Summary of Stress Analysis Results for the US-APWR Reactor Coolant Pump

Non-Proprietary Version

March 2011

©2011 Mitsubishi Heavy Industries, Ltd.

All Rights Reserved

Mitsubishi Heavy Industries, LTD.

Revision History

Revision	Page	Description				
0	All	Original Issue				
	Abstract	- Changed sentences.				
	i, ii	- Revised table of contents and page numbers.				
	iii, iv	- Revised list of tables and page numbers.				
	v	- Revised list of figures and page numbers.				
	1-1	- Changed sentences.				
	1-2	- Revised evaluated parts in Figure 1-1.				
1	2-1	- Deleted analysis results of Seal Water Injection Nozzle, and revised analysis results.				
	7-1	- Revised document number in Tables 7-1 and deleted material of Seal Water Injection Nozzle in Table 7-2.				
	7-3 and 7-4	- Revised material properties and Table numbers.				
	7-5	- Revised Table numbers.				
	7-7 through 7-18	- Revised external loads.				
	7-19	- Revised Table number.				
	7-21	- Revised Table number.				
	8-2	- Added program in Figure 8-1				

Revision History (Cont'd)

Revision	Page	Description		
	9-1	- Revised program revisions and added program in Table 9-1		
1	10-1 through 10-3 and 10-5	- Deleted analysis results of Seal Water Injection Nozzle, and revised analysis method and analysis results.		
	11-1	- Revised revisions of references.		
	i, ii	- Revised table of contents and page numbers.		
	iv	- Revised list of tables and page numbers.		
2	v	- Revised list of figures and page numbers.		
	1-1	- Modified sentences.		
	2-1	- Added evaluation results.		
	7-1	- Revised document number in Tables 7-1.		
	7-6	- Modified sentences.		
	10-1 through 10-24	- Added analysis results.		
	10-25	- Changed table format.		
	11-1	- Corrected typo and revised revisions of references.		

© 2011

MITSUBISHI HEAVY INDUSTRIES, LTD.

All Rights Reserved

This document has been prepared by Mitsubishi Heavy Industries, Ltd. ("MHI") in connection with the U.S. Nuclear Regulatory Commission's ("NRC") licensing review of MHI's US-APWR nuclear power plant design. No right to disclose, use or copy any of the information in this document, other than by the NRC and its contractors in support of the licensing review of the US-APWR, is authorized without the express written permission of MHI.

This document contains technology information and intellectual property relating to the US-APWR and it is delivered to the NRC on the express condition that it not be disclosed, copied or reproduced in whole or in part, or used for the benefit of anyone other than MHI without the express written permission of MHI, except as set forth in the previous paragraph.

This document is protected by the laws of Japan, U.S. copyright law, international treaties and conventions, and the applicable laws of any country where it is being used.

MITSUBISHI HEAVY INDUSTRIES, LTD. 16-5, Konan 2-chome, Minato-ku Tokyo 108-8215 Japan

<u>Abstract</u>

This report contains a summary of the results of the structural evaluation of the Reactor Coolant Pump (RCP) parts.

The results presented are based on calculations that were performed using the loading conditions defined in the US-APWR Reactor Coolant Pump ASME Design Specification (Reference 4) and on the procedures per ASME Boiler & Pressure Vessel Code Section III (Reference 1).

The RCP satisfies all of the applicable structural limits of the 2001 Edition of Section III of the ASME Code up to and including the 2003 addenda (Reference 1).

Table of Contents

1.0	INTR	RODUCTION	1-1
2.0	SUM	MARY OF RESULTS	2-1
3.0	CON	CLUSIONS	3-1
4.0	NOM	IENCLATURE	4-1
5.0	ASSI	UMPTIONS AND OPEN ITEMS	5-1
	5.1	Assumptions	5-1
	5.2	Open Items	5-1
6.0	ACC	EPTANCE CRITERIA	6-1
7.0	DES	IGN INPUT	7-1
	7.1	Geometry	7-1
	7.2	Material	7-1
	7.3	Loads, Load Combinations, and Transients	7-6
		7.3.1 Pressure Loads and Temperature	7-6
		7.3.2 External Mechanical Loads	7-6
		7.3.3 Thermal and Pressure Transient Loads	7-19
		7.3.4 Load Combinations	7-21
8.0	MET	HODOLOGY	8-1
	8.1	Heat Transfer Coefficients and Thermal Analysis	8-1
	8.2	Stress Analysis	8-1
	8.3	Fatigue Analysis Model and Method	8-3
9.0	COM	IPUTER PROGRAMS USED	9-1
10.0	STR	UCTURAL ANALYSIS RESULTS	10-1
	10.1	Pump Casing Lugs	10-1
		10.1.1 Pump Casing Lugs Modeling and Analysis	10-1

		10.1.2 Pump Casing Lugs Stress Results10-4
	10.2	Discharge Nozzle10-5
		10.2.1 Discharge Nozzle Modeling and Analysis10-5
		10.2.2 Discharge Nozzle Stress Results
	10.3	Suction Nozzle10-9
		10.3.1 Suction Nozzle Modeling and Analysis10-9
		10.3.2 Suction Nozzle Stress Results10-12
	10.4	Main Flange10-13
		10.4.1 Main Flange Modeling and Analysis10-13
		10.4.2 Main Flange Stress Results10-16
	10.5	No.1 and 2 Seal Housings10-17
		10.5.1 Seal Housings Modeling and Analysis10-18
		10.5.2 Seal Housings Stress Results10-19
	10.6	Diffuser Flange
		10.6.1 Diffuser Flange Modeling and Analysis10-21
		10.6.2 Diffuser Flange Stress Results
	10.7	Heat Exchanger Tubing10-23
		10.7.1 Heat Exchanger Tubing Modeling and Analysis
		10.7.2 Heat Exchanger Tubing Stress Results
11.0	REFE	ERENCES

List of Tables

Table No.	Title	Page
Table 2-1	Summary of Most Limiting Results	2-1
Table 6-1	Class 1 Component Stress Limits (other than Bolts)	6-1
Table 6-2	Class 1 Bolt Stress Limits	7-2
Table 7-1	RCP Basic Design Drawing List	7-1
Table 7-2	Materials of Construction	7-1
Table 7-3	Material Properties for SA-351 Grade CF8	7-2
Table 7-4	Material Properties for SA-213 Type 316	7-2
Table 7-5	Material Properties for SA-182 Grade F316(t \leq 5)	7-3
Table 7-6	Material Properties for SA-182 Grade F316(t > 5)	7-3
Table 7-7	Material Properties for SA-182 Grade F304(t \leq 5)	7-4
Table 7-8	Material Properties for SA-182 Grade F304(t >5)	7-4
Table 7-9	Material Properties for SA-540 Grade B24 Class 2	7-5
Table 7-10	0 Material Properties for SA-540 Grade B24 Class 4	7-5
Table 7-12	1 Pressures and Temperatures	7-6
Table 7-12	2-1 Loads Applied to the Pump Casing Lug #1 (1/2)	7-7
Table 7-12	2-2 Loads Applied to the Pump Casing Lug #1 (2/2)	7-8
Table 7-12	2-3 Loads Applied to the Pump Casing Lug #2 (1/2)	7-9
Table 7-12	2-4 Loads Applied to the Pump Casing Lug #2 (2/2)	7-10
Table 7-12	2-5 Loads Applied to the Pump Casing Lug #3 (1/2)	7-11
Table 7-12	2-6 Loads Applied to the Pump Casing Lug #3 (2/2)	7-12
Table 7-13	3 Loads Applied to the Discharge Nozzle (1/2)	7-13
Table 7-14	4 Loads Applied to the Discharge Nozzle (2/2)	7-14

Table 7-15 Loads Applied to the Suction Nozzle (1/2)	7-15
Table 7-16 Loads Applied to the Suction Nozzle (2/2)	7-16
Table 7-17 Loads Applied to the Lower Motor Stand (1/2)	7-17
Table 7-18 Loads Applied to the Lower Motor Stand (2/2)	7-18
Table 7-19 Design Transients	7-19
Table 7-20 Load Combinations	7-21
Table 9-1 Computer Program Description	9-1
Table 10-1 Summary of Results for Pump Casing Lugs (1/2)	10-4
Table 10-1 Summary of Results for Pump Casing Lugs (2/2)	10-5
Table 10-2 Summary of Results for Discharge Nozzle (1/2)	10-8
Table 10-2 Summary of Results for Discharge Nozzle (2/2)	10-9
Table 10-3 Summary of Results for Suction Nozzle (1/2)	10-12
Table 10-2 Summary of Results for Suction Nozzle (2/2)	10-13
Table 10-4 Summary of Results for Main Flange	10-16
Table 10-5 Summary of Results for Seal Housings	10-19
Table 10-6 Summary of Results for Diffuser Flange	10-22
Table 10-7-1 Summary of Results for Heat Exchanger Tubing	10-25

List of Figures

Figure No.	Title	Page
Figure 1-1	Reactor Coolant Pump Component and Evaluated Parts	1-2
Figure 8-1	Stress Evaluation Process	8-2
Figure 10.1-1	Pump Casing Lug Dimensions	10-2
Figure 10.1-2	Pump Casing Lug Finite Element Model	10-3
Figure 10.2-1	Discharge Nozzle Dimensions	10-6
Figure 10.2-2	Discharge Nozzle Finite Element Model	10-7
Figure 10.3-1	Suction Nozzle Dimensions	10-10
Figure 10.3-2	Suction Nozzle Finite Element Model	10-11
Figure 10.4-1	Main Flange Dimensions	10-14
Figure 10.4-2	Main Flange Finite Element Model	10-15
Figure 10.5-1	Seal Housings Dimensions	10-17
Figure 10.5-2	Seal Housings Finite Element Model	10-18
Figure 10.6-1	Diffuser Flange Dimensions	10-20
Figure 10.6-2	Diffuser Flange Finite Element Model	10-21
Figure 10.7-1	Heat Exchanger Tube Dimensions	10-23
Figure 10.7-2	Heat Exchanger Tubing Finite Element Model	10-24

List of Acronyms

The following list defines the acronyms used in this document.

