

Final Status Survey Report Aberdeen Proving Grounds-Building 1103A Area, Aberdeen, Maryland

PREPARED FOR:

US Army Joint Munitions Command 1 Rock Island Arsenal Rock Island, IL 61299-6000

Project Number: USA 2007-098 Contract W52P1J-08-D-0073 Delivery Order 1

PREPARED BY:

PIKA International, Inc. 12723 Capricorn Drive, #500 Stafford, TX 77477

PIKA Project Number: 08-07-172

Rev 2 January 2011

TABLE OF CONTENTS

ACRO	ONYMS AND ABBREVIATIONS	iii
1.0	INTRODUCTION	
1.1	Decontamination Activities	
1.2	Licensing Background	
2.0	FINAL STATUS SURVEY APPROACH	
2.1	Scanning Surveys	
2.2	Static Measurements	
2.3	Field Changes	
3.0	SURVEY RESULTS	
3.1	Scan Results	
3.2	Static Measurement Results	
3.3	Smear Results	
3.4	Soil Sampling Results	
4.0	ANALYSIS AND CONCLUSIONS	
4.1	Alpha Statics	
4.2	Smear Results	
4.3	Beta and Gamma Scans	
4.4	Soil Results	
4.5	ALARA	
4.6	Conclusions	
5.0	REFERENCES	
- , -		

TABLES

- 2-1 Final Status Survey Units
- 3-1 Material Background Readings
- 3-2 Summary of Beta Scan Data
- 3-3 Gamma Scan Summary
- 3-4 Summary of Static Measurement Results
- 3-5 Uranium in Soil Results Summary
- 4-1 Critical Values for Sign Test

FIGURES

- 1-1 Aberdeen Proving Ground
- 1-2 Building 1103A Area Layout
- 3-1 Survey Unit 5 Beta Scan Data
- 3-2 Survey Unit 6 Beta Scan Data

FIGURES (Continued)

- 3-3 Survey Unit 7 Beta Scan Data
- 3-4 Survey Unit 8 Beta Scan Data
- 3-5 Survey Unit 9 Beta Scan Data
- 3-6 Survey Unit 10 Beta Scan Data
- 3-7 Survey Unit 11 Beta Scan Data
- 3-8 Survey Unit 12A Beta Scan Data
- 3-9 Survey Unit 12B Beta Scan Data
- 3-10 Survey Unit 15 Beta Scan Data
- 3-11 Survey Unit 19 Beta Scan Data
- 3-12 Survey Unit 19A Beta Scan Data
- 3-13 Survey Unit 23 Beta Scan Data
- 3-14 Survey Unit 24 Beta Scan Data
- 3-15 Survey Unit 25 Beta Scan Data
- 3-16 Gamma Scan Results
- 3-17 QC Results for Gamma Spectroscopy

APPENDICES

- A Final Status Survey Plan
- B Static Data and Locations
- C Scan Data
- D Soils Data
- E Instrument Calibration Reports
- F Regulatory Comments and Replies

ACRONYMS AND ABBREVIATIONS

ALARA As Low as Reasonable Achievable

APG Aberdeen Proving Ground

ARL Army Research Laboratory

CFR Code of Federal Regulations

cm centimeter

cpm counts per minute

DCGL derived concentration guideline level

DCGL for small areas of elevated activity, used with the elevated

measurement comparison

DCGL_w DCGL for average concentrations over a wide area, used with statistical tests

D&D Decommission and Demolition

DP decommissioning plan

dpm disintegration per minute

DU depleted uranium

FSS Final Status Survey

GPS Global Positioning System

MARRSIM Multi-Agency Radiation Survey and Site Investigation Manual

NRC Nuclear Regulatory Commission

pCi picocuries

PIKA PIKA International, Inc.

RSO Radiation Safety Officer

SU Survey Unit

QC quality control

VSP Visual Sample Plan

January 2011 Page iii

1.0 INTRODUCTION

The Building 1103A Area is a former radioactive material processing and storage facility on Spesutie Island at Aberdeen Proving Ground (APG). Historical site activities involving depleted uranium (DU) have resulted in radiological contamination of the buildings and grounds. The Army Research Laboratory (ARL) has responsibility for this area and initiated the decommissioning process so that the area can be released from its Nuclear Regulatory Commission (NRC) radioactive materials license requirements.

This report documents the results of the final status survey (FSS) of the Building 1103A Area. The location of this area at APG is shown in Figure 1-1. (All figures are posted after the text of this report.) The general layout of the Building 1103A Area is shown in Figure 1-2. Historical activities involved the unloading of DU-contaminated targets in the central asphalt area; storage and staging of the targets in one of three vaults; cutting and machining of the targets in Building 1103A (and, to a lesser extent, BRL12); and storage and reloading of the resulting steel pieces in preparation for decontamination, disposal, or reuse.

1.1 Decontamination Activities

The decontamination and partial demolition of Building 1103A area were begun in August, 2009 and completed November, 2009, according to the decommissioning plan (DP; Cabrera, 2008) and the operations plan (PIKA, 2009). Several field changes to the plans were made. These are discussed in Section 2.3. The NRC was notified of these changes by the facility Radiation Safety Officer (RSO).

The decontamination and partial demolition of the area left the following structures in place: BRL12 vaults (north and south), the large vault, and Building 1103A. Wastes produced by the decommissioning were shipped to disposal facilities in Clive, Utah (Energy Solutions) and Grandview, Idaho (U.S. Ecology).

1.2 Licensing Background

The Building 1103A Area is under the control of the ARL and is subject to the requirements of NRC license No. SMB-141. The RSO for this license is Mr. Richard Markland, who oversaw the work which was performed by PIKA International, Inc. (PIKA). The goal of decommissioning and the FSS is to facilitate the release of the site for unrestricted use. The decommissioning and FSS plans were approved by the NRC in 2009.

2.0 FINAL STATUS SURVEY APPROACH

The FSS plan is reproduced in Appendix A. It is also found in the decommissioning plan (Cabrera, 2008). The survey plan is summarized below. Several field changes were made and these are also discussed.

There are 29 survey units in the Building 1103A area, as listed in Table 2-1. There are 5 land areas and 24 building areas. Survey unit locations are described more fully in Appendix B.

The contaminant of concern is depleted uranium (DU). Release limits (DCGLs) for DU are taken from the decommissioning plan. These are:

- Surface DCGL_w 100 disintegrations per minute (dpm) α /100 cm²;
- Removable Surface DCGL_w 10 dpm α /100 cm²; and
- Soils DCGL_w 230 picocuries (pCi) DU/gram.

