1000 = 0.8381.   

 

Note that Bowen and Bennett’s simulation estimated this probability as 

(601)(1.45)/1000 = 0.8715.  The average of the two estimates, which is 

equivalent to a simulation with M = 2000 histories, is 0.8548.  

From Table T-1 of the appendix, the actual value of the probability is:   

(1.6)  - (-1.3)  = 0.9452 - 0.0968 =0.8484. 

We see that the errors in the two simulation estimates are about 0.01 and 0.02, 

while the error in the average is about 0.005.  Although increasing M does lead 

to a smaller error for this example, this is not always the case.  However, 

increasing M does decrease the variance of the estimate.  Because the 

simulation estimate is unbiased, this would usually decrease the error.  

There is another simulation method for estimating the definite integral in 

Equation (17.1) that may be more accurate in some cases.  It is based on the 

approximation given by 

1

( ) ( )

b M

i

ia

b a
f y dy f y

M
 (27.4) 

The method is to replace yi by a uniform random variate vi from the interval  

(a, b) as in Step 2 above and then sum the M values of f(vi). 

To apply this second method to Example 27.1, we generated M = 1000 

histories, each yielding a U(-1.3, 1.6) variate, using Excel’s function 

=RAND()*(1.6 + 1.3) - 1.3.  We summed the 1000 f(vi) values and, multiplied 

the sum by (1.6 +1.3)/1000 to obtain an estimate of 0.8503.  Bowen and 

Bennett’s simulation (p. 582) returned the value of 0.8423. 
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27.5  Generation of normal variates  

Simulation studies often require input of observations from a normal 

distribution.  There are several computer routines for generation of normal 

variates, two of which are given below.  Both procedures are based on a 

transformation of uniform U(0, 1) variates. 

Procedure 1.  This procedure utilizes a version of the central limit theorem that 

states  that the sum of n independent variates {Yi}having a distribution with 

mean μ and standard deviation   is approximately distributed as a normal 

variate with a mean of nμ and standard deviation of .n  (See Table 7.2 of 

Section 7.8.)  Mathematically stated (when n is large):   

2

1

( , )

n

i

iY N n n  (27.5) 

From Equation (7.9), the mean and the variance of a standard uniform variate 

U(0, 1) are:  

μ   = 1/2  

 2
 = 1/12 

(27.6) 

(27.7) 

Let {Yi} be a set of n independent standard uniform variates.  The convergence 

to a normal distribution in Equation (27.5) occurs very quickly so that for 

n = 12, we have:  

12

1

((12)(0.5), 12/ 12) (6, 1)i
i

Y N N  (27.8) 

Therefore, by subtracting 6 from the sum of 12 U(0,1) variates we can generate 

an excellent approximation to a standard normal N(0,1) variate.  Neglecting the 

error in the approximation, we have: 

12

1

6 ~ (0, 1)i
i

Y NZ  (27.9) 

  Procedure 1 uses 12 U(0, 1) variates to obtain a single N(0, 1) variate. 

Example 27.2.  Generating N(0,1) variates by sum of U(0,1) variates.  
Using Excel, we generated the values of {0.2884, 0.6764, 0.2043, 0.3431, 

0.0193, 0.7441, 0.6460, 0.7603, 0.3034, 0.4701, 0.9174, 0.8487}.  The sum of 

the 12 values is 6.2214, and the generated N(0,1) is set at 6.2215 - 6 = 0.2215. 

 Box-Muller 

tranformation 
Procedure 2.  This procedure for generating N(0, 1) involves 

trigonometric   transformations.   Called the Box-Muller 

tranformation (Box and Muller (1958)), this procedure 

transforms a pair U1 and U2 of independent U(0,1) variates into a 

pair Z1 and Z2 of N(0, 1) variates:  
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1 1 2
2 (2 )Z lnU cos U  

1 1 2
2 (2 )Z lnU sin U  

(27.10) 

 

(27.11) 

The variates Z1 and Z2 generated using Equations (27.9) and (7.10) are 

independent N(0, 1) variates.   

  The Box-Muller transformation requires n U(0,1) variates to generate n         

N(0, 1) variates if n is even and n + 1 variates if n is odd.  This is 

considerably less than the 12n variates required by Procedure 1.  

Example 27.3.  Generating normal variates using the Box-Muller 
transformation.  Suppose a pair of U(0, 1) variates is u1 = 0.7374 and 

u2 = 0.4414.  We have:  -2 ln(u1) = 0.6092, and 0.6092 0.7805.  Next we 

calculate:   

 

2π(u2) = 2.7734, cos(2.7734) = -0.9330, sin(2.7734) = 0.3599 

   

The pair of normal N(0, 1)variates are: 

 

 z1 = (0.7805)(-0.9330) = -0.7282,  z2 = (0.7805)(0.3559) = 0.2809   

Example 27.3.  Generating normal variates using the Box-Muller 
transformation.  Suppose a pair of U(0, 1) variates is u1 = 0.7374 and 

u2 = 0.4414.  We have:  -2 ln(u1) = 0.6092, and 0.6092 0.7805.  Next we 

calculate:   

 

2π(u2) = 2.7734, cos(2.7734) = -0.9330, sin(2.7734) = 0.3599 

   

The pair of normal N(0, 1)variates are: 

 

 z1 = (0.7805)(-0.9330) = -0.7282,  z2 = (0.7805)(0.3559) = 0.2809  

 27.6  Generation of arbitrary variates There is a general 

procedure for generating a variate from any distribution for which the inverse 

function F 
-1 

of its cdf F is known.  Let W have a standard uniform U(0, 1) 

distribution.  Then:       

Y = F 
-1

(W) (27.12) 

has a distribution with cdf F.  

  The cdf F can be discrete or continuous. 
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  If only an approximation to F 
-1 

is known, then the cdf of Y from Equation 

(27.12) can be used to approximate F. 

Excel has several inverse functions that may be used to generate variates in this 

way.  To use the procedure, we call RAND() to return a U(0,1) variate, as 

illustrated below: 

 

Table 27.2.  Excel’s inverse function for variate generation 

Distribution Call to inverse function Examples 

N(0, 1) =NORMSINV(RAND()) =NORMSINV(0.999)  = 3.719 

=NORMSINV(0.50)  = 0.000 

=NORMSINV(0.1234)  = -1.158 

N (μ,  2) =NORMINV(RAND(), μ , ) =NORMINV(0.5. 10, 2) = 10.00 

=NORMINV(0.1234, 10, 2) = 7.684 

Chi-square (ν) =CHINV((RAND(), ν ) =CHINV(0.05, 1) = 3.841 

=CHINV(0.1234, 7) = 11.367 

Student-t (ν) =TINV((RAND(), ν ) =TINV(0.05, 500 ) = 1.965 

=TINV(0.1234, 5 ) = 1.851 

F(ν1, ν2) =FINV((RAND(), ν1, ν2) =FINV(0.1234, 8, 1) = 38.905 

=FINV(0.1234, 1, 8) = 2.965 

Log-normal 

(μ,  2) 

=LOGINV(RAND(), μ,  ) =LOGINV(0.1234, 0, 1) = 0.314 

 =LOGINV(0.1234, 2, 0.5) = 4.141 

The procedure can also be implemented graphically from a plot of the cdf.  This 

is illustrated in Figure 27.2 for a hypothetical cdf plot.  Generate a U(0,1) variate 

to determine a random point w along the vertical axis.  Then draw a horizontal 

line with height w until it intersects the cdf at the point (y, w).  In Figure 27.2,  

(y, w) = (0.48, 0.655).  Then y is a variate from a distribution with cdf F. 
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Figure 27.2.   Generation of a variate with an arbitrary cdf F 

Information on random number generators may be found in Kennedy and Gentle 

(1980). This book provides algorithms for the generation of variates from many 

distributions as well as detailed FORTRAN routines to execute these algorithms.   

27.7  Confirmation of the central limit theorem  

As an example of simulation, we can confirm the central limit theorem by 

repeating an experiment many times and show that the results are consistent 

with the theorem.  Although not the same as a mathematical proof of the 

theorem, this is a useful illustration of simulation.   

From Section 7.8, the central limit theorem states that if a random sample Y1, Y2,  

…, Yn of size n is drawn from a population with a mean μ and variance 
 2
, then 

the distribution of the sample mean Y is approximately normal: 

2( , / )Y N n  (27.13) 

Example 27.4.  Confirmation of the central limit theorem by 
simulation.  As a class exercise in a statistics course, each of k students 

collects an independent sample of n observations from the same population with 

a known mean μ and variance 
 2
 and calculates the sample mean iy ,  i = 1, 2, 

…, k.   (As a separate confirmation exercise, each student also calculates the 

sample variance Si
2
.)  According to the central limit theorem, {

1
, ...,

k
y y } is a set 

of k observations from a population with distribution approximately given by 

Equation (27.13).  To confirm this, we ask the following questions:   

 (1) Is the average y of {
1
, ...,

k
y y } consistent with μ? 

(2) Is the sample variance
2

s of {
1
, ...,

k
y y } consistent with 

 2
/n ? 
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(3) Is the empirical distribution function of the k observations {
1
, ...,

k
y y }     

approximately normal?   

Suppose there are k = 30 students in the class and each draws n = 100 

observations from the U(0,1) distribution.  Then  = 0.5 and 
 2
 = 1/12 = 0.0833.  

The results of such a simulation are shown in Table 27.3, where the sample 

mean and variance is given for each of the k = 30 samples. 

 

 (4)   Do the means appear to follow the normal distribution? 

We simulate the experiment by drawing k = 30 samples (representing 30 

students) from the U(0,1) distribution.  We selected the U(0,1) distribution 

because (1) it is easy to generate, (2) we know that the distribution is not 

normal, and (3) we know the mean (μ = 0.5) and the variance (
 2
 = 1/12 = 

0.08333).  

 

The results of such simulation are shown in Table 27.3, where the sample mean 

and variance is given for each of the k = 30 samples.   

 

Table 27.3.   Summary of simulations for Example 27.3 

 

The answers to the questions above are as follows:  

(1)  The average of 1 2 30, ...,,y y y  is y = 0.5012.  This is in very close 

agreement with μ = 0.5. 

(2)  The sample variance of 1 2 30, ...,,y y y  is 
2

0.000654
y

s .  This is in very 

close agreement with 
 2
/n = 0.0833/100 = 0.000833. 
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(3)  We use the W-test of Section 11.9 to test the normality of the sample means 

{
iy }.  From Equation (11.14), the test statistic is w = 0.941.  The critical 

value for α = 0.05 is w0.95(30) = 0.927.  Since 0.941 > 0.927, we do not 

reject the null hypothesis of normality and conclude that the statistical 

evidence is consistent with a normal distribution for the sample means.   

Because the answers to all three questions support the central limit theorem, we 

conclude that this example confirms the central limit theorem. 

As a separate confirmation, we check that the sample variances 
2 2 2

1 1 30, , ...,s s s listed in Table 27.3 are consistent with the population variance.  

The average of the 30 sample variances is 0.0831, which is in very close 

agreement with the population variance 
 2
 = 0.0833. 
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Appendix 

 

 

Statistical tables 
 

Table T-1:   Cumulative standard normal distribution Φ(z) 

Table T-2:   Quantiles, χ
2
q(ν), for the chi-square distribution with ν degrees 

of freedom  

Table T-3:   Quantiles, tq(ν), for Student's t- distribution with ν degrees of 

freedom  

Table T-4:   Quantiles, fq (ν1, ν2), for the F-distribution with ν1 degrees of 

freedom in the numerator and ν2 degrees of freedom in the 

denominator  

Table T-5:   Quantiles, fmax, q (k, ν), for the Fmax distribution . 

Table T-6a:   Coefficients {an-i+1} for the W-test for normality  

Table T-6b:   Quantiles, wq (n), for the W-test for normality  

Table T-7:   Significant ranges, q0.95(p, N - k), for Duncan's multiple-range 

test  

Table T-8:   Selected binomial probabilities  

Table T-9:   Selected Poisson probabilities  

Table T-10:   Confidence limits for the Poisson parameter λ  

Table T-11a:   Two-sided tolerance limit factors for a normal distribution  

Table T-11b:   One-sided tolerance limit factors for a normal distribution  
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Table T-12:   Two thousand random digits  

Table T-13:  Quantiles, dq(n), of the Kolmugorov test statistic 

Table T-14:  Quantiles, D’q(n),  of the distribution of the D' statistic 

Table T-15:  Cumulative probabilities Pr[U ≤ u] of the total number of runs 

u in a sample of size n1+n2 

Table T-16:  Quantiles, Wq, of the Wilcoxon signed ranks test statistic 

Table T-17:  Quantiles, wq(n, m), of the Wilcoxon rank sum (WRS) Statistic    

Table T-18:  Quantiles of the squared ranks test statistic 

Table T-19:  Quantiles, wp, of the Spearman statistic, rs 

Table T-20:  Critical Values for Grubbs’ T-test 

Table T-21:  Critical Values (one-sided test) for ratio of w/s range to 

sample standard deviation 

Table T-22:  Critical Values for S 2n−1,n/ S2, or S21,2/S2 for 

simultaneously testing the two largest or two smallest 

observations 

Table T-23:  Dixon’s criteria for testing for extreme values 
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Table T-1:  Cumulative standard normal distribution Φ(z) (see Section 7.6) 

z\Φ(z) 0.00  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09  

 

 

          0.0  0.5000  0.5040  0.5080  0.5120  0.5160  0.5199  0.5239  0.5279  0.5319  0.5359  
0.1  0.5398  0.5438  0.5478  0.5517  0.5557  0.5596  0.5636  0.5675  0.5714  0.5753  

0.2  0.5793  0.5832  0.5871  0.5910  0.5948  0.5987  0.6026  0.6064  0.6103  0.6141  

0.3  0.6179  0.6217  0.6255  0.6293  0.6331  0.6368  0.6406  0.6443  0.6480  0.6517  

0.4  0.6554  0.6591  0.6628  0.6664  0.6700  0.6736  0.6772  0.6808  0.6844  0.6879  

           
0.5  0.6915  0.6950  0.6985  0.7019  0.7054  0.7088  0.7123  0.7157  0.7190  0.7224  

0.6  0.7257  0.7291  0.7324  0.7357  0.7389  0.7422  0.7454  0.7486  0.7517  0.7549  

0.7  0.7580  0.7611  0.7642  0.7673  0.7704  0.7734  0.7764  0.7794  0.7823  0.7852  

0.8  0.7881  0.7910  0.7939  0.7967  0.7995  0.8023  0.8051  0.8078  0.8106  0.8133  

0.9  0.8159  0.8186  0.8212  0.8238  0.8264  0.8289  0.8315  0.8340  0.8365  0.8389  

           
1.0  0.8413  0.8438  0.8461  0.8485  0.8508  0.8531  0.8554  0.8577  0.8599  0.8621  

1.1  0.8643  0.8665  0.8686  0.8708  0.8729  0.8749  0.8770  0.8790  0.8810  0.8830  

1.2  0.8849  0.8869  0.8888  0.8907  0.8925  0.8944  0.8962  0.8980  0.8997  0.9015  

1.3  0.9032  0.9049  0.9066  0.9082  0.9099  0.9115  0.9131  0.9147  0.9162  0.9177  

1.4  0.9192  0.9207  0.9222  0.9236  0.9251  0.9265  0.9279  0.9292  0.9306  0.9319  

           
1.5  0.9332  0.9345  0.9357  0.9370  0.9382  0.9394  0.9406  0.9418  0.9429  0.9441  

1.6  0.9452  0.9463  0.9474  0.9484  0.9495  0.9505  0.9515  0.9525  0.9535  0.9545  

1.7  0.9554  0.9564  0.9573  0.9582  0.9591  0.9599  0.9608  0.9616  0.9625  0.9633  

1.8  0.9641  0.9649  0.9656  0.9664  0.9671  0.9678  0.9686  0.9693  0.9699  0.9706  

1.9  0.9713  0.9719  0.9726  0.9732  0.9738  0.9744  0.9750  0.9756  0.9761  0.9767  

           
2.0  0.9772  0.9778  0.9783  0.9788  0.9793  0.9798  0.9803  0.9808  0.9812  0.9817  

2.1  0.9821  0.9826  0.9830  0.9834  0.9838  0.9842  0.9846  0.9850  0.9854  0.9857  

2.2  0.9861  0.9864  0.9868  0.9871  0.9875  0.9878  0.9881  0.9884  0.9887  0.9890  

2.3  0.9893  0.9896  0.9898  0.9901  0.9904  0.9906  0.9909  0.9911  0.9913  0.9916  

2.4  0.9918  0.9920  0.9922  0.9925  0.9927  0.9929  0.9931  0.9932  0.9934  0.9936  

           
2.5  0.9938  0.9940  0.9941  0.9943  0.9945  0.9946  0.9948  0.9949  0.9951  0.9952  

2.6  0.9953  0.9955  0.9956  0.9957  0.9959  0.9960  0.9961  0.9962  0.9963  0.9964  

2.7  0.9965  0.9966  0.9967  0.9968  0.9969  0.9970  0.9971  0.9972  0.9973  0.9974  

2.8  0.9974  0.9975  0.9976  0.9977  0.9977  0.9978  0.9979  0.9979  0.9980  0.9981  

2.9  0.9981  0.9982  0.9982  0.9983  0.9984  0.9984  0.9985  0.9985  0.9986  0.9986  

           
3.0  0.9987  0.9987  0.9987  0.9988  0.9988  0.9989  0.9989  0.9989  0.9990  0.9990  

3.1  0.9990  0.9991  0.9991  0.9991  0.9992  0.9992  0.9992  0.9992  0.9993  0.9993  

3.2  0.9993  0.9993  0.9994  0.9994  0.9994  0.9994  0.9994  0.9995  0.9995  0.9995  

3.3  0.9995  0.9995  0.9995  0.9996  0.9996  0.9996  0.9996  0.9996  0.9996  0.9997  

3.4  0.9997  0.9997  0.9997  0.9997  0.9997  0.9997  0.9997  0.9997  0.9997  0.9998  

           
Selected  q: 0.5  0.75  0.9  0.95  0.975  0.98  0.99  0.995  0.999  

quantiles zq: 0.000  0.674  1.282  1.645  1.960  2.054  2.326  2.576  3.090  
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Table T-2:  Quantiles, χ
2
q(ν), for the chi-square distribution with ν degrees of 

freedom (see Section 7.10) 

 

ν 

q 

0.005 0.010 0.025 0.050 0.100 0.900 0.950 0.975 0.990 0.995 
           1 0.0000

3937 

0.0001

57 

0.0009

82 

0.0039

3 

0.0158 2.71 3.84 5.02 6.63 7.88 

2 0.0100 0.0201 0.0506 0.103 0.211 4.61 5.99 7.38 9.21 10.6 

3 0.072 0.115 0.216 0.352 0.584 6.25 7.81 9.35 11.3 12.8 

4 0.207 0.297 0.484 0.711 1.064 7.78 9.49 11.1 13.3 14.9 

5 0.412 0.554 0.831 1.145 1.61 9.24 11.1 12.8 15.1 16.7 

           
6 0.676 0.872 1.24 1.64 2.20 10.6 12.6 14.4 16.8 18.5 

7 0.989 1.24 1.69 2.17 2.83 12.0 14.1 16.0 18.5 20.3 

8 1.34 1.65 2.18 2.73 3.49 13.4 15.5 17.5 20.1 22.0 

9 1.73 2.09 2.70 3.33 4.17 14.7 16.9 19.0 21.7 23.6 

10 2.16 2.56 3.25 3.94 4.87 16.0 18.3 20.5 23.2 25.2 

           11 2.60 3.05 3.82 4.57 5.58 17.3 19.7 21.9 24.7 26.8 

12 3.07 3.57 4.40 5.23 6.30 18.5 21.0 23.3 26.2 28.3 

13 3.57 4.11 5.01 5.89 7.04 19.8 22.4 24.7 27.7 29.8 

14 4.07 4.66 5.63 6.57 7.79 21.1 23.7 26.1 29.1 31.3 

15 4.60 5.23 6.26 7.26 8.55 22.3 25.0 27.5 30.6 32.8 

           16 5.14 5.81 6.91 7.96 9.31 23.5 26.3 28.8 32.0 34.3 

17 5.70 6.41 7.56 8.67 10.1 24.8 27.6 30.2 33.4 35.7 

18 6.26 7.01 8.23 9.39 10.9 26.0 28.9 31.5 34.8 37.2 

19 6.84 7.63 8.91 10.1 11.7 27.2 30.1 32.9 36.2 38.6 

20 7.43 8.26 9.59 10.9 12.4 28.4 31.4 34.2 37.6 40.0 

           21 8.03 8.90 10.3 11.6 13.2 29.6 32.7 35.5 38.9 41.4 

22 8.64 9.54 11.0 12.3 14.0 30.8 33.9 36.8 40.3 42.8 

23 9.26 10.2 11.7 13.1 14.8 32.0 35.2 38.1 41.6 44.2 

24 9.89 10.9 12.4 13.8 15.7 33.2 36.4 39.4 43.0 45.6 

25 10.5 11.5 13.1 14.6 16.5 34.4 37.7 40.6 44.3 46.9 

           
26 11.2 12.2 13.8 15.4 17.3 35.6 38.9 41.9 45.6 48.3 

27 11.8 12.9 14.6 16.2 18.1 36.7 40.1 43.2 47.0 49.6 

28 12.5 13.6 15.3 16.9 18.9 37.9 41.3 44.5 48.3 51.0 

29 13.1 14.3 16.0 17.7 19.8 39.1 42.6 45.7 49.6 52.3 

30 13.8 15.0 16.8 18.5 20.6 40.3 43.8 47.0 50.9 53.7 

           
40 20.7 22.2 24.4 26.5 29.1 51.8 55.8 59.3 63.7 66.8 

50 28.0 29.7 32.4 34.8 37.7 63.2 67.5 71.4 76.2 79.5 

60 35.5 37.5 40.5 43.2 46.5 74.4 79.1 83.3 88.4 92.0 

70 43.3 45.4 48.8 51.7 55.3 85.5 90.5 95.0 100 104 

80 51.2 53.5 57.2 60.4 64.3 96.6 102 107 112 116 

90 59.2 61.8 65.6 69.1 73.3 108 113 118 124 128 

           
100 67.3 70.1 74.2 77.9 82.4 118 124 130 136 140 
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Table T-3:  Quantiles, tq(ν), for Student's t-distribution with ν degrees of 

freedom (see Section 7.11) 

 

ν 

q 

0.50 0.60 0.70 0.75 0.80 0.90 0.95 0.975 0.99 0.995 
           

1 0.000 0.325 0.727 1.00 1.38 3.08 6.31 12.7 31.8 63.7 

2 0.000 0.289 0.617 0.816 1.06 1.89 2.92 4.30 6.96 9.92 

3 0.000 0.277 0.584 0.765 0.978 1.64 2.35 3.18 4.54 5.84 

4 0.000 0.271 0.569 0.741 0.941 1.53 2.13 2.78 3.75 4.60 

5 0.000 0.267 0.559 0.727 0.920 1.48 2.02 2.57 3.36 4.03 

           

6 0.000 0.265 0.553 0.718 0.906 1.44 1.94 2.45 3.14 3.71 

7 0.000 0.263 0.549 0.711 0.896 1.41 1.89 2.36 3.00 3.50 

8 0.000 0.262 0.546 0.706 0.889 1.40 1.86 2.31 2.90 3.36 

9 0.000 0.261 0.543 0.703 0.883 1.38 1.83 2.26 2.82 3.25 

10 0.000 0.260 0.542 0.700 0.879 1.37 1.81 2.23 2.76 3.17 

           

11 0.000 0.260 0.540 0.697 0.876 1.36 1.80 2.20 2.72 3.11 

12 0.000 0.259 0.539 0.695 0.873 1.36 1.78 2.18 2.68 3.05 

13 0.000 0.259 0.538 0.694 0.870 1.35 1.77 2.16 2.65 3.01 

14 0.000 0.258 0.537 0.692 0.868 1.35 1.76 2.14 2.62 2.98 

15 0.000 0.258 0.536 0.691 0.866 1.34 1.75 2.13 2.60 2.95 

           

