NOTE: THIS ATTACHMENT INCLUDES FLORIDA NATURAL AREAS INVENTORY (FNAI) ELEMENT OCCURRENCE MAPS AND DATA FOR THE CITRUS SUBSTATION, EXTRACTED FROM THE COMMON ROUTE FNAI ELEMENT OCCURRENCE REPORT.

1018 Thomasville Road Suite 200-C Tallahassee, FL 32303 850-224-8207 fax 850-681-9364 www.fnai.org December 1, 2009

Stacy Rizzo Golder Associates, Inc. 6026 NW 1st Place Gainesville, FL 32607

Dear Ms. Rizzo,

Thank you for your request for information from the Florida Natural Areas Inventory (FNAI). We have compiled the following information for your project area.

Project:

Common Corridor

Date Received:

November 24, 2009

Location:

Levy and Citrus Counties

Element Occurrences

A search of our maps and database indicates that currently we have several Element Occurrences mapped within the vicinity of the study area (see enclosed maps and element occurrence tables). Please be advised that a lack of element occurrences in the FNAI database is not a sufficient indication of the absence of rare or endangered species on a site.

The Element Occurrences data layer includes occurrences of rare species and natural communities. The map legend indicates that some element occurrences occur in the general vicinity of the label point. This may be due to lack of precision of the source data, or an element that occurs over an extended area (such as a wide ranging species or large natural community). For animals and plants, Element Occurrences generally refer to more than a casual sighting; they usually indicate a viable population of the species. Note that some element occurrences represent historically documented observations which may no longer be extant.

Likely and Potential Rare Species

In addition to documented occurrences, other rare species and natural communities may be identified on or near the site based on habitat models and species range models (see enclosed Biodiversity Matrix Reports). These species should be taken into consideration in field surveys, land management, and impact avoidance and mitigation.

FNAI habitat models indicate areas, which based on land cover type, offer suitable habitat for one or more rare species that is known to occur in the vicinity. Habitat models have been developed for approximately 300 of the rarest species tracked by the Inventory, including all federally listed species.

FNAI species range models indicate areas that are within the known or predicted range of a species, based on climate variables, soils, vegetation, and/or slope. Species range models have been developed for approximately 340 species, including all federally listed species.

Florida Resources and Environmental realysis Center

and Public Affairs

The Florida State University

The FNAI Biodiversity Matrix Geodatabase compiles Documented, Likely, and Potential species and natural communities for each square mile Matrix Unit statewide.

Florida Scrub-jay Survey - U.S. Fish and Wildlife Service

This survey was conducted by staff and associates of the Archbold Biological Station from 1992 to 1996. An attempt was made to record all scrub-jay (*Aphelocoma coerulescens*) groups, although most federal lands were not officially surveyed. Each map point represents one or more groups.

This data layer indicates that there are potential scrub-jay populations on or very near your site. For additional information:

Fitzpatrick, J.W., B. Pranty, and B. Stith, 1994, Florida scrub jay statewide map, 1992-1993. U. S. Fish and Wildlife Service Report, Cooperative Agreement no. 14-16-004-91-950.

Managed Areas

Portions of the site appear to be located within the Marjorie Harris Carr Cross Florida Greenway State Recreation and Conservation Area, managed by the Florida Department of Environmental Protection, Division of Greenways and Trails.

The Managed Areas data layer shows public and privately managed conservation lands throughout the state. Federal, state, local, and privately managed conservation lands are included.

Land Acquisition Projects

This site appears to be located within the Etoniah/Cross Florida Greenway Florida Forever BOT Project, which is part of the State of Florida's Conservation and Recreation Lands land acquisition program. A description of this project is enclosed. For more information on this Florida Forever Project, contact the Florida Department of Environmental Protection, Division of State Lands.

Florida Forever Board of Trustees (BOT) projects are proposed and acquired through the Florida Department of Environmental Protection, Division of State Lands. The state has no regulatory authority over these lands until they are purchased.

The Inventory always recommends that professionals familiar with Florida's flora and fauna should conduct a site-specific survey to determine the current presence or absence of rare, threatened, or endangered species.

Please visit www.fnai.org/trackinglist.cfm for county or statewide element occurrence distributions and links to more element information.

The database maintained by the Florida Natural Areas Inventory is the single most comprehensive source of information available on the locations of rare species and other significant ecological resources: However, the data are not always based on comprehensive or site-specific field surveys. Therefore, this information should not be regarded as a final statement on the biological resources of the site being considered, nor should it be substituted for on-site surveys. Inventory data are designed for the purposes of conservation planning and scientific research, and are not intended for use as the primary criteria for regulatory decisions.

Information provided by this database may not be published without prior written notification to the Florida Natural Areas Inventory, and the Inventory must be credited as an information source in these publications. FNAI data may not be resold for profit.

Thank you for your use of FNAI services. If I can be of further assistance, please give me a call at (850) 224-8207.

Alicia C. Newberry

Alicia C. Newberry
Data Services Coordinator

Encl

ELEMENT OCCURRENCES DOCUMENTED ON OR NEAR Common Corridor (Map 2 of 2)

INVENT	TO RY						Observatio	n	
Map Label	Scientific Name	Common Name	Rank	Rank	Status	Listing	Date	Description	EO Comments
DOMESWAM*12	Dome swamp		G4	S4	N	N	2004	SCATTERED OCCURRENCES UP TO 20 AC.; NO EVIDENCE OF LOGGING, TREES MAY BE DWARFED; WATER QUALITY APPARENTLY GOOD; POOLS ARE PEAT BOTTOMED.	2004: Update to last obs date was based on interpretation of aerial photography (previous value was 1991-11-12) (U05FNA02FLUS). OVERSTORY DOMINATED BY SMALL TAXODIUM ASCENDENS; WATER DEPTH UP TO 3 FEET.
MESIFLAT*56	Mesic flatwoods		G4	S4	N	N	2004	No general description given	2004: Update to last obs date was based on interpretation of aerial photography (previous value was 1991-11-12) (U05FNA02FLUS). APPROX. 50 YEAR OLD PINUS PALUSTRIS WITH RELATIVELY DENSE UNDERSTORY OF SERENOA REPENS, LYONIA LUCIDA, AND ILEX GLABRA.
APHECOER*42	Aphelocoma coerulescens	Florida Scrub-jay	G2	S2	LT	LT	1981-02-21	GRASSY PALMETTO SCRUB	1981-02-21: 11 SCRUB JAYS
RANACAPI*134	Rana capito	Gopher Frog	G3	S3	N	LS	1991-03-17	Upland Pine Forest; old field community	1991-03-17: D.J. STEVENSON, observed 1 adult female.
HYDRHAMM*17	Hydric hammock		G4	S4	N	N	2004		2004: Update to last obs date was based on interpretation of aerial photography (previous value was 1991-11-12) (U05FNA02FLUS). DOMINATED BY SABAL PALMETTO AND ACER RUBRUM.
SCRUB****42	Scrub		G2	S2	['] N	N	2004	GRASSY PALMETTO SCRUB	2004: Update to last obs date was based on interpretation of aerial photography (previous value was 1981-02-21) (U05FNA02FLUS). OCCURRENCE AT SITE
SCRUB****41	Scrub		G2	S2	N	N	1981-02-21	PALMETTO SCRUB, SCATTERED PALMS	OCCURRENCE AT SITE
GOPHPOLY*629	Gopherus polyphemus	Gopher Tortoise	G3	\$3	N	LT	1990-04	SANDHILL, LONGLEAF PINE-TURKEY OAK, WIREGRASS, ALSO SOME PASTURE.	NUMEROUS BURROWS. 300+/- INDIVIDUALS BASED ON BURROW SURVEYS TO FGFWFC STANDARDS, EST POPULATION DENSITY OF 1.3/AC. 42%, 25% AND 33% OF OBSERVED BURROWS WERE ACTIVE, INACTIVE AND OLD RESPECTIVELY.
FALCPAUL*52	Falco sparverius paulus	Southeastern American Kestrel	G5T4	S3	N	LT	1990-04	SANDHILL, LONGLEAF PINE-TURKEY OAK, WIREGRASS.	8 INDIVIDUALS AND SURVIVING FLEDGLINGS AND 2 CONFIRMED NESTS.

ELEMENT OCCURRENCES DOCUMENTED ON OR NEAR Common Corridor (Map 2 of 2)

Man Labol	Scientific Name	Common Name				Listing	Observation Date		EO Commento
Map Label	Scientific Name	Common Name	Kalik	Karik	Status	Listing	Date	Description	EO Comments
SANDHILL*54	Sandhill		G3	S2	N	N	1990-04	SANDHILL, LONGLEAF PINE-TURKEY OAK, WIREGRASS.	No EO data given
PODOFLOR*40	Podomys floridanus	Florida Mouse	G3	S3	N	LS	1990-04	SANDHILL, LONGLEAF PINE-TURKEY OAK, WIREGRASS.	36 (ADULTS AND JUVENILE) INDIVIDUALS CAPTURED AND RELEASED, DURING 800 TRAP NIGHT SURVEY. MAJORITY OF TRAPS WERE SET IN VICINITY OF GOPHERUS BURROWS.
RANACAPI*54	Rana capito	Gopher Frog	G3	S3	N	LS	1990-04	SANDHILL, LONGLEAF PINE-TURKEY OAK, WIREGRASS.	6 INDIVIDUALS CAPTURED IN FUNNEL TRAPS SET AT ENTRANCE OF GOPHER TORTOISE BURROWS.
SCIUSHER*58	Sciurus niger shermani	Sherman's Fox Squirrel	G5T3	S3	N	LS	1990-04	SANDHILL, LONGLEAF PINE-TURKEY OAK, WIREGRASS, ALSO IN PASTURE-BAHIA GRASS.	6 INDIVIDUALS OBSERVED IN SANDHILL AND PASTURE.
DRYMCOUP*347	Drymarchon couperi	Eastern Indigo Snake	G3	S3	LT	LT	1973-10	No general description given	MUSEUM SPECIMEN: S. CHRISTMAN, OCT 1973, UF.
APHECOER*41	Aphelocoma coerulescens	Florida Scrub-jay	G2	S2	LT	LT	1981-02-21	PALMETTO SCRUB, SCATTERED PINES	1981-02-21: 2 SCRUB JAYS
ARDEALBA*427	Ardea alba	Great Egret	G5	S4	N	Ν	1987-05-26	Swamp	1987/05/26: D.E. Runde, GFC; Total = 15
GOPHPOLY*1048	Gopherus polyphemus	Gopher Tortoise	G3	S3	N	LT	1997-04-08	Planted slash pine; includes some relic sandhill planted with slash pine and turkey oak (NW1/4 of section 2 T18SR16E).	1997-04-08: One individual sighted on dir road in NW1/4 section 1 T18SR16E (S. Blitch et al.). 1995-1997: S. Blitch made several sightings of tortoises at three different locations within element occurrence boundaries (see attached map).
CROTADAM*270	Crotalus adamanteus	Eastern Diamondback Rattlesnake	G4	S3	N	N	1996	Planted pine.	1996: S. Blitch observed one individual once or twice near state buffer preserve's shop.
ELANFORF*10	Elanoides forficatus	Swallow-tailed Kite	G5	S2	N	N	1995-SPRING	No general description given	1995 Spring: One pair nested in planted slash pine (S. Blitch).
DRYMCOUP*450	Drymarchon couperi	Eastern Indigo Snake	G3	S3	LT	LT	1996-XX-XX	Planted slash pine and pine flatwoods (T17SR16E sec. 35); oak hammock and pasture (T18SR16E Sec. 1) (S. Blitch); mature slash pine plantation (G. Maidhoff).	1995-1996: Individuals observed at four different locations by S. Blitch (no specific dates). 1995-02-21: One snake observed by Ms. Yulee Commander basking in fire trail (U95MAI02).

ELEMENT OCCURRENCES DOCUMENTED ON OR NEAR Common Corridor (Map 2 of 2)

INVEN	TORY		Global	State	Federal	State	Observation	n	
Map Label	Scientific Name	Common Name	Rank	Rank	Status	Listing	Date	Description	EO Comments
PODOFLOR*63	Podomys floridanus	Florida Mouse	G3	S3	N	LS	1993-01-30	Remnant sandhills, unburned for an extensive period of time. To north is a highly disturbed dolomite mine. To south is sparsely developed subdivision.	1993-01-30: 3 individuals (1 juvenile male, 1 adult male, and 1 adult female) caught e in Sherman traps (U93MAI01).
GOPHPOLY*701	Gopherus polyphemus	Gopher Tortoise	G3	S3	N	LT	2007-09-05	1996-02-24: open grassy area within a slash pine flatwoods; past disturbance from canal construction and spoil deposition (U96MAI01FLUS). 1991-11-12: xeric hammock with Quercus virginiana, Q. laurifolia, Pinus palustris, and patchy	2007-09-05: NeSmith documented one active adult burrow (F08FNA02FLUS). 2004-01-21: A. Davis found eight burrows, only one of which was active (PNDDAV04FLUS, U04DAV01FLUS). 1996-02-24: Maidhof observed adult tortoise and three burro
XERIHAMM*30	Xeric hammock		_ G3	\$3	N	N	2004	GRADES INTO MESIC FLATWOODS.	2004: Update to last obs date was based on interpretation of aerial photography (previous value was 1991-11-12) (U05FNA02FLUS). OVERSTORY WITH QUERCUS VIRGINIANA, Q. LAURIFOLIA, AND PINUS PALUSTRIS; GROUND COVER PATCHY WITH ARISTIDA STRICTA, DALEA SP., A
HALILEUC*446	Haliaeetus leucocephalus	Bald Eagle	G5	S 3	PS	N	2003	No general description given	Nest status 1995-2003: Continuously active. (U03FWC01FLUS). Previous data (note different format) NEST: 1995: PRODUCED 1 YOUNG; 1994: GONE; 1993: PRODUCED 2 YOUNG; 1992-87: NO DATA; 1982-1986 ACTIVE; FLEDGED YOUNG 1982-1983, 1985.
PHYLPLAT*22	Phyllanthus leibmannianus ssp. platylepis	Pinewoods Dainties	G4T2	\$2	N	LE	2004-05-19	2004-05-19: Both Source Points occurred within upland mixed forest with exposed limestone (U05HER01FLUS, U03HER01FLUS).	2004-05-19: Over 300 plants that were in bud and flower were observed scattered thoughout an area covering 100 feet X 10 feet in the eastern-most Source Point (U05HER01FLUS). 2003-04-24: The western-most Source Point consisted of 10 scatte
PSEULUST*5	Pseudobranchus striatus lustricolus	Gulf Hammock Dwarf Siren	G5T1	S1	N	N	1951-03-15	1951: habitat not described by Nei (1951) (A51NEI02FLUS).	II 1951-03-15; W. T. Neill collected at least eight adults (paratypes, ERA-WTN 14218-14225) (A51NEI02FLUS, B92MOL01FLUS).

ELEMENT OCCURRENCES DOCUMENTED ON OR NEAR Common Corridor (Map 2 of 2)

INVENT		·-	Global	State	Federal	State	Observation	1	
Map Label	Scientific Name	Common Name	Rank	Rank	Status	Listing	Date	Description	EO Comments
GOPHPOLY*1293	Gopherus polyphemus	Gopher Tortoise	G3	S3	N	LT	2002-05-30	2002-05-30: ruderal site south of canal. Ddisturbances include land clearing, and excavation (U02HER01FLUS, PNDHER03FLUS, PNDSCH03FLUS).	2002-05-30: 2 active burrows were documented (U02HER01FLUS, PNDHER03FLUS, PNDSCH03FLUS).
GOPHPOLY*1294	Gopherus polyphemus	Gopher Tortoise	G3	S3	N	LT		2001-12-20: ruderal site (limerock mine) (U02HER01FLUS, PNDHER03FLUS, PNDSCH03FLUS).	2001-12-20: one active burrow documented (U02HER01FLUS, PNDHER03FLUS, PNDSCH03FLUS).

Florida Natural Areas Inventory

Biodiversity Matrix Report Map 2 of 2

Natural Areas				18	51 - 8
INVENTORY Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Listing
Matrix Unit ID: 23022					
Likely	,				
Aphelocoma coerulescens Drymarchon couperi Heterodon simus Mesic flatwoods	Florida Scrub-jay Eastern Indigo Snake Southern Hognose Snake	G2 G3 G2 G4	S2 S3 S2 S4	LT LT N N	LT LT N N
Potential					
Agrimonia incisa Aimophila aestivalis Asplenium heteroresiliens Corynorhinus rafinesquii Forestiera godfreyi Gopherus polyphemus Justicia cooleyi Leitneria floridana Matelea floridana Mustela frenata peninsulae Myotis austroriparius Notophthalmus perstriatus Phyllanthus leibmannianus ssp. platylepis Podomys floridanus Sciurus niger shermani Spigelia loganioides Stilosoma extenuatum	Incised Groove-bur Bachman's Sparrow Wagner's Spleenwort Rafinesque's Big-eared Bat Godfrey's Swampprivet Gopher Tortoise Cooley's Water-willow Corkwood Florida Spiny-pod Florida Long-tailed Weasel Southeastern Bat Striped Newt Pinewood Dainties Florida Mouse Sherman's Fox Squirrel Pinkroot Short-tailed Snake	G3 G3 GNA G3G4 G2 G3 G2 G5T3 G3G4 G2G3 G4T2 G3 G5T3 G2Q G3	\$2 \$3 \$1 \$2 \$2 \$3 \$2 \$3 \$2 \$3 \$2 \$3 \$2 \$3 \$2 \$3 \$2 \$3 \$2 \$3 \$3 \$3 \$2 \$3 \$3 \$3 \$3 \$3 \$3 \$3 \$3 \$3 \$3 \$3 \$3 \$3	X	LE N N N LE LT LE N N N LE LS S LE LT
Matrix Unit ID: 23023					
Likely					
Drymarchon couperi Mesic flatwoods	Eastern Indigo Snake	G3 G4	S3 S4	LT N	LT N
Potential					
Agrimonia incisa Aimophila aestivalis Asplenium heteroresiliens Athene cunicularia floridana Forestiera godfreyi Gopherus polyphemus Heterodon simus Justicia cooleyi Leitneria floridana Matelea floridana Mustela frenata peninsulae Myotis austroriparius Notophthalmus perstriatus Phyllanthus leibmannianus ssp. platylepis Pituophis melanoleucus mugitus	Incised Groove-bur Bachman's Sparrow Wagner's Spleenwort Florida Burrowing Owl Godfrey's Swampprivet Gopher Tortoise Southern Hognose Snake Cooley's Water-willow Corkwood Florida Spiny-pod Florida Long-tailed Weasel Southeastern Bat Striped Newt Pinewood Dainties Florida Pine Snake Florida Mouse	G3 G3 GNA G4T3 G2 G3 G2 G5T3 G3G4 G2G3 G4T2 G4T3 G3	\$2 \$3 \$1 \$3 \$2 \$3 \$2 \$3 \$2 \$3 \$2 \$3 \$2 \$3 \$2 \$3 \$2 \$3 \$3 \$2 \$3 \$3 \$2 \$3 \$3 \$2 \$3 \$3 \$3 \$3 \$3 \$3 \$3 \$3 \$3 \$3 \$3 \$3 \$3	X	L N N S L L N L L L N N N L L S S

Definitions: Documented - Rare species and natural communities documented on or near this site.

Documented-Historic - Rare species and natural communities documented, but not observed/reported within the last twenty years.

Likely - Rare species and natural communities likely to occur on this site based on suitable habitat and/or known occurrences in the vicinity.

Potential - This site lies within the known or predicted range of the species listed.

12/01/2009 Page 1 of 3

Florida Natural Areas Inventory

Biodiversity Matrix Report Map 2 of 2

Natural Areas	·			18	51 . 8
Natural Areas INVENTORY Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Listing
Rana capito Sciurus niger shermani Spigelia loganioides Stilosoma extenuatum	Gopher Frog Sherman's Fox Squirrel Pinkroot Short-tailed Snake	G3 G5T3 G2Q G3	S3 S3 S2 S3	N N N	LS LS LE LT
Matrix Unit ID: 23024					
Likely					
Haliaeetus leucocephalus Mesic flatwoods Sandhill upland lake	Bald Eagle	G5 G4 G3	S3 S4 S2	N N N	N N N
Potential					
Agrimonia incisa Aimophila aestivalis Asplenium heteroresiliens Athene cunicularia floridana Drymarchon couperi Forestiera godfreyi Gopherus polyphemus Heterodon simus Leitneria floridana Matelea floridana Mustela frenata peninsulae Myotis austroriparius Notophthalmus perstriatus Phyllanthus leibmannianus ssp. platylepis Pituophis melanoleucus mugitus Podomys floridanus Rana capito Sciurus niger shermani Spigelia loganioides Stilosoma extenuatum	Incised Groove-bur Bachman's Sparrow Wagner's Spleenwort Florida Burrowing Owl Eastern Indigo Snake Godfrey's Swampprivet Gopher Tortoise Southern Hognose Snake Corkwood Florida Spiny-pod Florida Long-tailed Weasel Southeastern Bat Striped Newt Pinewood Dainties Florida Pine Snake Florida Mouse Gopher Frog Sherman's Fox Squirrel Pinkroot Short-tailed Snake	G3 G3 GNA G4T3 G3 G2 G3 G2 G5T3 G3G4 G2G3 G4T2 G4T3 G3 G5T3 G2Q G3	\$2 \$3 \$1 \$3 \$2 \$3 \$2 \$3 \$2 \$3 \$2 \$3 \$2 \$3 \$2 \$3 \$3 \$2 \$3 \$3 \$3 \$3 \$3 \$3 \$3 \$3 \$3 \$3 \$3 \$3 \$3	X X X Z Z X X X X X X X X X X X X X X X	LENNSTELNN NESSSET
Matrix Unit ID: 23025					
Likely					
Hydric hammock Mesic flatwoods Sandhill upland lake		G4 G4 G3	S4 S4 S2	N N N	N N N
Potential					
Acipenser oxyrinchus desotoi Agrimonia incisa Aimophila aestivalis Ardea alba Asplenium heteroresiliens Athene cunicularia floridana Corynorhinus rafinesquii Drymarchon couperi	Gulf Sturgeon Incised Groove-bur Bachman's Sparrow Great Egret Wagner's Spleenwort Florida Burrowing Owl Rafinesque's Big-eared Bat Eastern Indigo Snake	G3T2 G3 G3 G5 GNA G4T3 G3G4 G3	\$2 \$3 \$4 \$1 \$3 \$2 \$3	LT N N N N N	LS LE N N N LS N LT

Definitions:

Documented - Rare species and natural communities documented on or near this site.

Documented-Historic - Rare species and natural communities documented, but not observed/reported within the last twenty years. Likely - Rare species and natural communities likely to occur on this site based on suitable habitat and/or known occurrences in the vicinity. Potential - This site lies within the known or predicted range of the species listed.

12/01/2009 Page 2 of 3

Florida Natural Areas Inventory

Biodiversity Matrix Report Map 2 of 2

Scientific Name	Common Name	Global Rank	State Rank	Federal Status	State Listing
Forestiera godfreyi	Godfrey's Swampprivet	G2	S2	N	LE
Gopherus polyphemus	Gopher Tortoise	G3	S3	N	LT
Heterodon simus	Southern Hognose Snake	G2	S2	N	N
Leitneria floridana	Corkwood	G3	S3	N	LT
Litsea aestivalis	Pondspice	G3	S2	N	LE
Matelea floridana	Florida Spiny-pod	G2	S2	N	LE
Mustela frenata peninsulae	Florida Long-tailed Weasel	G5T3	S3	N	N
Myotis austroriparius	Southeastern Bat	G3G4	S3	N	N
Notophthalmus perstriatus	Striped Newt	G2G3	S2S3	Ν	N
Phyllanthus leibmannianus ssp. platylepis	Pinewood Dainties	G4T2	S2	N	LE
Pituophis melanoleucus mugitus	Florida Pine Snake	G4T3	S3	N	LS
Podomys floridanus	Florida Mouse	G3	S3	Ν	LS
Pseudemys concinna suwanniensis	Suwannee Cooter	G5T3	S3	Ν	LS
Pteroglossaspis ecristata	Giant Orchid	G2G3	S2	Ν	LT
Rana capito	Gopher Frog	G3	S3	N	. LS
Rhexia parviflora	Small-flowered Meadowbeauty	G2	S2	N	LE
Sciurus niger shermani	Sherman's Fox Squirrel	G5T3	S3	N	LS
Spigelia loganioides	Pinkroot	G2Q	S2	N	LE
Stilosoma extenuatum	Short-tailed Snake	G3	S3	Ν	LT

Documented - Rare species and natural communities documented on or near this site.

Documented-Historic - Rare species and natural communities documented, but not observed/reported within the last twenty years. Likely - Rare species and natural communities likely to occur on this site based on suitable habitat and/or known occurrences in the vicinity. Potential - This site lies within the known or predicted range of the species listed.

GLOBAL AND STATE RANKS

Florida Natural Areas Inventory (FNAI) defines an **element** as any rare or exemplary component of the natural environment, such as a species, natural community, bird rookery, spring, sinkhole, cave, or other ecological feature. FNAI assigns two ranks to each element found in Florida: the **global rank**, which is based on an element's worldwide status, and the **state rank**, which is based on the status of the element within Florida. Element ranks are based on many factors, including estimated number of occurrences, estimated abundance (for species and populations) or area (for natural communities), estimated number of adequately protected occurrences, range, threats, and ecological fragility.

GLOBAL RANK DEFINITIONS

G1	Critically imperiled globally because of extreme rarity (5 or fewer occurrences or less than 1000 individuals) or because of extreme vulnerability to extinction due to some natural or man-made factor.
<i>G2</i>	Imperiled globally because of rarity (6 to 20 occurrences or less than 3000 individuals) or because of vulnerability to extinction due to some natural or man-made factor.
<i>G3</i>	Either very rare and local throughout its range (21-100 occurrences or less than 10,0000 individuals) or found locally in a restricted range or vulnerable to extinction from other factors.
G4	Apparently secure globally (may be rare in parts of range).
G5	Demonstrably secure globally.
G#?	Tentative rank (e.g., G2?)
G#G#	Range of rank; insufficient data to assign specific global rank (e.g., G2G3)
<i>G#T#</i>	Rank of a taxonomic subgroup such as a subspecies or variety; the G portion of the rank refers to the entire species and the T portion refers to the specific subgroup; numbers have same definition as above (e.g., G3T1)
G#Q	Rank of questionable species - ranked as species but questionable whether it is species or subspecies; numbers have same definition as above (e.g., G2Q)
G#T#Q	Same as above, but validity as subspecies or variety is questioned.
GH	Of historical occurrence throughout its range, may be rediscovered (e.g., ivory-billed woodpecker)
GNA	Ranking is not applicable because element is not a suitable target for conservation (e.g. as for hybrid species)
GNR	Not yet ranked (temporary)
GNRTNR	Neither the full species nor the taxonomic subgroup has yet been ranked (temporary)
GX	Believed to be extinct throughout range
GXC	Extirpated from the wild but still known from captivity/cultivation
GU	Unrankable. Due to lack of information, no rank or range can be assigned (e.g., GUT2).

STATE RANK DEFINITIONS

Definition parallels global element rank: substitute "S" for "G" in above global ranks, and "in Florida" for "globally" in above global rank definitions.

FEDERAL AND STATE LEGAL STATUSES (U.S. Fish and Wildlife Service – USFWS) PROVIDED BY FNAI FOR INFORMATION ONLY.

For official definitions and lists of protected species, consult the relevant state or federal agency.