DCD	Design Control Document
FEA	Finite Element Analysis
FSRF	Fatigue Strength Reduction Factor
LOCA	Loss-of-Coolant Accident
RCP	Reactor Coolant Pump
RCS	Reactor Coolant System
RT	Radiographic Examination
SRSS	Square Root of the Sum of the Squares
SSE	Safe Shutdown Earthquake

1.0 INTRODUCTION

This Technical Report was prepared in support of the US-APWR DCD review process. It contains a summary of the results of the stress and fatigue analyses of the US-APWR Reactor Coolant Pump (RCP). Fracture mechanics analysis was not performed since the pressure retaining parts are all made of austenitic stainless steels. The content of this report follows the ASME guidelines for Design Reports (Section III Division 1 Appendix C).

Figure 1-1 shows the general configuration of the US-APWR RCP.

This report provides structural evaluations for seven RCP parts. The seven evaluated RCP parts are listed in Table 2-1. This Technical Report summarizes the results of detailed RCP stress, fatigue and fracture mechanics analyses and demonstrates that the RCP components evaluated meet the requirements of the Design Specification (Reference 4).

2.0 SUMMARY OF RESULTS

The structural analysis results for each of these parts are listed in Section 10. The most limiting results for each part that was evaluated are listed in Table 2-1, below.

Section	Evaluated Part	Max Stress / Allowable Ratio	Highest Fatigue Usage Factor (note 2)
10.1	Pump Casing Lugs	$\left(\right)$	
10.2	Discharge Nozzle		
10.3	Suction Nozzle		
10.4	Main Flange		
10.5	Seal Housing (No.1 and No.2)		
10.6	Diffuser Flange		
10.7	Heat Exchanger Tubing		

 Table 2-1
 Summary of Most Limiting Results

Note-1 The allowable ratio is the "ratio" of the calculated stress intensity to the allowable stress intensity. Therefore, any ratio less than or equal to 1.0 is acceptable.

 $Ratio = \frac{Calculated \cdot Stress \cdot Integrationsity}{Allowable \cdot Stress \cdot Intensity}$

Note-2 The fatigue calculations performed in this report meet the requirements of the ASME code. Environmental fatigue per RG 1.207 will be evaluated separately.

3.0 CONCLUSIONS

The US-APWR RCP is designed to the requirements of the ASME Boiler and Pressure Vessel Code, 2001 Edition up to and including the 2003 Addenda for the Design, Service Loadings, Operating Conditions, and Test Conditions as specified in the Design Specification (Reference 4).

From the results summarizes in this report and a review of the component design drawings, it is concluded that the US-APWR RCP satisfies all of the requirements of the Design Specification.

4.0 NOMENCLATURE

Symbol	Unit	Definition		
Pm	ksi	General Primary Membrane Stress		
P_{L}	ksi	Local Primary Membrane Stress		
Pb	ksi	Primary Bending Stress		
Q	ksi	Secondary Stress		
Sm	ksi	Design Stress Intensity		
Sy	ksi	Yield Stress		
Su	ksi	Tensile Strength		
A _b	in ²	Actual Total Cross-Sectional Area of Bolts at Root of Thread or Section of Least Diameter Under Stress		
A _m	in ²	Required Total Design Cross-Sectional Area of Bolts, taken as the greater of A_{m1} and A_{m2}		
St	ksi	Averaged Stress for Bolt (neglecting stress concentration)		
		Tension plus Bending Stress for Bolt		
$S_t + S_b$	651	(neglecting stress concentration)		
УA	-	Thermal Ratcheting Factor		
SS	ksi	Thermal Stress Range		
α	-	Shape Factor		
Р	-	Design Pressure		
1/3 SSE	-	Level B Service Loading Earthquake		
SSE	-	Safe Shutdown Earthquake		

5.0 ASSUMPTIONS AND OPEN ITEMS

5.1 Assumptions

The basic modeling assumptions used in the analyses are as follows:

- 1. The inside diameter is taken as the drawing nominal value.
- 2. The wall thickness is the drawing nominal value.
- 3. The corrosion allowance is assumed to be zero.

5.2 Open Items

There are no open items in this Technical Report.

6.0 ACCEPTANCE CRITERIA

The stress intensity acceptance criteria for Class 1 components are specified in NB-3220, 3230 and Appendix F of Section III. Table 6-1 lists the stress limits for components other than bolts, and Table 6-2 lists the stress limits for bolts.

Condition	Stress Category Stress Limits		Remarks	
	P _m	S _m	NB-3221.1	
	PL	1.5 S _m	NB-3221.2	
	P _L + P _b	$\alpha S_{m}^{(1)2)}$ or 1.5 S _m	NB-3221.3	
Design	Bearing Stress	$S_v^{(6)}$ or 1.5 $S_v^{(6)}$	NB-3227.1(a)	
	Shear Stress	0.6 S _m	NB-3227.1(b)	
	Pure Shear Stress	0.6 S _m	NB-3227.2(a)	
	Triaxial Sress ⁴⁾	4 S _m	NB-3227.4	
	$P_L + P_b + Q$	3 S _m	NB-3222.2	
	Thermal Ratchet, SS	⁵⁾ S _v × y _A	NB-3222.5	
	Usage Factor	1.0	NB-3222.4	
Level A & B	Bearing Stress	S_{v}^{6} or 1.5 S_{v}^{6}	NB-3227.1(a)	
	Shear Stress	0.6 S _m	NB-3227.1(b)	
	Pure Shear Stress	0.6 S _m	NB-3227.2(a)	
	Triaxial Sress ⁴⁾	4 S _m	NB-3224.3	
	Pm	1.1 S _m	NB-3223	
Level B	PL	1.5 (1.1 S _m)	NB-3223	
	P _L + P _b	$\alpha (1.1 S_m)^{1/2}$ or 1.5 (1.1 S _m)	NB-3223	
	P _m	Max (1.2 S _m , S _y) Max (1.1 S _m , 0.9 S _y) ³⁾	NB-3224.1	
	PL	Max (1.8 S _m , 1.5 S _y)	NB-3224.1	
Level C	P _L + P _b	Max (α (1.2 S _m), α S _y) ¹⁾²⁾ or Max (1.8 S _m , 1.5 S _y)	NB-3224.1	
	Bearing Stress	S_{y}^{6} or 1.5 S_{y}^{6}	NB-3227.1(a)	
	Shear Stress	0.6 S _m	NB-3227.1(b)	
	Pure Shear Stress	0.6 S _m	NB-3227.2(a)	
	Triaxial Sress ⁴⁾	4.8 S _m	NB-3224.3	
Level D	P _m	For ferritic materials, 0.7 S _u For austenitic and high alloy steels, Min (2.4 S _m , 0.7 S _u)		
	P _L For ferritic materials, 1.5 (0.7 S _u) For austenitic and high alloy steels, 1.5 Min (2.4 S _m , 0.7 S _u)		NB-3225 (Appendix	
	P _L +P _b	For ferritic materials, 1.5 (0.7 S _u) For austenitic and high alloy steels, 1.5 Min (2.4 S _m , 0.7 S _u)	F-1331.1)	
	Pure Shear	0.42 S _u		

Table 6-1	Class 1	Component Stress	Limits	(other than	Bolts)
-----------	---------	-------------------------	--------	-------------	--------

Condition	Stress Category	Stress Limits	Remarks				
	Pm	0.9 S _v					
		(1.35 $S_y)$ - for $P_m \leq 0.67 \ S_y$	NB-3226				
	P _m + P _b	(or 0.9 α S _y for non-rectangular sections)					
Test		$(2.15 \text{ S}_{y} - 1.2 \text{ P}_{m}) - \text{ for } 0.67 \text{ S}_{y} < \text{P}_{m} \le 0.9 \text{ S}_{y}$					
1000	Bearing Stress	S_{y}^{6} or 1.5 S_{y}^{6}	NB-3227.1(a)				
	Shear Stress	0.6 S _m	NB-3227.1(b)				
	Pure Shear Stress	0.6 S _m	NB-3227.2(a)				
	Triaxial Sress ⁴⁾ 4 S _m NB-3227.4						
Note-1	$e-1$ The shape factor of α for solid rectangular sections is 1.5, α shall not exceed 1.5.						
Note-2	" α " is considered where stresses are classified as primary bending.						
Note-3	The stress limits for press	ure loading alone for ferritic material.					
Note-4 I	NB-3227.4 states that the Triaxial Stress limit is 4 S_m and does not apply to Level D.						
I	NB-3224.3 states the Lev	el C limit is 4.8 S _m .					
Note-5 I	NB-3222.5 requires evaluation of Thermal Stress Ratcheting for Level A Service Loads. In all						
(cases where elastic analysis indicates that the primary membrane stress is less than S_m a						
t	the primary plus secondary stress is less than 3 S_m , then thermal stress ratcheting will not						
occur.							
Note-6	S_y when the distance to a free edge is less than the distance over which the bearing load is						
i	applied; 1.5 S _y when the distance to a free edge is larger.						