16 0.000 0.258 0.535 0.690 0.865 1.34 1.75 2.12 2.58 2.92 

17 0.000 0.257 0.534 0.689 0.863 1.33 1.74 2.11 2.57 2.90 

18 0.000 0.257 0.534 0.688 0.862 1.33 1.73 2.10 2.55 2.88 

19 0.000 0.257 0.533 0.688 0.861 1.33 1.73 2.09 2.54 2.86 

20 0.000 0.257 0.533 0.687 0.860 1.33 1.72 2.09 2.53 2.85 

           

21 0.000 0.257 0.532 0.686 0.859 1.32 1.72 2.08 2.52 2.83 

22 0.000 0.256 0.532 0.686 0.858 1.32 1.72 2.07 2.51 2.82 

23 0.000 0.256 0.532 0.685 0.858 1.32 1.71 2.07 2.50 2.81 

24 0.000 0.256 0.531 0.685 0.857 1.32 1.71 2.06 2.49 2.80 

25 0.000 0.256 0.531 0.684 0.856 1.32 1.71 2.06 2.49 2.79 

           

26 0.000 0.256 0.531 0.684 0.856 1.31 1.71 2.06 2.48 2.78 

27 0.000 0.256 0.531 0.684 0.855 1.31 1.70 2.05 2.47 2.77 

28 0.000 0.256 0.530 0.683 0.855 1.31 1.70 2.05 2.47 2.76 

29 0.000 0.256 0.530 0.683 0.854 1.31 1.70 2.05 2.46 2.76 

30 0.000 0.256 0.530 0.683 0.854 1.31 1.70 2.04 2.46 2.75 

           

40 0.000 0.255 0.529 0.681 0.851 1.30 1.68 2.02 2.42 2.70 

60 0.000 0.254 0.527 0.679 0.848 1.30 1.67 2.00 2.39 2.66 

           

∞ 0.000 0.253 0.524 0.674 0.842 1.28 1.645 1.96 2.33 2.58 
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Table T-4:  Quantiles, fq(ν1, ν2), for the F-distribution with ν1 degrees of 

freedom in the numerator and ν2 degrees of freedom in the denominator 

(see Section 7.12) 

        ν1    

ν2      q 1 2 3 4 5 6 7 8 9 

1 0.90 39.9 49.5 53.6 55.8 57.2 58.2 58.9 59.4 59.9 

 0.95 161 199 216 225 230 234 237 239 241 

 0.975 648 799 864 900 922 937 948 957 963 

 0.99 4050 5000 5400 5620 5760 5860 5930 5980 6020 

 0.995 16200 20000 21600 22500 23100 23400 23700 23900 24100 

           

2 0.90 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 

 0.95 18.5 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 

 0.975 38.5 39.0 39.2 39.2 39.3 39.3 39.4 39.4 39.4 

 0.99 98.5 99.0 99.2 99.3 99.3 99.3 99.4 99.4 99.4 

 0.995 199 199 199 199 199 199 199 199 199 

           

3 0.90 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 

 0.95 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 

 0.975 17.4 16.0 15.4 15.1 14.9 14.7 14.6 14.5 14.5 

 0.99 34.1 30.8 29.5 28.7 28.2 27.9 27.7 27.5 27.3 

 0.995 55.6 49.8 47.5 46.2 45.4 44.8 44.4 44.1 43.9 

           

4 0.90 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 

 0.95 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 

 0.975 12.2 10.6 9.98 9.60 9.36 9.20 9.07 8.98 8.90 

 0.99 21.2 18.0 16.7 16.0 15.5 15.2 15.0 14.8 14.7 

 0.995 31.3 26.3 24.3 23.2 22.5 22.0 21.6 21.4 21.1 

           

5 0.90 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 

 0.95 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 

 0.975 10.0 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 

 0.99 16.3 13.3 12.1 11.4 11.0 10.7 10.5 10.3 10.2 

 0.995 22.8 18.3 16.5 15.6 14.9 14.5 14.2 14.0 13.8 

           

6 0.90 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 

 0.95 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 

 0.975 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 

 0.99 13.7 10.9 9.78 9.15 8.75 8.47 8.26 8.10 7.98 

 0.995 18.6 14.5 12.9 12.0 11.5 11.1 10.8 10.6 10.4 

           

7 0.90 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 

 0.95 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 

 0.975 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 

 0.99 12.2 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 

 0.995 16.2 12.4 10.9 10.1 9.52 9.16 8.89 8.68 8.51 
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Table T-4:  Quantiles, fq(ν1, ν2), for the F-distribution with ν 1 degrees of 

freedom in the numerator and ν2 degrees of freedom in the denominator 

(Continued) 

 ν1 

ν2        q  10 12 15 20 24 30 60 120 ∞ 

1 0.90  60.2 60.7 61.2 61.7 62.0 62.3 62.8 63.1 63.3 
 0.95  242 244 246 248 249 250 252 253 254 

 0.975  969 977 985 993 997 1000 1010 1010 1020 

 0.99  6060 6110 6160 6210 6230 6260 6310 6340 6370 

 0.995  24200 24400 24600 24800 24900 25000 25300 25400 25500 

           

2 0.90  9.39 9.41 9.42 9.44 9.45 9.46 9.47 9.48 9.49 

 0.95  19.4 19.4 19.4 19.4 19.5 19.5 19.5 19.5 19.5 

 0.975  39.4 39.4 39.4 39.4 39.5 39.5 39.5 39.5 39.5 

 0.99  99.4 99.4 99.4 99.4 99.5 99.5 99.5 99.5 99.5 

 0.995  199 199 199 199 199 199 199 199 200 

           

3 0.90  5.23 5.22 5.20 5.18 5.18 5.17 5.15 5.14 5.13 

 0.95  8.79 8.74 8.70 8.66 8.64 8.62 8.57 8.55 8.53 

 0.975  14.4 14.3 14.3 14.2 14.1 14.1 14.0 13.9 13.9 

 0.99  27.2 27.1 26.9 26.7 26.6 26.5 26.3 26.2 26.1 

 0.995  43.7 43.4 43.1 42.8 42.6 42.5 42.1 42.0 41.8 

           

4 0.90  3.92 3.90 3.87 3.84 3.83 3.82 3.79 3.78 3.76 

 0.95  5.96 5.91 5.86 5.80 5.77 5.75 5.69 5.66 5.63 

 0.975  8.84 8.75 8.66 8.56 8.51 8.46 8.36 8.31 8.26 

 0.99  14.5 14.4 14.2 14.0 13.9 13.8 13.7 13.6 13.5 

 0.995  21.0 20.7 20.4 20.2 20.0 19.9 19.6 19.5 19.3 

           

5 0.90  3.30 3.27 3.24 3.21 3.19 3.17 3.14 3.12 3.11 

 0.95  4.74 4.68 4.62 4.56 4.53 4.50 4.43 4.40 4.37 

 0.975  6.62 6.52 6.43 6.33 6.28 6.23 6.12 6.07 6.02 

 0.99  10.1 9.89 9.72 9.55 9.47 9.38 9.20 9.11 9.02 

 0.995  13.6 13.4 13.1 12.9 12.8 12.7 12.4 12.3 12.1 

           

6 0.90  2.94 2.90 2.87 2.84 2.82 2.80 2.76 2.74 2.72 

 0.95  4.06 4.00 3.94 3.87 3.84 3.81 3.74 3.70 3.67 

 0.975  5.46 5.37 5.27 5.17 5.12 5.07 4.96 4.90 4.85 

 0.99  7.87 7.72 7.56 7.40 7.31 7.23 7.06 6.97 6.88 

 0.995  10.3 10.0 9.81 9.59 9.47 9.36 9.12 9.00 8.88 

           

7 0.90  2.70 2.67 2.63 2.59 2.58 2.56 2.51 2.49 2.47 

 0.95  3.64 3.57 3.51 3.44 3.41 3.38 3.30 3.27 3.23 

 0.975  4.76 4.67 4.57 4.47 4.41 4.36 4.25 4.20 4.14 

 0.99  6.62 6.47 6.31 6.16 6.07 5.99 5.82 5.74 5.65 

 0.995  8.38 8.18 7.97 7.75 7.64 7.53 7.31 7.19 7.08 
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Table T-4:  Quantiles, fq(ν1, ν2), for the F-distribution with ν 1 degrees of 

freedom in the numerator and ν2 degrees of freedom in the denominator 

(Continued) 

 ν 1 

ν2      q 1 2 3 4 5 6 7 8 9 

8 0.90 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56 
 0.95 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 

 0.975 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 

 0.99 11.3 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 

 0.995 14.7 11.0 9.60 8.81 8.30 7.95 7.69 7.50 7.34 

           

9 0.90 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 

 0.95 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 

 0.975 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03 

 0.99 10.6 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 

 0.995 13.6 10.11 8.72 7.96 7.47 7.13 6.88 6.69 6.54 

           

10 0.90 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 

 0.95 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 

 0.975 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 

 0.99 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 

 0.995 12.8 9.43 8.08 7.34 6.87 6.54 6.30 6.12 5.97 

           

12 0.90 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 

 0.95 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 

 0.975 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44 

 0.99 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 

 0.995 11.8 8.51 7.23 6.52 6.07 5.76 5.52 5.35 5.20 

           

15 0.90 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 

 0.95 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 

 0.975 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.12 

 0.99 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 

 0.995 10.8 7.70 6.48 5.80 5.37 5.07 4.85 4.67 4.54 

           

20 0.90 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 

 0.95 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 

 0.975 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84 

 0.99 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 

 0.995 9.9 6.99 5.82 5.17 4.76 4.47 4.26 4.09 3.96 

           

24 0.90 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91 

 0.95 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 

 0.975 5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.70 

 0.99 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 

 0.995 9.6 6.66 5.52 4.89 4.49 4.20 3.99 3.83 3.69 
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Table T-4:  Quantiles, fq(ν1, ν2), for the F-distribution with ν 1 degrees of 

freedom in the numerator and ν2 degrees of freedom in the denominator 

(Continued) 

 ν1 

ν2      q  10 12 15 20 24 30 60 120 ∞ 

8 0.90  2.42 2.38 2.34 2.30 2.28 2.25 2.21 2.18 2.16 
 0.95  3.14 3.07 3.01 2.94 2.90 2.86 2.79 2.75 2.71 

 0.975  3.96 3.87 3.77 3.67 3.61 3.56 3.45 3.39 3.33 

 0.99  5.3 5.11 4.96 4.81 4.73 4.65 4.48 4.40 4.31 

 0.995  6.4 6.2 6.03 5.83 5.73 5.62 5.41 5.30 5.19 

           

9 0.90  2.32 2.28 2.24 2.20 2.18 2.16 2.11 2.08 2.06 

 0.95  2.98 2.91 2.85 2.77 2.74 2.70 2.62 2.58 2.54 

 0.975  3.72 3.62 3.52 3.42 3.37 3.31 3.20 3.14 3.08 

 0.99  4.8 4.71 4.56 4.41 4.33 4.25 4.08 4.00 3.91 

 0.995  5.8 5.66 5.47 5.27 5.17 5.07 4.86 4.75 4.64 

           

10 0.90  2.19 2.15 2.10 2.06 2.04 2.01 1.96 1.93 1.90 

 0.95  2.75 2.69 2.62 2.54 2.51 2.47 2.38 2.34 2.30 

 0.975  3.37 3.28 3.18 3.07 3.02 2.96 2.85 2.79 2.73 

 0.99  4.30 4.16 4.01 3.86 3.78 3.70 3.54 3.45 3.36 

 0.995  5.1 4.91 4.72 4.53 4.43 4.33 4.12 4.01 3.90 

           

12 0.90  2.06 2.02 1.97 1.92 1.90 1.87 1.82 1.79 1.76 

 0.95  2.54 2.48 2.40 2.33 2.29 2.25 2.16 2.11 2.07 

 0.975  3.06 2.96 2.86 2.76 2.70 2.64 2.52 2.46 2.40 

 0.99  3.80 3.67 3.52 3.37 3.29 3.21 3.05 2.96 2.87 

 0.995  4.4 4.25 4.07 3.88 3.79 3.69 3.48 3.37 3.26 

           

15 0.90  1.94 1.89 1.84 1.79 1.77 1.74 1.68 1.64 1.61 

 0.95  2.35 2.28 2.20 2.12 2.08 2.04 1.95 1.90 1.84 

 0.975  2.77 2.68 2.57 2.46 2.41 2.35 2.22 2.16 2.09 

 0.99  3.37 3.23 3.09 2.94 2.86 2.78 2.61 2.52 2.42 

 0.995  3.8 3.68 3.50 3.32 3.22 3.12 2.92 2.81 2.69 

           

20 0.90  1.88 1.83 1.78 1.73 1.70 1.67 1.61 1.57 1.53 

 0.95  2.25 2.18 2.11 2.03 1.98 1.94 1.84 1.79 1.73 

 0.975  2.64 2.54 2.44 2.33 2.27 2.21 2.08 2.01 1.94 

 0.99  3.17 3.03 2.89 2.74 2.66 2.58 2.40 2.31 2.21 

 0.995  3.6 3.42 3.25 3.06 2.97 2.87 2.66 2.55 2.43 

           

24 0.90  1.88 1.83 1.78 1.73 1.70 1.67 1.61 1.57 1.53 

 0.95  2.25 2.18 2.11 2.03 1.98 1.94 1.84 1.79 1.73 

 0.975  2.64 2.54 2.44 2.33 2.27 2.21 2.08 2.01 1.94 

 0.99  3.17 3.03 2.89 2.74 2.66 2.58 2.40 2.31 2.21 

 0.995  3.6 3.42 3.25 3.06 2.97 2.87 2.66 2.55 2.43 
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Table T-4:  Quantiles, fq(ν1, ν2), for the F-distribution with ν 1 degrees of 

freedom in the numerator and ν2 degrees of freedom in the denominator 

(continued) 

 ν1 

ν2         q 1 2 3 4 5 6 7 8 9 

30 0.90  2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85 
 0.95  4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 

 0.975  5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57 

 0.99  7.6 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 

 0.995  9.2 6.4 5.24 4.62 4.23 3.95 3.74 3.58 3.45 

           

60 0.90  2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 

 0.95  4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 

 0.975  5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33 

 0.99  7.1 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 

 0.995  8.5 5.8 4.73 4.14 3.76 3.49 3.29 3.13 3.01 

           

120 0.90  2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68 

 0.95  3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96 

 0.975  5.15 3.80 3.23 2.89 2.67 2.52 2.39 2.30 2.22 

 0.99  6.9 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 

 0.995  8.2 5.54 4.50 3.92 3.55 3.28 3.09 2.93 2.81 

           

∞ 0.90  2.71 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.63 

 0.95  3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 

 0.975  5.02 3.69 3.12 2.79 2.57 2.41 2.29 2.19 2.11 

 0.99  6.64 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 

 0.995  7.9 5.30 4.28 3.72 3.35 3.09 2.90 2.74 2.62 
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Table T-4:  Quantiles, fq(ν1, ν2), for the F-distribution with ν 1 degrees of 

freedom in the numerator and ν2 degrees of freedom in the denominator 

(continued) 

 ν1 

ν2            q 10 12 15 20 24 30 60 120 ∞ 

30 0.90  1.82 1.77 1.72 1.67 1.64 1.61 1.54 1.50 1.46 
 0.95  2.16 2.09 2.01 1.93 1.89 1.84 1.74 1.68 1.62 

 0.975  2.51 2.41 2.31 2.20 2.14 2.07 1.94 1.87 1.79 

 0.99  2.98 2.84 2.70 2.55 2.47 2.39 2.21 2.11 2.01 

 0.995  3.34 3.18 3.01 2.82 2.73 2.63 2.42 2.30 2.18 

           

60 0.90  1.71 1.66 1.60 1.54 1.51 1.48 1.40 1.35 1.29 

 0.95  1.99 1.92 1.84 1.75 1.70 1.65 1.53 1.47 1.39 

 0.975  2.27 2.17 2.06 1.94 1.88 1.82 1.67 1.58 1.48 

 0.99  2.63 2.50 2.35 2.20 2.12 2.03 1.84 1.73 1.60 

 0.995  2.90 2.74 2.57 2.39 2.29 2.19 1.96 1.83 1.69 

           

120 0.90  1.65 1.60 1.55 1.48 1.45 1.41 1.32 1.26 1.19 

 0.95  1.91 1.83 1.75 1.66 1.61 1.55 1.43 1.35 1.25 

 0.975  2.16 2.05 1.94 1.82 1.76 1.69 1.53 1.43 1.31 

 0.99  2.47 2.34 2.19 2.03 1.95 1.86 1.66 1.53 1.38 

 0.995  2.71 2.54 2.37 2.19 2.09 1.98 1.75 1.61 1.43 

           

∞ 0.90  1.60 1.55 1.49 1.42 1.38 1.34 1.24 1.17 1.00 

 0.95  1.83 1.75 1.67 1.57 1.52 1.46 1.32 1.22 1.00 

 0.975  2.05 1.94 1.83 1.71 1.64 1.57 1.39 1.27 1.00 

 0.99  2.32 2.18 2.04 1.88 1.79 1.70 1.47 1.32 1.00 

 0.995  2.52 2.36 2.19 2.00 1.90 1.79 1.53 1.36 1.00 
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 Table T-5:  Quantiles fmax, q(k, ν) for the Fmax  distribution (see Section 14.5) 

  
 

 

ν 

q ∙    

k = number of groups 

2 3 4 5 6 7 8 9 10 11 12 

            2 39.0 87.5 142 202 266 333 403 475 550 626 704 

3 15.4 27.8 39.2 50.7 62.0 72.9 83.5 93.9 104 114 124 

4 9.60 15.5 20.6 25.2 29.5 33.6 37.5 41.1 44.6 48.0 51.4 

5 7.15 10.8 13.7 16.3 18.7 20.8 22.9 24.7 26.5 28.2 29.9 

            
6 5.82 8.38 10.4 12.1 13.7 15.0 16.3 17.5 18.6 19.7 20.7 

7 4.99 6.94 8.44 9.70 10.8 11.8 12.7 13.5 14.3 15.1 15.8 

8 4.43 6.00 7.18 8.12 9.03 9.78 10.5 11.1 11.7 12.2 12.7 

9 4.03 5.34 6.31 7.11 7.80 8.41 8.95 9.45 9.91 10.3 10.7 

10 3.72 4.85 5.67 6.34 6.92 7.42 7.87 8.28 8.66 9.01 9.34 

            
12 3.28 4.16 4.79 5.30 5.72 6.09 6.42 6.72 7.00 7.25 7.48 

15 2.86 3.54 4.01 4.37 4.68 4.95 5.19 5.40 5.59 5.77 5.93 

20 2.46 2.95 3.29 3.54 3.76 3.94 4.10 4.24 4.37 4.49 4.59 

30 2.07 2.40 2.61 2.78 2.91 3.02 3.12 3.21 3.29 3.36 3.39 

60 1.67 1.85 1.96 2.04 2.11 2.17 2.22 2.26 2.30 2.33 2.36 

∞ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  

 

 

ν 

q = 0.99∙ 

k = number of groups 

 2 3 4 5 6 7 8 9 10 11 12 

            2  199 448 729 1,036 1,362 1,705 2,063 2,432 2,813 3,204 3,605 

3  47.5 85 120 151 184 216 249 281 310 337 361 

4  23.2 37 49 59 69 79 89 97 106 113 120 

5  14.9 22 28 33 38 42 46 50 54 57 60 

            
6  11.1 15.5 19.1 22 25 27 30 32 34 36 37 

7  8.89 12.1 14.5 16.5 18.4 20 22 23 24 26 27 

8  7.50 9.9 11.7 13.2 14.5 15.8 16.9 17.9 18.9 19.8 21 

9  6.54 8.5 9.9 11.1 12.1 13.1 13.9 14.7 15.3 16.0 16.6 

10  5.85 7.4 8.6 9.6 10.4 11.1 11.8 12.4 12.9 13.4 13.9 

            
12  4.91 6.1 6.9 7.6 8.2 8.7 9.1 9.5 9.9 10.2 10.6 

15  4.07 4.9 5.5 6.0 6.4 6.7 7.1 7.3 7.5 7.8 8.0 

20  3.32 3.8 4.3 4.6 4.9 5.1 5.3 5.5 5.6 5.8 5.9 

30  2.63 3.0 3.3 3.4 3.6 3.7 3.8 3.9 4.0 4.1 4.2 

60  1.96 2.2 2.3 2.4 2.4 2.5 2.5 2.6 2.6 2.7 2.7 

∞  1.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Adapted from David, H. A., 1952, Upper 5 and 1% Points of the Maximum F-Ratio, 

Biometrika, 39, pp. 422-424, with permission of the Biometrika Trustees. 
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 Table T-6a:  Coefficients {an-i+1} for the W- test for normality  

(see Section 11.9) 

           

i \ n   3  4  5  6  7  8  9  10  
           

1   0.7071  0.6872  0.6646  0.6431  0.6233  0.6052  0.5888  0.5739  

2    0.1677  0.2413  0.2806  0.3031  0.3164  0.3244  0.3291  

3      0.0875  0.1401  0.1743  0.1976  0.2141  

4        0.0561  0.0947  0.1224  

5          0.0399  

           

i \ n 11  12  13  14  15  16  17  18  19  20  
           

1  0.5601  0.5475  0.5359  0.5251  0.5150  0.5056  0.4968  0.4886  0.4808  0.4734  

2  0.3315  0.3325  0.3325  0.3318  0.3306  0.3290  0.3273  0.3253  0.3232  0.3211  

3  0.2260  0.2347  0.2412  0.2460  0.2495  0.2521  0.2540  0.2553  0.2561  0.2565  

4  0.1429  0.1586  0.1707  0.1802  0.1878  0.1939  0.1988  0.2027  0.2059  0.2085  

5  0.0695  0.0922  0.1099  0.1240  0.1353  0.1447  0.1524  0.1587  0.1641  0.1686  

           

6   0.0303  0.0539  0.0727  0.0880  0.1005  0.1109  0.1197  0.1271  0.1334  

7     0.0240  0.0433  0.0593  0.0725  0.0837  0.0932  0.1013  

8       0.0196  0.0359  0.0496  0.0612  0.0711  

9         0.0163  0.0303  0.0422  

10           0.0140  

           

i \ n 21  22  23  24  25  26  27  28  29  30  
           

1 0.4643  0.4590  0.4542  0.4493  0.4450  0.4407  0.4366  0.4328  0.4291  0.4254  

2 0.3185  0.3156  0.3126  0.3098  0.3069  0.3043  0.3018  0.2992  0.2968  0.2944  

3 0.2578  0.2571  0.2563  0.2554  0.2543  0.2533  0.2522  0.2510  0.2499  0.2487  

4 0.2119  0.2131  0.2139  0.2145  0.2148  0.2151  0.2152  0.2151  0.2150  0.2148  

5 0.1736  0.1764  0.1787  0.1807  0.1822  0.1836  0.1848  0.1857  0.1864  0.1870  

           

6 0.1399  0.1443  0.1480  0.1512  0.1539  0.1563  0.1584  0.1601  0.1616  0.1630  

7 0.1092  0.1150  0.1201  0.1245  0.1283  0.1316  0.1346  0.1372  0.1395  0.1415  

8 0.0804  0.0878  0.0941  0.0997  0.1046  0.1089  0.1128  0.1162  0.1192  0.1219  

9 0.0530  0.0618  0.0696  0.0764  0.0823  0.0876  0.0923  0.0965  0.1002  0.1036  

10 0.0263  0.0368  0.0459  0.0539  0.0610  0.0672  0.0728  0.0778  0.0822  0.0862  

           

11  0.0122  0.0228  0.0321  0.0403  0.0476  0.0540  0.0598  0.0650  0.0697  

12    0.0107  0.0200  0.0284  0.0358  0.0424  0.0483  0.0537  

13      0.0094  0.0178  0.0253  0.0320  0.0381  

14        0.0084  0.0159  0.0227  

15          0.0076  

 

 

Adapted from Shapiro, S. S., and M. B. Wilk, 1965, An Analysis of Variance Test for 

Normality (Complete Samples), Biometrika, 52, pp. 591-611, with permission of the 

Biometrika Trustees. 
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Table T-6a:  Coefficients {an-i+1} for the W-test for normality (continued) 

           

i \ n 31  32  33  34  35  36  37  38  39  40  
           

1 0.4220  0.4188  0.4156  0.4127  0.4096  0.4068  0.4040  0.4015  0.3989  0.3964  

2 0.2921  0.2898  0.2876  0.2854  0.2834  0.2813  0.2794  0.2774  0.2755  0.2737  

3 0.2475  0.2463  0.2451  0.2439  0.2427  0.2415  0.2403  0.2391  0.2380  0.2368  

4 0.2145  0.2141  0.2137  0.2132  0.2127  0.2121  0.2116  0.2110  0.2104  0.2098  

5 0.1874  0.1878  0.1880  0.1882  0.1883  0.1883  0.1883  0.1881  0.1880  0.1878  

           