2.1 Scanning Surveys

Building surfaces were scanned for beta radiation. Land areas were scanned for gamma radiation. Class 1 survey units were scanned over 100% of their areas. Class 2 survey units were scanned over at least 50% of their areas. Class 3 survey units were scanned over at least 25% of their areas.

An action level for beta scans, using a Ludlum model 43-37 detector, was set at 800 counts per minute (cpm). When this level was encountered, the area was investigated with alpha measurements and added as a new alpha static location to the static measurements.

Land areas were gamma-scanned using a low-energy scintillation detector (FIDLER). This has shown to be sensitive to uranium gamma rays and x-rays. Scan locations were continuously recorded using Global Positioning System (GPS) technology.

Table 2-1 **Final Status Survey Units**

Survey Unit ID	Structure	Survey Unit Description	Surface Area (m²)	MARSSIM Class*
1	North Area 1103A	BRL12 Yard	552.8	1
2	South Area	Large Vault Yard	717.1	1
3	East Area	Asphalt East Parking Lot	432.0	2
4	Perimeter Area	North, West, South Border	1161.3	2
5	1103A	Floor North	87.6	1
6	1103A	Floor South	87.6	1
7	1103A	Interior Walls N & E	85.7	1
8	1103A	Interior Walls W & S	85.7	1
9	1103A	Ceiling North	92.9	1
10	1103A	Ceiling South	92.9	1
11	1103A	Exterior Wall - South	51.1	1
12	1103A	Exterior Walls - N, E, & W	125.4	1**
12A	1103A	Entrance Room Interior	29.1	1
12B	1103A	Entrance Room Exterior	25.3	1**
13	1103A	Roof	185.8	1**
14	1103A	Former Shop Area Floor		1
15	BRL12	Floor	73.2	1
19	BRL12 N Vault	Interior FI, N & E Walls	58.6	1
19A	BRL12 N Vault	Interior Ceil, W & S Walls	58.6	1
19B	BRL12 N Vault	Roof & Exterior Walls	112.6	2
20	BRL12 S Vault	Interior Surfaces	117.1	2
20A	BRL12 S Vault	Roof & Exterior Walls	112.6	2
23	Freestanding Vault	Floor, N & E Walls	92.9	1
24	Freestanding Vault	Ceiling, W & S Walls	92.9	1
25	Freestanding Vault	Exterior Walls & roof	148.6	1**
26	1103 B	Floor	319.6	3
27	1103 B	Exterior N & W Walls	140.3	2
28	1100 E	Exterior E Wall	181.9	3
29	1100 F	Exterior E Wall	57.6	3

Multi-Agency Radiation Survey and Site Investigation Manual (NRC, 2000).
 ** Reclassified from 2 to 1.

2.2 Static Measurements

The number and locations of static measurements were determined using the Visual Sample Plan (VSP) software. Input parameters (e.g., Type 1 and 2 error rates) are given in the FSS plan (Appendix A). The results of the VSP runs are given in Appendix B1.

At each static measurement location, a 1.0 minute contact alpha count was taken and recorded, a smear was taken and analyzed, or a soil sample was taken. Occasionally, the specified location was not accessible. Attempts were made to find a suitable, adjacent location. If that was not possible, the location was skipped. Because extra locations are built into the selection process (and VSP), the loss of one or two locations was deemed acceptable.

Soil samples were collected from four land survey units. The fifth land area (SU 3) is covered with asphalt and was treated as a building surface for static measurements. U-238 was used as the radioisotope of concern. With the assumption that U238 is in equilibrium with its progeny Th-234 was used for the quantification of U-238, by gamma spectroscopy. A DCGL_w of 230 pCi/g total DU is specified for evaluating soils for unrestricted release. It was assumed that 90.4% of the total activity is attributed to U-238, with a resulting nuclide-specific limit of 208 pCi/g.

2.3 Field Changes

After the decommission plan was completed and approved, the Army decided that building BRL12 would not be reused. It was decided to demolish this building but leave the two steel vaults intact (north vault and south vault). Therefore several survey units identified in the decommissioning plan for BRL12 were eliminated. These are:

- SU 16 BRL 12 central area interior walls;
- SU 18 BRL 12 central area ceiling;
- SU 21 BRL 12 exterior walls; and
- SU 22 BRL 12 roof.

Survey Unit 15, central area floor (Class 1), remained, as the concrete pad floor was not removed. Also, additional survey units were added to cover the exteriors of the two remaining vaults (SU 19B and SU 20A). These are Class 3 survey units.

Finally, four survey units were reclassified from Class 2 to Class 1 as the result of static alpha readings. Readings on the exteriors of the 1103A entrance room (SU12B) and other areas were found to exceed the $DCGL_w$. These were decontaminated, as needed, and reclassified as Class 1.

3.0 SURVEY RESULTS

Survey results are summarized below and collected data are given electronically in the appendices (on CD). Background data for the site are given in Table 3-1. Alpha and beta results are given as net counts (total minus background). Gamma data are uncorrected.

3.1 Scan Results

Beta Scans

The beta scan results are summarized in Table 3-2. Data for Class 1 areas are plotted as cumulative probability plots in Figures 3-1 through 3-15. Results for all survey units are given in Appendix C. The table and figures show that the average net count rate fluctuates around zero cpm. In some cases, it is positive; in others, it is negative. This is attributed to the variability of background across the site. Note that the average of all survey unit averages is -5 cpm—very close to net zero count rate.

Gamma Scans

Gamma scan data and GPS location data were used to create the color-coded map shown in Figure 3-16. The gamma data are summarized in Table 3-3, and discussed in Section 4.0.

3.2 Static Measurement Results

Alpha static measurements were made in 25 survey units. Data are given in Appendix B2. As shown in the Table 3-4 summary, readings in seven survey units exceeded the surface $DCGL_w$. These exceedences ranged from 105 to 179 dpm/100cm². Two of these survey units were investigated further. These surveys are documented in Appendix B4. Static results are discussed further in Section 4.