Condition	Stress Category	Stress Limits	Remarks	
Design	A _b	A _m	NB-3231, E-1000	
	Average Service Stress ¹⁾ , St	2 S _m	NB-3232.1	
Level A & B	Max Service Stress ¹⁾ , S _t + S _b	3 S _m	NB-3232.2	
	Fatigue Usage Factor ²⁾	1.0	NB-3232.3	
	Average Service Stress ¹⁾ , S _t	2 S _m	NB-3234	
LeverC	Max Service Stress ¹⁾ , S _t + S _b	3 S _m	NB-3234	
	Average Tensile Stress ³⁾ , St	Min (S _y , 0.7 S _u)	NB-3235 & F-1335.1	
	Max Tensile Stress ³⁾ , S _t + S _b	S _u	NB-3235 & F-1335.1	
	Average bolt shear	Min (0.6 S _y , 0.42 S _u)	F-1335.2	
Level D	Combined tensile and shear	$f_t^2 / F_{tb}^2 + f_v^2 / F_{vb}^2 \le 1 $ ⁴⁾	F-1335.3	
	Distance from bolt center to edge	d [0.5 + 1.2 (fp / S _u)] ⁵⁾	F-1335.4(a)	
	Nominal bearing stress	2.1 S _u	F-1335.4(b)	
Note-1	Includes preload, pressure, and differential thermal expansion, excludes stress concentrations.			
Note-2	Includes a fatigue strength reduction factor of 4 for the threads.			
Note-3	Includes preload, pressure, differential thermal expansion, and prying action produced by deformation of the connected parts, excludes stress concentrations.			
Note-4	f_t =computed tensile stress, f_v =computed shear stress, F_{tb} =allowable tensile stress at operating temperature.			
Note-5	d= nominal bolt diameter; fp = nominal bearing stress.			

Table 6-2 Class 1 Bolt Stress Limits

7.0 DESIGN INPUT

7.1 Geometry

The US-APWR RCP basic drawings used to supply dimensions for the stress analyses are listed in Table 7-1. Figures describing the detailed geometry of the parts evaluated can be found in Section 10.

No.	Drawing Title	Reference Number
1	Reactor Coolant Pump Design Drawings	N0-F600102 Rev.4

7.2 Material

The materials of construction for the RCP pressure boundary and internals are listed in the Table 7-2, below.

Table 7-2	Materials	of	Construction
-----------	-----------	----	--------------

Part or Assembly	Material
Casing (including Suction Nozzle, Discharge Nozzle and Casing Lugs)	SA-351 Grade CF8
Main Flange	SA-182 Grade F316
Diffuser Flange	SA-182 Grade F304
No.1 and No.2 Seal Housing	SA-182 Grade F316
Heat Exchanger Tubing	SA-213 Type 316
Closure Studs, Nuts and Washers	SA-540 Grade B24 Class 4 & Class 2

The material strength properties used in the stress analyses are presented in Tables 7-3 through 7-11, below. These material strength properties were obtained from Section II of the ASME Code (Reference 2).

Temperature, °F	Sm [ksi]	Sy [ksi]	Su [ksi]
70	20.0	30.0	70.0
100	20.0	30.0	70.0
200	20.0	25.0	66.3
300	20.0	22.4	61.8
400	18.6	20.7	59.7
500	17.5	19.4	59.2
600	16.6	18.4	59.2
650	16.2	18.0	59.2

Table 7-3 Material Properties for SA-351 Grade CF8

Table 7-4 Material Properties for SA-213 Type 316

Temperature, °F	Sm [ksi]	Sy [ksi]	Su [ksi]
70	20.0	30.0	75.0
100	20.0	30.0	75.0
200	20.0	25.9	75.0
300	20.0	23.4	72.9
400	19.3	21.4	71.9
500	18.0	20.0	71.8
600	17.0	18.9	71.8
650	16.6	18.5	71.8

Temperature, °F	Sm [ksi]	Sy [ksi]	Su [ksi]
70	20.0	30.0	75.0
100	20.0	30.0	75.0
200	20.0	25.9	75.0
300	20.0	23.4	72.9
400	19.3	21.4	71.9
500	18.0	20.0	71.8
600	17.0	18.9	71.8
650	16.6	18.5	71.8

Table 7-5 Material Properties for SA-182 Grade F316(t \leq 5)

Table 7-6 Material Properties for SA-182 Grade F316(t > 5)

Temperature, °F	Sm [ksi]	Sy [ksi]	Su [ksi]
70	20.0	30.0	70.0
100	20.0	30.0	70.0
200	20.0	25.9	70.0
300	20.0	23.4	68.0
400	19.3	21.4	67.1
500	18.0	20.0	67.0
600	17.0	18.9	67.0
650	16.6	18.5	67.0

Temperature, °F	Sm [ksi]	Sy [ksi]	Su [ksi]
70	20.0	30.0	75.0
100	20.0	30.0	75.0
200	20.0	25.0	71.0
300	20.0	22.4	66.2
400	18.6	20.7	64.0
500	17.5	19.4	63.4
600	16.6	18.4	63.4
650	16.2	18.0	63.4

Table 7-7 Material Properties for SA-182 Grade F304(t \leq 5)

Table 7-8 Material Properties for SA-182 Grade F304(t >5)

Temperature, °F	Sm [ksi]	Sy [ksi]	Su [ksi]
70	20.0	30.0	70.0
100	20.0	30.0	70.0
200	20.0	25.0	66.3
300	20.0	22.4	61.8
400	18.6	20.7	59.7
500	17.5	19.4	59.2
600	16.6	18.4	59.2
650	16.2	18.0	59.2

Temperature, °F	Sm [ksi]	Sy [ksi]	Su [ksi]
70	46.7	140.0	155.0
100	46.7	140.0	155.0
200	44.6	134.4	155.0
300	43.1	131.0	155.0
400	41.8	128.7	155.0
500	40.5	126.9	155.0
600	38.7	124.5	155.0
650	37.5	122.7	152.6

 Table 7-9
 Material Properties for SA-540 Grade B24 Class 2

Table 7-10 Material Properties for SA-540 Grade B24 Class 4

Temperature, °F	Sm [ksi]	Sy [ksi]	Su [ksi]
70	40.0	120.0	135.0
100	40.0	120.0	135.0
200	38.2	115.2	135.0
300	36.9	112.2	135.0
400	35.9	110.3	135.0
500	34.7	108.8	135.0
600	33.1	106.7	135.0
650	32.1	105.2	132.9

7.3 Loads, Load Combinations, and Transients

The loads, load combinations and transients used in the structural analyses are defined in the RCP ASME Design Specification (Reference 4). Following is a summary of the loads used for the RCP structural evaluations.

7.3.1 Pressure Loads and Temperature

Parameter	Value
Casing Design Pressure	2485 psig
Casing Design Temperature	650°F
Heat Exchanger Design Pressure (External pressure)	2485 psig
Heat Exchanger Design Temperature	650°F
Casing Hydrostatic Test Pressure	()
Casing Minimum Hydrostatic Test Temperature	70°F
No.1 and No.2 Seal Housing Hydrostatic Test Pressure	3107 psig
No.1 and No.2 Seal Housing Minimum Hydrostatic Test Temperature	70°F
Heat Exchanger Inlet & Outlet Nozzle Design Pressure	2485 psig
Heat Exchanger Inlet & Outlet Nozzle Design Temperature	650°F
Heat Exchanger Inlet & Outlet Nozzle Hydrostatic Test Pressure	3107 psig
No.1 and No.2 Seal Housing Minimum Hydrostatic Test Temperature	70°F

Table 7-11 Pressures and Temperatures

7.3.2 External Mechanical Loads

The external loads, obtained from the Design Specification, are dead weight, thermal expansion, seismic I and accident loads. These external loads were applied at the RCP pressure boundary nozzles and supports.