6 0.1641  0.1651  0.1660  0.1667  0.1673  0.1678  0.1683  0.1686  0.1689  0.1691  

7 0.1433  0.1449  0.1463  0.1475  0.1487  0.1496  0.1505  0.1513  0.1520  0.1526  

8 0.1243  0.1265  0.1284  0.1301  0.1317  0.1331  0.1344  0.1356  0.1366  0.1376  

9 0.1066  0.1093  0.1118  0.1140  0.1160  0.1179  0.1196  0.1211  0.1225  0.1237  

10 0.0899  0.0931  0.0961  0.0988  0.1013  0.1036  0.1056  0.1075  0.1092  0.1108  

           

11 0.0739  0.0777  0.0812  0.0844  0.0873  0.0900  0.0924  0.0947  0.0967  0.0986  

12 0.0585  0.0629  0.0669  0.0706  0.0739  0.0770  0.0798  0.0824  0.0848  0.0870  

13 0.0435  0.0485  0.0530  0.0572  0.0610  0.0645  0.0677  0.0706  0.0733  0.0759  

14 0.0289  0.0344  0.0395  0.0441  0.0484  0.0523  0.0559  0.0592  0.0622  0.0651  

15 0.0144  0.0206  0.0262  0.0314  0.0361  0.0404  0.0444  0.0481  0.0515  0.0546  

           

16  0.0068  0.0131  0.0187  0.0239  0.0287  0.0331  0.0372  0.0409  0.0444  

17    0.0062  0.0119  0.0172  0.0220  0.0264  0.0305  0.0343  

18      0.0057  0.0110  0.0158  0.0203  0.0244  

19        0.0053  0.0101  0.0146  

20          0.0049  
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Table T-6a:  Coefficients {an-i+1} for the W-test for normality (continued) 

           

i \ n 41  42  43  44  45  46  47  48  49  50 
           

1 0.3940  0.3817  0.3894  0 .3872  0.3850  0.3830  0.3808  0.3789  0.3770  0.3751  

2 0.2719  0.2701  0.2684  0.2667  0.2651  0.2635  0.2620  0.2604  0.2589  0.2574  

3 0.2357  0.2345  0.2334  0.2323  0.2313  0.2302  0.2291  0.2281  0.2271  0.2260  

4 0.2091  0.2085  0.2078  0.2072  0.2065  0.2058  0.2052  0.2045  0.2038  0.2032  

5 0.1876  0.1874  0.1871  0.1868  0.1865  0.1862  0.1859  0.1855  0.1851  0.1847  

           

6 0.1693  0.1694  0.1695  0.1695  0.1695  0.1695  0.1695  0.1693  0.1692  0.1691  

7 0.1531  0.1535  0.1539  0.1542  0.1545  0.1548  0.1550  0.1551  0.1553  0.1554  

8 0.1384  0.1392  0.1398  0.1405  0.1410  0.1415  0.1420  0.1423  0.1427  0.1430  

9 0.1249  0.1259  0.1269  0.1278  0.1286  0.1293  0.1300  0.1306  0.1312  0.1317  

10 0.1123  0.1136  0.1149  0.1160  0.1170  0.1180  0.1189  0.1197  0.1205  0.1212  

           

11 0.1004  0.1020  0.1035  0.1049  0.1062  0.1073  0.1085  0.1095  0.1105  0.1113  

12 0.0891  0.0909  0.0927  0.0943  0.0959  0.0972  0.0986  0.0998  0.1010  0.1020  

13 0.0782  0.0804  0.0824  0.0842  0.0860  0.0876  0.0892  0.0906  0.0919  0.0932  

14 0.0677  0.0701  0.0724  0.0745  0.0765  0.0783  0.0801  0.0817  0.0832  0.0846  

15 0.0575  0.0602  0.0628  0.0651  0.0673  0.0694  0.0713  0.0731  0.0748  0.0764  

           

16 0.0476  0.0506  0.0534  0.0560  0.0584  0.0607  0.0628  0.0648  0.0667  0.0685  

17 0.0379  0.0411  0.0442  0.0471  0.0497  0.0522  0.0546  0.0568  0.0588  0.0608  

18 0.0283  0.0318  0.0352  0.0383  0.0412  0.0439  0.0465  0.0489  0.0511  0.0532  

19 0.0188  0.0227  0.0263  0.0296  0.0328  0.0357  0.0385  0.0411  0.0436  0.0459  

20 0.0094  0.0136  0.0175  0.0211  0.0245  0.0277  0.0307  0.0335  0.0361  0.0386  

           

21  0.0045  0.0087  0.0126  0.0163  0.0197  0.0229  0.0259  0.0288  0.0314  

22    0.0042  0.0081  0.0118  0.0153  0.0185  0.0215  0.0244  

23      0.0039  0.0076  0.0111  0.0143  0.0174  

24        0.0037  0.0071  0.0104  

25          0.0035  
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Table T-6b:  Quantiles, wq(n), for the W-test for normality (see Section 11.9) 

n q = 0.01  q = 0.02  q = 0.05  q = 0.10  q = 0.50  

3  0.753  0.756  0.767  0.789  0.959  

4  0.687  0.707  0.748  0.792  0.935  

5  0.686  0.715  0.762  0.806  0.927  

6  0.713  0.743  0.788  0.826  0.927  

7  0.730  0.760  0.803  0.838  0.928  

8  0.749  0.778  0.818  0.851  0.932  

9  0.764  0.791  0.829  0.859  0.935  

10  0.781  0.806  0.842  0.869  0.938  

      

11  0.792  0.817  0.850  0.876  0.940  

12  0.805  0.828  0.859  0.883  0.943  

13  0.814  0.837  0.866  0.889  0.945  

14  0.825  0.846  0.874  0.895  0.947  

15  0.835  0.855  0.881  0.901  0.950  

16  0.844  0.863  0.887  0.906  0.952  

17  0.851  0.869  0.892  0.910  0.954  

18  0.858  0.874  0.897  0.914  0.956  

19  0.863  0.879  0.901  0.917  0.957  

20  0.868  0.884  0.905  0.920  0.959  

      

21  0.873  0.888  0.908  0.923  0.960  

22  0.878  0.892  0.911  0.926  0.961  

23  0.881  0.895  0.914  0.928  0.962  

24  0.884  0.898  0.916  0.930  0.963  

25  0.888  0.901  0.918  0.931  0.964  

26  0.891  0.904  0.920  0.933  0.965  

27  0.894  0.906  0.923  0.935  0.965  

28  0.896  0.908  0.924  0.936  0.966  

29  0.898  0.910  0.926  0.937  0.966  

30  0.900  0.912  0.927  0.939  0.967  

      

32  0.904  0.915  0.930  0.941  0.968  

34  0.908  0.919  0.933  0.943  0.969  

36  0.912  0.922  0.935  0.945  0.970  

38  0.916  0.925  0.938  0.947  0.971  

40  0.919  0.928  0.940  0.949  0.972  

      

42  0.922  0.930  0.942  0.951  0.972  

44  0.924  0.933  0.944  0.952  0.973  

46  0.927  0.935  0.945  0.953  0.974  

48  0.929  0.937  0.947  0.954  0.974  

50  0.930  0.938  0.947  0.955  0.974  

Adapted from Shapiro, S. S., and M. B. Wilk, 1965, An Analysis of Variance Test for Normality 
(Complete Samples), Biometrika, 52, pp. 591-611, with permission of the Biometrika Trustees. 
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Table T-7:  Significant ranges, q0.95(p, N - k), for Duncan's multiple-range 

test (see Section 16.8) 

 p 

N - k 2 3 4 5 6 7 8 9 10 20 50 100 

             

1 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 

2 6.09 6.09 6.09 6.09 6.09 6.09 6.09 6.09 6.09 6.09 6.09 6.09 

3 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 

4 3.93 4.01 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 

5 3.64 3.74 3.79 3.83 3.83 3.83 3.83 3.83 3.83 3.83 3.83 3.83 

6 3.46 3.58 3.64 3.68 3.68 3.68 3.68 3.68 3.68 3.68 3.68 3.68 

7 3.35 3.47 3.54 3.58 3.60 3.61 3.61 3.61 3.61 3.61 3.61 3.61 

8 3.26 3.39 3.47 3.52 3.55 3.56 3.56 3.56 3.56 3.56 3.56 3.56 

9 3.20 3.34 3.41 3.47 3.50 3.52 3.52 3.52 3.52 3.52 3.52 3.52 

10 3.15 3.30 3.37 3.43 3.46 3.47 3.47 3.47 3.47 3.48 3.48 3.48 

11 3.11 3.27 3.35 3.39 3.43 3.44 3.45 3.46 3.46 3.48 3.48 3.48 

12 3.08 3.23 3.33 3.36 3.40 3.42 3.44 3.44 3.46 3.48 3.48 3.48 

13 3.06 3.21 3.30 3.35 3.38 3.41 3.42 3.44 3.45 3.47 3.47 3.47 

14 3.03 3.18 3.27 3.33 3.37 3.39 3.41 3.42 3.44 3.47 3.47 3.47 

15 3.01 3.16 3.25 3.31 3.36 3.38 3.40 3.42 3.43 3.47 3.47 3.47 

16 3.00 3.15 3.23 3.30 3.34 3.37 3.39 3.41 3.43 3.47 3.47 3.47 

17 2.98 3.13 3.22 3.28 3.33 3.36 3.38 3.40 3.42 3.47 3.47 3.47 

18 2.97 3.12 3.21 3.27 3.32 3.35 3.37 3.39 3.41 3.47 3.47 3.47 

19 2.96 3.11 3.19 3.26 3.31 3.35 3.37 3.39 3.41 3.47 3.47 3.47 

20 2.95 3.10 3.18 3.25 3.30 3.34 3.36 3.38 3.40 3.47 3.47 3.47 

30 2.89 3.04 3.12 3.20 3.25 3.29 3.32 3.35 3.37 3.47 3.47 3.47 

40 2.86 3.01 3.10 3.17 3.22 3.27 3.30 3.33 3.35 3.47 3.47 3.47 

60 2.83 2.98 3.08 3.14 3.20 3.24 3.28 3.31 3.33 3.47 3.48 3.48 

100 2.80 2.95 3.05 3.12 3.18 3.22 3.26 3.29 3.32 3.47 3.53 3.53 

∞ 2.77 2.92 3.02 3.09 3.15 3.19 3.23 3.26 3.29 3.47 3.61 3.67 

             

Reproduced from:  D.B. Duncan, "Multiple Range and Multiple F-tests."  BIOMETRICS 

11:  1-42.  1955.  With permission from The Biometric Society. 
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Table T-8:  Selected binomial probabilities (see Section 22.3) 

 
y = number of attributes in a binomial sample of size n with π = 0.01 

n 0 1 2 3 4 5 6 7 8 9 

1 0.9900  0.0100          

2 0.9801  0.0198  0.0001         

3 0.9703  0.0294  0.0003  0.0000        

4 0.9606  0.0388  0.0006  0.0000  0.0000       

5 0.9510  0.0480  0.0010  0.0000  0.0000  0.0000      

           

6 0.9415  0.0571  0.0014  0.0000  0.0000  0.0000  0.0000     

7 0.9321  0.0659  0.0020  0.0000  0.0000  0.0000  0.0000  0.0000    

8 0.9227  0.0746  0.0026  0.0001  0.0000  0.0000  0.0000  0.0000  0.0000   

9 0.9135  0.0830  0.0034  0.0001  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  

10 0.9044  0.0914  0.0042  0.0001  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  

           

11 0.8953  0.0995  0.0050  0.0002  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  

12 0.8864  0.1074  0.0060  0.0002  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  

13 0.8775  0.1152  0.0070  0.0003  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  

14 0.8687  0.1229  0.0081  0.0003  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  

15 0.8601  0.1303  0.0092  0.0004  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  

           

16 0.8515  0.1376  0.0104  0.0005  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  

17 0.8429  0.1447  0.0117  0.0006  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  

18 0.8345  0.1517  0.0130  0.0007  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  

19 0.8262  0.1586  0.0144  0.0008  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  

20 0.8179  0.1652  0.0159  0.0010  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  

           

21 0.8097  0.1718  0.0173  0.0011  0.0001  0.0000  0.0000  0.0000  0.0000  0.0000  

22 0.8016  0.1781  0.0189  0.0013  0.0001  0.0000  0.0000  0.0000  0.0000  0.0000  

23 0.7936  0.1844  0.0205  0.0014  0.0001  0.0000  0.0000  0.0000  0.0000  0.0000  

24 0.7857  0.1905  0.0221  0.0016  0.0001  0.0000  0.0000  0.0000  0.0000  0.0000  

25 0.7778  0.1964  0.0238  0.0018  0.0001  0.0000  0.0000  0.0000  0.0000  0.0000  

           

26 0.7700  0.2022  0.0255  0.0021  0.0001  0.0000  0.0000  0.0000  0.0000  0.0000  

27 0.7623  0.2079  0.0273  0.0023  0.0001  0.0000  0.0000  0.0000  0.0000  0.0000  

28 0.7547  0.2135  0.0291  0.0025  0.0002  0.0000  0.0000  0.0000  0.0000  0.0000  

29 0.7472  0.2189  0.0310  0.0028  0.0002  0.0000  0.0000  0.0000  0.0000  0.0000  

30 0.7397  0.2242  0.0328  0.0031  0.0002  0.0000  0.0000  0.0000  0.0000  0.0000  

           

32 0.7250  0.2343  0.0367  0.0037  0.0003  0.0000  0.0000  0.0000  0.0000  0.0000  

34 0.7106  0.2440  0.0407  0.0044  0.0003  0.0000  0.0000  0.0000  0.0000  0.0000  

36 0.6964  0.2532  0.0448  0.0051  0.0004  0.0000  0.0000  0.0000  0.0000  0.0000  

38 0.6826  0.2620  0.0490  0.0059  0.0005  0.0000  0.0000  0.0000  0.0000  0.0000  

40 0.6690  0.2703  0.0532  0.0068  0.0006  0.0000  0.0000  0.0000  0.0000  0.0000  
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Table T-8:  Selected binomial probabilities (Continued) 

           

 y = number of attributes in a binomial sample of size n with π =  0.05 

n 0 1 2 3 4 5 6 7 8 9 

1 0.9500  0.0500          

2 0.9025  0.0950  0.0025         

3 0.8574  0.1354  0.0071  0.0001        

4 0.8145  0.1715  0.0135  0.0005  0.0000       

5 0.7738  0.2036  0.0214  0.0011  0.0000  0.0000      

           

6 0.7351  0.2321  0.0305  0.0021  0.0001  0.0000  0.0000     

7 0.6983  0.2573  0.0406  0.0036  0.0002  0.0000  0.0000  0.0000    

8 0.6634  0.2793  0.0515  0.0054  0.0004  0.0000  0.0000  0.0000  0.0000   

9 0.6302  0.2985  0.0629  0.0077  0.0006  0.0000  0.0000  0.0000  0.0000  0.0000  

10 0.5987  0.3151  0.0746  0.0105  0.0010  0.0001  0.0000  0.0000  0.0000  0.0000  

           

11 0.5688  0.3293  0.0867  0.0137  0.0014  0.0001  0.0000  0.0000  0.0000  0.0000  

12 0.5404  0.3413  0.0988  0.0173  0.0021  0.0002  0.0000  0.0000  0.0000  0.0000  

13 0.5133  0.3512  0.1109  0.0214  0.0028  0.0003  0.0000  0.0000  0.0000  0.0000  

14 0.4877  0.3593  0.1229  0.0259  0.0037  0.0004  0.0000  0.0000  0.0000  0.0000  

15 0.4633  0.3658  0.1348  0.0307  0.0049  0.0006  0.0000  0.0000  0.0000  0.0000  

           

16 0.4401  0.3706  0.1463  0.0359  0.0061  0.0008  0.0001  0.0000  0.0000  0.0000  

17 0.4181  0.3741  0.1575  0.0415  0.0076  0.0010  0.0001  0.0000  0.0000  0.0000  

18 0.3972  0.3763  0.1683  0.0473  0.0093  0.0014  0.0002  0.0000  0.0000  0.0000  

19 0.3774  0.3774  0.1787  0.0533  0.0112  0.0018  0.0002  0.0000  0.0000  0.0000  

20 0.3585  0.3774  0.1887  0.0596  0.0133  0.0022  0.0003  0.0000  0.0000  0.0000  

           

21 0.3406  0.3764  0.1981  0.0660  0.0156  0.0028  0.0004  0.0000  0.0000  0.0000  

22 0.3235  0.3746  0.2070  0.0726  0.0182  0.0034  0.0005  0.0001  0.0000  0.0000  

23 0.3074  0.3721  0.2154  0.0794  0.0209  0.0042  0.0007  0.0001  0.0000  0.0000  

24 0.2920  0.3688  0.2232  0.0862  0.0238  0.0050  0.0008  0.0001  0.0000  0.0000  

25 0.2774  0.3650  0.2305  0.0930  0.0269  0.0060  0.0010  0.0001  0.0000  0.0000  

           

26 0.2635  0.3606  0.2372  0.0999  0.0302  0.0070  0.0013  0.0002  0.0000  0.0000  

27 0.2503  0.3558  0.2434  0.1068  0.0337  0.0082  0.0016  0.0002  0.0000  0.0000  

28 0.2378  0.3505  0.2490  0.1136  0.0374  0.0094  0.0019  0.0003  0.0000  0.0000  

29 0.2259  0.3448  0.2541  0.1204  0.0412  0.0108  0.0023  0.0004  0.0001  0.0000  

30 0.2146  0.3389  0.2586  0.1270  0.0451  0.0124  0.0027  0.0005  0.0001  0.0000  

           

32 0.1937  0.3263  0.2662  0.1401  0.0535  0.0158  0.0037  0.0007  0.0001  0.0000  

34 0.1748  0.3128  0.2717  0.1525  0.0622  0.0196  0.0050  0.0011  0.0002  0.0000  

36 0.1578  0.2990  0.2753  0.1642  0.0713  0.0240  0.0065  0.0015  0.0003  0.0000  

38 0.1424  0.2848  0.2773  0.1751  0.0807  0.0289  0.0084  0.0020  0.0004  0.0001  

40 0.1285  0.2706  0.2777  0.1851  0.0901  0.0342  0.0105  0.0027  0.0006  0.0001  
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Table T-8:  Selected binomial probabilities (Continued) 

           

 y = number of attributes in a binomial sample of size n with π =  0.10 

n 0  1  2  3  4  5  6  7  8  9  

1 0.9000  0.1000          

2 0.8100  0.1800  0.0100         

3 0.7290  0.2430  0.0270  0.0010        

4 0.6561  0.2916  0.0486  0.0036  0.0001       

5 0.5905  0.3281  0.0729  0.0081  0.0005  0.0000      

           

6 0.5314  0.3543  0.0984  0.0146  0.0012  0.0001  0.0000     

7 0.4783  0.3720  0.1240  0.0230  0.0026  0.0002  0.0000  0.0000    

8 0.4305  0.3826  0.1488  0.0331  0.0046  0.0004  0.0000  0.0000  0.0000   

9 0.3874  0.3874  0.1722  0.0446  0.0074  0.0008  0.0001  0.0000  0.0000  0.0000  

10 0.3487  0.3874  0.1937  0.0574  0.0112  0.0015  0.0001  0.0000  0.0000  0.0000  

           

11 0.3138  0.3835  0.2131  0.0710  0.0158  0.0025  0.0003  0.0000  0.0000  0.0000  

12 0.2824  0.3766  0.2301  0.0852  0.0213  0.0038  0.0005  0.0000  0.0000  0.0000  

13 0.2542  0.3672  0.2448  0.0997  0.0277  0.0055  0.0008  0.0001  0.0000  0.0000  

14 0.2288  0.3559  0.2570  0.1142  0.0349  0.0078  0.0013  0.0002  0.0000  0.0000  

15 0.2059  0.3432  0.2669  0.1285  0.0428  0.0105  0.0019  0.0003  0.0000  0.0000  

           

16 0.1853  0.3294  0.2745  0.1423  0.0514  0.0137  0.0028  0.0004  0.0001  0.0000  

17 0.1668  0.3150  0.2800  0.1556  0.0605  0.0175  0.0039  0.0007  0.0001  0.0000  

18 0.1501  0.3002  0.2835  0.1680  0.0700  0.0218  0.0052  0.0010  0.0002  0.0000  

19 0.1351  0.2852  0.2852  0.1796  0.0798  0.0266  0.0069  0.0014  0.0002  0.0000  

20 0.1216  0.2702  0.2852  0.1901  0.0898  0.0319  0.0089  0.0020  0.0004  0.0001  

           

21 0.1094  0.2553  0.2837  0.1996  0.0998  0.0377  0.0112  0.0027  0.0005  0.0001  

22 0.0985  0.2407  0.2808  0.2080  0.1098  0.0439  0.0138  0.0035  0.0007  0.0001  

23 0.0886  0.2265  0.2768  0.2153  0.1196  0.0505  0.0168  0.0045  0.0010  0.0002  

24 0.0798  0.2127  0.2718  0.2215  0.1292  0.0574  0.0202  0.0058  0.0014  0.0003  

25 0.0718  0.1994  0.2659  0.2265  0.1384  0.0646  0.0239  0.0072  0.0018  0.0004  

           

26 0.0646  0.1867  0.2592  0.2304  0.1472  0.0720  0.0280  0.0089  0.0023  0.0005  

27 0.0581  0.1744  0.2520  0.2333  0.1555  0.0795  0.0324  0.0108  0.0030  0.0007  

28 0.0523  0.1628  0.2442  0.2352  0.1633  0.0871  0.0371  0.0130  0.0038  0.0009  

29 0.0471  0.1518  0.2361  0.2361  0.1705  0.0947  0.0421  0.0154  0.0047  0.0012  

30 0.0424  0.1413  0.2277  0.2361  0.1771  0.1023  0.0474  0.0180  0.0058  0.0016  

           

32 0.0343  0.1221  0.2103  0.2336  0.1882  0.1171  0.0585  0.0242  0.0084  0.0025  

34 0.0278  0.1051  0.1926  0.2283  0.1966  0.1311  0.0704  0.0313  0.0117  0.0038  

36 0.0225  0.0901  0.1752  0.2206  0.2023  0.1438  0.0826  0.0393  0.0158  0.0055  

38 0.0182  0.0770  0.1584  0.2112  0.2053  0.1551  0.0948  0.0481  0.0207  0.0077  

40 0.0148  0.0657  0.1423  0.2003  0.2059  0.1647  0.1068  0.0576  0.0264  0.0104  
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Table T-8:  Selected binomial probabilities (Continued) 

           

 y = number of attributes in a binomial sample of size n with π = 0.25 

n 0  1  2  3  4  5  6  7  8  9  

1 0.7500  0.2500          

2 0.5625  0.3750  0.0625         

3 0.4219  0.4219  0.1406  0.0156        

4 0.3164  0.4219  0.2109  0.0469  0.0039       

5 0.2373  0.3955  0.2637  0.0879  0.0146  0.0010      

           

6 0.1780  0.3560  0.2966  0.1318  0.0330  0.0044  0.0002     

7 0.1335  0.3115  0.3115  0.1730  0.0577  0.0115  0.0013  0.0001    

8 0.1001  0.2670  0.3115  0.2076  0.0865  0.0231  0.0038  0.0004  0.0000   

9 0.0751  0.2253  0.3003  0.2336  0.1168  0.0389  0.0087  0.0012  0.0001  0.0000  

10 0.0563  0.1877  0.2816  0.2503  0.1460  0.0584  0.0162  0.0031  0.0004  0.0000  

           

11 0.0422  0.1549  0.2581  0.2581  0.1721  0.0803  0.0268  0.0064  0.0011  0.0001  

12 0.0317  0.1267  0.2323  0.2581  0.1936  0.1032  0.0401  0.0115  0.0024  0.0004  

13 0.0238  0.1029  0.2059  0.2517  0.2097  0.1258  0.0559  0.0186  0.0047  0.0009  

14 0.0178  0.0832  0.1802  0.2402  0.2202  0.1468  0.0734  0.0280  0.0082  0.0018  