Table 3-1 Material Background Readings

		Background
Type of Survey	Material	(cpm)
	Concrete	1.2
Alpha ¹	Metal	1.0
Аірпа	Siding	7.1
	Wood	1.0
	Concrete	201
Beta ²	Metal/Siding	139
	Wood	151
Gamma ³	Soil	8,560

Detectors used:

- 1. Ludlum model 43-93
- 2. Ludlum model 43-37
- 3. FIDLER

Table 3-2 Summary of Beta Scan Data

Survey		cpm - net beta		
Unit	Class	High	Average	
5	1	60	-53	
6	1	139	-52	
7	1	141	-89	
8	1	480	78	
9	1	745	-11	
10	1	129	-27	
11	1	247	61	
12	1*	140	-16	
12A	1	56	-41	
12B	1*	147	28	
13	1*	195	66	
15	1	546	-32	
19	1	1,570	49	
19A	1	18	-69	
19B	2	78	-25	
20	2	196	-38	

Table 3-2 (Continued)
Summary of Beta Scan Data

Survey		cpm - net beta	
Unit	Class	High	Average
20A	2	96	-12
23	1	793	5
24	1	91	-29
25	1*	300	23
26	3	203	131
27	2	184	0
28	3	120	-56
29	3	125	-4
Average			-5

^{*} Reclassified from 2 to 1.

Table 3-3 Gamma Scan Summary

Survey		cpm gamma			
Unit	Class	High	Average	Sigma	
1	1	11,221	4,187	1,253	
2	1	13,420	4,531	1,522	
3	2	7,863	4,498	726	
4	2	14,380	6,796	2,490	
14	1	6,881	4,610	837	
Reference	n/a	*	8,560	*	

^{*} Reference is based on a 10-minute reading at a background location.

Table 3-4 Summary of Static Measurement Results

Survey Unit	No. of Measurements (note 1)	No. Above DCGL _w (note 2)	No. Above DCGL _{emc} (note 3)	No. Smears Above DCGL _w (note 4)	PASS/FAIL (note 5)
3	14	0	n/a	0	PASS
5	20	0	n/a	0	PASS
6	20	0	n/a	0	PASS
7	19	0	n/a	0	PASS
8	18	1	0	1	PASS
9	20	0	n/a	0	PASS
10	21	0	n/a	0	PASS
11	18	4	0	0	PASS
12	18	2	0	0	PASS
12A	20	0	n/a	0	PASS
12B	20	1	0	0	PASS
13	20	1	0	0	PASS
15	20	3	0	0	PASS
19	22	0	n/a	0	PASS
19A	20	0	n/a	0	PASS
19B	20	0	n/a	0	PASS
20	20	0	n/a	0	PASS
20A	20	0	n/a	0	PASS
23	22	0	n/a	0	PASS
24	20	0	n/a	0	PASS
25	21	2	0	0	PASS
26	21	0	n/a	0	PASS
27	28	0	n/a	0	PASS
28	18	0	n/a	0	PASS
29	20	0	n/a	0	PASS

Note 1: VSP specified 20 or 21 readings for walls and floors (depending on shape); and 14 readings for outdoor land. Fewer readings indicate inaccessible locations. More readings indicate location(s) added when reaching the scanning action level. VSP specified 28 readings for SU 27.

Note 2: DCGL_w is 100 dpm/100 cm² alpha.

Note 3: $DCGL_{emc}$ is calculated as $DCGL_w$ x [area factor]) This is only applied to readings above the $DCGL_w$.

Note 4: DCGL_w (removable) is 10 dpm/100 cm² alpha. One smear in SU 8 exceeded DCGL_w at 22 dpm.

Note 5: A survey unit passes if the data pass the Sign Test and both the DCGL_{emc} and unity rule are not exceeded (see text).

3.3 Smear Results

Removable contamination was measured using cloth smears. As discussed above, a smear was taken at each static measurement location and counted in a low-level alpha/beta counter. Results are given in Appendix B3. Only one smear exceeded the removable $DCGL_w$. That result is discussed in Section 4.

3.4 Soil Sampling Results

Uranium levels in soil samples from four land areas were at background or slightly elevated levels. No samples exceeded the $DCGL_w$ for U-238. The highest level, from one sample in Survey Unit 4, was 20.5 pCi/g. A summary of the results is given in Table 3-5. All results are given in Appendix D.

Table 3-5
Uranium in Soil Results Summary

	pCi U-238 / gram soil			
Survey Unit	Average	Maximum		
1	2.5	12.8		
2	1.7	13.9		
4	1.9	20.5		
14	1.4	3.5		

Note: SU 3 is covered in asphalt and was treated as a building surface for static measurements.

Quality Control Samples

To ensure quality control of gamma spectroscopy, eight soil samples were split between the PIKA lab and a commercial laboratory—TestAmerica. This represents 15% of the 56 samples analyzed by PIKA. Comparisons of the two labs' results for U-238 are shown in Figure 3-17. This graph shows good agreement between the two laboratories.

4.0 ANALYSIS AND CONCLUSIONS

All survey units were scanned per the FSS plan. Static readings, smears, and soil samples were also taken. These results were compared to the release limits, as discussed below.

4.1 Alpha Statics

As discussed in Section 3.2, seven survey units had readings that exceeded the $DCGL_w$. The average static readings in these survey units were compared to the $DCGL_w$. The averages in all seven are below the $DCGL_w$.

Next, the Sign Test was used to evaluate static readings. This test limits the number of locations that can exceed the $DCGL_w$. For example, with 20 readings in a survey unit (n = 20), at least 14 must meet the release limit. That is, the critical value (S+) is 14. Critical values for other values of n are given in Table 4-1 (NRC, 2000). Survey unit 11 had 4 out of 18 readings above the $DCGL_w$. Yet the critical value was met (S+) equals 12).

Table 4-1 Critical Values for Sign Test

Number of Measurements	Critical Value	Number of Elevated Readings Allowed
14	10	4
18	12	6
20	14	6
21	14	7
22	15	7
28	18	10

Note: Probability of Type 1 error is set at 5%.

Next, an elevated measurement comparison was performed. Per MARSSIM, an elevated measurement should not exceed the $DCGL_{emc}$. This value is determined using an area factor that is applied to the $DCGL_{w}$.

Area factors were determined per the decommissioning plan. These are derived by determining the area that is elevated above the $DCGL_w$. Default area factors were calculated using the survey grid sizes from the VSP outputs in Appendix B1. This

assumes that the entire grid section is elevated—a worst case. For example, the survey grid in SU 25 is approximately 10 feet x 10 feet. For this area of about 9 $\rm m^2$, the plan gives an area factor of 4, and a DCGL $_{\rm emc}$ of 400 dpm/100 cm 2 . Several survey units (SU 11 and 12) were evaluated for the actual elevated areas. Each had elevated areas of less than 4 $\rm m^2$, allowing the use of an area factor of 9. These are discussed below.

Finally, the impact of multiple hot spots on the mean concentration in a survey unit must also be evaluated. This was performed using MARSSIM Equation 8-2 (NRC, 2000). The results showed that this unity rule was met in all cases.