The bolt preload values were the minimum required bolt loads for the design pressure calculated in accordance with Article E-1000 of the ASME code.

	5		(kips)	(kips)	(kips)	(in-kips)	(in-kips)	ivi∠ (in-kips)
Dead	Lo	op-A,D	$\left(\right)$					
Weight	Lo	op-B,C						
		Gr.1						
		Gr.2						
		Gr.3						
		Gr.4						
		Gr.5						
	Loop	Gr.6						
	-A,D	Gr.7						
		Gr.8						
		Gr.9						
		(1/2)						
Thormol		Gr.9 (2/2)						
mermai		Gr.1						
		Gr.2						
		Gr.3						
		Gr.4						
		Gr.5						
	Loop	Gr.6						
	-B,C	Gr.7						
		Gr.8						
		Gr.9 (1/2)						
		Gr.9 (2/2)						
	Thermal	Thermal Loop -A,D	Gr.2 Gr.3 Gr.4 Gr.5 Loop Gr.6 Gr.7 Gr.8 Gr.9 (1/2) Gr.3 Gr.4 Gr.5 Gr.9 (1/2) Gr.3 Gr.4 Gr.5 Gr.6 Gr.7 Gr.8 Gr.9 (1/2) Gr.4 Gr.5 Gop Gr.4 Gr.5 Gr.6 Gr.7 Gr.8 Gr.4 Gr.5 Gr.6 Gr.7 Gr.8 Gr.9 (1/2) Gr.9 (1/2) Gr.9 (1/2)	Gr.2 Gr.3 Gr.4 Gr.5 Gr.5 Gr.6 Gr.7 Gr.7 Gr.8 Gr.9 (1/2) Gr.9 (2/2) Gr.3 Gr.9 Gr.9 (2/2) Gr.3 Gr.3 Gr.4 Gr.9 Gr.9 (2/2) Gr.3 Gr.3 Gr.3 Gr.4 Gr.3 Gr.4 Gr.3 Gr.3 Gr.4 Gr.4 Gr.3 Gr.5 Gr.3 Gr.8 Gr.3 Gr.9 Gr.4 Gr.9 Gr.9 (1/2) Gr.9 (1/2) Gr.9 (2/2) Gr.9	Gr.2 Gr.3 Gr.4 Gr.4 Gr.5 Gr.6 Gr.7 Gr.8 Gr.9 Gr.9 (1/2) Gr.9 Gr.3 Gr.4 Gr.7 Gr.8 Gr.9 Gr.9 (2/2) Gr.9 Gr.3 Gr.9 Gr.3 Gr.9 Gr.3 Gr.9 Gr.4 Gr.9 Gr.3 Gr.9 Gr.4 Gr.9 Gr.4 Gr.9 Gr.4 Gr.9 Gr.4 Gr.9 Gr.4 Gr.9 Gr.4 Gr.9 Gr.9 Gr.9 Gr.9<	Thermal $\left \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gr.2 Image: Constraint of the system of the sy	Gr.2 Image: Constraint of the second se

Table 7-12-1 Loads Applied to the Pump Casing Lug #1 (1/2)

No.	Loading	Fx (kips)	Fy (kips)	Fz (kips)	Mx (in-kips)	My (in-kips)	Mz (in-kips)	
3	Seismic (1/3SSE)]-
4	Seismic (SSE)							
5	Accident							

Table 7-12-2 Loads Applied to the Pump Casing Lug #1 (2/2)

No.	Lo	oading		Fx (kips)	Fy (kips)	Fz (kips)	Mx (in-kips)	My (in-kips)	Mz (in-kips)
1	Dead	Lo	op-A,D						
	Weight	Lo	op-B,C						
			Gr.1						
			Gr.2						
			Gr.3						
			Gr.4						
			Gr.5						
		Loop	Gr.6						
		-7,0	Gr.7						
			Gr.8						
			Gr.9 (1/2)						
	The second		Gr.9 (2/2)						
2	Inermai		Gr.1						
			Gr.2						
			Gr.3						
			Gr.4						
			Gr.5						
		Loop	Gr.6						
		-B,C	Gr.7						
			Gr.8						
			Gr.9 (1/2)						
			Gr.9 (2/2)						

Table 7-12-3 Loads Applied to the Pump Casing Lug #2 (1/2)

No.	Loading	Fx (kips)	Fy (kips)	Fz (kips)	Mx (in-kips)	My (in-kips)	Mz (in-kips)	-
3	Seismic (1/3SSE)							
4	Seismic (SSE)							
5	Accident							

Table 7-12-4 Loads Applied to the Pump Casing Lug #2 (2/2)

No.	Lo	bading		Fx (kips)	Fy (kips)	Fz (kips)	Mx (in-kips)	My (in-kips)	Mz (in-kips)
1	Dead	Lo	op-A,D						
•	Weight	Lo	op-B,C						
			Gr.1						
			Gr.2						
			Gr.3						
			Gr.4						
			Gr.5						
		Loop	Gr.6						
		-A,D	Gr.7						
			Gr.8						
			Gr.9						
			(1/2)						
2	Thormol		Gr.9 (2/2)						
2	mermai		Gr.1						
			Gr.2						
			Gr.3						
			Gr.4						
			Gr.5						
		Loop	Gr.6						
		-B,C	Gr.7						
			Gr.8						
			Gr.9						
			(1/2)						
			Gr.9						
			(2/2)	Ц					

Table 7-12-5 Loads Applied to the Pump Casing Lug #3 (1/2)

No.	Loading	Fx (kips)	Fy (kips)	Fz (kips)	Mx (in-kips)	My (in-kips)	Mz (in-kips)
3	Seismic (1/3SSE)						
4	Seismic (SSE)						
5	Accident						
			•	•			

No.	Lo	oading		Fx (kips)	Fy (kips)	Fz (kips)	Mx (in-kips)	My (in-kips)	Mz (in-kips)
1	Dead	Lo	op-A,D						
	Weight	Lo	op-B,C						
			Gr.1						
			Gr.2						
			Gr.3						
			Gr.4						
			Gr.5						
		Loop	Gr.6						
		-A,D	Gr.7						
			Gr.8						
			Gr.9						
			(1/2)						
			Gr.9						
2	Thermal		(2/2)						
			Gr.1						
			Gr.2						
			Gr.3						
			Gr.4						
		Loop	Gr.5						
		-B,C	Gr.6						
			Gr.7						
			Gr.8						
			Gr.9 (1/2)						
			Gr 9						
			(2/2)						

 Table 7-13 Loads Applied to the Discharge Nozzle (1/2)

|--|

No.	Loading	Fx (kips)	Fy (kips)	Fz (kips)	Mx (in-kips)	My (in-kips)	Mz (in-kips)
3	Seismic (1/3SSE)						
4	Seismic (SSE)						
5	Accident						

RCP Suction Nozzle

RCP Discharge Nozzle

No.	Loading		Fx (kips)	Fy (kips)	Fz (kips)	Mx (in-kips)	My (in-kips)	Mz (in-kips)	
1	Dead	Loop-A,D							
	Weight	Lo	op-B,C						
			Gr.1						
			Gr.2						
			Gr.3						
			Gr.4						
			Gr.5						
		Loop	Gr.6						
		-A,D	Gr.7						
			Gr.8						
	Thermal		Gr.9						
			(1/2)						
2			Gr.9 (2/2)						
2	merma		Gr.1						
			Gr.2						
			Gr.3						
			Gr.4						
			Gr.5						
		Loop	Gr.6						
		-в,С	Gr.7						
			Gr.8						
			Gr.9						
			(1/2)						
			Gr.9 (2/2)						

Table 7-15 Loads Applied to the Suction Nozzle (1/2)

Table 1-10 Loads Applied to the Suction Nozzie (2/2	Table 7-16	Loads	Applied to t	the Suction	Nozzle	(2/2)
---	------------	-------	--------------	-------------	--------	-------

No.	Loading	Fx (kips)	Fy (kips)	Fz (kips)	Mx (in-kips)	My (in-kips)	Mz (in-kips)
3	Seismic (1/3SSE)						
4	Seismic (SSE)						
5	Accident						

RCP Suction Nozzle

RCP Discharge Nozzle

No.	Loading		Fx (kips)	Fy (kips)	Fz (kips)	Mx (in-kips)	My (in-kips)	Mz (in-kips)	
1	Dead	Loop-A,D							
	Weight	Lo	op-B,C						
			Gr.1						
			Gr.2						
			Gr.3						
			Gr.4						
			Gr.5						
		Loop	Gr.6						
		-A,D	Gr.7						
		nermal	Gr.8						
			Gr.9						
			(1/2)						
			Gr.9						
2	Thermal		(2/2)						
			Gr.1						
			Gr.2						
			Gr.3						
			Gr.4						
			Gr.5						
		Loop	Gr.6						
		-B,C	Gr.7						
			Gr.8						
			Gr.9						
			(1/2)						
			Gr.9						
			(2/2)						

 Table 7-17 Loads Applied to the Lower Motor Stand (1/2)

Table 7-18 Loads Applied to the Lower Motor Stand (2/2)
---	------

No.	Loading	Fx (kips)	Fy (kips)	Fz (kips)	Mx (in-kips)	My (in-kips)	Mz (in-kips)
3	Seismic (1/3SSE)						
4	Seismic (SSE)						
5	Accident						

RCP Motor Stand

Lower

RCP Motor Stand Upper

RCP Casing Bolt

7.3.3 Thermal and Pressure Transient Loads

The design transients used in the structural evaluations are listed in the Table 7-19. These transients were determined based on a 60-year plant operating period and classified as ASME Level A, Level B, Level C, Level D service conditions, or Test conditions, depending on the expected frequency of occurrence and severity of the event.