FEDERAL LEGAL STATUS

Definitions derived from U.S. Endangered Species Act of 1973, Sec. 3. Note that the federal status given by FNAI refers only to Florida populations and that federal status may differ elsewhere.

- LE Listed as Endangered Species in the List of Endangered and Threatened Wildlife and Plants under the provisions of the Endangered Species Act. Defined as any species which is in danger of extinction throughout all or a significant portion of its range.
- LE,XN A non essential experimental population of a species otherwise Listed as an Endangered Species in the List of Endangered and Threatened Wildlife and Plants. LE,XN for Grus americana (Whooping crane), Federally listed as XN (Non essential experimental population) refers to the Florida experimental population only. Federal listing elsewhere for Grus americana is LE.
- PE Proposed for addition to the List of Endangered and Threatened Wildlife and Plants as Endangered Species.
- LT Listed as Threatened Species, defined as any species which is likely to become an endangered species within the foreseeable future throughout all or a significant portion of its range.
- LT,PDL Species currently listed Threatened but has been proposed for delisting.
- **PT** Proposed for listing as Threatened Species.
- C Candidate Species for addition to the list of Endangered and Threatened Wildlife and Plants, Category 1. Federal listing agencies have sufficient information on biological vulnerability and threats to support proposing to list the species as Endangered or Threatened.
- **SAT** Threatened due to similarity of appearance to a threatened species.
- SC Species of Concern, species is not currently listed but is of management concern to USFWS.
- Not currently listed, nor currently being considered for addition to the List of Endangered and Threatened Wildlife and Plants.

FLORIDA LEGAL STATUSES (Florida Fish and Wildlife Conservation Commission – FFWCC/ Florida Department of Agriculture and Consumer Services – FDACS)

Animals: Definitions derived from "Florida's Endangered Species and Species of Special Concern, Official Lists" published by Florida Fish and Wildlife Conservation Commission - FFWCC, 1 August 1997, and subsequent updates.

- LE Listed as Endangered Species by the FFWCC. Defined as a species, subspecies, or isolated population which is so rare or depleted in number or so restricted in range of habitat due to any man-made or natural factors that it is in immediate danger of extinction or extirpation from the state, or which may attain such a status within the immediate future.
- LT Listed as Threatened Species by the FFWCC. Defined as a species, subspecies, or isolated population which is acutely vulnerable to environmental alteration, declining in number at a rapid rate, or whose range or habitat is decreasing in area at a rapid rate and as a consequence is destined or very likely to become an endangered species within the foreseeable future.
- LT* Indicates that a species has LT status only in selected portions of its range in Florida. LT* for Ursus americanus floridanus (Florida black bear) indicates that LT status does not apply in Baker and Columbia counties and in the Apalachicola National Forest. LT* for Neovison vison pop. 1 (Southern mink, South Florida population) state listed as Threatened refers to the Everglades population only (Note: species formerly listed as Mustela vison mink pop. 1. Also, priorly listed as Mustela evergladensis).
- LS Listed as Species of Special Concern by the FFWCC, defined as a population which warrants special protection, recognition, or consideration because it has an inherent significant vulnerability to habitat modification,

environmental alteration, human disturbance, or substantial human exploitation which, in the foreseeable future, may result in its becoming a threatened species.

LS* Indicates that a species has LS status only in selected portions of its range in Florida. LS* for Pandion haliaetus (Osprey) state listed as LS (Species of Special Concern) in Monroe County only.

PE Proposed for listing as Endangered.PT Proposed for listing as Threatened.

PS Proposed for listing as a Species of Special Concern.

Not currently listed, nor currently being considered for listing.

Plants: Definitions derived from Sections 581.011 and 581.185(2), Florida Statutes, and the Preservation of Native Flora of Florida Act, 5B-40.001. FNAI does not track all state-regulated plant species; for a complete list of state-regulated plant species, call Florida Division of Plant Industry, 352-372-3505 or please visit: http://DOACS.State.FL.US/PI/Images/Rule05b.pdf

LE Listed as Endangered Plants in the Preservation of Native Flora of Florida Act. Defined as species of plants native to the state that are in imminent danger of extinction within the state, the survival of which is unlikely if the causes of a decline in the number of plants continue, and includes all species determined to be endangered or threatened pursuant to the Federal Endangered Species Act of 1973, as amended.

PE Proposed by the FDACS for listing as Endangered Plants.

LT Listed as Threatened Plants in the Preservation of Native Flora of Florida Act. Defined as species native to the state that are in rapid decline in the number of plants within the state, but which have not so decreased in such number as to cause them to be endangered. LT* indicates that a species has LT status only in selected portions of its range in Florida.

PT Proposed by the FDACS for listing as Threatened Plants.

Not currently listed, nor currently being considered for listing.

Etoniah/Cross Florida Greenway Group A: Full Fee

Clay, Putnam, Marion, Levy and Citrus Counties Group A: Less-Than-Fee

Purpose for State Acquisition

Though partially logged and planted in pine, the large expanse of flatwoods, sandhills, and scrub in central Putnam County, extending to the Cross-Florida Greenway along the Ocklawaha River, is important for the survival of many kinds of wildlife and plants. The Greenway itself is a unique strip of land for recreation and conservation that makes a cross-section of the peninsula from the Withlacoochee River to the St. Johns. The Etoniah/Cross Florida Greenway project will conserve the Putnam County land as well as fill in gaps in the Greenway; ensure that wildlife such as Florida black bear and scrub jays and plants such as the Etoniah rosemary will have areas in which to live; and provide recreation for the public ranging from longdistance hiking trails to fishing, camping, and hunting. This project may also help complete the Florida National Scenic Trail, a statewide non-motorized trail that crosses a number of Florida Forever project sites.

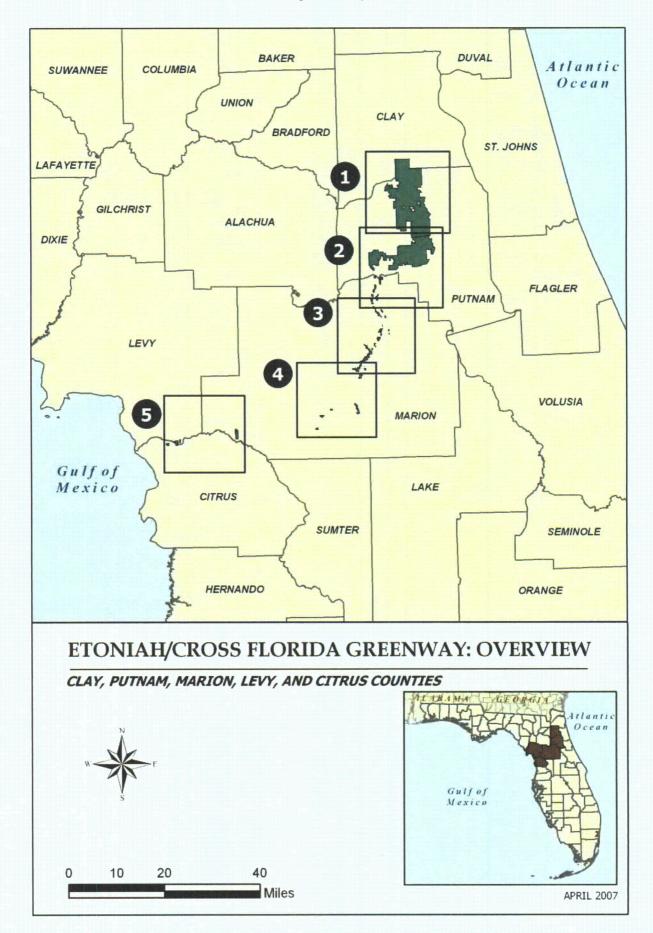
Manager

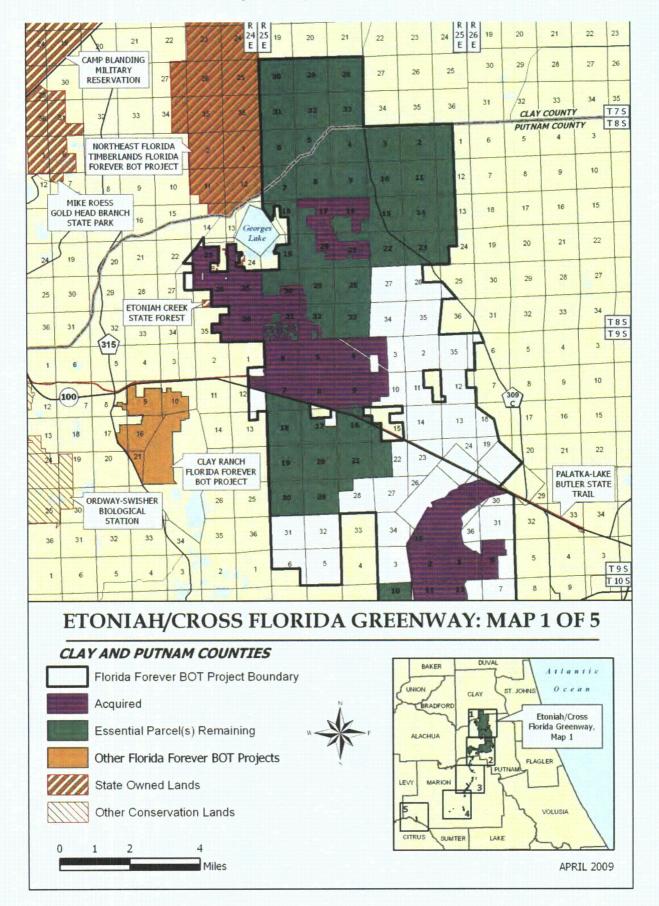
Division of Forestry (DOF), Florida Department of Agriculture and Consumer Services (Etoniah Creek tract) and Office of Greenways and Trails (OGT), Florida Department Environmental Protection (remaining tracts). DOF will monitor compliance with the terms of any less-than-fee purchase agreement.

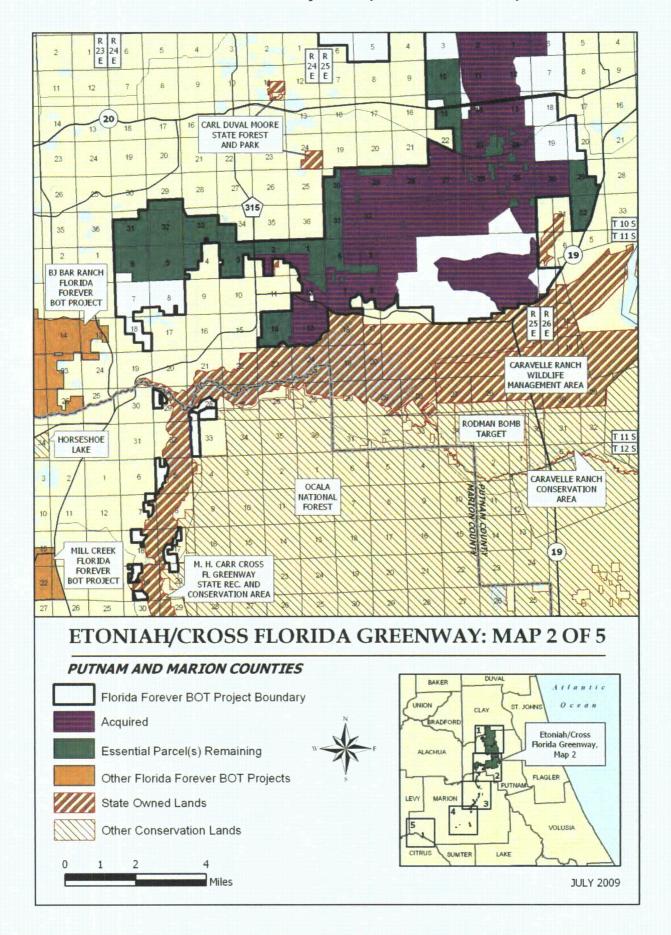
tonia Rosemary	G1/SI
lorida Scrub-jay	G2/S2
lorida Black Bear	G5T2/S2
astern Indigo Snake	G3/S3
Sopher Tortoise	G3/S3
lorida Mouse	G3/S3
swallow-tailed Kite	G5/S2
inkroot 🐭	G2Q/S2
Torida Willow	G2/S2
ariable-leaved Indian-pla	àntain G2/\$2
linewood Dainties	G4T2/S2
Black Creek Cravfish	G2/S2

General Description

The project consists of a large tract extending north from the Cross Florida Greenway to Clay County, and four smaller tracts designed to fill in gaps in state ownership along the Cross Florida Greenway. The original Etoniah/Cross Florida Greenway project is important for the survival of black bear in northeast Florida, includes many acres of pine plantation and cutover flatwoods, but also high-quality sandhill, a unique white-cedar swamp along Deep Creek, and patches of sand pine scrub near Etoniah Creek that harbor at least a dozen rare species including fox squirrel, gopher tortoise, indigo and pine snakes, rare crayfish, and seven rare plants including the only known site for federally listed Etoniah rosemary. The smaller tracts include high-quality floodplain swamps along the Ocklawaha River; mixed forest land near U.S. 441 south of Ocala; and Inglis Island, disturbed pinelands between the old Cross Florida Barge Canal and the Withlacoochee River. Eight archaeological sites are known from the project. The greatest threat to the project area is intensive logging, but the uplands on the large tract are suitable for residential development. The smaller sites would lose their value as connectors if developed for residences.


Public Use


The Cross Florida Greenway connectors will form part of a conservation and recreation area; the majority of


Placed on list	1995*
Project Area (Not GIS Acreage)	89,907
Acres Acquired	22,143**
at a Cost of	\$20,256,131**
Acres Remaining	67,764
with Estimated (Tax Assessed) Value	e of \$174 247 293

^{*}Etoniah Creek, Cross Florida Greenways and Cross Florida Greenways Phase II were combined in 1995 to create Etoniah/ Cross Florida Greenway. A Less-Than-Fee parcel of approximately 18,406 acres was added to the project in 1997.

^{**} Includes a donation of 43 acres and acreage acquired and funds spent by the SJRWMD on Plum Crk/Rick Co.

the large (Etoniah) tract will become a state forest. The various parts of the project will offer opportunities for hiking, hunting, fishing and nature appreciation.

Acquisition Planning

Etoniah Creek

Phase I tracts (essential) include Stokes and Agricola, formerly Deltona (acquired), Union Camp, Manning (acquired) and Interlachen Lake Estates Subdivision. Life-of-the-South (Odom) is also an essential tract. Phase II includes other large ownerships, such as Roberts, as well as other smaller tracts and subdivisions.

Cross Florida Greenway

Phase I (essential) includes the westernmost segment (Deep Creek Corridor) consisting of a portion of the Miller family ownerships and approximately 14 other owners.

Cross Florida Greenway Phase II

The priority tract (essential) within this portion of the project is the Inglis Island site (acquired by the Office of Greenways and Trails).

On July 20, 1994 the Council added 210 acres to the boundaries of the predecessor projects.

On December 7, 1995, the Council approved the addition of 2,664 acres to the project boundary. The addition included lakeshore and lake bottom associated with Rodman Reservoir. A second modification was made to allow the St. Johns River Water Management District to acquire, on the State's behalf, a large ownership (Odom) not identified in the original Phase I area. Acquisition of the canal easement areas is also a priority.

On March 15, 1996 the Council approved adding 141 acres to the project boundaries.

On December 5, 1996, the Council transferred the Georgia-Pacific ownership (18,146 acres) to the Less-Than-Fee category.

On October 15, 1998, the Council designated as essential an additional 9,870 acres - Georgia-Pacific and seven smaller tracts in a corridor between two already acquired tracts, and portions of the Roberts ownership.

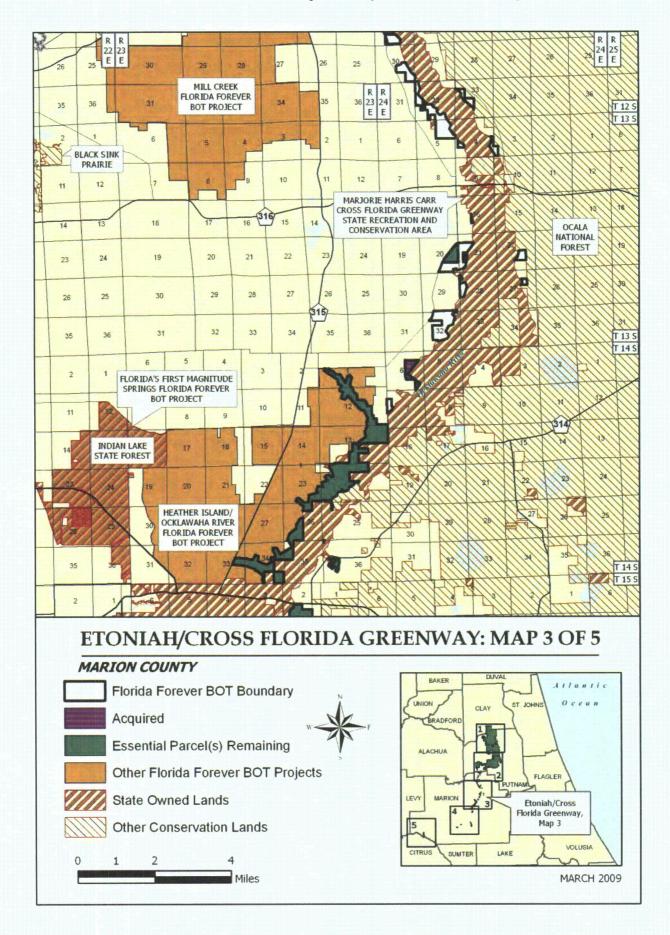
On August 22, 2000, the Acquisition and Restoration Council (ARC) added 2,110 acres (Florida Power ownership along the Cross Florida Greenway State Recreation and Conservation areas) to the project.

On January 25, 2001, ARC added 1,543 acres to the project (boundary in the Deep Creek area).

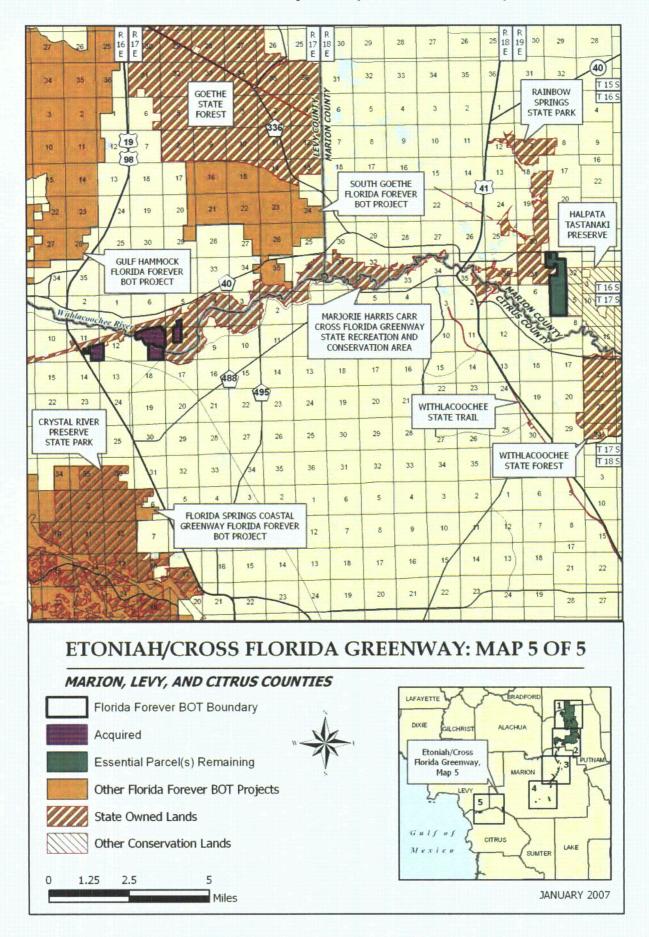
On May 17, 2001, ARC added 1,110 acres to the boundaries of the project.

On February 25, 2003 the project was added to the Group A list of Florida Forever projects.

On April 13, 2007, the ARC approved a fee-simple, 85-acre addition, known as Foxtrotter Ranch, to the project boundary. It was sponsored by the Office of Greenways & Trails (OGT), consisted of one landowner, Richard Simon, one parcel, and a taxable value of \$2,267,908. OGT will manage the site. The house (approximately 2.5 acres) is not included in the addition, however, it may be donated to the state subsequent to acquisition.


In June, 2008, some 1.19 acres of the Harrington ownership were purchased for \$15,000 with the Division of Forestry (DOF) Florida Forever funds. Forestry will manage this section.


In September, 2008, the DOF used Florida Forever funds to buy the following acreages: 1.08 acres (Fred Yankee, LLC) for \$13,500; 0.87 acres (Goddard) for \$23,000; 1.01 acres (Land Reclamation, Inc.) for \$15,000; 2.52 acres (Cann) for \$23,000; 1.21 acres (Martin) for \$14,000; 1.27 acres (Vehoski) for \$14,000; and 1 acre (Murray) for \$15,000. The DOF will manage all of these parcels.


In October, 2008, the DOF used Florida Forever funds to buy 1.25 acres (Uttech) for \$11,500; 2.5 acres (Lachmansingh) for \$25,000; 3.61 acres (Chapman) for \$37,500; and 2.53 acres (Thornton) for \$23,000. The DOF will manage these parcels.

In November, 2008, the DOF used Florida Forever funds to buy 1.27 acres (Dubay) for \$14,000; 1.24 acres (Hood) for \$15,500; 1.25 acres (Contreras) for \$14,000; and 1.24 acres (South) for \$14,000. The DOF will manage these parcels.

January 21, 2009 SJRWMD purchased 208 acres for \$474,363 (Plum Creek/Rick Co.).

Coordination

The SJRWMD was the intermediary in the acquisition of the Manning tract and has provided information and expertise on several other tracts. The Office of Greenways and Trails used additions and inholding funds to acquire Inglis Island. The Division of State Lands will assume the lead on acquisition of the remaining tracts.

Management Policy Statement

The primary goals of management of the Etoniah/ Cross Florida Greenway project are: to conserve and protect environmentally unique and irreplaceable lands that contain native, relatively unaltered flora and fauna representing a natural area unique to, or scarce within, a region of this state or a larger geographic area; to conserve and protect significant habitat for native species or endangered and threatened species; to conserve, protect, manage, or restore important ecosystems, landscapes, and forests, in order to enhance or protect significant surface water, coastal, recreational, timber, fish or wildlife resources which local or state regulatory programs cannot adequately protect; and to provide areas, including recreational trails, for natural-resourcebased recreation.

Management Prospectus

Qualifications for state designation The large size, restorable pine plantations, and diversity of the Etoniah Creek portion of this project make it highly desirable for management as a state forest. The Cross Florida Greenway State Recreation and Conservation Area includes scenic and historic rivers, lakes, wetlands, and uplands. It is also near, or contiguous with, many other state-owned lands. The Cross Florida Greenway portion of this project, together with the lands already in the Greenway, has the configuration, location, and resources to qualify as a state recreation area.

Manager The DOF proposes to manage the 57,000-acre Etoniah Creek portion of the project and the OGT will manage the remaining lands in the vicinity of the old Cross Florida Barge Canal.

Conditions affecting intensity of management There are no known major disturbances in the Etoniah Creek portion that will require extraordinary attention, so management intensity is expected to be typical for a state forest. Lands in the Cross Florida Greenway portion are generally moderate-need tracts.

Timetable for implementing management and provisions for security and protection of infrastructure Once the core area of the Etoniah Creek portion is

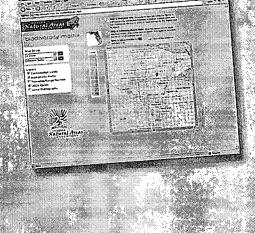
acquired, the DOF will provide access to the public for low-intensity, non-facilities-related outdoor recreation. Initial activities will include securing the tract, providing public and fire management accesses, inventorying resources, and removing trash. The Division will provide access to the public while protecting sensitive resources. The tract's natural resources and threatened and endangered plants and animals will be inventoried to provide the basis for a management plan.

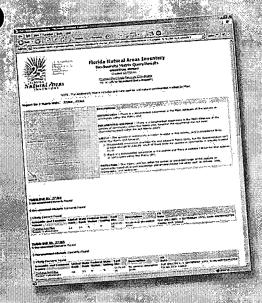
Long-range plans for the Etoniah Creek portion will generally be directed toward restoring disturbed areas to their original conditions, as far as possible, as well as protecting threatened and endangered species. An all-season burning program will use, whenever possible, existing roads, black lines, foam lines and natural breaks to contain fires. Timber management will mostly involve improvement thinning and regeneration harvests. Plantations will be thinned and, where appropriate, reforested with species found in natural ecosystems. Stands will not have a targeted rotation age. Infrastructure will primarily be located in disturbed areas and will be the minimum required for management and public access. The Division will promote environmental education. For the Greenway portion, activities within the first year after acquisition will primarily consist of site security, resource inventory, removal of trash, and resource-management planning. Long-range activities proposed include a multipurpose trail and facilities for public access.

Revenue-generating potential In the Etoniah Creek portion, the DOF sell timber as needed to improve or maintain desirable ecosystem conditions. These sales will provide a variable source of revenue, but the revenue-generating potential for this project is expected to be moderate. In the Greenway portion, no revenues are expected to be generated within the first three years after acquisition. However, as the Greenway is developed during its 20-year facility development plan, revenues will be derived from user fees, the sale of products from the lands (limerock berm and timber), and the sale of surplus lands.

Cooperators in management activities The DOF will cooperate with and seek the assistance of other state agencies, local government entities and interested parties as appropriate. Currently, properties along the Greenway are managed in partnership with Marion County, the Florida Game and Fresh Water Fish Commission, and private individuals for recreational purposes.

Full Fee:			
Management Cost	Summary/OGT		
Category	Startup	Recurring	
Source of Funds	LATF	LATF	
Salary	\$36,380	\$36,380	
OPS	\$72,660	\$72,660	
Expense	\$62,301	\$46,362	
oco	\$3,167	\$0	
FCO	\$100,000	\$0	
TOTAL	\$274,508	\$185,402	
Management Cost	Summary/DOF		
Category	1996/97	1997/98	1998/99
Source of Funds	CARL	CARL	CARL
Salary	\$45,337	\$56,489	\$58,183.67
OPS	\$0	\$3,000	\$7,650.00
Expense	\$11,225	\$22,825	\$58,203.75
OCO	\$43,320	\$50,500	\$128,775.00
FCO	\$0	\$0	, \$ 0
TOTAL	\$99,882	\$132,814	\$252,812.42



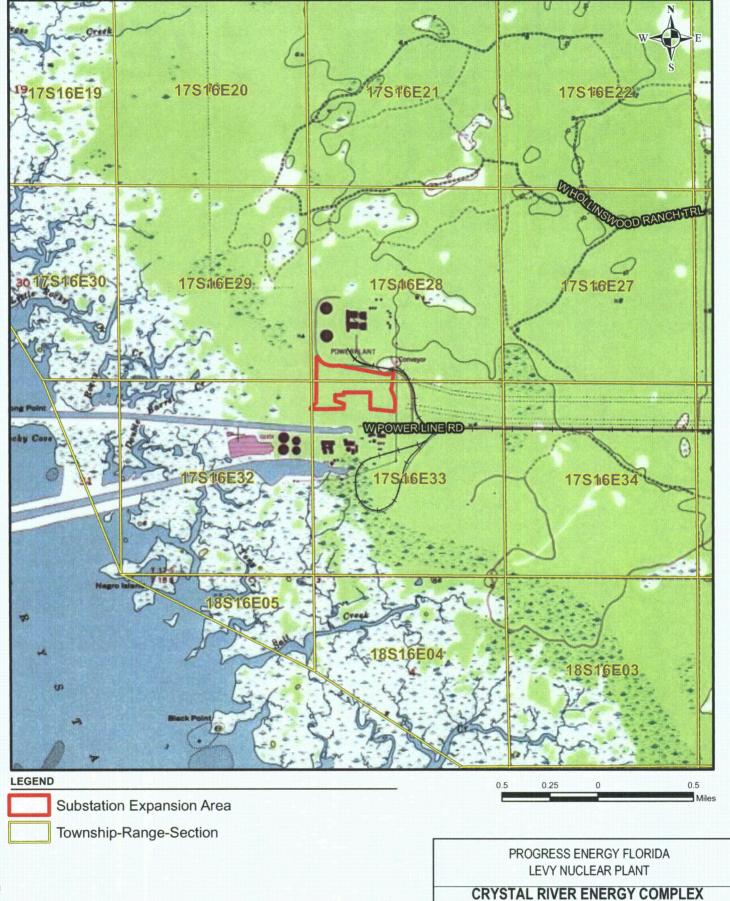


The Biodiversity Matrix Map Server is a new screening tool from FNAI that provides immediate, free access to rare species occurrence information statewide. This tool allows you to zoom to your site of interest and create a report listing documented, likely, and potential occurrences of rare species and natural communities.