More details are given below on eight survey units (further details are given in Appendix B2):

SU 8

This survey unit had one reading above the $DCGL_w$ at 123 dpm/100 cm². Using the default area factor of four, this reading is below the $DCGL_{emc}$ of 400 dpm/100 cm². The unity rule calculation came to 0.56, which satisfies the rule.

<u>SU 11</u>

As discussed above, survey unit 11 had 4 out of 18 readings above the $DCGL_w$. The Sign test's critical value was met since 6 readings above the $DCGL_w$ are allowed. The contaminated areas of the four locations were investigated and found to be less than $4m^2$, resulting in an area factor of 9 and a $DCGL_{emc}$ of 900 dpm/100 cm 2 . The maximum reading of 179 dpm/100 cm 2 is well below the $DCGL_{emc}$. The unity rule calculation came to 0.94. The investigation surveys are documented in Appendix B4.

SU 12

With only two readings above the DCGL $_{\rm w}$, the Sign test is met. The contaminated areas of the two locations were investigated and found to be less than 4 m 2 , resulting in an area factor of 9 and a DCGL $_{\rm emc}$ of 900 dpm/100 cm 2 . The maximum reading of 158 dpm/100 cm 2 is well below the DCGL $_{\rm emc}$. The unity rule calculation came to 0.89. The investigation surveys are documented in Appendix B4.

SU 12B

With only one reading above the $DCGL_w$, the Sign test is met. The maximum reading of 105 dpm/100 cm² is below the $DCGL_{emc}$. The unity rule calculation came to 0.46.

SU 13

With only one reading above the $DCGL_w$, the Sign test is met. The maximum reading of 116 dpm/100 cm² is below the $DCGL_{emc}$. The unity rule calculation came to 0.56.

SU 15

Survey unit 15 had 3 out of 20 readings above the DCGL $_{\rm w}$. Yet the Sign test's critical value was met (S+ equals 14). The maximum reading of 137 dpm/100 cm 2 is below the DCGL $_{\rm emc}$. The unity rule calculation came to 0.96.

SU 25

With only two readings above the $DCGL_w$, the Sign test is met. The maximum reading of 118 dpm/100 cm² is below the $DCGL_{emc}$. The unity rule calculation came to 0.73.

Note that regulatory comments on this survey recommended a review of this survey unit's results. The comments and changes that were generated in this report are given in Appendix F.

SU 28

Regulatory comments on this survey unit prompted an investigation/re-survey. It was found that the steel siding surface of this SU exhibited a high alpha background. This material background had not been measured in the original survey. After applying the material background, all results are less than the $DCGL_w$. The comments, replies, and changes that were generated in this report are given in Appendix F. The investigation survey is documented in Appendix B4.

4.2 Smear Results

One smear in SU 8 exceeded the removable $DCGL_w$. This survey unit covers the interior walls of Building 1103A. The smear, from the south wall, read 22.1 dpm/100 cm². A

recount of the smear read $11.7 \text{ dpm}/100 \text{ cm}^2$, still exceeding the DCGL_w of $10 \text{ dpm}/100 \text{ cm}^2$. The alpha static at this location read $73.7 \text{ dpm}/100 \text{ cm}^2$.

Per MARSSIM, the average reading in the survey unit (1.05 dpm/100 cm 2) was compared to the DCGL $_{\rm w}$, and is below that value. Next, the Sign Test was used to evaluate the survey unit. S+ is 19, and meets the critical value of 14. Next, the high reading was compared to the DCGL $_{\rm emc}$ (40 dpm/100 cm 2 ; see above), and is below that value. Finally, the unity rule of MARSSIM Equation 8-2 (NRC, 2000) was performed. The equation produced a value of 0.63, which satisfies the rule.

4.3 Beta and Gamma Scans

The beta action level of 800 cpm was exceeded in one survey unit (SU 19, at 1570 cpm net) and was approached in another (SU 23, at 793 cpm net). In both cases, the elevated areas were investigated. Two additional static locations were included in SU 19, and one was added to SU 23.

Gamma scan count rate measurements are presented in Section 3.1 and Appendix C2. Over 12,000 readings were taken. The maximum reading, 14,380 cpm, was only 68% higher than the reference area (8,560 cpm), west of Building 1100E. Data were plotted and exhibited a distribution typical of natural radioactivity. Those histograms (count rate range versus number of readings within the range) are given in Appendix C2. The undisturbed soils on the site perimeter gave higher readings than the disturbed soils in the center area. Gamma levels in the center area (SUs 1 and 2) were similar to those over the asphalt in Survey Unit 3.

4.4 Soil Results

Uranium-238 concentrations in the soil are all less than the $DCGL_w$ (208 pCi/g). No further MARSSIM tests are required.

4.5 ALARA

NRC decommissioning guidance (10 Code of Federal Regulations (CFR) 20, Subpart E) specifies that residual radioactivity should be reduced to as low as reasonably achievable (ALARA) levels. For soils in land areas, we demonstrate ALARA by comparing the average concentration of U-238 in soil with a generic NRC guideline for residual uranium in soil. An NRC guidance paper [NRC, 1999] gives a guideline value of

14 pCi U-238/gram of soil. In contrast, the average site concentration of U-238 measured in soil is 1.9 pCi/g, well below the guideline value.

With regard to residual DU on surfaces, the demonstration of ALARA comes from the sequential stages of decontamination that were applied. The first stage was pressure washing of the surfaces. This removed most of the contamination, but did not remediate the most contaminated areas. This was followed by the second stage: high-pressure water jets. This removed contamination down to present levels, which meet the remediation goals.

At this point, a third stage of decontamination was evaluated: surface abrasion. Because some of the highest residual levels were on a steel surface (large vault roof), this stage would have consisted of grinding. This would have led to airborne contamination and the potential for internal exposures. It would have also required workers to work on a roof wearing respirators and protective clothing—a situation with inherent safety risks. A qualitative ALARA analysis resulted in the conclusion that these risks and possible radiation exposures were not warranted. The third stage was not implemented and the residual DU contamination was deemed to be ALARA.

4.6 Conclusions

The 29 survey units were surveyed for residual depleted uranium activity. All 29 were found to meet the requirements for unrestricted release from NRC licensing, based on the survey plan and NRC requirements. It is recommended that they be so released.

5.0 REFERENCES

Cabrera Services, Inc., 2008. Building 1103A Area Decommissioning Plan, Baltimore, MD, May.

NRC, 2000. Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM), NUREG-1575. U.S. Nuclear Regulatory Commission, U.S. Department of Defense, U.S. Environmental Protection Agency, and U.S. Department of Energy. August.

