US-APWR DCD Tier 1 Enhancement Project

Tuesday 3/15 AM Handout 4

Table of Contents

Section Title	Handout Page Number
2.7.5.2 Engineered Safety Features Ventilation System (ESFVS)
Section 2.7.5.2 Mark-up	2
Section 2.7.5.2 Basis Document	46
2.7.5.3 Containment Ventilation System (CVVS)	
Section 2.7.5.3 Mark-up	54
Section 2.7.5.3 Basis Document	62
2.7.5.4 Auxiliary Building Ventilation System (ABVS)	
Section 2.7.5.4 Mark-up	64
Section 2.7.5.4 Basis Document	80
2.7.6.9 Fire Protection System	
Section 2.7.6.9 Mark-up	84
Section 2.7.6.9 Basis Document	90
2.7.6.10 Communication Systems	
5ection 2.7.6.10 Mark-up	92
Section 2.7.6.10 Basis Document	95

2.7.5.2 Engineered Safety Features Ventilation System (ESFVS)

The ESFVS of the US-APWR is designed to provides conditioning conditioned air to maintain the proper environmental conditions within plant areas that house ESF equipment. The system's function is to support and assure the safe and continuous operation of the ESF equipment during abnormal and accident conditions.

The ESFVS includes:

- Annulus emergency exhaust system
- Class 1E electrical room HVAC system
- Safeguard component area HVAC system
- Emergency feedwater pump area HVAC system
- Safety related component area HVAC system

2.7.5.2.1 Design Description

2.7.5.2.1.1 Annulus Emergency Exhaust System

System Purpose and Functions

The annulus emergency exhaust system is <u>an ESFa safety-related</u> system <u>designed for</u> <u>that removes</u> fission products <u>removal and retention</u> by filtering the air it exhausts from penetration and safeguard component areas following accidents. <u>The annulus</u> <u>emergency exhaust system maintains the penetration and safeguard component areas</u> <u>at a negative pressure</u>. <u>The annulus emergency exhaust system is a safety-related</u> <u>system</u>

Location and Functional Arrangement

The annulus emergency exhaust system is located within the reactor building. As shown in Figure 2.7.5.2-1, the annulus emergency exhaust system consists of two redundant divisions, each sized to have 100% capacity. Each division includes an exhaust filtration unit and fan.

Key Design Features

The key design features of the annulus emergency exhaust system are reflected in the system design bases, which include:

• The annulus emergency exhaust system is designed to remove the airborne radioactive material that may leak from containment or ECCS and CSS components.

0000

A

 The annulus emergency exhaust system exhausts air and maintains a negative pressure at least 0.25 inches w.g. in the penetration and safeguard component areas relative to the adjacent areas. 	
 The annulus emergency exhaust filtration unit consists, in direction of airflow, of a high efficiency filter and a HEPA filter. 	С
 The adverse effects associated with the tornado depressurization of the air exhaust line are prevented by the specially designed tornado damper in the exhaust line. 	D
 The annulus emergency filtration units are physically separated from the other divisions by a structural barrier, which also serves as a fire barrier. 	E
Seismic and ASME Code Classifications	
The seismic classifications for system components are identified in Table 2.7.5.2-1. The system components are not designed or constructed to ASME Code Section III requirements. System Operation	F
The annulus emergency exhaust system operates under accident conditions to exhaust air from the penetration and safeguard component areas and maintain a negative pressure.	G
Alarms, Displays, and Controls	
Table 2.7.5.2-2 identifies alarms, displays, and controls associated with the system that are located in the MCR.	н
Logic	
Upon receipt of the ECCS actuation signal, the annulus emergency exhaust system automatically starts.	
Interlocks	
The dampers in the annulus emergency exhaust system reposition upon receipt of their respective fan run signals to establish the required flow path.	J
Class 1E Electrical Power Sources and Divisions	
The components identified in Table 2.7.5.2-1 as Class 1E are powered from their respective Class 1E divisions, and separation is provided between Class 1E divisions, and between Class 1E divisions and non-Class 1E cable.	K
Equipment to be Qualified for Harsh Environments	

The annulus emergency exhaust system is located in controlled environmental L conditions that would exist before, during, and following a design basis event. Therefore, the annulus emergency exhaust system equipment is not qualified for harsh environments. Interface Requirements There are no safety related interfaces with systems outside of the certified design. Μ Numeric Performance Values Selected numerical performance values of the annulus emergency exhaust system used Ν in the safety analysis are shown on the table below: Penetration and Safeguard Component 240 sec Areas negative pressure arrival time Filter efficiencies for Particulates 99% 2.7.5.2.1.2 **Class 1E Electrical Room HVAC System** System Purpose and Functions 0

The Class 1E electrical room HVAC system <u>is a safety-related system that provides</u> conditioning <u>conditioned</u> air to maintain the proper environmental conditions within the Class 1E I&C rooms, Class 1E electrical rooms, Class 1E battery rooms, Class 1E UPS Rooms and Class 1E battery charger rooms. The Class 1E electrical room HVAC system is a safety-related system.

Location and Functional Arrangement

The Class 1E electrical room HVAC system is located <u>with</u>in the reactor building. As shown in Figure 2.7.5.2-2, the Class 1E electrical room HVAC system consists of four redundant divisions, each sized to satisfy 100% of the cooling demand of two divisions of the equipment they serve. Each system includes an air handling unit, a return air fan and a battery room exhaust fan.

Key Design Features

The Class 1E electrical room HVAC system provides conditioning air to maintain the proper environmental conditions within the Class 1E electrical rooms during all plant operating conditions.

The adverse effects associated with the tornado depressurization of the outside air intakes and exhaust openings are prevented by the specially designed tornado dampers located at the outside air intakes and exhaust opening.

Ρ

Q

The battery rooms are ventilated with sufficient supply and exhaust airflow during all modes of operation in order to limit the hydrogen concentration.	R
All duct penetrations in fire walls are protected by fire dampers to prevent the spread of fire from the affected area to the adjacent redundant component areas.	S
Air supply, return and exhaust fan housings are designed to resist penetration of internally generated missiles in the event of fan rotor failure.	Т
The Class 1E electrical room air handling units, Class 1E electrical room return air fans and Class 1E battery room exhaust fans are physically separated by a structural barrier, which also serves as a fire barrier.	U
Seismic and ASME Code Classifications	
The seismic classifications for system components are identified in Table 2.7.5.2-1. The system components are not designed or constructed to ASME Code Section III requirements	V
System Operation	
The Class 1E electrical room HVAC system provides conditioning air to maintain the proper environmental conditions within the Class 1E electrical rooms during all plant operating conditions, including normal plant operations, abnormal and accident conditions.	W
Alarms, Displays, and Controls	
Table 2.7.5.2-2 identifies alarms, displays, and controls associated with the system that are located in the MCR.	X
Logic	
Upon receipt of the ECCS actuation signal, the Class 1E electrical room HVAC system automatically starts, or continues to operate if running.	Υ
Interlocks	
The dampers in the Class 1E electrical room HVAC system reposition upon receipt of their respective fan run signals to establish the required flow path.	Ζ
Class 1E Electrical Power Sources and Divisions	
The components identified in Table 2.7.5.2-1 as Class 1E are powered from their respective Class 1E divisions, and separation is provided between Class 1E divisions, and between Class 1E divisions and non-Class 1E cable.	AA
	1

Equipment to be Qualified for Harsh Environments	
The Class 1E electrical room HVAC system is located in controlled environmental conditions that would exist before, during, and following a design basis event. Therefore, the Class 1E electrical room HVAC system equipment is not qualified for harsh environments.	BB
Interface requirements	
There are no safety-related interfaces with systems outside of the certified design.	CC
Numeric Performance Values	
When necessary to demonstrate satisfaction of a design commitment, numeric performance values for selected components have been specified as ITAAC acceptance criteria in Table 2.7.5.2-3.	DD
2.7.5.2.1.3 Safeguard Component Area HVAC System	Ι
System Purpose and Functions	
The safeguard component area HVAC system is a safety-related system that provides conditioning conditioned air to maintain the proper environmental conditions to each controlled area of the safeguard components area. The safeguard component area HVAC system is a safety-related system.	EE
Location and Functional Arrangement	
The safeguard components area HVAC system is located <u>with</u> in the reactor building. As shown in Figure 2.7.5.2-3, <u>theeach</u> safeguard component area HVAC system provides includes fourone 100% capacity air handling units.	PPPP
Key Design Features	
The safeguard components area HVAC system provides conditioning air to maintain the proper environmental conditions within safeguard component areas, when the respective equipment is operating.	FF
Air handling unit fan housings are designed to resist penetration of internally generated missiles in the event of fan rotor failure.	GG
The safeguards component area air handling units are physically separated from the other divisions by a structural barrier, which also serves as a fire barrier.	
Seismic and ASME Code Classifications	
The seismic classifications for system components are identified in Table 2.7.5.2-1. The system components are not designed or constructed to ASME Code Section III requirements.	НН

System Operation	
The safeguard com ponent area HVAC system provides conditioning air to maintain the proper environmental conditions within the safeguard component area during abnormal and accident conditions.	Ι
Alarms, Displays, and Controls	
Table 2.7.5.2-2 identifies alarms, displays, and controls associated with the system that are located in the MCR. J.	IJ
Logic	
Upon receipt of high area temperature signal, each respective air handling unit is actuated.	٢K
Interlocks	
The dampers in the safeguard component area HVAC system reposition upon receipt of their respective fan run signals to establish the required flow path.	L
Class 1E Electrical Power Sources and Divisions	
The components identified in Table 2.7.5.2-1 as Class 1E are powered from their respective Class 1E divisions, and separation is provided between Class 1E divisions, and between Class 1E divisions and non-Class 1E cable.	MM
Equipment to be Qualified for Harsh Environments	
The safeguard component area HVAC system is located in controlled environmental conditions that would exist before, during, and following a design basis event. Therefore, the safeguard component area HVAC system equipment is not qualified for harsh environments.	١N
Interface Requirements	
There are no safety-related interfaces with systems outside of the certified design.	00
Numeric Performance Values	
When necessary to demonstrate satisfaction of a design commitment, numeric performance values for selected components have been specified as ITAAC acceptance criteria in Table 2.7.5.2-3.	P

QQ

PPPP

RR

SS

TT

UU

VV

2.7.5.2.1.4 Emergency Feedwater Pump Area HVAC System

System Purpose and Functions

The emergency feedwater pump area HVAC system is a safety-related system that provides conditioning conditioned air to maintain the proper environmental conditions to each emergency feedwater pump area. The emergency feedwater pump area HVAC system is a safety-related system.

Location and Functional Arrangement

The emergency feedwater pump area HVAC system is located <u>with</u>in the reactor building. As shown in Figure 2.7.5.2-4, <u>the each emergency feedwater pump area room</u> HVAC system <u>provides includes air handling units</u>. Each pump room is provided with one 100% capacity air handling unit-on a separate division.

Key Design Features

The emergency feedwater pump area HVAC system provides conditioning air to maintain the proper environmental conditions within emergency feedwater pump areas, when the respective equipment is operating.

The adverse effects associated with the tornado depressurization of the outside air intakes and exhaust openings are prevented by the specially designed tornado dampers located at the outside air intakes and exhaust opening.

Air handling unit fan housings are designed to resist penetration of internally generated missiles in the event of fan rotor failure.

The emergency feedwater pump area air handling units are physically separated from the other divisions by a structural barrier, which also serves as a fire barrier.

Seismic and ASME Code Classifications

The seismic classifications for system components are identified in Table 2.7.5.2-1. The system components are not designed or constructed to ASME Code Section III requirements.

System Operation

The emergency feedwater pump area HVAC system provides conditioning air to maintain the proper environmental conditions within the emergency feedwater pump areas during abnormal and accident conditions.

Alarms, Displays, and Controls

Table 2.7.5.2-2 identifies alarms, displays, and controls associated with the system that are located in the main control room.	WW
Logic	
Upon receipt of high area temperature signal, each respective air handling unit is actuated.	XX
Interlocks	
There are no interlocks needed for direct safety functions related to the emergency feedwater pump area HVAC system.	YY
Class 1E Electrical Power Sources and Divisions	
The components identified in Table 2.7.5.2-1 as Class 1E are powered from their respective Class 1E divisions, and separation is provided between Class 1E divisions, and between Class 1E divisions and non-Class 1E cable.	ZZ
Equipment to be Qualified for Harsh Environments	
The emergency feedwater pump area HVAC system is located in controlled environmental conditions that would exist before, during, and following a design basis event. Therefore, the emergency feedwater pump area HVAC system equipment is not qualified for harsh environments.	AAA
Interface Requirements	
There are no safety-related interfaces with systems outside of the certified design.	BBB
Numeric Performance Values	
When necessary to demonstrate satisfaction of a design commitment, numeric performance values for selected components have been specified as ITAAC acceptance criteria in Table 2.7.5.2-3.	CCC
2.7.5.2.1.5 Safety Related Component Area HVAC System	
System Purpose and Functions	
The safety related component area HVAC system is a safety-related system that, a safety-related system, provides conditioning conditioned air to maintain the proper environmental conditions to each area of the safety-related component areas listed below.	DDD
Component cooling water pump area	
Essential chiller unit area	

- Charging pump area
- Annulus emergency exhaust filtration unit area
- Penetration area
- Spent fuel pit pump area

Location and Functional Arrangement

The safety related component area HVAC system is located within the reactor building and power source buildings. As shown in Figure 2.7.5.2-5, the each safety related component area HVAC system provides air handling units. Each area it serves is provided with one 100% capacity air handling unit.

Key Design Features

The safety related component area HVAC system provides conditioning air to maintain the proper environmental condition in each individual safety-related component area, when the respective equipment is operating.

Air handling unit fan housings are designed to resist penetration of internally generated missiles in the event of fan rotor failure.

The safety-related component area air handling units are physically separated from the other divisions by a structural barrier, which also serves as a fire barrier.

Seismic and ASME Code Classifications

The seismic classifications for system components are identified in Table 2.7.5.2-1. The system components are not designed or constructed to ASME Code Section III requirements.

System Operation

The safety related component area HVAC system provides conditioning air to maintain the proper environmental conditions within the individual safety related equipment rooms during abnormal and accident conditions.

Alarms, Displays, and Controls

 Table 2.7.5.2-2 identifies alarms, displays, and controls associated with the system that are located in the main control room.
 JJJ

Logic

Upon receipt of high area temperature signal, each respective air handling unit is actuated.

FFF

GGG

Ш

KKK

Interlocks	
There are no interlocks needed for direct safety functions related to the safety related component area HVAC system.	
Class 1E Electrical Power Sources and Divisions	
The components identified in Table 2.7.5.2-1 as Class 1E are powered from their respective Class 1E divisions, and separation is provided between Class 1E divisions, and between Class 1E divisions and non-Class 1E cable.	MMM
Equipment to be Qualified for Harsh Environments	
The safety related component area HVAC system is located in controlled environmental conditions that would exist before, during, and following a design basis event. Therefore, the safety related component area HVAC system equipment is not qualified for harsh environments.	
Interface Requirements	
There are no safety-related interfaces with systems outside of the certified design.	000
Numeric Performance Values	
When necessary to demonstrate satisfaction of a design commitment, numeric performance values for selected components have been specified as ITAAC acceptance criteria in Table 2.7.5.2-3.	PPP
<u>1.a</u> The functional arrangement of the ESFVS is as described in the Design Description of Subsection 2.7.5.2.1 and as shown in Figures 2.7.5.2-1 through 2.7.5.2-5.	QQQ
1.b Each mechanical division of the annulus emergency exhaust system filtration units identified in Table 2.7.5.2-1 is physically separated from the other divisions of the annulus emergency exhaust system so as not to preclude accomplishment of the safety function.	RRR
1.c Each mechanical division of the Class 1E electrical room air handling units, Class 1E electrical room return air fans and Class 1E battery room exhaust fans identified in Table 2.7.5.2-1 is physically separated from the other divisions of the Class 1E electrical room HVAC system so as not to preclude accomplishment of the safety function.	
1.d Each mechanical division of the safeguard component area air handling units identified in Table 2.7.5.2-1 is physically separated from the other divisions of the safeguard component area HVAC system so as not to preclude accomplishment of the safety function.	
<u>1.e Each mechanical division of the emergency feedwater pump area air handling units</u> identified in Table 2.7.5.2-1 is physically separated from the other divisions of the	

emergency feedwater pump area HVAC system so as not to preclude accomplishment of the safety function.	
1.f Each mechanical division of the safety-related component area air handling units identified in Table 2.7.5.2-1 is physically separated from the other divisions of the safety-related component area HVAC system so as not to preclude accomplishment of the safety function.	
2. The seismic Category I equipment, identified in Table 2.7.5.2-1, can withstand seismic design basis loads without loss of safety function.	SSS
3.a Class 1E equipment, identified in Table 2.7.5.2-1, is powered from its respective Class 1E division.	ТТТ
3.b Separation is provided between redundant divisions of Class 1E cables, and between Class 1E cables and non-Class 1E cables.	
4.a The annulus emergency exhaust system meets the numerical performance values used in the safety analysis.	UUU
4.b The Class 1E electrical room HVAC system provides conditioned air to maintain area temperature within design limits in the Class 1E electrical rooms during plant operating conditions, including normal plant operations, abnormal and accident conditions and relative humidity limits in the remote shutdown room during plant operating conditions, including normal plant operations, abnormal and accident conditions.	VVV
4.c The Class 1E electrical room HVAC system provides battery room ventilation to maintain hydrogen concentration within the design limit during all plant operating conditions, including normal plant operations.	www
4.d The safeguard component area HVAC system provides conditioned air to maintain area temperature within design limits in the safeguard component areas when the respective equipment is operating during a design basis accident or LOOP.	XXX
<u>4.e The emergency feedwater pump area HVAC system provides conditioned air to</u> <u>maintain area design temperature limits within the emergency feedwater pump areas</u> when the respective equipment is operating during a design basis accident or LOOP.	YYY
4.f The safety-related component area HVAC system provides conditioned air to maintain area temperature within design limits in each individual safety-related component area, when the respective equipment is operating during a design basis accident or LOOP.	ZZZ
5.a The remotely operated dampers, identified in Table 2.7.5.2-1, as having PSMS control, perform an active safety function after receiving a signal from PSMS.	AAAA
5.b After loss of motive power, the remotely operated dampers, identified in Table 2.7.5.2-1, assume the indicated loss of motive power position.	BBBB

5.c The fire dampers in the ductwork that penetrates the fire barriers that are required to protect safe-shutdown capability close under design flow conditions.	CCCC
5.d Controls are provided in the MCR to open and close the remotely operated dampers identified in Table 2.7.5.2-2.	DDDD
5.e The system dampers and tornado dampers, identified in Table 2.7.5.2-1, as having an active safety function perform an active safety function to change position as indicated in the table.	EEEE
6.a Controls are provided in the MCR to start and stop the ESFVS air handling units and filtration units identified in Table 2.7.5.2-2.	FFFF
6.b The annulus emergency exhaust filtration unit fans identified in Table 2.7.5.2-1 start and the isolation dampers identified in Table 2.7.5.4-1 perform an active safety function to close upon receipt of an ECCS actuation signal.	GGGG
6.c The Class 1E electrical room HVAC system air handling unit fans identified in Table 2.7.5.2-1 start after receiving an ECCS actuation signal.	НННН
6.d The safeguard component area HVAC system, emergency feedwater pump area HVAC system, and the safety related component area HVAC system air handling unit fans identified in Table 2.7.5.2-1 start after receiving a high temperature signal.	
7. Alarms and displays identified in Table 2.7.5.2-2 are provided in the MCR.	JJJJ
8. Alarms, displays and controls identified in Table 2.7.5.2-2 are provided in the RSC.	КККК

2.7.5.2.2 Inspections, Tests, Analyses, and Acceptance Criteria

Table 2.7.5.2-3 specifies the inspections, tests analyses, and associated acceptance criteria for the ESFVS. Table 2.7.3.5-5 specifies the ITAAC for the ECWS piping that supplies cooling water to the ESFVS air handling unit cooling coils.