The FNAI Biodiversity Matrix offers built-in interpretation of the likelihood of species occurrence for each 1-square-mile Matrix Unit across the state. The report includes a site map and list of species and natural communities by occurrence status: Documented, Documented-Historic, Likely, and Potential.

Try it today: www.fnai.org/biointro.cfm

Please note: FNAI will continue to offer our Standard Data Report service as always. The Standard Data Report offers the most communities, conservation lands, and other natural resources.



Progress Energy Florida Levy Baseload Project Citrus Substation Wetland Impacts

Wetland ID	FLUCFCS Code	FLUCFCS Definition	Impact Acreage	Total Impact Acreage	UMAM	Mitigation Credits	Total Mitigation Credits
Α	641	Freshwater Marshes	7.75	7.75	0.73	5.66	5.66
D	534	Reservoirs < 10 acres	0.18	0.18	0.47	0.08	0.08
E	534	Reservoirs < 10 acres	0.57	0.57	0.47	0.27	0.27
G	534	Reservoirs < 10 acres	0.08	0.08	0.47	0.04	0.04
Н	641	Freshwater Marshes	0.11	0.11	0.73	0.08	0.08
IB	511	Ditches	0.14	0.14	0.47	0.07	0.07
		Total		8.83			6.20

CIDBO IECTSIONS PRO



REFERENCE

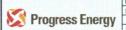
Substation Expansion Area: Progress Energy Florida, 2009; Roads: Florida Department of Transportation, 2010; Railroads: FDEP, 1992; USGS Topographic Map: National Geographic Society, 2009; Township-Range-Section: Florida Department of Environmental Protection, 1994

CRYSTAL RIVER ENERGY COMPLEX
SUBSTATION EXPANSION
USGS TOPOGRAPHIC MAP

MOD FIG NO. 093-89547.002 SCALE AS SHOWN REV. 0

MXD File I	SCALE		
DESIGN	DLH	22 Sept 2009	
GIS	DLH	02 Mar 2010	
CHECK	SAR	02 Mar 2010	Г
DEL METAL	VD	00 14 0040	

FIGURE 2



LEGEND

Substation Expansion Area

PROGRESS ENERGY FLORIDA LEVY NUCLEAR PLANT

CRYSTAL RIVER ENERGY COMPLEX
SUBSTATION EXPANSION
AERIAL MAP
MXD Fig. No. 083-89547L003 | SCALE AS SHOWN | REV. 0

MXD File I	No. 093	-89547L003	S
DESIGN	DLH	22 Sept 2009	
GIS	DLH	02 Mar 2010	
CHECK	SAR	02 Mar 2010	
	LOD	0011 0010	

FIGURE 3

Substation Expansion Area: Progress Energy Florida, 2009; Roads: Florida Department of Transportation, 2010; Railroads: FDEP, 1992; Aerials: Progress Energy, 2009

Substation Expansion Area

CITRUS SOILS

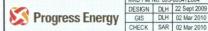
22, QUARTZIPSAMMENTS/0 TO 5 PERCENT SLOPES

39, HALLANDALE-ROCK OUTCROP COMPLEX/RARELY FLOODED

51, BOCA-PINEDA/LIMESTONE SUBSTRATUM COMPLEX

59, BOCA FINE SAND/DEPRESSIONAL

99, WATER


REFERENCE

Substation Expansion Area: Progress Energy Florida, 2009; Roads: Florida Department of Transportation, 2010; Railroads: FDEP, 1992; Soils: SWFWMD, 2006; Aerials: Progress Energy Florida, 2009

PROGRESS ENERGY FLORIDA LEVY NUCLEAR PLANT

CRYSTAL RIVER ENERGY COMPLEX SUBSTATION EXPANSION SOILS MAP

REVIEW KB 02 Mar 20

	- 11	17 48				
D File No. 093-89547L004			SCALE AS SHOWN REN			
SIGN	DLH	22 Sept 2009				
GIS	DLH	02 Mar 2010	FIGURE	- 4		
IECK	SAR	02 Mar 2010	FIGURE	- 4		

LEGEND

Substation Expansion Area

LAND USE/LAND COVER CODES

212, UNIMPROVED PASTURES

511, DITCHES

534, RESERVOIRS < 10 ACRES

615, STREAM AND LAKE SWAMPS (BOTTOMLAND)

630, WETLAND FORESTED MIXED

631, WETLAND SCRUB

641, FRESHWATER MARSHES

643, WET PRAIRIES

812, RAILROADS

816, CANALS AND LOCKS

831, ELECTRIC POWER FACILITIES

Progress Energy

PROGRESS ENERGY FLORIDA LEVY NUCLEAR PLANT

200

CRYSTAL RIVER ENERGY COMPLEX SUBSTATION EXPANSION HABITAT CLASSIFICATION MAP

DESIGN DLH 24 Sept 2009
GIS DLH 15 Mar 2010
CHECK SAR 15 Mar 2010
REVIEW KB 15 Mar 2010

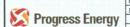
FIGURE 5

Substation Expansion Area: Progress Energy Florida, 2009; Roads: Florida Department of Transportation, 2010; Railroads: FDEP, 1992; FLUCCS Data: SWFWMD, 2007, Golder edited 2009; Aerials: Progress Energy, 2009

LEGEND

Substation Expansion Area

 \triangle


Florida Natural Areas Inventory Occurrence

1,000 500 0 1,000

NOTE: No portion of the Crystal River Energy Complex line lies within Wood Stork Core Foraging Areas.

> PROGRESS ENERGY FLORIDA LEVY NUCLEAR PLANT

CRYSTAL RIVER ENERGY COMPLEX SUBSTATION EXPANSION LISTED SPECIES MAP

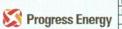
AXD File I	No. 093	-89547L006	SCALE AS SHOWN	REV. 0
DESIGN	DLH	24 Sept 2009		
GIS	DLH	02 Mar 2010	FICURE	- c
CHECK	SAR	02 Mar 2010	FIGURE	- 0

REFERENCE

Substation Expansion Area: Progress Energy Florida, 2009; Roads: Florida Department of Transportation, 2010; Railroads: FDEP, 1992; Wood Stork Colony Data: U.S. Fish & Wildlife Service, 2009; Aerials: ESRI, 2009

FEMA FLOOD ZONES

100-yr Floodplain
AE (Base Flood Elevations have been determined)


VE 100-yr Floodplain with wave velocity

REFERENCE

Substation Expansion Area: Progress Energy Florida, 2009; Roads: Florida Department of Transportation, 2010; Railroads: FDEP, 1992; Flood Zones: FEMA, 1996; Aerials: ESRI, 2009

PROGRESS ENERGY FLORIDA LEVY NUCLEAR PLANT

CRYSTAL RIVER ENERGY COMPLEX SUBSTATION EXPANSION FEMA 100 YEAR FLOODPLAIN MAP

MXD File No. 093-89547L007 S
DESIGN DLH 28 Sept 2009
GIS DLH 02 Mar 2010
CHECK SAR 02 Mar 2010

PEVIEW KB 02 Mar 2010

FIGURE 7

Wetland Descriptions

Florida Power Corporation d/b/a Progress Energy Florida, Inc.

Crystal River Energy Complex Substation Expansion Citrus County, Florida

Wetland ID	FLUCFCS Code	Acreage	UMAM Score	Soil Type	Corps Jurisdictional	OFW	Wetland Description
Wetland AC	641	0.09	0.40	Quartzipsamments, 0 to 5 percent slopes	No	No	This is an isolated, depressional marsh sprayed with herbicides. Dominant species in this wetland include Panicum repens and Cladium jamaicense.
	630	1.77	0.53	Quartzipsamments, 0 to 5 percent slopes	No	No	This is an isolated mixed forested wetland with a wet prairie fringe that has been
Wetland AD	643	0.58	0.53	Quartzipsamments, 0 to 5 percent slopes	No	No	mowed. Dominant woody species include <i>Pinus elliottii</i> and <i>Fraxinus</i> sp. Dominant species within the wet prairie area include <i>Eragrostis</i> sp. and <i>Rhynchospora colorata</i> .
Wetland AE	630	0.82	0.53	Quartzipsamments, 0 to 5 percent slopes	No	No	This is an isolated mixed forested wetland separated from Wetland AD by a road. Species composition is similar to Wetland AD.
Wetland AF	511	0.14	0.53	Quartzipsamments, 0 to 5 percent slopes	Yes	No	This is a ditch that drains the parking lots and switchyard. A culvert connects the ditch to the discharge canal. <i>Cyperus</i> sp., <i>Ludwigia</i> sp., <i>Setaria</i> sp. are the dominant species.
Wetland AG	630	0.41	0.53	Quartzipsamments, 0 to 5 percent slopes	No	No	This is an isolated mixed forested wetland with a wet prairie fringe that has been

Wetland Descriptions

Florida Power Corporation d/b/a Progress Energy Florida, Inc.

Crystal River Energy Complex Substation Expansion Citrus County, Florida

Wetland ID	FLUCFCS Code	Acreage	UMAM Score	Soil Type	Corps Jurisdictional	OFW	Wetland Description
	643	0.28	0.53	Quartzipsamments, 0 to 5 percent slopes	No	No	sprayed with herbicides. Dominant species within the wetland include <i>Vitis</i> sp., <i>Baccharis halimifolia</i> , and <i>Salix caroliniana</i> .
Wetland AH	641	0.44	0.40	Quartzipsamments, 0 to 5 percent slopes	No	No	This is an isolated stormwater retention area under an existing transmission line. The wetland has mucky soils and marsh vegetation dominated by Cyperus sp. and Hydrocotyle umbellata.
Wetland Al	534	0.81	0.40	Quartzipsamments, 0 to 5 percent slopes	No	No	This is an isolated retention pond that holds runoff from the car wash. Ludwigia peruviana is the dominant species in this wetland.

Florida Power Corporation d/b/a Progress Energy Florida, Inc. Crystal River Energy Complex Substation Expansion

Protected Plants and Animals Potentially Occurring within the Crystal River Energy Complex Substation Expansion Area Citrus County, Florida

		Likelihood of			
Species	Habitat of Occurrence	Occurrence on Property	USFWS	FWC	Observed
	BIRDS				
Ammodramus maritimus peninsulae Scott's seaside sparrow	Saltwater marshes	Low	N	SSC	No
Aramus guarauna Limpkin	Freshwater marshes, swamps, springs, spring runs, pond, river, and lake margins	Low	N	SSC	No
Charadrius melodus Piping plover	Mudflats	Low	Т	T	No
Cistothorus palustris marianae Marian's marsh wren	Saltwater marshes	Low	N	SSC	No
Egretta caerulea Little blue heron	Freshwater lakes, marshes, swamps, and streams, cypress	Low	N	SSC	No
Egretta thula Snowy egret	Wetlands, streams, lakes, and swamps, manmade impoundments, ditches	Low	N	SSC	No
Egretta tricolor Tricolored heron	Wetlands, ditches, pond and lake edges, coastal areas	Low	N	SSC	No
Eudocimus albus White ibis	Freshwater and brackish marshes, salt flats, forested wetlands, wet prairies, swales, man-made ditches	Low	N	SSC	No
Grus canadensis pratensis Florida sandhill crane	Prairies, freshwater marshes, and pastures	Low	N	Т	No
Haematopus palliatus American oystercatcher	Saltwater marshes, estuaries, mudflats	Low	N	SSC	No
Haliaeetus leucocephalus Bald eagle	Coastal areas, bays, rivers, lakes, or other bodies of water	Low	N	N	No
Mycteria americana Wood stork	Cypress strands and domes, mixed hardwood swamps, freshwater marshes	Low	Е	Е	No
Platalea ajaja Roseate spoonbill	Tidal flats, coastal and freshwater marshes	Low	N	SSC	No
Rynchops niger Black skimmer	Bays, estuaries, lagoons, mudflats	Low	N	SSC	No

Florida Power Corporation d/b/a Progress Energy Florida, Inc. Crystal River Energy Complex Substation Expansion

Protected Plants and Animals Potentially Occurring within the Crystal River Energy Complex Substation Expansion Area Citrus County, Florida

		Likelihood of	Statu	ıs	1.5
Species	Habitat of Occurrence	Occurrence on Property	USFWS	FWC	Observed
Sterna antillarum Least tern	Bays, estuaries, lagoons, mudflats	Low	N	Т	No
	MAMMALS				
	None				
	REPTILES				
Alligator mississippiensis American alligator	Most permanent bodies of fresh water, including marshes, swamps, lakes, and rivers	Low	T (SA)	SSC	No
	PLANTS	. B. (1889)			
	None				

Notes:

N = Not Listed

T = Threatened

E = Endangered

SSC = Species of Special Concern

T (SA) = Threatened due to similarity in appearance to a federally listed species

SPECIFIC PURPOSE SURVEY OF WETLAND JURISDICTIONAL DELINEATION AND THREATENED AND ENDANGERED SPECIES

PROGRESS ENERGY FLORIDA

CRYSTAL RIVER ENERGY COMPLEX SUBSTATION EXPANSION

LOCATED IN SECTION29

TOWNSHIP 17 SOUTH, RANGE 17 EAST CITRUS COUNTY, FLORIDA

	ND DESIGNA AE, AF, AG,		SQU	A WITHIN PARE FEET 132506	BOUNDARY ACRES +/- 5.34		CITR	US COUNTY
WETLAN	D FLAG LO	CATIONS	WETLAN	ND FLAG LO	OCATIONS	WETLAN	D FLAG L	OCATIONS
Desc N	orthing	Easting	Desc N	orthing	Easting	Desc N	orthing	Easting
ai-1 ai-2	1683247 1683357	433784 433773	ac-1 ac-4	1683516 1683477	431946 431988	an-19 an-18	1682877 1682762	436937 436918
ai-3	1683412	433482	ac-3	1683519	432036	an-21	1682998	436843
ai-4	1683292	433465	ac-2	1683567	431994	at-20	1683022	436961
af-6	1682823	433370	ag-2	1683741	431935	an-23	1683029	436628
af-1	1682822	433397	ag-1	1683741	432103	an-22	1683029	436728
af-2	1682643	433393	ag-7	1683783	432142	an-24	1683050	436533
af-5	1682648	433367	ag-6	1683812	432110	an-26	1683078	436385
af-4	1682588	433367	ag-4	1683981	431907	an-25	1683097	436494
af-3	1682591	433393	ag-3	1683902	431907	at-27	1683102	436283
ah-2	1683446	432986	ap-3	1682341	436979	an-28	1683118	436163
ah-3	1683364	433010	ap-2	1682357	437042	an-29	1683146	436036
ah-4	1683355	433176	ap-1	1682407	437053	an-30	1683164	435907
ah-5	1683435	433194	ap-4	1682157	436941	an-31	1683195	435764
ah-1	1683483	433050	ap-9	1682137	436946	an-32	1683227	435650
ae-2	1683623	432569	ap-10	1682099	436947	an-33	1683234	435534
ae-1	1683579	432486	ap-8	1682132	436968	an-34	1683257	435417
ad-7	1683576	432460	ap-7	1682128	437046	an-35	1683267	435349
ad-8	1683524 1683302	432471	ap-6	1682150 1682166	437060 437040	an-36	1683291	435247
ae-7 ad-10	1683305	432460	ap-5 ao-19	1682355	436913	an-37 an38	1683298 1683320	435158 435120
ae-6	1683298	432598	ao-18	1682410	436913	an-39	1683328	435120
ae-4	1683465	432614	ao-2	1682410	436893	an-40	1683341	434855
ae-2	1683602	432586	ao-1	1682361	436888	an-41	1683364	434790
ae-3	1683592	432600	ao-3	1682430	436896	an-43	1683312	434604
ad-6	1683628	432405	ao-17	1682427	436920	an-44	1683318	434542
ad-5	1683671	432302	ao-16	1682525	436963	an-1	1683292	434494
ad-4	1683633	432162	ao-15	1682631	436973	an-2	1683189	434530
ad-3	1683490	432133	ao-14	1682692	436973	an-3	1683072	434571
ad-2	1683357	432184	ao-13	1682714	436974	an-4	1682967	434610
ad-1	1683299	432261	ao-12	1682744	436973	an-5	1682768	434604
ad-11	1683306	432338	ao-11	1682828	436977	an-6	1682758	434645
			at-6	1682894	436992	an-7	1682770	434695
			ao-10	1682961	436998	an-8	1682749	434751
			at-5	1682968	437006	an-9	1682643	435253
1			at-4 at-3	1682971 1683034	437065 437068	an-10	1682581	435666
9			at-2	1683110	437069	at-19	1682475	437172
			at-1	1683163	437103	at-18	1682503	437172
			ao-9	1682972	436983	at-17 at-16	1682581 1682639	437199
			ao-8	1682828	436959	ap-11	1682092	437392
			ao-7	1682717	436947	ap-11	1682094	437736
			an-17	1682696	436941	ap-13	1682090	437819
			ao-6	1682690	436952	ap-14	1682089	438024
			ao-5	1682629	436954	ap-15	1682095	438385
			an-16	1682631	436942	ap-16	1682162	438464
			an-15	1682538	436934	ap-17	1682160	438723
			ao-4	1682505	436938	ap-18	1682157	438983
			an-14	1682490	436922	ap-19	1682095	439097
			an-13	1682434	436888			
			an-12	1682414	436752			
			an-11	1682494	436159			
			at-10	1682712	437073			
			at-11	1682708	437223			
			at-12 at-9	1682693 1682806	437237 437107			
			at-8	1682907	437107			
			at-7	1682893	437078			
				. 002093	357070			

LEGEND:

WETLANDS JURISDICTIONAL DELINEATION LINE WITHIN SUBSTATION LIMITS

PEF = PROGRESS ENERGY FLORIDA

al-2, ac-1, an-19, etc. = WETLAND FLAG DELINEATOR

= DIFFERENTIAL GLOBAL POSITIONING SYSTEM

= NORTHING (coordinate)

P/L = BOUNDARY LINE

GIS = GEOGRAPHIC INFORMATION SYSTEM

= EASTING (coordinate)

= GOPHER TORTOISE BURROWS

SURVEYOR'S NOTES:

1) THIS SPECIFIC PURPOSE SURVEY IS NOT VALID WITHOUT THE SIGNATURE AND THE ORIGINAL RAISED SEAL OF THE SIGNING FLORIDA LICENSED SURVEYOR AND MAPPER.

2) THE SPECIFIC PURPOSE OF THIS SURVEY WAS TO LOCATE AND MAP WETLAND JURISDICTIONAL DELINEATIONS AND LOCATION OF THREATENED AND ENDANGERED SPECIES (AS DETERMINED BY OTHERS) IN RELATION TO THE APPROXIMATE SUBSTATION LIMITS, IN CONFORMANCE WITH U.S. ARMY CORPS OF ENGINEERS REQUIREMENTS.

LANDS SHOWN HEREON WERE NOT ABSTRACTED FOR OWNERSHIP, RIGHTS-OF-WAY, EASEMENTS OR HER MATTERS OF TITLE BY THIS FIRM, NOR WERE ANY SUCH DOCUMENTS PROVIDED BY CLIENT.

4) THE BOUNDARY DELINEATION OF THE PEF CRYSTAL RIVER ENERGY COMPLEX SHOWN HEREON IS BASED ON GIS SHAPE FILES PROVIDED BY GOLDER ASSOCIATES. THIS SPECIFIC PURPOSE SURVEY IS NOT A BOUNDARY SURVEY OF THE SUBSTATION PROPERTY.

5) THIS SURVEY WAS PERFORMED USING A COMBINATION OF GLOBAL POSITIONING SYSTEM AND CONVENTIONAL SURVEY METHODOLOGY. HORIZONTAL ACCURACY IS AT THE SUBMETER LEVEL.

6) COORDINATES OF WETLAND FLAGS SHOWN HEREON ARE RELATIVE TO THE FLORIDA STATE PLANE COORDINATE SYSTEM, WEST ZONE (902), NORTH AMERICAN DATUM OF 1983/2007 ADJUSTMENT.

WETLAND JURISDICTIONAL DELINEATIONS AND THREATENED AND ENDANGERED SPECIES LOCATIONS WERE DETERMINED AND FLAGGED BY GOLDER ASSOCIATES, GAINESVILLE, FLORIDA.

8) THE WETLAND FLAG DESCRIPTIONS AND/OR THREATENED AND ENDANGERED SPECIES LOCATIONS SHOWN HEREON CORRESPOND TO THE NUMBERS SHOWN ON EACH FLAG LOCATED IN THE FIELD.

9) THIS SURVEY IS CERTIFIED TO PROGRESS ENERGY FLORIDA AND GOLDER ASSOCIATES, INC..

10) EXCEPT AS SHOWN HEREON, INTERIOR IMPROVEMENTS WERE NOT LOCATED.

11) THE GEOREFERENCED AERIAL PHOTOGRAPHY DEPICTED HEREON WAS FLOWN IN 2008 DATA: SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT.

NOT A BOUNDARY SURVEY THIS IS

DELINEATED WETLAND AREAS WITHIN SURSTATION LIMITS

SHEET INDEX:

COUNTY: CITRUS

PROJECT TITLE:

HATCH LEGEND

SHEET DESCRIPTION COVER SHEET

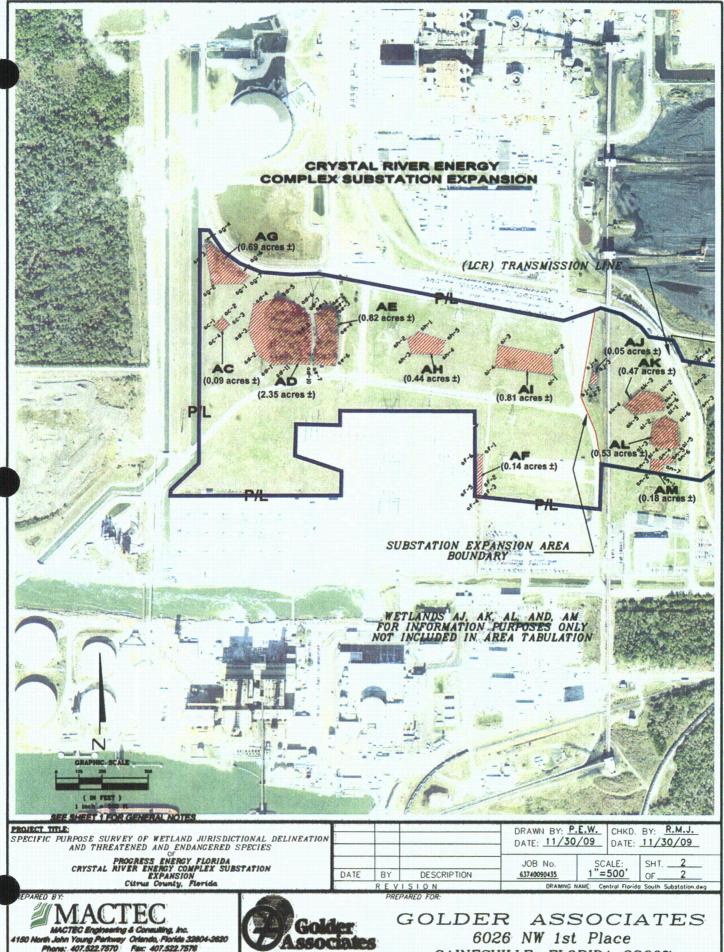
LOCATION MAP WITH PHOTO

LAST DATE IN FIELD: 11/11/2009

DRAWN BY: PR.W. CHKD BY: R.M.J. DATE: 11/30/09 DATE: 11/30/09 JOB No. n/a 6374090435

SPECIFIC PURPOSE SURVEY OF WETLAND JURISDICTIONAL DELINEATION
AND THREATENED AND ENDANGERED SPECIES
PROGRESS ENERGY FLORIDA
CRYSTAL RIVER ENERGY COMPLEX SUBSTATION
EXPANSION
Citrus County, Florida

DESCRIPTION DATE BY REVISION


OF___ DRAWING NAME: PHP Transmission Line.dwg

ey Orlando, Florida 32804-2620 CERTIFICATE OF AUTHORIZATION: LB &

GOLDER ASSOCIATES 6026 NW 1st Place GAINESVILLE, FLORIDA 32607

orth John Young Parkway Orlando, Florida 326 Phone: 407.522.7870 | Fax: 407.522.7578 CERTIFICATE OF AUTHORIZATION: L8 698

GAINESVILLE, FLORIDA 32607

Project/Site: Levy Nuclear Plant - Transmission	Lines, CREC Substation	City/County: Citrus	_Sampling Date:	10/28/09			
Applicant/Owner: Progress Energy Florida, Inc.	S	State:FL	Sampling Point:	AC			
Investigator(s): Stacy Rizzo, Tony Davanz	.0	Section, Township, Range: 28 17S 16E					
Landform (hillslope, terrace, etc.): N	/A	Local relief (concave, convex, none): <u>none</u> Slope (%): _					
Subregion (LRR or MLRA): LRR U	Lat: 28.96303	3036 Long: -82.701071 Datum: WGS84					
Soil Map Unit Name: Quartzipsamments, 0 to			NWI classification				
Are climatic / hydrologic conditions on the site t			_ No	_ (If no, explain in	Remarks)		
Are Vegetation, Soil,	or Hydrology		Are circumstances		esNo		
Are Vegetation, Soil,			(If needed, explain	any answers in	Remarks)		
SUMMARY OF FINDINGS - Attach si	te map showing sampli	ng point locations, to	ansects, impo	rtant features	s, etc		
Hydrophytic Vegetation Present?	Yes No						
Hydric Soil Present?	Is the Sampled Area w	ithin a Wetland?	Yes <u></u> ✓ N	o			
Wetland Hydrology Present?]						
Remarks:							
1							
UVDBOLOCV							
HYDROLOGY Westland Understand			Ozzazdani Indinat	······································	· · · · · · · · · · · · · · · ·		
Wetland Hydrology Indicators:	Control One America		Secondary Indicat		two requirea)		
Primary Indicators (minimum of one is required;		200	Cracks (B6)	O: (DO)			
Surface Water (A1)	Water-Stained Leaves (B9)		getated Concave	Ѕипасе (вв)		
High Water Table (A2)	Aquatic Fauna (B13)		Drainage Pa				
Saturation (A3)	Marl Deposits (B15) (LR	•	Moss Trim L	, ,			
Water Marks (B1)	Hydrogen Sulfide Odor (
Sediment Deposits (B2)	Oxidized Rhizospheres	- · · · · · · · · · · · · · · · · · · ·					
Drift Deposits (B3)	Presence of Reduced Ire			isible on Aerial In	nagery (C9)		
Algal Mat or Crust (B4)	Recent Iron Reduction in	·	Geomorphic				
Iron Deposits (B5)	Thin Muck Surface (C7)	<u> </u>					
✓ Inundation Visible on Aerial Imagery (B7	Other (Explain in Remar	narks)FAC Neutral Test (D5)					
Field Observations:				•			
Surface Water Present?	Yes No						
Water Table Present?	Yes No		Wetland				
Saturation Present?	Yes No	Depth (inches): 0	Hydrology				
(includes capillary fringe)	· · · · · · · · · · · · · · · · · · ·	' '	Present?	Yes <u>√N</u>	o		
Describe Recorded Data (stream gauge, monitor	oring well, aerial photos, previou	us inspections), ii avaliable					
Remarks:		- -					
					•		
				•			
				_			