NRC, 1999. Supplemental Information on the Implementation of the Final Rule on Radiological Criteria for License Termination, U.S. Nuclear Regulatory Commission, Federal Register Vol. 64, No. 234. December 7.

PIKA International, Inc., 2009. Operations Plan, Decommissioning of Building 1103A Area, Stafford, TX, June.

FIGURES

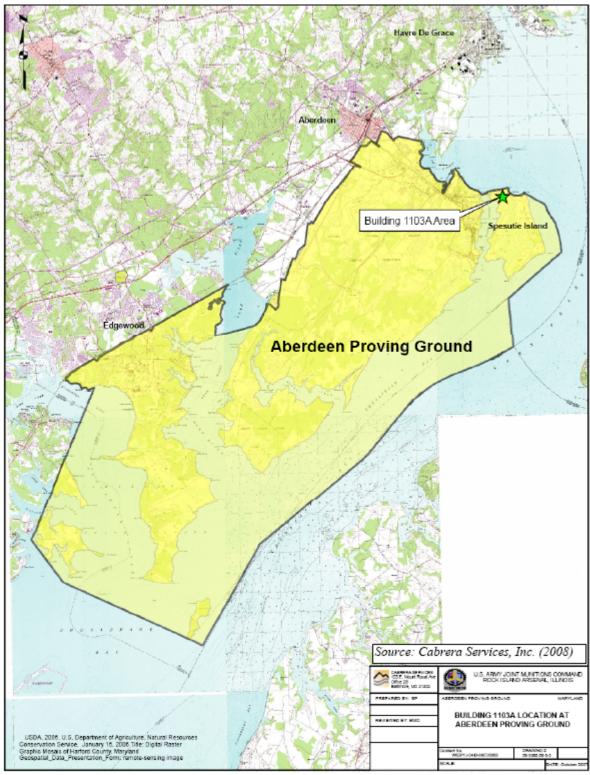


Figure 1-1: Aberdeen Proving Ground

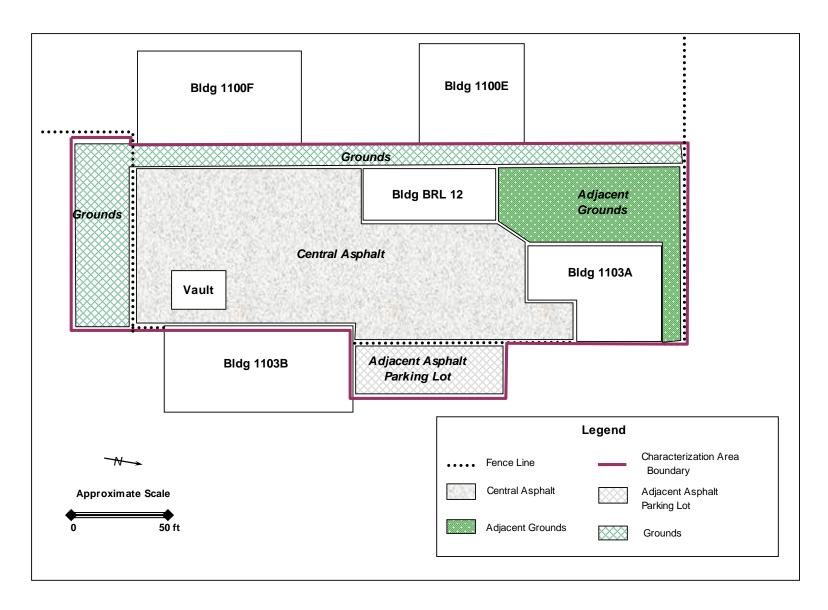


