

WCAP-17261-P, "Justification for a TS Action for Two Inoperable RTS or ESFAS Instrumentation Channels"

March 2, 2011

<u>Agenda</u>

- Objective of the Program
- Background
- Need for the Change
- Technical Specification Change
- RTS and ESFAS Functions of Interest
- Overall Approach
- Impact on Defense-in-Depth
- Impact on Safety Margins
- Risk Analysis and Results
- Monitoring Requirements
- Functions used for Control and Protection
- Limitations and Conditions
- Open Discussion

Objective of Program

- Develop the technical justification to support adding an Action for two inoperable reactor trip signal (RTS) or engineered safety features actuation signal (ESFAS) channels.
- Applicable only to those RTS and ESFAS functions with a two-out-of-four actuation logic.

Background

- Three or four channels are used to develop actuation signals
- Typically logic is two-out-of-three
- Two-out-of-four is used when:
 - The parameter is used for a control function
 - Additional redundancy is required
- With two-out-of-three or two-out-of-four logic one channel can be inoperable for up to 72 hours
 - Two-out-of-three logic goes to two-out-of-two
 - Two-out-of-four logic goes to two-out-of-three
- With a two-out-of-four logic, two inoperable channels results in a two-out-of-two logic, however, since TS Condition does not exist, LCO 3.0.3 must be entered

Need for the Change

- Entering LCO 3.0.3 can result in unnecessary plant shutdowns or require a Notice of Enforcement Discretion (NOED)
- A number of plants have experienced this situation
 - RWST level channels two disabled by lightning, July 1998
 - RWST level channels two disabled by freezing, January 2003
 - RWST level channels two disabled by lightning, August 2003
 - Containment pressure one failed transmitter, a second could be impacted by repair activity, September 2004
 - RCP under frequency channels repair activities could impact two channels – November 2007
- A number of instances have occurred that could have easily been addressed by including an Action for two inoperable channels

Need for the Change (Cont'd)

- This will only be used to address an emergent condition as opposed to operational necessity for routine pre-planned testing and maintenance
- Adding this Action will avoid a potential unit shutdown or a request for enforcement discretion

Technical Specification Change Request

Condition	Required Action	Completion Time	
Two channels inoperable	Place one channel in trip	24 hours	

RTS (TS 3.3.1) Functions of Interest

2.a	Power Range Neutron Flux – High
2.b	Power Range Neutron Flux – Low
3.a	Power Range Neutron Flux Rate – High Positive Rate
3.b	Power Range Neutron Flux Rate – High Negative Rate
6	Overtemperature ΔT
7	Overpower ΔT
8.a	Pressurizer Pressure – Low
8.b	Pressurizer Pressure - High
14	Steam Generator Water Level – Low Low

ESFAS (TS 3.3.2) Functions of Interest

LCO	Function		
Safety Injection	1.d	Pressurizer Pressure – Low	
Containment Spray	2.c	Containment Pressure – High 3 (High High)	
Containment Isolation – Phase B	3.b(3)	Containment Pressure – High 3	
Steamline Isolation	4.c	Containment Pressure – High 2	
Turbine Trip and Feedwater Isolation	5.b	Steam Generator Water Level – High High	
Auxiliary Feedwater	6.c	Steam Generator Water Level – Low Low	
Automatic Switchover to Containment Sump	7.b	RWST Level – Low Low Coincident with Safety Injection	
Automatic Switchover to Containment Sump	7.c	RWST Level – Low Low Coincident with Safety Injection and coincident with Containment Sump Level - High	

Overall Approach

- Risk-Informed approach consistent with RG 1.174 and 1.177
- Addressed impact on defense-in-depth and safety margins
- Assessed impact on CDF and LERF
- Calculated ICCDP and ICLERP to demonstrate risk metrics are met
- Similar to the approach used in WCAP-14333-P-A and WCAP-15376-P-A (TSTF-418 and TSTF-411)
- Addressed control/protection functions

Overall Approach (Cont'd)

- Developed detailed fault tree models for a number of the actuation signals
- Used a representative, at-power <u>W</u> NSSS plant PRA model
- Internal event risk impact addressed quantitatively
- External event risk impact addressed qualitatively
- Credit taken for:
 - Backup or alternate signals
 - Backup operator actions
- Analysis is applicable to all <u>W</u> NSSS plants

Impact on Defense-in-Depth

- Addressed the criteria in RG 1.174
 - A reasonable balance is preserved among prevention of core damage, prevention of containment failure, and consequence mitigation
 - Over-reliance on programmatic activities to compensate for weaknesses in plant design is avoided
 - System redundancy, independence, and diversity are preserved commensurate with the expected frequency, consequences of challenges to systems, and uncertainties
 - Defenses against potential common cause failures are preserved, and the potential for introduction of new common cause failure mechanisms is assessed
 - Independence of barriers is not degraded
 - Defenses against human errors are preserved
 - The intent of the General Design Criteria in Appendix A to 10 CFR Part 50 is maintained
- The proposed change meets these elements of defense-in-depth

Impact on Safety Margins

- The protection function is maintained with two channels inoperable
- Single failure criterion two inoperable channels do not conflict with IEEE Std. 279 or IEEE Std. 603
- Monitoring requirements have been established to ensure consistency with the risk analysis
- The probabilistic measure of safety margin (CDF and LERF impact) is consistent with RG 1.174

<u>Risk Analysis - Fault Tree Models</u>

- Signal fault trees based on WCAP-15376-P-A models
- Fault tree models include:
 - Random component failures
 - Common cause component failures
 - Unavailability due to testing
 - Unavailability due to maintenance
- Added unavailability for multiple combinations of two channels being inoperable
 - 24 hour Completion Time plus 6 hours to be in Mode 3
 - Occurrence of once per five years