That Are OBL, FACW, or FAC: 3 (A)	VEGETATION - Use scientific nar	mes of plants				ling Point:	AC
Species Status					Dominance Test Worksheet:		
Number of Dominant Species (A)	Tree Stratum (Plot size:)						
Test No. Test No. Test	1.				Number of Dominant Species	3	(4)
Species Across All Strata:					That Are OBL, FACW, or FAC:	2	(^)
Species Arcos All Stratus Percent of Dominant Species 100.00 (A/S					-₫	3	(B)
That Are OBL, FACW, or FAC: 100.00 (AVE) Total Ye Cover of: Multiply by:					-	=	(-)
Prevalance Index worksheet: Total % Cover of: Multiply by.						100.00	(A/B)
Sapling Stratum (Plot size:)							
OBL species	7.				4		
FACW species x2 =	One line Otentum (Districts)	0	= Total Cov	er			
FAC species X3=	Sapling Stratum (Plot size:)					X1=	_
FACU species	1.				FACW species	x2=	_
UPL species	2.				FAC species	x3=	_
Column Totals:	3.				FACU species	x4=	
Column Totals:	4.					x5=	_
Prevalance Index = B/A =	5.					(A)	— (B)
Prevalance Index = B/A =						(_ _/
2	7.				Prevalance Index = B/A =		
Prevalence Index is ≤3.0¹ Problematic Hydrophytic Vegetation¹ (Explain) 3.3		0	= Total Cov	er	Hydrophytic Vegetation Indica	itors:	
Prevalence Index is ≤3.0¹ Problematic Hydrophytic Vegetation¹ (Explain) 3.3	Shrub Stratum (Plot size:)		ė	✓ Dominance Test is 50%		
Problematic Hydrophytic Vegetation (Explain)		·		•	Prevalence Index is ≤3.0	1	
Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.			-		 		olain)
Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.	3.				. robiemano riyaropnyno	vogotation (EX	Jiani,
be present, unless disturbed or problematic. Definitions of Vegetation Strata: Tree- Woody plants, excluding woody vines, approximately 20 ft (6m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Panicum repens 40 yes FACW approximately 20 ft (6m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling- Woody plants, excluding woody vines, approximately 20 ft (6m) or more in height and less than 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling- Woody plants, excluding woody vines, approximately 20 ft (6m) or more in height and less than 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling- Woody plants, excluding woody vines, approximately 20 ft (6m) or more in height and less than 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling- Woody plants, excluding woody vines, approximately 20 ft (6m) or more in height and less than 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling- Woody plants, excluding woody vines, approximately 20 ft (6m) or more in height (DBH). Sapling- Woody plants, excluding woody vines, approximately 20 ft (6m) or more in height (DBH). Sapling- Woody plants, excluding woody vines, approximately 20 ft (6m) or more in height (DBH). Sapling- Woody plants, excluding woody vines, approximately 20 ft (6m) or more in	4.				¹ Indicators of hydric soil and wet	land hydrology r	nust
Tree- Woody plants, excluding woody vines, approximately 20 ft (6m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling- Woody plants, excluding woody vines, approximately 20 ft (6m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling- Woody plants, excluding woody vines, approximately 20 ft (6m) or more in height and less than 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling- Woody plants, excluding woody vines, approximately 20 ft (6m) or more in height and less than 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling- Woody plants, excluding woody vines, approximately 20 ft (6m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling- Woody plants, excluding woody vines, approximately 20 ft (6m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling- Woody plants, excluding woody vines, approximately 20 ft (6m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling- Woody plants, excluding woody vines, approximately 20 ft (6m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling- Woody plants, excluding woody vines, approximately 20 ft (6m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling- Woody plants, excluding woody vines, approximately 20 ft (6m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling- Woody plants, excluding woody vines, approximately 20 ft (6m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). Sapling- Woody plants, excluding woody vines, approximately 20 ft (6m) or more in height and 2 in. (7.6 cm) DBH. Shrub- Woody plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height and 2 in. (7.6 cm) DBH. Shrub- Woody plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in (7.6 cm) DBH	5.						
Tree- Woody plants, excluding woody vines, approximately 20 ft (6m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH). 2. Panicum repens 40 yes FACW 33. Cyperus spp. 20 yes FACW 4. Ludwigia repens 10 no OBL 10. (7.6 cm) DBH. 5. Polygonum spp. 5 no FAC 34. Shrub- Woody plants, excluding woody vines, approximately 20 ft (6m) or more in height and less than 3 in. (7.6 cm) DBH. 5. Polygonum spp. 5 no FAC 34. Shrub- Woody plants, excluding woody vines, approximately 30 ft (1 to 6 m) in height. 7. Pluchea spp. 1 no OBL 40. Herb- All herbaceous (non-woody)plants, including herbaceous vines, regardless of size. Includes woody plants, except woody vines, less than approximately 3 ft (m) in height. 10. m) in height. Woody vine- All woody vines, regardless of height. 137 = Total Cover Woody Vine Stratum (Plot size:) 1.	6.				Definitions of Vegetation Strat	ta:	
Herb Stratum (Plot size:	7.				1	•	
Herb Stratum (Plot size:		0	= Total Cov	er	Tree- Woody plants, excluding wo	ody vines.	
1. Cladium spp. 60 yes OBL 2. Panicum repens 40 yes FACW 3apling- Woody plants, excluding woody vines, approximately 20 ft (6m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub- Woody plants, excluding woody vines, approximately 20 ft (6m) or more in height and less than 3 in. (7.6 cm) DBH. Shrub- Woody plants, excluding woody vines, approximately 30 ft (10 ft of 6 m) in height. Herb- All herbaceous (non-woody)plants, including herbaceous vines, regardless of size. Includes woody plants, except woody vines, less than approximately 3 ft (m) in height. Woody Vine Stratum (Plot size:) 1. 137 = Total Cover Woody Vine Stratum (Plot size:) 1. 2. 3. 4. Hydrophytic Vegetation Present? YesNo	Herb Stratum (Plot size:)					(7.6
2. Panicum repens 3. Cyperus spp. 20 yes FACW 3. Ludwigia repens 10 no OBL 5. Polygonum spp. 5. no FAC 6. Xyris spp. 1 no OBL 7. Pluchea spp. 1 no FAC 8. Herb- All herbaceous (non-woody)plants, including herbaceous vines, regardless of size. Includes woody plants, except woody vines, regardless of height. 11. 12. 137 = Total Cover Woody Vine Stratum (Plot size:			ves	OBL	cm) or larger in diameter at breast	theight (DBH).	
4. Ludwigia repens 10 no OBL in. (7.6 cm) DBH. 5. Polygonum spp. 5 no FAC Shrub- Woody plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height. 7. Pluchea spp. 1 no FACW Herb- All herbaceous (non-woody)plants, including herbaceous vines, regardless of size. Includes woody plants, except woody vines, less than approximately 3 ft (m) in height. 10.	·	40		FACW	Sapling- Woody plants, excluding	woody vines,	
5. Polygonum spp. 6. Xyris spp. 1 no OBL approximately 3 to 20 ft (1 to 6 m) in height. 7. Pluchea spp. 1 no FACW Herb- All herbaceous (non-woody)plants, including herbaceous vines, regardless of size. Includes woody plants, except woody vines, less than approximately 3 ft (m) in height. 10. m) in height. 11. Woody vine- All woody vines, regardless of height. 12. 137 = Total Cover Woody Vine Stratum (Plot size:	3. Cyperus spp.	20	yes	FACW	approximately 20 ft (6m) or more i	n height and less	than 3
6. Xyris spp. 1 no OBL 7. Pluchea spp. 1 no OBL 8.			no				
7. Pluchea spp. 1 no FACW Herb- All herbaceous (non-woody)plants, including herbaceous vines, regardless of size. Includes woody plants, except woody vines, less than approximately 3 ft (m) in height. 10. m) in height. 11. Woody vine- All woody vines, regardless of height. 12. 137 = Total Cover Woody Vine Stratum (Plot size:		· — — —	no				
herbaceous vines, regardless of size. Includes woody plants, except woody vines, less than approximately 3 ft (m) in height. 10. 11. 12. 137 = Total Cover Woody Vine Stratum (Plot size:) 1. 2. 3. 4. 5. 0 = Total Cover Hydrophytic Vegetation Present? Yes No					- '''	-	
9.		1	no	FACW			. al
10.							
11.				-		ian approximates	y 5 it (i
12.		-			⊣ ` `	ardless of height.	
137		•			, ,	ar areas or margina	
Woody Vine Stratum (Plot size:) 1. 2. 3. 4. 5. Uegetation Present? Yes✓No 0 = Total Cover		137	= Total Cov	er	1		
1. 2. 3. 4. Hydrophytic 5. Vegetation Present? Yes _ ✓ _ No 0 = Total Cover	Woody Vine Stratum (Plot size:						
3.	1.	_					
4. Hydrophytic 5. Vegetation Present? Yes ✓ No 0 = Total Cover	2.				<u> </u>		
5. Vegetation Present? Yes <u>✓ No</u> 0 = Total Cover	3.						
5.	4.				Hydrophytic		
0 = Total Cover	5.				1 * * *	No	
		0	= Total Cov	er	1 -		
	Remarks: (If observed, list morph				•		

Percent cover estimates based on meandering survey of the broader community.

County/soil:	Citrus-	Quartzipsamments

SOIL								Sampling Point:AC
Profile De	scription: (Describe t	to the de	pth needed to docu	ıment t	he indicator or	confirm the at	sence of indicators.)	
Depth	Matrix			Redox	(Features		•	
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc²	Texture	Remarks
			Color (moist)	76	Турс	. 	Texture	dark grayish brown sand
0-6	10 YR 4/2	100						dark grayish brown sand
			10 YR 6/2; 10					
			YR 8/1; 10 YR				splotches and	
6-32	N 5/0; 10 YR 7/1	80	5/2	20	RM	М	pockets	gray and light gray sand
32-42	7.5 YR 5/8	80	5 YR 3/4	20	RM	M	splotches	strong brown sand
42-60	10 YR 5/2	100	0 111 0/-1				opiotorioo	grayish brown sand
42-60	10 YR 5/2	100						grayish brown sand
Type: C=	Concentration, D=Dept	otion PM	I-Doduced Matrix C	S=Cove	rod or Coated	Sand Grains	² Location: PL=Pore	Lining M=Matrix
,,		etion, ixiv	i-Neduced Matrix, C	3-C0V6	ered or Coaled	Sand Grants.		·
	il Indicators:							Indicators for Problematic Hydric Soils 3:
Histol	• •		_			ırface (S8) (LRF		1 cm Muck (a9) (LRR O)
Histic	Epidon (A2)		_	Thin	Dark Surface ((S9) (LRR S, T,	U) _	2 cm Muck (A10) (LRR S)
Black	Histic (A3)			Loa	my Mucky Mine	ral (F1) (LRR O)	Reduced Vertic (F18) (outside MLRA 150A, B)
	gen Sulfide (A4)		-		my Gleyed Matr	· , •		Piedmont Floodplain Soils (F19) (LRR P, S, T)
	ed Lavers (A5)		-		leted Matrix (F3		•	
	ic Bodies (A6) (LRR P	T 111	-		ox Dark Surfac		-	Anomalous Bright Loamy Soils (F20)
Organ	ic bodies (Ab) (LKK P	', I, U)	-			, ,		(MLRA 153B)
5 cm l	Mucky Mineral (A7) (LF	RR P.T.U	} _	Dep	leted Dark Surf	ace (F7)	-	Red Parent Material (TF2)
✓ Muck	Presence (A8) (LRR I	n .	•	Red	ox Depressions	s (F8)		Very Shallow Dark Surface (TF12) (LRR T, U)
	Muck (A9) (LRR P,T)	٥,	-		I (F10) (LRR U)	` '	-	Other (Explain in Remarks)
1	ted Below Dark Surfac	ο (Δ11)	-			, F11) (MLRA 151	`	,
<u> </u>	Dark Surface (A12)	C (A11)	-		-	asses (F12) (LR	POPT)	3
_					-			Indicators of hydrophytic vegetation and wetland
Coast	Prairie Redox (A16) (I	MLRA 15	0A) _		•	13) (LRR P, T , L	•	hydrology must be present, unless disturbed or
Sandy	Mucky Mineral (S1) (L	LRR O, S) _		a Orchric (F17)	•	•	problematic.
Sandy	Gleyed Matrix (S4)		-	Red	luced Vertic (F1	8) (MLRA 150A	, 150B)	
Sandy	Redox (S5)		_	Pied	imont Floodpiai	n Soils (F19) (M	LRA 149A)	
Stripp	ed Matrix (S6)			Ano	malous Bright L	oamy Soils (F26	0) (MLRA 149A, 153C	, 153D)
			-				,	•
	Surface (S7) (LRR P, S							
Restrictiv	e Layer (If observed):	:						
	Type:						İ	
	Depth (inches):						Hydric Soil Presen	t? Yes✓_ No
	Deptir (mones).						Triyaric Con Frederi	. 100
Remarks:								
İ								
ľ								
į .								
Į.								
i								
1								
i								
l								
l								
I								
l								
1								
1						•		
I								

Project/Site: Levy Nuclear Plant - Transmission	Lines, CREC Substation	_City/County:Citrus	_Sampling Date:_	10/28/09		
Applicant/Owner: Progress Energy Florida, Inc	<u>).</u>	State: FL		Sampling Point:	AD	
Investigator(s): Stacy Rizzo, Tony Davanz	:0	Section, Township, Range: 28 17S 16E				
Landform (hillslope, terrace, etc.): N	/A	Local relief (concave, con	vex, none): <u>none</u>	Slo	ope (%):	
Subregion (LRR or MLRA): LRR U	Lat:28.96290	2904 Long: _82.699946 Datum: _WGS8				
Soil Map Unit Name: Quartzipsamments, 0 to			_NWI classification			
Are climatic / hydrologic conditions on the site t			No	_ (If no, explain in	Remarks)	
Are Vegetation, Soil,	or Hydrology		Are circumstance			
Are Vegetation, Soil,			(If needed, explain			
SUMMARY OF FINDINGS - Attach si		- • •		-		
Hydrophytic Vegetation Present?	Yes No					
Hydric Soil Present?	Yes No	Is the Sampled Area v	vithin a Wetland?	Yes✓ No		
Wetland Hydrology Present?						
Remarks:	, , , , , , , , , , , , , , , , , , ,	_				
HYDROLOGY					-	
Wetland Hydrology Indicators:			Secondary Indica	tors (minimum of t	wo required)	
Primary Indicators (minimum of one is required	check all that apply)		Surface Soil	Cracks (B6)		
Surface Water (A1)	Water-Stained Leaves	(B9)	Sparsely Ve	getated Concave	Surface (B8)	
High Water Table (A2)	Aquatic Fauna (B13)	,	Drainage Pa	atterns (B10)	. ,	
✓ Saturation (A3)	Marl Deposits (B15) (LI	RR U)	Moss Trim L			
✓ Water Marks (B1)	Hydrogen Sulfide Odor	•		Water Table (C2)		
Sediment Deposits (B2)	Oxidized Rhizospheres	· · · · · · · · · · · · · · · · · · ·				
Drift Deposits (B3)	Presence of Reduced I			isible on Aerial Im	agery (C9)	
Algal Mat or Crust (B4)	Recent Iron Reduction			Position (D2)	agory (ac)	
Iron Deposits (B5)	Thin Muck Surface (C7	, ,	Shallow Aqu	• •		
Inundation Visible on Aerial Imagery (B7		•	FAC Neutra		•	
Field Observations:)Other (Explain in Rema	irkoj	TAG Neutra	rest (Bb)		
	Yes No	Donth (inches):				
Surface Water Present?	Yes No		1			
Water Table Present?			Wetland			
Saturation Present?	Yes No	_ Depth (inches):0-12	Hydrology			
(includes capillary fringe)			Present?	Yes <u>✓</u> No	ວ	
Describe Recorded Data (stream gauge, monit	oring well, aerial priotos, previo	ous inspections), ir available	: -			
Remarks:						
}						
·						
1	•					
I .						

VEGETATION - Use scientific na	mes or plants			.,	iing Font.	AD
	A h = = 1:.1 = .0/	Daminari	المطاعمة	Dominance Test Worksheet:		
Trac Stratum (Diet size:	Absolute % Cover	Dominant Species?	Indicator Status			
Tree Stratum (Plot size:) 1. Fraxinus caroliniana	- 20	Species?	OBL	Number of Dominant Species		
Pinus elliottii	20	yes	FACW	That Are OBL, FACW, or FAC:	<u>12</u>	(A)
Acer rubrum	10	no	OBL	Total Number of Dominant		
Juniperus silicicola	10	no	FAC	Species Across All Strata:	<u>12</u>	(B)
Sabal palmetto	10	no	FAC	Percent of Dominant Species		
Nyssa sylvatica var. biflora	5	no	FAC	That Are OBL, FACW, or FAC:	<u>100.00</u>	(A/B)
7. Persea palustris	5	no	NL	Prevalance Index worksheet:		
7. Tersea palustris	80	= Total Cov		Total % Cover of:	Multiply by:	
 Sapling Stratum (Plot size:)	00	- Total Cov	Ci	OBL species	x1=	
			540	· · · · · · · · · · · · · · · · · · ·		-
Sabal palmetto	20	yes	FAC	FACW species	x2=	_
Liquidambar styraciflua	10	yes	FAC	FAC species	x3=	_
Salix caroliniana	2	no	OBL	FACU species	x4=	
4.				UPL species	x5=	_
5.			-	Column Totals:	(A)	(B)
6.						
7.	-			Prevalance Index = B/A =		
	32	= Total Cov	 ver	Hydrophytic Vegetation Indica	ators:	
Shrub Stratum (Plot size:)			✓ Dominance Test is 50%		
Ilex cassine	5	yes	- FACW	Prevalence Index is ≤3.0	,1	
	-		FAC	 		(مزمام
Baccharis sp. Myrica cerifera	5 5	yes	FAC	Problematic Hydrophytic	vegetation (Ex	piairi)
4.		yes	- 170	Indicators of hydric soil and we	tland hydrology r	must
5.			-	be present, unless disturbed or		Hust
6.				Definitions of Vegetation Stra	·	
7.					····	
	15	= Total Cov		Tree- Woody plants, excluding we	andy vinos	
Llorb Stratum (Diat size:	\	- Total Cov	CI	approximately 20 ft (6m) or more		(7.6
Herb Stratum (Plot size:	_)	V00	OBL	cm) or larger in diameter at breas		. (, . •
Cladium spp. Centella asiatica	5 5	yes	- OBL FACW	<i>┧ ′</i> ઁ	* ', '	
Rhynchospora colorata	5	yes yes	OBL	Sapling- Woody plants, excluding approximately 20 ft (6m) or more		than 3
4. Fimbristylis spp.	5	yes	FACW	in. (7.6 cm) DBH.	m noight and loop	inano
Andropogon glomeratus	1	no	FACW	Shrub- Woody plants, excluding	woody vines.	
6.			-	approximately 3 to 20 ft (1 to 6 m)		
7.		-		Herb- All herbaceous (non-wood)	/)plants, including	
8.				herbaceous vines, regardless of s		
9.				plants, except woody vines, less t	han approximatel	y 3 ft (1
10.				m) in height.		
11.				Woody vine- All woody vines, reg	gardless of height	•
12.			_			
	21	= Total Cov	/er			
Woody Vine Stratum (Plot size:_)					
1. Vitus rotundifolia	10	yes	FAC			
2. Smilax spp.	2	no	FAC	Ī		
3.						
4.				Hydrophytic		,
5.	_			Vegetation Present? Yes	No	
	12	= Total Cov	– ——— /er	7		
Remarks: (If observed, list morph	nological adapta			1		

Percent cover estimates based on meandering survey of the broader community.

rofile De epth								Sampling Point:
epm	scription: (Describe t Matrix	o the de	pth needed to doc		ie indicator or Features	confirm the at	sence of indicators	.)
nches)	Color (moist)	%	Color (moist)	%	Type	Loc²	Texture	Remarks
3	10 YR 4/2	100	Color (moist)		Турс		Texture	dark grayish brown sand
	10 11(4/2		10 YR 6/2; 10					dant grayion brown band
			YR 8/1; 10 YR				splotches and	
32	N 5/0; 10 YR 7/1	80	5/2	20	RM	М	pockets	gray and light gray sand
-42	7.5 YR 5/8	100	5 YR 3/4	20	RM	M	splotches	strong brown sand
-60	10 YR 5/2	100	3 113/4		rivi	. <u>IVI</u>	spiolares	grayish brown sand
	10 TR 3/2							grayish brown sand
			Ded and Mark			0	21	- Nieles Mandel
	Concentration, D=Deple	etion, RM	=Reduced Matrix, t	US=Cove	red of Coated	Sand Grains.	Location: PL=Po	re Lining, M=Matrix.
	il Indicators:			5.1	-1 - D-1 0	(OO) (I DE		Indicators for Problematic Hydric Soils 3:
_Histol						urface (S8) (LRF		1 cm Muck (a9) (LRR O)
-	Epidon (A2)					(S9) (LRR S, T,	•	2 cm Muck (A10) (LRR S)
_	Histic (A3)					ral (F1) (LRR O)	Reduced Vertic (F18) (outside MLRA 150A, E
	gen Sulfide (A4)				ny Gleyed Mati			Piedmont Floodplain Soils (F19) (LRR P, S, T)
	ied Layers (A5) nic Bodies (A6) (LRR P.	T 111			leted Matrix (F3 ox Dark Surfac			Anomalous Bright Loamy Soils (F20)
	, , ,							(MLRA 153B)
	Mucky Mineral (A7) (LF)		leted Dark Surf	, ,		Red Parent Material (TF2)
Muck	Presence (A8) (LRR L	1)		Red	ox Depressions	s (F8)		Very Shallow Dark Surface (TF12) (LRR T, U)
1 cm l	Muck (A9) (LRR P,T)			Mart	(F10) (LRR U))		Other (Explain in Remarks)
_	ted Below Dark Surface	\ (A11)		Den	leted Orchric (F	11) (MLRA 151	١.	
		(A11)			•	asses (F12) (LR	•	
_	Dark Surface (A12)				-			³ Indicators of hydrophytic vegetation and wetland
_Coast	Prairie Redox (A16) (N	ILRA 15	0A)	Umb	oric Surface (F1	13) (LRR P, T, U))	hydrology must be present, unless disturbed or
Sandy	Mucky Mineral (S1) (L	RR O. S	a	Delta	a Orchric (F17)	(MLRA 151)		problematic.
	Gleyed Matrix (S4)		•		uced Vertic (F1	8) (MLRA 150A	. 150B)	
	Redox (S5)				,	in Soils (F19) (M		
_	ed Matrix (S6)				•	, , ,	O) (MLRA 149A, 153	C. 153D)
	, ,						-, (- , 100	-,,
	Surface (S7) (LRR P, S	<u> </u>						
estrictiv	e Layer (If observed):							
	Type:							
	Depth (inches):						Hydric Soil Prese	nt? Yes <u>√</u> No
marks:								
illaiks.								
illaiks.								
iliaiks.								
ilidiks.								
illaiks.								
illaiks.								
illaiks.								
illaiks.								
illaiks.								
erria KS.								
illaiks.								
illaiks.								
eriidiks.								
emarks.								
elliai KS.								
ellia KS.	·							
miarks.	,		·					
marks.			·					

Project/Site: Levy Nuclear Plant - Transmission	Lines, CREC Substation	_City/County:Citrus	Sampling Date: 10/28/09			
Applicant/Owner: Progress Energy Florida, Inc.	State: FL		Sampling Poin	t:AE		
Investigator(s): Stacy Rizzo, Tony Davanzo					· 	
Landform (hillslope, terrace, etc.): N/.	Α	Local relief (concave, conv	vex, none): none		Slope (%):	
Subregion (LRR or MLRA): LRR U		8037 Long: <u>-82.699298</u> Datum: <u>WGS84</u>				
Soil Map Unit Name: Quartzipsamments, 0 to	5 percent slopes		NWI classification:	: <u>N/A</u>		
Are climatic / hydrologic conditions on the site ty		Yes <u>√</u>	. No	(If no, explain i	n Remarks)	
Are Vegetation, Soil,			Are circumstances		/es/_No	
	or Hydrology		(If needed, explain	any answers in	Remarks)	
SUMMARY OF FINDINGS - Attach sit	te map showing sampli	ing point locations, tr	ansects, impo	rtant feature	s, etc.	
Hydrophytic Vegetation Present?	Yes No					
Hydric Soil Present?	Yes No	Is the Sampled Area within a Wetland? Yes No				
Wetland Hydrology Present?	Yes No	<u> </u>				
HYDROLOGY			,,			
Wetland Hydrology Indicators:		No.	Secondary Indicat	ors (minimum of	f two required)	
Primary Indicators (minimum of one is required;	check all that apply)		Surface Soil			
Surface Water (A1)	Water-Stained Leaves ((B9)		getated Concavi	e Surface (B8)	
High Water Table (A2)	Aquatic Fauna (B13)	(20)	Drainage Pa	_	, , , , , , , , , , , , , , , , , , , ,	
✓ Saturation (A3)	Marl Deposits (B15) (LF	RR IJ)	Moss Trim L			
Water Marks (B1)	Hydrogen Sulfide Odor	•		, ,	٥١	
Sediment Deposits (B2)	Oxidized Rhizospheres	•	Dry-Season Water Table (C2) ving Roots (C3)Crayfish Burrows (C8)			
Drift Deposits (B3)	Presence of Reduced Ir	. ,		isible on Aerial I	magery (C9)	
Algal Mat or Crust (B4)	Recent Iron Reduction i	, ,		Position (D2)	maga., (52,	
Iron Deposits (B5)	Thin Muck Surface (C7)	` ,	Shallow Aqu			
Inundation Visible on Aerial Imagery (B7)	_		FAC Neutral			
Field Observations:		Thoy		100.12-7		
Surface Water Present?	Yes No	_ Depth (inches):				
Water Table Present?	Yes No		1			
Saturation Present?	Yes No		Wetland			
(includes capillary fringe)		• • •• (•••••••)•	Hydrology Present?	Yes <u>✓</u>	No	
Describe Recorded Data (stream gauge, monito	oring well, aerial photos, previo	us inspections), if available:	·			
Remarks:						
	•					
·						

VEGETATION - Ose scientific flair	ico oi pianto			Dominance Test Worksheet:	omig i omit	
	Absolute %	Dominant	Indicator			
Tree Stratum (Plot size:)	Cover	Species?	Status			
Fraxinus caroliniana	20	yes	OBL	Number of Dominant Species	<u>12</u>	(A)
2. Pinus elliottii	20	yes	FACW	That Are OBL, FACW, or FAC:	12	(^)
Acer rubrum	10	no	OBL	Total Number of Dominant	<u>12</u>	(B)
Juniperus silicicola	10	no	FAC	Species Across All Strata:	25	(5)
Sabal palmetto	10	no	FAC	Percent of Dominant Species	100.00	(A/B)
Nyssa sylvatica var. biflora	5	no	FAC	That Are OBL, FACW, or FAC:		
7. Persea palustris	5	no	NL	Prevalance Index worksheet:		
	80	= Total Cov	er	Total % Cover of:	Multiply by:	
Sapling Stratum (Plot size:)				OBL species	_x1=	
Sabal palmetto	20	yes	FAC	FACW species	x2=	
2. Liquidambar styraciflua	10	yes	FAC	FAC species	x3=	
3. Salix caroliniana	2	no	OBL	FACU species	x4=	
4.				UPL species	x5=	
5.				Column Totals:	(A)	— (B)
6.					_	_ (' '
7.				Prevalance Index = B/A =		
1.	32	= Total Cov		Hydrophytic Vegetation Indic	otoro:	
	32	- Total Cov	е			
Shrub Stratum (Plot size:)				✓ Dominance Test is 50%		
1. Ilex cassine	5	yes	FACW	Prevalence Index is ≤3.0		
2. Baccharis sp.	5	yes	FAC	Problematic Hydrophytic	: Vegetation ' (Exp	olain)
3. Myrica cerifera	5	yes	FAC			
4.				Indicators of hydric soil and we		nust
5.				be present, unless disturbed or		
6.			-	Definitions of Vegetation Stra	ata:	
7.						
	15	= Total Cov	er	Tree- Woody plants, excluding w		(7.6
Herb Stratum (Plot size:)				approximately 20 ft (6m) or more cm) or larger in diameter at breas		(7.6
1. Cladium spp.	5	yes	OBL			
Centella asiatica Dhurchespera calerata	5	yes	FACW	Sapling- Woody plants, excludin approximately 20 ft (6m) or more		than 2
 Rhynchospora colorata Fimbristylis spp. 	5 	yes	OBL FACW	in. (7.6 cm) DBH.	in neight and less	lilali 3
Andropogon glomeratus	1	yes	FACW	Shrub- Woody plants, excluding	woody vines	
6.			171011	approximately 3 to 20 ft (1 to 6 m		
7.				Herb- All herbaceous (non-wood		
8.				herbaceous vines, regardless of		
9.				plants, except woody vines, less	than approximately	y 3 ft (1
10.				m) in height.		
11.				Woody vine- All woody vines, re	gardless of height.	
12.						
	21	= Total Cov	ver			
Woody Vine Stratum (Plot size:)					
Vitus rotundifolia	10	yes	FAC			
2. Smilax spp.	2	no	FAC			
3.						
4.				Hydrophytic		
5.					sNo	
	12	= Total Cov	ver			
Remarks: (If observed, list morpho	ological adapta	ations below)				
Percent cover estimates based or	meandering	survey of the	broader co	mmunity.		