Level	Level A Service Conditions								
Mark	Transient	Occurrence	Remark						
l-a	Plant heat-up (50F/h)	120							
I-b	Plant cooldown (100F/h)	120	Includes Transient for Loss of offsite power with natural circulation cooldown (10 times) and Safe shutdown (1 time)						
I-c-1	Ramp load increase between 15% and 100% of full power (5% or full power per minute)	600							
I-c-2	Ramp load increase between 50% and 100% of full power (5% or full power per minute)	19,200							
I-d-1	Ramp load decrease between 15% and 100% of full power (5% or full power per minute)	600							
I-d-2	Ramp load decrease between 50% and 100% of full power (5% or full power per minute)	19,200							
l-e	Step load increase of 10% of full power	600							
l-f	Step load decrease of 10% of full power	600							
l-g	Large step load decrease with turbine bypass	60							
l-h i)	Steady-state fluctuations and load regulation (Steady state fluctuations)	1 x 10 ⁶	P _P +/- 50psi, T _{hot} ,T _{cold} , T _{ave} +/- 3.1F						
l-h ii)	Steady-state fluctuations and load regulation (Load regulation)	8 x 10 ⁵							
I-i	Main feedwater cycling	2,100							
l-j	Refueling	60	Water is replaced in 10minutes						
l-k	Ramp load increase between 0% and 15% of full power	600							
I-I	Ramp load decrease between 0% and 15% of full power	600							
l-m	RCP startup	3,000							
l-n	RCP shutdown	3,000							
l-o	Core lifetime extension	60							
I-p	Primary leakage test	120							
l-q	Turbine roll test	10							