15 0.0134  0.0668  0.1559  0.2252  0.2252  0.1651  0.0917  0.0393  0.0131  0.0034  

           

16 0.0100  0.0535  0.1336  0.2079  0.2252  0.1802  0.1101  0.0524  0.0197  0.0058  

17 0.0075  0.0426  0.1136  0.1893  0.2209  0.1914  0.1276  0.0668  0.0279  0.0093  

18 0.0056  0.0338  0.0958  0.1704  0.2130  0.1988  0.1436  0.0820  0.0376  0.0139  

19 0.0042  0.0268  0.0803  0.1517  0.2023  0.2023  0.1574  0.0974  0.0487  0.0198  

20 0.0032  0.0211  0.0669  0.1339  0.1897  0.2023  0.1686  0.1124  0.0609  0.0271  

           

21 0.0024  0.0166  0.0555  0.1172  0.1757  0.1992  0.1770  0.1265  0.0738  0.0355  

22 0.0018  0.0131  0.0458  0.1017  0.1611  0.1933  0.1826  0.1391  0.0869  0.0451  

23 0.0013  0.0103  0.0376  0.0878  0.1463  0.1853  0.1853  0.1500  0.1000  0.0555  

24 0.0010  0.0080  0.0308  0.0752  0.1316  0.1755  0.1853  0.1588  0.1125  0.0667  

25 0.0008  0.0063  0.0251  0.0641  0.1175  0.1645  0.1828  0.1654  0.1241  0.0781  

           

26 0.0006  0.0049  0.0204  0.0544  0.1042  0.1528  0.1782  0.1698  0.1344  0.0896  

27 0.0004  0.0038  0.0165  0.0459  0.0917  0.1406  0.1719  0.1719  0.1432  0.1008  

28 0.0003  0.0030  0.0133  0.0385  0.0803  0.1284  0.1641  0.1719  0.1504  0.1114  

29 0.0002  0.0023  0.0107  0.0322  0.0698  0.1164  0.1552  0.1699  0.1558  0.1212  

30 0.0002  0.0018  0.0086  0.0269  0.0604  0.1047  0.1455  0.1662  0.1593  0.1298  

           

32 0.0001  0.0011  0.0055  0.0185  0.0446  0.0832  0.1249  0.1546  0.1610  0.1431  

34 0.0001  0.0006  0.0035  0.0125  0.0324  0.0647  0.1042  0.1390  0.1564  0.1506  

36 0.0000  0.0004  0.0022  0.0084  0.0231  0.0493  0.0849  0.1213  0.1466  0.1520  

38 0.0000  0.0002  0.0014  0.0056  0.0163  0.0369  0.0677  0.1032  0.1333  0.1481  

40 0.0000  0.0001  0.0009  0.0037  0.0113  0.0272  0.0530  0.0857  0.1179  0.1397  
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Table T-8:  Selected binomial probabilities (Continued) 

 
y = number of attributes in a binomial sample of size n with π = 0.50 

n 0  1  2  3  4  5  6  7  8  9  

1 0.5000  0.5000          

2 0.2500  0.5000  0.2500         

3 0.1250  0.3750  0.3750  0.1250        

4 0.0625  0.2500  0.3750  0.2500  0.0625       

5 0.0313  0.1563  0.3125  0.3125  0.1563  0.0313      

           

6 0.0156  0.0938  0.2344  0.3125  0.2344  0.0938  0.0156     

7 0.0078  0.0547  0.1641  0.2734  0.2734  0.1641  0.0547  0.0078    

8 0.0039  0.0313  0.1094  0.2188  0.2734  0.2188  0.1094  0.0313  0.0039   

9 0.0020  0.0176  0.0703  0.1641  0.2461  0.2461  0.1641  0.0703  0.0176  0.0020  

10 0.0010  0.0098  0.0439  0.1172  0.2051  0.2461  0.2051  0.1172  0.0439  0.0098  

           

11 0.0005  0.0054  0.0269  0.0806  0.1611  0.2256  0.2256  0.1611  0.0806  0.0269  

12 0.0002  0.0029  0.0161  0.0537  0.1208  0.1934  0.2256  0.1934  0.1208  0.0537  

13 0.0001  0.0016  0.0095  0.0349  0.0873  0.1571  0.2095  0.2095  0.1571  0.0873  

14 0.0001  0.0009  0.0056  0.0222  0.0611  0.1222  0.1833  0.2095  0.1833  0.1222  

15 0.0000  0.0005  0.0032  0.0139  0.0417  0.0916  0.1527  0.1964  0.1964  0.1527  

           

16 0.0000  0.0002  0.0018  0.0085  0.0278  0.0667  0.1222  0.1746  0.1964  0.1746  

17 0.0000  0.0001  0.0010  0.0052  0.0182  0.0472  0.0944  0.1484  0.1855  0.1855  

18 0.0000  0.0001  0.0006  0.0031  0.0117  0.0327  0.0708  0.1214  0.1669  0.1855  

19 0.0000  0.0000  0.0003  0.0018  0.0074  0.0222  0.0518  0.0961  0.1442  0.1762  

20 0.0000  0.0000  0.0002  0.0011  0.0046  0.0148  0.0370  0.0739  0.1201  0.1602  

           

21 0.0000  0.0000  0.0001  0.0006  0.0029  0.0097  0.0259  0.0554  0.0970  0.1402  

22 0.0000  0.0000  0.0001  0.0004  0.0017  0.0063  0.0178  0.0407  0.0762  0.1186  

23 0.0000  0.0000  0.0000  0.0002  0.0011  0.0040  0.0120  0.0292  0.0584  0.0974  

24 0.0000  0.0000  0.0000  0.0001  0.0006  0.0025  0.0080  0.0206  0.0438  0.0779  

25 0.0000  0.0000  0.0000  0.0001  0.0004  0.0016  0.0053  0.0143  0.0322  0.0609  

           

26 0.0000  0.0000  0.0000  0.0000  0.0002  0.0010  0.0034  0.0098  0.0233  0.0466  

27 0.0000  0.0000  0.0000  0.0000  0.0001  0.0006  0.0022  0.0066  0.0165  0.0349  

28 0.0000  0.0000  0.0000  0.0000  0.0001  0.0004  0.0014  0.0044  0.0116  0.0257  

29 0.0000  0.0000  0.0000  0.0000  0.0000  0.0002  0.0009  0.0029  0.0080  0.0187  

30 0.0000  0.0000  0.0000  0.0000  0.0000  0.0001  0.0006  0.0019  0.0055  0.0133  

           

32 0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0002  0.0008  0.0024  0.0065  

34 0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0001  0.0003  0.0011  0.0031  

36 0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0001  0.0004  0.0014  

38 0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0002  0.0006  

40 0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0001  0.0002  
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Table T-9:  Selected Poisson probabilities (see Section 23.3) 

 λ 

y 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1.0  

0 0.9048 0.8187 0.7408 0.6703 0.6065 0.5488 0.4966 0.4493 0.4066 0.3679 

1 0.0905 0.1637 0.2222 0.2681 0.3033 0.3293 0.3476 0.3595 0.3659 0.3679 

2 0.0045 0.0164 0.0333 0.0536 0.0758 0.0988 0.1217 0.1438 0.1647 0.1839 

3 0.0002 0.0011 0.0033 0.0072 0.0126 0.0198 0.0284 0.0383 0.0494 0.0613 

4 0.0000 0.0001 0.0003 0.0007 0.0016 0.0030 0.0050 0.0077 0.0111 0.0153 

5 0.0000 0.0000 0.0000 0.0001 0.0002 0.0004 0.0007 0.0012 0.0020 0.0031 

6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0003 0.0005 

7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 

 λ 

y 1.1  1.2  1.3  1.4  1.5  1.6  1.7  1.8  1.9  2.0  

0 0.3329  0.3012  0.2725  0.2466  0.2231  0.2019  0.1827  0.1653  0.1496  0.1353  

1 0.3662  0.3614  0.3543  0.3452  0.3347  0.3230  0.3106  0.2975  0.2842  0.2707  

2 0.2014  0.2169  0.2303  0.2417  0.2510  0.2584  0.2640  0.2678  0.2700  0.2707  

3 0.0738  0.0867  0.0998  0.1128  0.1255  0.1378  0.1496  0.1607  0.1710  0.1804  

4 0.0203  0.0260  0.0324  0.0395  0.0471  0.0551  0.0636  0.0723  0.0812  0.0902  

5 0.0045  0.0062  0.0084  0.0111  0.0141  0.0176  0.0216  0.0260  0.0309  0.0361  

6 0.0008  0.0012  0.0018  0.0026  0.0035  0.0047  0.0061  0.0078  0.0098  0.0120  

7 0.0001  0.0002  0.0003  0.0005  0.0008  0.0011  0.0015  0.0020  0.0027  0.0034  

8 0.0000  0.0000  0.0001  0.0001  0.0001  0.0002  0.0003  0.0005  0.0006  0.0009  

9 0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0001  0.0001  0.0001  0.0002  

 λ 

y 2.1  2.2  2.3  2.4  2.5  2.6  2.7  2.8  2.9  3.0  

0 0.1225  0.1108  0.1003  0.0907  0.0821  0.0743  0.0672  0.0608  0.0550  0.0498  

1 0.2572  0.2438  0.2306  0.2177  0.2052  0.1931  0.1815  0.1703  0.1596  0.1494  

2 0.2700  0.2681  0.2652  0.2613  0.2565  0.2510  0.2450  0.2384  0.2314  0.2240  

3 0.1890  0.1966  0.2033  0.2090  0.2138  0.2176  0.2205  0.2225  0.2237  0.2240  

4 0.0992  0.1082  0.1169  0.1254  0.1336  0.1414  0.1488  0.1557  0.1622  0.1680  

5 0.0417  0.0476  0.0538  0.0602  0.0668  0.0735  0.0804  0.0872  0.0940  0.1008  

6 0.0146  0.0174  0.0206  0.0241  0.0278  0.0319  0.0362  0.0407  0.0455  0.0504  

7 0.0044  0.0055  0.0068  0.0083  0.0099  0.0118  0.0139  0.0163  0.0188  0.0216  

8 0.0011  0.0015  0.0019  0.0025  0.0031  0.0038  0.0047  0.0057  0.0068  0.0081  

9 0.0003  0.0004  0.0005  0.0007  0.0009  0.0011  0.0014  0.0018  0.0022  0.0027  

10 0.0001  0.0001  0.0001  0.0002  0.0002  0.0003  0.0004  0.0005  0.0006  0.0008  

11 0.0000  0.0000  0.0000  0.0000  0.0000  0.0001  0.0001  0.0001  0.0002  0.0002  

12 0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0001  
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Table T-9:  Selected Poisson probabilities (continued) 

 λ 

y 3.1  3.2  3.3  3.4  3.5  3.6  3.7  3.8  3.9  4.0  

0 0.0450  0.0408  0.0369  0.0334  0.0302  0.0273  0.0247  0.0224  0.0202  0.0183  

1 0.1397  0.1304  0.1217  0.1135  0.1057  0.0984  0.0915  0.0850  0.0789  0.0733  

2 0.2165  0.2087  0.2008  0.1929  0.1850  0.1771  0.1692  0.1615  0.1539  0.1465  

3 0.2237  0.2226  0.2209  0.2186  0.2158  0.2125  0.2087  0.2046  0.2001  0.1954  

4 0.1733  0.1781  0.1823  0.1858  0.1888  0.1912  0.1931  0.1944  0.1951  0.1954  

5 0.1075  0.1140  0.1203  0.1264  0.1322  0.1377  0.1429  0.1477  0.1522  0.1563  

6 0.0555  0.0608  0.0662  0.0716  0.0771  0.0826  0.0881  0.0936  0.0989  0.1042  

7 0.0246  0.0278  0.0312  0.0348  0.0385  0.0425  0.0466  0.0508  0.0551  0.0595  

8 0.0095  0.0111  0.0129  0.0148  0.0169  0.0191  0.0215  0.0241  0.0269  0.0298  

9 0.0033  0.0040  0.0047  0.0056  0.0066  0.0076  0.0089  0.0102  0.0116  0.0132  

10 0.0010  0.0013  0.0016  0.0019  0.0023  0.0028  0.0033  0.0039  0.0045  0.0053  

11 0.0003  0.0004  0.0005  0.0006  0.0007  0.0009  0.0011  0.0013  0.0016  0.0019  

12 0.0001  0.0001  0.0001  0.0002  0.0002  0.0003  0.0003  0.0004  0.0005  0.0006  

13 0.0000  0.0000  0.0000  0.0000  0.0001  0.0001  0.0001  0.0001  0.0002  0.0002  

14 0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0001  

 λ 

y 4.1  4.2  4.3  4.4  4.5  4.6  4.7  4.8  4.9  5.0  

0 0.0166  0.0150  0.0136  0.0123  0.0111  0.0101  0.0091  0.0082  0.0074  0.0067  

1 0.0679  0.0630  0.0583  0.0540  0.0500  0.0462  0.0427  0.0395  0.0365  0.0337  

2 0.1393  0.1323  0.1254  0.1188  0.1125  0.1063  0.1005  0.0948  0.0894  0.0842  

3 0.1904  0.1852  0.1798  0.1743  0.1687  0.1631  0.1574  0.1517  0.1460  0.1404  

4 0.1951  0.1944  0.1933  0.1917  0.1898  0.1875  0.1849  0.1820  0.1789  0.1755  

5 0.1600  0.1633  0.1662  0.1687  0.1708  0.1725  0.1738  0.1747  0.1753  0.1755  

6 0.1093  0.1143  0.1191  0.1237  0.1281  0.1323  0.1362  0.1398  0.1432  0.1462  

7 0.0640  0.0686  0.0732  0.0778  0.0824  0.0869  0.0914  0.0959  0.1002  0.1044  

8 0.0328  0.0360  0.393  0.0428  0.0463  0.0500  0.0537  0.0575  0.0614  0.0653  

9 0.0150  0.0168  0.0188  0.0209  0.0232  0.0255  0.0281  0.0307  0.0334  0.0363  

10 0.0061  0.0071  0.0081  0.0092  0.0104  0.0118  0.0132  0.0147  0.0164  0.0181  

11 0.0023  0.0027  0.0032  0.0037  0.0043  0.0049  0.0056  0.0064  0.0073  0.0082  

12 0.0008  0.0009  0.0011  0.0013  0.0016  0.0019  0.0022  0.0026  0.0030  0.0034  

13 0.0002  0.0003  0.0004  0.0005  0.0006  0.0007  0.0008  0.0009  0.0011  0.0013  

14 0.0001  0.0001  0.0001  0.0001  0.0002  0.0002  0.0003  0.0003  0.0004  0.0005  

15 0.0000  0.0000  0.0000  0.0000  0.0001  0.0001  0.0001  0.0001  0.0001  0.0002  
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Table T-9:  Selected Poisson probabilities (continued) 

 λ 

y 5.1  5.2  5.3  5.4  5.5  5.6  5.7  5.8  5.9  6.0  

0 0.0061 0.0055 0.0050 0.0045 0.0041 0.0037 0.0033 0.0030 0.0027 0.0025 

1 0.0311 0.0287 0.0265 0.0244 0.0225 0.0207 0.0191 0.0176 0.0162 0.0149 

2 0.0793 0.0746 0.0701 0.0659 0.0618 0.0580 0.0544 0.0509 0.0477 0.0446 

3 0.1348 0.1293 0.1239 0.1185 0.1133 0.1082 0.1033 0.0985 0.0938 0.0892 

4 0.1719 0.1681 0.1641 0.1600 0.1558 0.1515 0.1472 0.1428 0.1383 0.1339 

5 0.1753 0.1748 0.1740 0.1728 0.1714 0.1697 0.1678 0.1656 0.1632 0.1606 

6 0.1490 0.1515 0.1537 0.1555 0.1571 0.1584 0.1594 0.1601 0.1605 0.1606 

7 0.1086 0.1125 0.1163 0.1200 0.1234 0.1267 0.1298 0.1326 0.1353 0.1377 

8 0.0692 0.0731 0.0771 0.0810 0.0849 0.0887 0.0925 0.0962 0.0998 0.1033 

9 0.0392 0.0423 0.0454 0.0486 0.0519 0.0552 0.0586 0.0620 0.0654 0.0688 

10 0.0200 0.0220 0.0241 0.0262 0.0285 0.0309 0.0334 0.0359 0.0386 0.0413 

11 0.0093 0.0104 0.0116 0.0129 0.0143 0.0157 0.0173 0.0190 0.0207 0.0225 

12 0.0039 0.0045 0.0051 0.0058 0.0065 0.0073 0.0082 0.0092 0.0102 0.0113 

13 0.0015 0.0018 0.0021 0.0024 0.0028 0.0032 0.0036 0.0041 0.0046 0.0052 

14 0.0006 0.0007 0.0008 0.0009 0.0011 0.0013 0.0015 0.0017 0.0019 0.0022 

15 0.0002 0.0002 0.0003 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 

16 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002 0.0003 0.0003 

17 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 
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Table T-9:  Selected Poisson probabilities (continued) 

 λ 

y 6.1  6.2  6.3  6.4  6.5  6.6  6.7  6.8  6.9  7.0  

0 0.0022  0.0020  0.0018  0.0017  0.0015  0.0014  0.0012  0.0011  0.0010  0.0009  

1 0.0137  0.0126  0.0116  0.0106  0.0098  0.0090  0.0082  0.0076  0.0070  0.0064  

2 0.0417  0.0390  0.0364  0.0340  0.0318  0.0296  0.0276  0.0258  0.0240  0.0223  

3 0.0848  0.0806  0.0765  0.0726  0.0688  0.0652  0.0617  0.0584  0.0552  0.0521  

4 0.1294  0.1249  0.1205  0.1162  0.1118  0.1076  0.1034  0.0992  0.0952  0.0912  

5 0.1579  0.1549  0.1519  0.1487  0.1454  0.1420  0.1385  0.1349  0.1314  0.1277  

6 0.1605  0.1601  0.1595  0.1586  0.1575  0.1562  0.1546  0.1529  0.1511  0.1490  

7 0.1399  0.1418  0.1435  0.1450  0.1462  0.1472  0.1480  0.1486  0.1489  0.1490  

8 0.1066  0.1099  0.1130  0.1160  0.1188  0.1215  0.1240  0.1263  0.1284  0.1304  

9 0.0723  0.0757  0.0791  0.0825  0.0858  0.0891  0.0923  0.0954  0.0985  0.1014  

10 0.0441  0.0469  0.0498  0.0528  0.0558  0.0588  0.0618  0.0649  0.0679  0.0710  

11 0.0244  0.0265  0.0285  0.0307  0.0330  0.0353  0.0377  0.0401  0.0426  0.0452  

12 0.0124  0.0137  0.0150  0.0164  0.0179  0.0194  0.0210  0.0227  0.0245  0.0263  

13 0.0058  0.0065  0.0073  0.0081  0.0089  0.0099  0.0108  0.0119  0.0130  0.0142  

14 0.0025  0.0029  0.0033  0.0037  0.0041  0.0046  0.0052  0.0058  0.0064  0.0071  

15 0.0010  0.0012  0.0014  0.0016  0.0018  0.0020  0.0023  0.0026  0.0029  0.0033  

16 0.0004  0.0005  0.0005  0.0006  0.0007  0.0008  0.0010  0.0011  0.0013  0.0014  

17 0.0001  0.0002  0.0002  0.0002  0.0003  0.0003  0.0004  0.0004  0.0005  0.0006  

18 0.0000  0.0001  0.0001  0.0001  0.0001  0.0001  0.0001  0.0002  0.0002  0.0002  

19 0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0001  0.0001  0.0001  0.0001  
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Table T-9:  Selected Poisson probabilities (continued) 

     λ      

y 7.1  7.2  7.3  7.4  7.5  7.6  7.7  7.8  7.9  8.0 

0 0.0008  0.0007  0.0007  0.0006  0.0006  0.0005  0.0005  0.0004  0.0004  0.0003  

1 0.0059  0.0054 0.0049 0.0045 0.0041 0.0038 0.0035 0.0032 0.0029 0.0027 

2 0.0208  0.0194  0.0180  0.0167  0.0156  0.0145  0.0134  0.0125  0.0116  0.0107  

3 0.0492  0.0464  0.0438  0.0413  0.0389  0.0366  0.0345  0.0324  0.0305  0.0286  

4 0.0874  0.0836  0.0799  0.0764  0.0729  0.0696  0.0663  0.0632  0.0602  0.0573  

5 0.1241  0.1204  0.1167  0.1130  0.1094  0.1057  0.1021  0.0986  0.0951  0.0916  

6 0.1468  0.1445  0.1420  0.1394  0.1367  0.1339  0.1311  0.1282  0.1252  0.1221  

7 0.1489  0.1486  0.1481  0.1474  0.1465  0.1454  0.1442  0.1428  0.1413  0.1396  

8 0.1321  0.1337  0.1351  0.1363  0.1373  0.1381  0.1388  0.1392  0.1395  0.1396  

9 0.1042  0.1070  0.1096  0.1121  0.1144  0.1167  0.1187  0.1207  0.1224  0.1241  

10 0.0740  0.0770  0.0800  0.0829  0.0858  0.0887  0.0914  0.0941  0.0967  0.0993  

11 0.0478  0.0504  0.0531  0.0558  0.0585  0.0613  0.0640  0.0667  0.0695  0.0722  

12 0.0283  0.0303  0.0323  0.0344  0.0366  0.0388  0.0411  0.0434  0.0457  0.0481  

13 0.0154  0.0168  0.0181  0.0196  0.0211  0.0227  0.0243  0.0260  0.0278  0.0296  

14 0.0078  0.0086  0.0095  0.0104  0.0113  0.0123  0.0134  0.0145  0.0157  0.0169  

15 0.0037  0.0041  0.0046  0.0051  0.0057  0.0062  0.0069  0.0075  0.0083  0.0090  

16 0.0016  0.0019  0.0021  0.0024  0.0026  0.0030  0.0033  0.0037  0.0041  0.0045  

17 0.0007  0.0008  0.0009  0.0010  0.0012  0.0013  0.0015  0.0017  0.0019  0.0021  

18 0.0003  0.0003  0.0004  0.0004  0.0005  0.0006  0.0006  0.0007  0.0008  0.0009  

19 0.0001  0.0001  0.0001  0.0002  0.0002  0.0002  0.0003  0.0003  0.0003  0.0004  

20 0.0000  0.0000  0.0001  0.0001  0.0001  0.0001  0.0001  0.0001  0.0001  0.0002  

21 0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0001  0.0001  
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Table T-9:  Selected Poisson probabilities (continued) 

     λ      

y 8.1  8.2  8.3  8.4  8.5  8.6  8.7  8.8  8.9  9.0  

0 0.0003  0.0003  0.0002  0.0002  0.0002  0.0002  0.0002  0.0002  0.0001  0.0001  

1 0.0025  0.0023  0.0021  0.0019  0.0017  0.0016  0.0014  0.0013  0.0012  0.0011  

2 0.0100  0.0092  0.0086  0.0079  0.0074  0.0068  0.0063  0.0058  0.0054  0.0050  

3 0.0269  0.0252  0.0237  0.0222  0.0208  0.0195  0.0183  0.0171  0.0160  0.0150  

4 0.0544  0.0517  0.0491  0.0466  0.0443  0.0420  0.0398  0.0377  0.0357  0.0337  

5 0.0882  0.0849  0.0816  0.0784  0.0752  0.0722  0.0692  0.0663  0.0635  0.0607  

6 0.1191  0.1160  0.1128  0.1097  0.1066  0.1034  0.1003  0.0972  0.0941  0.0911  

7 0.1378  0.1358  0.1338  0.1317  0.1294  0.1271  0.1247  0.1222  0.1197  0.1171  

8 0.1395  0.1392  0.1388  0.1382  0.1375  0.1366  0.1356  0.1344  0.1332  0.1318  

9 0.1256  0.1269  0.1280  0.1290  0.1299  0.1306  0.1311  0.1315  0.1317  0.1318  

10 0.1017  0.1040  0.1063  0.1084  0.1104  0.1123  0.1140  0.1157  0.1172  0.1186  

11 0.0749  0.0776  0.0802  0.0828  0.0853  0.0878  0.0902  0.0925  0.0948  0.0970  

12 0.0505  0.0530  0.0555  0.0579  0.0604  0.0629  0.0654  0.0679  0.0703  0.0728  