Adark grayish brown sand 10 YR 4/2 100 10 YR 6/2; 10 YR 8/1; 10 YR ADARD Splotches and pockets gray and light gray sand splotches and pockets gray and light gray sand splotches strong brown sand grayish gray sand gray and light gray sand gray and gray and gray and light gray sand gray and g	Remarks dark grayish brown sand gray and light gray sand strong brown sand grayish brown sand	splotches and pockets splotches ains. *Location: PL=F	Type Lo	Redox % 	Color (moist) 10 YR 6/2; 10 YR 8/1; 10 YR 5/2	% 100 80 80	Matrix Color (moist) 10 YR 4/2 N 5/0; 10 YR 7/1 7.5 YR 5/8	Depth inches) D-6 S-32 S2-42	
Tolor (moist)	gray and light gray sand strong brown sand grayish brown sand grayish brown sand e Lining, M=Matrix. Indicators for Problematic Hydric Soils 3:1 cm Muck (a9) (LRR O)2 cm Muck (A10) (LRR S)Reduced Vertic (F18) (outside MLRA 150A, B	splotches and pockets splotches	M M M	20	10 YR 6/2; 10 YR 8/1; 10 YR 5/2	80 80	Color (moist) 10 YR 4/2 N 5/0; 10 YR 7/1 7.5 YR 5/8	-32 2-42	
Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. To Muck (A9) (LRR P,T, U) Stands Mack (A9) (LRR P,T, U) Depleted Below Dark Surface (A12) To WR (A7) (LRR Q, S) Sandy Mucky Mineral (S1) (LRR Q, S) Sandy Mucky Mineral (S1) (LRR Q, S) Splotches and splotches and pockets gray and light gray sand splotches strong brown sand grayish brown sand applotches strong brown sand grayish brown sand *Location: PL=Pore Lining, M=Matrix. Indicators for Problemati 1 cm Muck (A9) (LRR S, T, U) 1 cm Muck (A9) (LRR S, T, U) 2 cm Muck (A10) (LRR O) Reduced Vertic (F18) Polyvalue Below Surface (S9) (LRR S, T, U) 1 cm Muck (A9) (LRR O) Reduced Vertic (F18) Polyteded Matrix (F2) Depleted Matrix (F3) Anomalous Bright Loa (MLRA 153B) Acomalous Bright Loa (MLRA 153B) Senduced Vertic (F11) (MLRA 151) Thick Dark Surface (A12) Coast Prairie Redox (A16) (MLRA 150A) Depleted Orchric (F17) (MLRA 151) Problematic. Reduced Vertic (F18) (MLRA 150A) Depleted Orchric (F17) (MLRA 151) Problematic. Reduced Vertic (F18) (MLRA 150A) Depleted Orchric (F17) (MLRA 151) Problematic.	gray and light gray sand strong brown sand grayish brown sand grayish brown sand e Lining, M=Matrix. Indicators for Problematic Hydric Soils 3:1 cm Muck (a9) (LRR O)2 cm Muck (A10) (LRR S)Reduced Vertic (F18) (outside MLRA 150A, B	splotches and pockets splotches	M M	20	10 YR 6/2; 10 YR 8/1; 10 YR 5/2	80 80	10 YR 4/2 N 5/0; 10 YR 7/1 7.5 YR 5/8	-6 -32 2-42	
10 YR 6/2; 10	gray and light gray sand strong brown sand grayish brown sand e Lining, M=Matrix. Indicators for Problematic Hydric Soils ³ :1 cm Muck (a9) (LRR O)2 cm Muck (A10) (LRR S)Reduced Vertic (F18) (outside MLRA 150A, B	pockets splotches ains. PL=F	М М		YR 8/1; 10 YR 5/2	80	N 5/0; 10 YR 7/1 7.5 YR 5/8	-32 2-42	
YR 8/1; 10 YR Splotches and pockets Gray and light gray sand Splotches and pockets Gray and light gray sand Splotches Gray and light gray sand Splotches Strong brown sand Gray Splotches Splotches Strong brown sand Gray Splotches Splotches Strong brown sand Gray Splotches Splotches Splotches Splotches Splotches Splotches Splotches Splotches Splotches Strong brown sand Gray Splotches	strong brown sand grayish brown sand e Lining, M=Matrix. Indicators for Problematic Hydric Soils ³ : 1 cm Muck (a9) (LRR O) 2 cm Muck (A10) (LRR S) Reduced Vertic (F18) (outside MLRA 150A, B	pockets splotches ains. PL=F	М М		YR 8/1; 10 YR 5/2	80	7.5 YR 5/8	2-42	
N 5/0; 10 YR 7/1 80 5/2 20 RM M pockets gray and light gray sand strong brown sand grayish grayish grayish grayish grayish gray	strong brown sand grayish brown sand e Lining, M=Matrix. Indicators for Problematic Hydric Soils ³ : 1 cm Muck (a9) (LRR O) 2 cm Muck (A10) (LRR S) Reduced Vertic (F18) (outside MLRA 150A, B	pockets splotches ains. PL=F	М М		5/2	80	7.5 YR 5/8	2-42	
242 7.5 YR 5/8 80 5 YR 3/4 20 RM M splotches strong brown sand grayish grayish brown sand grayish grayish brown sand grayish brown sand grayish grayish brown sand grayish grayish grayish grayish grayish grayish grayish grayish grayish grayish grayish grayish grayish grayish grayish grayish grayish grayish grayish gr	strong brown sand grayish brown sand e Lining, M=Matrix. Indicators for Problematic Hydric Soils ³ : 1 cm Muck (a9) (LRR O) 2 cm Muck (A10) (LRR S) Reduced Vertic (F18) (outside MLRA 150A, B	splotches ains. ² Location: PL=F	М М			80	7.5 YR 5/8	2-42	
Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. Type: C=Concentration, D=Depleted Ining, M=Matrix. Indicators for Problemati Indicators: Indicators for Problemati According to the Muck (a9) (LRR S, T, U) I cm Muck (a9) (LRR S, T, U) I cm Muck (a9) (LRR O, D) I cm Muck (a9) (LRR O, D) Type: C=Concentration, D=Depleted Matrix, CS=Covered or Coated Sand Grains. *Location: PL=Pore Lining, M=Matrix. Indicators for Problematic. Tom Muck (a9) (LRR O, D) I cm Muck (a9) (LRR O, T, U) Tom Muck (a9) (LRR O, T, U) Tom Muck (a9) (LRR O, P, T, U) Tother (Explain in Remulting Indicators of hydrophytic value (F13) (LRR O, P, T) Thick Dark Surface (A12) Coast Prairie Redox (A16) (MLRA 150A) Sandy Mucky Mineral (S1) (LRR O, S) Type: C=Coated Sand Grains. *Location: PL=Pore Lining, M=Matrix. *Location: PL=Pore Lining, M=Edicators of Problematic. *Location: PL=Pore Lining, M=Edicators of Problematic. *Location: PL=Pore Lining, M=Matrix. *Location: PLevel Lining, M=Matrix. *Location: PLevel Lining, M=Matrix. *Location: PLevel Lining, M=Matrix. *Location: PLevel Lining, M=Matrix. *Location: PLevel Lining, M=Matrix. *Location: PLevel Lining, M=Matrix. *Location: PLevel Lining, M=Matrix. *Location: Ple	grayish brown sand e Lining, M=Matrix. Indicators for Problematic Hydric Soils ³ : 1 cm Muck (a9) (LRR O)2 cm Muck (A10) (LRR S)Reduced Vertic (F18) (outside MLRA 150A, B	ains. ² Location: PL=F							
Fype: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. Varic Soil Indicators:	Indicators for Problematic Hydric Solls ³ : 1 cm Muck (a9) (LRR O)2 cm Muck (A10) (LRR S)Reduced Vertic (F18) (outside MLRA 150A, E		or Coated Sand Gra					Z-0U	
ydric Soil Indicators: Histol (A1) Polyvalue Below Surface (S8) (LRR S, T, U) Thin Dark Surface (S9) (LRR S, T, U) Black Histic Epidon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Organic Bodies (A6) (LRR P, T, U) Stratified Layers (A5) Popleted Matrix (F3) Sem Mucky Mineral (A7) (LRR P,T,U) Popleted Dark Surface (F6) Muck Presence (A8) (LRR U) Tem Muck (A9) (LRR P,T) Depleted Dark Surface (F7) Redox Depressions (F8) Very Shallow Dark Surface (A11) Thick Dark Surface (A12) Coast Prairie Redox (A16) (MLRA 150A) Sendy Mucky Mineral (S1) (LRR O, S) Detta Orchric (F18) (MLRA 150A) Detta Orchric (F18) (MLRA 150A) Detta Orchric (F17) (MLRA 151) Problematic Indicators for Problematic Indicators for Problematic Indicators for Problematic Indicators for Problematic Indicators for Problematic Indicators for Problematic Indicators for Problematic Indicators for Problematic Indicators for Problematic Indicators for Problematic	Indicators for Problematic Hydric Solls ³ : 1 cm Muck (a9) (LRR O)2 cm Muck (A10) (LRR S)Reduced Vertic (F18) (outside MLRA 150A, E		or Coated Sand Grai						
ydric Soil Indicators: Histol (A1) Histol (A2) Black Histic Epidon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Organic Bodies (A6) (LRR P, T, U) Muck Presence (A8) (LRR P,T, U) To Muck (A9) Loamy Gleyed Matrix (F3) Depleted Dark Surface (F6) Muck Presence (A8) (LRR P,T) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Coast Prairie Redox (A16) (MLRA 150A) Polyvalue Below Surface (S8) (LRR S, T, U) Loamy Gleyed Matrix (F3) Loamy Gleyed Matrix (F2) Depleted Matrix (F2) Anomalous Bright Loa (MLRA 153B) Marl (F10) (LRR U) Depleted Dark Surface (F7) Red Parent Material (T1) Loamy Gleyed Matrix (F10) (LRR U) Depleted Orchric (F11) (MLRA 151) Thick Dark Surface (A12) Loamy Gleyed Matrix (F3) Detta Orchric (F17) (MLRA 151) Problematic. Indicators for Problematic 1 cm Muck (A9) (LRR S, T, U) 1 cm Muck (A9) (LRR O, P,T) Popleted Dark Surface (A12) Loamy Gleyed Matrix (F3) Loamy Gleyed Matrix (F3) Indicators for Problematic	Indicators for Problematic Hydric Soils ³ : 1 cm Muck (a9) (LRR O)2 cm Muck (A10) (LRR S)Reduced Vertic (F18) (outside MLRA 150A, E		or Coated Sand Grai						
ydric Soil Indicators: Histol (A1) Histol (A2) Black Histic Epidon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Organic Bodies (A6) (LRR P, T, U) Muck Presence (A8) (LRR P,T, U) To Muck (A9) Loamy Gleyed Matrix (F3) Depleted Dark Surface (F6) Muck Presence (A8) (LRR P,T) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Coast Prairie Redox (A16) (MLRA 150A) Polyvalue Below Surface (S8) (LRR S, T, U) Loamy Gleyed Matrix (F3) Loamy Gleyed Matrix (F2) Depleted Matrix (F2) Anomalous Bright Loa (MLRA 153B) Marl (F10) (LRR U) Depleted Dark Surface (F7) Red Parent Material (T1) Loamy Gleyed Matrix (F10) (LRR U) Depleted Orchric (F11) (MLRA 151) Thick Dark Surface (A12) Loamy Gleyed Matrix (F3) Detta Orchric (F17) (MLRA 151) Problematic. Indicators for Problematic 1 cm Muck (A9) (LRR S, T, U) 1 cm Muck (A9) (LRR O, P,T) Popleted Dark Surface (A12) Loamy Gleyed Matrix (F3) Loamy Gleyed Matrix (F3) Indicators for Problematic	Indicators for Problematic Hydric Soils ³ : 1 cm Muck (a9) (LRR O)2 cm Muck (A10) (LRR S)Reduced Vertic (F18) (outside MLRA 150A, E		or Coated Sand Grai						
Histol (A1)	1 cm Muck (a9) (LRR O)2 cm Muck (A10) (LRR S)Reduced Vertic (F18) (outside MLRA 150A, E	100 // DD C T III		S=Cove	=Reduced Matrix, C	letion, RM	Concentration, D=Depl	Type: C=	
Histic Epidon (A2) Thin Dark Surface (S9) (LRR S, T, U) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Organic Bodies (A6) (LRR P, T, U) Stratified Layers (A7) Depleted Matrix (F3) Stratified Layers (A5) Organic Bodies (A6) (LRR P, T, U) Stratified Layers (A7) Depleted Matrix (F3) Stratified Layers (A5) Organic Bodies (A6) (LRR P, T, U) Depleted Dark Surface (F6) Mucky Mineral (A7) (LRR P,T,U) Pedet Dark Surface (F7) Red Parent Material (T Muck Presence (A8) (LRR U) Redox Depressions (F8) Very Shallow Dark Surl 1 cm Muck (A9) (LRR P,T) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Coast Prairie Redox (A16) (MLRA 150A) Sandy Mucky Mineral (S1) (LRR O, S) Sandy Mucky Mineral (S1) (LRR O, S) Seduced Vertic (F18) (MLRA 150A, 150B)	2 cm Muck (A10) (LRR S) Reduced Vertic (F18) (outside MLRA 150A, E	O 4 55 6 T 11					il Indicators:	ydric Sc	
Black Histic (A3) Loamy Mucky Mineral (F1) (LRR O) Reduced Vertic (F18) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Piedmont Floodplain Stratified Layers (A5) Depleted Matrix (F3) Anomalous Bright Loa (MLRA 153B) 5 cm Mucky Mineral (A7) (LRR P,T,U) Depleted Dark Surface (F6) Red Parent Material (T Muck Presence (A8) (LRR U) Redox Depressions (F8) Very Shallow Dark Sur 1 cm Muck (A9) (LRR P,T) Marl (F10) (LRR U) Other (Explain in Rem Depleted Below Dark Surface (A11) Depleted Orchric (F11) (MLRA 151) Thick Dark Surface (A12) Iron-Manganese Masses (F12) (LRR O, P,T) Andicators of hydrophytic v hydrology must be present Sandy Mucky Mineral (S1) (LRR O, S) Delta Orchric (F18) (MLRA 150A) Piedmatic. Reduced Vertic (F18) (MLRA 150A) Piedmatic.	Reduced Vertic (F18) (outside MLRA 150A, E	8) (LKK 5, 1, U)	e Below Surface (S8	Poly	_		(A1)	Histol	
Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Matrix (F2) Depleted Matrix (F3) Anomalous Bright Loa (MLRA 153B) 5 cm Mucky Mineral (A7) (LRR P,T,U) Depleted Dark Surface (F6) Muck Presence (A8) (LRR U) Redox Depressions (F8) Very Shallow Dark Sur 1 cm Muck (A9) (LRR P,T) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Coast Prairie Redox (A16) (MLRA 150A) Sandy Mucky Mineral (S1) (LRR O, S) Sandy Gleyed Matrix (S4) Loamy Gleyed Matrix (F2) Piedmont Floodplain S Anomalous Bright Loa (MLRA 153B) Anomalous Bright Loa (MLRA 153B) PRedox Dark Surface (F7) Red Parent Material (T (MLRA 151) Popleted Drchric (F11) (MLRA 151) Iron-Manganese Masses (F12) (LRR O, P,T) Mydrology must be present problematic. Problematic.		R S, T, U)	rk Surface (S9) (LRR	Thin	_		Epidon (A2)	Histic	
Stratified Layers (A5) Organic Bodies (A6) (LRR P, T, U) 5 cm Mucky Mineral (A7) (LRR P,T,U) Muck Presence (A8) (LRR U) 1 cm Muck (A9) (LRR P,T) Depleted Dark Surface (F7) Marl (F10) (LRR U) Depleted Dark Surface (F7) Marl (F10) (LRR U) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Coast Prairie Redox (A16) (MLRA 150A) Sandy Mucky Mineral (S1) (LRR O, S) Sandy Gleyed Matrix (S4) Depleted Matrix (F3) Anomalous Bright Loa (MLRA 153B) Redox Dark Surface (F7) Red Parent Material (1 (MLRA 151) Inon-Manganese Masses (F12) (LRR O, P,T) Mydrology must be present problematic. Poblematic.	Piedmont Floodplain Soils (F19) (LRR P, \$, T)	(LRR O)	Mucky Mineral (F1) (L	Loan	_		Histic (A3)	Black	
Organic Bodies (À6) (LRR P, T, U)			Gleyed Matrix (F2)	Loan	_		gen Sulfide (A4)	Hydro	
	Anomalous Bright Loamy Soils (F20)				-				
✓ Muck Presence (A8) (LRR U) Redox Depressions (F8) Very Shallow Dark Sur 1 cm Muck (A9) (LRR P,T) Marl (F10) (LRR U) Other (Explain in Rem Depleted Below Dark Surface (A11) Depleted Orchric (F11) (MLRA 151) Thick Dark Surface (A12) Iron-Manganese Masses (F12) (LRR O, P,T) _³Indicators of hydrophytic v hydrology must be present problematic. Sandy Mucky Mineral (S1) (LRR O, S) Delta Orchric (F17) (MLRA 151) problematic. Sandy Gleyed Matrix (S4) Reduced Vertic (F18) (MLRA 150A, 150B)	(MLRA 153B)		Dark Surface (F6)	Redo	-	P, T, U)	nic Bodies (A6) (LRR F	Orgar	
1 cm Muck (A9) (LRR P,T) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Coast Prairie Redox (A16) (MLRA 150A) Sandy Mucky Mineral (S1) (LRR O, S) Sandy Gleyed Matrix (S4) Marl (F10) (LRR U) Depleted Orchric (F11) (MLRA 151) Iron-Manganese Masses (F12) (LRR O, P,T) Jumbric Surface (F13) (LRR P, T, U) Marl (F10) (LRR U) Jumbric Surface (F13) (LRR O, P,T) Sound Orchric (F17) (MLRA 151) Marl (F10) (LRR U) Jumbric Surface (F13) (LRR P, T, U) Mydrology must be present problematic.	Red Parent Material (TF2))	d Dark Surface (F7)	Depl) -	RR P,T,U	Mucky Mineral (A7) (L	5 cm	
Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Coast Prairie Redox (A16) (MLRA 150A) Sandy Mucky Mineral (S1) (LRR O, S) Sandy Gleyed Matrix (S4) Depleted Orchric (F11) (MLRA 151) Liron-Manganese Masses (F12) (LRR O, P,T) Jendicators of hydrophytic v hydrology must be present problematic. Peduced Vertic (F18) (MLRA 151) Reduced Vertic (F18) (MLRA 150A, 150B)	Very Shallow Dark Surface (TF12) (LRR T, U)		Depressions (F8)	Redo	· _	U)	Presence (A8) (LRR	✓ Muck	
Depleted Below Dark Surface (A11)	Other (Explain in Remarks)		0) (LRR U)	Marl			Muck (A9) (I RR P T)	1 cm	
Thick Dark Surface (A12)		DA 454\			-	(8.4.4)		_	
Coast Prairie Redox (A16) (MLRA 150A) Sandy Mucky Mineral (S1) (LRR O, S) Sandy Gleyed Matrix (S4) — Umbric Surface (F13) (LRR P, T, U) Delta Orchric (F17) (MLRA 151) Reduced Vertic (F18) (MLRA 150A, 150B)		•	, , ,						
Sandy Mucky Mineral (S1) (LRR O, S) Sandy Gleyed Matrix (S4) Delta Orchric (F17) (MLRA 151) Reduced Vertic (F18) (MLRA 150A, 150B)	³ Indicators of hydrophytic vegetation and wetland		•		-		, ,		
Sandy Mucky Millera (31) (LRR 0, 3) Sandy Gleyed Matrix (S4) Reduced Vertic (F18) (MLRA 150A, 150B)	hydrology must be present, unless disturbed or	R P, T, U)	(A)	MLRA 15	Prairie Redox (A16) (Coast			
Sandy Gleyed Matrix (S4) Reduced Vertic (F18) (MLRA 150A, 150B)	problematic.	151)	rchric (F17) (MLRA 1	Delta)	LRR O. S	/ Mucky Mineral (S1) (I	Sand	
		RA 150A, 150B)	d Vertic (F18) (MLRA	Redu	•	•			
Sandy Redox (S5)Piedmont Floodplain Soils (F19) (MLRA 149A)			, , ,		•				
Stripped Matrix (S6)Anomalous Bright Loamy Soils (F20) (MLRA 149A, 153C, 153D)	C, 153D)	oils (F20) (MLRA 149A, 15	ous Bright Loamy Soi	 Anor			. ,		
Dark Surface (S7) (LRR P, S, T, U)			,		-	S T III	` '		
Restrictive Layer (If observed):									
Type:		i				١٠	, , ,	vesu icu v	
	yt? Vas √ No	Hydric Soil Pres					Donth (inchae):		
Charles.	nt? Yes No	Hydric Soil Pres			· · · · · · · · · · · · · · · · · · ·		Depth (inches):	emarks:	
	nt? Yes <u>✓</u> No	Hydric Soil Pre					Depth (inches):	emarks:	

Project/Site: Levy Nuclear Plant - Transmission	Lines, CREC Substation	City/County:Citrus	_Sampling Date:_	10/28/09	
Applicant/Owner: Progress Energy Florida, Inc)	State: FL		Sampling Point:_	AF
Investigator(s): Stacy Rizzo, Tony Davanz	20	Section, Township, Range	e: <u>33 17S 16E</u>		
Landform (hillslope, terrace, etc.): N	/A	Local relief (concave, con	ivex, none): none	Slo	pe (%):
Subregion (LRR or MLRA): LRR U	Lat: 28.9608	325 Long:82.6	96680	Da	tum: WGS84
Soil Map Unit Name: Quartzipsamments, 0 to	5 percent slopes		_ NWI classification	: <u>N/A</u>	
Are climatic / hydrologic conditions on the site t	ypical for this time of year?	Yes <u>✓</u>	_ No	(If no, explain in	Remarks)
Are Vegetation, Soil,	or Hydrology		Are circumstances		sNo
Are Vegetation, Soil,			(If needed, explain	n any answers in R	lemarks)
SUMMARY OF FINDINGS - Attach si			•	-	,
Hydrophytic Vegetation Present?	Yes No		•		
Hydric Soil Present?	Yes✓ No	Is the Sampled Area v	vithin a Wetland?	Yes✓No	
Wetland Hydrology Present?	Yes✓ No				
Remarks:					
HYDROLOGY			O a ser de su terdired		
Wetland Hydrology Indicators:				tors (minimum of to	wo requirea)
Primary Indicators (minimum of one is required		(00)	Surface Soil	, ,	Durfo (DO)
Surface Water (A1)	Water-Stained Leaves	(Ba)		getated Concave (Suпасе (B8)
High Water Table (A2)	Aquatic Fauna (B13)	BB 111	Drainage Pa		
Saturation (A3)	Marl Deposits (B15) (L	•	Moss Trim L	• •	
Water Marks (B1)	Hydrogen Sulfide Odo	, ,		Water Table (C2)	
Sediment Deposits (B2)	Oxidized Rhizospheres		Crayfish Bur		
Drift Deposits (B3)	Presence of Reduced		Saturation Visible on Aerial Imagery (C9)		
Algal Mat or Crust (B4)	Recent Iron Reduction	• •	Geomorphic Position (D2)		
Iron Deposits (B5)	Thin Muck Surface (C7		Shallow Aquitard (D3)		
Inundation Visible on Aerial Imagery (B7)Other (Explain in Rema	arks)	Test (D5)		
Field Observations:					
Surface Water Present?	Yes No		-		
Water Table Present?	Yes No		Wetland		
Saturation Present?	Yes No	Depth (inches):0-12	Hydrology		
(includes capillary fringe)			Present?	Yes <u>√</u> No	
Describe Recorded Data (stream gauge, monit	oring well, aerial photos, previ	ous inspections), if available) :		
Remarks:					

VEGETATION - Use scientific na	ames of plants				mpling Point:	AF
Tree Stratum (Plot size:)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test Workshee	t:	
1.		<u></u>		Number of Dominant Species		(A)
2. 3.				That Are OBL, FACW, or FACT Total Number of Dominant	<u>-</u> 1	(B)
<u>4.</u> 5.				Species Across All Strata: Percent of Dominant Species	_	
6.				That Are OBL, FACW, or FAC	C: <u>100.00</u>	(A/B
7.				Prevalance Index workshee	et:	
	0	= Total Cove	er	Total % Cover of:	Multiply by:	
Sapling Stratum (Plot size:)				OBL species	x1=	_
1.				FACW species	x2=	
2.				FAC species	x3=	_
3.				FACU species	x4=	_
4.				UPL species	x5=	_
5.				Column Totals:	(A)	_(B)
6.						
7.				Prevalance Index = B/A		
	0	= Total Cove	er	Hydrophytic Vegetation Ind	icators:	
Shrub Stratum (Plot size:	_)			✓ Dominance Test is 50	%	
1.				Prevalence Index is ≤	3.0 ¹	
2.				Problematic Hydrophy	tic Vegetation ¹ (Exp	plain)
3.				1	. 41. 1. 1. 1	
<u>4.</u> 5.			-	Indicators of hydric soil and be present, unless disturbed		nust
6.				Definitions of Vegetation S		
7.				Deminions of Vegetation of	uu.	
Herb Stratum (Plot size:	0	= Total Cove	er er	Tree- Woody plants, excluding approximately 20 ft (6m) or mo		(7.6
Cyperus spp.	_/ 30	yes	FACW	cm) or larger in diameter at bre	east height (DBH).	
Andropogon glomeratus	10	no	FACW	Sapling- Woody plants, exclud	ling woody vines,	
3. Ludwigia spp.	10	no	OBL	approximately 20 ft (6m) or mo	re in height and less	than 3
4. Setaria spp.	_ 5	no	FAC	in. (7.6 cm) DBH.		
Eustachys petracea Eupatorium serotinum	- 5 2	no	FACU FAC	Shrub- Woody plants, excludir approximately 3 to 20 ft (1 to 6		
7. Aeschynomene spp.		no	FACW	Herb- All herbaceous (non-woo	, •	
8.				herbaceous vines, regardless of		
9.				plants, except woody vines, les	s than approximately	y 3 ft (
10.				m) in height.		
11.				Woody vine- All woody vines,	regardless of height.	
12.						
Woody Vine Stratum (Plot size:_	64	= Total Cove	er			
1.						
2.						
3.						
4.	_			Hydrophytic		
5.				Vegetation Present? Y	es <u> </u>	
	0	= Total Cove	er			

Remarks: (If observed, list morphological adaptations below).