Table 7-19 Design Transients

II-a Loss of offsite power 60 II-b Loss of offsite power 60 II-c Partial loss of reactor coolant flow 30 II-dii) Reactor trip from full power With no inadvertent cooldown 60 II-diii) Reactor trip from full power With cooldown and no safety 30 Includes Transient for excessive feedwater flow II-diii) Reactor trip from full power With cooldown and safety 10 Includes Transient for excessive feedwater flow II-d iii) Reactor trip from full power With cooldown and safety 10 Includes Transient for excessive feedwater flow II-d iii) Reactor trip from full power With cooldown and safety 10 Includes Transient for excessive feedwater flow II-d iii) Indvertent RCS depressurzation 30 III-t Covered by Transient for reactor trip from full power if Covered by Transient for reactor trip from full power if Covered by Transient for plant cooldown — Covered by Transient for plant cooldown II-d Excessive feedwater flow — Covered by Transient for plant cooldown — II-k Loss of emergency feedwater 30 Use Figure for Transient of plant cooldown Use So offsite power II-m Safe Shutdown — Covered by	Level E	3 Service Conditions				
II-b Loss of offsite power 60 II-c Partial loss of reactor coolant flow 30 II-d ii) Reactor trip from full power With no inadvertent cooldown 60 II-d ii) Reactor trip from full power With cooldown and no safety 30 II-d iii) Reactor trip from full power With cooldown and safety 10 II-d iii) Reactor trip from full power With cooldown and safety 10 II-e Inadvertent RCS depressurization 30 II-f Control rod drop 30 II-g Inadvertent safeguards actuation 30 II-f Cold over-pressure 30 II-f Cold over-pressure 30 II-k Loss of offsite power with natural circulation cooldown — II-k Loss of offsite power with natural circulation cooldown — II-k Loss of offsite power with natural circulation cooldown — Covered by Transient for plant cooldown II-k Loss of offsite power with natural circulation cooldown — Covered by Transient for plant cooldown II-k Safe Shutdown — Covered by Transient for plant cooldown Use Figure for Transient for plant cooldown	ll-a	Loss of load	60			
II-c Partial loss of reactor coolant flow 30 II-d i) Reactor trip from full power With no inadvertent cooldown 60 II-d ii) Reactor trip from full power With cooldown and safety 30 II-d iii) Reactor trip from full power With cooldown and safety 10 II-d iii) Reactor trip from full power With cooldown and safety 10 II-d iii) Reactor trip from full power With cooldown and safety 10 II-d iii) Indvertent RCS depressurization 30 II-g Inadvertent RCS depressurization 30 II-g Inadvertent RCS depressure 30 II-g Inadvertent RCS depressure 30 II-h Emergency feedwater cycling 700 II-i Cold over-pressure 30 II-j Excessive feedwater flow — II-k Loss of offsite power with natural circulation cooldown — II-k Loss of emergency feedwater 30 Use Figure for Transient for plant cooldown II-m Safe Shutdown — — Covered by Transient for plant cooldown II-m Safe Shutdown — Covered by Transient for plant cooldown </td <td>II-b</td> <td>Loss of offsite power</td> <td>60</td> <td></td>	II-b	Loss of offsite power	60			
II-d i) Reactor trip from full power With no inadvertent cooldown 60 II-d ii) Reactor trip from full power With cooldown and no safety 30 Includes Transient for II-d iii) Reactor trip from full power With cooldown and safety 10 10 II-d iii) Reactor trip from full power With cooldown and safety 10 10 II-e Inadvertent RCS depressurization 30 11 II-g Inadvertent RCS depressurization 30 11 II-h Emergency feedwater cycling 700 700 II-i Cold over-pressure 30 11 II-k Loss of offsite power with natural circulation cooldown - Covered by Transient for reactor trip from full power i II-k Loss of offsite power with natural circulation cooldown - Covered by Transient for plant cooldown II-h Partial loss of emergency feedwater 30 Use Figure for Transient or loss of offsite power II-m Safe Shutdown - Covered by Transient for plant cooldown - II-m Safe Shutdown - Covered by Transient for plant cooldown - II-m Safe Shutdown - Cover	II-c	Partial loss of reactor coolant flow	30			
II-d ii) Reactor trip from full power With cooldown and no safety 30 Includes Transient for excessive feedwater flow II-d iii) Reactor trip from full power With cooldown and safety 10 10 II-e Inadvertent RCS depressurization 30 30 II-e Inadvertent RCS depressurization 30 30 II-g Inadvertent RCS depressurization 30 30 II-g Inadvertent safeguards actuation 30 30 II-h Emergency feedwater cycling 700 700 II-h Cold over-pressure 30 Covered by Transient for reactor trip from full power i for full power i for reactor trip from full power i for reactor trip from full power i covered by Transient for reactor trip from full power i covered by Transient for set of fiste power with natural circulation cooldown — Covered by Transient for loss of offsite power with natural circulation cooldown — Covered by Transient for plant cooldown II-H Partial loss of emergency feedwater 30 Use Figure for Transient for plant cooldown — II-m Safe Shutdown — — Covered by Transient for plant cooldown II-m Safe Shutdown — — Covered by Transient for plant cooldown	ll-d i)	Reactor trip from full power With no inadvertent cooldown	60			
II-d iii) Reactor trip from full power With cooldown and safety 10 II-e Inadvertent RCS depressurization 30 II-g Inadvertent RCS depressurization 30 II-g Inadvertent safeguards actuation 30 II-h Emergency feedwater cycling 700 II-i Cold over-pressure 30 II-j Excessive feedwater flow — II-k Loss of offsite power with natural circulation cooldown — II-k Loss of offsite power with natural circulation cooldown — II-k Loss of offsite power with natural circulation cooldown — Covered by Transient of loss of offsite power II-m Safe Shutdown — Covered by Transient of loss of offsite power Covered by Transient of loss of offsite power II-m Safe Shutdown — Covered by Transient of loss of offsite power II-m Safe Shutdown — Covered by Transient of loss of offsite power II-m Safe Shutdown — Covered by Transient of loss of offsite power II-m Safe Shutdown — Covered by Transient of loss of offsite power III-m Safe Shutdown <t< td=""><td>ll-d ii)</td><td>Reactor trip from full power With cooldown and no safety injection</td><td>30</td><td>Includes Transient for excessive feedwater flow</td></t<>	ll-d ii)	Reactor trip from full power With cooldown and no safety injection	30	Includes Transient for excessive feedwater flow		
II-e Inadvertent RCS depressurization 30 II-f Control rod drop 30 II-g Inadvertent safeguards actuation 30 II-h Emergency feedwater cycling 700 II-h Emergency feedwater cycling 700 II-i Cold over-pressure 30 II-j Excessive feedwater flow — II-k Loss of offsite power with natural circulation cooldown — II-k Loss of offsite power with natural circulation cooldown — II-k Safe Shutdown — Covered by Transient for plant cooldown II-m Safe Shutdown — Covered by Transient for plant cooldown II-m Safe Shutdown — Covered by Transient for plant cooldown II-m Safe Shutdown — Covered by Transient for plant cooldown II-m Safe Shutdown — Covered by Transient for plant cooldown II-m Safe Shutdown — Covered by Transient for plant cooldown II-m Safe Shutdown — Covered by Transient for plant cooldown II-m Safe Shutdown 5 Incooldown	II-d iii)	Reactor trip from full power With cooldown and safety injection	10	• <u>-</u>		
II-f Control rod drop 30 II-g Inadvertent safeguards actuation 30 II-h Emergency feedwater cycling 700 II-i Cold over-pressure 30 II-j Excessive feedwater flow - II-k Loss of offsite power with natural circulation cooldown - II-k Loss of offsite power with natural circulation cooldown - II-k Loss of emergency feedwater 30 II-l Partial loss of emergency feedwater 30 II-m Safe Shutdown - Covered by Transient of loss of offsite power II-m Safe Shutdown - Covered by Transient of plant cooldown II-m Safe Shutdown - Covered by Transient of plant cooldown II-m Safe Shutdown - Covered by Transient of plant cooldown III-m Safe Shutdown - Covered by Transient of plant cooldown III-m Safe Shutdown - Covered by Transient of plant cooldown III-m Small steam line break 5 III-dower III-d Small steam line break 5 III-dower <tr< td=""><td>ll-e</td><td>Inadvertent RCS depressurization</td><td>30</td><td></td></tr<>	ll-e	Inadvertent RCS depressurization	30			
II-g Inadvertent safeguards actuation 30 II-h Emergency feedwater cycling 700 II-i Cold over-pressure 30 II-j Excessive feedwater flow — II-k Loss of offsite power with natural circulation cooldown — II-k Loss of offsite power with natural circulation cooldown — II-k Loss of emergency feedwater 30 II-l Partial loss of emergency feedwater 30 II-m Safe Shutdown — Covered by Transient for loss of offsite power Covered C Service Condition — Covered by Transient for plant cooldown III-m Safe Shutdown — Covered by Transient for plant cooldown Level C Service Condition — Covered by Transient for plant cooldown III-m Safe Shutdown — Covered by Transient for plant cooldown III-m Safe Shutdown — Covered by Transient for plant cooldown Level C Service Condition 5 1 1 III-a Small feedwater line break 5 1 III-b Small feedwater line break 5 1	II-f	Control rod drop	30			
II-h Emergency feedwater cycling 700 II-i Cold over-pressure 30 II-j Excessive feedwater flow — II-k Loss of offsite power with natural circulation cooldown — II-k Loss of offsite power with natural circulation cooldown — II-k Loss of offsite power with natural circulation cooldown — II-l Partial loss of emergency feedwater 30 II-m Safe Shutdown — — II-m Safe Shutdown — — Level C Service Condition — — Covered by Transient for plant cooldown III-a Small loss of coolant accident 5 … … III-a Small loss of coolant accident 5 … … III-a Small steam line break 5 … … … III-a Small feedwater line break 5 … … … III-a Small feedwater line break 5 … … … III-a Small feedwater line break 1 … … … III-a	ll-g	Inadvertent safeguards actuation	30			
II-i Cold over-pressure 30 II-j Excessive feedwater flow — Covered by Transient for reactor trip from full power i II-k Loss of offsite power with natural circulation cooldown — Covered by Transient for plant cooldown II-l Partial loss of emergency feedwater 30 Use Figure for Transient of loss of offsite power II-m Safe Shutdown — — Covered by Transient of loss of offsite power II-m Safe Shutdown — — Covered by Transient of loss of offsite power II-m Safe Shutdown — — Covered by Transient of loss of offsite power II-m Safe Shutdown — — Covered by Transient of loss of offsite power III-m Safe Shutdown — — Covered by Transient of loss of offsite power III-a Small loss of coolant accident 5 … … … III-a Small steam line break 5 … … … III-c Complete loss of flow 5 … … … III-d Small feedwater line break 5 … … …	ll-h	Emergency feedwater cycling	700			
II-j Excessive feedwater flow — Covered by Transient for reactor trip from full power i II-k Loss of offsite power with natural circulation cooldown — Covered by Transient for plant cooldown II-I Partial loss of emergency feedwater 30 Use Figure for Transient of loss of offsite power II-m Safe Shutdown — Covered by Transient of loss of offsite power II-m Safe Shutdown — Covered by Transient of loss of offsite power Level C Service Condition — Covered by Transient for plant cooldown III-a Small loss of coolant accident 5 III-b Small steam line break 5 III-c Complete loss of flow 5 III-d Small feedwater line break 5 III-e SG tube rupture 5 Level D Service Condition 1 IV-a Large loss of coolant accident 1 IV-a Large loss of coolant accident 1 IV-b Large steam line break 1 IV-c RCP locked rotor 1 IV-d Control rod ejection 1 IV-e Large feedwater	II-i	Cold over-pressure	30			
II-k Loss of offsite power with natural circulation cooldown — Covered by Transient for plant cooldown II-I Partial loss of emergency feedwater 30 Use Figure for Transient of loss of offsite power II-m Safe Shutdown — Covered by Transient for plant cooldown II-m Safe Shutdown — Covered by Transient for plant cooldown II-m Safe Shutdown — Covered by Transient for plant cooldown Level C Service Condition — — Covered by Transient for plant cooldown III-a Small loss of coolant accident 5 … … III-b Small steam line break 5 … … … III-c Complete loss of flow 5 … … … … … III-d Small feedwater line break 5 … <td>II-j</td> <td>Excessive feedwater flow</td> <td></td> <td>Covered by Transient for reactor trip from full power ii)</td>	II-j	Excessive feedwater flow		Covered by Transient for reactor trip from full power ii)		
II-I Partial loss of emergency feedwater 30 Use Figure for Transient of loss of offsite power II-m Safe Shutdown — Covered by Transient for plant cooldown Level C Service Condition 5	ll-k	Loss of offsite power with natural circulation cooldown		Covered by Transient for plant cooldown		
II-m Safe Shutdown Covered by Transient for plant cooldown Level C Service Condition Covered by Transient for plant cooldown III-a Small loss of coolant accident 5 III-b Small steam line break 5 III-c Complete loss of flow 5 III-d Small feedwater line break 5 III-d Small feedwater line break 5 III-e SG tube rupture 5 Level D Service Condition 1 IV-a Large loss of coolant accident 1 IV-b Large steam line break 1 IV-c RCP locked rotor 1 IV-d Control rod ejection 1 IV-e Large feedwater line break 1 IV-e Large feedwater line break 1 V-a Primary-side hydrostatic test 10	II-I	Partial loss of emergency feedwater	30	loss of offsite power		
Level C Service Condition III-a Small loss of coolant accident 5 III-b Small steam line break 5 III-c Complete loss of flow 5 III-d Small feedwater line break 5 III-d Small feedwater line break 5 III-d Small feedwater line break 5 III-e SG tube rupture 5 Level D Service Condition 1 IV-a Large loss of coolant accident 1 IV-b Large steam line break 1 IV-c RCP locked rotor 1 IV-d Control rod ejection 1 IV-e Large feedwater line break 1 IV-e Large feedwater line break 1 V-a Primary-side hydrostatic test 10	II-m	Safe Shutdown	—	Covered by Transient for plant cooldown		
III-a Small loss of coolant accident 5 III-b Small steam line break 5 III-c Complete loss of flow 5 III-d Small feedwater line break 5 III-e SG tube rupture 5 III-e SG tube rupture 5 III-e SG tube rupture 5 IV-a Large loss of coolant accident 1 IV-a Large steam line break 1 IV-b Large steam line break 1 IV-c RCP locked rotor 1 IV-d Control rod ejection 1 IV-e Large feedwater line break 1 IV-e Large feedwater line break 1 V-a Primary-side hydrostatic test 10	Level	C Service Condition		_		
III-b Small steam line break 5 III-c Complete loss of flow 5 III-d Small feedwater line break 5 III-e SG tube rupture 5 III-e SG tube rupture 5 IV-a Large loss of coolant accident 1 IV-b Large steam line break 1 IV-c RCP locked rotor 1 IV-d Control rod ejection 1 IV-e Large feedwater line break 1 V-e Large feedwater line break 1 V-a Primary-side hydrostatic test 10	III-a	Small loss of coolant accident	5			
III-c Complete loss of flow 5 III-d Small feedwater line break 5 III-e SG tube rupture 5 III-e SG tube rupture 5 Level D Service Condition 1 IV-a Large loss of coolant accident 1 IV-b Large steam line break 1 IV-c RCP locked rotor 1 IV-d Control rod ejection 1 IV-e Large feedwater line break 1 IV-e Primary-side hydrostatic test 10	III-b	Small steam line break	5			
III-d Small feedwater line break 5 III-e SG tube rupture 5 Level D Service Condition 1 IV-a Large loss of coolant accident 1 IV-b Large steam line break 1 IV-c RCP locked rotor 1 IV-d Control rod ejection 1 IV-e Large feedwater line break 1 IV-e Primary-side hydrostatic test 10	III-c	Complete loss of flow	5			
III-e SG tube rupture 5 Level D Service Condition 1 IV-a Large loss of coolant accident 1 IV-b Large steam line break 1 IV-c RCP locked rotor 1 IV-d Control rod ejection 1 IV-e Large feedwater line break 1 IV-e Primary-side hydrostatic test 10	III-d	Small feedwater line break	5]		
Level D Service Condition IV-a Large loss of coolant accident 1 IV-b Large steam line break 1 IV-c RCP locked rotor 1 IV-d Control rod ejection 1 IV-e Large feedwater line break 1 IV-e Darge feedwater line break 1 V-a Primary-side hydrostatic test 10	III-e	SG tube rupture	5			
IV-a Large loss of coolant accident 1 IV-b Large steam line break 1 IV-c RCP locked rotor 1 IV-d Control rod ejection 1 IV-e Large feedwater line break 1 IV-e Large feedwater line break 1 V-a Primary-side hydrostatic test 10	Level	D Service Condition				
IV-b Large steam line break 1 IV-c RCP locked rotor 1 IV-d Control rod ejection 1 IV-e Large feedwater line break 1 IV-e Large feedwater line break 1 V-a Primary-side hydrostatic test 10	IV-a	Large loss of coolant accident	1			
IV-c RCP locked rotor 1 IV-d Control rod ejection 1 IV-e Large feedwater line break 1 IV-e Description 1 V-a Primary-side hydrostatic test 10	IV-b	Large steam line break	1			
IV-d Control rod ejection 1 IV-e Large feedwater line break 1 Test Condition 1 V-a Primary-side hydrostatic test 10	IV-c	RCP locked rotor	1]		
IV-e Large feedwater line break 1 Test Condition V-a Primary-side hydrostatic test 10	IV-d	Control rod ejection	1			
V-a Primary-side hydrostatic test 10	IV-e	Large feedwater line break	1			
V-a Primary-side hydrostatic test 10	Test C	Condition				
	V-a	Primary-side hydrostatic test	10			