13 0.0315  0.0334  0.0354  0.0374  0.0395  0.0416  0.0438  0.0459  0.0481  0.0504  

14 0.0182  0.0196  0.0210  0.0225  0.0240  0.0256  0.0272  0.0289  0.0306  0.0324  

15 0.0098  0.0107  0.0116  0.0126  0.0136  0.0147  0.0158  0.0169  0.0182  0.0194  

16 0.0050  0.0055  0.0060  0.0066  0.0072  0.0079  0.0086  0.0093  0.0101  0.0109  

17 0.0024  0.0026  0.0029  0.0033  0.0036  0.0040  0.0044  0.0048  0.0053  0.0058  

18 0.0011  0.0012  0.0014  0.0015  0.0017  0.0019  0.0021  0.0024  0.0026  0.0029  

19 0.0005  0.0005  0.0006  0.0007  0.0008  0.0009  0.0010  0.0011  0.0012  0.0014  

20 0.0002  0.0002  0.0002  0.0003  0.0003  0.0004  0.0004  0.0005  0.0005  0.0006  

21 0.0001  0.0001  0.0001  0.0001  0.0001  0.0002  0.0002  0.0002  0.0002  0.0003  

22 0.0000  0.0000  0.0000  0.0000  0.0001  0.0001  0.0001  0.0001  0.0001  0.0001  
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Table T-9  Selected Poisson probabilities (continued) 

 λ 

y 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0 

0 0.0001  0.0001  0.0001  0.0001  0.0001  0.0001  0.0001  0.0001  0.0001  0.0000 

1 0.0010  0.0009  0.0009  0.0008  0.0007  0.0007  0.0006  0.0005  0.0005  0.0005 

2 0.0046  0.0043  0.0040  0.0037  0.0034  0.0031  0.0029  0.0027  0.0025  0.0023 

3 0.0140  0.0131  0.0123  0.0115  0.0107  0.0100  0.0093  0.0087  0.0081  0.0076 

4 0.0319  0.0302  0.0285  0.0269  0.0254  0.0240  0.0226  0.0213  0.0201  0.0189 

5 0.0581  0.0555  0.0530  0.0506  0.0483  0.0460  0.0439  0.0418  0.0398  0.0378 

6 0.0881  0.0851  0.0822  0.0793  0.0764  0.0736  0.0709  0.0682  0.0656  0.0631 

7 0.1145  0.1118  0.1091  0.1064  0.1037  0.1010  0.0982  0.0955  0.0928  0.0901 

8 0.1302  0.1286  0.1269  0.1251  0.1232  0.1212  0.1191  0.1170  0.1148  0.1126 

9 0.1317  0.1315  0.1311  0.1306  0.1300  0.1293  0.1284  0.1274  0.1263  0.1251 

10 0.1198  0.1210  0.1219  0.1228  0.1235  0.1241  0.1245  0.1249  0.1250  0.1251 

11 0.0991  0.1012  0.1031  0.1049  0.1067  0.1083  0.1098  0.1112  0.1125  0.1137 

12 0.0752  0.0776  0.0799  0.0822  0.0844  0.0866  0.0888  0.0908  0.0928  0.0948 

13 0.0526  0.0549  0.0572  0.0594  0.0617  0.0640  0.0662  0.0685  0.0707  0.0729 

14 0.0342  0.0361  0.0380  0.0399  0.0419  0.0439  0.0459  0.0479  0.0500  0.0521 

15 0.0208  0.0221  0.0235  0.0250  0.0265  0.0281  0.0297  0.0313  0.0330  0.0347 

16 0.0118  0.0127  0.0137  0.0147  0.0157  0.0168  0.0180  0.0192  0.0204  0.0217 

17 0.0063  0.0069  0.0075  0.0081  0.0088  0.0095  0.0103  0.0111  0.0119  0.0128 

18 0.0032  0.0035  0.0039  0.0042  0.0046  0.0051  0.0055  0.0060  0.0065  0.0071 

19 0.0015  0.0017  0.0019  0.0021  0.0023  0.0026  0.0028  0.0031  0.0034  0.0037 

20 0.0007  0.0008  0.0009  0.0010  0.0011  0.0012  0.0014  0.0015  0.0017  0.0019 

21 0.0003  0.0003  0.0004  0.0004  0.0005  0.0006  0.0006  0.0007  0.0008  0.0009 

22 0.0001  0.0001  0.0002  0.0002  0.0002  0.0002  0.0003  0.0003  0.0004  0.0004 

23 0.0000  0.0001  0.0001  0.0001  0.0001  0.0001  0.0001  0.0001  0.0002  0.0002 

24 0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0001  0.0001  0.0001 

 

 



Applying Statistics 
 

 

 

 556 

Table T-9  Selected Poisson probabilities (continued) 

 λ 

y 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 

0 0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  

1 0.0002  0.0001  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  

2 0.0010  0.0004  0.0002  0.0001  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  

3 0.0037  0.0018  0.0008  0.0004  0.0002  0.0001  0.0000  0.0000  0.0000  0.0000  

4 0.0102  0.0053  0.0027  0.0013  0.0006  0.0003  0.0001  0.0001  0.0000  0.0000  

5 0.0224  0.0127  0.0070  0.0037  0.0019  0.0010  0.0005  0.0002  0.0001  0.0001  

6 0.0411  0.0255  0.0152  0.0087  0.0048  0.0026  0.0014  0.0007  0.0004  0.0002  

7 0.0646  0.0437  0.0281  0.0174  0.0104  0.0060  0.0034  0.0019  0.0010  0.0005  

8 0.0888  0.0655  0.0457  0.0304  0.0194  0.0120  0.0072  0.0042  0.0024  0.0013  

9 0.1085  0.0874  0.0661  0.0473  0.0324  0.0213  0.0135  0.0083  0.0050  0.0029  

10 0.1194  0.1048  0.0859  0.0663  0.0486  0.0341  0.0230  0.0150  0.0095  0.0058  

11 0.1194  0.1144  0.1015  0.0844  0.0663  0.0496  0.0355  0.0245  0.0164  0.0106  

12 0.1094  0.1144  0.1099  0.0984  0.0829  0.0661  0.0504  0.0368  0.0259  0.0176  

13 0.0926  0.1056  0.1099  0.1060  0.0956  0.0814  0.0658  0.0509  0.0378  0.0271  

14 0.0728  0.0905  0.1021  0.1060  0.1024  0.0930  0.0800  0.0655  0.0514  0.0387  

15 0.0534  0.0724  0.0885  0.0989  0.1024  0.0992  0.0906  0.0786  0.0650  0.0516  

16 0.0367  0.0543  0.0719  0.0866  0.0960  0.0992  0.0963  0.0884  0.0772  0.0646  

17 0.0237  0.0383  0.0550  0.0713  0.0847  0.0934  0.0963  0.0936  0.0863  0.0760  

18 0.0145  0.0255  0.0397  0.0554  0.0706  0.0830  0.0909  0.0936  0.0911  0.0844  

19 0.0084  0.0161  0.0272  0.0409  0.0557  0.0699  0.0814  0.0887  0.0911  0.0888  

20 0.0046  0.0097  0.0177  0.0286  0.0418  0.0559  0.0692  0.0798  0.0866  0.0888  

21 0.0024  0.0055  0.0109  0.0191  0.0299  0.0426  0.0560  0.0684  0.0783  0.0846  

22 0.0012  0.0030  0.0065  0.0121  0.0204  0.0310  0.0433  0.0560  0.0676  0.0769  

23 0.0006  0.0016  0.0037  0.0074  0.0133  0.0216  0.0320  0.0438  0.0559  0.0669  

24 0.0003  0.0008  0.0020  0.0043  0.0083  0.0144  0.0226  0.0328  0.0442  0.0557  

25 0.0001  0.0004  0.0010  0.0024  0.0050  0.0092  0.0154  0.0237  0.0336  0.0446  

26 0.0000  0.0002  0.0005  0.0013  0.0029  0.0057  0.0101  0.0164  0.0246  0.0343  

27 0.0000  0.0001  0.0002  0.0007  0.0016  0.0034  0.0063  0.0109  0.0173  0.0254  

28 0.0000  0.0000  0.0001  0.0003  0.0009  0.0019  0.0038  0.0070  0.0117  0.0181  

29 0.0000  0.0000  0.0001  0.0002  0.0004  0.0011  0.0023  0.0044  0.0077  0.0125  

30 0.0000  0.0000  0.0000  0.0001  0.0002  0.0006  0.0013  0.0026  0.0049  0.0083  

31 0.0000  0.0000  0.0000  0.0000  0.0001  0.0003  0.0007  0.0015  0.0030  0.0054  

32 0.0000  0.0000  0.0000  0.0000  0.0001  0.0001  0.0004  0.0009  0.0018  0.0034  

33 0.0000  0.0000  0.0000  0.0000  0.0000  0.0001  0.0002  0.0005  0.0010  0.0020  

34 0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0001  0.0002  0.0006  0.0012  

35 0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0001  0.0003  0.0007  
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Table T-10:  Confidence limits for the Poisson parameter λ                       

(see Section 23.5) 

1 - α 0.998 0.99 0.95 0.90 

α/2 0.001 0.005 0.025 0.05 

y λL λU λL λU λL λU λL λU 

         0 0 6.9075 0 5.2983 0 3.6889 0 2.9957 

1 0.0011 9.2331 0.0051 7.4301 0.0251 5.5721 0.0511 4.7441 

2 0.0454 11.2287 0.1035 9.2738 0.2422 7.2247 0.3554 6.2958 

3 0.191 13.062 0.338 10.997 0.619 8.767 0.818 7.754 

4 0.429 14.794 0.672 12.594 1.09 10.242 1.366 9.154 

 
  

       
5 0.739 16.45 1.08 14.15 1.62 11.67 1.97 10.51 

6 1.11 18.06 1.54 15.66 2.2 13.06 2.61 11.84 

7 1.52 19.63 2.04 17.13 2.81 14.42 3.29 13.15 

8 1.97 21.16 2.57 18.58 3.45 15.76 3.98 14.43 

9 2.45 22.66 3.13 20 4.12 17.08 4.7 15.71 

 
  

       
10 2.96 24.13 3.72 21.4 4.8 18.39 5.43 16.96 

11 3.49 25.59 4.32 22.78 5.49 19.68 6.17 18.21 

12 4.04 27.03 4.94 24.14 6.2 20.96 6.92 19.44 

13 4.61 28.45 5.58 25.5 6.92 22.23 7.69 20.67 

14 5.2 29.85 6.23 26.84 7.65 23.49 8.46 21.89 

 
  

       
15 5.79 31.24 6.89 28.16 8.4 24.74 9.25 23.1 

16 6.41 32.62 7.57 29.48 9.15 25.98 10.04 24.3 

17 7.03 33.99 8.25 30.79 9.9 27.22 10.83 25.5 

18 7.66 35.35 8.94 32.09 10.67 28.45 11.63 26.69 

19 8.31 36.7 9.64 33.38 11.44 29.67 12.44 27.88 

 
  

       
20 8.96 38.04 10.35 34.67 12.22 30.89 13.25 29.06 

21 9.62 39.37 11.07 35.95 13 32.1 14.07 30.24 

22 10.29 40.7 11.79 37.22 13.79 33.31 14.89 31.41 

23 10.96 42.02 12.52 38.48 14.58 34.51 15.72 32.59 

24 11.65 43.33 13.25 39.74 15.38 35.71 16.55 33.75 

           
        

25 12.34 44.64 14 41 16.18 36.9 17.38 34.92 

26 13.03 45.94 14.74 42.25 16.98 38.1 18.22 36.08 

27 13.73 47.23 15.49 43.5 17.79 39.28 19.06 37.23 

28 14.44 48.52 16.25 44.74 18.61 40.47 19.9 38.39 

29 15.15 49.8 17 45.98 19.42 41.65 20.75 39.54 

 
  

       
30 15.87 51.08 17.77 47.21 20.24 42.83 21.59 40.69 

35 19.52 57.42 21.64 53.32 24.38 48.68 25.87 46.4 

40 23.26 63.66 25.59 59.36 28.58 54.47 30.2 52.07 

45 27.08 69.83 29.6 65.34 32.82 60.21 34.56 57.69 

50 30.96 75.94 33.66 71.27 37.11 65.92 38.96 63.29 
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Table T-11a:  Two-sided tolerance limit factors for a normal distribution 

(see Section 9.12) 

  γ = 0.90 γ = 0.95 γ = 0.99 

n π = 0.90 
π = 

0.95 
π = 0.99 π = 0.90 π = 0.95 π = 0.99 π = 0.90 π = 0.95 π = 0.99 

2 15.512 18.221 23.423 31.092 36.519 46.944 155.569 182.720 234.877 

3 5.788 6.823 8.819 8.306 9.789 12.647 18.782 22.131 28.586 

4 4.157 4.913 6.372 5.368 6.341 8.221 9.416 11.118 14.405 

5 3.499 4.142 5.387 4.291 5.077 6.598 6.655 7.870 10.220 
          

6 3.141 3.723 4.850 3.733 4.422 5.758 5.383 6.376 8.292 

7 2.913 3.456 4.508 3.390 4.020 5.241 4.658 5.520 7.191 

8 2.754 3.270 4.271 3.156 3.746 4.889 4.189 4.968 6.479 

9 2.637 3.132 4.094 2.986 3.546 4.633 3.860 4.581 5.980 

10 2.546 3.026 3.958 2.856 3.393 4.437 3.617 4.294 5.610 
          

12 2.414 2.871 3.759 2.670 3.175 4.156 3.279 3.896 5.096 

14 2.322 2.762 3.620 2.542 3.024 3.962 3.054 3.631 4.753 

16 2.254 2.682 3.517 2.449 2.913 3.819 2.89 3.441 4.507 

18 2.201 2.620 3.436 2.376 2.828 3.709 2.771 3.297 4.321 

20 2.158 2.570 3.372 2.319 2.760 3.621 2.675 3.184 4.175 
          

22 2.123 2.528 3.318 2.272 2.705 3.549 2.598 3.092 4.056 

24 2.094 2.494 3.274 2.232 2.658 3.489 2.534 3.017 3.958 

26 2.069 2.464 3.235 2.199 2.619 3.437 2.480 2.953 3.875 

28 2.048 2.439 3.202 2.170 2.585 3.393 2.434 2.898 3.804 

30 2.029 2.417 3.173 2.145 2.555 3.355 2.394 2.851 3.742 

35 1.991 2.371 3.114 2.094 2.495 3.276 2.314 2.756 3.618 
          

40 1.961 2.336 3.069 2.055 2.448 3.216 2.253 2.684 3.524 

45 1.938 2.308 3.032 2.024 2.412 3.168 2.205 2.627 3.450 

50 1.918 2.285 3.003 1.999 2.382 3.129 2.166 2.580 3.390 

60 1.888 2.250 2.956 1.960 2.335 3.068 2.106 2.509 3.297 

70 1.866 2.224 2.922 1.931 2.300 3.023 2.062 2.457 3.228 
          

80 1.849 2.203 2.895 1.908 2.274 2.988 2.028 2.416 3.175 

90 1.835 2.186 2.873 1.890 2.252 2.959 2.001 2.384 3.133 

100 1.823 2.172 2.855 1.875 2.234 2.936 1.978 2.357 3.098 

150 1.786 2.128 2.796 1.826 2.176 2.859 1.906 2.271 2.985 

200 1.764 2.102 2.763 1.798 2.143 2.816 1.866 2.223 2.921 
          

250 1.750 2.085 2.741 1.780 2.121 2.788 1.839 2.191 2.880 

300 1.740 2.073 2.725 1.767 2.106 2.767 1.820 2.169 2.850 

350 1.732 2.064 2.713 1.757 2.094 2.752 1.806 2.152 2.828 

400 1.726 2.057 2.703 1.749 2.084 2.739 1.794 2.138 2.810 
          

500 1.717 2.046 2.689 1.737 2.070 2.721 1.777 2.117 2.783 

1,000 1.695 2.019 2.654 1.709 2.036 2.676 1.736 2.068 2.718 

∞ 1.645 1.960 2.576 1.645 1.960 2.576 1.645 1.960 2.576 

Adapted from Odeh, R. E., and D. B. Owen, 1980, Tables for Normal Tolerance Limits, 

Sampling Plans, and Screening, Marcel Dekker, Inc., New York, NY with permission. 
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Table T-11b:  One-sided tolerance limit factors for a normal distribution 

(see Section 9.12) 

  γ = 0.90 γ = 0.95   γ = 0.99 

n π = 0.90 π = 0.95 π = 0.99 π = 0.90 π = 0.95 π = 0.99 π = 0.90 π = 0.95 π = 0.99 

2 10.253 13.090 18.500 20.581 26.260 37.094 103.029 131.426 185.617 

3 4.258 5.311 7.340 6.155 7.656 10.553 13.995 17.370 23.896 

4 3.188 3.957 5.438 4.162 5.144 7.042 7.380 9.083 12.387 

5 2.742 3.400 4.666 3.407 4.203 5.741 5.362 6.578 8.939 

          
6 2.494 3.092 4.243 3.006 3.708 5.062 4.411 5.406 7.335 

7 2.333 2.894 3.972 2.755 3.399 4.642 3.859 4.728 6.412 

8 2.219 2.754 3.783 2.582 3.187 4.354 3.497 4.285 5.812 

9 2.133 2.650 3.641 2.454 3.031 4.143 3.240 3.972 5.389 

10  2.066 2.568 3.532 2.355 2.911 3.981 3.048 3.738 5.074 

          
12 1.966 2.448 3.371 2.210 2.736 3.747 2.777 3.410 4.633 

14 1.895 2.363 3.257 2.109 2.614 3.585 2.596 3.189 4.337 

16 1.842 2.299 3.172 2.033 2.524 3.464 2.459 3.028 4.123 

18 1.800 2.249 3.105 1.974 2.453 3.370 2.357 2.905 3.960 

20 1.765 2.208 3.052 1.926 2.396 3.295 2.276 2.808 3.832 

          
22 1.737 2.174 3.007 1.886 2.349 3.233 2.209 2.729 3.727 

24 1.712 2.145 2.969 1.853 2.309 3.181 2.154 2.662 3.640 

26 1.691 2.120 2.937 1.824 2.275 3.136 2.106 2.606 3.566 

28 1.673 2.099 2.909 1.799 2.246 3.098 2.065 2.558 3.502 

30 1.657 2.080 2.884 1.777 2.220 3.064 2.030 2.515 3.447 

35 1.624 2.041 2.833 1.732 2.167 2.995 1.957 2.430 3.334 

          
40 1.598 2.010 2.793 1.697 2.125 2.941 1.902 2.364 3.249 

45 1.577 1.986 2.761 1.669 2.092 2.898 1.857 2.312 3.180 

50 1.559 1.965 2.735 1.646 2.065 2.862 1.821 2.269 3.125 

60 1.532 1.933 2.694 1.609 2.022 2.807 1.764 2.202 3.038 

70 1.511 1.909 2.662 1.581 1.990 2.765 1.722 2.153 2.974 

          
80 1.495 1.890 2.638 1.559 1.964 2.733 1.688 2.114 2.924 

90 1.481 1.874 2.618 1.542 1.944 2.706 1.661 2.082 2.883 

100 1.470 1.861 2.601 1.527 1.927 2.684 1.639 2.056 2.850 

150 1.433 1.818 2.546 1.478 1.870 2.611 1.566 1.971 2.740 

200 1.411 1.793 2.514 1.450 1.837 2.570 1.524 1.923 2.679 

          
250 1.397 1.777 2.493 1.431 1.815 2.542 1.496 1.891 2.638 

300 1.386 1.765 2.477 1.417 1.800 2.522 1.475 1.868 2.608 

350 1.378 1.755 2.466 1.406 1.787 2.506 1.461 1.850 2.585 

400 1.372 1.748 2.456 1.398 1.778 2.494 1.448 1.836 2.567 

          
500 1.362 1.736 2.442 1.385 1.763 2.475 1.430 1.814 2.540 

1,000 1.338 1.709 2.407 1.354 1.727 2.430 1.385 1.762 2.475 

∞ 1.282 1.645 2.326 1.282 1.645 2.326 1.282 1.645 2.326 

          

Adapted from Odeh, R. E., and D. B. Owen, 1980, Tables for Normal Tolerance Limits, 

Sampling Plans, and Screening, Marcel Dekker, Inc., New York, NY with permission.
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Table T-12:  Two thousand random digits 

 1-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40 41-45 46-50 

           

1 56580 93353 14830 88611 77491 94159 55682 61651 76278 90039 

2 82694 44512 56868 96549 97676 81145 51299 78324 87458 19158 

3 24300 89591 51838 78203 68168 64742 93755 56080 61768 16029 

4 69791 64849 47370 41245 59336 91731 78722 07645 56793 21081 

5 93678 10246 68835 27682 60318 07379 19157 12037 67776 07248 

           

6 07473 88205 27403 13619 74578 16637 14566 40858 58759 24621 

7 93255 94101 44641 53302 91743 92258 18179 07676 39974 51887 

8 28910 26516 25706 48056 50645 72581 84289 31997 18444 10330 

9 70419 62779 69059 74384 06975 92192 23660 33342 31465 83723 

10 95145 92735 91272 57287 53395 79920 93979 99456 85530 79258 

           

11 27054 06908 12502 66882 86941 37710 17092 53887 80494 09245 

12 60999 30405 16956 04938 51713 78369 91595 37502 22165 91337 

13 50513 14966 28936 51542 27276 40725 81142 10178 36861 32862 

14 14918 14251 63794 60699 44952 74709 24733 50845 64032 26115 

15 83143 72762 92850 34146 69102 21201 18647 69705 05843 24621 

           

16 44762 01384 61844 28710 93492 04594 99063 72617 63939 59104 

17 90525 13775 15676 30909 49632 93762 20406 59516 06116 45980 

18 65288 57500 42177 82255 52023 99471 15693 20134 89639 96221 

19 62309 36394 77163 92427 65271 89899 93288 15417 89998 13986 

20 90434 39040 29549 48332 12172 32711 98444 67332 49853 76770 

           

21 71192 17298 21629 28567 45628 99871 76063 03132 69163 92841 

22 39191 99240 40029 32771 39050 95144 07049 36518 08289 92136 

23 94055 84500 26272 27985 91858 60511 91802 13735 95525 04157 

24 10718 72291 26193 79285 29209 87962 13485 53738 08642 22828 

25 83134 62665 17823 13358 55677 84591 81232 50910 83995 93294 

           

26 93392 93965 88188 82628 68956 39247 89597 40521 17850 20716 

27 33193 11074 13299 70680 95082 67903 50078 55113 00057 29045 

28 65846 08032 65737 45903 25773 17815 58805 48617 93974 06308 

29 41773 34637 59350 31782 57933 15605 13648 93406 89275 97494 

30 43908 04150 37788 53587 05483 53569 96579 52470 42818 62589 

           

31 72367 74503 61417 67453 83903 43326 52742 77183 66826 28232 

32 93703 43522 26709 43846 47587 45688 67433 15227 37428 37437 

33 23622 70833 97297 07793 97656 24860 74883 77142 31451 12219 

34 06461 72197 26511 74964 54490 67611 54022 16892 80799 65864 

35 50175 29889 18630 20552 60114 20652 22881 79254 88917 85399 

           

36 10942 67178 93214 09890 51054 29666 10428 96478 88082 41255 

37 91159 14499 26915 90942 69215 23544 57355 11040 83574 10788 

38 88368 26257 43969 58835 92663 54980 50501 32510 94197 51546 

39 09587 55021 86738 51441 25297 44086 80012 07801 11944 44102 

40 46036 67486 53662 41233 76645 30871 17030 86671 49669 01711 
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Table T-13:  Quantiles, dq(n), of the Kolmugorov test statistic                    

(see Section 11.8) 

  Two-sided test     Two-sided test  

 p=0.80 0.90 0.95 0.98 0.99   p=0.80 0.90 0.95 0.98 0.99 

n=1 0.900 0.950 0.975 0.990 0.995  n=21 0.226 0.259 0.281 0.321 0.344 

2 0.684 0.776 0.842 0.900 0.929  22 0.221 0.253 0.281 0.314 0.337 

3 0.565 0.636 0.708 0.735 0.829  23 0.216 0.247 0.275 0.307 0.330 

4 0.493 0.565 0.624 0.639 0.734  24 0.212 0.242 0.269 0.301 0.323 

5 0.447 0.509 0.563 0.627 0.669  25 0.208 0.238 0.264 0.295 0.317 

6 0.410 0.468 0.519 0.577 0.617  26 0.204 0.233 0.259 0.290 0.311 

7 0.381 0.436 0.483 0.538 0.576  27 0.200 0.229 0.254 0.284 0.305 

8 0.358 0.410 0.454 0.507 0.542  28 0.197 0.225 0.250 0.279 0.300 

9 0.339 0.387 0.430 0.480 0.513  29 0.193 0.221 0.246 0.275 0.295 

10 0.323 0.369 0.409 0.457 0.489  30 0.190 0.218 0.242 0.270 0.290 

11 0.308 0.352 0.391 0.437 0.468  31 0.187 0.214 0.238 0.266 0.285 

12 0.296 0.338 0.375 0.419 0.449  32 0.184 0.211 0.234 0.262 0.281 

13 0.285 0.325 0.361 0.404 0.432  33 0.182 0.208 0.231 0.258 0.277 

14 0.275 0.314 0.349 0.390 0.418  34 0.179 0.205 0.227 0.254 0.273 

15 0.266 0.304 0.338 0.377 0.404  35 0.177 0.202 0.224 0.251 0.269 

16 0.258 0.295 0.327 0.366 0.392  36 0.174 0.199 0.221 0.247 0.265 

17 0.250 0.286 0.318 0.355 0.381  37 0.172 0.196 0.218 0.244 0.262 

18 0.244 0.279 0.309 0.346 0.371  38 0.170 0.194 0.215 0.241 0.258 

19 0.237 0.271 0.301 0.337 0.361  39 0.168 0.191 0.213 0.238 0.255 

20 0.232 0.265 0.294 0.329 0.352  40 0.165 0.189 0.210 0.235 0.252 

        p=.80 0.90 0.95 0.98 0.99 

    Approximation for n > 40 1.07 1.22 1.36 1.52 1.63 

        √n √n √n √n √n 

 
Conover, W. J., 1980, Practical Nonparametric Statistics, 2nd Ed., © John Wiley & 

Sons, Inc. Adapted from L. H. Miller, 1956, Journal of the American Statistical 

Association, 51: 111-121 (Appendix). Reprinted with the permission of John Wiley & 

Sons, Inc., and the American Statistical Association.  