Table 2.7.5.2-1 Engineered Safety Features Ventilation System Equipment Characteristics (Sheet 1 of 8)

Equipment Name	Tag No.	ASME Code Section III Class	Seismic Category I	Remotely Operated <mark>Valve</mark> Demper	Class 1E/ Qual. For Harsh Envir.	PSMS Control	Active Safety Function	Loss of Motive Power Position	<u> </u>
		Annulus	Emergency E	Annulus Emergency Exhaust System					
Annulus Emergency Exhaust Filtration Units	VRS-MFU-001 A, B	I	Yes	I	0N/—	I	None	I	
Annulus Emergency Exhaust Filtration Unit Fans	VRS-MFN-001 A, B	I	Yes	Ι	Yes/No	ECCS Actuation	Start	Ι	
<u>Penetration-Annulus</u> Area Exhaust Dampers	VRS-EHD-001 A, B		Yes	Yes	Yes/No	<u>Fan</u> ECCS <u>startActuation</u>	Transfer Open	Closed	
Safeguard Component Area Exhaust Dampers	VRS-EHD-002 A, B	I	Yes	Yes	Yes/No	<u>Fan</u> ECCS <u>Start</u> Actuation	Transfer Open	Closed	
Annulus Emergency Exhaust Filtration Unit Outlet Dampers	VRS-EHD-003 A, B	I	Yes	Yes	Yes/No	<u>Fan<mark>ECCS</mark> Start<mark>Actuation</mark></u>	Transfer Open	Closed	
Tornado Damper	VRS-OTD-004 <u>A.</u> <u>B</u>	I	Yes	Ι	0N/	I	Transfer Closed (Tornado condition)	I	
Ductwork	Ι	Ι	Yes	Ι	0N/	I	None	Ι	

Draft to Revision 32

2.7 PL

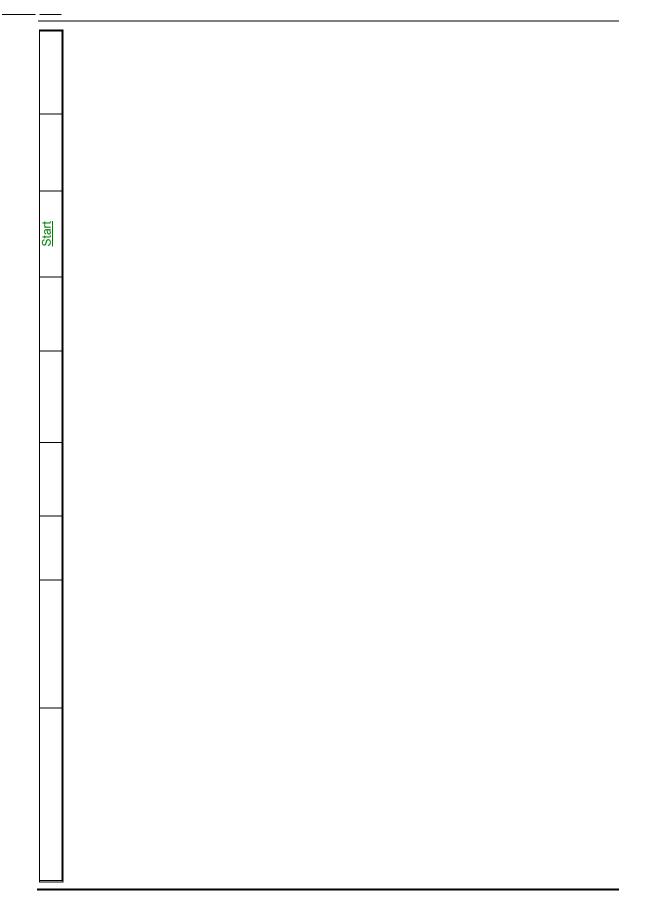
MMMM

aaaa

Table 2.7.5.2-1 Engineered Safety Features Ventilation System Equipment Characteristics (Sheet 2 of 8)

Tier 1

of e e Du					ized				ġ	
Loss of Motive Power Position		ļ			Deenergized			Closed	Closed	Closed
Active Safety Function		None	Start	None	Energized	Start	Start	Transfer Open	Transfer Open	Transfer Open
PSMS Control		I	ECCS Actuation		<u>ECCS</u> Actuation	ECCS Actuation	ECCS Actuation	<u>ECCS</u> Actuation	<u>ECCS Fan</u> <u>Start</u> Actuation	ECCS Actuation Fan
Class 1E/ Qual. For Harsh Envir.	ε	0N/—	Yes/No	<u>on/</u>	<u>Yes/No</u>	Yes/No	Yes/No	Yes/No	Yes/No	Yes/No
Remotely Operated Valve<u>D</u>amper	Class 1E Electrical Room HVAC System	I	I		11	I	I	Yes	Yes	Yes
Seismic Category I	Electrical Ro	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
ASME Code Section III Class	Class 1E							I	I	I
Tag No.		VRS-MAH-201 A, B, C, D	VRS-MFN-201 A, B, C, D	<u>VRS-MCL-201</u> <u>ABCD</u>	<u>VRS-MEH-201</u> <u>ABCD</u>	VRS-MFN-202 A, B, C, D	VRS-MFN-251 A,B,C,D	VRS-EHD-201 A,B,C,D	VRS-EHD-202 A,B,C,D	VRS-EHD-203 A,B,C,D
Equipment Name		Class 1E Electrical Room Air Handling Units	Class 1E Electrical Room Air Handling Unit Fans	<u>Class 1E Electrical Room Air</u> Handling Unit Cooling Coils	Class 1E Electrical Room Air Electric Unit Heating Coils	Class 1E Electrical Room Return Air Fans	Class 1E Battery Room Exhaust Fans	Class 1E Electrical Room Outside Air Intake Isolation Dampers	Class 1E Electrical Room Air Handling Unit Outlet Dampers	Class 1E Electrical Room Return Air Fan Inlet Dampers


Draft to Revision 32

QQQQ

control Document

US-APWR Desi

2.7-14

of
(Sheet 3
Equipment Characteristics
Ventilation System
Engineered Safety Features \
Table 2.7.5.2-1

8

Loss of Motive Power Position	Closed	Closed	Closed	Closed	I	I	I
Active Safety Function	Transfer Open	Transfer Closed	Transfer Open	Transfer Open	Transfer Closed (Tornado condition)	None	I
PSMS Control	ECCS Actuation	ECCS Actuation	<u>ECCS</u> A ctuation Fan Start	<u>ECCS</u> A ctuation Fan Start	I		I
Class 1E/ Qual. For Harsh Envir.	Yes/No	Yes/No	Yes/No	Yes/No	-/No	-/No	Yes/No
Remotely Operated <mark>Valve</mark> Damper	Yes	Yes	Yes	Yes	Ι		I
Seismic Category I	Yes	Yes	Yes	Yes	Yes	Yes	Yes
ASME Code Section III Class	I	I	I	I	l		Ι
Tag No.	VRS-EHD-204 A,B,C,D	VRS-AOD-205 A,B,C,D	VRS-EHD-251 A,B,C,D	VRS-EHD-252 A,B,C,D	VRS-OTD-206 A,B,C,D VRS-OTD- 207A,B,C,D VRS-OTD-253 A,B,C,D	I	VRS-TS-210, 230, 250, 270
Equipment Name	Class 1E Electrical Room Air Handling Unit Inlet Dampers	Class 1E Electrical Room Exhaust Line Isolation Dampers	Class 1E Battery Room Exhaust Fan Inlet Dampers	Class 1E Battery Room Exhaust Fan Outlet Dampers	Tornado Dampers	Ductwork	Class 1E Electrical Room Temperature

Draft to Revision 32

2.7 PL/ YSTEMS

aaaa

(Sheet 4 of 8) orietion 1 C ż ş 2 Ē Cyctom e Ventilation ŝ Safety Featu ç Ц Table 2.7.5.2-1

-										
[Ø]	Loss of Motive Power Position		I	I	11	11	As is	Si SA	Ι	I
(Srieet 4 01	Active Safety Function		None	Start	None	None	Transfer Open	Transfer Open	None	I
ullar acter isucs	PSMS Control		I	High Temperature		Remote Manual	H ligh TemperatureFan <u>Start</u>	High Temperature Fan <u>Start</u>	Ι	I
duipment	Class 1E/ Qual. For Harsh Envir.	stem	oN/—	Yes/No	No	Yes/No	Yes/No	Yes/No	0N/—	Yes/No
u aystelli E	Remotely Operated Valve Damper	Safeguard Component Area HVAC System	Ι	l	Π	11	Yes	Yes	Ι	Ι
s venuau	Seismic Category I	d Componel	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
rly realure	ASME <u>Code</u> Section III Class	Safeguar	Ι	Ι	Π	Π	I	Ι	-	I
rable 2.7.3.2-1 Engineered Sarety Features Ventilation System Equipment Characteristics (Sireet 4 OLO)	Tag No.		VRS-MAH-301 A, B, C, D	VRS-MFN-301 A, B, C, D	<u>VRS-MCL-301</u> <u>A, B, C, D</u>	<u>VRS-MEH-301</u> <u>A.B.C.D</u>	VRS-MOD-301 A, B, C, D	VRS-MOD-302 A, B, C, D	Ι	VRS-TS-305, 306, 307, 315, 316, 317, 325,326, 327, 335, 336, 337
1 4016 2.1.0.2-1	Equipment Name		Safeguard Component Area Air Handling Units	Safeguard Component Area Air Handling Unit Fans	<u>Safeguard Component</u> Area Air Handling Unit Cooling Coils	<u>Safeguard Component</u> <u>Area Air Handling Unit</u> <u>Electric Heating Coils</u>	Safeguard Component Area Air Handling Unit Inlet Dampers	Safeguard Component Area Air Handling Unit Outlet Dampers	Ductwork	Safeguard Component Area Temperature

Draft to Revision 32

Table 2.7.5.2-1 Engineered Safety Features Ventilation System Equipment Characteristics (Sheet 5 of 8)

	D				-				
Equipment Name	Tag No.	ASME Code Section III Class	Seismic Category I	Remotely Operated <mark>Valve</mark> Damper	Class 1E/ Qual. For Harsh Envir.	PSMS Control	Active Safety Function	Loss of Motive Power Position	
		Emergency F	eedwater Pui	Emergency Feedwater Pump Area HVAC System	ystem				1
Emergency Feedwater Pump Area Air Handling Units	VRS-MAH-401 A, B, C, D	I	Yes	I	oN/—	I	None	I	
Emergency Feedwater Pump Area Air Handling Unit Fans	VRS-MFN-401 A, B, C, D	I	Yes	I	Yes/No	High Temperature	Start	I	
Emergency Feedwater Pump Area Air Handling Units Cooling Coils	VRS- RCC MCL- 401 A, B, C, D	I	Yes	Ι	No	I	None	-	
Emergency Feedwater Pump Area Air Handling Units Electric Heating Coils	<u>VRS-MEH-401</u> <u>A. B. C. D</u>		Yes		<u>Yes/No</u>	<u>Remote</u> Manual	Energized	Deneregized	
Tomado Damper	VRS-OTD- 403A,D, -404A,D	I	Yes	Ι	-/No	I	Transfer Closed	Ι	
Ductwork	Ι	I	Yes	—	oN/—	Ι	None	-	
Emergency Feedwater Pump Area Temperature	VRS-TS-401, 405, 406, 411, 415, 416, 421, 425, 426, 431, 435, 436	I	Yes	l	Yes/No	l	I	Ι	
		Safety Relat	ed Compone	Safety Related Component Area HVAC System	/stem				

Draft to Revision 32

I			
None			
I			
0N/—			
1	-		
Yes			
I	-		
VRS-MAH-501 A, B, C, D			
Component Cooling Water Pump Area Air Handling Units			

Table 2.7.5.2-1	Table 2.7.5.2-1 Engineered Safety Features Ventilation Sys <i>t</i> em Equipment Characteristics (Sheet 6 of 8)	fety Featur	es Ventilat	ion Sys <i>t</i> em E	quipment C	haracteristics	Sheet 6 o	f 8)
Equipment Name	Tag No.	ASME Code Section III Class	Seismic Category I	Remotely Operated <mark>Valve</mark> Damper	Class 1E/ Qual. For Harsh Envir.	PSMS Control	Active Safety Function	Loss of Motive Power Position
Component Cooling Water Pump Area Air Handling Unit Fans	VRS-MFN-501 A, B, C, D	I	Yes	I	Yes/No	High Temperature	Start	
<u>Component Cooling Water</u> Pump Area Air Handling Unit Fans Cooling Coils	<u>VRS-MCL-501</u> <u>A. B. C. D</u>		Yes		<u>—/No</u>		None	
<u>Component Cooling Water</u> <u>Pump Area Air Handling</u> <u>Unit Fans Electric Heating</u> <u>Coils</u>	<u>VRS-MEH-501</u> <u>A, B,C D</u>		Yes	11	Yes/No	<u>Remote</u> <u>Manual</u>	Energized	Deenergized
Essential Chiller Unit Area Air Handling Units	VRS-MAH-511 A, B, C, D	I	Yes	Ι	oN/—	I	None	I
Essential Chiller Unit Area Air Handling Unit Fans	VRS-MFN-511 A, B, C, D	Ι	Yes	Ι	Yes/No	High Temperature	Start	I
<u>Essential Chiller Unit Area</u> <u>Air Handling Unit Cooling</u> <u>Coils</u>	<u>VRS-MCL-511</u> <u>A. B. C. D</u>		Yes		<u>_/No</u>		None	
<u>Essential Chiller Unit Area</u> Air Handling Unit Heating <u>Coils</u>	<u>VRS-MEH-511</u> <u>A, B, C, D</u>	11	Yes		<u>Yes/No</u>	<u>Remote</u> <u>Manual</u>	Energized	Deenergized
Charging Pump Area Air Handling Units	VRS-MAH-531 A, B	Ι	Хes	Ι	oN/—	I	None	I
Charging Pump Area Air Handling Unit Fans	VRS-MFN-531 A, B	Ι	Yes	Ι	Yes/No	High Temperature	Start	I

US-APW

sign Control Document

Tier 1

LLLL

<u>Draft to</u>Revision <u>3</u>2

2.7-20

	Deenergized	I	
ne	inergized Dee	None	
None	Energ	No	
	<u>Remote</u> <u>Manual</u>	I	
<u>-/No</u>	Yes/No	oN/—	
		I	
Yes	Yes	Yes	
		Ι	
<u>VRS-MCL-531</u> <u>A, B</u>	<u>VRS-MEH-531</u> <u>A, B</u>	VRS-MAH-541 A, B	
<u>Charging Pump Area Air</u> <u>Handling Unit Cooling Coils</u>	<u>Charging Pump Area Air</u> <u>Handling Unit Heating Coils</u>	Annulus Emergency Exhaust Filtration Unit Area Air Handling Units	

2

ANT SYSTEMS

2.7 F		STEMS		US-/	APWR	Desigr		I umen	nt
7 of 8)	Loss of Motive Power Position	I		Deenergized	I	I	-	Deenergized	
tics (Sheet	Active Safety Function	Start	None	Energized	None	Start	None	Energized	
nt Characteris	PSMS Control	High Temperature	11	<u>Remote</u> Manual	Ι	High Temperature	II	<u>Remote</u> <u>Manual</u>	
n Equipmer	Class 1E/ Qual. For Harsh Envir.	Yes/No	<u>on/</u>	Yes/No	oN/—	Yes/No	<u>-/No</u>	Yes/No	
Table 2.7.5.2-1 Engineered Safety Features Ventilation System Equipment Characteristics (Sheet 7 of 8)	Remotely Operated Valve Damper	I	11	11	I	I	11	П	
Features V	Seismic Category I	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
ed Safety	ASME Code Section III Class	I			Ι	I			
5.2-1 Engineer	Tag No.	VRS-MFN-541 A, B	<u>VRS-MCL-541</u> <u>A, B, C, D</u>	<u>VRS-MEH-541</u> <u>A, B, C, D</u>	VRS-MAH-551 A, B, C, D	VRS-MFN-551 A, B, C, D	<u>VRS-MCL-551</u> <u>A, B, C, D</u>	<u>VRS-MEH-551</u> <u>A,B,C,D</u>	
Table 2.7.5	Equipment Name	Annulus Emergency Exhaust Filtration Unit Area Air Handling Unit Fans	Annulus Emergency Exhaust Filtration Unit Area Air Handling Units Cooling Coils	Annulus Emergency Exhaust Filtration Unit Area Air Handling Units Electric Heating Coils	Penetration Area Air Handling Units	Penetration Area Air Handling Unit Fans	Penetration Area Air Handling Unit Cooling Coils	Penetration Area Air Handling Unit Electric Heating Coils	

Draft to Revision 32

2.7 PLA	NT SYST	EMS	0000		US-AP	PN.
I	I		Deenergized	I	I	
None	Start	None	Energized	None	I	
I	High Temperature	II	<u>Remote</u> <u>Manual</u>	I	I	
oN/—	Yes/No	<u>on/—</u>	Yes/No	0N/	Yes/No	
I	I	II	11	I	I	
Yes	Yes	Yes	Yes	Yes	¥es	
l	I		1	Ι	I	
VRS-MAH-561 A, B	VRS-MFN-561 A, B	<u>VRS-MCL-561</u> <u>A, B</u>	<u>VRS-MEH-561</u> <u>A,B,C,D</u>	I	VRS-TS-501, 504, 505, 511, 514, 515, 521, 524, 525, 531, 534, 535	
Spent Fuel Pit Pump Area Air Handling Units	Spent Fuel Pit Pump Area Air Handling Unit Fans	Spent Fuel Pit Pump Area Air Handling Unit Cooling Coils	Spent Fuel Pit Pump Area Air Handling Unit Electric Heating Coils	Ductwork	Component Cooling Water Pump Area Temperature	

Table 2.7.5.2-1 Engineered		ty Features	Ventilation	Safety Features Ventilation Sys <i>t</i> em Equipment Characteristics (Sheet 8 of 8)	pment Chai	acteristics	s (Sheet 8 of	.8)
Equipment Name	Tag No.	ASME Code Section III Class	Seismic Category I	Remotely Operated <u>Damper<mark>Valve</mark></u>	Class 1E/ Qual. For Harsh Envir.	PSMS Control	Active Safety Function	Loss of Motive Power Position
Essential Chiller Unit Area Temperature	VRS-TS-541, 544, 545, 551, 554, 555, 561, 564, 565, 571, 574, 575	I	Yes	I	Yes/No	I	I	I
Charging Pump Area Temperature	VRS-TS-581, 584, 585, 591, 594, 595	I	Yes	I	Yes/No	I	I	I
Annulus Emergency Exhaust Filtration Unit Area Temperature	VRS-TS-601, 604, 605, 611, 614, 615	Ι	Yes	Ι	Yes/No	I	I	I
Penetration Area Temperature	VRS-TS-621, 624, 625, 631, 634, 635, 641, 644, 645, 651, 654, 655	Ι	Yes	Ι	Yes/No	I	I	I
Spent Fuel Pit Pump Area Temperature	VRS-TS-661, 664, 665, 671, 674, 675	I	Yes	Ι	Yes/No	I	I	I
NOTE:								