Figure 1-2: Building 1103A Area Layout

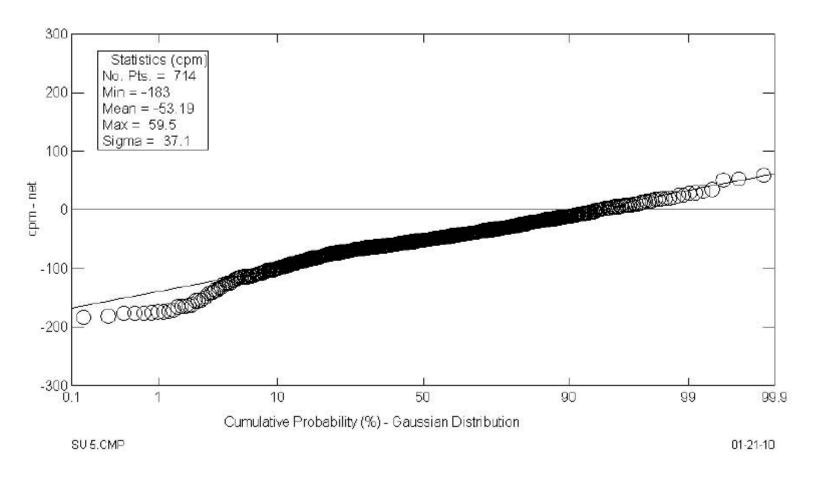


Figure 3-1 Survey Unit 5 Beta Scan Data

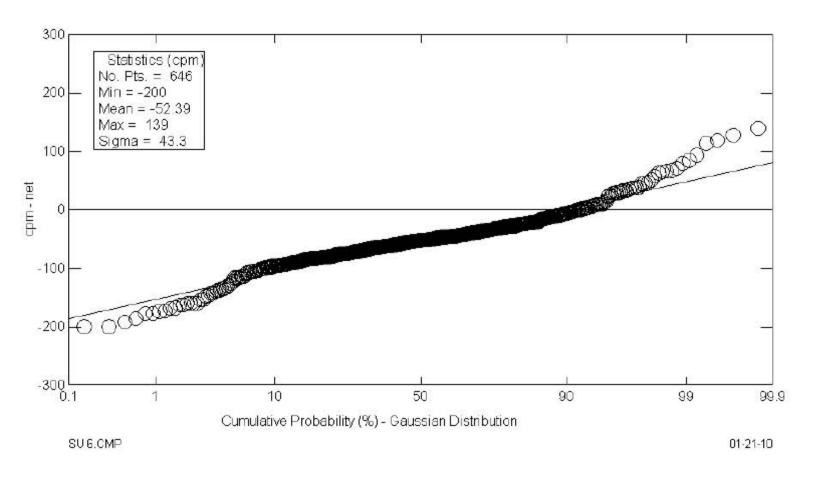


Figure 3-2 Survey Unit 6 Beta Scan Data

Figure 3-3 Survey Unit 7 Beta Scan Data

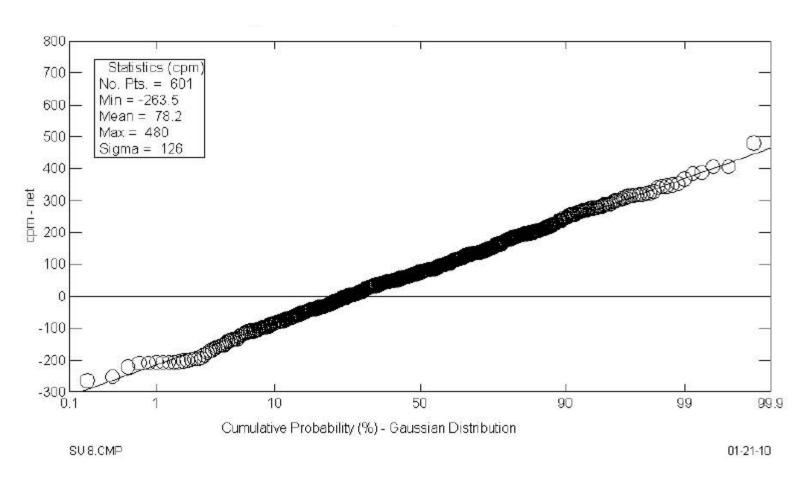


Figure 3-4 Survey Unit 8 Beta Scan Data

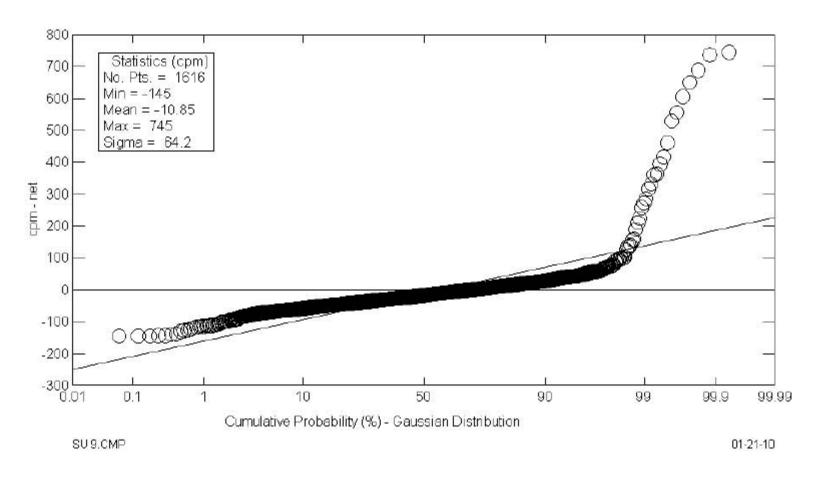


Figure 3-5 Survey Unit 9 Beta Scan Data