 

The entries in this table are selected quantiles dq(n) of the Kolmogorov test statistic D for 

the two-sided test. Reject Ho at the level α if D exceeds the 1- α quantile given in this 

table. These quantiles are exact for n ≤ 40. A better approximation for n > 40 results if   

10n n /  is used instead of n  in the denominator.
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Table T-14:  Quantiles, D′q(n),  of the distribution of the D' statistic  
(see Section 11.10) 

n 

q 

0.005 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99 0.995 

50 93.82 94.58 95.6 96.41 97.24 100.9 101.1 101.3 101.4 101.5 

52 99.66 100.4 101.5 102.3 103.2 107.0 107.2 107.4 107.6 107.7 

54 105.6 106.4 107.5 108.4 109.3 113.2 113.5 113.7 113.9 113.9 

56 111.7 112.5 113.6 114.5 115.5 119.5 119.8 120 120.2 120.3 

58 117.9 118.7 119.9 120.8 121.8 126.0 126.3 126.5 126.7 126.8 

60 124.2 125.1 126.3 127.2 128.2 132.6 132.4 133.1 133.3 133.4 

62 130.6 131.5 132.7 133.7 134.7 139.2 139.6 139.8 140.0 140.2 

64 137.1 138.0 139.3 140.3 141.3 146.0 146.4 146.6 146.9 147.0 

66 143.7 144.7 146.0 147.0 148.0 152.9 153.3 153.5 153.8 153.9 

68 150.5 151.4 152.8 153.8 154.9 159.9 160.3 160.6 160.8 161.0 

70 157.3 158.3 159.6 160.7 161.8 167.0 167.4 167.7 168.0 168.1 

72 164.3 165.3 166.6 167.7 168.9 174.2 174.6 174.9 175.2 175.4 

74 171.3 172.3 173.7 174.8 176.0 181.5 181.9 182.2 182.5 182.7 

76 178.4 179.5 180.9 182.0 183.3 188.9 189.3 189.7 190.0 190.2 

78 185.7 186.7 188.2 189.4 190.6 196.4 196.8 197.2 197.5 197.7 

80 193.0 194.1 195.6 196.8 198.0 204.0 204.4 204.8 205.1 205.4 

82 200.4 201.5 203.1 204.3 205.6 211.6 212.1 212.5 212.9 213.1 

84 207.9 209.1 210.6 211.9 213.2 219.4 219.9 220.3 220.7 220.9 

86 215.5 216.7 218.3 219.6 220.9 227.3 227.8 228.2 228.6 228.8 

88 223.3 224.4 226.1 227.3 228.7 235.2 235.8 236.2 236.6 236.8 

90 231.1 232.2 233.9 235.2 236.6 243.3 243.8 244.3 244.7 245.0 

92 238.9 240.2 241.8 243.2 244.6 251.4 252.0 252.4 252.9 253.2 

94 246.9 248.1 249.9 251.2 252.7 259.6 260.2 260.7 261.2 261.4 

96 255.0 256.2 258.0 259.3 260.8 268.0 268.6 269.1 269.5 269.8 

98 263.1 264.4 266.2 267.6 269.1 276.4 277.0 277.5 278.0 278.3 

100 271.4 272.7 274.4 275.9 277.4 284.9 285.5 286.0 286.5 286.8 

120 358.2 359.7 361.8 363.5 365.3 374.2 375.1 375.7 376.4 376.8 

140 452.9 454.6 456.9 458.8 460.9 471.4 472.4 473.2 474.0 474.5 

160 554.7 556.6 559.2 561.4 563.7 575.7 576.9 577.8 578.8 579.4 

180 663.2 665.3 668.2 670.6 673.1 686.7 688.1 689.2 690.3 691.0 

200 778.1 780.4 783.6 786.1 788.9 804.1 805.6 806.9 808.2 809.0 

220 899.0 901.4 904.9 907.7 910.7 927.4 929.1 930.5 932.0 933.0 

240 1026 1028 1032 1035 1038 1056 1058 1060 1062 1063 

260 1158 1160 1164 1168 1171 1191 1193 1195 1197 1198 

280 1295 1298 1302 1306 1309 1331 1333 1335 1337 1338 

300 1437 1440 1445 1449 1453 1475 1478 1480 1482 1484 

320 1585 1588 1593 1597 1601 1625 628 1630 1632 1634 

340 1737 1740 1745 1749 1754 1780 1783 1785 1787 1789 

360 1893 1897 1902 1907 1911 1939 1942 1944 1947 1949 

380 2054 2058 2064 2068 2070 2102 2105 2108 2111 2113 

400 2220 2224 2230 2234 2240 2270 2274 2276 2279 2281 

420 2389 2394 2400 2405 2410 2442 2446 2449 2452 2454 

This material is reproduced from ANSI N15.15-1974(R1981) with permission of the American 
National Standards Institute (ANSI) and the Institute of Nuclear Materials Management (INMM). 
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Table T-14:  Quantiles, D′q(n),  of the distribution of the D' statistic (Cont’d) 

     q      

n 0.005 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99 0.995 

440 2563 2568 2574 2579 2585 2618 2622 2625 2629 2631 

460 2741 2746 2752 2758 2763 2799 2803 2806 2810 2812 

480 2923 2928 2934 2940 2946 2983 2987 2991 2994 2997 

500 3108 3113 3120 3126 3133 3171 3175 3179 3183 3186 

520 3298 3303 3310 3316 3323 3363 3367 3371 3375 3378 

540 3491 3496 3504 3510 3517 3558 3563 3567 3572 3574 

560 3688 3693 3701 3707 3715 3757 3762 3767 3771 3774 

580 3888 3894 3902 3908 3916 3960 3965 3970 3975 3978 

600 4092 4098 4106 4113 4121 4166 4172 4176 4181 4185 

620 4299 4305 4314 4321 4329 4376 4382 4387 4392 4395 

640 4510 4516 4525 4532 4540 4589 4595 4600 4605 4609 

660 4724 4730 4739 4747 4755 4806 4812 4817 4823 4826 

680 4941 4948 4957 4965 4974 5026 5032 5037 5043 5047 

700 5162 5169 5178 5186 5195 5249 5255 5260 5266 5270 

720 5386 5393 5403 5411 5420 5475 5482 5487 5493 5497 

740 5613 5620 5630 5638 5648 5704 5711 5717 5723 5727 

760 5843 5850 5861 5869 5879 5937 5944 5950 5956 5961 

780 6076 6084 6094 6103 6113 6172 6180 6186 6192 6197 

800 6312 6320 6331 6340 6350 6411 6418 6425 6432 6436 

850 6916 6924 6935 6945 6955 7020 7028 7035 7042 7047 

900 7538 7546 7558 7568 7579 7648 7656 7664 7672 7677 

950 8177 8186 8198 8209 8221 8293 8302 8310 8318 8324 

1000 8834 8843 8856 8867 8879 8956 8965 8973 8982 8988 

1050 9507 9516 9530 9542 9555 9635 9645 9653 9663 9669 

1100 10200 10210 10220 10230 10250 10330 10340 10350 10360 10370 

1150 10900 10910 10930 10940 10950 11040 11050 11060 11070 11080 

1200 11620 11630 11650 11660 11680 11770 11780 11790 11800 11810 

1250 12360 12370 12390 17400 12420 12510 12520 12530 12540 12550 

1300 13110 13120 13140 13150 13170 13270 13280 13290 13300 13310 

1350 13880 13890 13910 13920 13940 14040 14050 14060 14080 14090 

1400 14660 14670 14690 14700 14720 14830 14840 14850 14860 14870 

1450 15450 15460 15480 15500 15520 15630 15640 15650 15670 15680 

1500 16260 16270 16290 16310 16330 16440 16460 16470 16480 16490 

1550 17080 17100 17120 17130 17150 17270 17280 17300 17310 17320 

1600 17920 17930 17950 17970 17990 18110 18130 18140 18160 18170 

1650 18770 18780 18800 18820 18840 18970 18980 19000 19010 19020 

1700 19630 19640 19670 19680 19700 19830 19850 19860 19880 19890 

1750 20500 20520 20540 20560 20580 20710 20730 20750 20760 20770 

1800 21390 21410 21430 21450 21470 21610 21630 21640 21660 21670 

1850 22290 22310 22330 22350 22370 22510 22530 22550 22560 22580 

1900 23200 23220 23240 23260 23290 23430 23450 23470 23480 23500 

1950 24130 24140 24170 24190 24210 24360 24380 24400 24420 24430 

2000 25060 25080 25110 25130 25150 25300 25320 25340 25360 25370 
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Table T-15:  Cumulative probabilities Pr{U ≤ u} of the number of runs u in 

a sample of size n1 + n2, where n1 is the number of plus signs and n2 is the 

number of minus signs (see Section 25.3) 

     u     

(n1, n2)  2 3 4 5 6 7 8 9 10 

(2, 3) 0.200 0.500 0.900 1.000      

(2, 4) 0.133 0.400 0.800 1.000      

(2, 5) 0.095 0.333 0.714 1.000      

(2, 6) 0.071 0.286 0.643 1.000      

(2, 7) 0.056 0.250 0.583 1.000      

(2, 8) 0.044 0.222 0.533 1.000      

(2, 9) 0.036 0.200 0.491 1.000      

(2, 10) 0.030 0.182 0.455 1.000      

(3. 3) 0.100 0.300 0.700 0.900 1.000     

(3, 4) 0.057 0.200 0.543 0.800 0.971 1.000    

(3, 5) 0.036 0.143 0.429 0.714 0.929 1.000    

(3, 6) 0.024 0.107 0.345 0.643 0.881 1.000    

(3, 7) 0.017 0.083 0.283 0.583 0.833 1.000    

(3, 8) 0.012 0.067 0.236 0.533 0.788 1.000    

(3, 9) 0.009 0.055 0.200 0.491 0.745 1.000    

(3, 10) 0.007 0.045 0.171 0.455 0.706 1.000    

(4, 4) 0.029 0.114 0.371 0.629 0.886 0.971 1.000   

(4, 5) 0.016 0.071 0.262 0.500 0.786 0.929 0.992 1.000  

(4, 6) 0.010 0.048 0.190 0.405 0.690 0.881 0.976 1.000  

(4, 7) 0.006 0.033 0.142 0.333 0.606 0.833 0.954 1.000  

(4, 8) 0.004 0.024 0.109 0.279 0.533 0.788 0.929 1.000  

(4, 9) 0.003 0.018 0.085 0.236 0.471 0.745 0.902 1.000  

(4, 10) 0.002 0.014 0.068 0.203 0.419 0.706 0.874 1.000  

(5, 5) 0.008 0.040 0.167 0.357 0.643 0.833 0.960 0.992 1.000 

(5, 6) 0.004 0.024 0.110 0.262 0.522 0.738 0.911 0.976 0.998 

(5, 7) 0.003 0.015 0.076 0.197 0.424 0.652 0.854 0.955 0.992 

(5, 8) 0.002 0.010 0.054 0.152 0.347 0.576 0.793 0.929 0.984 

(5, 9) 0.001 0.007 0.039 0.119 0.287 0.510 0.734 0.902 0.972 

(5, 10) 0.001 0.005 0.029 0.095 0.239 0.455 0.678 0.874 0.958 

(6, 6) 0.002 0.013 0.067 0.175 0.392 0.608 0.825 0.933 0.987 

(6, 7) 0.001 0.008 0.043 0.121 0.296 0.500 0.733 0.879 0.966 

(6, 8) 0.001 0.005 0.028 0.086 0.226 0.413 0.646 0.821 0.937 

(6, 9) 0.000 0.003 0.019 0.063 0.175 0.343 0.566 0.762 0.902 

(6, 10) 0.000 0.002 0.013 0.047 0.137 0.288 0.497 0.706 0.864 

(7, 7) 0.001 0.004 0.025 0.078 0.209 0.383 0.617 0.791 0.922 

(7, 8) 0.000 0.002 0.015 0.051 0.149 0.296 0.514 0.704 0.867 

(7, 9) 0.000 0.001 0.010 0.035 0.108 0.231 0.427 0.622 0.806 

(7, 10) 0.000 0.001 0.006 0.024 0.080 0.182 0.355 0.549 0.743 

(8, 8) 0.000 0.001 0.009 0.032 0.100 0.214 0.405 0.595 0.786 

(8, 9) 0.000 0.001 0.005 0.022 0.069 0.157 0.319 0.500 0.702 

(8, 10) 0.000 0.000 0.003 0.013 0.048 0.117 0.251 0.419 0.621 

(9, 9) 0.000 0.000 0.003 0.012 0.044 0.109 0.238 0.399 0.601 

(9, 10) 0.000 0.000 0.002 0.008 0.029 0.077 0.179 0.319 0.510 

(10, 10) 0.000 0.000 0.001 0.004 0.019 0.051 0.128 0.242 0.414 
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Table T-15:  Cumulative probabilities Pr{U ≤ u} of the number of runs u in 

a sample of size n1 + n2 (Continued) 

     u      

(n1, n2)  11 12 13 14 15 16 17 18 19 20 

(5, 6) 1.000          

(5, 7) 1.000          

(5, 8) 1.000          

(5, 9) 1.000          

(5, 10) 1.000          

(6, 6) 0.998 1.000         

(6, 7) 0.992 0.999 1.000        

(6, 8) 0.984 0.998 1.000        

(6, 9) 0.972 0.994 1.000        

(6, 10) 0.958 0.990 1.000        

(7, 7) 0.975 0.996 0.999 1.000       

(7, 8) 0.949 0.988 0.998 1.000 1.000      

(7, 9) 0.916 0.975 0.994 0.999 1.000      

(7, 10) 0.879 0.957 0.990 0.998 1.000      

(8, 8) 0.900 0.968 0.991 0.999 1.000 1.000     

(8, 9) 0.843 0.939 0.980 0.996 0.999 1.000 1.000    

(8, 10) 0.782 0.903 0.964 0.990 0.998 1.000 1.000    

(9, 9) 0.762 0.891 0.956 0.988 0.997 1.000 1.000 1.000   

(9, 10) 0.681 0.834 0.923 0.974 0.992 0.999 1.000 1.000 1.000  

(10, 10) 0.586 0.758 0.872 0.949 0.981 0.996 0.999 1.000 1.000 1.000 

           

 

Reprinted with the permission of the Institute of Mathematical Statistics.  

 
 Although probabilities are given for (n1, n2) with n1, ≤ n2, the table is symmetric, and can 

be used for (n1, n2) with (n1> n2) 
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 Table T-16:  Quantiles, Wq, of the Wilcoxon signed ranks test statistic              

(see Section 25.5) 

 w0.005 w0.01 w0.025 w0.05 w0.10 w0.20 w0.30 w0.40 w0.50 n(n+1)/2 

n = 4 0 0 0 0 1 3 3 4 5 10 

5 0 0 0 1 3 4 5 6 7.5 15 

6 0 0 1 3 4 6 8 9 10.5 21 

7 0 1 3 4 6 9 11 12 14 28 

8 1 2 4 6 9 12 14 16 18 36 

9 2 4 6 9 11 15 18 20 22.5 45 

10 4 6 9 11 15 19 22 25 27.5 55 

11 6 8 11 14 18 23 27 30 33 66 

12 8 10 14 18 22 28 32 36 39 78 

13 10 13 18 22 27 33 38 42 45.5 91 

14 13 16 22 26 32 39 44 48 52.5 105 

15 16 20 26 31 37 45 51 55 60 120 

16 20 24 30 36 43 51 58 63 68 136 

17 24 28 35 42 49 58 65 71 76.5 153 

18 28 33 41 48 56 66 73 80 85.15 171 

19 33 38 47 54 63 74 82 89 95 190 

20 38 44 53 61 70 83 91 98 105 210 

21 44 50 59 68 78 91 100 108 115.5 231 

22 49 56 67 76 87 100 110 119 126.5 253 

23 55 63 74 84 95 110 120 130 138 276 

24 62 70 82 92 105 120 131 141 150 300 

25 69 77 90 101 114 131 143 153 162.5 325 

26 76 85 99 111 125 142 155 165 175.5 351 

27 84 94 108 120 135 154 167 178 189 378 

28 92 102 117 131 146 166 180 192 203 406 

29 101 111 127 141 158 178 193 206 217.5 435 

30 110 121 138 152 170 191 207 220 232.5 465 

31 119 131 148 164 182 205 221 235 248 496 

32 129 141 160 176 195 219 236 250 264 528 

33 139 152 171 188 208 233 251 266 280.5 561 

34 149 163 183 201 222 248 266 282 297.5 595 

35 160 175 196 214 236 263 283 299 315 630 

36 172 187 209 228 251 279 299 317 333 666 

37 184 199 222 242 266 295 316 335 351.5 703 

38 196 212 236 257 282 312 334 353 370.5 741 

39 208 225 250 272 298 329 352 372 390 780 

40 221 239 265 287 314 347 371 391 410 820 

41 235 253 280 303 331 365 390 411 430.5 861  

42 248 267 295 320 349 384 409 431 451.5 903 

43 263 282 311 337 366 403 429 452 473 946 

44 277 297 328 354 385 422 450 473 495 990 

45 292 313 344 372 403 442 471 495 517.5 1035 

46 308 329 362 390 423 463 492 517 540.5 1081 

47 324 346 379 408 442 484 514 540 564 1128 

48 340 363 397 428 463 505 536 563 588 1176 

49 357 381 416 447 483 527 559 587 612.5 1225 

50 374 398 435 467 504 550 583 611 637.5 1275 
           

Reprinted with the permission of the American Statistical Association  
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Table T-17:  Quantiles, wq(n, m), of the Wilcoxon rank sum (WRS) Statistic   

(see Section 25.8) 

          m           

n  wq 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

                     

2 0.001 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

 0.005 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 

 0.01 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 5 5 

 0.025 3 3 3 3 3 3 4 4 4 5 5 5 5 5 5 6 6 6 6 

 0.05 3 3 3 4 4 4 5 5 5 5 6 6 7 7 7 7 8 8 8 

 0.1 3 4 4 5 5 5 6 6 7 7 8 8 8 9 9 10 10 11 11 

                     

3 0.001 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 

 0.005 6 6 6 6 6 6 6 7 7 7 8 8 8 9 9 9 9 10 10 

 0.01 6 6 6 6 6 7 7 8 8 8 9 9 9 10 10 11 11 11 12 

 0.025 6 6 6 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 

 0.05 6 7 7 8 9 9 10 11 11 12 12 13 14 14 15 16 16 17 18 

 0.1 7 8 8 9 10 11 12 12 13 14 15 16 17 17 18 19 20 21 22 

                     

4 0.001 10 10 10 10 10 10 10 10 11 11 11 12 12 12 13 13 14 14 14 

 0.005 10 10 10 10 11 11 12 12 13 13 14 14 15 16 16 17 17 18 19 

 0.01 10 10 10 11 12 12 13 14 14 15 16 16 17 18 18 19 20 20 21 

 0.025 10 10 11 12 13 14 15 15 16 17 18 19 20 21 22 22 23 24 25 

 0.05 10 11 12 13 14 15 16 17 18 19 20 21 22 23 25 26 27 28 29 

 0.1 11 12 14 15 16 17 18 20 21 22 23 24 26 27 28 29 31 32 33 

                     

5 0.001 15 15 15 15 15 15 16 17 17 18 18 19 19 20 21 21 22 23 23 

 0.005 15 15 15 16 17 17 18 19 20 21 22 23 23 24 25 26 27 28 29 

 0.01 15 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

 0.025 15 16 17 18 19 21 22 23 24 25 27 28 29 30 31 33 34 35 36 

 0.05 16 17 18 20 21 22 24 25 27 28 29 31 32 34 35 36 38 39 41 

 0.1 17 18 20 21 23 24 26 28 29 31 33 34 36 38 39 41 43 44 46 

                     

6 0.001 21 21 21 21 21 21 23 24 25 26 26 27 28 -29 30 31 32 33 34 

 0.005 21 21 22 23 24 25 26 27 28 29 31 32 33 34 35 37 38 39 40 

 0.01 21 21 23 24 25 26 28 29 30 31 33 34 35 37 38 40 41 42 44 

 0.025 21 23 24 25 27 28 30 32 33 35 36 38 39 41 43 44 46 47 49 

 0.05 22 24 25 27 29 30 32 34 36 38 39 41 43 45 47 48 50 52 54 

 0.1 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 56 58 60 
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Table T-17:  Quantiles, wq(n, m), of the Wilcoxon rank sum(WRS) Statistic 
(Continued) 

          m           

n  wq 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

                     

7 0.001 28 28 28 28 29 30 31 32 34 35 36 37 38 39 40 42 43 44 45 

 0.005 28 28 29 30 32 33 35 36 38 39 41 42 44 45 47 48 50 51 53 

 0.01 28 29 30 32 33 35 36 38 40 41 43 45 46 48 50 52 53 55 57 

 0.025 28 30 32 34 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 

 0.05 29 31 33 35 37 40 42 44 46 48 50 53 55 57 59 62 64 66 68 

 0.1 30 33 35 37 40 42 45 47 50 52 55 57 60 62 65 67 70 72 75 

                     

8 0.001 36 36 36 37 38 39 41 42 43 45 46 48 49 51 52 54 55 57 58 

 0.005 36 36 38 39 41 43 44 46 48 50 52 54 55 57 59 61 63 65 67 

 0.01 36 37 39 41 43 44 46 48 50 52 54 56 59 61 63 65 67 69 71 

 0.025 37 39 41 43 45 47 50 52 54 56 59 61 63 66 68 71 73 75 78 

 0.05 38 40 42 45 47 50 52 55 57 60 63 65 68 70 73 76 78 81 84 

 0.1 39 42 44 47 50 53 56 59 61 64 67 70 73 76 79 82 85 88 91 

                     

9 0.001 45 45 45 47 48 49 51 53 54 56 58 60 61 63 65 67 69 71 72 

 0.005 45 46 47 49 51 53 55 57 59 62 64 66 68 70 73 75 77 79 82 

 0.01 45 47 49 51 53 55 57 60 62 64 67 69 72 74 77 79 82 84 86 

 0.025 46 48 50 53 56 58 61 63 66 69 72 74 77 80 83 85 88 91 94 

 0.05 47 50 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100 

 0.1 48 51 55 58 61 64 68 71 74 77 81 84 87 91 94 98 101 104 108 

                     