NOTE: Dash (-) indicates not applicable

Draft to Revision 32

Table 2.7.5.2-2Engineered Safety Features Ventilation SystemEquipment Alarms, Displays and Control Functions (Sheet 1 of 4)

Equipment/Instrument Name	MCR/RSC Alarm	MCR Display	MCR/RSC Control Function	RSC Display
Annulus Emerger	ncy Exhaust S	System		
Annulus Emergency Exhaust Filtration Unit Fans (VRS-MFN-001 A, B)	No	Yes	Yes	Yes
Annulus Area Exhaust Dampers (VRS-EHD-001 A, B)	No	Yes	No	Yes
Safeguard Component Area Exhaust Dampers (VRS-EHD-002 A, B)	No	Yes	No	Yes
Annulus Emergency Exhaust Filtration Unit Outlet Dampers (VRS-EHD-003 A, B)	No	Yes	No	Yes
Class 1E Electrical	Room HVAC	System		
Class 1E Electrical Room Air Handling Unit Fans (VRS-MFN-201 A, B, C, D)	No	Yes	Yes	Yes
Class 1E Electrical Room Return Air Fans (VRS-MFN-202 A, B, C, D)	No	Yes	Yes	Yes
Class 1E Battery Room Exhaust Fans (VRS-MFN-251 A, B, C, D)	No	Yes	Yes	Yes
Class 1E Electrical Room Outside Air Intake Isolation Dampers (VRS-EHD-201 A, B, C, D)	No	Yes	No	Yes
Class 1E Electrical Room Air Handling Unit Outlet Dampers (VRS-EHD-202 A, B, C, D)	No	Yes	No	Yes
Class 1E Electrical Room Return Air Fan Inlet Dampers (VRS-EHD-203 A, B, C, D)	No	Yes	No	Yes

Table 2.7.5.2-2Engineered Safety Features Ventilation SystemEquipment Alarms, Displays and Control Functions (Sheet 2 of 4)

Equipment/Instrument Name	MCR/RSC Alarm	MCR Display	MCR/RSC Control Function	RSC Display
Class 1E Electrical Room Air Handling Unit Inlet Dampers (VRS-EHD-204 A, B, C, D)	No	Yes	Yes	Yes
Class 1E Electrical Room Exhaust Line Isolation Dampers (VRS-AOD-205 A, B, C, D)	No	Yes	Yes	Yes
Class 1E Battery Room Exhaust Fan Inlet Dampers (VRS-EHD-251 A, B, C, D)	No	Yes	No	Yes
Class 1E Battery Room Exhaust Fan Outlet Dampers (VRS-EHD-252 A, B, C, D)	No	Yes	No	Yes
Class 1E Electrical Room Temperature (VRS-TCA-210, 230, 250, 270)	Yes	No	No	No
Safeguard Compone	ent Area HVA	C System		
Safeguard Component Area Air Handling Unit Fans (VRS-MFN-301 A, B, C, D)	No	Yes	Yes	Yes
Safeguard Component Area Air Handling Unit Inlet Dampers (VRS-MOD-301 A, B, C, D)	No	Yes	No	Yes
Safeguard Component Area Air Handling Unit Outlet Dampers (VRS-MOD-302 A, B, C, D)	No	Yes	No	Yes

Table 2.7.5.2-2Engineered Safety Features Ventilation SystemEquipment Alarms, Displays and Control Functions (Sheet 3 of 4)

Equipment/Instrument Name	MCR/RSC Alarm	MCR Display	MCR/RSC Control Function	RSC Display
Safeguard Component Area Temperature (VRS-TCA-305, 315, 325, 335)	Yes	No	No	No
Emergency Feedwater I	Pump Area H	VAC System		
Emergency Feedwater Pump Area Air Handling Unit Fans (VRS-MFN-401 A, B, C, D)	No	Yes	Yes	Yes
Emergency Feedwater Pump Area Temperature (VRS-TCA-401, 411, 421, 431)	Yes	No	No	No
Safety Related Compo	nent Area HV	AC System		
Component Cooling Water Pump Area Air Handling Unit Fans (VRS-MFN-501 A, B, C, D)	No	Yes	Yes	Yes
Essential Chiller Unit Area Air Handling Unit Fans (VRS-MFN-511 A, B, C, D)	No	Yes	Yes	Yes
Charging Pump Area Air Handling Unit Fans (VRS-MFN-531 A, B , C, D)	No	Yes	Yes	Yes
Annulus Emergency Exhaust Filtration Unit Area Air Handling Unit Fans (VRS-MFN-541 A, B)	No	Yes	Yes	Yes
Penetration Area Air Handling Unit Fans (VRS-MFN-551 A, B, C, D)	No	Yes	Yes	Yes

RRRR

Table 2.7.5.2-2 Engineered Safety Features Ventilation System
Equipment Alarms, Displays and Control Functions (Sheet 4 of 4)

Equipment/Instrument Name	MCR/RSC Alarm	MCR Display	MCR/RSC Control Function	RSC Display
Component Cooling Water Pump Area Temperature (VRS-TCA-501, 511, 521, 531)	Yes	No	No	No
Essential Chiller Unit Area Temperature (VRS-TCA-541, 551, 561, 571)	Yes	No	No	No
Charging Pump Area Temperature (VRS-TCA-581, 591)	Yes	No	No	No
Annulus Emergency Exhaust Filtration Unit Area Temperature (VRS-TCA-601, 611)	Yes	No	No	No
Penetration Area Temperature (VRS-TCA-621, 631, 641, 651)	Yes	No	No	No
Spent Fuel Pit Pump Area Temperature (VRS-TCA-661,671)	Yes	No	No	No

Table 2.7.5.2-3 Engineered Safety Features Ventilation System Inspections, Tests, Analyses, and Acceptance Criteria (Sheet 1 of 6)

Design Commitment	Inspections, Tests, Analyses	Acceptance Criteria
 The functional arrangement of the ESFVS is as described in the Design Description of this Subsection 2.7.5.2.1, and as shown in Figures 2.7.5.2-1 through 2.7.5.2-5. 	1.a An i <u>I</u> nspection of the as- built ESFVS will be performed.	1.a The as-built ESFVS conforms with-to_the functional arrangement as described in the Design Description of this Subsection 2.7.5.2.1 and as shown in Figures 2.7.5.2-1 through 2.7.5.2-5.
1.b Each mechanical division of <u>theThe</u> annulus emergency <u>exhaust system</u> filtration units that areidentified in Table 2.7.5.2-1 are is physically separated from the other divisions of the annulus emergency exhaust system <u>so as not to preclude</u> <u>accomplishment of the safety</u> <u>function</u> .	1.b Inspections <u>and analysis</u> of the as-built annulus emergency exhaust system will be performed.	1.b <u>A report exists and concludes</u> <u>that eachEach</u> mechanical division of the as-built annulus emergency filtration units that are identified in <u>Table 2.7.5.2 1 are is</u> physically separated from other mechanical divisions of the system by spatial separation, barriers, or enclosures so as to assure that the functions of the safety related systems are maintainedfrom other mechanical divisions by structural barriers.
1.c Each mechanical division of the The Class 1E electrical room air handling units, Class 1E electrical room return air fans and Class 1E battery room exhaust fans-that are identified in Table 2.7.5.2-1 are-is physically separated from the other divisions of the Class 1 E electrical room HVAC system so as not to preclude accomplishment of the safety function.	1.c Inspections <u>and analysis</u> of the as-built Class 1E electrical room HVAC system will be performed.	1.c <u>A report exists and concludes</u> <u>that eachEach</u> mechanical division of the as-built Class 1E electrical room air handling units, Class 1E electrical room return air fans and Class 1E battery room exhaust fans that are identified in Table 2.7.5.2.1 are-is_physically separated from other mechanical divisions of the system by spatial separation, barriers, or enclosures so as to assure that the functions of the safety related systems are maintained from other mechanical divisions by structural barriers.

2.7 PLANT SYSTEMS

1.d Each mechanical division of the The safeguard component area air handling units that are identified in Table 2.7.5.2- 1-are-is physically separated from the other divisions of the safeguard component area HVAC system so as not to preclude accomplishment of the safety function.	1.d Inspections <u>and analysis</u> of the as-built safeguard component area HVAC system will be performed.	1.d <u>A report exists and concludes</u> <u>that each</u> mechanical division of the as-built safeguard component area air handling units that are identified in Table 2.7.5.2-1 <u>are is</u> physically separated from other mechanical divisions of the system by spatial separation, barriers, or enclosures so as to assure that the functions of the safety related systems are maintainedfrom other mechanical divisions by structural barriers.
1.e Each mechanical division of the The emergency feedwater pump area air handling units that are identified in Table 2.7.5.2 1 are is physically separated from the other divisions of the emergency feedwater pump area HVAC system so as not to preclude accomplishment of the safety function.	 Inspections <u>and analysis</u> of the as-built emergency feedwater pump area HVAC system will be performed. 	1.e <u>A report exists and concludes</u> <u>that each</u> mechanical division of the as-built emergency feedwater pump area air handling units-that are identified in Table 2.7.5.2- 1 are-is physically separated from other mechanical divisions of the system by spatial separation, barriers, or enclosures so as to assure that the functions of the safety related systems are maintained from other mechanical divisions by structural barriers.

Table 2.7.5.2-3 Engineered Safety Features Ventilation System Inspections, Tests, Analyses, and Acceptance Criteria (Sheet 2 of 6)

Design Commitment	Inspections, Tests, Analyses	Acceptance Criteria
1.f Each mechanical division of <u>the</u> The safety-related component area air handling units that are_identified in <u>Table 2.7.5.2 1 are is</u> physically separated from the other divisions of the safety- related component area HVAC system <u>so as not to</u> <u>preclude accomplishment of</u> <u>the safety function</u> .	1.f Inspections <u>and analysis</u> of the as-built safety- related component area HVAC system will be performed.	1.f <u>A report exists and concludes</u> <u>that eachEach</u> mechanical division of the as-built safety- related component area air handling units that are identified in Table 2.7.5.2-1 <u>are-is</u> physically separated from other mechanical divisions of the system by <u>spatial separation, barriers, or</u> <u>enclosures so as to assure</u> that the functions of the safety related systems are <u>maintained</u> from other mechanical divisions by <u>structural barriers</u> .
 The seismic Category I equipment, identified in Table 2.7.5.2-1, is designed tocan withstand seismic design basis loads without loss of safety function. 	2.i Inspections will be performed to verify that the <u>seismic as-built</u> <u>seismic Category I as- built</u> equipment identified in Table 2.7.5.2-1 is located in the reactor <u>building and power</u> <u>source buildinga seismic</u> <u>Category I structure</u> .	2.i The <u>as-built</u> seismic Category I as-built equipment identified in Table 2.7.5.2-1 is located in the reactor building and power source building seismic Category I structure.
	2.ii Type tests, and/or analyses, or a combination of type tests and analyses of the seismic Category I equipment identified in Table 2.7.5.2-1 will be performed_using analytical assumptions, or will be performed under conditions, which bound the seismic design basis requirements.	2.ii The result of the type tests and/or analyses concludes <u>A</u> report exists and concludes that the seismic Category I equipment <u>identified in Table</u> <u>2.7.5.2-1</u> can withstand seismic design basis loads without loss of safety function.
	2.iii Inspections <u>and analyses</u> will be performed <u>to verify</u> <u>that on</u> the as-built <u>seismic</u> <u>Category I equipment</u> <u>identified in Table 2.7.5.2-</u> <u>1, equipment</u> including anchorages, is seismically <u>bounded by the tested or</u> <u>analyzed conditions</u> .	2.iii <u>A report exists and concludes</u> <u>that the The as-built seismic</u> <u>Category I</u> equipment <u>identified in Table 2.7.5.2-1</u> , including anchorage <u>s</u> , is seismically bounded by the tested or analyzed conditions.

3.a The Class 1E components equipment, identified in Table 2.7.5.2-1, are is powered from their its respective Class 1E division.	3.a A test will be performed on each division of the as- built <u>components-Class 1E</u> <u>equipment identified in</u> <u>Table 2.7.5.2-1</u> by providing a simulated test signal only in the Class 1E division under test.	3.a The simulated test signal exists at the as-built Class 1E equipment identified in Table 2.7.5.2-1, under test.
3.b. Separation is provided between <u>redundant Class 1E</u> divisions <u>of Class 1E cables</u> , and between Class 1E <u>divisions cables</u> and non- Class 1E cable <u>s</u> .	3.b Inspections of the as-built Class 1E divisional cables will be performed.	3.b Physical separation or electrical isolation is provided in accordance with R.G 1.75, between the as-built cables of redundant Class 1E divisionscables and between Class 1E divisions-cables and non-Class 1E cables.

Table 2.7.5.2-3 Engineered Safety Features Ventilation System Inspections, Tests, Analyses, and Acceptance Criteria (Sheet 3 of 6)

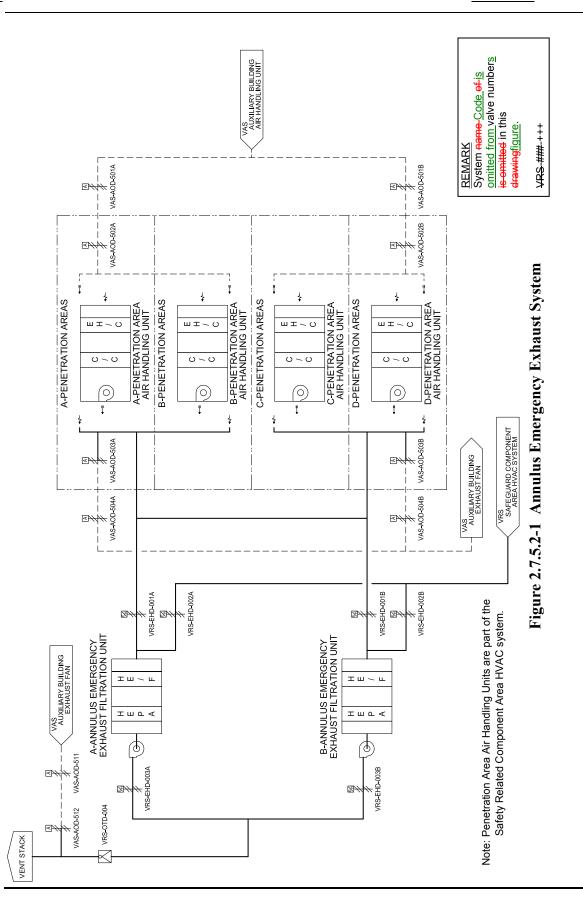
Design Commitment	Inspections, Tests, Analyses	Acceptance Criteria
4.a The annulus emergency exhaust system is capable of meeting meets numerical performance values used in the safety analysis-listed in Subsection 2.7.5.2.1.1.	4.a.i Type tests, and analyses, or tests and analyses, of filter efficiencies for the annulus emergency exhaust system will be performed on both divisions.	4.a.i <u>A report exists and</u> <u>concludes that the as-built</u> annulus emergency exhaust system is capable of <u>meetingmeets or exceeds a</u> <u>the-filter</u> <u>efficienciesefficiency of 99%</u> <u>identified in Subsection</u> <u>2.7.5.2.1.1 on both in each</u> divisions.
	4.a.ii A Test-test of negative pressure arrival time for the as-built annulus emergency exhaust system will be performed on both divisions.	4.a.ii The-as-built annulus emergency exhaust system is capable of drawingdraws down all four penetration areas and all four safeguard component areas to less than or equal to -0.25 inches w.g. relative to adjacent areas within <u>240 seconds</u> the arrival time identified in <u>Subsection 2.7.5.2.1.1 on</u> <u>both for each</u> divisions.
4.b The Class 1E electrical room HVAC system provides conditioning-conditioned air to maintain area design temperature within design limits in the Class 1E electrical rooms during all plant operating conditions, including normal plant operations, abnormal and accident conditions and to maintain relative humidity limits in the remote shutdown room during plant operating conditions, including normal plant operations, abnormal and accident conditions.	4.b Tests and analyses of the as-built Class 1E electrical room HVAC system will be performed for all four divisions.	4.b The A report exists and concludes that the as-built Class 1E electrical room HVAC system is capable of providing conditioning conditioned air to maintain area design-temperature within design limits within the Class 1E electrical rooms during all plant operating conditions, including normal plant operations, abnormal and accident conditions and to maintain relative humidity limits in the remote shutdown room during plant operations, abnormal and accident conditions.

4.c The Class 1E electrical room HVAC system provides battery room ventilation to maintain hydrogen concentration within the design limit <u>during all plant</u> <u>operating conditions, including</u> <u>normal plant operations,</u> <u>abnormal and accident</u> <u>conditions</u> .	4.c Tests and analyses of the as-built Class 1E electrical room HVAC system will be performed for all four divisions.	4.c The A report exists and concludes that the as-built Class 1E electrical room HVAC system is capable of providing battery room ventilation to maintain hydrogen concentration below 21% by battery room volume. during all plant operating conditions, including normal plant operations, abnormal and accident conditions.
4.d The safeguard component area HVAC system provides conditioning conditioned air to maintain area design temperature within design limits within the safeguard component areas when the respective equipment is operating during a design basis accident or LOOP.	4.d Tests and analyses of the as-built safeguard component area HVAC system will be performed for all four divisions.	4.d <u>A report exists and concludes</u> <u>that the</u> as-built safeguard component area HVAC system is capable of providing conditioning <u>conditioned</u> air to maintain area design temperature <u>within design</u> limits within the safeguard component areas when the respective equipment is operating <u>during</u> <u>a design basis accident or</u> <u>LOOP</u> .