Percent cover estimates based on meandering survey of the broader community.

rofile Des epth nches)	ecription: /Doccribo:							Sampling Point:
•		to the de	pth needed to doc			r confirm the al	osence of indicato	rs.)
nches)	Matrix				Features	12		0
	Color (moist)	- %	Color (moist)	%_	Type	Loc²	Texture	Remarks
-6	10 YR 4/2	100						dark grayish brown sand
			10 YR 6/2; 10					
			YR 8/1; 10 YR				splotches and	
-32	N 5/0; 10 YR 7/1	80	5/2	20	RM	<u>M</u>	pockets	gray and light gray sand
2-42	7.5 YR 5/8	100						strong brown sand
-60	10 YR 5/2	100						grayish brown sand
					-			
						-		
ype: C=C	Concentration, D=Depl	letion, RM	1=Reduced Matrix, 0	S=Cove	ered or Coated	Sand Grains.	² Location: PL=F	Pore Lining, M=Matrix.
dric Soi	I Indicators:							Indicators for Problematic Hydric Soils 3:
Histol				Poly	value Below St	urface (S8) (LRF	R S, T, U)	1 cm Muck (a9) (LRR O)
	Epidon (A2)					(S9) (LRR S, T,		2 cm Muck (A10) (LRR S)
	Histic (A3)					ral (F1) (LRR O	•	Reduced Vertic (F18) (outside MLRA 150A, E
	gen Sulfide (A4)		•		my Gleyed Mat		,	Piedmont Floodplain Soils (F19) (LRR P, S, T)
	ed Lavers (A5)				leted Matrix (F:			Anomalous Bright Loamy Soils (F20)
	ic Bodies (A6) (LRR F	P. T. 11\	•		ox Dark Surfac			(MLRA 153B)
					leted Dark Surl	` '		Red Parent Material (TF2)
	/lucky Mineral (A7) (LI))			, ,		
	Presence (A8) (LRR	U)			ox Depression:	. ,		Very Shailow Dark Surface (TF12) (LRR T, U)
1 cm N	Muck (A9) (LRR P,T)			Mar	(F10) (LRR U)		Other (Explain in Remarks)
Depleted Below Dark Surface (A11)					leted Orchric (I	F11) (MLRA 151	1)	
Thick Dark Surface (A12)					-Manganese M	asses (F12) (LF	RR O, P,T)	³ Indicators of hydrophytic vegetation and wetland
Coast	Prairie Redox (A16) (MLRA 15	i0A)	Umbric Surface (F13) (LRR P, T, U)				hydrology must be present, unless disturbed or
Sandy	Mucky Mineral (S1) (LRR O, S	3)	Delt	a Orchric (F17)	(MLRA 151)		problematic.
	Gleyed Matrix (S4)	,	•	Red	uced Vertic (F1	8) (MLRA 150A	A, 150B)	
_ ′	Redox (S5)				•	in Soils (F19) (N		
_ ′	ed Matrix (S6)				•	, , ,	0) (MLRA 149A, 15	3C. 153D)
	Surface (S7) (LRR P,	STIB	,		···	, (-, (,	,,
	Layer (if observed)							
-	Type:							
	Depth (inches):						Hydric Soil Pres	sent? Yes <u>√</u> No

Project/Site: Levy Nuclear Plant - Transmission	Lines, CREC Substation	_City/County:Citrus	_Sampling Date: 10/2	8/09		
Applicant/Owner: Progress Energy Florida, Inc.	2	State: FL	·	Sampling Point: AG		
Investigator(s): Stacy Rizzo, Tony Davanz	:0	_Section, Township, Range	e: <u>28 17S 16E</u>			
Landform (hillslope, terrace, etc.):N	/A	Local relief (concave, con	vex, none): none	Slope (%)	ı:	
Subregion (LRR or MLRA): LRR U	Lat: 28.96386	69 Long:82.7	01050	Datum:	WGS84	
Soil Map Unit Name: Quartzipsamments, 0 to		NWI classification: N/A				
Are climatic / hydrologic conditions on the site to	ypical for this time of year?	Yes✓	_ No	_ (If no, explain in Remark	ks)	
Are Vegetation, Soil,	or Hydrology			s normal? Yes ✓		
Are Vegetation, Soil,				n any answers in Remarks	s)	
SUMMARY OF FINDINGS - Attach si	te map showing sampli	ing point locations, t	ransects, impo	rtant features, etc.	•	
Hydrophytic Vegetation Present?	Yes No		· · · · · · · · · · · · · · · · · · ·	,		
Hydric Soil Present?	YesNo	Is the Sampled Area w	vithin a Wetland?	Yes No		
Wetland Hydrology Present?	Yes✓ No					
Remarks:						
HYDROLOGY						
Wetland Hydrology Indicators:			Secondary Indicat	ors (minimum of two requ	uired)	
Primary Indicators (minimum of one is required;	check all that apply)		Surface Soil	Cracks (B6)		
Surface Water (A1)	Water-Stained Leaves	(B9)	Sparsely Ve	getated Concave Surface	; (B8)	
High Water Table (A2)	Aquatic Fauna (B13)		Drainage Pa	itterns (B10)		
✓ Saturation (A3)	Marl Deposits (B15) (LI	RR U)	Moss Trim L	ines (B16)		
Water Marks (B1)	Hydrogen Sulfide Odor	(C1)	Dry-Season	Water Table (C2)		
Sediment Deposits (B2)	Oxidized Rhizospheres	on Living Roots (C3)	Crayfish Bur	rows (C8)		
Drift Deposits (B3)	Presence of Reduced I	ron (C4)	Saturation V	isible on Aerial Imagery (C9)	
Algal Mat or Crust (B4)	Recent Iron Reduction	in Tilled Soils (C6)	Geomorphic Position (D2)			
Iron Deposits (B5)	Thin Muck Surface (C7)	Shallow Aquitard (D3)			
Inundation Visible on Aerial Imagery (B7)Other (Explain in Rema	arks)FAC Neutral Test (D5)				
Field Observations:						
Surface Water Present?	Yes No	Depth (inches):				
Water Table Present?	Yes No					
Saturation Present?	Yes No	_ Depth (inches):0-12	Wetland Hydrology			
(includes capillary fringe)		_	Present?	Yes <u>✓</u> No		
Describe Recorded Data (stream gauge, monitor	oring well, aerial photos, previo	ous inspections), if available	ε .			
Remarks:						
	-					

٨	\sim

~		_		
San	ากไม	ገጣ 🏻	ノヘル	۱†۰
Jan	IVIII	IU I	OII	Ht.

	1	· · · · · · · · · · · · · · · · · · ·		Dominance Test Workshe	et:	
	Absolute %	Dominant	Indicator			
Tree Stratum (Plot size:)	Cover	Species?	Status			
Sabal palmetto	5	yes	FAC	Number of Dominant Specie	es o	(4)
Taxodium distichum	2	yes	OBL	That Are OBL, FACW, or FA	AC: <u>9</u>	(A)
3. Ulmus americana	1	no	FACW	Total Number of Dominant	<u>9</u>	(B)
Fraxinus caroliniana	11	no	OBL	Species Across All Strata:		(0)
5.				Percent of Dominant Specie		(A/B)
6.				That Are OBL, FACW, or FA	AC:	V/
7.				Prevalance Index workshe	eet:	
	9	= Total Cov	er	Total % Cover of:	Multiply by:	
Sapling Stratum (Plot size:)				OBL species	x1=	_
Salix caroliniana	40	yes	OBL	FACW species	x2=	_
2. Juniperus silicicola	2	no	FAC	FAC species	x3=	_
3.				FACU species	x4=	
4.		-		UPL species	x5=	
5.				Column Totals:	(A)	— (B)
6.						_ ` `
7.			•	Prevalance Index = B/A	<i>\</i> =	
	42	= Total Cov	 er	Hydrophytic Vegetation In	dicators:	
Shrub Stratum (Plot size:)			✓ Dominance Test is 5		
Baccharis sp.	40	yes	FAC	Prevalence Index is		
Myrica cerifera	30	yes	FAC	+	-5.0 nytic Vegetation ¹ (Exp	lain)
3.		yes	170	1 Toblematic Hydropi	iyile vegetation (Exp	nan ij
4.				Indicators of hydric soil and	d wetland hydrology n	nust
5.			-	be present, unless disturbed		
6.				Definitions of Vegetation		
7.				1		
	70	= Total Cov	er	Tree- Woody plants, excluding	a woody vines	
Herb Stratum (Plot size:)			approximately 20 ft (6m) or m	_	(7.6
1. Fimbristylis spp.	, 10	yes	FACW	cm) or larger in diameter at b	reast height (DBH).	
Panicum repens	10	yes	FACW	Sapling- Woody plants, exclu	ıdına woody vines.	
3. Cyperus spp.	5	no	FACW	approximately 20 ft (6m) or m		than 3
Andropogon glomeratus	2	no	FACW	in. (7.6 cm) DBH.	J	
5. Eleocharis spp.	2	no	OBL	Shrub- Woody plants, exclud	ling woody vines,	
6.				approximately 3 to 20 ft (1 to	6 m) in height.	
7.			-	Herb- All herbaceous (non-w		
8.	· · · · · · · · · · · · · · · · · · · 			herbaceous vines, regardless		
9.			·	plants, except woody vines, lend m) in height.	ess than approximately	/ 3π(1
10.	·		·	⊣ `		
11.				Woody vine- All woody vines	, regardless of neight.	
12.		Total Con		-		
	. 29	= Total Cov	er			
Woody Vine Stratum (Plot size:		1/00	EAC			
Vitus rotundifolia Ampelopsis arborea	<u>60</u> 20	yes	FAC FAC	-{		
3.		yes	FAC			
4.	·		-	Hudrophutio		
5.	· 			_Hydrophytic Vegetation Present?	Yes ✓ No	
<u> </u>	80	= Total Cov		- regetation Fresents	. 50	
Remarks: (If observed, list morph						
, , , ,				mmunity		
Percent cover estimates based or	i incanuenng s	ourvey of the	PIOGREI CO	aranusacy.		

SOIL								Sampling Point:	
	escription: (Describe Matrix	to the de	pth needed to doc		he indicatoi k Features	r or confirm the	absence of indicato	rs.)	
Depth		0/	Calar (maint)			Loc²		Remarks	
(inches) 0-6	Color (moist) 10 YR 4/2	% 100	Color (moist)		Type		Texture	dark grayish brown sand	
0-0	10 11 4/2		10.1/0.0/0.10					dark grayish brown sand	
			10 YR 6/2; 10 YR 8/1; 10 YR				splotches and		
6-32	N 5/0; 10 YR 7/1	80	5/2	20	RM	М	pockets	gray and light gray sand	
32-42	7.5 YR 5/8	80	5 YR 3/4	20	RM	M	splotches	strong brown sand	
42-60	10 YR 5/2	100	3 11(3/4		1714)		- spiotories	grayish brown sand	
72-00	- 10 11(3/2						_	grayish brown saild	
	_								
Type: C	Concentration, D=Dep	etion RM	A=Reduced Matrix (S=Cove	ered or Coat	ed Sand Grains	² I ocation: PI =I	Pore Lining, M=Matrix.	
	oil Indicators:	Chon, ran	n-reduced Madrix,	0010	or cour	ca ouna oranio.	LOGGROTI. T E	Indicators for Problematic Hydric Soils 3:	
Histol (A1)				Poly	value Below	Surface (S8) (LF	RR S. T. U)	1 cm Muck (a9) (LRR O)	
	c Epidon (A2)					ce (S9) (LRR S, 1		2 cm Muck (A10) (LRR S)	
_	k Histic (A3)					lineral (F1) (LRR		Reduced Vertic (F18) (outside MLRA 150A, B)	
	ogen Sulfide (A4)				my Gleyed N	, , ,		Piedmont Floodplain Soils (F19) (LRR P, S, T)	
	ified Layers (A5)				leted Matrix			Anomalous Bright Loamy Soils (F20)	
Orga	nic Bodies (A6) (LRR F	P, T, U)		Red	lox Dark Sur	facé (F6)		(MLRA 153B)	
5 cm	Mucky Mineral (A7) (L	RR P.T.U	1)	Dep	leted Dark S	Surface (F7)		Red Parent Material (TF2)	
	k Presence (A8) (LRR		•	Red	lox Depressi	ions (F8)		Very Shallow Dark Surface (TF12) (LRR T, U)	
	Muck (A9) (LRR P,T)	-,			I (F10) (LRF			Other (Explain in Remarks)	
	eted Below Dark Surfac	·α (Δ11)		— Den	leted Orchri	c (F11) (MLRA 1	51)		
	k Dark Surface (A12)	æ (A11)				Masses (F12) (L	•		
	` ,				-		•	³ Indicators of hydrophytic vegetation and wetland	
Coa	st Prairie Redox (A16) (MLRA 15	50A)	Umi	огіс Ѕиласе	(F13) (LRR P, T,	U)	hydrology must be present, unless disturbed or	
Sand	dy Mucky Mineral (S1) (LRR O, S	5)	Delt	a Orchric (F	17) (MLRA 151)		problematic.	
Sand	dy Gleyed Matrix (S4)			Red	luced Vertic	(F18) (MLRA 150	A, 150B)		
Sand	ty Redox (S5)			Piedmont Floodplain Soils (F19) (MLRA 149A)					
Stripped Matrix (S6)					Anomalous Bright Loamy Soils (F20) (MLRA 149A, 153C, 153D)				

Yes <u>✓</u> No

Hydric Soil Present?

_____Dark Surface (S7) (LRR P, S, T, U)
Restrictive Layer (If observed):
Type:

Depth (inches):

Remarks:

Applicant/Owner: Progress Energy Flori		City/County: Citrus		Sampling Date:	10/29/09	
	da, Inc.	State: FL	Sampling Point: AH			
nvestigator(s): Stacy Rizzo, Tony E	Davanzo	Section, Township, Range	28 17S 16E			
_andform (hillslope, terrace, etc.):	N/A	Local relief (concave, conv	vex, none): none	s	lope (%):	
Subregion (LRR or MLRA): LRF	RU Lat: 28.9627	'73 Long: <u>-82.69</u>	7632	D	atum: WGS84	
Soil Map Unit Name: Quartzipsamment	s, 0 to 5 percent slopes	NWI classification: N/A				
Are climatic / hydrologic conditions on the	e site typical for this time of year?	Yes✓	No (If no, explain in Remarks			
Are Vegetation, Soil	or Hydrology	_significantly disturbed?	Are circumstance	es normal? Y	es/No	
Are Vegetation, Soil	or Hydrology	naturally problematic?	(If needed, expla	ain any answers in	Remarks)	
SUMMARY OF FINDINGS - Atta	ch site map showing sampl	ling point locations, tr	ansects, imp	ortant features	s, etc.	
Hydrophytic Vegetation Present?	Yes✓ No					
Hydric Soil Present?	Yes No	Is the Sampled Area w	ithin a Wetland?	Yes/ N	0	
Wetland Hydrology Present?	Yes No					
HANDON OOA						
HYDROLOGY Wetland Hydrology Indicators:			Secondary Indica	ators (minimum of	two required)	
Primary Indicators (minimum of one is re-	guired; check all that apply)		Surface So			
Surface Water (A1)	Water-Stained Leaves	(B9)		egetated Concave	Surface (B8)	
High Water Table (A2)	Aquatic Fauna (B13)			Patterns (B10)		
✓ Saturation (A3)	Marl Deposits (B15) (L	.RR U)	Moss Trim	Lines (B16)		
Water Marks (B1)	Hydrogen Sulfide Odo	r (C1)	Dry-Season	n Water Table (C2)	
Sediment Deposits (B2)	Oxidized Rhizospheres	s on Living Roots (C3)	Crayfish Bu	urrows (C8)		
Drift Deposits (B3)	Presence of Reduced	Iron (C4)	Saturation	Visible on Aerial In	nagery (C9)	
Algal Mat or Crust (B4)	Recent Iron Reduction	in Tilled Soils (C6)Geomorphic Position (C				
Iron Deposits (B5)	Thin Muck Surface (C7	7)Shallow Aquitard (D3)				
Inundation Visible on Aerial Image	ery (B7)Other (Explain in Rema	narks)FAC Neutral Test (D5)				
Field Observations:						
Surface Water Present?	Yes No	_ Depth (inches):	1			
Water Table Present?	Yes No	_ Depth (inches):	10/14/15/14			
Saturation Present?	Yes No	Depth (inches):0-12	Wetland Hydrology			
(includes capillary fringe)			Present?	Yes ✓ N		

VEGETATION - Use scientific nar	mes of plants			Sampling Point:				
				Dominance Test Worksh	eet:			
	Absolute %	Dominant	Indicator					
Tree Stratum (Plot size:)	. Cover	Species?	Status					
1.				Number of Dominant Spec	· · · · · · · · · · · · · · · · · · ·	(A)		
2.				That Are OBL, FACW, or	-AC:	` '		
3.				Total Number of Dominan	t <u>2</u>	(B)		
4.				Species Across All Strata:				
5. 6.				Percent of Dominant Spec		(A/B)		
7.				That Are OBL, FACW, or				
7.				Prevalance Index works				
	0	= Total Cove	r	Total % Cover of:	Multiply by			
Sapling Stratum (Plot size:)				OBL species	x1=			
1.				FACW species	x2=			
2.				FAC species	x3=			
3.				FACU species	x4=			
4.				UPL species	x5=			
						—— (D)		
5.				Column Totals:	(A)	(B)		
6.								
7.				Prevalance Index = B				
	0	= Total Cove	r	Hydrophytic Vegetation	Indicators:			
Shrub Stratum (Plot size:)			✓ Dominance Test is	50%			
1.				Prevalence Index is	s ≤3.0 ¹			
2.				Problematic Hydro	ohytic Vegetation ¹ (E	xnlain)		
3.				, , , , , , , , , , , , , , , , , , , ,	onjuo rogotation (=			
4.				¹ Indicators of hydric soil a	nd wetland hydrology	must		
5.				be present, unless disturb				
6.				Definitions of Vegetation	Strata:			
7.								
	0	= Total Cove	r	Tree- Woody plants, exclud	ing woody vines			
Herb Stratum (Plot size:		rotal core		approximately 20 ft (6m) or		n. (7.6		
Cyperus spp.	60	yes	FACW	cm) or larger in diameter at		· · · · · ·		
Hydrocotyle spp.	40	yes	OBL	Sapling- Woody plants, exc	sluding woody vines			
Diodia virginiana	5	no	FACW	approximately 20 ft (6m) or		s than 3		
Chamaesyce serpens	5	no	FAC	in. (7.6 cm) DBH.	, , ,			
5. Desmodium spp.	5	no	FACU	Shrub- Woody plants, exclu	uding woody vines,			
6. Galium spp.	2	no	FACU	approximately 3 to 20 ft (1 to				
7.				Herb- All herbaceous (non-	woody)plants, includir	ıg		
8.				herbaceous vines, regardle				
9.				plants, except woody vines,	less than approximate	ely 3 ft (1		
10.				m) in height.				
11.				Woody vine- All woody vine	es, regardless of heigl	nt.		
12.								
	117	= Total Cove	r					
Woody Vine Stratum (Plot size:)							
1. 2.				1				
3.	- 1			†				
4.	·			Hydrophytic				
5.	77			Hydrophytic Vegetation Present?	Yes ✓ No			
		= Total Carr			.00110_			
Remarks: (If observed, list morph	0	= Total Cove	1	1				

Percent cover estimates based on meandering survey of the broader community.

thes) Color (n 10 YR 4/2 2 N 5/0; 10 Y 42 7.5 YR 5/8 60 10 YR 5/2 pe: C=Concentration dric Soil Indicators: Histol (A1) Histic Epidon (A2) Black Histic (A3) Hydrogen Sulfide (A Stratified Layers (A Organic Bodies (A6 5 cm Mucky Minera Muck Presence (Ai 1 cm Muck (A9) (Li Depleted Below Da Thick Dark Surface Coast Prairie Redo Sandy Mucky Miner	Matrix (moist) 9 2 1 2 7 7/1 /8 2 1 ion, D=Depletion rs: 2) 2 (A4) (A5)	Color (mc 10 YR 6/2; YR 8/1; 10 5/2 5 YR 3/4	Reddoist)	RM RM vered or Coated	M M	splotches and pockets splotches	Remarks dark grayish brown sand gray and light gray sand strong brown sand grayish brown sand	
hes) Color (n 10 YR 4/2 2 N 5/0; 10 Y 42 7.5 YR 5/8 60 10 YR 5/2 pe: C=Concentration dric Soil Indicators: Histol (A1) Histic Epidon (A2) Black Histic (A3) Hydrogen Sulfide (A) Stratified Layers (A Organic Bodies (A6) 5 cm Mucky Minera Muck Presence (Ai 1 cm Muck (A9) (Li Depleted Below Da Thick Dark Surface Coast Prairie Redo Sandy Mucky Miner	(moist) 9 2 1 2 1 3 YR 7/1 78 2 1 5 on, D=Depletion 75: 2) 2 (A4) (A5)	10 YR 6/2; YR 8/1; 10 5/2 80 5/2 5 YR 3/4	10	RM RM vered or Coated	M 	splotches and pockets splotches	dark grayish brown sand gray and light gray sand strong brown sand grayish brown sand	
2 N 5/0; 10 YR 4/2 2 N 5/0; 10 Y 42 7.5 YR 5/8 60 10 YR 5/2 pe: C=Concentration dric Soil Indicators: Histol (A1) Histic Epidon (A2) Black Histic (A2) Hydrogen Sulfide (A Organic Bodies (A6 5 cm Mucky Minera Muck Presence (Ai 1 cm Muck (A9) (Li Depleted Below Da Thick Dark Surface Coast Prairie Redo Sandy Mucky Miner	2 1 9 YR 7/1 /8 2 1 ion, D=Depletion rs: 2)	10 YR 6/2; YR 8/1; 10 5/2 80 5/2 5 YR 3/4	10 YR 20 20 atrix, CS=Cov	RM RM vered or Coated	M 	splotches and pockets splotches	dark grayish brown sand gray and light gray sand strong brown sand grayish brown sand	
2 N 5/0; 10 Y 42 7.5 YR 5/8 60 10 YR 5/2 pe: C=Concentration dric Soil Indicators: Histol (A1) Histic Epidon (A2) Black Histic (A3) Hydrogen Sulfide (A Stratified Layers (A Organic Bodies (A6 5 cm Mucky Minera Muck Presence (Ai 1 cm Muck (A9) (L1 Depleted Below Da Thick Dark Surface Coast Prairie Redo Sandy Mucky Miner	ion, D=Depletion rs:	10 YR 6/2; YR 8/1; 10 80 5/2 80 5 YR 3/4	20 20 20 atrix, CS=CovPoTh	RM vered or Coated	M	pockets splotches	gray and light gray sand strong brown sand grayish brown sand	
pe: C=Concentration dric Soil Indicators: _Histol (A1) _Histic Epidon (A2) _Black Histic (A3) _Hydrogen Sulfide (/ _Stratified Layers (A _Organic Bodies (A6 _5 cm Mucky Minera _Muck Presence (Ai _1 cm Muck (A9) (Li _Depleted Below Da _Thick Dark Surface _Coast Prairie Redo _Sandy Mucky Miner	/8 2 1 ion, D=Depletion rs: 2) e (A4) (A5)	YR 8/1; 10 5/2 80 5 YR 3/4	20 20 20 atrix, CS=CovPoTh	RM vered or Coated	M	pockets splotches	strong brown sand grayish brown sand	
pe: C=Concentration dric Soil Indicators: _Histol (A1) _Histic Epidon (A2) _Black Histic (A3) _Hydrogen Sulfide (/ _Stratified Layers (A _Organic Bodies (A6 _5 cm Mucky Minera _Muck Presence (Ai _1 cm Muck (A9) (LI _Depleted Below Da _Thick Dark Surface _Coast Prairie Redo _Sandy Mucky Miner	/8 2 1 ion, D=Depletion rs: 2) e (A4) (A5)	80 5/2 80 5 YR 3/4	20 20 latrix, CS=Cov	RM vered or Coated	M	pockets splotches	strong brown sand grayish brown sand	
pe: C=Concentration dric Soil Indicators: _Histol (A1) _Histic Epidon (A2) _Black Histic (A3) _Hydrogen Sulfide (/ _Stratified Layers (A _Organic Bodies (A6 _5 cm Mucky Minera _Muck Presence (Ai _1 cm Muck (A9) (LI _Depleted Below Da _Thick Dark Surface _Coast Prairie Redo _Sandy Mucky Miner	/8 2 1 ion, D=Depletion rs: 2) e (A4) (A5)	80 5 YR 3/4	20 	RM vered or Coated	M	splotches	strong brown sand grayish brown sand	
pe: C=Concentration dric Soil Indicators: Histol (A1) Histic Epidon (A2) Black Histic (A3) Hydrogen Sulfide (A Organic Bodies (A6 5 cm Mucky Minera Muck Presence (Ai 1 cm Muck (A9) (Li Depleted Below Da Thick Dark Surface Coast Prairie Redo	2 1 ion, D=Depletion rs: 2) e (A4) (A5)	100	latrix, CS=Cov	vered or Coated			grayish brown sand	
pe: C=Concentration fric Soil Indicators: Histol (A1) Histic Epidon (A2) Black Histic (A3) Hydrogen Sulfide (A Stratified Layers (A Organic Bodies (A6 5 cm Mucky Minera Muck Presence (Ai 1 cm Muck (A9) (LI Depleted Below Da Thick Dark Surface Coast Prairie Redo	ion, D=Depletion rs: 2) e (A4) (A5)		Po Thi	lyvalue Below S	1 Sand Grains.	² Location: PL=P		
ric Soil Indicators: Histol (A1) Histic Epidon (A2) Black Histic (A3) Hydrogen Sulfide (A) Stratified Layers (A Organic Bodies (A6) 5 cm Mucky Minera Muck Presence (Ai 1 cm Muck (A9) (Li Depleted Below Da Thick Dark Surface Coast Prairie Redo	rs: 2) e (A4) (A5)	, RM=Reduced M	Po Thi	lyvalue Below S	Sand Grains.	² Location: PL=P		
ric Soil Indicators: Histol (A1) Histic Epidon (A2) Black Histic (A3) Hydrogen Sulfide (A) Stratified Layers (A Organic Bodies (A6) 5 cm Mucky Minera Muck Presence (Ai 1 cm Muck (A9) (Li Depleted Below Da Thick Dark Surface Coast Prairie Redo	rs: 2) e (A4) (A5)	, RM=Reduced M	Po Thi	lyvalue Below S	Sand Grains.	² Location: PL=P		
Histol (A1) Histic Epidon (A2) Black Histic (A3) Hydrogen Sulfide (A Stratified Layers (A Organic Bodies (A6 5 cm Mucky Minera Muck Presence (Ai 1 cm Muck (A9) (LI Depleted Below Da Thick Dark Surface Coast Prairie Redo	2) e (A4) (A5)		Th	•			ore Lining, M=Matrix.	
Histic Epidon (A2) Black Histic (A3) Hydrogen Sulfide (A) Stratified Layers (A) Organic Bodies (A6) 5 cm Mucky Minera Muck Presence (A1) 1 cm Muck (A9) (L1) Depleted Below Da Thick Dark Surface Coast Prairie Redo	(A4) (A5)		Th	•			Indicators for Problematic Hydric Soils 3:	
Black Histic (A3) Hydrogen Sulfide (A Stratified Layers (A Organic Bodies (A6 5 cm Mucky Minera Muck Presence (Ai 1 cm Muck (A9) (L1 Depleted Below Da Thick Dark Surface Coast Prairie Redo Sandy Mucky Miner	(A4) (A5)			in Dock Curtons	Surface (S8) (LRI		1 cm Muck (a9) (LRR O)	
Hydrogen Sulfide (/ Stratified Layers (A Organic Bodies (A6 5 cm Mucky Minera Muck Presence (Ai 1 cm Muck (A9) (L1 Depleted Below Da Thick Dark Surface Coast Prairie Redo Sandy Mucky Miner	e (A4) (A5)		Lo		(S9) (LRR S, T,	•	2 cm Muck (A10) (LRR S)	
Stratified Layers (A Organic Bodies (A6 5 cm Mucky Minera Muck Presence (Ai 1 cm Muck (A9) (Li Depleted Below Da Thick Dark Surface Coast Prairie Redo Sandy Mucky Miner	(A5)			amy Mucky Min	eral (F1) (LRR C)	Reduced Vertic (F18) (outside MLRA 150A,	
Organic Bodies (A6 5 cm Mucky Minera Muck Presence (Ai 1 cm Muck (A9) (Li Depleted Below Da Thick Dark Surface Coast Prairie Redo Sandy Mucky Miner	` '			amy Gleyed Ma			Piedmont Floodplain Soils (F19) (LRR P, S, T	
_5 cm Mucky Minera _Muck Presence (Ai _1 cm Muck (A9) (LI _Depleted Below Da _Thick Dark Surface _Coast Prairie Redo _Sandy Mucky Miner	A6) (LRR P, T, I			pleted Matrix (F			Anomalous Bright Loamy Soils (F20)	
Muck Presence (Ai _1 cm Muck (A9) (Li _Depleted Below Da _Thick Dark Surface _Coast Prairie Redo _Sandy Mucky Miner		J)	Re	dox Dark Surfa	ce (F6)		(MLRA 153B)	
1 cm Muck (A9) (LI Depleted Below Da Thick Dark Surface Coast Prairie Redo Sandy Mucky Miner	eral (A7) (LRR P	,T,U)	De	pleted Dark Su	rface (F7)		Red Parent Material (TF2)	
Depleted Below Da Thick Dark Surface Coast Prairie Redo Sandy Mucky Minel	Muck Presence (A8) (LRR U)			dox Depression	ns (F8)		Very Shallow Dark Surface (TF12) (LRR T, U	
_Thick Dark Surface _Coast Prairie Redo _Sandy Mucky Miner	1 cm Muck (A9) (LRR P,T)		Ma	arl (F10) (LRR L	J)		Other (Explain in Remarks)	
- _Coast Prairie Redo _Sandy Mucky Minei	Dark Surface (A1	11)	De	pleted Orchric	(F11) (MLRA 15	1)		
- _Sandy Mucky Minei	ce (A12)		lro	n-Manganese N	Masses (F12) (LF	RR O, P,T)	³ Indicators of hydrophytic vegetation and wetland	
	dox (A16) (MLR/	A 150A)	Un	nbric Surface (F	13) (LRR P, T, l	J)	hydrology must be present, unless disturbed or	
	neral (S1) (LRR	O, S)	De	elta Orchric (F17	7) (MLRA 151)		problematic.	
Sandy Gleyed Matr	atrix (S4)		Re	duced Vertic (F	18) (MLRA 150A	A, 150B)		
Sandy Redox (\$5)	, ,		Pie	edmont Floodpla	ain Soils (F19) (N	ILRA 149A)		
Stripped Matrix (S6	Ś6)		An	omalous Bright	Loamy Soils (F2	0) (MLRA 149A, 15	3C, 153D)	
Dark Surface (S7)	7) (LRR P, S, T,	U)						
strictive Layer (If ol	observed):							
Type: Depth (inche	haa):	· · · · · · · · · · · · · · · · · · ·				Hydric Soil Pres	ent? Yes ✓ No .	
marks:	103).					Invario Son Fres	ent: 163 7 140 .	