10 0.001 55 55 56 57 59 61 62 64 66 68 70 73 75 77 79 81 83 85 88 

 0.005 55 56 58 60 62 65 67 69 72 74 77 80 82 85 87 90 93 95 98 

 0.01 55 57 59 62 64 67 69 72 75 78 80 83 86 89 92 94 97 100 103 

 0.025 56 59 61 64 67 70 73 76 79 82 85 89 92 95 98 101 104 108 111 

 0.05 57 60 63 67 70 73 76 80 83 87 90 93 97 100 104 107 111 114 118 

 0.1 59 62 66 69 73 77 80 84 88 92 95 99 103 107 110 114 118 122 126 
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Table T-17:  Quantiles, wq(n, m), of the Wilcoxon rank sum(WRS) Statistic 
(Continued) 

         m            

n  wq 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

                     

11 0.001 66 66 67 69 71 73 75 77 79 82 84 87 89 91 94 96 99 101 104 

 0.005 66 67 69 72 74 77 80 83 85 88 91 94 97 100 103 106 109 112 115 

 0.01 66 68 71 74 76 79 82 85 89 92 95 98 101 104 108 111 114 117 120 

 0.025 67 70 73 76 80 83 86 90 93 97 100 104 107 111 114 118 122 125 129 

 0.05 68 72 75 79 83 86 90 94 98 101 105 109 113 117 121 124 128 132 136 

 0.1 70 74 78 82 86 90 94 98 103 107 111 115 119 124 128 132 136 140 145 

                     

12 0.001 78 78 79 81 83 86 88 91 93 96 98 102 104 106 110 113 116 118 121 

 0.005 78 80 82 85 88 91 94 97 100 103 106 110 113 116 120 123 126 130 133 

 0.01 78 81 84 87 90 93 96 100 103 107 110 114 117 121 125 128 132 135 139 

 0.025 80 83 86 90 93 97 101 105 108 112 116 120 124 128 132 136 140 144 148 

 0.05 81 84 88 92 96 100 105 109 111 117 121 126 130 134 139 143 147 151 156 

 0.1 83 87 91 96 100 105 109 114 118 123 128 132 137 142 146 151 156 160 165 

                     

13 0.001 91 91 93 95 97 100 103 106 109 112 115 118 121 124 127 130 134 137 140 

 0.005 91 93 95 99 102 105 109 112 116 119 123 126 130 134 137 141 145 149 152 

 0.01 92 94 97 101 104 108 112 115 119 123 127 131 135 139 143 147 151 155 159 

 0.025 93 96 100 104 108 112 116 120 125 129 133 137 142 146 151 155 159 164 168 

 0.05 94 98 102 107 111 116 120 125 129 134 139 143 148 153 157 162 167 172 176 

 0.1 96 101 105 110 115 120 125 130 135 140 145 150 155 160 166 171 176 181 186 

                     

14 0.001 105 105 107 109 112 115 118 121 125 128 131 135 138 142 145 149 152 156 160 

 0.005 105 107 110 113 117 121 124 128 132 136 140 144 148 152 156 160 164 169 173 

 0.01 106 108 112 116 119 123 128 132 136 140 144 149 153 157 162 166 171 175 179 

 0.025 107 111 115 119 123 128 132 137 142 146 151 156 161 165 170 175 180 184 189 

 0.05 109 113 117 122 127 132 137 142 147 152 157 162 167 172 177 183 188 193 198 

 0.1 110 116 121 126 131 137 142 147 153 158 164 169 175 180 186 191 197 203 208 
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Table T-17:  Quantiles, wq(n, m), of the Wilcoxon rank sum(WRS) Statistic 
(Continued) 

           m          

n  wq 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
                     

15 0.001 120 120 122 125 128 133 135 138 142 145 149 153 157 161 164 168 172 176 180 

 0.005 120 123 126 129 133 137 141 145 150 154 158 163 167 172 176 181 185 190 194 

 0.01 121 124 128 132 136 140 145 149 154 158 163 168 172 177 182 187 191 196 201 

 0.025 122 126 131 135 140 145 150 155 160 165 170 175 180 185 191 196 201 206 211 

 0.05 124 128 133 139 144 149 154 160 165 171 176 182 187 193 198 204 209 215 221 

 0.1 126 131 137 143 148 154 160 166 172 178 184 189 195 201 207 213 219 225 231 
                     

16 0.001 136 136 139 142 145 148 152 156 160 164 168 172 176 180 185 189 193 197 202 

 0.005 136 139 142 146 150 155 159 164 168 173 178 182 187 192 197 202 207 211 216 

 0.01 137 140 144 149 153 158 163 168 173 178 183 188 193 198 203 208 213 219 224 

 0.025 138 143 148 152 158 163 168 174 179 184 190 196 201 207 212 218 223 229 235 

 0.05 140 145 151 156 162 167 173 179 185 191 197 202 208 214 220 226 232 238 244 

 0.1 142 148 154 160 166 173 179 185 191 198 204 211 217 223 230 236 243 249 256 
                     

17 0.001 153 154 156 159 163 167 171 175 179 183 188 192 197 201 206 211 215 220 224 

 0.005 153 156 160 164 169 173 178 183 188 193 198 203 208 214 219 224 229 235 240 

 0.01 154 158 162 167 172 177 182 187 192 198 203 209 214 220 225 231 236 242 247 

 0.025 156 160 165 171 176 182 188 193 199 205 211 217 223 229 235 241 247 253 259 

 0.05 157 163 169 174 180 187 193 199 205 211 218 224 231 237 243 250 256 263 269 

 0.1 160 166 172 179 185 192 199 206 212 219 226 233 239 246 253 260 267 274 281 
                     

18 0.001 171 172 175 178 182 186 190 195 199 204 209 214 218 223 228 233 238 243 248 

 0.005 171 174 178 183 188 193 198 203 209 214 219 225 230 236 242 247 253 259 264 

 0.01 172 176 181 186 191 196 202 208 213 219 225 231 237 242 248 254 260 266 272 

 0.025 174 179 184 190 196 202 208 214 220 227 233 239 246 252 258 265 271 278 284 

 0.05 176 181 188 194 200 207 213 220 227 233 240 247 254 260 267 274 281 288 295 

 0.1 178 185 192 199 206 213 220 227 234 241 249 256 263 270 278 285 292 300 307 
                     

19 0.001 190 191 194 198 202 206 211 216 220 225 231 236 241 246 251 257 262 268 273 

 0.005 191 194 198 203 208 213 219 224 230 236 242 248 254 260 265 272 278 284 290 

 0.01 192 195 200 206 211 217 223 229 235 241 247 254 260 266 273 279 285 292 298 

 0.025 193 198 204 210 216 223 229 236 243 249 256 263 269 276 283 290 297 304 310 

 0.05 195 201 208 214 221 228 235 242 249 256 263 271 278 285 292 300 307 314 321 

 0.1 198 205 212 219 227 234 242 249 257 264 272 280 288 295 303 311 319 326 334 
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Table T-17:  Quantiles, wq(n, m), of the Wilcoxon rank sum(WRS) Statistic 
(Continued) 

          m           

n  wq 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

                     

20 0.001 210 211 214 218 223 227 232 237 243 248 253 259 265 270 276 281 287 293 299 

 0.005 211 214 219 224 229 235 241 247 253 259 265 271 278 284 290 297 303 310 316 

 0.01 212 216 221 227 233 239 245 251 258 264 271 278 284 291 298 304 311 318 325 

 0.025 213 219 225 231 238 245 251 259 266 273 280 287 294 301 309 316 323 330 338 

 0.05 215 222 229 236 243 250 258 265 273 280 288 295 303 311 318 326 334 341 349 

 0.1 218 226 233 241 249 257 265 273 281 289 297 305 313 321 330 338 346 354 362 

 
Conover, W. J., 1980, Practical Nonparametric Statistics, 2nd Ed., © 1980, John Wiley 

& Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.,  
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Table T-18:  Quantiles of the Squared Ranks statistic (see Section 25.13) 

     m     

n p 3 4 5 6 7 9 9 10 
          

3 0.005 14 14 14 14 14 14 21 21 

 0.01 14 14 14 14 21 21 26 26 

 0.025 14 14 21 26 29 30 35 41 

 0.05 21 21 26 30 38 42 49 54 

 0.1 26 29 35 42 50 59 69 77 

 0.9 65 90 117 149 182 221 260 305 

 0.95 70 101 129 161 197 238 285 333 

 0.975 77 110 138 170 213 257 308 362 

 0.99 77 110 149 194 230 285 329 394 

 0.995 77 110 149 194 245 302 346 413 
          

4 0.005 30 30 30 39 39 46 50 54 

 0.01 30 30 39 46 50 51 62 66 

 0.025 30 39 50 54 63 71 78 90 

 0.05 39 50 57 66 78 90 102 114 

 0.1 50 62 71 85 99 114 130 149 

 0.9 111 142 182 222 270 321 375 435 

 0.95 119 154 197 246 294 350 413 476 

 0.975 126 165 206 255 311 374 439 510 

 0.99 126 174 219 270 334 401 470 545 

 0.995 126 174 230 281 351 414 494 567 
          

5 0.005 55 55 66 75 79 88 99 110 

 0.01 55 66 75 82 90 103 115 127 

 0.025 66 79 88 100 114 130 145 162 

 0.05 75 88 103 120 135 155 175 195 

 0.1 87 103 121 142 163 187 212 239 

 0.9 169 214 264 319 379 445 514 591 

 0.95 178 228 282 342 410 479 558 639 

 0.975 183 235 297 363 433 508 592 680 

 0.99 190 246 310 382 459 543 631 727 

 0.995 190 255 319 391 478 559 654 754 
          

6 0.005 91 104 115 124 136 152 167 182 

 0.01 91 115 124 139 155 175 191 210 

 0.025 115 130 143 164 184 208 231 255 

 0.05 124 139 164 187 211 239 268 299 

 0.1 136 163 187 215 247 280 315 352 

 0.9 243 300 364 435 511 592 679 772 

 0.95 255 319 386 463 545 634 730 831 

 0.975 259 331 406 486 574 670 771 880 

 0.99 271 339 424 511 607 706 817 935 

 0.995 271 346 431 526 624 731 847 970 
          

7 0.005 140 155 172 195 212 235 257 280 

 0.01 155 172 191 212 236 260 287 315 

 0.025 172 195 217 245 274 305 338 372 

 0.05 188 212 240 274 308 344 384 425 

 0.1 203 236 271 308 350 394 440 489 

 0.9 335 407 487 572 665 764 871 984 

 0.95 347 428 515 608 707 814 929 1051 

 0.975 356 443 536 635 741 $56 979 1108 

 0.99 364 456 560 664 779 900 1032 1172 

 0.995 371 467 571 683 803 929 1067 1212 
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Table T-18:  Quantiles of the Squared Ranks statistic (Continued) 

     m     

n p 3 4 5 6 7 8 9 10 
          

8 0.005 204 236 260 284 311 340 368 401 

 0.01 221 249 276 309 340 372 408 445 

 0.025 249 276 311 345 384 425 468 513 

 0.05 268 300 340 381 426 473 524 576 

 0.1 285 329 374 423 476 531 590 652 

 0.9 447 536 632 735 846 965 1091 1224 

 0.95 464 560 664 776 896 1023 1159 1303 

 0.975 476 579 689 807 935 1071 1215 1368 

 0.99 485 599 716 840 980 1124 1277 1442 

 0.995 492 604 731 863 1005 1156 1319 1489 
          

9 0.005 304 325 361 393 429 466 508 549 

 0.01 321 349 384 423 464 508 553 601 

 0.025 342 380 423 469 517 570 624 682 

 0.05 365 406 457 510 567 626 689 755 

 0.1 390 444 501 561 625 694 766 843 

 0.9 581 689 803 925 1056 1195 1343 1498 

 0.95 601 717 840 972 1112 1251 1420 1587 

 0.975 615 741 870 1009 1158 1317 1485 1662 

 0.99 624 757 900 1049 1209 1377 1556 1745 

 0.995 629 769 916 1073 1239 1417 1601 1798 
          

10 0.005 406 448 486 526 573 620 672 725 

 0.01 425 470 513 561 613 667 725 785 

 0.025 457 505 560 616 677 741 808 879 

 0.05 486 539 601 665 734 806 883 963 

 0.1 514 580 649 724 801 885 972 1064 

 0.9 742 866 1001 1144 1296 1457 1627 1806 

 0.95 765 901 1045 1197 1360 1533 1715 1907 

 0.975 778 925 1078 1241 1413 1596 1788 1991 

 0.99 793 949 1113 1286 1470 1664 1869 2085 

 0.995 798 961 1130 1314 1505 1708 1921 2145 

  

Conover, W. J., 1980, Practical  Nonparametric Statistics, 2nd Ed., © John Wiley & 

Sons, Inc. Adapted from tables by Conover and Iman, 1978, Communications in 

Statistics, B7. 491-513, Marcel-Dckker Journals, New York. Reprinted with the 

permission of John Wiley & Sons, Inc., Marcel- Dekker, Inc.  
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 Table T-19:  Quantiles, wp, of the Spearman statistic, rs (see Section 25.15) 

   
q 

   

n 0.90 0.95 0.975 0.99 0.995 0.999 

       

4 0.8000 0.8000     

5 0.7000 0.8000 0.9000 0.9000   

6 0.6000 0.7714 0.8286 0.8857 0.9429  

7 0.5357 0.6786 0.7450 0.8571 0.8929 0.9643 

8 0.5000 0.6190 0.7143 0.8095 0.8571 0.9286 

9 0.4667 0.5833 0.6833 0.7667 0.8167 0.9000 

       

10 0.4424 0.5515 0.6364 0.7333 0.7818 0.8667 

11 0.4182 0.5273 0.6091 0.7000 0.7455 0.8364 

12 0.3986 0.4965 0.5804 0.6713 0.7273 0.8182 

13 0.3791 0.4780 0.5549 0.6429 0.6978 0.7912 

14 0.3626 0.4593 0.5341 0.6220 0.6747 0.7670 

       

15 0.3500 0.4429 0.5179 0.6000 0.6536 0.7464 

16 0.3382 0.4265 0.5000 0.5824 0.6324 0.7265 

17 0.3260 0.4118 0.4853 0.5637 0.6152 0.7083 

18 0.3148 0.3994 0.4716 0.5480 0.5975 0.6904 

19 0.3070 0.3895 0.4579 0.5333 0.5825 0.6737 

       

20 0.2977 0.3789 0.4451 0.5203 0.5684 0.6586 

21 0.2909 0.3688 0.4351 0.5078 0.5545 0.6455 

22 0.2829 0.3597 0.4241 0.4963 0.5426 0.6318 

23 0.2767 0.3518 0.4150 0.4852 0.5306 0.6186 

24 0.2704 0.3435 0.4061 0.4748 0.5200 0.6070 

       

25 0.2646 0.3362 0.3977 0.4654 0.5100 0.5962 

26 0.2588 0.3299 0.3894 0.4564 0.5002 0.5856 

27 0.2540 0.3236 0.3822 0.4481 0.4915 0.5757 

28 0.2490 0.3175 0.3749 0.4401 0.4828 0.5660 

29 0.2443 0.3113 0.3685 0.4320 0.4744 0.5567 

30 0.2400 0.3059 0.3620 0.4251 0.4665 0.5479 

 
Conover, W. J., 1980, Practical  Nonparametric Statistics, 2nd Ed., © John Wiley & 

Sons, Inc. Adapted from G. J. Glasser and R. F. Winter, 1961, Biometrika, 49; 444. 

Reprinted with the permission of John Wiley & Sons, Inc., the Biometrika Trustees,  

 

This table presents quantiles wp for several values of p for testing the statistic Rs known 

as the Spearman rank correlation coefficient. 

 

 Quantiles of the lower end are computed by the equation wp = -w1 - p 

 

Lower tail critical regions are Rs s greater than but not equal to the listed quantile.   

   

Upper tail critical regions are Rs s less than but not equal to the listed quantile.  
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Table T-20: Critical values for Grubbs’ T-test (see Section 26.5) 

Number of       

Observations Upper significant level, α 

n 0.001 0.005 0.01 0.025 0.050 0.10 

3 1.155 1.155 1.155 1.155 1.153 1.148 

4 1.499 1.496 1.492 1.481 1.463 1.425 

5 1.780 1.764 1.749 1.715 1.672 1.602 

6 2.011 1.973 1.944 1.887 1.822 1.729 

7 2.201 2.139 2.097 2.020 1.938 1.828 

8 2.358 2.274 2.221 2.126 2.032 1.909 

9 2.492 2.387 2.323 2.215 2.110 1.977 

10 2.606 2.482 2.410 2.290 2.176 2.036 

11 2.705 2.564 2.485 2.355 2.234 2.088 

12 2.791 2.636 2.550 2.412 2.285 2.134 

13 2.867 2.699 2.607 2.462 2.331 2.175 

14 2.935 2.755 2.659 2.507 2.371 2.213 

15 2.997 2.806 2.705 2.549 2.409 2.247 

16 3.052 2.852 2.747 2.585 2.443 2.279 

17 3.103 2.894 2.785 2.620 2.475 2.309 

18 3.149 2.932 2.821 2.651 2.504 2.335 

19 3.191 2.968 2.854 2.681 2.532 2.361 

20 3.230 3.001 2.884 2.709 2.557 2.385 

21 3.266 3.031 2.912 2.733 2.580 2.408 

22 3.300 3.060 2.939 2.758 2.603 2.429 

23 3.332 3.087 2.963 2.781 2.624 2.448 

24 3.362 3.112 2.987 2.802 2.644 2.467 

25 3.389 3.135 3.009 2.822 2.663 2.486 

26 3.415 3.157 3.029 2.841 2.681 2.502 

27 3.440 3.178 3.049 2.859 2.698 2.519 

28 3.464 3.199 3.068 2.876 2.714 2.534 

29 3.486 3.218 3.085 2.893 2.730 2.549 

30 3.507 3.236 3.103 2.908 2.745 2.563 

31 3.528 3.253 3.119 2.924 2.759 2.577 

32 3.546 3.270 3.135 2.938 2.773 2.591 

33 3.565 3.286 3.150 2.952 2.786 2.604 

34 3.582 3.301 3.164 2.965 2.799 2.616 

35 3.599 3.316 3.178 2.979 2.811 2.628 

36 3.616 3.330 3.191 2.991 2.823 2.639 

37 3.631 3.343 3.204 3.003 2.835 2.650 

38 3.646 3.356 3.216 3.014 2.846 2.661 

39 3.660 3.369 3.228 3.025 2.857 2.671 

40 3.673 3.381 3.240 3.036 2.866 2.682 

41 3.687 3.393 3.251 3.046 2.877 2.692 

42 3.700 3.404 3.261 3.057 2.887 2.700 
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Table T-20: Critical values for Grubbs’ T-test (Continued) 

Number of       

Observation Upper significant level, α 

n 0.001 0.005 0.01 0.025 0.050 0.10 

43 3.712 3.415 3.271 3.067 2.896 2.710 

44 3.724 3.425 3.282 3.075 2.905 2.719 

45 3.736 3.435 3.292 3.085 2.914 2.727 

46 3.747 3.445 3.302 3.094 2.923 2.736 

47 3.757 3.455 3.310 3.103 2.931 2.744 

48 3.768 3.464 3.319 3.111 2.940 2.753 

49 3.779 3.474 3.329 3.120 2.948 2.760 

50 3.789 3.483 3.336 3.128 2.956 2.768 

51 3.798 3.491 3.345 3.136 2.964 2.775 

52 3.808 3.500 3.353 3.143 2.971 2.783 

53 3.816 3.507 3.361 3.151 2.978 2.790 

54 3.825 3.516 3.368 3.158 2.986 2.798 

55 3.834 3.524 3.376 3.166 2.992 2.804 

56 3.842 3.531 3.383 3.172 3.000 2.811 

57 3.851 3.539 3.391 3.180 3.006 2.818 

58 3.858 3.546 3.397 3.186 3.013 2.824 

59 3.867 3.553 3.405 3.193 3.019 2.831 

60 3.874 3.560 3.411 3.199 3.025 2.837 

61 3.882 3.566 3.418 3.205 3.032 2.842 

62 3.889 3.573 3.424 3.212 3.037 2.849 

63 3.896 3.579 3.430 3.218 3.044 2.854 

64 3.903 3.586 3.437 3.224 3.049 2.860 

65 3.910 3.592 3.442 3.230 3.055 2.866 

66 3.917 3.598 3.449 3.235 3.061 2.871 

67 3.923 3.605 3.454 3.241 3.066 2.877 

68 3.930 3.610 3.460 3.246 3.071 2.883 

69 3.936 3.617 3.466 3.252 3.076 2.888 

70 3.942 3.622 3.471 3.257 3.082 2.893 

71 3.948 3.627 3.476 3.262 3.087 2.897 

72 3.954 3.633 3.482 3.267 3.092 2.903 

73 3.960 3.638 3.487 3.272 3.098 2.908 

74 3.965 3.643 3.492 3.278 3.102 2.912 

75 3.971 3.648 3.496 3.282 3.107 2.917 
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Table T-20:  Critical values for Grubbs’ T-test (Continued) 

Number of       

Observation Upper significant level, α 

n 0.001 0.005 0.01 0.025 0.050 0.10 

76 3.977 3.654 3.502 3.287 3.111 2.922 

77 3.982 3.658 3.507 3.291 3.117 2.927 

78 3.987 3.663 3.511 3.297 3.121 2.931 

79 3.992 3.669 3.516 3.301 3.125 2.935 

80 3.998 3.673 3.521 3.305 3.130 2.940 

81 4.002 3.677 3.525 3.309 3.134 2.945 

82 4.007 3.682 3.529 3.315 3.139 2.949 

83 4.012 3.687 3.534 3.319 3.143 2.953 

84 4.017 3.691 3.539 3.323 3.147 2.957 

85 4.021 3.695 3.543 3.327 3.151 2.961 

86 4.026 3.699 3.547 3.331 3.155 2.966 

87 4.031 3.704 3.551 3.335 3.160 2.970 

88 4.035 3.708 3.555 3.339 3.163 2.973 

89 4.039 3.712 3.559 3.343 3.167 2.977 

90 4.044 3.716 3.563 3.347 3.171 2.981 

91 4.049 3.720 3.567 3.350 3.174 2.984 

92 4.053 3.725 3.570 3.355 3.179 2.989 

93 4.057 3.728 3.575 3.358 3.182 2.993 

94 4.060 3.732 3.579 3.362 3.186 2.996 

95 4.064 3.736 3.582 3.365 3.189 3.000 

96 4.069 3.739 3.586 3.369 3.193 3.003 

97 4.073 3.744 3.589 3.372 3.196 3.006 

98 4.076 3.747 3.593 3.377 3.201 3.011 

99 4.080 3.750 3.597 3.380 3.204 3.014 

100 4.084 3.754 3.600 3.383 3.207 3.017 

101 4.088 3.757 3.603 3.386 3.210 3.021 

102 4.092 3.760 3.607 3.390 3.214 3.024 

103 4.095 3.765 3.610 3.393 3.217 3.027 

104 4.098 3.768 3.614 3.397 3.220 3.030 

105 4.102 3.771 3.617 3.400 3.224 3.033 

106 4.105 3.774 3.620 3.403 3.227 3.037 

107 4.109 3.777 3.623 3.406 3.230 3.040 

108 4.112 3.780 3.626 3.409 3.233 3.043 

109 4.116 3.784 3.629 3.412 3.236 3.046 

110 4.119 3.787 3.632 3.415 3.239 3.049 

111 4.122 3.790 3.636 3.418 3.242 3.052 

112 4.125 3.793 3.639 3.422 3.245 3.055 
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Table T-20:  Critical values for Grubbs’ T-test (Continued) 

Number of       

Observations, Upper significant level, α 

n 0.001 0.005 0.01 0.025 0.050 0.10 

113 4.129 3.796 3.642 3.424 3.248 3.058 

114 4.132 3.799 3.645 3.427 3.251 3.061 

115 4.135 3.802 3.647 3.430 3.254 3.064 

116 4.138 3.805 3.650 3.433 3.257 3.067 

117 4.141 3.808 3.653 3.435 3.259 3.070 

118 4.144 3.811 3.656 3.438 3.262 3.073 

119 4.146 3.814 3.659 3.441 3.265 3.075 

120 4.150 3.817 3.662 3.444 3.267 3.078 

121 4.153 3.819 3.665 3.447 3.270 3.081 

122 4.156 3.822 3.667 3.450 3.274 3.083 

123 4.159 3.824 3.670 3.452 3.276 3.086 

124 4.161 3.827 3.672 3.455 3.279 3.089 

125 4.164 3.831 3.675 3.457 3.281 3.092 

126 4.166 3.833 3.677 3.460 3.284 3.095 

127 4.169 3.836 3.680 3.462 3.286 3.097 

128 4.173 3.838 3.683 3.465 3.289 3.100 

129 4.175 3.840 3.686 3.467 3.291 3.102 

130 4.178 3.843 3.688 3.470 3.294 3.104 

131 4.180 3.845 3.690 3.473 3.296 3.107 

132 4.183 3.848 3.693 3.475 3.298 3.109 

133 4.185 3.850 3.695 3.478 3.302 3.112 

134 4.188 3.853 3.697 3.480 3.304 3.114 

135 4.190 3.856 3.700 3.482 3.306 3.116 

136 4.193 3.858 3.702 3.484 3.309 3.119 

137 4.196 3.860 3.704 3.487 3.311 3.122 

138 4.198 3.863 3.707 3.489 3.313 3.124 

139 4.200 3.865 3.710 3.491 3.315 3.126 

140 4.203 3.867 3.712 3.493 3.318 3.129 

Grubbs, F. E., Technometrics, TCMTA, Vol 11, No. 4, February 1969, 

pp. 1–21. Grubbs, F. E., and Beck, G Technometrics, TCMTA, Vol 14, No. 4, November 

1972, pp. 847–854, with permission. 
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Table T-21:  Critical values (One-Sided Test) for w/s (ratio of range to 

sample standard deviation) (see Section 26.5) 

Number of 

Observations, 

 n 

Level of significance 

α = 0.05 α = 0.01 α = 0.001 

3 2.00 2.00 2.00 

4 2.43 2.44 2.45 

5 2.75 2.80 2.81 

6 3.01 3.10 3.12 

7 3.22 3.34 3.37 

8 3.40 3.54 3.58 

9 3.55 3.72 3.77 

10 3.68 3.88 3.94 

11 3.80 4.01 4.08 

12 3.91 4.13 4.21 

13 4.00 4.24 4.32 

14 4.09 4.34 4.43 

15 4.17 4.43 4.53 

16 4.24 4.51 4.62 

17 4.31 4.59 4.69 

18 4.38 4.66 4.77 

19 4.43 4.73 4.84 

20 4.49 4.79 4.91 

30 4.89 5.25 5.39 

40 5.15 5.54 5.69 

50 5.35 5.77 5.91 

60 5.50 5.93 6.09 

80 5.73 6.18 6.35 

100 5.90 6.36 6.54 

150 6.18 6.64 6.84 

200 6.38 6.85 7.03 

 
Grubbs, F. E., ―Sample Criteria for Testing Outlying Observations,’’ 

Annals of Mathematical Statistics, AASTA Vol 21, March 1950, pp. 