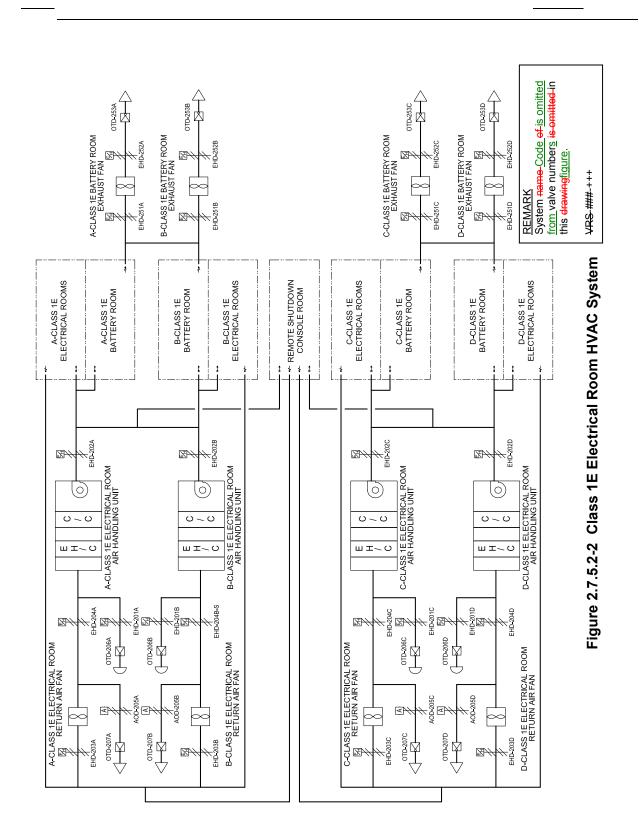
Table 2.7.5.2-3 Engineered Safety Features Ventilation System Inspections, Tests, Analyses, and Acceptance Criteria (Sheet 4 of 6)

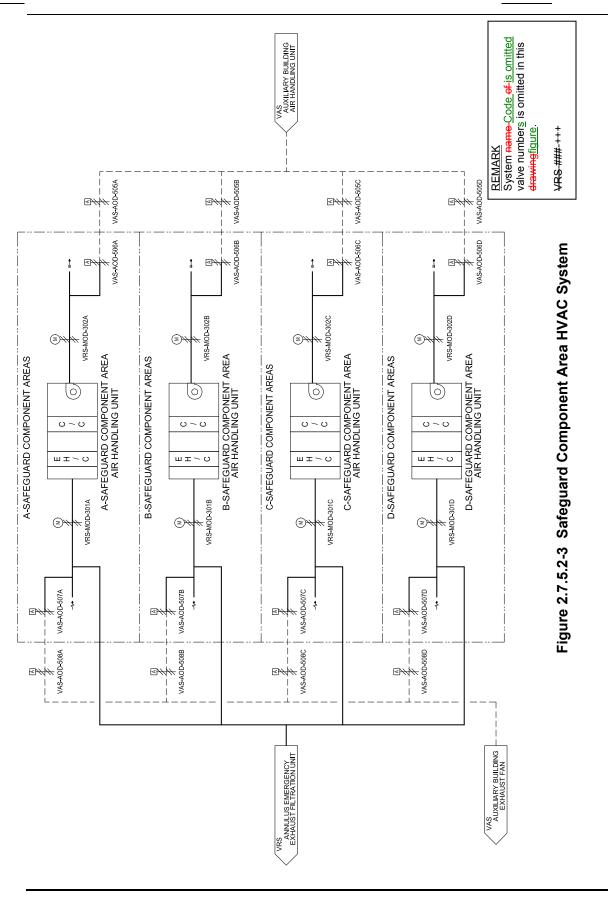
Design Commitment	Inspections, Tests, Analyses	Acceptance Criteria
4.e The emergency feedwater pump area HVAC system provides conditioning conditioned air to maintain area design temperature limits within the emergency feedwater pump areas when the respective equipment is operating during a design basis accident or LOOP.	4.e Tests and analyses of the as-built emergency feedwater pump area HVAC system will be performed for all four divisions.	4.e <u>A report exists and</u> <u>concludes that t</u> he as-built emergency feedwater pump area HVAC system is capable of providing <u>conditioning-conditioned</u> air to maintain area design temperature limits within the emergency feedwater pump areas when the respective equipment is operating <u>during a design basis</u> <u>accident or LOOP</u> .
4.f The safety-related component area HVAC system provides conditioning-conditioned air to maintain area design temperature within design limits in each individual safety-related component area, when the respective equipment is operating during a design basis accident or LOOP.	4.f Tests and analyses of the as-built safety- related component area HVAC system will be performed for each safety-related component area.	4.f <u>A report exists and</u> <u>concludes that t</u> The as-built safety-related component area HVAC system is capable of providing <u>conditioning-conditioned</u> air to maintain area <u>design</u> temperature <u>within design</u> limits in each individual safety-related component area, when the respective equipment is operating <u>during a design basis</u> <u>accident or LOOP</u> .
5.a The <u>remotely operated</u> dampers, identified in Table 2.7.5.2-1, <u>as having PSMS</u> <u>control</u> perform an active safety function to change position as indicated in the table after receiving a signal from PSMS.	5.a.i Tests <u>-of-will be</u> <u>performed on the as-</u> built <u>remotely operated</u> dampers identified in Table 2.7.5.2-1 <u>as</u> <u>having PSMS control</u> <u>will be performed</u> using <u>a</u> -simulated signal <u>s</u> .	5.a-i Each-The as-built remotely operated dampers identified in Table 2.7.5.2-1 as having PSMS control perform the active safety function identified in the table after receiving an a simulated ECCS actuation signal or a high temperature signal.
	5.a.ii Tests of the as-built tornado dampers identified in Table 2.7.5.2-1 will be performed under preoperational test pressure, and fluid flow conditions.	5.a.ii Each as-built tornado damper changes position as identified in Table 2.7.5.2-1

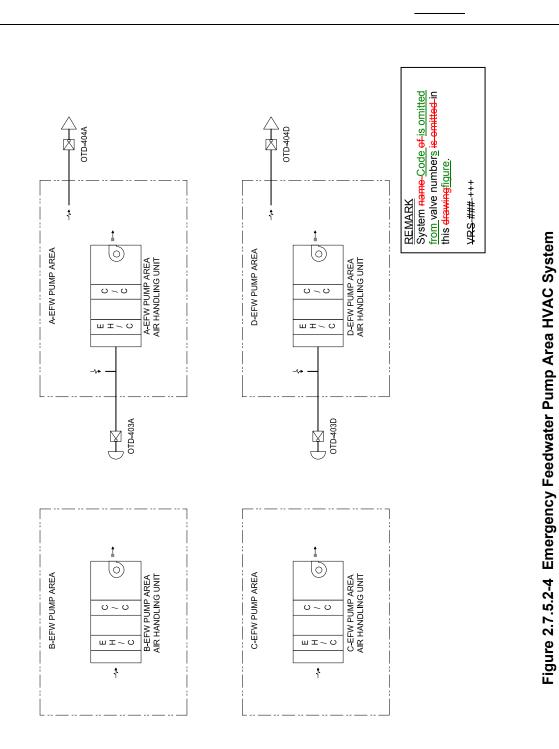
5.b After loss of motive power, the remotely operated dampers, identified in Table 2.7.5.2-1, assume the indicated loss of motive power position.	5.b Tests of the as-built remotely operated dampers <u>identified in</u> <u>Table 2.7.5.2-1</u> will be performed under the conditions of loss of motive power.	5.b Upon loss of motive power, each as-built remotely operated damper identified in Table 2.7.5.2-1 assumes the indicated loss of motive power position.
5.c The fire dampers in <u>the</u> ductwork that penetrates <u>the</u> fire barriers that are required to protect safe-shutdown capability close fully when called upon to do so <u>under</u> design air flow conditions.	5.c <u>Type tests, tests, a</u> <u>combination of type tests</u> <u>and analyses, or a</u> <u>combination of tests and</u> <u>analyses of the fire</u> <u>dampers will be performed</u> <u>under the conditions which</u> <u>bound the design air</u> <u>conditionsTests of the as-</u> <u>built fire dampers will be</u> performed .	5.c Each as built fire damper in ductwork that penetrates _fire barrierA report exists and concludes_ that the fire dampers in the ductwork that penetrates a fire barrier that are is required to protect safe- shutdown capability close under design air flowt conditions.


Table 2.7.5.2-3 Engineered Safety Features Ventilation System Inspections, Tests, Analyses, and Acceptance Criteria (Sheet 5 of 6)

Design Commitment	Inspections, Tests, Analyses	Acceptance Criteria
5.d Controls exist are provided in the MCR to open and close the remotely operated dampers identified in Table 2.7.5.2-2.	5.d Tests will be performed on the as-built remotely operated dampers listed identified in Table 2.7.5.2- 2 using controls in the <u>as- built</u> MCR.	5.d Controls-exist in the as-built MCR to-open and close the as-built remotely operated dampers listed-identified in Table 2.7.5.2-2.
5.e The system dampers and tornado dampers, identified in Table 2.7.5.2-1, as having an active safety function perform an active safety function to change position as indicated in the table.	5.e.i Tests of the as-built system <u>dampers identified in Table</u> 2.7.5.2-1 as having an <u>active safety function will</u> <u>be performed under</u> <u>preoperational flow and</u> <u>differential pressure test</u> <u>conditions.</u>	5.e.i Each as-built system damper changes position as identified in Table 2.7.5.2-1 as having an active safety function under preoperational test conditions.
	5.e.ii Tests of the as-built tornado dampers identified in Table 2.7.5.2-1 as having an active safety function will be performed under preoperational test conditions.	5.e.ii Each as-built tornado damper changes position as identified in Table 2.7.5.2-1 as having an active safety function under preoperational test conditions.
6.a. Controls <u>exist are provided</u> in the MCR to start and stop the ESFVS air handling units and filtration units identified in Table 2.7.5.2-2.	6.a.Tests will be performed on the as-built air handling units and filtration units identified in Table 2.7.5.2- 2 using controls in the as- built MCR.	6.a Controls exist-in the as-built MCR to-start and stop the as-built air handling units and filtration units identified in Table 2.7.5.2-2.
6.b. The annulus emergency exhaust system -filtration unit fans - system air handling unit fans-identified in Table 2.7.5.2- 1 start and the isolation dampers identified in Table 2.7.5.4-1 perform an active safety function to change close position simultaneously after receiving <u>upon receipt of</u> an ECCS actuation signal.	6.b. <u>i</u> Tests of the as-built annulus emergency exhaust system filtration unit fans <u>identified in Table</u> <u>2.7.5.2-1</u> and isolation damper <u>identified in Table</u> <u>2.7.5.4-1</u> will be performed using a simulated signal.	6.b. <u>i</u> The as-built annulus emergency exhaust system filtration unit fans identified in Table 2.7.5.2-1 start and <u>each of</u> the as-built isolation dampers identified in Table 2.7.5.4-1 performs the active safety function <u>simultaneously after</u> receiving close upon receipt <u>of aan simulated</u> ECCS actuation signal.
6.c.The Class 1E electrical room HVAC system air handling unit fans identified in Table 2.7.5.2- 1 start after receiving an ECCS actuation signal.	6.c. Tests of the as-built Class 1E electrical room HVAC system air handling unit fans <u>identified in Table</u> <u>2.7.5.2-1</u> will be performed using a simulated signal.	6.c. The as-built Class 1E electrical room HVAC system air handling unit fans identified in Table 2.7.5.2-1 start after receiving an-a simulated ECCS actuation signal.


6.d The safeguard component area HVAC system, emergency feedwater pump area HVAC system, and the safety related component area HVAC system air handling unit fans identified in Table 2.7.5.2- 1 start after receiving a high temperature signal.	6.d Tests of the as-built safeguard component area HVAC system, emergency feedwater pump area HVAC system, and the safety related component area HVAC system air handling unit fans <u>identified in Table 2.7.5.2-</u> <u>1</u> will be performed using a simulated signal.	6.d The as-built safeguard component area HVAC system, emergency feedwater pump area HVAC system, and the safety related component area HVAC system air handling unit fans identified in Table 2.7.5.2-1 start after receiving a <u>simulated</u> high temperature signal.
---	--	--


Table 2.7.5.2-3 Engineered Safety Features Ventilation System Inspections, Tests, Analyses, and Acceptance Criteria (Sheet 6 of 6)


	Design Commitment	Inspections, Tests, Analyses	Acceptance Criteria
7.	MCR a <u>A</u> larms and displays of the ESFVS parameters identified in Table 2.7.5.2-2 can be retrieved <u>are provided</u> in the MCR.	 Inspections will be performed for retrievability of the ESFVS parameters alarms and displays identified in Table 2.7.5.2- 2 in the as-built MCR. 	 MCR a<u>A</u>larms and displays identified in Table 2.7.5.2-2 can be retrieved in the as- built MCR.
8.	RSC a-Alarms, displays and controls are-identified in Table 2.7.5.2-2 are provided in the RSC.	8. <u>i</u> Inspection s <u>will be</u> <u>performed for retrievability</u> of the as built RSC -alarms , <u>and</u> displays and controls will be performedidentified <u>in Table 2.7.5.2-2 in the</u> <u>as-built RSC</u> .	8. <u>i</u> Alarms , <u>and</u> displays and controls exist on the as built RSC as identified in Table 2.7.5.2-2<u>can be retrieved in</u> <u>the as-built RSC</u>.
		8.ii Tests of the as-built RSC control functions identified in Table 2.7.5.2-2 will be performed.	8.ii Controls in the as-built RSC operate the as-built equipment identified in Table 2.7.5.2-2 with an RSC control function

Draft to Revision 32

Draft to Revision 32

Item No.	Explanation/Basis for Change	
Design Description 2.7.5.2		
0000	Notes 1 and 2. See items VVV, WWW, XXX, YYY and ZZZ.	
	scription 2.7.5.2.1.1 Annulus Emergency Exhaust System	
A	Deleted the subheadings to provide consistency with other Tier 1 sections. Moved information about maintaining negative pressure from <i>"Key Design Features"</i> .	
	See item E.	
В	Deleted the first sentence and first two bullets because the information is redundant to above paragraphs.	
	This change does not alter the response to RAI 54, 14.3.7.3.6-5 or 14.3.7.3.6-6. This change does not alter the response to RAI 54, 14.3.7.3.6-12.	
С	Deleted text describing components in airflow because information is in Figure 2.7.5.1-1.	
	See item PPP.	
D	Note 1 and Note 2.	
	See items QQQ and ITAAC AC #5.aii and AC 5.aii.	
	This change alters the response to RAI 54, 14.3.7.3.6-22	
Е	Note 1 and Note 2.	
	See item RRR.	
	This change alters the response to RAI 184, 14.03.07-19.	
F	Note 1 and Note 2. See item RRR Deleted negative statement regarding ASME components. This change alters the response to RAI 242, 14.03.03-11.	
G	Relocated portions of the text to the Introduction. Refer to item A.	
H	Note 1 and Note 2. See item JJJJ.	
Ι	Deleted text because system logic information is redundant to Table 2.7.5-2.	
J	Deleted the text because the interlock information is redundant to Table 2.7.5-2.	
K	Note 1 Note 2.	
T	See item SSS.	
L	Deleted the text regarding EQ because no negative information from Tier 1 Design Description information is required.	
М	Deleted negative information from Tier 1 Design Description.	
	This change does not alter the response to RAI 54, 14.3.7.3.6-1.	
Ν	Note 1 and Note 2. See item and UUU.	
	This change alters the response to RAI 54, 14.3.7.3.6-5 or 14.3.7.3.6-6	
	This change alters the response to RAI 54, 14.3.7.3.6-14.	
	scription 2.7.5.2.1.2 Class 1E Electrical Room HVAC System	
0	Deleted the subheadings to provide consistency with other Tier 1 sections and	

Item No.	Explanation/Basis for Change		
	editorial change.		
Р	Deleted the first paragraph of Key Design Features because it is redundant to text in the first paragraph of the section.		
Q	Note 1 and Note 2.		
	See item PPP.		
	This change alters the response to RAI 54, 14.3.7.3.6-22.		
R	Note 1 and Note 2.		
	See item WWW.		
	This change does not alter the response to RAI 54, 14.3.7.3.4-12.		
S	Note 1 and Note 2. See item CCCC.		
Т	Deleted the fifth paragraph regarding internally generated missiles because it redundant to Table 2.2-4 ITAAC # 21 and Section 2.2.5.		
	This change alters the response to RAI 54, 14.3.7.3.6-17.		
U	Note 1 and Note 2.		
	See item CCCC.		
V	This change alters the response to RAI 184, 14.03.07-19. Note 1 and Note 2.		
V	Deleted negative statement regarding ASME components		
	See item RRR.		
	This change alters the response to RAI 242, 14.03.03-11.		
W	Deleted text because it is redundant to the introductory text.		
Х	Note 1 and Note 2.		
Y	See Item #JJJJ. Deleted the text because the logic information is redundant to Table 2.7.5-2.		
Z	Deleted the text because interlock information is redundant to Table 2.7.5-2.		
AA	Note 1 Note 2.		
	See item SSS.		
BB	Deleted negative information from Tier 1 Design Description.		
CC	Deleted the text on interface requirements because no negative information from Tier		
	1 Design Description information is required.		
	This change does not alter the response to RAI 54, 14.3.7.3.6-1.		
DD	Note 1 and Note 2.		
	See items UUU and VVV.		
	This change alters the response to RAI 54, 14.3.7.3.6-11.		
	scription 2.7.5.2.1.3 Safeguard Component Area HVAC System		
EE	Deleted the subheadings to provide consistency with other Tier 1 sections and editorial change.		
PPPP	Consistency and technical accuracy changes.		
FF	Deleted the heading and first paragraph of "Key Design Features" because it is		
**	redundant to text in the first paragraph of the section.		
GG	Deleted the paragraph regarding internally generated missiles because it		
	redundant to Table 2.2-4 ITAAC # 21 and Section		
	This change alters the response to RAI 184, 14.03.07-19.		

Tier 1 Changes Explanation/Basis Document
Tier 1, Section 2.7.5.2

Item No.	Explanation/Basis for Change
HH	Note 1 and Note 2.
	See item RRR.
	This change alters the response to RAI 242, 14.03.03-11.
II	Deleted the text regarding conditioned air because it is redundant to the introductory
	text
JJ	Note 2.
	See Item JJJJ.
KK	Deleted the text because the logic information is redundant Table 2.7.5-2.
LL	Deleted the text because the interlock information is redundant to Table 2.7.5-2.
MM	Note 1 Note 2.
	See item TTT.
NN	Deleted negative statements regarding EQ from Tier 1.
00	Deleted negative information from Tier 1 Design Description.
	This change does not alter the response to RAI 54, 14.3.7.3.6-1.
РР	Note 1 and Note 2.
	See item WWW.
	This change does not alter the response to RAI 54, 14.3.7.3.2-9.
-	scription 2.7.5.2.1.4 Emergency Feedwater Pump Area HVAC System
QQ	Deleted the subheadings to provide consistency with other Tier 1 sections and editorial change.
РРРР	Consistency and technical accuracy changes.
RR	
	Deleted the first sentence of Key Design Features because it is redundant to the
SS	introductory text Note 1 and Note 2.
66	See item PPP.
	This change alters the response to RAI 54, 14.3.7.3.6-22.
TT	Deleted the paragraph regarding internally generated missiles because it redundant to
11	Table 2.2-4 ITAAC # 21 and Section 2.2.5.
	This change alters the response to RAI 54, 14.3.7.3.6-17.
	This change alters the response to RAI 184, 14.03.07-19
UU	Note 1 and Note 2. Deleted negative statement regarding ASME components. See
	item SSS.
	This change alters the response to RAI 242, 14.03.03-11.
VV	Deleted the text of discussing system operation because it is redundant to the
	introductory text.
WW	Note 1 and Note 2.
	See Item JJJJ.
XX	Deleted the text because the logic information is redundant to Table 2.7.5-2.
YY	Deleted the text because the interlock information is redundant to Table 2.7.5-2.
ZZ	Note 1 and Note 2.
	See item SSS.
AAA	Deleted negative information from Tier 1 Design Description.
BBB	Deleted negative information from Tier 1 Design Description.
	This change does not alter the response to RAI 54, 14.3.7.3.6-1.
CCC	Note 1 and Note 2.
	See item XXX.