Project/Site: Levy Nuclear Plant - Transmission	Lines, CREC Substation	_City/County:Citrus		_Sampling Date:_	10/29/09
Applicant/Owner: Progress Energy Florida, Inc	2.	State: FL		Sampling Point:	Al
Investigator(s): Stacy Rizzo, Tony Davanz					
Landform (hillslope, terrace, etc.): N	/A	Local relief (concave, convex, none): none Slope (%):			
Subregion (LRR or MLRA): LRR U	Lat: 28.9624	90 Long:82.6	95989	Da	itum: WGS84
Soil Map Unit Name: Quartzipsamments, 0 to					
Are climatic / hydrologic conditions on the site t	ypical for this time of year?	Yes	_ No	_ (If no, explain in	Remarks)
Are Vegetation, Soil,	or Hydrology				esNo
Are Vegetation, Soil,				n any answers in F	Remarks)
SUMMARY OF FINDINGS - Attach si	te map showing sampl	ing point locations, t	ransects, impo	rtant features	, etc.
Hydrophytic Vegetation Present?	Yes No		•		
Hydric Soil Present?	Yes/No	Is the Sampled Area w	vithin a Wetland?	Yes✓No	·
Wetland Hydrology Present?	YesNo				
Remarks:		•			
•					
L					
HYDROLOGY					
Wetland Hydrology Indicators:			Secondary Indica	tors (minimum of t	wo required)
Primary Indicators (minimum of one is required	check all that apply)		Cracks (B6)		
✓ Surface Water (A1)	Water-Stained Leaves	(B9)	Sparsely Ve	egetated Concave	Surface (B8)
High Water Table (A2)	Aquatic Fauna (B13)		Drainage Pa	atterns (B10)	
✓ Saturation (A3)	Marl Deposits (B15) (L	RR U)	Moss Trim L	ines (B16)	
Water Marks (B1)	Hydrogen Sulfide Odor	(C1)	Dry-Season	Water Table (C2)	
Sediment Deposits (B2)	Oxidized Rhizospheres	s on Living Roots (C3)	rrows (C8)		
Drift Deposits (B3)	Presence of Reduced I	Iron (C4)Saturation Visible on Aerial Imagery			agery (C9)
Algal Mat or Crust (B4)	Recent Iron Reduction	in Tilled Soils (C6)Geomorphic Position			
Iron Deposits (B5)	Thin Muck Surface (C7	7)Shallow Aquitard (D3)			
✓ Inundation Visible on Aerial Imagery (B7)Other (Explain in Rema	arks)	FAC Neutra	l Test (D5)	
Field Observations:	<i>,</i>	·	<u> </u>		
Surface Water Present?	Yes No	Depth (inches): 2	_		
Water Table Present?	Yes No]		
Saturation Present?	Yes✓ No		Wetland		
(includes capillary fringe)			Hydrology Present?	Yes ✓ No)
Describe Recorded Data (stream gauge, monit	oring well, aerial photos, previo	ous inspections), if available			
Pomorko:					
Remarks:					
1					
1					

VEGETATION - Use scientific nar	nes of plants				pling Point:	Al
T. O. J. (D. J.)	Absolute %	Dominant	Indicator	Dominance Test Worksheet:		
Tree Stratum (Plot size:)	Cover	Species?	Status	Number of Dominant Species		
<u>1.</u> 2.				That Are OBL, FACW, or FAC:	<u>2</u>	(A)
3.				Total Number of Dominant	•	(D)
4.				Species Across All Strata:	<u>2</u>	(B)
5.				Percent of Dominant Species	100.00	(A/B)
6.				That Are OBL, FACW, or FAC:	100.00	(, 00)
7.				Prevalance Index worksheet:		
	0	= Total Cov	er	Total % Cover of:	Multiply by:	
Sapling Stratum (Plot size:)				OBL species	x1=	_
1.				FACW species	x2=	
2.				FAC species	x3=	_
3.				FACU species	x4=	_
4.				UPL species	x5=	
5.				Column Totals:	(A)	– (B)
6.					_	_(_,
7.	-			Prevalance Index = B/A =		
7.		= Total Cov	. 	Hydrophytic Vegetation Indic	atore:	
Chrub Ctratum (Diat aire)	,	- Total Cov	5 1	1 ' ' '	ators.	
Shrub Stratum (Plot size:	?				_1	
1.	. 			Prevalence Index is ≤3.0		
2.				Problematic Hydrophytic	: Vegetation' (Exp	olain)
3. 4.	·	-		Indicators of hydric soil and we	stland hydrology n	ouet
5.				be present, unless disturbed or		iiuSt
6.			· 	Definitions of Vegetation Stra	·	
7.	· ———		-			
	0	= Total Cov	. er	Tree- Woody plants, excluding w	oody vines	
Herb Stratum (Plot size:	_	rotar oov	o,	approximately 20 ft (6m) or more		(7.6
Ludwigia peruviana	.) 50	yes	OBL	cm) or larger in diameter at breas	_	`
Cyperus spp.	20	yes	FACW	Sapling- Woody plants, excludin	a woodv vines.	
Ludwigia leptocarpa	10	no	OBL	approximately 20 ft (6m) or more		than 3
4. Setaria spp.	10	no	FAC	in. (7.6 cm) DBH.		
5. Aster subulatus	5	no	OBL	Shrub- Woody plants, excluding		
6. Diodia spp.	2	no	FAC	approximately 3 to 20 ft (1 to 6 m	=	
7.				Herb- All herbaceous (non-wood	• • • • • • • • • • • • • • • • • • • •	
8. 9.				herbaceous vines, regardless of plants, except woody vines, less		•
10.	· —			m) in height.	aran approximator	0 (.
11.	·			Woody vine- All woody vines, re	gardless of height.	
12.					gg	
	97	= Total Cov	er	1		
Woody Vine Stratum (Plot size:		. 5.61 504	- -			
1.						
2.						
3.						
4.				Hydrophytic		
5.				Vegetation Present? Yes	sNo	
	n	= Total Cov	er			

Adapted from U.S. Army Corps of Engineers Atlantic and Gulf Coastal Plain Region- Interim Version

Remarks: (If observed, list morphological adaptations below).

Percent cover estimates based on meandering survey of the broader community.

County/soil: Citrus- Quartzipsamments	
SOIL	Sampling Point:

JOIL								Outripling Folia:
Profile De	scription: (Describe t	o the de	pth needed to doc	ument t	he indicator o	r confirm the ab	sence of indicators.	.)
Depth	Matrix			Redox	k Features	*		
(inches)	Color (moist)	%	Color (moist)	%	Type1	Loc²	Texture	Remarks
0-6	10 YR 4/2	100						dark grayish brown sand
			10 YR 6/2; 10			•		
			YR 8/1; 10 YR				splotches and	
6-32	N 5/0; 10 YR 7/1	80	5/2	20	RM	M	pockets	gray and light gray sand
32-42	7.5 YR 5/8	80	5 YR 3/4	20	RM	- <u>M</u>	splotches	strong brown sand
42-60	10 YR 5/2	100	3 11(0/4		1300		- Spiotories	grayish brown sand
42-00	10 11372	-100						grayish brown sand
	Concentration, D=Deple	etion, RM	I=Reduced Matrix, (CS=Cove	ered or Coated	Sand Grains.	*Location: PL=Por	e Lining, M=Matrix.
	il Indicators:							Indicators for Problematic Hydric Soils 3:
Histo	(A1)			Poly	walue Below Sເ	ırface (S8) (LRF	₹ S, T, U)	1 cm Muck (a9) (LRR O)
Histic	Epidon (A2)			Thir	Dark Surface	(S9) (LRR S, T,	U)	2 cm Muck (A10) (LRR S)
Black	Histic (A3)			Loa	my Mucky Mine	ral (F1) (LRR O)	Reduced Vertic (F18) (outside MLRA 150A, B)
Hydro	gen Sulfide (A4)			Loa	my Gleyed Mat	rix (F2)		Piedmont Floodplain Soils (F19) (LRR P, S, T)
	fied Layers (A5)				leted Matrix (F3			Anomalous Bright Loamy Soils (F20)
Orga	nic Bodies (À6) (LRR P	, T, U)		Red	lox Dark Surfac	é (F6)		(MLRA 153B)
	Mucky Mineral (A7) (LF	-	١		leted Dark Surf			Red Parent Material (TF2)
			,		lox Depressions			Very Shallow Dark Surface (TF12) (LRR T, U)
1	Presence (A8) (LRR L	")			•			
1 cm	Muck (A9) (LRR P,T)				I (F10) (LRR U			Other (Explain in Remarks)
1—	ted Below Dark Surfac	e (A11)			•	11) (MLRA 151	•	
Thick	Dark Surface (A12)				-	asses (F12) (LR	· · · ·	³ Indicators of hydrophytic vegetation and wetland
Coas	t Prairie Redox (A16) (I	VILRA 15	0A)	Uml	bric Surface (F	13) (LRR P, T, U))	hydrology must be present, unless disturbed or
Sand	y Mucky Mineral (S1) (L	RR O, S)	Delt	a Orchric (F17)	(MLRA 151)		problematic.
Sand	y Gleyed Matrix (S4)		•	Red	luced Vertic (F1	8) (MLRA 150A	. 150B)	
	Redox (S5)			—— Pied	lmont Floodplai	in Soils (F19) (M	LRA 149A)	
	ed Matrix (S6)) (MLRA 149A, 1530	C. 153D)
I	` '				· ·	, ,	, ,	•
	Surface (S7) (LRR P, S e Layer (If observed):						1	
Restrictiv	Type:							
	Depth (inches):						Hydric Soil Prese	nt? Yes ✓ No .
Damada	Deptil (iliches).						Invaric 2011 Flese	itt fes
Remarks:								
i								
I								
ı								
I								
1								
1								
1								
1								
1								

Assessment Area: Crystal River Energy Complex Substation Expansion

APPROVED JURISDICTIONAL DETERMINATION FORM U.S. Army Corps of Engineers

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SE	CTION	ŀ	RA	CKGROUND	INFORMATION	Ī

- A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD):
- B. DISTRICT OFFICE, FILE NAME, AND NUMBER:

\sim	PDO IFCT I	OCATION	AND BACKCROUND	INFORMATION

State: Florida County/parish/borough: Citrus City: Crystal River
Center coordinates of site (lat/long in degree decimal format): Lat. 28.962214° N. Long. -82.698695° W.

Universal Transverse Mercator:

Name of nearest waterbody: Crystal Bay

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Crystal Bay

Name of watershed or Hydrologic Unit Code (HUC): Direct Runoff to Gulf/03100207

Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.

Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):

Office (Desk) Determination. Date: November 30, 2009

Field Determination. Date(s): October 28-29, 2009

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION.

There Are no	"navigable waters of	the U.S." within	Rivers and Harbors	Act (RHA) jurisdiction	(as defined by 33	CFR part 329) in the
review area. [/	Reauired1					

Waters subject to the ebb and flow of the tide.

Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain:

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.

There are and are not "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

1. Waters of the U.S.

Я.	Indicate presence of	f waters of U.S.	in review area	(check all that apply	v): ˈ

TNWs, including territorial seas

Wetlands adjacent to TNWs

Relatively permanent waters² (RPWs) that flow directly or indirectly into TNWs (Wetland AF)

Non-RPWs that flow directly or indirectly into TNWs

Wetlands directly abutting RPWs that flow directly or indirectly into TNWs

Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs

Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs

Impoundments of jurisdictional waters

Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area:

Non-wetland waters: 230 linear feet: 10 width (ft) and/or 0.14 acres.

Wetlands: acres.

c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual

Elevation of established OHWM (if known):

2. Non-regulated waters/wetlands (check if applicable):³

Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: Wetlands AC, AD, AE, AG, AH, and AI are isolated wetlands that are not hydrologically connected to TNWs or RPWs that flow into TNWs, and are therefore not jurisdictional.

¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below.

² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months).

Supporting documentation is presented in Section III.F.

Assessment Area: Crystal River Energy Complex Substation Expansion

SECTION III: CWA ANALYSIS

TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

TNW

Identify TNW:

Summarize rationale supporting determination:

Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent":

CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

(i) General Area Conditions:

Watershed size: 31,476 acres Drainage area: 31,476 acres Average annual rainfall: 52 inches Average annual snowfall: 0 inches

'ny	sical Characteristics:
a)	Relationship with TNW:
•	Tributary flows directly into TNW.
	Tributary flows through 2 tributaries before entering TNW.
	Decided waters and 1/2 1200 circum miles from TNW
	Project waters are 1 (or less) river miles from TNW.
	Project waters are 1 (or less) river miles from RPW.
	Project waters are 1 (or less) aerial (straight) miles from TNW.
	Project waters are 1 (or less) aerial (straight) miles from RPW.
	Project waters cross or serve as state boundaries. Explain: N/A.

A Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.

Assessment Area: Crystal River Energy Complex Substation Expansion

	is a TNW (portion of Crystal Bay). Tributary stream order, if known:
	General Tributary Characteristics (check all that apply): Tributary is: Natural Artificial (man-made). Explain: Wetland AF is a man-made ditch that drains the switchyard lots during high rain events. Manipulated (man-altered). Explain:
	Tributary properties with respect to top of bank (estimate): Average width: 10 feet Average depth: 3 feet Average side slopes: Vertical (1:1 or less). Primary tributary substrate composition (check all that apply): Silts Sands Concrete Cobbles Gravel Muck Bedrock Vegetation. Type/% cover: Herbaceous/90% Other. Explain:
	Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: Stable - no erosion evident. Presence of run/riffle/pool complexes. Explain: N/A. Tributary geometry: Relatively straight Tributary gradient (approximate average slope): 2 %
(c)	Flow: Tributary provides for: Intermiftent but not seasonal flow Estimate average number of flow events in review area/year: 11-20 Describe flow regime: Intermittent based on high rain events. Other information on duration and volume: Surface flow is: Confined. Characteristics: Surface flow is contained within the banks of the ditch.
	Subsurface flow: Unknown. Explain findings: Dye (or other) test performed:
·	Tributary has (check all that apply): Bed and banks
	If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply): High Tide Line indicated by: oil or scum line along shore objects fine shell or debris deposits (foreshore) physical markings/characteristics tidal gauges other (list): Mean High Water Mark indicated by: survey to available datum; physical markings; vegetation lines/changes in vegetation types.

Identify flow route to TNW⁵: Wetland AF is a ditch with intermittent flow that is hydrologically connected by a culvert to a second perennial ditch to the south. The perennial ditch flows directly into the discharge canal, which

⁵ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.

⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.

⁷Ibid.

Project: <u>Progress Energy Florida, Inc. Levy Nuclear Plant – Transmission Lines</u>
Assessment Area: <u>Crystal River Energy Complex Substation Expansion</u>

	(iii)	Chemical Characteristics: Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc. Explain: Unknown.).
		Identify specific pollutants, if known:	
	(iv)	Biological Characteristics. Channel supports (check all that apply): Riparian corridor. Characteristics (type, average width): Wetland fringe. Characteristics: Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings:	
2.	Cha	aracteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW	
	(i)	Physical Characteristics: (a) General Wetland Characteristics: Properties: Wetland size: acres Wetland type. Explain:. Wetland quality. Explain:. Project wetlands cross or serve as state boundaries. Explain:	
		(b) General Flow Relationship with Non-TNW: Flow is: Pick List. Explain: Surface flow is: Pick List	
		Characteristics: Subsurface flow: Pick List. Explain findings: Dye (or other) test performed:	
		(c) Wetland Adjacency Determination with Non-TNW: Directly abutting Not directly abutting Discrete wetland hydrologic connection. Explain: Ecological connection. Explain: Separated by berm/barrier. Explain:	
		(d) Proximity (Relationship) to TNW Project wetlands are Pick List river miles from TNW. Project waters are Pick List aerial (straight) miles from TNW. Flow is from: Pick List. Estimate approximate location of wetland as within the Pick List floodplain.	
	(ii)	Chemical Characteristics: Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: Identify specific pollutants, if known:	
	(iii	i) Biological Characteristics. Wetland supports (check all that apply): Riparian buffer. Characteristics (type, average width): Vegetation type/percent cover. Explain:. Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings:	
3.	Cha	aracteristics of all wetlands adjacent to the tributary (if any)	

All wetland(s) being considered in the cumulative analysis: **Pick List** Approximately () acres in total are being considered in the cumulative analysis.

Assessment Area: Crystal River Energy Complex Substation Expansion

For each wetland, specify the following:

Directly abuts? (Y/N)

Size (in acres)

Directly abuts? (Y/N)

Size (in acres)

Summarize overall biological, chemical and physical functions being performed:

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the *Rapanos* Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

- 1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D:
- 2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: Due to the distance from the Withlacoochee River and because the tributaries are intermittent, it is not expected that the tributaries or the wetlands that abut the tributaries within the review area have a significant effect on the chemical, physical, or biological integrity of the Withlacoochee River.
- 3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D.	DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL
	THAT APPLY):

1.	TNWs and	Adjacent Wetlands.	Check all that apply	y and provide size estimates in review area:	
	TNWs:	linear feet	width (ft), Or,	acres.	
	Wetland	s adjacent to TNWs:	acres.		

2. RPWs that flow directly or indirectly into TNWs.

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial:
- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: At the time of the site visit, there was no standing or flowing water in Wetland AF, but there was hydrophytic vegetation present, indicating that the ditch receives water at least seasonally/intermittently so that it is able to support wetland vegetation.

Assessment Area: Crystal River Energy Complex Substation Expansion Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: 230 linear feet 10 width (ft). Other non-wetland waters: acres. Identify type(s) of waters: Non-RPWs⁸ that flow directly or indirectly into TNWs. Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C. Provide estimates for jurisdictional waters within the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: Identify type(s) of waters: Wetlands directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:. Provide acreage estimates for jurisdictional wetlands in the review area: acres. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C. Provide acreage estimates for jurisdictional wetlands in the review area: acres. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs. Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. Provide estimates for jurisdictional wetlands in the review area: 3.68 acres. 7. Impoundments of jurisdictional waters.9 As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional. Demonstrate that impoundment was created from "waters of the U.S.," or Demonstrate that water meets the criteria for one of the categories presented above (1-6), or Demonstrate that water is isolated with a nexus to commerce (see E below). E. ISOLATED INTERSTATE OR INTRA-STATE WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY): 10 which are or could be used by interstate or foreign travelers for recreational or other purposes. from which fish or shellfish are or could be taken and sold in interstate or foreign commerce. which are or could be used for industrial purposes by industries in interstate commerce. Interstate isolated waters. Explain:

Project: Progress Energy Florida, Inc. Levy Nuclear Plant - Transmission Lines

⁸See Footnote # 3.

⁹ To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.

¹⁰ Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.