27–58. 

Grubbs, F. E., ―Procedures for Detecting Outlying Observations in 

Samples,’’ Technometrics, TCMTA, Vol 11, No. 4, February 1969, 

pp. 1–21, with permission. 
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Table T22:  Critical values for S 2n−1,n/ S2, or S21,2/S2 for simultaneously 

testing the two largest or two smallest observations (see Section 26.5) 

Number of       

Observations Lower significant level, α 

n 0.001 0.005 0.01 0.025 0.050 0.10 

4 0.0000 0.0000 0.0000 0.0002 0.0008 0.0031 

5 0.0003 0.0018 0.0035 0.0090 0.0183 0.0376 

6 0.0039 0.0116 0.0186 0.0349 0.0564 0.0920 

7 0.0135 0.0308 0.0440 0.0708 0.1020 0.1479 

8 0.0290 0.0563 0.0750 0.1101 0.1478 0.1994 

9 0.0489 0.0851 0.1082 0.1492 0.1909 0.2454 

10 0.0714 0.1150 0.1414 0.1864 0.2305 0.2863 

11 0.0953 0.1448 0.1736 0.2213 0.2667 0.3227 

12 0.1198 0.1738 0.2043 0.2537 0.2996 0.3552 

13 0.1441 0.2016 0.2333 0.2836 0.3295 0.3843 

14 0.1680 0.2280 0.2605 0.3112 0.3568 0.4106 

15 0.1912 0.2530 0.2859 0.3367 0.3818 0.4345 

16 0.2136 0.2767 0.3098 0.3603 0.4048 0.4562 

17 0.2350 0.2990 0.3321 0.3822 0.4259 0.4761 

18 0.2556 0.3200 0.3530 0.4025 0.4455 0.4944 

19 0.2752 0.3398 0.3725 0.4214 0.4636 0.5113 

20 0.2939 0.3585 0.3909 0.4391 0.4804 0.5270 

21 0.3118 0.3761 0.4082 0.4556 0.4961 0.5415 

22 0.3288 0.3927 0.4245 0.4711 0.5107 0.5550 

23 0.3450 0.4085 0.4398 0.4857 0.5244 0.5677 

24 0.3605 0.4234 0.4543 0.4994 0.5373 0.5795 

25 0.3752 0.4376 0.4680 0.5123 0.5495 0.5906 

26 0.3893 0.4510 0.4810 0.5245 0.5609 0.6011 

27 0.4027 0.4638 0.4933 0.5360 0.5717 0.6110 

28 0.4156 0.4759 0.5050 0.5470 0.5819 0.6203 

29 0.4279 0.4875 0.5162 0.5574 0.5916 0.6292 

30 0.4397 0.4985 0.5268 0.5672 0.6008 0.6375 

31 0.4510 0.5091 0.5369 0.5766 0.6095 0.6455 

32 0.4618 0.5192 0.5465 0.5856 0.6178 0.6530 

33 0.4722 0.5288 0.5557 0.5941 0.6257 0.6602 

34 0.4821 0.5381 0.5646 0.6023 0.6333 0.6671 

35 0.4917 0.5469 0.5730 0.6101 0.6405 0.6737 

36 0.5009 0.5554 0.5811 0.6175 0.6474 0.6800 

37 0.5098 0.5636 0.5889 0.6247 0.6541 0.6860 

38 0.5184 0.5714 0.5963 0.6316 0.6604 0.6917 

39 0.5266 0.5789 0.6035 0.6382 0.6665 0.6972 

40 0.5345 0.5862 0.6104 0.6445 0.6724 0.7025 
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Table T22:  Critical values for S 2n−1,n/ S2, or S21,2/S2 for simultaneously 

testing the two largest or two smallest observations (Continued) 

Number of       

Observations Lower significant level, α 

n 0.001 0.005 0.01 0.025 0.050 0.10 

79 0.7145 0.7477 0.7628 0.7836 0.8002 0.8180 

80 0.7172 0.7501 0.7650 0.7856 0.8021 0.8197 

81 0.7199 0.7525 0.7672 0.7876 0.8040 0.8213 

82 0.7225 0.7548 0.7694 0.7896 0.8058 0.8230 

83 0.7250 0.7570 0.7715 0.7915 0.8075 0.8245 

84 0.7275 0.7592 0.7736 0.7934 0.8093 0.8261 

85 0.7300 0.7614 0.7756 0.7953 0.8109 0.8276 

86 0.7324 0.7635 0.7776 0.7971 0.8126 0.8291 

87 0.7348 0.7656 0.7796 0.7989 0.8142 0.8306 

88 0.7371 0.7677 0.7815 0.8006 0.8158 0.8321 

89 0.7394 0.7697 0.7834 0.8023 0.8174 0.8335 

90 0.7416 0.7717 0.7853 0.8040 0.8190 0.8349 

91 0.7438 0.7736 0.7871 0.8057 0.8205 0.8362 

92 0.7459 0.7755 0.7889 0.8073 0.8220 0.8376 

93 0.7481 0.7774 0.7906 0.8089 0.8234 0.8389 

94 0.7501 0.7792 0.7923 0.8104 0.8248 0.8402 

95 0.7522 0.7810 0.7940 0.8120 0.8263 0.8414 

96 0.7542 0.7828 0.7957 0.8135 0.8276 0.8427 

97 0.7562 0.7845 0.7973 0.8149 0.8290 0.8439 

98 0.7581 0.7862 0.7989 0.8164 0.8303 0.8451 

99 0.7600 0.7879 0.8005 0.8178 0.8316 0.8463 

100 0.7619 0.7896 0.8020 0.8192 0.8329 0.8475 

101 0.7637 0.7912 0.8036 0.8206 0.8342 0.8486 

102 0.7655 0.7928 0.8051 0.8220 0.8354 0.8497 

103 0.7673 0.7944 0.8065 0.8233 0.8367 0.8508 

104 0.7691 0.7959 0.8080 0.8246 0.8379 0.8519 

105 0.7708 0.7974 0.8094 0.8259 0.8391 0.8530 

106 0.7725 0.7989 0.8108 0.8272 0.8402 0.8541 

107 0.7742 0.8004 0.8122 0.8284 0.8414 0.8551 

108 0.7758 0.8018 0.8136 0.8297 0.8425 0.8563 

109 0.7774 0.8033 0.8149 0.8309 0.8436 0.8571 

110 0.7790 0.8047 0.8162 0.8321 0.8447 0.8581 

111 0.7806 0.8061 0.8175 0.8333 0.8458 0.8591 

112 0.7821 0.8074 0.8188 0.8344 0.8469 0.8600 

113 0.7837 0.8088 0.8200 0.8356 0.8479 0.8610 

114 0.7852 0.8101 0.8213 0.8367 0.8489 0.8619 

115 0.7866 0.8114 0.8225 0.8378 0.8500 0.8628 

116 0.7881 0.8127 0.8237 0.8389 0.8510 0.8637 
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Table T22:  Critical values for S 2n−1,n/ S2, or S21,2/S2 for simultaneously 

testing the two largest or two smallest observations (Continued) 

Number of       

Observations Lower significant level, α 

n 0.001 0.005 0.01 0.025 0.050 0.10 

117 0.7895 0.8139 0.8249 0.8400 0.8519 0.8646 

118 0.7909 0.8152 0.8261 0.8410 0.8529 0.8655 

119 0.7923 0.8164 0.8272 0.8421 0.8539 0.8664 

120 0.7937 0.8176 0.8284 0.8431 0.8548 0.8672 

121 0.7951 0.8188 0.8295 0.8441 0.8557 0.8681 

122 0.7964 0.8200 0.8306 0.8451 0.8567 0.8689 

123 0.7977 0.8211 0.8317 0.8461 0.8576 0.8697 

124 0.7990 0.8223 0.8327 0.8471 0.8585 0.8705 

125 0.8003 0.8234 0.8338 0.8480 0.8593 0.8713 

126 0.8016 0.8245 0.8348 0.8490 0.8602 0.8721 

127 0.8028 0.8256 0.8359 0.8499 0.8611 0.8729 

128 0.8041 0.8267 0.8369 0.8508 0.8619 0.8737 

129 0.8053 0.8278 0.8379 0.8517 0.8627 0.8744 

130 0.8065 0.8288 0.8389 0.8526 0.8636 0.8752 

131 0.8077 0.8299 0.8398 0.8535 0.8644 0.8759 

132 0.8088 0.8309 0.8408 0.8544 0.8652 0.8766 

133 0.8100 0.8319 0.8418 0.8553 0.8660 0.8773 

134 0.8111 0.8329 0.8427 0.8561 0.8668 0.8780 

135 0.8122 0.8339 0.8436 0.8570 0.8675 0.8787 

136 0.8134 0.8349 0.8445 0.8578 0.8683 0.8794 

137 0.8145 0.8358 0.8454 0.8586 0.8690 0.8801 

138 0.8155 0.8368 0.8463 0.8594 0.8698 0.8808 

139 0.8166 0.8377 0.8472 0.8602 0.8705 0.8814 

140 0.8176 0.8387 0.8481 0.8610 0.8712 0.8821 

An observed ratio less than the appropriate critical ratio in this table calls for rejection of 

the null hypothesis. 

 

These significance levels are taken from Table 11, Grubbs, F. E., and Beck, G.,                

‖ Extension of Sample Sizes and Percentage Points for Significance Tests of Outlying 

Observations,’’ Technometrics, TCMTA, Vol 14, No. 4, November 1972, pp. 847–854, 

with permission. 
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Table T-23:  Dixon’s criteria for testing for extreme values                        

(see Section 26.4) 

Statistic   n P0.70 P0.80 P0.90 P0.95 P0.98 P0.99         P0.995 
         

 3 0.684 0.781 0.886 0.941 0.976 0.988 0.994 

r10        4 0.471 0.560 0.679 0.765 0.846 0.889 0.926 

 5 0.373 0.451 0,557 0.642 0.729 0.780 0.821 

 6 0.318 0.386 0.482 0.560 0.644 0.698 0.740 

 7 0.281 0.344 0.434 0.507 0.586 0.637 0,680 

         

 8 0.318 0.385 0.479 0.554 0.631 0.683 0.725 

r11        9 0.288 0.352 0,441 0.512 0.587 0.635 0,677 

 10 0.265 0.325 0.409 0.477 0.551 0.597 0.639 

         

 11 0.391 0.442 0,517 0.576 0.638 0.679 0.713 

r21        12 0.370 0.419 0.490 0.546 0.605 0,642 0.675 

 13 0.351 0,399 0.467 0.521 0.578 0.615 0.649 

         

 14 0.370 0.421 0.492 0.546 0.602 0.641 0.674 

r22        15 0.353 0.402 0.472 0.525 0.579 0.616 0.647 

 16 0.338 0.386 0,454 0.507 0,559 0.595 0.624 

 17 0.325 0.373 0.438 0.490 0.542 0.577 0,605 

 18 0.314 0.361 0.424 0.475 0.527 0.561 0.589 

 19 0.304 0.350 0.412 0.462 0.514 0.547 0.575 

 20 0.295 0.340 0.401 0.450 0.502 0.535 0.562 

 21 0.287 0.331 0.391 0.440 0.491 0.524 0.551 

 22 0.280 0.323 0.382 0.430 0.481 0.514 0,541 

 23 0.274 0.316 0.374 0.421 0.472 0.505 0.532 

 24 0.268 0.310 0.367 0,413 0.464 0.497 0.524 

 25 0.262 0.304 0.360 0.406 0.457 0.489 0.516 

Reproduced from Dixon (1953), with permission from the Biometric Society. 
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likelihood ................................... 390 

limit ........................................... 446 

line plot ........................................ 45 

linear combination ..................... 104 

linear contrast ............................ 106 

lognormal distribution ............... 126 

lot .............................................. 452 

lower confidence limit ............... 175 

lower control limit (LCL) .......... 445 

main effect ................................. 316 

Mann-Whitney's test .................. 475 

marginal density ........................ 101 

marginal probability .................... 70 

marginal totals ........................... 231 

McNemar’s test ......................... 242 

mean .................................... 17, 103 
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mean square error (MSE) .. 107, 350 

mean time to failure .................. 140 

mean time to repair ................... 140 

measure of centrality ................... 17 

measure of dispersion ................. 24 

measurement ........................... 4, 84 

measurement system ................... 85 

median ........................................ 18 

median test ................................ 479 

metric scale ................................... 6 

metrology .................................... 84 

midrange ..................................... 19 

min cut upper bound ................... 77 

minimal cut set ............................ 77 

minimum variance .................... 173 

minimum variance unbiased ..... 173 

mixed effects ............................. 318 

mode ........................................... 18 

modeling approach to  

   probability ................................ 80 

Monte Carlo .............................. 514 

multimodal .................................. 18 

multiple comparison ................. 309 

multiple linear regression.. 336, 364 

multiple range test ..................... 309 

mutually exclusive ...................... 65 

negative binomial distribution .. 163 

negative binomial experiment ... 163 

nominal scale ................................ 6 

noncritical region ...................... 195 

non-informative prior ................ 389 

nonparametric statistics............. 462 

normal density .......................... 113 

normal distribution .................... 113 

normalization constant .............. 390 

null hypothesis .......................... 194 

null set......................................... 64 

observation ................................ 4, 5 

odds of an event ........................ 399 

one-sided alternative hypotheses194 

one-sided confidence intervals .. 175 

one-sided tolerance interval ....... 184 

one-way ANOVA ...................... 297 

one-way classification ............... 297 

operating characteristic (OC) .... 197 

ordered pairs .............................. 332 

ordinal scale...................................6 

outcome ....................................... 63 

outlier ........................................ 504 

parameter ............................... 7, 171 

parametric statistics ................... 462 

partition of sample space ............. 68 

percentiles ................................... 24 

pie chart ....................................... 41 

plus notation .............................. 232 

point estimator ........................... 172 

Poisson distribution ................... 165 

Poisson experiment ................... 165 

polynomial regression ............... 336 

pooling variances ....................... 271 

population ......................................7 

population standard deviation ..... 28 

posterior ..................................... 390 

posterior distribution ................. 390 

posterior probability .................... 79 

power curve ............................... 254 

power of the test ........................ 252 

precision ...................................... 85 

prediction equation .................... 338 

prediction interval ..................... 367 

prediction limits......................... 367 

prior ........................................... 389 

prior distribution ........................ 389 

prior probability........................... 79 

probabalistic risk assesment   

(PRA) ....................................... 77 

probability ................................... 62 

probability density function ......... 95 
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probability function .................... 67 

probability function, (pf)........... 148 

probability mass function (pmf) . 91 

probability model ........................ 67 

probability of a Type I error ..... 196 

probability of a Type II error .... 197 

probability of exceedance ......... 196 

process control .......................... 443 

proposition .................................. 81 

pseudo standard deviation ......... 310 

qualitative ..................................... 4 

quality assurance ....................... 442 

quantiles ...................................... 24 

quantitative ................................... 4 

quartiles ...................................... 24 

quintiles ...................................... 26 

random effect ............................ 297 

random effects .......................... 318 

random effects model ............... 297 

random number ......................... 150 

random sample .................. 105, 171 

random variable .......................... 90 

randomized complete block  

   design ..................................... 317 

range ........................................... 24 

rank ........................................... 216 

Rank ANOVA test .................... 487 

rare event approximation ............ 70 

ratio scale ...................................... 6 

record ............................................ 5 

rectangular distribution ............. 110 

regression .................................. 334 

regression analysis .................... 347 

regression line ........................... 337 

regression mean square ............. 349 

regression sum of squares ......... 347 

regression through the  

   origin .............................. 337, 361 

rejection region ......................... 195 

relative frequency ........................ 80 

relative scale ..................................6 

replication .................................. 317 

research hypothesis ................... 194 

residual ...................................... 345 

residual sum of squares ............. 348 

response variable ....................... 316 

robust ......................................... 269 

rounding rule ............................... 19 

row chart ...................................... 44 

run ..................................... 317, 447 

runs test ..................................... 463 

sample ................................... 7, 171 

sample correlation coefficient ... 373 

sample mean .............................. 105 

sample points ............................... 64 

sample space ................................ 63 

sample variance ........................... 28 

sampling by attributes ............... 443 

sampling by variables ................ 443 

sampling with replacement ........ 152 

sampling without replacement ... 151 

Satterthwaite's approximation ... 288 

scale parameter .......................... 432 

scatter diagram .......................... 370 

scatter plot ................................. 370 

Shapiro-Wilk's test .................... 221 

Shewhart charts ......................... 446 

signal, noise ............................... 302 

significant .................................. 192 

simple linear regression ............. 336 

Simpson’s paradox .................... 241 

simulation .................................. 513 

skewness ...................................... 33 

slope, intercept .......................... 333 

Spearman’s rank correlation 

coefficient .............................. 498 

Spearman’s rho ......................... 498 

spread .......................................... 24 
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squared ranks test ...................... 491 

standard deviation ....................... 28 

standard error ............................ 106 

standard error of mean differences107 

standard error of the mean ........ 106 

standard normal distribution ..... 116 

standard normal table ................ 118 

standard uniform ....................... 112 

standard uniform distribution .... 112 

statistic .......................................... 7 

statistical hypothesis ................. 194 

statistical model ........................ 335 

statistical significance ............... 192 

statistical tolerance limits.......... 183 

statistically dependent events ...... 76 

statistically independent events... 71 

step function ............................. 216 

Student’s t-distribution ............. 132 

subjective probability approach .. 81 

success ...................................... 404 

support ...................................... 104 

systematic error ........................... 86 

t-distribution ............................. 132 

test of hypothesis ...................... 195 

test statistic ............................... 195 

test-of-fit ................................... 204 

tolerance interval ...................... 183 

tolerance limit factors ............... 184 

tolerance limits.......................... 183 

total deviation ........................... 345 

total sum of squares .................. 347 

treatment group ......................... 297 

treatments .................................. 297 

trend .......................................... 349 

trial ............................................ 317 

trimmed mean ............................. 19 

trimodal ....................................... 18 

 

true value ..................................... 85 

truth table .................................. 196 

two-sided confidence interval.... 175 

two-sided hypothesis ................. 194 

two-sided tolerance interval ...... 183 

Type I error ............................... 196 

Type II error .............................. 197 

unbiased ............................... 86, 173 

uncertainty ................................... 87 

unconditional probability ............ 73 

underlying normal ..................... 126 

uniform distribution ................... 110 

union ............................................ 64 

universal set ................................. 64 

upper confidence bound ............ 175 

upper confidence limit ............... 175 

upper control limit (UCL) ......... 445 

value ..............................................4 

variability .................................... 24 

variable ..........................................4 

variance ....................................... 28 

variance of a finite population ..... 28 

variance ratio ..................... 267, 306 

variate ........................................ 516 

Venn diagram .............................. 65 

warning limits ............................ 446 

weighted average ....................... 271 

weighted mean............................. 21 

Welch approximation ................ 288 

Wilcoxon's matched pairs test ... 474 

Wilcoxon's rank sum test ........... 475 

within groups mean square ........ 306 

working hypothesis ................... 194 

WRS test .................................... 475 

W-test ........................................ 221 

zero-intercept model .................. 361 

z-table ........................................ 118 



 

 

  

 

 



 

 

  

 

 

 

(Continued from front flyleaf) 

 Continuous distributions (continued) 

Distribution Density  Mean and variance 

Exponential 
(Section 7.13) 

 0

yf y e

y
 

mean = 1/λ  

variance = 1/λ
2 

Gamma 

(Section 7.14) 
1( ) =

( )

0 0 0

y
f y ,

y , ,

y e  
mean = α / β   

variance = α / β 
2
   

Beta 

(Section 7.15) 
1 1(1 )

0 1 0 0

f y y y ,

y , ,

 

mean = α / ( α + β )  

 variance =   

2
1

 

 

 

 



 

 

  

 

 

Discrete distributions  

Distribution Probability function Mean and variance 

Discrete 

uniform 

(Section 8.2) 

 

f (y; n) = 1/n, 

 y =1, 2, …, n 

mean = (n+1)/2 

variance = 

(n + 1)(n - 1)/12 

 

Bernoulli 

(Section 8.5) 
f(1) = Pr{1} =  

f(0) = Pr{0} = 1 -  

mean =π 

variance = π(1- π) 

 

Hyper-

geometric  

(Section 8.6, 

Chapter 21) 

( ) { }

          =

f y Pr y| N ,M ,n

M N M
y n y

,
N
n

 

y = max(0, n + M - N), …, min(M, n) 

mean = nM / N 

variance = 

1

nM N M N n

N N N

 

Binomial 
(Section8.7, 

Chapter 22) 

Table  T-8 

( ) ( ; , ) { | , }

(1 )

0 1, 0,1, ...,

y n y

f y f y n Pr Y y n

n
y

y n

 

mean = nπ 

variance = nπ (1- π ) 

Geometric 

(Section 8.8) 
f(y) = f(y;  ) = Pr{Y = y | π}  

          = π (1 - π )
 y-1

,    y = 1, 2, … 

mean = 1/π 

variance = (1- π )/π 
2
 

Negative 

binomial 

(Section 8.9) 

( ) ( | , ) { | , }

1
(1 )

1

, 1, ...

s y s

f y f y s Pr y s

y
s

y s s

 

mean = s/π 

variance = s(1- π )/π 
2
 

Poisson 
(Section 8.10, 

Chapter  23) 

Table T-9 

( ) = ( ) =

0 1 2
y

f y f y, Pr Y y |

e
, y , , ...

y!

 

mean =λ 

variance = λ  
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