Item No.	Explanation/Basis for Change
	This change alters the response to RAI 14.03.07-43.
Design De	scription 2.7.5.2.1.5 Safety Related Component Area HVAC System
DDD	Deleted the subheadings to provide consistency with other Tier 1 sections and changes for accuracy of description.
EEE	Change for accuracy of description.
FFF	Deleted the first paragraph of Key design features because it is redundant to the introductory text and editorial change. This change does not alter the response to RAI 64,9.4.5-16.
GGG	Note 1 and Note 2. See item RRR. This change alters the response to RAI 184, 14.03.07-19.
HHH	Note 1 and Note 2. Deleted negative statement regarding ASME components. See item SSS.
III	Text for System Operation was deleted because it is redundant to the introductory text
JJJ	Note 2. See Item JJJJ.
KKK	Deleted text because system logic information is redundant to Table 2.7.5-2.
LLL	Deleted the text because the interlock information is redundant to Table 2.7.5-2.
MMM	Note 1and Note 2. See item TTT.
NNN	Deleted negative statements from Tier 1Design Description.
000	Deleted negative information from Tier 1 Design Description.
PPP	This change alters the response to RAI 54, 14.3.7.3.6-1. Note 1 and Note 2.
PPP	See item YYY.
QQQ	Note 1.
RRR	Note 1.
SSS	Note 1. See items F, V, UU and HHH.
TTT	Note 1. See items K, AA, MM, ZZ and MMM.
UUU	Note 1. See items B and N.
VVV	Note 1.
WWW	Note 1. See item R
XXX	Note 1. See item PP.
YYY	Note 1. See item CCC.
ZZZ	Note 1. See item NNN.
AAAA	Note 1. See item D.
BBBB	Note 1. Note 1. See item S.
CCCC DDDD	
EEEE	Note 1. Note 1.
FFFF	Note 1.
GGGG	Note 1.
HHHH	Note 1.
IIII	Note 1.
1111	11000 1.

Item No.	Explanation/Basis for Change
JJJJ	Note 1.
KKKK	Note 1.
Table 2.7.5	5.2-1
SSSS	Changes to Table heading for technical accuracy.
LLLL	Added fan cooling unit cooling coils for each corresponding fan unit in the table in response to RAI 404, 14.03.03-22.
	Added electric heating coils for technical completeness for all each corresponding fan unit.
	This change alters the response to RAI 242, 14.03.03-11.
MMMM	Corrected the equipment name for VRS-EHD-001. Corrected PSMS Control signals. This change does not alter the response to RAI 54, 14.3.7.3.6-8.
NNNN	Corrected the equipment name in response to RAI 583, 9.4.5-11.
QQQQ	Corrected PSMS control signals in multiple locations in the table to provide technical accuracy.
Table 2.7.5	
RRRR	Delete tag number VRS-MFN-531 C, D from Charging Pump Area Air Handling Unit Fans column for technical accuracy.
ITAAC Ta	ble 2.7.5.2-3
1.a	DC, ITA, AC
	 Generic changes to ITAAC for functional arrangement to provide clarity and consistency. [RIS, Scope, 2nd bullet.]
1.b	DC, ITA and AC of ITAAC 1.b through 1.f.
through 1.f	 Generic changes made to ITAAC for mechanical separation to provide clarity and consistency. [RIS, Scope, 2nd bullet.]
	This change alters the response to RAI 184, 14.03.07-19.
2	 DC, ITA, AC Generic changes to ITAAC for seismic qualification to provide clarity and consistency. [RIS, Scope, 2nd bullet.]
	See item D.
3.a	 DC, ITA Generic changes to ITAAC for electrical separation to provide clarity and consistency. [RIS, Scope, 2nd bullet.]
	The change alters the response RAI 184, 03.07-16 and 03.07-17.
3.b	DC, ITA
5.0	 Generic changes to ITAAC for electrical separation to provide clarity and consistency. [RIS, Scope, 2nd bullet.]
	The change alters the response RAI 184, 14.03.07-17. The change alters the response RAI 191, 14.03.04-09.
4.a	 DC Editorial correction and clarification of operating modes. AC 4.a.i Revised to make the AC consistent with the ITA requirements, and

Item No.	Explanation/Basis for Change	
	to reflect the revised DC.	
	ITA	
	 Revised the ITA to include analysis options 	
	Requirements for numerical performance values have been moved from the DD to the AC ITAAC 4.a.i.	
	This change alters the response to RAI 54, 14.3.7.3.6-18.	
	This change alters the response to RAI 54, 14.3.7.3.6-4.	
	This change alters the response to RAI 54, 14.3.7.3.6-11 and 14.3.7.3.6-14. This change alters the response to RAI 184, 14.03.07-26.	
	This change alters the response to RAI 381, 14.03.07-20.	
	 ITA and AC. 4.a.ii Requirements for numerical performance values have 	
	been moved from the DD to the AC ITAAC 4.a.ii.	
	This change alters the response RAI 184, 14.03.07-26.	
	This change alters the response to RAI 54, 14.3.7.3.6-5, 14.3.7.3.6-6 and 14.3.7.3.6-23.	
4.b	DC and AC	
	 Editorial change to standard wording. 	
	This change alters the response to RAI 474, 09.04.05-10. This change alters the	
	response to RAI 54, 14.3.7.3.6-23.	
	This change alters the response to RAI 54, 14.3.7.3.6-4. This change alters the response to RAI 54, 14.3.7.3.6-14.	
	This change alters the response to RAI 184, 14.03.07-26.	
4.c	DC	
	 Editorial change to be consistent with DC 4.b. 	
	AC	
	 Revised the AC c to be consistent with the DC. 	
	Additional text regarding plan operating modes is included in response to RAI 474, 09.04.05-10.	
	This change alters the response to RAI 184, No.14.03.07-26.	
	DC – Additional text added in response to RAI 474, 09.04.05-10. AC	
	 Revised for consistency with DC. 	
	This change alters the response to RAI 54,14.3.7.3.6-14. This change alters the response to RAI 381, 14.03.07-40 and 14.03.07-43	
4.d	DC – Additional text added in response to RAI 474, 09.04.05-10.	
	AC	
	 Revised to be consistent with the DC. 	
	This change alters the response to RAI 54, 14.03.07-5 and 14.3.7.3.6-14.	
	This change alters the response to RAI 184, 14.03.07-26.	
	This change alters the response to RAI 474, 09.04.05-10.	
4.e	DC	

Item No.	Explanation/Basis for Change		
	 Additional text added in response to RAI 474, 09.04.05-10. 		
	AC		
	 Revised to be consistent with the DC 		
	This change alters the response to RAI 54, 14.03.07-26. and		
	This change alters the response to RAI 54, 14.03.07.03.06-14.		
	This change alters the response to RAI 474, 09.04.05-10.		
4.f	DC		
	 editorial change for clarity. 		
	AC		
	 Revised to be consistent with the DC. 		
	This change alters the response to RAI 54, RAI 14.3.7.3.6-14.		
	This change alters the response to RAI 184, 14.03.07-26.		
	This change alters the response to RAI 474, 09.04.05-10.		
5.a	5.a DC		
	 Generic changes to ITAAC for isolation dampers to provide clarity and consistency. [RIS, Scope, 2nd bullet.] 		
	5.a.i ITA, AC		
	 Generic changes to ITAAC for isolation dampers to provide clarity and 		
	consistency. [RIS, Scope, 2 nd bullet.]		
	 Number is changed to 5.a 		
	5.a.ii ITA, AC		
	 Deleted because this ITAAC is relocated in ITAAC Item 5.e.ii. 		
	This change alters the response to RAI 54 14.3.7.3.6-16.		
	This change does not alter the response to RAI 54, 14.3.7.3.6-19.		
	This change alters the response to RAI 54, 14.3.7.3.6-7.		
C 1	This change alters the response to RAI 184, 14.03.0-22		
5.b	Generic changes to ITAAC for isolation dampers to provide clarity and consistency. [RIS, Scope, 2 nd bullet.]		
5.c	DC		
	- Generic changes to ITAAC for MOVs adapted for dampers to provide clarity		
	and consistency. [RIS, Scope, 2 nd bullet.]		
	- Revised to specify the correct ITA for the DC. [RIS, Focus, 6 th and 7 th		
	bullets.]		
	AC		
	 Revised to provide AC for the ITA and DC requirements, and editorial 		
	changes. [RIS, Focus, 7 th bullet.]. Revised to show type tests vs tests for		
	dampers.		
	This change alters the response to RAI 30, 09.05.01-11.		
	ITA		
	- changed to specify type tests.		
	AC		
5.d	 changed to be consistent with the ITA. 		
J.U	DC		

Item No.	Explanation/Basis for Change
	 minor editorial change
	ITA
	– editorial changes to provide clarity.
	This change alters the response to RAI 452, 14.03.02-13.
5.e	DC, ITA, AC
	ITAAC is added to verify the active safety function of remotely operated dampers
6.a	and tornado dampers. Generic changes to ITAAC for MCR controls to provide clarity and consistency.
0.a	[RIS, Scope, 2 nd bullet.].
	This change alters the response to RAI 184, 14.03.0-22
6.b	Generic changes to ITAAC for automatic actuation signals to provide clarity and
	consistency. [RIS, Scope, 2 nd bullet.].
	Deleted the ITAAC for isolation dampers because this is redundant with ITAAC
	Item 5.a.
	This change alters the response to RAI 54, 14.3.7.3.6-7
	This change alters the response to RAI 184,14.03.07-22.
6.c	Generic changes to ITAAC for automatic actuation signals to provide clarity and
	consistency. [RIS, Scope, 2 nd bullet.].
6.d	This change alters the response to RAI 184,14.03.07-22.Generic changes to ITAAC for automatic actuation signals to provide clarity and
0.0	consistency. [RIS, Scope, 2 nd bullet.].
	This change alters the response to RAI 184 14.03.07-22.
7	Generic changes to ITAAC for MCR alarms and displays to provide clarity and
	consistency. [RIS p7, ITAAC Scope]
	See items H,X,JJ,WW and III
	This change alters the response to RAI 184, 14.03.07-18.
8	DC, ITA, AC
	- Generic changes to ITAAC for RSC alarms, displays and controls to provide
	clarity and consistency. [RIS, Scope, 2 nd bullet.]
	This change alters the response to RAI 184, 14.03.07-18, and the revisions included
	in UAP-HF-10043 (for ITA/AC 8.ii). See item III.
	This change alters the response RAI 54, 14.3.7.3.6-20.
	Figures 2.7.5.2-1 thru 2.7.5.2-5
	Editorial change to the note addressing omission of system numbers in valve designations
	This change does not alter the response to RAI 583, 9.4.5-11
	This change does not alter the response to RAI 505, 9.4.5-16.

Note 1: Revised to provide consistency between the Design Description (DD) and the Design Commitment (DC) in the ITAAC table. Revised text to include only the necessary attributes for ITAAC.

Note 2: Text relocated within the DD section to align with the sequence and numbering of the corresponding DC in the ITAAC table.

2.7.5.3 Containment Ventilation System (CVVS)

2.7.5.3.1 Design Description

The CVVS is designed to controls and maintains the environment temperature and radioactivity concentration within the containment at a level suitable for plant equipment operations. and to allow the safe access to the containment for the operating personnel during inspection and maintenance periods.

The CVVS includes:

- Containment purge system
- Containment fan cooler system
- Control rod drive mechanism (CRDM) cooling system
- Reactor cavity cooling system

2.7.5.3.1 Design Description

2.7.5.3.1.1 Containment Purge System

System Purpose and Functions

The containment purge system maintains sufficiently low concentrations of radioactivity in the containment atmosphere to allow access during maintenance and inspection activities. The containment purge system also provides means of relieving pressure build-up resulting from instrument air leakage and containment temperature fluctuations. The containment purge system has a safety function to support the containment isolation function as described in Subsection 2.11.2. With the exception of the containment isolation valves, the containment purge system is a non safety-related system.

Location and Functional Arrangement

The major components of the containment purge system are located in the reactor building and auxiliary building. The containment purge system consists of the containment low volume purge system and the containment high volume purge system. The containment low volume purge system consists of two containment low volume purge air handling units and two exhaust filtration units. The containment high volume purge system consists of a containment high volume purge air handling unit and an exhaust filtration unit.

Key Design Features

The key design features of the containment purge system are reflected in the system design bases, which include:

A

В

С

D

• The containment purge system has the capability to close the safety-related, seismic Category I, containment isolation valves during a design basis accident. • The low volume purge exhaust airflow is made to pass through a HEPA filter and Е a charcoal absorber by an exhaust fan, prior to being discharged to the atmosphere through the vent stack. The high volume purge exhaust airflow is made to pass through a HEPA filter by an exhaust fan, prior to being discharged to the atmosphere through the vent stack. Seismic and ASME Code Classifications The containment penetration piping and related isolation valves meet seismic Category F I requirements. The containment penetration piping and the related isolation valves comply with requirements of the ASME Code Section III Class 2. The containment purge system equipment and ductwork, including supports, in areas containing safety-related equipment are seismic Category II, except for the containment G isolation valves and penetration piping, to prevent adverse interaction with other safetyrelated systems during a seismic event. System Operation Н The important aspects of system operation are specified under "Logic". Alarms, Displays, and Controls With the exception of the containment isolation valves, there are no important alarms, displays, and controls. Logic The containment isolation valves in the containment purge system operate upon receipt J of a containment isolation signal, as described in Subsection 2.11.2. **Interlocks** There are no interlocks needed for direct safety functions related to the containment Κ purge system.

Class 1E Electrical Power Sources and Divisions

There are no Class 1E power sources for the containment purge system except the containment isolation valves.

Equipment to be Qualified for Harsh Environments

L

The safety-related portions of the containment purge system to be qualified for harsh environments are identified in Subsection 2.11.2.

Interface Requirements

There are no safety-related interfaces with systems outside of the certified design.

Numeric Performance Values

Not applicable.

2.7.5.3.1.2 Containment Fan Cooler System

System Purpose and Functions

The containment fan cooler system is designed to maintains containment air temperature below 120°F during the normal operation of the plant. The containment fan cooler system is used to prevent containment over pressurization for severe accident mitigation. The containment fan cooler system is a non safety-related system.

Location and Functional Arrangement

The containment fan cooler system is located in the containment. The containment fan cooler system consists of four fan cooler units.

Key Design Features

The containment fan cooler system maintains containment air temperature below 120°F during the normal operation of the plant.

Seismic and ASME Code Classifications

The containment fan cooler system is not designed to ASME Code Section III requirements. However, almost all of the containment fan cooler system components meet seismic Category II.

System Operation

There is no important system operation.

Alarms, Displays, and Controls

There are no important alarms, displays, and controls.

Logic

There is no logic needed for direct safety functions related to the containment fan cooler system.

F)

Q

Μ

Ν

0

ŀ	K	

S	

Т

Interlocks

There are no interlocks needed for direct safety functions related to the containment fan cooler system.

Class 1E Electrical Power Sources and Divisions

Not applicable.

Equipment to be Qualified for Harsh Environments

Not applicable.

Interface Requirements

There are no safety-related interfaces with systems outside of the certified design.

Numeric Performance Values

Not applicable.

2.7.5.3.1.3 Control Rod Drive Mechanism (CRDM) Cooling System

System Purpose and Functions

The CRDM cooling system is <u>designed to</u> removes heat dissipated by the CRDM. The CRDM cooling system is a non safety-related system.

Location and Functional Arrangement

The CRDM cooling system is located in the containment. The CRDM cooling system consists of one CRDM cooling unit and two CRDM cooling fans.

Key Design Features

The CRDM cooling system removes heat dissipated by the CRDM during normal plant operation

Seismic and ASME Code Classifications

The CRDM cooling system is not designed to ASME Code Section III requirements. The CRDM cooling system equipment and ductwork, including supports, in areas containing safety-related equipmentareseismic Category II, to prevent adverse interaction with other safety-related systems during a seismic event.

System Operation

There is no important system operation.

Т

V

W	

Х

Alarms, Displays, and Controls

There are no important alarms, displays, and controls.

Logic

There is no logic needed for direct safety functions related to the CRDM cooling system.

Interlocks

There are no interlocks needed for direct safety functions related to the CRDM cooling system.

Class 1E Electrical Power Sources and Divisions

Not applicable.

Equipment to be Qualified for Harsh Environments

Not applicable.

Interface Requirements

There are no safety-related interfaces with systems outside of the certified design.

Numeric Performance Values

Not applicable.

2.7.5.3.1.4 _Reactor Cavity Cooling System

System Purpose and Functions

The reactor cavity cooling system is designed to removes the heat dissipated by transferred from the reactor vessel and the reactor vessel support structure, and the heat generated by gamma radiation and fast neutron bombardment on in the primary shield wall. The reactor cavity cooling system is a non safety-related system.

Location and Functional Arrangement

The reactor cavity cooling system is located in the containment. The reactor cavity cooling system consists of two 100% capacity fans.

Key Design Features

The reactor cavity cooling system removes the heat dissipated by the reactor vessel and the reactor vessel support structure, and the heat generated by gamma radiation and fast neutron bombardment on the primary shield wall.

Ζ

BB

Υ

Seismic and ASME Code Classifications

The reactor cavity cooling system is not designed to ASME Code Section III requirements. However, almost all of the reactor cavity cooling system components meet seismic Category II.

System Operation

There is no important system operation.

Alarms, Displays, and Controls

There are no important alarms, displays, and controls.

Logic

There is no logic needed for direct safety functions related to the reactor cavity cooling system.

Interlocks

There are no interlocks needed for direct safety functions related to the reactor cavity cooling system.

Class 1E Electrical Power Sources and Divisions

Not applicable.

Equipment to be Qualified for Harsh Environments

Not applicable.

Interface Requirements

There are no safety-related interfaces with systems outside of the certified design.

Numeric Performance Values

Not applicable.

- 1. The functional arrangement of the CVVS is as described in the Design Description of Subsection 2.7.5.3.1.
- 2. Deleted.
- 3. The fire dampers in the ductwork of the containment purge system that penetrates the fire barriers required to protect safe shutdown capability close under design airflow conditions.

CC

DD

EE

FF	
GG	

HH

4. Non-safety related CVVS equipment and ductwork, including supports, whose failure could adversely interact with safety related SSCs meet seismic Category II requirements.

2.7.5.3.2 Inspections, Tests, Analyses, and Acceptance Criteria

Table 2.7.5.3-1 specifies the inspections, tests, analyses, and associated acceptance criteria for the CVVS. The ITAAC associated with the equipment, components and piping of the CVVS and non-ECWS that also comprise a portion of the CIS are described in Table 2.11.2-2.

	Design Commitment	Ins	pections, Tests, Analyses		Acceptance Criteria
1.	The functional arrangement of the CVVS is as described in the Design Description of this Subsection 2.7.5.3.1.	1.	Inspection <mark>s</mark> of the as-built CVVS will be performed.	1.	The as-built CVVS conforms <u>towith</u> the functional arrangement as described in Design Description of this Subsection 2.7.5.3.1.
2.	Deleted.	2.	Deleted.	2.	Deleted.
3.	The fire dampers in <u>the</u> ductwork of the containment purge system that penetrates <u>the</u> fire barrier <u>s</u> required to protect safe shutdown capability close <u>under design</u> <u>air flow conditions</u> .	3.	Type tests, tests, a combination of type tests and analyses, or a combination of tests and analyses of the fire dampers will be performed under the conditions which bound the design air conditions.Type tests of the fire dampers will be performed.	3.	<u>A report exists and concludes</u> <u>that the</u> fire dampers in the ductwork of the containment purge system that penetrates <u>the</u> fire barriers that are required to protect safe- shutdown capability close under <u>the conditions which</u> <u>bound</u> design air flow conditions.
4.	Non-safety related CVVS equipment and ductwork, including supports, <u>whose</u> <u>failure could adversely interact</u> <u>with safety related SSCs meet</u> <u>seismic Category II</u> <u>requirements.in areas</u> <u>containing safety-related</u> <u>equipment are seismic</u> <u>Category II</u> .	4. <u>i</u>	Analysis will be performed to demonstrate that non- safety related CVVS equipment and ductwork, including supports, do not adversely interact with safety related SSCs during and after an SSE.A combination of analysis and inspection will be performed.	4. <u>i</u>	Reports exist and conclude that the as-built non-safety related CVVS equipment and ductwork, including supports, <u>whose failure could adversely</u> <u>impact safety related SSCs</u> <u>do not adversely interact with</u> <u>in areas containing safety- related equipment are</u> <u>seismic Category II to prevent</u> <u>adverse interaction with other</u> <u>safety-related systems during</u> <u>and after an SSE</u> <u>a seismic</u> <u>event</u> .
		<u>4.ii</u>	Inspection will be performed to verify that the as-built non-safety related CVVS equipment and ductwork, including supports, are installed in accordance with the configurations specified by the analyses.	<u>4.ii</u>	The as-built non-safety related CVVS equipment and ductwork, including supports whose failure could adversely interact with safety related SSCs are installed in accordance with the configurations specified by the analyses.