7.3.4 Load Combinations

The loading conditions analyzed consist of various combinations of pressure, temperature and external loads consistent with the Design Specification (Reference 4). The load combinations analyzed are listed in Table 7-20.

The names used for the external loads refer directly to names specified in Table 7-12-1 through 7-18.

System Operating Cond	dition and Service Levels	Service Loading Combination		
Design	Design	Design Pressure Dead Weight Loads Thermal Loads (note 1) Seismic(1/3 SSE) Loads (note 5)		
Normal	Level A	Level A Thermal & Pressure Transients Dead Weight Loads Thermal Loads (note 1)		
Upset	Level B	Level B Maximum Pressure (note 2) Level B Thermal & Pressure Transients Dead Weight Loads Thermal Loads (note 1) Seismic(1/3 SSE) Loads Level C Maximum Pressure Level C Thermal & Pressure Transients(note 3) Dead Weight Loads Thermal Loads (note 1)		
Emergency	Level C			
Faulted	Level D	Level D Maximum Pressure Dead Weight Loads Thermal Loads (note 1) +/- SRSS(Seismic(SSE) Loads + Accident Loads (note 4))		
Test	Test	Dead Weight Loads Hydrostatic Test Pressure		
Note 1	Applied to the nozzles stress evaluation.(NB-32	within the limits of reinforcement in the primary (27.5)		
Note 2	Applied for the primary s	tress evaluation.		
Note 3	Applied for the bolts inste	ead of Maximum Pressure.		
Note 4	It more than one Accider	nt Load, each is to be analyzed separately.		
Note 5	Design Loads are larger	than CDS, so result is conservative.		

Table 7-20 Load Combinations

8.0 METHODOLOGY

The ABAQUS computer program was used to determine mechanical loads, temperature distributions, stresses, and deformations. ABAQUS is a general purpose finite element computer program used by MHI in the design and analysis of nuclear components. ABAQUS is available in the public domain and has been used by MHI for U.S. replacement steam generator and replacement reactor vessel closure head projects.

8.1 Heat Transfer Coefficients and Thermal Analysis

Heat transfer coefficients on the inner and outer surfaces of the component are required to define the temperature distributions during transients. Classical Handbook heat transfer equations (References 6, 7 and 8) were used to calculate the heat transfer coefficients.

Finite element thermal analyses were performed for all Level A and Level B transients to define the time-dependent temperature distributions in the structure. The RCS fluid temperature versus time curves were applied to all wetted surfaces with appropriate heat transfer coefficients as described, above. The outside surfaces under the vessel insulation were assumed to be adiabatic.

8.2 Stress Analysis

Finite element stress analyses were performed for given loads and boundary conditions. The thermal loads were input from the thermal solution into each node of the structural model. The calculation of NB-3200 stress intensities, stress classifications, and stress evaluations were performed using a set of in-house proprietary computer programs (CLASS2D, CLASS3D, EDITSTRS, EVALPRI, EVALSEFAV, and RATCHET). These programs are described in Section 9.

Figure 8-1 shows the stress evaluation process.

CLASS2D and CLASS3D classify the stresses resulting from pressure, thermal loads, and externally applied forces and moments. EDITSTRS creates input files for the stress evaluation programs EVALPRI, EVALSEFAV, and RATCHET. EVALPRI and EVALSEFAV quantify the primary stress intensities, quantify primary plus secondary stress ranges, and perform the fatigue evaluation. The RATCHET program was used for the thermal ratchet evaluation.

Detailed assumptions associated with the finite element model development and mesh refinement are documented in the detailed calculations. Finite element models were verified by hand calculations using handbook equations.

Figure 8-1 Stress Evaluation Process

8.3 Fatigue Analysis Model and Method

The fatigue analysis was based on the rules of NB-3216.2 and NB-3222.4(e) of ASME Section III (Reference 1). These rules require calculation of the total stress, including the peak stress, to determine the allowable number of stress cycles for the specified service loadings at every point in the structure. In some cases, a fatigue strength reduction factor (FSRF) was used where the peak stress could not be accurately calculated. In these cases, the factor was applied to the surface stress produced by a linear stress distribution (through the wall thickness) that produced the identical displacement / rotation of the section (i.e. equivalent structural equilibrium).

The design transients for ASME Level A and B service conditions (Table 7-19) were used in the evaluation of cyclic fatigue. The effect of 300 cycles of a 1/3 SSE seismic event was also included in the evaluation of cyclic fatigue, treated as a Level B service condition. The number of cycles assumed for the 1/3 SSE seismic event was based on a fatigue usage for a single SSE event of 20 cycles.

9.0 COMPUTER PROGRAMS USED

Refer to Figure 8-1 for a visual description of the Stress Evaluation Process. Table 9-1 provides a brief description of each of the computer programs used.

No.	Program Name	Version	Description
1	ABAQUS	6.7-1	ABAQUS is a general purpose finite element computer code that performs a wide range of linear and nonlinear engineering simulations
2	CLASS2D	4.0	CLASS2D is an MHI code for classifying the stresses for axisymmetric models
3	CLASS3D	4.0	CLASS3D is an MHI code for classifying the stresses for 3D solid models
4	EDITSTRS	4.0	EDITSTRS is an MHI code that creates input files for the stress evaluation programs
5	EVALPRI	7.0	EVALPRI is an MHI code that performs the primary stress evaluation
6	EVALSEFAV	7.0	EVALSEFAV is an MHI code that performs the secondary stress and fatigue evaluation
7	RATCHET	8.0	RATCHET is an MHI code that evaluates thermal stress ratcheting
8	ASMETEMP	1.0	ASMETEMP is an MHI code that creates temperature files for the stress evaluation program
9	EB3500	3.0	EB3500 is an MHI code that perform the general primary membrane stress evaluation

 Table 9-1 Computer Program Description

All these computer programs were verified and validated and are maintained in compliance with the MHI quality assurance program. The computer programs were validated using one of the methods described below. Verification tests demonstrate the capability of the computer program to produce valid results for the test problems encompassing the range of permitted usage defined by the program documentation.