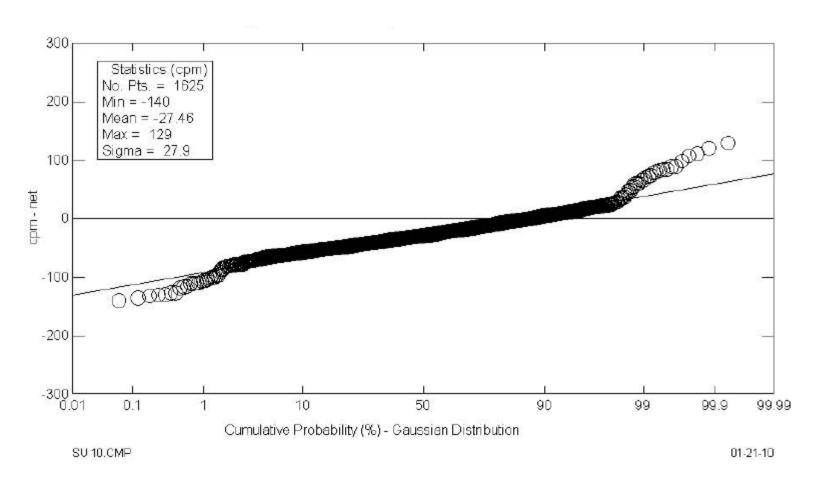


Figure 3-6 Survey Unit 10 Beta Scan Data

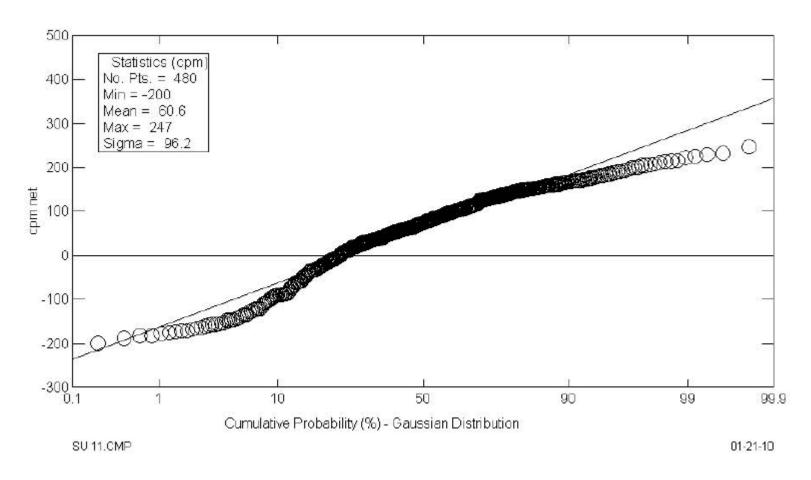


Figure 3-7 Survey Unit 11 Beta Scan Data

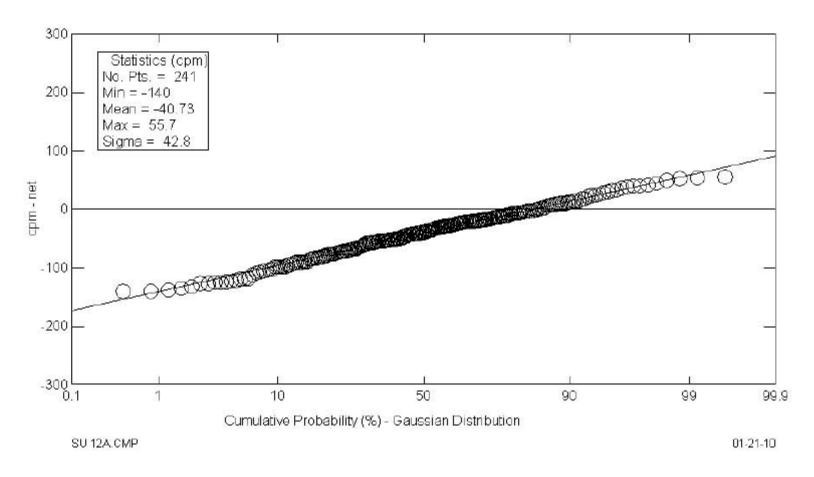


Figure 3-8 Survey Unit 12A Beta Scan Data

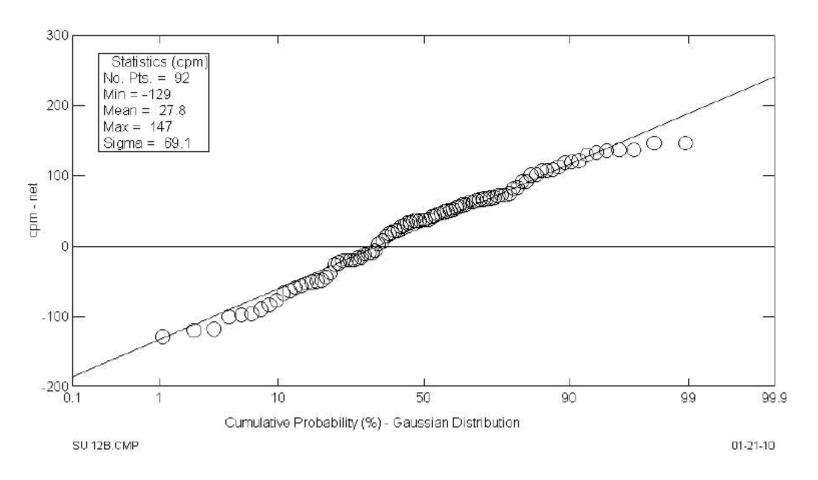


Figure 3-9 Survey Unit 12B Beta Scan Data

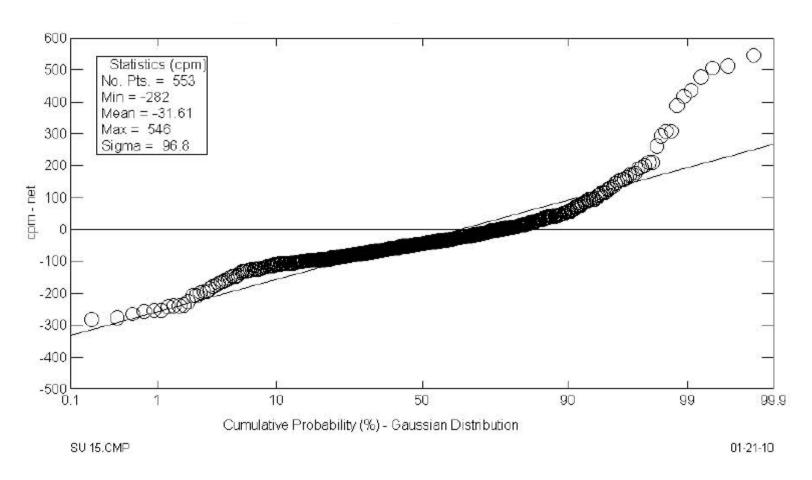


Figure 3-10 Survey Unit 15 Beta Scan Data

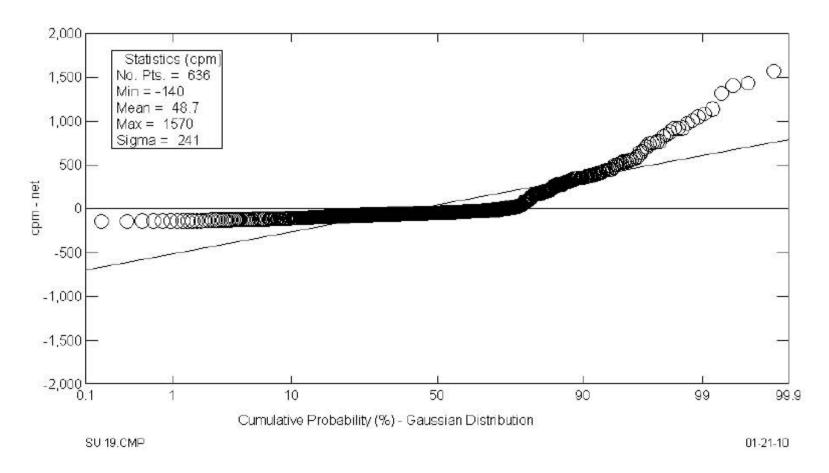