Table 2.7.5.3-1Containment Ventilation System Inspections, Tests, Analyses,
and Acceptance Criteria

Item No.	Explanation/Basis for Change
Design Desc	ription 2.7.5.3.1
A	Relocated Design Description heading and numbering to be before the
	introductory paragraph.
В	Revised text to remove details that do not belong in Tier 1.
Design Desc	ription 2.7.5.3.1.1
С	Deleted text to provide consistency among Tier 1 sections. Subheadings are
	deleted from the Design Description.
	This change does not alter the response to RAI 184, question 14.03.07-27,
P	DCD_14.3.7-27
D	Deleted introductory sentence and first bullet because containment penetration
Е	closure capability is addressed in Section 2.11.2.
Е F	Deleted text describing details of the system that do not belong in Tier 1. Deleted redundant text. See item C.
г G	Notes 1 and 2.
U	
	See item HH.
	This change alters the response to RAI 242, 14.03.03-11.
	This change alters the response to RAI 73, question 06.05.01-1.
	This change alters the response to RAI 558, 06.05.01-17.
Н	Deleted text not required for Tier 1.
Ι	Deleted text because containment isolation valve control alarms and displays are s
	addressed in Section 2.11.2.
J	Deleted text because containment isolation valve logic is addressed in Section
V	2.11.2.
K L	Deleted negative statements from Tier 1.
L	Deleted text because Class 1E power for containment isolation valves is addressed in Section 2.11.2.
М	Deleted text because environmental qualification containment for isolation valves
111	is addressed in Section 2.11.2.
N	Deleted negative statements from Tier 1.
0	Deleted negative statements from Tier 1.
Design Desc	ription 2.7.5.3.1.2
Р	Editorial corrections/changes and to provide consistency among Tier 1 sections.
	Subheadings are deleted from the Design Description
Q	Editorial changes and to provide consistency and added discussion of severe
	accident mitigation function. See item R.
R	Deleted redundant text which appears in the introductory paragraph. See item Q.
S	- Deleted text because it is redundant to Table 2.5.3-14.03.03-11.
	This change alters the response to RAI 242, 14.03.03-11, RAI 404, 14.03.03-22 and RAI 558, 06.05.01-17.
	This change does not alter the response to RAI 73, 6.5.1-14.
Т	Deleted the negative statements from Tier 1.
	ription 2.7.5.3.1.3
U	Editorial corrections/changes and to provide consistency among Tier 1 sections.
	Subheadings are deleted from the Design Description.

V	Editorial change in Introductory text to provide consistency among Tier 1 sections
W	Deleted redundant text which appears in the introductory paragraph.
Х	Deleted text because it is redundant to Table 2.5.3-1.
	This change alters the response to RAI 242, 14.03.03-11.
	This change alters the response to RAI 73, question 06.05.01-1.
	This change does not alter the response to RAI 558, 06.05.01-17.
Y	Deleted negative statements from Tier 1.
Design D	Description 2.7.5.3.1.4
Z	Editorial corrections/changes and to provide consistency among Tier 1 sections. Subheadings are deleted from the Design Description.
AA	Editorial changes and to provide consistency and deleted discussion that is not required for Tier 1. See item AA.
BB	Deleted redundant text which appears in the introductory paragraph. See item AA.
CC	Deleted text because it is redundant to Table 2.5.3-1.
	This change alters the response to RAI 242, 14.03.03-11.
	This change alters the response to RAI 73, question 06.05.01-1.
	This change does not alter the response to RAI 558, 06.05.01-17.
DD	Deleted negative statements from Tier 1.
EE	Notes 1 and 2.
FF	Placeholder to provide consistent numbering. ITAAC Deleted in Rev. 2.
GG	Notes 1.
HH	Notes 1 and 2. See Items F, G, X and CC.
Table 2.7	7.5.3-1
1	DC, ITA, AC
	 Generic changes to ITAAC for functional arrangement to provide clarity and consistency. [RIS, Scope, 2nd bullet.]
2	Placeholder to provide consistent numbering. for ITAAC item that was previously deleted in response to. RAI 184, Question 14.03.07-27. No changes.
3	Added new ITAAC after Rev 2 of Tier 1 for the inspection of the fire dampers in response to RAI 558, 06.05.01-15. No changes.
4	Added new ITAAC after Rev 2 of Tier 1 in response to RAI 558, 06.05.01-17.
	This change alters the response to RAI 242, 14.03.03-11.
	This change alters the response to RAI 73, question 06.05.01-1.
	This change alters the response to RAI 558, 06.05.01-17.

Note 1: Revised to provide consistency between the Design Description (DD) and the Design Commitment (DC) in the ITAAC table. Revised text to include only the necessary attributes for ITAAC.

Note 2: Text relocated within the DD section to align with the sequence and numbering of the corresponding DC in the ITAAC table.

2.7.5.4 Auxiliary Building Ventilation System (ABVS)

2.7.5.4.1 Design Description

The ABVS is designed to provides <u>conditioned air proper environmental conditions</u> throughout all areas of the reactor building, the power source building, the auxiliary building and the access building during normal plant operation.

The ABVS includes:

- Auxiliary building HVAC system
- Non-Class 1E electrical room HVAC system
- Main steam / feedwater piping area HVAC system
- Technical support center HVAC system

2.7.5.4.1 Design Description

2.7.5.4.1.1 Auxiliary Building HVAC System

System Purpose and Functions

The auxiliary building HVAC system is designed to provide conditioningprovides <u>conditioned</u> air to maintain the proper environmental conditions for areas housing mechanical and electrical equipment (including area housing ESF equipment) in the reactor building, power source building, auxiliary building and access building during normal plant operation. With the exception of the isolation dampers, the auxiliary building HVAC system is a non safety related system.

Location and Functional Arrangement

The major components of auxiliary building HVAC system are located in the auxiliary building. The auxiliary building HVAC system consists of supply and exhaust systems. The supply system has two 50% capacity air handling units, both air handling units are connected to a common air distribution ductwork supplying air to served areas. The exhaust system has three 50% capacity exhaust fans. The ABVS exhaust flow is aligned to the plant vent stack. and is capable of providing dilution flow to gaseous effluent stream prior to release.

D

The auxiliary building HVAC system and containment low volume purge system are cross tied. This crosstie allows the exhaust flow from the auxiliary building HVAC system to be redirected to the containment low volume purge manually upon a high radiation alarm in the auxiliary building HVAC ductwork.

Key Design Features

A

В

С

The key design features of the auxiliary building HVAC system are reflected in the Е system design bases, which include: The auxiliary building HVAC system has the capability to close the safety related. seismic Category I isolation dampers of the penetration and safeguard component areas during a design basis accident, as shown in Figure 2.7.5.2-1 and Figure 2.7.5.2-3. F The auxiliary building HVAC system has the capability to close safety related. seismic Category I isolation dampers to prevent the back flow from the annulus emergency exhaust system during a design basis accident, as shown in Figure 2.7.5.2-1. The auxiliary building HVAC system equipment and ductwork, including supports, • in areas containing safety-related equipment are seismic Category II, except for G the seismic Category I isolation dampers and associated ductwork, to prevent adverse interaction with other safety-related systems during a seismic event. The auxiliary building HVAC system provides conditioning air to maintain the Н proper environmental conditions for the areas it serves during normal plant condition. The ABVS has the non-safety related capability of providing dilution flow to the L gaseous stream prior to its release from the plant vent stack. The auxiliary building HVAC system and containment low volume purge system J are cross connected to allow the exhaust from the radiological controlled areas to be filtered by the containment low volume purge exhaust filtration units. • Airborne radioactivity is monitored inside the exhaust air duct from the controlled Κ areas. The ventilation system has fire dampers to limit the spread of fire and combustion L products. The fire dampers are capable of closing against full airflow. Seismic and ASME Code Classifications Μ The auxiliary building HVAC system equipment and ductwork, including supports, in areas containing safety-related equipment are seismic Category II, except for the seismic Category I isolation dampers identified in Table 2.7.5.4-1 are gualified as seismic Category I to prevent adverse interaction with other safety-related systems Ν during a seismic event. The system components are not designed or constructed to

System Operation

The important aspects of system operation are specified under "Logic".

Alarms, Displays, and Controls

ASME Code Section III requirements.

0

Table 2.7.5.4-2 identifies alarms, displays, and controls associated with the system that are located in the MCR.	Р
Logic	
The isolation dampers identified in Table 2.7.5.4-1 operate upon receipt of the ECCS actuation signal.	Q
Interlocks	
There are no interlocks needed for direct safety functions related to the auxiliary building HVAC system.	R
Class 1E Electrical Power Sources and Divisions	
There are no Class 1E power sources for the auxiliary building HVAC system except for the isolation dampers identified in Table 2.7.5.4-1.	S
Equipment to be Qualified for Harsh Environments	
Not applicable.	т
Interface Requirements	
There are no safety-related interfaces with systems outside of the certified design	U
Numeric Performance Values	
Not applicable.	V

2.7.5.4.1.2 Non-Class 1E Electrical Room HVAC System

System Purpose and Functions

The non-Class 1E electrical room HVAC system is designed to provides conditioning conditioned air to maintain the proper environmental conditions for equipment in the electrical rooms during normal plant operation and LOOP. The non-Class 1E electrical room HVAC system is powered by the alternate ac power source during a LOOP. The non-Class 1E electrical room HVAC system is a non safety-related system.

Location and Functional Arrangement

The major components of non-Class 1E electrical room HVAC system are located in the auxiliary building. The non-Class 1E electrical room HVAC system consists of two 50% capacity air handling units, return air fans, and two 100% capacity battery room exhaust fans.

Key Design Features

W

Х

The non-Class 1E electrical room HVAC system provides conditioning air to maintain the proper environmental conditions within non-Class 1E electrical rooms during normal plant operation and LOOP. The non-Class 1E electrical room HVAC system is powered by the alternate ac power source during a LOOP.	Y
The ventilation system has fire dampers to limit the spread of fire and combustion products. The fire dampers are capable of closing against full airflow.	Z
Seismic and ASME Code Classifications	
The non-Class 1E electrical room HVAC system is non-seismic category and is not designed to ASME Code Section III requirements.	AA
System Operation	
There is no important system operation.	
Alarms, Displays, and Controls	
There are no important alarms, displays, and controls.	
Logic	
There is no logic needed for direct safety functions related to the non-Class 1E electrical room HVAC system.	
Interlocks	
There are no interlocks needed for direct safety functions related to the non-Class 1E electrical room HVAC system.	
Class 1E Electrical Power Sources and Divisions	
Not applicable.	
Equipment to be Qualified for Harsh Environments	
Not applicable.	
Interface Requirements	
There are no safety-related interfaces with systems outside of the certified design.	
Numeric Performance Values	
Not applicable.	
	I

BB

CC

DD

2.7.5.4.1.3 Main Steam / Feedwater Piping Area HVAC System

System Purpose and Functions

The main steam / feedwater piping area HVAC system designed to provides conditioning conditioned air to maintain the proper environmental conditions in each of the main steam / feedwater piping areas. The main steam / feedwater piping area HVAC system is a non safety-related system.

Location and Functional Arrangement

The major components of main steam / feedwater piping area HVAC system are located in the reactor building. The system consists of four 50% capacity air handling units. Each pair of air handling units services one of two main steam / feedwater piping areas.

Key Design Features

The main steam / feedwater piping area HVAC system provides conditioning air to maintain the proper environmental conditions within main steam / feedwater piping areas during normal plan operation.

Seismic and ASME Code Classifications

The main steam / feedwater piping area HVAC system is non-seismic category and is not designed to ASME Code Section III requirements.

System Operation

There is no important system operation.

Alarms, Displays, and Controls

There are no important alarms, displays, and controls.

Logic

There is no logic needed for direct safety functions related to the main steam / feedwater piping area HVAC system.

Interlocks

There are no interlocks needed for direct safety functions related to the main steam / feedwater piping area HVAC system.

Class 1E Electrical Power Sources and Divisions

Not applicable.

Equipment to be Qualified for Harsh Environments

Not applicable.

Interface Requirements

There are no safety-related interfaces with systems outside of the certified design.

Numeric Performance Values

Not applicable.

2.7.5.4.1.4 Technical Support Center HVAC System

System Purpose and Functions

The technical support center (TSC) HVAC system is <u>a non safety-related system that</u> <u>designed to provides conditioning conditioned air to maintain the proper</u> environmental conditions in the TSC <u>during normal plant and accident conditions</u>. The TSC HVAC system also maintains TSC habitability and permits personnel occupancy during plant accident conditions. <u>The TSC HVAC system is powered by the alternate ac power</u> <u>source during a LOOP</u>. The TSC HVAC system is a non safety-related system.

Location and Functional Arrangement

The major components of TSC HVAC system are located in the auxiliary building. The TSC HVAC system consists of one 100% capacity TSC air handling unit, one 100% capacity emergency filtration unit classified as non-safety and one 100% toilet/kitchen exhaust fan. <u>The TSC emergency filtration unit consists in direction of airflow, a high efficiency filter, an electric heating coil, a HEPA filter, a charcoal absorber, and a high efficiency filter.</u>

Key Design Features

The key design features of the TSC HVAC system are reflected in the system design bases, which include:

- The TSC HVAC system is designed to provide conditioning air to maintain the proper environmental condition of the TSC during normal plant and accident conditions.
- The TSC HVAC system is powered by the alternate ac power source during a LOOP.
- The TSC emergency filtration unit consists in direction of airflow, a high efficiency filter, an electric heating coil, a HEPA filter, a charcoal absorber, and a high efficiency filter.

The ventilation system has fire dampers to limit the spread of fire and combustion products. The fire dampers are capable of closing against full airflow. The heat

EE

FF

AAA

GG

НН

YY

ZZ

detectors located in the charcoal filter housing when detecting the presence of smoke or heat respectively will alarm in the MCR.	
Seismic and ASME Code Classifications JJ	J
The TSC HVAC system is non-seismic category and is not designed to ASME Code Section III requirements.	
System Operation	
There is no important system operation.	
Alarms, Displays, and Controls	
There are no important alarms, displays, and controls.	
Logic	
There is no logic needed for direct safety functions related to the TSC HVAC system.	
Interlocks	
There are no interlocks needed for direct safety functions related to the TSC HVAC system.	
Class 1E Electrical Power Sources and Divisions	
Not applicable.	
Equipment to be Qualified for Harsh Environments	
Not applicable.	
Interface Requirements	
There are no safety-related interfaces with systems outside of the certified design.	
Numeric Performance Values	
Not applicable	
1. The functional arrangement of the ABVS is as described in the Design Description of Subsection 2.7.5.4.1 and as shown in Figures 2.7.5.2-1 and 2.7.5.2-3.	<
2. The seismic Category I equipment identified in Table 2.7.5.4-1 can withstand LL seismic design basis loads without loss of safety function.	-
<u>3.a Class 1E equipment identified in Table 2.7.5.4-1 is powered from its respective</u>	M

<u>3.b.</u>	Separation is provided between redundant divisions of ABVS Class 1E cables and between Class 1E cables and non-Class 1E cables.	NN					
<u>4.a</u>	The remotely operated dampers identified in Table 2.7.5.4-1 as having PSMS control, perform an active safety function after receiving a signal from PSMS.	00					
<u>4.b</u>	After loss of motive power, the remotely operated dampers identified in Table 2.7.5.4-1, assume the loss of motive power position.	PP					
<u>4.c</u>	The fire dampers in the ductwork that penetrates the fire barriers that are required to protect safe-shutdown capability close fully when called upon to do so.	QQ					
<u>5.</u>	Controls are provided in the MCR to open and close the remotely operated isolation dampers identified in Table 2.7.5.4-2.	RR					
<u>6.</u>	Alarms and displays identified in Table 2.7.5.4-2 are provided in the MCR.	SS					
<u>7.</u>	Alarms, displays and controls identified in Table 2.7.5.4-2 are provided in the RSC.	TT					
<u>8.</u>	The TSC HVAC system provides a habitable workspace environment for the TSC under all plant operating conditions, including normal plant operations, abnormal and accident conditions.	UU					
9.	The auxiliary building HVAC system provides conditioned air to maintain the proper						
<u>9.</u>	environmental conditions for areas housing mechanical and electrical equipment (including areas housing ESF equipment) in the reactor building, power source						
	building, auxiliary building and access building during normal plant operation.						
<u>10.</u>	The auxiliary building HVAC system provides a flowrate that maintains a slightly negative pressure in the controlled areas.	ww					
<u>11.</u>	Non-safety related ABVS equipment and ductwork, including supports, whose failure could adversely interact with safety related SSCs meet seismic Category II requirements.	XX					
27	2.7.5.4.2 Inspections, Tests, Analyses, and Acceptance Criteria						
∠ .1.	J.H.Z IIISPECTIONS, TESIS, ANALYSES, AND ACCEPTANCE ONTENA						

Table 2.7.5.4-3 specifies the inspections, tests analyses, and associated acceptance criteria for the ABVS.