Other factors. Explain: Identify water body and summarize rationale supporting determination: Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: Identify type(s) of waters: Wetlands: acres. F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY): If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements. Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce. Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR). Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain: Other: (explain, if not covered above): Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply): linear feet width (ft). Non-wetland waters (i.e., rivers, streams): Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet, width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: 5.2 acres (Wetlands AC, AD, AE, AG, AH, and AI). **SECTION IV: DATA SOURCES.** A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below): Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Data sheets prepared/submitted by or on behalf of the applicant/consultant. Office concurs with data sheets/delineation report. Office does not concur with data sheets/delineation report. Data sheets prepared by the Corps: Corps navigable waters' study: U.S. Geological Survey Hydrologic Atlas: USGS 2006; www.fgdl.org. USGS NHD data. ☑ USGS 8 and 12 digit HUC maps. U.S. Geological Survey map(s). Cite scale & quad name:. USDA Natural Resources Conservation Service Soil Survey. Citation: National wetlands inventory map(s). Cite name: USFWS, HRC 2008; www.fgdl.org. State/Local wetland inventory map(s): FEMA/FIRM maps: 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929) Photographs: Aerial (Name & Date): AerialExpress 2008. or Other (Name & Date): Previous determination(s). File no. and date of response letter: Applicable/supporting case law: Applicable/supporting scientific literature: Other information (please specify):

Project: Progress Energy Florida, Inc. Levy Nuclear Plant – Transmission Lines
Assessment Area: Crystal River Energy Complex Substation Expansion

Project: <u>Progress Energy Florida, Inc. Levy Nuclear Plant – Transmission Lines</u>
Assessment Area: <u>Crystal River Energy Complex Substation Expansion</u>

B. ADDITIONAL COMMENTS TO SUPPORT JD:

PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name		Application Number			Assessment Area Name or Number			
Progress Energy Florida, Inc./Levy Transmission Lines/Crystal River I Substation Expansio	Energy Complex		,		FLUCFCS 511 - Wetland AF			
FLUCCs code	Further classificat	ion (optional)		Impact	Impact or Mitigation Site? Assessment A			
511 - Ditches			Impact			0.14 acres		
Basin/Watershed Name/Number Affe	ected Waterbody (Class	;)	Special Classification	ON (i.e.OF	W, AP, other local/state/federa	I designation of importance)		
Direct Runoff to Gulf/03100207					None			
Geographic relationship to and hydrolo	ogic connection with v	wetlands, other si	urface water, upla	nds				
Located within the Crystal River Energy Complex property, west of the existing substation. Hydrologically connected to ditch to the south by a culvert, which flows to the discharge canal and ultimately the Gulf of Mexico.								
Assessment area description								
Wetland AF is a ditch located west of the existing switchyard, and it drains stormwater from the switchyard and adjacent parking lot. Vegetation consists of herbaceous species including flatsedges (<i>Cyperus</i> spp.), bushy bluestem (<i>Andropogon glomeratus</i>), primrosewillow (<i>Ludwigia</i> spp.), bristlegrass (<i>Setaria</i> spp.), fingergrass (<i>Eustachys</i> spp.), lateflowering thoroughwort (<i>Eupatorum serotinum</i>), and jointvetch (<i>Aeschynomene</i> spp.).								
Significant nearby features			Uniqueness (considering the relative rarity in relation to the regional landscape.)					
Crystal River Energy C	omplex, Gulf of Mexic	co	Not unique					
Functions			Mitigation for previous permit/other historic use					
Water storage, foraging	habitat for wading bir	rds	N/A					
Anticipated Wildlife Utilization Based of that are representative of the assessm be found)			Anticipated Utilization by Listed Species (List species, their legal classification (E, T, SSC), type of use, and intensity of use of the assessment area)					
Wading birds, various amphibians and herpetofauna			Potential foraging by wading birds such as white ibis (SSC), little blue heron (SSC), snowy egret (SSC), tricolored heron (SSC), sandhill crane (T), limpkin (SSC), wood stork (E).					
Observed Evidence of Wildlife Utilizati	ion (List species direc	ctly observed, or	I other signs such a	as track	s, droppings, casings,	nests, etc.):		
none								
Additional relevant factors:								
Assessment conducted by:			Assessment date	e(s):				
S Rizzo T Davanzo			10/28/2009					

PART II – Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

		•					
Site/Project Name Progress Energy Florida, Inc./Levy Nuclear Plant -			Application Number		Assessment Area Name or Number		
Transmission Lines/Crystal		Energy Complex Substation			FLUCFC	S 511 - Wetland A	F
Impact or Mitigation			Assessment conducted by:		Assessment date	e :	
Impact - Fill			S. Rizzo, T. Davan	zo		10/28/2009	
Scoring Guidance	Г	Optimal (10)	Moderate(7)	Mi	nimal (4)	Not Present	(0)
The scoring of each	Ī	Condition is optimal and	Condition is less than				
indicator is based on what would be suitable for the		optimal, but sufficient to maintain most		vel of support of /surface water	Condition is insuf provide wetland		
type of wetland or surface		wetland/surface water functions	wetland/surface	fu	ınctions	water functi	ons
water assessed	L	Tariottorio	waterfunctions				
Location and landscape support Woo pres or current 5 Location and landscape support lindividual parameter scores: within plant; b) Invasive exotidue to limitations imposed by plant is a barrier; e) Impacts to loss; f) Hydrologically connect Dependency of downstream at loss; f) Hydrologically connect Hydrologically connect Hydrologically connect Hydrologically connect Hydrologically connect Hydrologically connect Hydrologically connect Hydrologically connect Hydrologically connec			a) Support to wildlife listed in ic species = 10, none observed plant; d) functions that bene to wildlife listed in Part 1 by octed areas downstream of ass	n Part 1 by o ed; c) Wildlife fit fish & wild outside land u sessment are	utside habitats = 4 e access to and fr life downstream-d uses = 4, reduced ea = 8, connected	4, reduced due to I om outside = 4, de distance or barriers due to surrounding to ditch to the sou	creased = 4, g habitat
			scores: a) water levels and flut with expected; c) soil moisturence of fire history = N/A; f) veduced by occasional mowing pecific hydrological requirement to the stolerant of and associated direct observation of water q	ows = 4, alter ure = 4, drier regetation co g; g) hydrolog ents = 4, dry with water q uality = N/A,	red due to surrour than expected; d; mmunity zonation gic stress on vege at the time of site uality degradation no water present;	nding plant; b) wate) soil erosion or de n = 6, mostly consise etation = 8, not app e visit, so no anima n = 4, community g	er level position stent witl parent; h I species enerally
The vegetative community structure is dominated by herbaceous species, and is reduced due to some uplative egetation encroachment. Individual parameter scores: a) plant community species in the canopy, shrub, or ground stratum = 6, some upland vegetation encroachment; b) invasive exotics or other invasive plant species. The vegetative community species in the canopy, shrub, or ground stratum = 6, some upland vegetation encroachment; b) invasive exotics or other invasive plant species. The vegetative community structure is dominated by herbaceous species, and is reduced due to some uplative exotics or other invasive plant species. The vegetative community structure is dominated by herbaceous species, and is reduced due to some uplative exotics. The vegetative community structure is dominated by herbaceous species, and is reduced due to some uplative exotics. The vegetative community structure is dominated by herbaceous species, and is reduced due to some uplative exotics. The vegetative community structure is dominated by herbaceous species, and is reduced due to some uplative exotics. The vegetative community structure is dominated by herbaceous species, and is reduced due to some uplative exotics or other invasive plant species in the canopy, shrub, or ground stratum = 6, some uplant community species in the canopy, shrub, or ground stratum = 6, some uplant community species in the canopy, shrub, or ground stratum = 6, some uplant community species in the canopy, shrub, or ground stratum = 6, some uplant community species in the canopy, shrub, or ground stratum = 6, some uplant community species in the canopy, shrub, or ground stratum = 6, some uplant community species in the canopy, shrub, or ground stratum = 6, some uplant community species in the canopy, shrub, or ground stratum = 6, some uplant community species in the canopy, shrub, or ground stratum = 6, some uplant community species in the canopy, shrub, or ground stratum = 6, some uplant community species in the canopy, shrub, or ground stratum = 6, so						or ecies = educed by of g) land	
Score = sum of above scores/ uplands, divide by 20) current or w/o pres 0.53	/30 (if with 0	If preservation as mitig Preservation adjustment Adjusted mitigation del	nt factor =		For impact asses delta x acres = -0		
		If mitigation		<u> </u>	or mitigation acco	ocement cross]
Delta = [with-current]		Time lag (t-factor) =			or mitigation asse	essment areas	
-0.53		Risk factor =		RFG	= delta/(t-factor x	risk) =	

PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name	Application Numbe	mber Assessment Area Name or Number			or Number			
Progress Energy Florida, Inc./Levy Nuclear Plant - Transmission Lines/Crystal River Energy Complex Substation Expansion			FLUCFCS 534 - We		34 - Wetland Al			
FLUCCs code	Further classifica	tion (optional)		Impac	Assessment Area Size			
534 - Reservoirs < 10 acres					Impact 0.81 acr			
Basin/Watershed Name/Number	Affected Waterbody (Clas	is)	Special Classification	on (i.e.C	DFW, AP, other local/state/federa	l designation of importance)		
Direct Runoff to Gulf/03100207			None					
Geographic relationship to and hyd	rologic connection with	wetlands, other s	urface water, upla	nds				
Located within the Crystal River En or surface waters.	Located within the Crystal River Energy Complex property, north and west of the existing substation. No hydrologic connection to other wetlands or surface waters.							
Assessment area description								
Wetland Al is an isolated retention area that retains runoff water from the adjacent car wash and roadways. Vegetation consists of herbaceous species including Peruvian primrosewillow (<i>Ludwigia peruviana</i>), anglestem primrosewillow (<i>Ludwigia leptocarpa</i>), flatsedges (<i>Cyperus</i> spp.), bristlegrass (<i>Setaria</i> spp.), annual saltmarsh aster (<i>Symphyotrichum subulatum</i>), Virginia buttonweed (<i>Diodia virginiana</i>), sawgrass (<i>Cladium jamaicense</i>), spotflower (<i>Acmella</i> spp.), marsh mermaidweed (<i>Proserpinaca palustris</i>), and lizard's tail (<i>Saururus cernuus</i>).								
Significant nearby features			Uniqueness (considering the relative rarity in relation to the regional landscape.)					
Crystal River Energy Complex, Gulf of Mexico			Not unique					
Functions	Functions			vious	permit/other historic use	9		
Water storage, forag	ing habitat for wading b	irds	N/A					
Anticipated Wildlife Utilization Base that are representative of the assesbe found)			Anticipated Utilization by Listed Species (List species, their legal classification (E, T, SSC), type of use, and intensity of use of the assessment area)					
Wading birds, various amphibians and herpetofauna			Potential foraging by wading birds such as white ibis (SSC), little blue heron (SSC), snowy egret (SSC), tricolored heron (SSC), sandhill crane (T), limpkin (SSC), wood stork (E).					
Observed Evidence of Wildlife Utili:	zation (List species dire	ctly observed, or	other signs such a	s trac	ks, droppings, casings,	nests, etc.):		
	none							
Additional relevant factors:								
Assessment conducted by:			Assessment date	e(s):				
S. Rizzo, T. Davanzo			10/29/2009					

PART II – Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name		Application Number	Assessment Area Name or Number			
Progress Energy Florida, Ir Transmission Lines/Crystal River Expansior	Energy Complex Substation			FLUCFC	S 534 - Wetland A	Al
Impact or Mitigation		Assessment conducted by:		Assessment date) ;	
Impact -	- Fill	S. Rizzo, T. Davanz	20	10/2	8/09, 10/29/09	
	Optimal (10)				·	
Scoring Guidance The scoring of each	Moderate(7) Condition is less than	Miı	nimal (4)	Not Presen	t (0)	
indicator is based on what	optimal, but sufficient to	Minimal le	vel of support of	Condition is insu	fficient to	
would be suitable for the	fully supports wetland/surface water	maintain most		surface water	provide wetland	
type of wetland or surface water assessed	functions	wetland/surface waterfunctions	fu	inctions	water functi	ions
water assessed	wateriunctions					
.500(6)(a) Location and Landscape Support w/o pres or current with	Individual parameter scores: within plant; b) Invasive exot outside = 4, decreased due t distance or barriers = 4, area to surrounding habitat loss; f	port variable is reduced due to a) Support to wildlife listed in ic species = 4, Peruvian primo o limitations imposed by plant is isolated; e) Impacts to wildli) Hydrologically connected are areas on assessment area = 4	Part 1 by or osewillow do ; d) functions fe listed in Feas downstre	utside habitats = 4 ominant; c) Wildlife s that benefit fish Part 1 by outside la eam of assessmer	4, reduced due to be access to and from the wildlife downstrough the and uses = 4, redunt area = 4, isolates	om eam- uced due
.500(6)(b)Water Environment (n/a for uplands) w/o pres or current with	e is reduced due to isolation from existing plant. Individual parain revel indicators = 4, not consistent with expected; if the hydrological requirements eles tolerant of and associated direct observation of water quave, wave energy, currents and existing the hydrological requirements.	meter score: sistent with e n; e) evidenc g) hydrologic = 4, potentia with water q uality = N/A,	s: a) water levels expected; c) soil no ce of fire history = c stress on vegeta I wading bird habi uality degradation no water present;	and flows = 4, alto moisture = 4, drier N/A; f) vegetation ation = 4, apparentitat, but no wading n = 4, community g	ered due than t; h) use birds generally	
.500(6)(c)Community structure 1. Vegetation and/or 2. Benthic Community	tructure is dominated by herba al parameter scores: a) plant ome undesirable wetland spec generation and recruitment = 4 npacted by application of herb d cavity = N/A; f) plant condition at practices = 4, impacted by a ept for Wetland AC; i) siltation	community sties; b) invasibles; b) invasibles; impacted to icides and non = 4, impacted to object to objec	species in the can sive exotics or oth by application of h nowing; e) density cted by applicatio f herbicides and n	nopy, shrub, or gro ner invasive plant a nerbicides and mon and quality of coan of herbicides an nowing; h) topogra	ound species = wing; d) arse d aphic	
current with	= N/A.	. , , =====	5 5	3		-
4 0						
	3		<u> </u>			,
Score = sum of above scores/30 (if uplands, divide by 20) current	If preservation as mitig Preservation adjustme			For impact assess		
or w/o pres with 0.40 0	Adjusted mitigation del	ta =	rL =	delta x acres = -0	.40 X 0.81 = 0.32	
<u> </u>	J 					_
	If mitigation		F	or mitigation asse	ssment areas]
Delta = [with-current]	Time lag (t-factor) =					
-0.40	Risk factor =		RFG	= delta/(t-factor x	risk) =	

PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name		Application Number			Assessment Area Name or Number		
Progress Energy Florida, Inc./Levy Transmission Lines/Crystal River E Substation Expansion			FLUCFCS 630, 643 - Wetlands AD and FLUCFCS 630 - Wetland AE				
FLUCCs code	Further classifica	ition (optional)	Impact or Mitigation Site? Assessmen			Assessment Area Size	
630 - Mixed Forested Wetland; 643 - Wet Prairie				Impact AD = 2.38 AE = 0.82		3.86 acres (Wetland AD = 2.35; Wetland AE = 0.82; Wetland AG = 0.69)	
Basin/Watershed Name/Number Affect	cted Waterbody (Clas	ss)	Special Classification (i.e.OFW, AP, other local/state/federal designation of importance)				
Direct Runoff to Gulf/03100207					None		
Geographic relationship to and hydrolog	gic connection with	wetlands, other si	urface water, upla	nds			
Located within the Crystal River Energy waters.	Complex property,	, north of the exist	ing substation. No	o hydro	ologic connection to oth	er wetlands or surface	
Assessment area description							
Wetlands AD and AE are isolated mixed forested wetlands bisected by a dirt road. Wetlands AD and AG have small areas of wet prairie fringe. All wetlands have been impacted by either herbicide application, mowing, dumping, or rutting by tires. Dominant canopy species included slash pine (<i>Pinus elliotti</i>), Carolina ash (<i>Fraxinus caroliniana</i>), cabbage palm (<i>Sabal palmetto</i>), sweetgum (<i>Liquidambar styraciflua</i>), and red maple (<i>Acer rubrum</i>). Dominant herbaceous species included torpedograss (<i>Panicum repens</i>), sawgrass (<i>Cladium jamaicense</i>), flatsedges (<i>Cyperus</i> spp.), hurricanegrass (<i>Fimbristylis cymosa</i>), spadeleaf (<i>Centella asiatica</i>), and starrush whitetop (<i>Rhynchospora colorata</i>).							
Significant nearby features			Uniqueness (considering the relative rarity in relation to the regional landscape.)				
Crystal River Energy Co	mplex, Gulf of Mexi	ico	Not unique				
Functions		• • • •	Mitigation for pre	vious p	permit/other historic use	:	
Water storage, foraging h	nabitat for wading b	irds	N/A				
Anticipated Wildlife Utilization Based or that are representative of the assessment be found)			Anticipated Utilization by Listed Species (List species, their legal classification (E, T, SSC), type of use, and intensity of use of the assessment area)				
Wading birds, various ampl	nibians and herpeto	ofauna	Potential foraging by wading birds such as white ibis (SSC), little blue heron (SSC), snowy egret (SSC), tricolored heron (SSC), sandhill crane (T), limpkin (SSC), wood stork (E).				
Observed Evidence of Wildlife Utilization	n (List species dire	ectly observed, or o	ther signs such a	s track	ks, droppings, casings,	nests, etc.):	
black vulture, red-winged blackbird							
Additional relevant factors:							
Assessment conducted by:			Assessment date	a/e):			
S. Rizzo, T. Davanzo			10/28/2009	- (-).			

PART II – Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name	Application Number	Assess	Assessment Area Name or Number		
Progress Energy Florida, Inc./Levy Nuclear Plant - Transmission Lines/Crystal River Energy Complex Substation Expansion			FLUCFCS 630, 643 - Wetlands AD and A FLUCFCS 630 - Wetland AE		
Impact or Mitigation	Assessment conducted by:	Assess	ment date:		
Impact - Fill	S. Rizzo, T. Davan		10/28/2009		
Scoring Guidance Optimal (10)	Moderate(7)	Minimal (4	Not Present	: (0)	
The scoring of each indicator is based on what would be suitable for the type of wetland or surface water assessed Condition is optimal and fully supports wetland/surface water functions	Condition is less than optimal, but sufficient to maintain most wetland/surface waterfunctions	Minimal level of si wetland/surface functions	upport of Condition is insur-	fficient to /surface	
Landscape Support Complex. Individual parame to location within plant; b) In outside = 4, decreased due distance or barriers = 4, are due to surrounding habitat lo	port variable is reduced due teter scores: a) Support to wild vasive exotic species = 4, tory to limitations imposed by plan as isolated; e) Impacts to wild bas; f) Hydrologically connected am areas on assessment area	llife listed in Part 1 I pedograss dominan t; d) functions that t life listed in Part 1 b ed areas downstreal	oy outside habitats = 4, redu t; c) Wildlife access to and f benefit fish & wildlife downst y outside land uses = 4, red n of assessment area = 4, is	roed due rom ream- uced	
.500(6)(b)Water Environment (n/a for uplands) (n/a	e is reduced due to isolation f existing plant. Individual para water level indicators = 4, not on or deposition = 8, minimal e est areas consistent with expe- species with specific hydrologi evegetative species tolerant of ts of typical species; j) direct of N/A; I) water depth wave, wa	ameter scores: a) w consistent with exp crosion; e) evidence cted; g) hydrologic s cal requirements = f and associated wi observation of water	rater levels and flows = 4, al sected; c) soil moisture = 4, of of fire history = N/A; f) veges stress on vegetation = 8, not 4, potential wading bird habit th water quality degradation quality = N/A, no water pres	tered drier etation tat, but = 8, sent; K)	
·				•	
.500(6)(c)Community structure The vegetative community sapplication of herbicides. In ground stratum = 8, dominar species = 6, moderate cove species = 6, moderate cove	structure is slightly reduced du dividual parameter scores: a) ted by mostly desirable wetlan rage; c) regeneration and recr age & size distribution = 8. soi	plant community sp d species; b) invas uitment = 8, some a	ecies in the canopy, shrub, live exotics or other invasive areas impacted by application	nd or e plant en of	
.500(6)(c)Community structure The vegetative community sapplication of herbicides. In ground stratum = 8, dominal species = 6, moderate cove herbicides and mowing; d) a mowing; e) density and qual areas impacted by application of herbicides and mowing.	dividual parameter scores: a) ted by mostly desirable wetlan	plant community sp d species, b) invas uitment = 8, some a ne areas impacted ag, den, and cavity g) land managemer ographic features =	necies in the canopy, shrub, vive exotics or other invasive areas impacted by application by application of herbicides = 8; f) plant condition = 8, s at practices = 8, some areas	nd or plant on of and ome	
.500(6)(c)Community structure The vegetative community sapplication of herbicides. In ground stratum = 8, dominar species = 6, moderate cove herbicides and mowing; d) amowing; e) density and qual areas impacted by application of home of the current with siltation or algal growth in su	dividual parameter scores: a) ted by mostly desirable wetlan rage; c) regeneration and recr age & size distribution = 8, so ity of coarse woody debris, sn on of herbicides and mowing; erbicides and mowing; h) topo ubmerged aquatic plant comm gation, ent factor =	plant community spid species; b) invasivitment = 8, some areas impacted ag, den, and cavity g) land managemer ographic features = unities = N/A. For imp. FL = delta x a (Wetland AD (Wetland AE)	ecies in the canopy, shrub, live exotics or other invasive areas impacted by application by application of herbicides = 8; f) plant condition = 8, s at practices = 8, some areas 8, mostly consistent with expanding the strength of the stre	nd or e plant en of and ome	
The vegetative community structure 1. Vegetation and/or 2. Benthic Community w/o pres or current 7 Score = sum of above scores/30 (if uplands, divide by 20) current or w/o pres w/o pres 1. Vegetation and/or 2. Benthic Community with 7 O The vegetative community species = 6, moderate cove herbicides and mowing; d) a mowing; e) density and qual areas impacted by application of h siltation or algal growth in su If preservation as mitigation de If mitigation If mitigation	dividual parameter scores: a) ted by mostly desirable wetlan rage; c) regeneration and recr age & size distribution = 8, so ity of coarse woody debris, sn on of herbicides and mowing; erbicides and mowing; h) topo ubmerged aquatic plant comm gation, ent factor =	plant community spid species; b) invasivitment = 8, some ame areas impacted ag, den, and cavity g) land managemer graphic features = unities = N/A. For impact	ecies in the canopy, shrub, live exotics or other invasive areas impacted by application by application of herbicides = 8; f) plant condition = 8, s at practices = 8, some areas 8, mostly consistent with expanding the strength of the stre	nd or e plant en of and ome	
The vegetative community structure 1. Vegetation and/or 2. Benthic Community Wo pres or current 7 0 Score = sum of above scores/30 (if uplands, divide by 20) current or w/o pres with or w/o pres 0.53 0 The vegetative community sapplication of herbicides. In ground stratum = 8, dominat species = 6, moderate cove herbicides and mowing; d) amowing; e) density and qual areas impacted by application of h siltation or algal growth in su If preservation as mitigation de Adjusted mitigation de	dividual parameter scores: a) ted by mostly desirable wetlan rage; c) regeneration and recr age & size distribution = 8, so ity of coarse woody debris, sn on of herbicides and mowing; erbicides and mowing; h) topo ubmerged aquatic plant comm gation, ent factor =	plant community spid species; b) invasivitment = 8, some areas impacted ag, den, and cavity g) land managemer graphic features = unities = N/A. For impact For impact Full the content Full the cont	ecies in the canopy, shrub, live exotics or other invasive areas impacted by application by application of herbicides = 8; f) plant condition = 8, s at practices = 8, some areas 8, mostly consistent with expanding the same areas acres = -0.53 x 2.35 = 1.34); -0.53 x 0.82 = 0.43); -0.53 x 0.69 = 0.37); total of 3.86 acres and	nd or e plant on of and ome	

PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name		Application Number			Assessment Area Name or Number			
Progress Energy Florida, Inc./Levy Transmission Lines/Crystal River E Substation Expansion	nergy Complex			FLUCFCS 641 - Wetlands AC and A				
FLUCCs code	Further classifica	ation (optional)		Impact or Mitigation Site? Assessment Area				
641 - Freshwater Marshes	641 - Freshwater Marshes				Impact	0.53 acres (Wetland AC = 0.09; Wetland AH = 0.44)		
Basin/Watershed Name/Number Affected Waterbody (Class)			Special Classification (i.e.OFW, AP, other local/state/federal designation of importance)					
Direct Runoff to Gulf/03100207 None								
Geographic relationship to and hydrolog	gic connection with	wetlands, other s	urface water, upla	ınds				
Located within the Crystal River Energy waters.	Located within the Crystal River Energy Complex property, north of the existing substation. No hydrologic connection to other wetlands or surface waters.							
Assessment area description								
Wetland AC is an isolated depressional freshwater marsh sprayed with herbicides, and Wetland AH is an isolated stormwater retention area that retains water from surrounding parking lots. Vegetation consists of herbaceous species including torpedograss (<i>Panicum repens</i>), sawgrass (<i>Cladium jamaicense</i>), flatsedges (<i>Cyperus</i> spp.), creeping primrosewillow (<i>Ludwigia repens</i>), manyflower marshpennywort (<i>Hydrocotyle umbellata</i>), Virginia buttonweed (<i>Diodia virginiana</i>), ticktrefoil (<i>Desmodium</i> spp.), bedstraw (<i>Galium</i> spp.), and smartweed (<i>Polygonum</i> spp.).								
Significant nearby features			Uniqueness (considering the relative rarity in relation to the regional landscape.)					
Crystal River Energy Complex, Gulf of Mexico Functions			Not unique					
			Mitigation for previous permit/other historic use					
Water storage, foraging t	nabitat for wading b	pirds	N/A					
Anticipated Wildlife Utilization Based or that are representative of the assessme be found)			Anticipated Utilization by Listed Species (List species, their legal classification (E, T, SSC), type of use, and intensity of use of the assessment area)					
Wading birds, various ampl	Wading birds, various amphibians and herpetofauna			Potential foraging by wading birds such as white ibis (SSC), little blue heron (SSC), snowy egret (SSC), tricolored heron (SSC), sandhill crane (T), limpkin (SSC), wood stork (E).				
Observed Evidence of Wildlife Utilization	on (List species dire	ectly observed, or	other signs such a	as trac	ks, droppings, casings,	nests, etc.):		
chipping sparrow								
Additional relevant factors:								
Assessment conducted by:			Assessment date	e(s):				
S. Rizzo, T. Davanzo			10/28/09, 10/29/0	09				

PART II – Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

١.							
Site/Project Name			Application Number Assessment Area Name or Numb			a Name or Numbe	г
	Progress Energy Florida, li Transmission Lines/Crystal Rive Expans	r Energy Complex Substation			FLUCFCS 64	1 - Wetlands AC a	nd AH
	Impact or Mitigation		Assessment conducted by:		Assessment date	9:	
	Impact	S. Rizzo, T. Davana	zo	10/2	28/09, 10/29/09		
Scoring Guidance Optimal (10) The scoring of each			<u> </u>		<u> </u>		
1		Optimal (10)	Moderate(7)	Mi	nimal (4)	Not Present	(0)
ı	The scoring of each indicator is based on what	Condition is optimal and	Condition is less than optimal, but sufficient to	Minimallo	vel of support of	Condition is insu	fficient to
	would be suitable for the	fully supports	maintain most	1	/surface water	provide wetland	
type of wetland or surface functions		wetland/surface water functions	wetland/surface	fu	unctions	water functi	ons
water assessed			waterfunctions				
	.500(6)(a) Location and Landscape Support w/o pres or current with	Complex. Individual parame to location within plant; b) Invoutside = 4, decreased due t distance or barriers = 4, area to surrounding habitat loss; f	port variable is reduced due to ter scores: a) Support to wild vasive exotic species = 4, torp to limitations imposed by plant as isolated; e) Impacts to wildli hydrologically connected are areas on assessment area =	life listed in i edograss do t; d) function ife listed in F eas downstre	Part 1 by outside pminant; c) Wildlifes that benefit fish Part 1 by outside learn of assessme	habitats = 4, reductive access to and from the wildlife downstreamd uses = 4, reductive and area = 4, isolate	ed due om eam- iced due
.500(6)(b)Water Environment (n/a for uplands) clearing associated with the to surrounding plant; b) wal expected; d) soil erosion or community zonation = 4, al 4, apparent; h) use by anim no wading birds observed; community generally consists.			e is reduced due to isolation frexisting plant. Individual parar level indicators = 4, not condeposition = 8, minimal erosionared due to application of herbal species with specific hydrolovegetative species tolerant of s of typical species; j) direct o N/A; I) water depth wave, war	meter score sistent with on; e) evidend icides and megical required and associated bservation of the sistem of the servation of the sistem of	es: a) water levels expected; c) soil roce of fire history = nowing; g) hydrolocements = 4, poten ated with water quality = N	and flows = 4, alternoisture = 4, drier N/A; f) vegetation ogic stress on vegetal wading bird hauality degradation = N/A, no water present	ered due than etation = bitat, but = 4,
The vegetative community structure is dominated by herbaceous wetland species, and is reduced due to preserve of exotic species torpedograss. Individual parameter scores: a) plant community species in the canopy, shrunground stratum = 4, dominated by some undesirable wetland species; b) invasive exotics or other invasive properties and invasive properties and invasive properties and invasive properties. The vegetative community structure is dominated by herbaceous wetland species, and is reduced due to preserve and invasive properties. Individual parameter scores: a) plant community species in the canopy, shrunground stratum = 4, dominated by some undesirable wetland species; b) invasive exotics or other invasive properties and invasive properties. The vegetative community structure is dominated by herbaceous wetland species, and is reduced due to preserve						hrub, or e plant es and quality of ides and phic	
ı	Score = sum of above scores/30 (i	f If preservation as mitig	action		For impact asses	ement areas	
	uplands, divide by 20)	Preservation adjustme			delta x acres = -0	.40 x 0.09 = 0.04	
	current	- 1000. Valion adjustine		,	land AC); -0.40 x		
	pr w/o pres with 0.40 0	Adjusted mitigation del	lta =	Ι,	land AH); total of FL of 0.22	o.oo acres and	
	0.40						-
		If mitigation					l
	Dolto - fuith			F	or mitigation asse	essment areas	
	Delta = [with-current]	Time lag (t-factor) =		REG	= delta/(t-factor x	risk) =	
•	-0.40	Risk factor =		IKEG.	- deita/(t-lactor X	. IISK) -	