- Hand calculations
- Known solution for similar or standard problem
- Acceptable experimental test results
- Published analytical results
- Results from other similar verified programs

10.0 STRUCTURAL ANALYSIS RESULTS

This Section summarizes the results of the analyses for the seven parts of the RCP that were analyzed. Dimensional drawings, illustrations of the finite element models and summaries of the stress and fatigue analysis results are presented for each of the seven parts of the RCP. The results of the stress and fatigue analyses presented are generally conservative. It is expected that the resulting stress values and fatigue usage factors would be lower if more detailed calculations were performed; but since the results of the analyses all meet the ASME Code allowable limits, further analysis is not necessary.

10.1 Pump Casing Lugs

This section describes the stress evaluation results for the pump casing lugs. Three lugs are located on the side of the casing. Figures 10-1-1 shows the dimensions of the casing lugs.

10.1.1 Pump Casing Lugs Modeling and Analysis

Figure 10.1-1 Pump Casing Lug Dimensions

Figure 10.1-2 Pump Casing Lug Finite Element Model

10.1.2 Pump Casing Lugs Stress Results

The calculated stresses divided by the corresponding allowable values and the cumulative fatigue usage factors for the most limiting locations in the RCP casing lugs are summarized in Table 10-1.

	Part						
Condition		Pi	rimary Str	ess	Primary plus Secondary Stress	Thermal Ratchet	Fatigue Usage Factor
		P _m	P∟or P∟+P _b	Triaxial Stress	P _L +P _b +Q		
Design							
Level A/B							
Level C							
Level D							

Table 10-1 Summary of Results for Pump Casing Lugs (1/2)

Condition							
	Part	Primary Stress		Primary plus Secondary Stress Ratchet		Fatigue Usage Factor	
		P _m	P∟or P∟+P₀	Triaxial Stress	P _L +P _b +Q	Thermal Ratchet	
							J
Test							
							J
							J

Table 10-1 Summary of Results for Pump Casing Lugs (2/2)

10.2 Discharge Nozzle

This section describes the stress evaluation results for the discharge nozzle. The discharge nozzle is located on the bottom of the casing. Figures 10-2-1 shows the dimensions of the discharge nozzle.

10.2.1 Discharge Nozzle Modeling and Analysis

Figure 10.2-1 Discharge Nozzle Dimensions

Figure 10.2-2 Discharge Nozzle Finite Element Model

10.2.2 Discharge Nozzle Stress Results

The calculated stresses divided by the corresponding allowable values and the cumulative fatigue usage factors for the most limiting locations in the discharge nozzle are summarized in Table 10-2.

			1				
Condition	Part	Primary Stress			Primary plus Secondary Stress	Thermal Ratchet	Fatigue Usage Factor
		P _m	P∟or P∟+P _b	Triaxial Stress	P _L +P _b +Q		
Design							
Level A/B							
Level C							
Level D							

 Table 10-2
 Summary of Results for Discharge Nozzle (1/2)

Condition	Part	Primary Stress			Primary plus Secondary Stress	Thermal Ratchet	Fatigue Usage Factor
		P _m	P _L or P _L +P _b	Triaxial Stress	P _L +P _b +Q		
	ſ						J
Test							
							J
							J
C C							J

Table 10-2 Summary of Results for Discharge Nozzle (2/2)

10.3 Suction Nozzle

This section describes the stress evaluation results for the suction nozzle. The suction nozzle is located on the side of the casing. Figures 10-3-1 shows the dimensions of the suction nozzle.

10.3.1 Suction Nozzle Modeling and Analysis

Figure 10.3-1 Suction Nozzle Dimensions

Figure 10.3-2 Suction Nozzle Finite Element Model

10.3.2 Suction Nozzle Stress Results

The calculated stresses divided by the corresponding allowable values and the cumulative fatigue usage factors for the most limiting locations in the suction nozzle are summarized in Table 10-3.

Condition	Part	Primary Stress			Primary plus Secondary Stress	Thermal Ratchet	Fatigue Usage Factor
		P _m	P∟or P∟+P _b	Triaxial Stress	P _L +P _b +Q		
Design							
Level A/B							
Level C							
Level D							

Table 10-3 Summary of Results for Suction Nozzle (1/2)

Condition	Part	Primary Stress			Primary plus Secondary Stress	Thermal Ratchet	Fatigue Usage Factor
		P _m	P∟or P∟+P₀	Triaxial Stress	P _L +P _b +Q		
	ſ						J
Test							
							j
		I	I	1	I	1]
l							J

Table 10-2 Summary of Results for Suction Nozzle (2/2)

10.4 Main Flange

This section describes the stress evaluation results for the main flange. The main flange is bolted on the top of the casing via the diffuser flange. Figures 10-4-1 shows the dimensions of the main flange.

10.4.1 Main Flange Modeling and Analysis

Figure 10.4-1 Main Flange Dimensions

Figure 10.4-2 Main Flange Finite Element Model

10.4.2 Main Flange Stress Results

The calculated stresses divided by the corresponding allowable values and the cumulative fatigue usage factors for the most limiting locations in the main flange are summarized in Table 10-4.

Condition	Part	Primary Stress			Primary plus Secondary Stress	Thermal Ratchet	Fatigue Usage Factor
		P _m	P _L or P _L +P _b	Triaxial Stress	P _L +P _b +Q		
Design							
Level C							
Level o							
Level D							
LeverD							
Tost							
1651							

Table 10-4 Summary of Results for Main Flange

10.5 No.1 and 2 Seal Housings

This section describes the stress evaluation results for the No.1 & No.2 seal housings. The seal housings are bolted on the main flange. Figures 10-5-1 shows the dimensions of the seal housings.

Figure 10.5-1 Seal Housings Dimensions

10.5.1 Seal Housings Modeling and Analysis

Figure 10.5-2 Seal Housings Finite Element Model

10.5.2 Seal Housings Stress Results

The calculated stresses divided by the corresponding allowable values and the cumulative fatigue usage factors for the most limiting locations in the seal housings are summarized in Table 10-5.

Condition	Part	Primary Stress			Primary plus Secondary Stress	Thermal Ratchet	Fatigue Usage Factor
		P _m	P∟or P∟+P _b	Triaxial Stress	P _L +P _b +Q		
Design							
Design							
Level A/D							
Level C							
LeverD							
Test							

Table 10-5 Summary of Results for Seal Housings

10.6 Diffuser Flange

This section describes the stress evaluation results for the diffuser flange. The diffuser flange is located between the casing and the main flange. Figures 10-6-1 shows the dimensions of the diffuser flange.

Figure 10.6-1 Diffuser Flange Dimensions

10.6.1 Diffuser Flange Modeling and Analysis

Figure 10.6-2 Diffuser Flange Finite Element Model

10.6.2 Diffuser Flange Stress Results

The calculated stresses divided by the corresponding allowable values and the cumulative fatigue usage factors for the most limiting locations in the diffuser flange are summarized in Table 10-6.

Condition	Part	Primary Stress			Primary plus Secondary Stress	Thermal Ratchet	Fatigue Usage Factor
		P _m	P∟or P∟+P _b	Triaxial Stress	P _L +P _b +Q		
Design							
Boolgii							
Level A/B							
Level C							
l evel D							
Test							
)

Table 10-6 Summary of Results for Diffuser Flange

10.7 Heat Exchanger Tubing

10.7.1 Heat Exchanger Tubing Modeling and Analysis

Figure 10.7-1 Heat Exchanger Tube Dimensions

Figure 10.7-2 Heat Exchanger Tubing Finite Element Model

10.7.2 Heat Exchanger Tubing Stress Results

The calculated stress and corresponding allowable values and the cumulative fatigue usage factor for the most limiting locations in the RCP thermal barrier heat exchanger are summarized in Table 10.7-1.

Condition	Part	Primary Stress			Primary plus Secondary Stress	Thermal Ratchet	Fatigue Usage Factor	
		P _m	P _L or P _L +P _b	Triaxial Stress	P _L +P _b +Q			
Design								
l evel A/B								
l evel C								
l evel D								
Test								
							Ţ	

Table 10-7-1 Summary of Results for Heat Exchanger Tubing

11.0 REFERENCES

- 1. ASME Boiler and Pressure Vessel Code, Section III, Nuclear Power Plant Components, 2001 Edition through 2003 Addenda
- 2. ASME Boiler and Pressure Vessel Code, Section II Material Specification, 2001 Edition through 2003 Addenda
- 3. N0-FB10L01 Rev.2, "US-APWR General ASME Design Specification for Class 1 and CS Components", February 2010
- 4. N0-F600001, Rev.4, "Reactor Coolant Pump Design Specification", December 2010
- 5. "Manual of Steel Construction", Eighth Edition, American Institute of Steel Construction Inc.
- 6. Warren M. Rohsenow, James P. Hartnett and Yung I. Cho, "Handbook of Heat Transfer", Third Edition, McGraw Hill, 1998
- 7. Eckert and Drake, "Heat & Mass Transfer", Second Edition, 1959
- 8. Frank Kreith, Principles of HEAT TRANSFER third edition, 1976
- 9. N0-F600102 Rev.4, "Reactor Coolant Pump Design Drawings", February 2011