Table 2.7.5.4-1 Auxiliary Building Ventilation System Equipment Characteristics	Loss of Motive Power Position	Auxiliary Building HVAC System	Closed	Closed	Closed	Closed	Closed
	Active Safety Function		Transfer Closed	Transfer Closed	Transfer Closed	Transfer Closed	Transfer Closed
	PSMS Control		ECCS Actuation	ECCS Actuation	ECCS Actuation	ECCS Actuation	ECCS Actuation
	Class 1E/ Qual. For Harsh Envir.		Yes/No	Yes/No	Yes/No	Yes/No	Yes/No
	Remotely Operated <mark>Valve</mark> Damper		Yes	Yes	Yes	Yes	Yes
	Seismic Category I		Yes	Yes	Yes	Yes	Yes
	ASME Code Section III Class		I	I	I	I	I
	Tag No.		VAS-AOD-501 A, B, 502 A, B	VAS-AOD-503 A, B, 504 A, B	VAS-AOD-505 A, B, C, D, 506 A, B, C, D	VAS-AOD-507 A, B, C, D, 508 A, B, C, D	VAS-AOD-511, 512
Ľ	Equipment Name		Penetration Area Supply Line Isolation Dampers	Penetration Area Exhaust Line Isolation Dampers	Safeguard Component Area Supply Line Isolation Dampers	Safeguard Component Area Exhaust Line Isolation Dampers	Auxiliary Building HVAC System Exhaust Line Isolation Dampers

2.7 PLANT SYSTEMS

Draft to Revision 32

Equipment/Instrument Name	MCR/RSC Alarm	MCR Display	MCR/RSC Control Function	RSC Display
Penetration Area Supply Line Isolation Dampers (VAS-AOD-501 A, B, 502 A, B)	No	Yes	Yes	Yes
Penetration Area Exhaust Line Isolation Dampers (VAS-AOD-503 A, B, 504 A, B)	No	Yes	Yes	Yes
Safeguard Component Area Supply Line Isolation Dampers (VAS-AOD-505 A, B, C, D, 506 A, B, C, D)	No	Yes	Yes	Yes
Safeguard Component Area Exhaust Line Isolation Dampers (VAS-AOD-507 A, B, C, D, 508 A, B, C, D)	No	Yes	Yes	Yes
Auxiliary Building HVAC system Exhaust Line Isolation Dampers (VAS-AOD-511, 512)	No	Yes	Yes	Yes

Table 2.7.5.4-2Auxiliary Building Ventilation SystemEquipment Alarms, Displays and Control Functions

Table 2.7.5.4-3	Auxiliary Building Ventilation System Inspections, Tests, Analyses,
	and Acceptance Criteria (Sheet 1 of 3)

Design Commitment	Inspections, Tests, Analyses	Acceptance Criteria
 The functional arrangement of the ABVS is as described in the Design Description of this Subsection 2.7.5.4.1 and as <u>shown in Figures 2.7.5.2-1</u> and. 2.7.5.2-3. 	 Inspections of the as-built ABVS will be performed. 	 The as-built ABVS conforms with-to the functional arrangement as described in the Design Description of this-Subsection 2.7.5.4.1 and as shown in Figures 2.7.5.2-1 and 2.7.5.2-3.
2. The seismic Category I auxiliary building HVAC system isolation dampersequipment identified in Table 2.7.5.4-1 are designed tocan withstand seismic design basis loads without loss of safety function.	2.i Inspections will be performed to verify that the as-built seismic Category I isolation dampersequipment identified in Table 2.7.5.4- 1 are-is located in the reactor buildinga seismic Category I structure.	2.i The as-built seismic Category I <u>isolation</u> <u>dampersequipment</u> identified in Table 2.7.5.4-1 <u>are is</u> located <u>a seismic Category I</u> <u>structure</u> in the reactor <u>building</u> .
	2.ii Type tests, and/or analyses, or a combination of type tests and analyses the of seismic Category I equipment isolation dampers-identified in Table 2.7.5.4-1 will be performed using analytical assumptions, or will be performed under conditions, which bound the seismic design basis requirements.	2.ii The result of the type tests and/or analyses <u>a</u> A report exists and -concludes that the seismic Category I isolation dampers equipment identified in Table 2.7.5.4-1 can withstand seismic design basis loads without loss of safety function.
	2.iii Inspections and analyses will be performed to verify that on the as-built seismic Category I isolation dampersequipment identified in Table 2.7.5.4- <u>1</u> , including anchorages, is seismically bounded by the tested or analyzed conditions.	2.iii The <u>A report exists and</u> <u>concludes that the as-built</u> <u>seismic Category I isolation</u> <u>dampers equipment</u> <u>identified in Table 2.7.5.4-1,</u> including anchorages, <u>are is</u> seismically bounded by the tested or analyzed conditions.

Design Commitment	Inspections, Tests, Analyses	Acceptance Criteria
3.a The Class 1E isolation dampersequipment identified in Table 2.7.5.4-1 are is powered from their its respective Class 1E division.	3.a A test will be performed on each division of the as- built isolation dampersClass 1E equipment identified in <u>Table2.7.5.4-1</u> by providing a simulated test signal only in the Class 1E division under test.	3.a The simulated test signal exists at the as-built Class 1E isolation dampersequipment, identified in Table 2.7.5.4-1, under test.
3.b. Separation is provided between <u>redundant divisions of</u> <u>ABVS</u> Class 1E <u>cables</u> divisions, and between Class 1E divisions <u>cables</u> and non-Class 1E cable <u>s</u> .	3.b Inspections of the as-built Class 1E divisional cables will be performed.	3.b Physical separation or electrical isolation is provided <u>in accordance with</u> <u>RG 1.75</u> between the-as- built-cables of <u>redundant</u> <u>ABVS</u> Class 1E divisions and between Class 1E <u>divisions cables</u> and non- Class 1E cables.

Table 2.7.5.4-3 Auxiliary Building Ventilation System Inspections, Tests, Analyses, and Acceptance Criteria (Sheet 2 of 3)

	Design Commitment	Inspections, Tests, Analyses	Acceptance Criteria
4.a	The isolation remotely operated dampers -identified in Table 2.7.5.4-1 as having PSMS control, perform an active safety function after receiving a signal from PSMS.	4.a_Tests will be performed on <u>of</u> the as-built isolation remotely operated dampers identified in Table 2.7.5.4-1 <u>as having</u> <u>PSMS control</u> using a simulated signal.	4.a Each as-built <u>isolation</u> <u>remotely operated</u> dampers identified in Table 2.7.5.4-1 as having PSMS control, performs the active <u>safety</u> function identified in the <u>table_Table 2.7.5.4-1</u> after receiving a simulated signal.
4.b	After loss of motive power, the isolation-remotely operated dampers identified in Table 2.7.5.4-1, assume the closed loss of motive power position.	4.b Tests of the as-built isolation remotely operated dampers will be performed under the conditions of loss of motive power.	4.b Upon loss of motive power, each as-built isolation remotely operated damper identified in Table 2.7.5.4-1 assumes the indicated closed-loss of motive power position.
4.c	The fire dampers in <u>the</u> ductwork that penetrates <u>the</u> fire barriers that are required to protect safe-shutdown capability close fully when called upon to do so<u>under</u> design air flow conditions.	4.c Type tests, tests, a combination of type tests and analyses, or a combination of tests and analyses of the as-built fire dampers will be performed under the conditions which bound the design air flow conditions.	4.c Each as built A report exists and concludes that the fire dampers in the ductwork that penetrates a fire barrier that are is required to protect safe-shutdown capability close under design air flowthe conditions which bound design air flow conditions.
5.	Controls <u>exist</u> are provided in the MCR to <u>open and close</u> the remotely operated <u>isolation</u> dampers identified in Table 2.7.5.4-2.	 Tests will be performed on the as-built remotely operated isolation dampers listed-identified in Table 2.7.5.4-2 using controls in the <u>as-built</u> MCR. 	5. Controls exist in the as-built MCR to open and close the as-built remotely operated valves- dampers listed identified in Table 2.7.5.4-2.
6.	MCR alarmsAlarms and displays of the parameters identified in Table 2.7.5.4-2 can be retrieved are provided in the MCR.	 Inspections will be performed for retrievability of the <u>alarms and displays</u> <u>identified in Table 2.7.5.4-</u> <u>2 as-built ABVS</u> parameters in the as-built MCR. 	 MCR alarms<u>Alarms</u> and displays identified in Table 2.7.5.4-2 can be retrieved in the as-built MCR.

	Design Commitment	Inspections, Tests, Analyses	Acceptance Criteria
7.	RSC alarms <u>Alarms</u> , displays and controls are -identified in Table 2.7.5.4-2 <u>are provided in</u> <u>the RSC</u> .	7. <u>i</u> Inspections <u>will be</u> <u>performed for retrievability</u> <u>of the alarms and displays</u> <u>identified in Table 2.7.5.4-</u> <u>2 in the as-built RSC.of the</u> <u>as built RSC alarms,</u> <u>displays and controls will</u> <u>be performed</u> .	7. <u>i</u> Alarms <u>and</u> , displays and controls exist on the as built RSC as identified in Table 2.7.5.4-2 <u>can be retrieved in</u> the as-built RSC.
		7.ii Tests of the as-built RSC controls control functions identified in Table 2.7.5.4- 2 will be performed.	7.ii Controls exist to operate eachin the as-built RSC operate the as-built control functionequipment identified in Table 2.7.5.4-2 with an RSC control function.

Table 2.7.5.4-3 Auxiliary Building Ventilation System Inspections, Tests, Analyses,and Acceptance Criteria (Sheet 3 of 3)

	Design Commitment	Inspections, Tests, Analyses	Acceptance Criteria
8.	The TSC HVAC system provides a habitable workspace environment for the TSC under all plant operating conditions, including normal plant operations, abnormal and accident conditions.	8.a Tests <u>and analyses</u> of the as-built TSC HVAC system will be performed.	8.a <u>A report exists and</u> <u>concludes that the The</u> as- built TSC HVAC system is capable of providing conditioned air to maintain <u>the properarea</u> design temperature for the TSC during all plant operating conditions, including normal plant operations, abnormal and accident conditions.
		8.b Tests and inspections of the as built TSC HVAC system will be performed.Deleted.	8.b Controls and displays are provided in the as built MCR to operate and monitor the status of the TSC HVAC system.Deleted.
9.	The ABVS-auxiliary building <u>HVAC system provides</u> <u>conditioning-conditioned air to</u> maintain <u>the proper</u> <u>environmental conditions</u> design temperature limits for the areas houses the safety- related componentshousing mechanical and electrical equipment (including areas housing ESF equipment) in the reactor building, power source building, auxiliary building and access building during normal plant operations.	9. Tests and analyses of the as-built <u>auxiliary building</u> <u>HVAC system</u> ABVS will be performed.	 <u>A report exists and</u> <u>concludes that The the as-</u> built <u>ABVS auxiliary building</u> <u>HVAC system is capable of</u> providing conditioned air to maintain design temperature limits for the area houses the safety related <u>components areas housing</u> <u>mechanical and electrical</u> <u>equipment (including areas</u> <u>housing ESF equipment) in</u> the reactor building, power <u>source building, auxiliary</u> <u>building and access building</u> during normal plant operations.
10.	The <u>auxiliary building HVAC</u> <u>systemABVS is capable of</u> providing properprovides <u>a</u> flow rate <u>to that</u> maintains a slightly negative pressure in the controlled areas.	10. Tests and analyses of the as-built <u>ABVS-auxiliary</u> <u>building HVAC system</u> will be performed.	 The <u>A</u> report exists and <u>concludes that the</u> as-built <u>ABVS-auxiliary building</u> <u>exhaust fans is_eapable of</u> <u>providingprovides</u> a proper flow rate <u>> 108,000 cfm</u> to maintain a slightly negative pressure in the controlled areas.

2.7 PLANT SYSTEMS

11. Non-safety related ABVS equipment and ductwork, including supports, <u>whose</u> <u>failure could adversely interact</u> <u>with safety related SSCs meet</u> <u>seismic Category II</u> <u>requirements during and after</u> <u>an SSE</u> in areas containing <u>safety related equipment are</u> <u>seismic Category II</u> .	11. <u>i</u> Analysis will be performed to demonstrate that as- built non safety-related CVVS equipment and ductwork, including supports, does not adversely interact with safety related SSCs during and after an SSE_A combination of analysis and inspection will be performed.	11. <u>i</u> Reports exist and conclude that the as-built non-safety related ABVS equipment and ductwork, including supports, <u>whose failure</u> <u>could adversely impact</u> <u>safety related SSCs does</u> <u>not adversely interact with in</u> <u>areas containing safety- related equipment are</u> <u>seismic Category II to</u> <u>prevent adverse interaction</u> <u>with other</u> safety-related systems during <u>a seismic</u> <u>eventand after an SSE</u> .
	<u>11.ii Inspection will be</u> <u>performed to verify that the</u> <u>as-built non-safety related</u> <u>ABVS equipment and</u> <u>ductwork, including</u> <u>supports, are installed in</u> <u>accordance with the</u> <u>configurations specified by</u> <u>the analyses.</u>	<u>11.ii The as-built non-safety</u> <u>related ABVS equipment</u> <u>and ductwork, including</u> <u>supports whose failure</u> <u>could adversely interact with</u> <u>safety related SSCs are</u> <u>installed in accordance with</u> <u>the configurations specified</u> <u>by the analyses.</u>

Tier 1 Changes Explanation/Basis Document Tier 1, Section 2.7.5.4

Item No.	Explanation/Basis for Change
	Description 2.7.5.4.1
A	Relocated Design Description heading to the beginning of the section.
В	Editorial change for Tier 1 consistency.
С	Subheadings are deleted from the Design Description and editorial changes to provide
	consistency among Tier 1 sections.
D	Deleted wording regarding system capacities and dilution flow to gaseous effluent
	because it is not a level of detail required for Tier 1 and consolidated following
	paragraph into existing sentence.
Б	This change alters the response to RAI No. 355, Question No. 09.04.03-4. Deleted text because it is not needed in Tier 1.
E F	Notes 1 and 2.
1,	See items MM and NN.
G	Notes 1 and 2. See items JJ and VV.
G	This change alters the response to RAI No. 54, RAI 14.3.7.3.4-4 and RAI 14.3.7.3.4-5
	This change alters the response to RAI No. 54, 14.3.7.3.4-11.
Н	Notes 1 and 2. See item TT.
Ι	Deleted text describing dilution air flow because it is beyond the level of detail required
	in Tier 1.
	This change alters the response to RAI No. 355, 09.04.03-4.
J	Deleted text because it is redundant to information in previous text.
Κ	Deleted text because it is redundant to information in Table 2.7.6.13-2 "Airborne
	Radioactivity Monitoring System Equipment Characteristics"
L	This change alters the response to RAI 483, 09.04.03-08. Note 1 and 2. See item OO.
L	This change alters the response to RAI No. 381, 14.03.07-41.
М	Note 1 and 2. See items JJ and VV.
101	This change alters the response to RAI 558, 06.05.01-17.
Ν	Deleted negative statements from Tier 1.
0	Deleted text because it below level of detail required for Tier 1.
Р	Notes 1 and 2. See Items RR and SS.
Q	Notes 1 and 2. See Item OO.
R	Deleted negative statements from Tier 1.
S	Notes 1 and 2. See Item MM.
Т	Deleted negative statements from Tier 1.
U	Deleted negative statements from Tier 1.
V	Deleted negative statements from Tier 1.
0	Description 2.7.5.4.1.2
W	Editorial corrections/changes and to provide consistency among Tier 1 sections.
V	Subheadings are deleted from the Design Description.
X	Deleted redundant text and relocated text to introductory paragraphs. See item Y.
Y	Relocated Design Description text to introductory text. See item X.
Z	Note 1 and 2. See item QQ.
AA	Deleted negative statements from Tier 1 for the remainder of this subsection.
Design	Description 2.7.5.4.1.3

Tier 1 Changes Explanation/Basis Document Tier 1, Section 2.7.5.4

DD	
BB	Editorial corrections/changes and to provide consistency among Tier 1 sections.
99	Subheadings are deleted from the Design Description.
CC	Deleted redundant text.
DD	Deleted negative statements from Tier 1 for the remainder of this subsection.
0	Description 2.7.5.4.1.4
EE	Editorial corrections/changes and to provide consistency among Tier 1 sections.
	Subheadings are deleted from the Design Description.
FF	Revised introductory text and relocated from text to introductory paragraph. See item
-	II.
GG	Relocated from Key Design Features. See item YY
HH	Notes 1 and 2. See item UU.
II	Relocated to Key Design Features. See items FF and GG.
JJ	Deleted negative statements from Tier 1 for the remainder of this subsection
KK	Note 1.
LL	Notes 1 and 2. See Items G and M.
MM	Notes 1 and 2. See Item S.
NN	Note 1.
00	Notes 1 and 2. This change alters the response to RAI 483, 09.04.03-08.
00	See Item E and O. This change alters the response to RAI No. 54, 14.3.7.3.4-11.
РР	Note 1.
QQ	Notes 1 and 2 See Items L, Z, ZZ.
RR	Notes 1 and 2. See items P.
SS	Notes 1 and 2. See items Q.
TT	Note 1.
UU	Note 1.
VV	Note 1.
WW	Note 1.
XX	Note 1 See items G and M.
YY	Relocated text to introduction. See item FF.
ZZ	Notes 1 and 2. See item QQ.
AAA	Deleted text not required in Tier 1.
Table 2	A
	Changed to use a consistent table heading for clarity.
Table 2	
	No Changes.
Table 2	
	No Changes.
1	DC, ITA, AC
•	 Generic changes to ITAAC for functional arrangement to provide clarity and
	consistency. [RIS, Scope, 2 nd bullet.]
2	DC, AC
-	 Generic changes to ITAAC for seismic to provide clarity and consistency. [RIS,
	Scope, 2 nd bullet.]
I	

Tier 1 Changes Explanation/Basis Document
Tier 1, Section 2.7.5.4

3.a	
5.a	 DC, ITA, AC Generic changes to ITAAC for electrical separation to provide clarity and
	consistency. [RIS, Scope, 2nd bullet.].
	This change alters the response to RAI No. 54, 14.3.4.3.4-10 and RAI No. 184,
	14.03.07-16.
3.b	DC, AC
	- Generic changes to ITAAC for electrical separation to provide clarity and
	consistency. [RIS, Scope, 2nd bullet.].
	This change alters the response to RAI No. 191, 14.03.04-09
4.a	DC, ITA, AC
	Editorial corrections for consistency in Tier 1. [RIS, Scope, 2 nd bullet.]
4.b	DC, ITA, AC
	Editorial corrections for consistency in Tier 1. [RIS, Scope, 2 nd bullet.]
4.c	DC
	 Editorial changes.
	ITA and AC
	Revised to provide the correct ITA, and make AC comport with ITA revision, and
	editorial corrections. [RIS, Scope, 2 nd bullet.].
5	DC, AC
	- Generic changes to ITAAC for MCR controls to provide clarity and consistency.
	[RIS, Scope, 2 nd bullet.].
	This change alters the response to RAI No. 54, 14.03.07.03.04-11.
6.	DC, AC
	 Generic changes to ITAAC for MCR alarms and displays to provide clarity and
	consistency. [RIS, Scope, 2nd bullet.]This change alters the response to RAI No.
	54, 14.03.07.03.04-11
7.	DC, ITA, AC
	- Generic changes to ITAAC for RSC alarms, displays and controls to provide clarity
	and consistency. [RIS, Scope, 2 nd bullet.]
	This change alters the response to RAI No. 54, 14.03.07.03.04-11 with additional editorial changes and.
8.	8.a ITA
0.	 Revised to correct the system designator in the ITAAC, and to provide additional
	clarifications to the DC and AC. Revised AC to specify a report for the analysis
	ITA.
	8.b
	- Deleted because the capability can be verified in ITAAC #8.a.
	This change alters the response to RAI 195, 14.03.10-2.
9.	DC, ITA and AC.
	Revised to correct the system designator in the ITAAC, and to provide additional
	clarifications to the DC and AC. Revised AC to specify a report for the analysis ITA.
	This change alters the response to RAI 483, 09.04.03-08.

Tier 1 Changes Explanation/Basis Document Tier 1, Section 2.7.5.4

10.	 DC, ITA and AC Revised to correct the system designator in the ITAAC, and to provide additional clarifications to the DC and AC. Revised AC to specify a report for the analysis ITA.
	This change alters the response to RAI 483, 09.04.03-08.
11.	Added ITAAC in response to RAI 558, 06.05.01-17. These changes alter the response to RAI 558, 06.05.01-17.

Note 1: Revised to provide consistency between the Design Description (DD) and the Design Commitment (DC) in the ITAAC table. Revised text to include only the necessary attributes for ITAAC.

Note 2: Text relocated within the DD section to align with the sequence and numbering of the corresponding DC in the ITAAC table.

2.7.6.9 Fire Protection System

2.7.6.9.1 Design Description

System Purpose and Functions

The purpose of the fire protection system (FPS) is to minimize the adverse effects of fires on structures, systems, and components (SSCs) important to safety. The FPS detects and locates fires and provides the capability to extinguish or control the fire using fixed automatic and manual suppression systems, manual hose streams, and/or portable fire fighting equipment. Water is provided to hose stations for manual fire fighting in areas containing safe shutdown equipment following a safe shutdown earthquake. The FPS also supports the containment isolation function for piping penetrating the containment as described in Subsection 2.11.2. The FPS is classified as a non safety-related, non-seismic system with the exception of the containment isolation function valves.