Risk Analysis - Fault Tree Models (Cont'd)

• Fault trees developed for:

Function	Signal		
Reactor Trip	Overtemperature ΔT and		
	Steam Generator Level – Low Low		
Safety Injection	Pressurizer Pressure – Low		
Containment Spray	Containment Pressure High-3 (High High)		
Containment Isolation – Phase B	Containment Pressure High-3 (High High)		
Steamline Isolation	Containment Pressure – High 2		
Turbine Trip and Feedwater Isolation	Steam Generator Water Level – High High		
Auxiliary Feedwater	Steam Generator Water Level – Low Low		
Automatic Switchover to Containment Sump	RWST Level – Low Low Coincident with Safety Injection and coincident with Containment Sump Level - High		

<u>Risk Analysis – Internal Events</u>

- Representative four-loop <u>W</u> NSSS plant PRA model
- Recent peer review assessment
- Model included channel to signal dependencies, that is, how one channel can impact multiple signals
- Performed detailed assessment of signals available for event mitigation
- Operator actions credited as backup to signals

<u>Risk Analysis – Internal Events</u>

- Operator Actions Credited as Backup to Signals
- HRA Actions
 - Trip the reactor from the main control board
 - Start ECCS from the main control board
 - Start AFW
 - Switchover from RWST to containment sump
 - Initiate containment spray

<u>Risk Analysis – Internal Events – Results</u>

Acceptance criteria

- Δ CDF < 1E-06/yr, Δ LERF < 1E-07/yr
- ICCDP < 5E-07, ICLERP < 5E-08

Channel	∆CDF (/yr)	Δ LERF (/yr)	ICCDP	ICLERP
SG Water Level	6.0E-08	1.2E-09	1.6E-08	9.3E-10
Pressurizer Pressure	5.0E-09	1.9E-09	6.9E-09	2.1E-09
Containment Pressure	<1E-09	<1E-10	7.8E-10	8.2E-12
RWST Level	<1E-09	<1E-10	2.5E-10	2.5E-11
Containment Sump Level	<1E-09	<1E-10	2.5E-10	2.5E-11
Total	7.1E-08	3.1E-09	NA	NA

<u>Risk Analysis – External Events</u>

- The proposed change does not impact the physical characteristics of the RPS components.
- Therefore, the proposed change does not impact the seismic or high wind fragility of the reactor protection system components or its susceptibility to fire or flooding events.
- Potential impact due to the signal unavailability change related to the mitigation of external events
- Considered the following external events
 - Seismic
 - Fire
 - Other external events (high winds, external flooding)

<u>Risk Analysis – External Events – Seismic</u>

- Seismic event can result in small LOCAs or loss of offsite power (LOOP) events
- IPEEEs did not identify small LOCAs, due to pipe breaks, as significant contributors
- Small LOCAs due to RCP seal LOCAs are potentially significant contributors, however they are mitigated by operator actions
- Seismically induced LOOP events are significantly lower in frequency than other LOOP events
- Based on the above, the risk increase due to the proposed change from seismic events is concluded to be very small

<u>Risk Analysis – External Events – Fire</u>

- IPEEE indicated that the dominant fire scenarios result in a plant transient (e.g., loss of feedwater, main steam isolation valve closure, LOOP, and loss of support systems)
- Fire induced LOCA events are not significant contributors to risk
- Fire events typically cause a plant trip and compromise safety related equipment
- Several ways to actuate decay heat removal ESFAS, AMSAC, OA
- The frequency of fire induced transients is significantly lower than internal transient events
- Small LOCAs due to RCP seal LOCAs are potentially significant contributors, however they are mitigated by operator actions
- The frequency of fire induced LOOP is significantly lower in frequency than other LOOP events
- Based on the above, the risk increase due to the proposed change from fire events is concluded to be very small

<u>Risk Analysis – External Events – Other</u>

- Other external events considered include high winds, external flooding, etc.
- The IPEEE identified that the dominant scenarios are related to LOOP with possible additional failures that lead to RCP seal LOCAs
- Frequencies of such events are low compared to typical transient events
- Recovery from such events is not highly dependent on the RPS, but on operator actions
- Based on the above, the risk increase due to the proposed change from other external events is concluded to be very small

Monitoring Requirements

- To ensure no adverse safety degradation occurs due to the proposed change
- Key parameter changes (assumptions) in the analysis are related to the simultaneous unavailability of two channels
 - 24 hours (CT) + 6 hours (to be in Mode 3)
 - Once per five year frequency
- Therefore, actual average unavailability of two pairs of channels from the channel set will be monitored.

, ,

Control and Protection System Interactions

- Issue: With two channels inoperable, another channel being used for control could fail and cause an event that requires the protective action of that protective function
- To address this issue, the program is limited to:
 - Two-out-of-four functions not used for control OR
 - That have backup instrumentation or operator actions to actuate mitigation equipment
- A detailed assessment was completed on each signal to determine if it met the above criteria
- It was concluded that it is acceptable to apply the proposed change to all functions evaluated in this WCAP

Limitations and Conditions

- Tier 2 requirement: Confirm the remaining operable channels, in the channel set, are not inoperable due to a common cause across the four channels
- The representative analysis HEPs are applicable
- Monitoring requirements related to two channels of the same function must be implemented
- One channel used for plant control must remain in service or the plant should be placed in manual control
- Tier 3 requirements will be addressed by the plant's Configuration Risk Management Program

Open Discussion/Questions

و

>