A B C D

<u>E</u>

<u>G</u>

Н

Ī

J

Location and Functional Arrangement

The FPS consists of a number of fire detection and suppression subsystems including:

- Detection systems for early detection and notification of a fire occurrence. Fire detection systems are provided where required by the fire hazard analysis (FHA).
- A water supply system including the fire pumps, adequate fire water supply source, yard main, and interior distribution piping.
- Fixed automatic and manual fire suppression systems and equipment, including hydrants, standpipes, hose stations and portable fire extinguishers. Manual fire suppression capability is provided in <u>all</u> areas of the plant <u>containing safety-related equipment</u>, including areas that have an automatic suppression system.

Key Design Features

The FPS is designed to perform the following functions:

- 1. The functional arrangement of the FPS is as described in the Design Description of Subsection 2.7.6.9.
- —<u>2.</u> Detect and locate fires and provide operator indication of the location. Individual fire detectors provide fire detection capability and can be used to initiate fire alarms in areas containing safety-related equipment.
- 3. There are two 100 percent capacity fire pumps: one pump is motor driven and one pump is diesel driven.

 Maintain 100 percent of fire pump design capacity, assuming failure of the largest fire pump or the loss of offsite power (LOOP). 	K
<u>4.a</u> Provide water to hose stations for manual fire fighting in areas containing safe shutdown equipment following a safe shutdown earthquake. Under safe-shutdown earthquake loading, the standpipe system remains functional in areas containing equipment required for safe-shutdown.	Ŀ
<u>4.b</u> <u>Deleted</u> The seismic standpipe system can be supplied from a safety-related water source which capacity is at least 18,000 gallons.	M
5. Deleted	N
Provide sufficient water for the largest sprinkler system plus manual hose streams to support fire suppression activities for two hours or longer, but not less than 300,000 gallons.	
-Redundant water supply capability is provided.	<u>0</u>
Provide6.a The FPS fire water supply is available as an alternative component cooling water source for severe accident prevention.	<u>P</u>
— <u>6.b</u> Provide <u>The</u> FPS fire water supply <u>is available</u> to the containment spray system and water injection to the reactor cavity for severe accident mitigation.	<u>Q</u>
7. Deleted.	<u>R</u>
-Provides containment isolation for the piping penetrating the containment.	<u>S</u>
Seismic and ASME Code Classifications	I
The FPS is classified as a non safety related, non-seismic system. Seismic design requirements are applied to portions of the standpipe system located in areas containing equipment required for safe shutdown. In addition, the FPS containment isolation valves and their associated piping are safety-related (ASME Class 2) and seismic Category I.	<u>∪</u> <u>∨</u>
System Operation	
The FPS normally operates in a standby readiness mode. The fire water supply piping is maintained full and pressurized by operation of a pressure source to allow immediate startup of a fire pump on demand.	W
Alarms, Displays, and Controls	
The FPS provides audible and visual alarms and system trouble annunciation in the MCR. <u>8.</u> Displays indicated identified in Table 2.7.6.9-1 exist are provided in the main control room (MCR) that provides indication of fire system status.	
Logic	

There is no logic needed for direct safety functions related to the FPS.

Interlocks

There are no interlocks needed for direct safety functions related to the FPS.

Class 1E Electrical Power Sources and Divisions

The FPS containment isolation valves are connected to Class 1E buses.

Equipment to be Qualified for Harsh Environments

Not applicable.

Interface Requirements

The seismic standpipe system can be supplied from a safety-related water source which capacity is at least 18,000 gallons. Combined License applicant referencing the certified design is responsible to assure that the site specific design meets the interface requirement and verify the conformance in the ITAAC process that are similar to those provided in the certified design.

Numeric performance values

Not applicable.

2.7.6.9.2 Inspections, Tests, Analyses, and Acceptance Criteria

Table 2.7.6.9-2 specifies the inspections, tests, analyses, and associated acceptance criteria for the FPS.

The ITAAC associated with the FPS equipment, components, and piping and that comprise a portion of the CIS are described in Table 2.11.2-2.

Table 2.7.6.9-1 Fire Protection System MCR Displays

Equipment Name	Display	Control Function
Lead Fire Pump	Yes (Run Status)	Start
Secondary Fire Pump	Yes (Run Status)	Start

<u>AA</u>	
BB	

<u>CC</u>	

Table 2.7.6.9-2	Fire Protection System Inspections, Tests, Analyses, and
	Acceptance Criteria (Sheet 1 of 2)

	Design Commitment	l	nspections, Tests, Analyses		Acceptance Criteria
1.	The functional arrangement of the FPS is as described in the Design Description of Subsection 2.7.6.9.	1.	Inspections <u>of the as-built FPS</u> will be performed of the as- built FPS .	1.	The as-built FPS conforms to the functional arrangement <u>as</u> described in the Design Description of this-Subsection 2.7.6.9.
2.	Individual fire detectors provide fire detection capability and can be used to initiate fire alarms in areas containing safety-related equipment.	2. <u>i</u>	Tests will be performed on the as-built individual fire detectors in areas containing safety- related equipment using a simulated signal.	2. <u>i</u>	The as-built <u>individual fire</u> detectors provide fire detection capability and can be used to initiate fire alarms in areas containing safety-related equipment.
		<u>2.ii</u>	An inspection will be performed to verify that as- built fire detectors are installed in areas containing safety- related equipment.	<u>2.ii</u>	The as-built fire detectors are installed in areas containing safety-related equipment.
3.	There are two 100 percent capacity fire pumps: one pump is motor driven and one pump is diesel driven.	3. <u>i</u>	An inspection <u>analysis</u> of the as-built fire pumps-will be performed <u>to determine the</u> 100 percent design flow rate for each fire pump.	3. <u>i</u>	A report exists and concludes that Two as- built fire pumps each fire pump can provide the have 100 percent_design flow rate to satisfy the demand of any automatic sprinkler system plus 500 gpm for fire hoses.:- one pump is motor driven and one pump is diesel driven.
		<u>3.ii</u>	Tests will be performed to confirm that the as-built fire pumps can provide the 100 percent design flow rate.	<u>3.ii</u>	The as-built fire pumps are capable of achieving their 100 percent design flow rate.
		<u>3.iii</u>	An inspection of the name plate of two as-built fire pumps will be performed.	<u>3.iii</u>	The type and capacity of two as-built fire pumps as shown in the name plate of each pump are consistent with the design requirements of each pump, such that one pump is motor driven with 100% capacity and the other pump is diesel driven with 100% capacity.

4.a	Under safe-shutdown earthquake loading, the standpipe system remains functional in areas containing equipment required for safe shutdown.	4.a	An inspection will be performed of the as-built standpipe system as documented in a seismic design report.	4.a	The seismic design report exists and concludes that the as-built standpipe system remains functional in areas containing equipment required for safe shutdown under safe-shutdown earthquake loading.
4.b	Deleted The seismic standpipe system can be supplied from a safety related water source which capacity is at least 18,000 gallons.	4.b	DeletedAn inspection of the as built safety related water source to the standpipe system will be performed.	4.b	Deleted The as-built seismic standpipe system can be supplied from a safety-related water source which capacity is at least 18,000 gallons.

Table 2.7.6.9-2 Fire Protection System Inspections, Tests, Analyses, and Acceptance Criteria (Sheet 2 of 2)

	Design Commitment		spections, Tests, Analyses	Acceptance Criteria		
5.	Deleted The fire protection water supply system has at least two water sources. Each source can supply the largest US- APWR sprinkler system plus manual hose streams (500 gpm) to support these fire suppression activities for a period of two hours or longer. The capacity of each source is not less than 300,000 gallons.	5.	DeletedInspections will be performed of each as built fire protection water source capability.	5.	Deleted Each of the two as- built fire protection water supply sources has the capability to supply the largest US-APWR sprinkler system plus manual hose streams (500 gpm) to support these fire suppression activities for a period of two hours or longer, and the capacity of each source is not less than 300,000 gallons.	
6.a	The FPS fire water supply is available as an alternative component cooling water source for severe accident prevention.	6.a	Inspection will be performed of the as-built FPS firewater supply <u>system</u> .	6.a	The as-built FPS fire water supply <u>system</u> is <u>connected to component</u> <u>cooling water</u> <u>system</u> provided as an alternative component cooling water source for severe accident prevention.	
6.b	The FPS fire water supply is available to the containment spray system and water injection to the reactor cavity for severe accident mitigation.	6.b	Inspection will be performed on-of_the as-built FPS fire water supply <u>system</u> .	6.b	The as-built FPS fire water supply <u>system</u> is provided is <u>connected</u> to the containment spray system and water injection <u>line</u> to the reactor cavity for severe accident mitigation.	
7.	Deleted.	7.	Deleted.	7.	Deleted.	
8.	Displays of the system parameters -identified in Table 2.7.6.9-1 can be retrieved <u>are</u> <u>provided</u> in the MCR.	8.	Inspections will be performed for retrievability of the <u>as built</u> <u>system parametersdisplays</u> <u>identified in Table 2.7.6.9-1</u> in the <u>as built</u> -MCR.	8.	The as-built dDisplays indications-identified of system parameters identified in Table 2.7.6.9-1 are verified and are can be retrieved in the as-built MCR.	

Tier 1 Changes Explanation/Basis Document Tier 1, Section 2.7.6.9

Item No.	Explanation/Basis for Change
Design	Description 2.7.6.9.1
Α	Text revised to include information for a more concise Design Description See Item I.
В	Text revised and relocated for a more concise Design Description. See Item L.
С	Text revised and relocated for a more concise Design Description. See Item S. This
	change alters the response to RAI 184, Question 14.03.07-27.
D	Text reworded for consistency and clarity. See Item V.
Е	Text deleted, and text revised and relocated for a more concise Design Description. See
~	item L.
G	Deleted text to include only necessary design information in the Design Description in
TT	accordance with NRC guidance in SRP Section 14.3.
H	Note 1
Ι	Note 1. Relocated and revised text for more concise Design Description. See Item A.
J	Revised wording of ITAAC to remove "can be used to". Note 1 and Note 2. See Item K.
у К	Note 2. See Item J.
L	Note 1 and text relocated for more concise Design Description. See Items B and E.
M	Note 1. Deleted text to remove site specific information that is redundant to wording of
101	Tier 1 section 3.2.2.
N	See Note 1. Deleted text to remove site specific information, to be addressed in the
- '	COL.
0	Deleted site specific text to include only necessary design information in the Design
	Description in accordance with NRC guidance in SRP Section 14.3.
Р	Note 1.
Q	Note 1
R	Note 1.
S	Text revised and relocated for a more concise Design Description. See Item C. This change alters the response to RAI 184, Question 14.03.07-27.
Т	Text deleted to include only necessary design information in the Design Description in accordance with NRC guidance in SRP Section 14.3.
U	Second sentence deleted because it was redundant to information covered in 4.a of Design Description. (See item L)
V	Text is deleted because this function is addressed in Section 2.11.2 and the reference to Section 2.11.2 is provided in the introductory paragraph. See Item D.
W	Deleted text to include only necessary design information in the Design Description in accordance with NRC guidance in SRP Section 14.3
Х	First sentence deleted to include only necessary design information in the Design Description in accordance with NRC guidance in SRP Section 14.3.
Y	Note 1
Ζ	Deleted text to include only necessary design information in the Design Description in accordance with NRC guidance in SRP Section 14.3.
AA	First sentence deleted because it is site specific information covered in Tier 1, Section 3.2.2.
BB	Second sentence deleted to include only necessary design information in the Design Description in accordance with NRC guidance in SRP Section 14.3.

Tier 1 Changes Explanation/Basis Document Tier 1, Section 2.7.6.9

Item	Explanation/Basis for Change
No.	1 8
CC	Deleted text to include only necessary design information in the Design Description in
	accordance with NRC guidance in SRP Section 14.3.
Table 2	2.7.6.9-1
	No changes
ITAAC	C Table 2.7.6.4-2
1	ITA, AC – Generic changes to ITAAC for functional arrangement to provide clarity and
	consistency. [RIS p.7, Scope, first bullet]
2	DC – Revised to remove, "can be used to" to provide clarity. [RIS p.4, Language,
	seventh bullet].
	ITA – Revised ITA to split into two activities Test and Inspection. [RIS p.5, Logic,
	seventh bullet].
	AC – Revised AC to align with the ITA and DC requirements of tests and inspections,
	[RIS p.5, Logic, seventh bullet]. This change alters the response to RAI 183, Question
2	14.03.07-9.
3	ITA – Revised ITA split into separate activities for analysis, tests and inspections. [RIS
	p.5, Logic, seventh bullet]. AC - Revised AC to align with ITA separate requirements of analysis, tests and
	inspections., [RIS p.5, Logic, seventh bullet].
	This change alters the response to RAI 183, Question 14.03.07-10.
4a	No changes
4b	DC, ITA and AC:
10	Deleted – Site specific information not to be included in this section of Tier 1.
	This change alters the response to RAI 183, Question 14.03.07-11
5	DC, ITA and AC
	Deleted – Site specific information not to be included in this section of Tier 1
	This change alters the response to RAI 183, Question 14.03.07-12.
6.a	ITA – Editorial Change for consistency with DD.
	AC
	Reworded for clarity.
	This does not impact the response to RAI 183, Question 14.03.07-11
6.b	ITA – Editorial change for consistency with DD.
	AC
	Reworded for clarity.
7	This alters the response to RAI 183, Question 14.03.07-11.
7	No changes
8	DC, ITA, AC – Generic change to ITAAC for MCR controls to provide clarity and
	consistency. [RIS p.7, Scope, seventh bullet]. This change does not impact the response to RAL184. Question 14.03.07.29
	to RAI 184, Question 14.03.07-29.

Note 1: Revised to provide consistency between the Design Description (DD) and the Design Commitment (DC) in the ITAAC table. Revised text to include only the necessary attributes for ITAAC.

Note 2: Text relocated within the DD section to align with the sequence and numbering of the corresponding DC in the ITAAC table.

2.7 Auxiliary Systems

2.7.6.10 Communication Systems

2.7.6.10.1 Design Description

System Purpose and Functions

The plant's communication systems are not safety related. The communication systems provide for effective interplant_intra-plant_and plant-to-offsite communications_during normal, transient, fire, accidents, off-normal phenomena (e.g., loss of offsite power), and security related events.

Location and Functional Arrangement

The following locations within the US-APWR facility contain communication system arrangements:

- Reactor building (R/B) and containment structure
- Turbine building (T/B)
- Power source building (PS/B)
- Auxiliary building (A/B)
- Access buildings (AC/B)

The US-APWR communication systems consist of the following physically independent systems:

- Public address system/page
- Telephone system
- Sound powered telephone system (SPTS)
- Plant radio system
- Offsite communications system including emergency communication systems

•Plant security communication systems

- <u>1. The functional arrangement of the communication systems is as described in the Design Description of Subsection 2.7.6.10.1.</u>
- 2. The means exists for communications among the MCR, TSC, EOF, principal State and local emergency operations centers, and radiological field assessment teams.

В

С

А

3. The means exist for communications are provided from the MCR, TSC, and EOF to the NRC headquarters and regional office emergency operations centers, (including establishment of the emergency response data system (ERDS) [or its successor system] between the onsite computer system and the NRC Operations Center).

4. Deleted.

Key Design Features

Depending on the specific installed plant location, the selected components are qualified to operate in environments, as applicable.

The plant communication systems are arranged in a redundant fashion to provide for a minimum of two verbal communication paths between all plant locations as well as external communications.

The plant communication systems are independent of each other and either have a builtin dc battery power source (e.g., portable radios) or are powered from non-safety related uninterruptible power supply (UPS) systems.

Seismic and ASME Code Classifications

Not applicable.

System Operation

The plant communication systems are used for conveying verbal information as well as facsimile transmissions and digital based communications. Emergency telephones are color coded to distinguish them from normal telephones.

Interfaces Requirements

There are no safety-related interfaces with systems outside of the certified design.

2.7.6.10.2 Inspections, Tests, Analyses, and Acceptance Criteria

Table 2.7.6.10-1 provides the inspections, tests, analyses, and associated acceptance criteria for the Communication Systems.

Table 2.12-1 provides the inspections, tests, analyses, and acceptance criteria for the Physical Security communications systems.

Е

F

G

Table 2.7.6.10-1 Communication Systems Inspections ,Tests ,Analyses and Acceptance Criteria

	Design Commitment		Inspections, Tests, Analyses		Acceptance Criteria
1.	The functional arrangement of the communication systems is as described in the d Design d Description of this-Subsection 2.7.6.10.1.	1.	Inspection of the as-built communication systems will be performed.	1.	The as-built communication systems conform with to the functional arrangement as described in the Design Description of Subsection 2.7.6.10.1.
2.	The means exists for communications among the MCR, TSC, EOF, principal State and local emergency operations centers, and radiological field assessment teams.	2.	A test of the as-built communication system <u>s</u> will be performed.	2.	The as-built communications are established among the as-built MCR, TSC, EOF, principal State and local emergency operations centers, and radiological field assessment teams.
3.	The means exist for communications from the MCR, TSC, and EOF to the NRC headquarters and regional office emergency operations centers _{τ} (including establishment of the emergency response data system-(ERDS) [or its successor system] between the onsite computer system and the NRC Operations Center).	3.	A test of the as-built communication system <u>s</u> will be performed.	3.	The as-built communications are established from the as- built MCR, TSC and EOF to the NRC headquarters and regional office emergency operations centers, and an access port for <u>ERDS [or its</u> <u>successor system] the</u> <u>emergency response data</u> <u>system</u> is provided.
4.	TSC has voice communication systems.Deleted.	4.	Inspections of the as built TSC voice communication systems will be performed.Deleted.	4.	The as built TSC voice communication equipment is installed, and voice transmission and reception are accomplished. <u>Deleted.</u>

Tier 1 Changes Explanation/Basis Document Tier 1, Section 2.7.6.10

ltem No.	Explanation/Basis for Change
Design Description Section 2.7.6.10.1	
A	Revised text to include only the necessary attributes for Tier 1 Design Description. Subheadings deleted throughout to provide consistent Design Description format in Tier 1.
В	Deleted reference to plant security communications as this is described in Tier 1 Section 2.12.
С	Note 1.
D	Note 1. Revised to make the reference to the emergency response data system more generic to accommodate possible future changes to the ERDS.
E	Note 1.
F	Revised text to include only the necessary attributes for Tier 1 Design Description and remove negative statements from Tier 1. This change alters the response to RAI 184, Revision 0, 14.03.07-29.
G	Added text to refer to Section 2.12 for security system communications ITAAC.
ITAAC Table 2.7.6.10-1	
1	 DC and AC Generic changes to ITAAC for functional arrangement to provide clarity and consistency. [RIS – Scope, 2nd bullet]
2	ITA – Editorial correction only.
3	 DC, AC Revised to make the reference to the emergency response data system more generic to accommodate possible future changes to the ERDS. [RIS – Scope, 1st bullet]
4	 DC, ITA, AC ITAAC deleted as it is redundant; TSC communications are verified by ITAAC #2 and #3.

- Note 1: Revised to provide consistency between the Design Description (DD) and the Design Commitment (DC) in the ITAAC table. Revised text to include only the necessary attributes for ITAAC.
- Note 2: Text relocated within the DD section to align with the sequence and numbering of the corresponding DC in the ITAAC table.