Figure 3-11 Survey Unit 19 Beta Scan Data

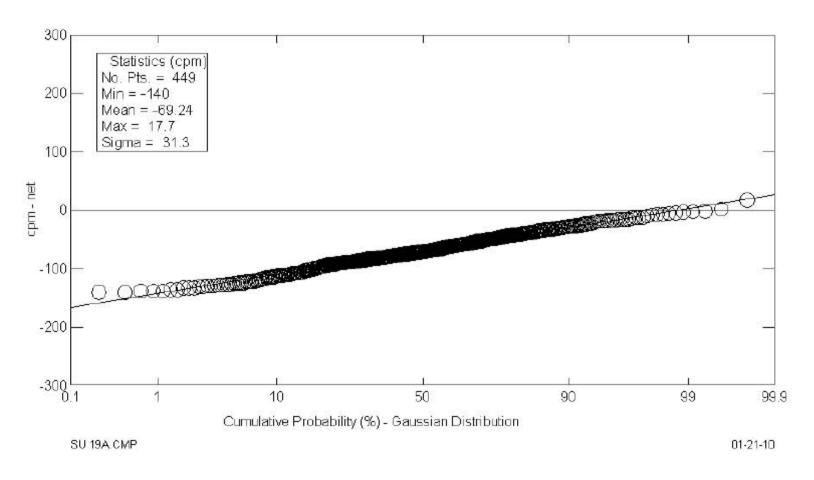


Figure 3-12 Survey Unit 19A Beta Scan Data

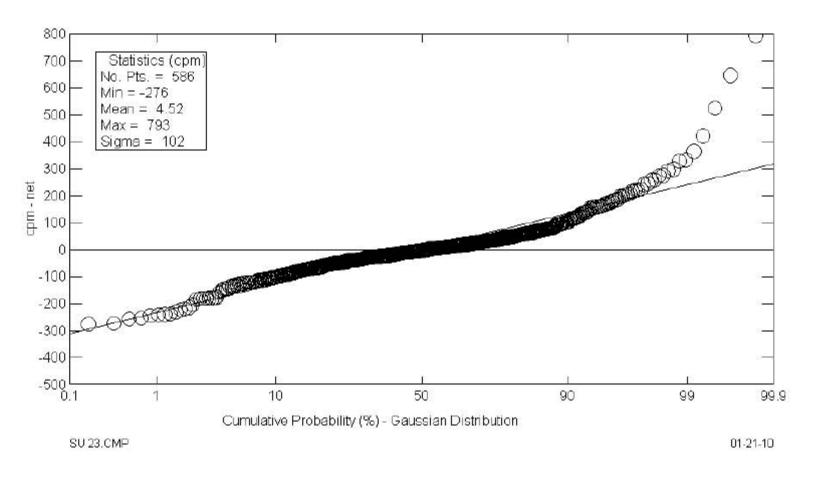


Figure 3-13 Survey Unit 23 Beta Scan Data

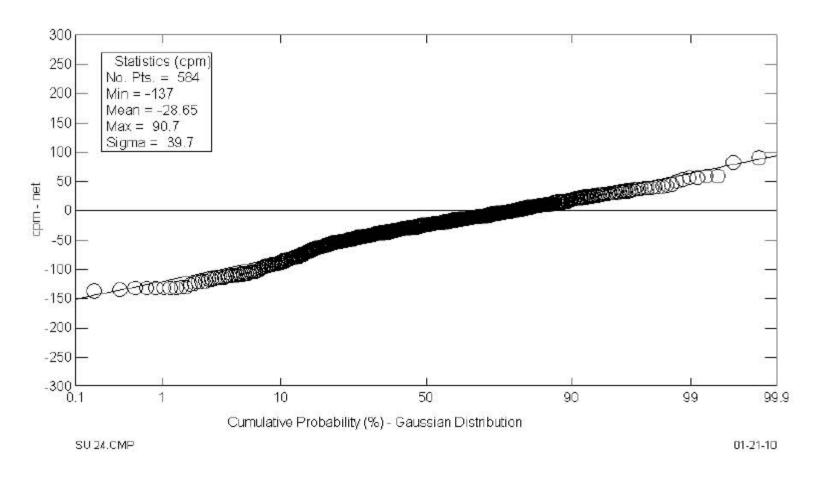


Figure 3-14 Survey Unit 24 Beta Scan Data

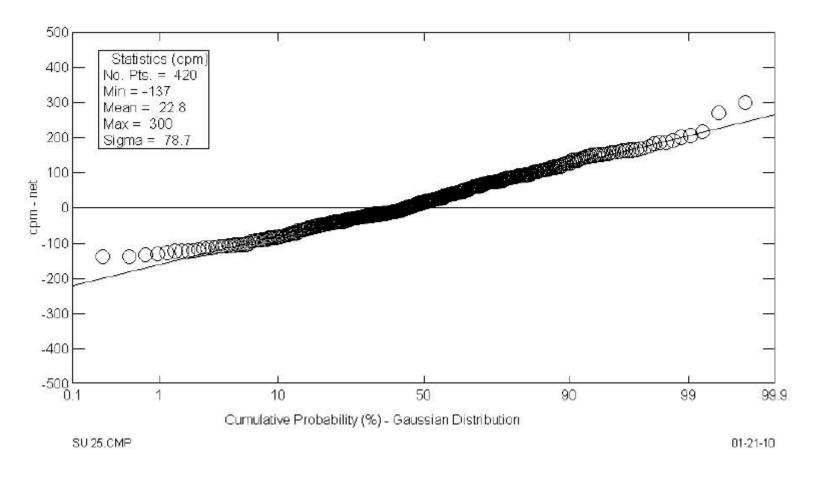
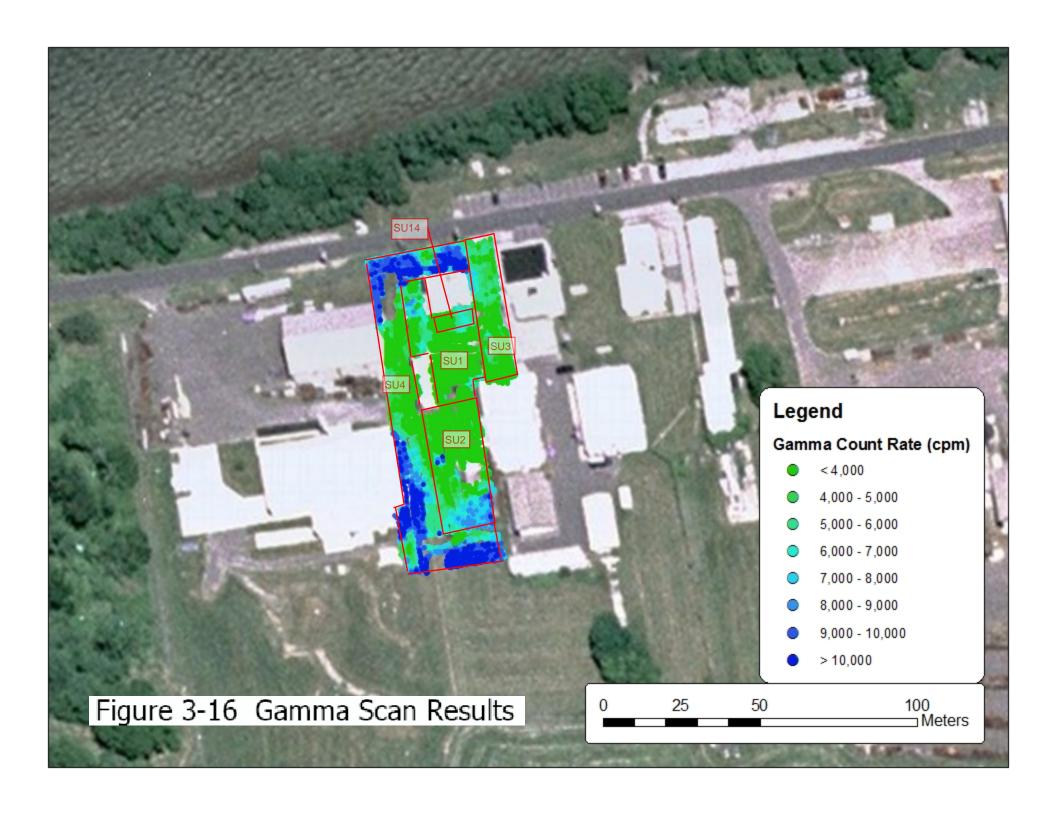



Figure 3-15 Survey Unit 25 Beta Scan Data

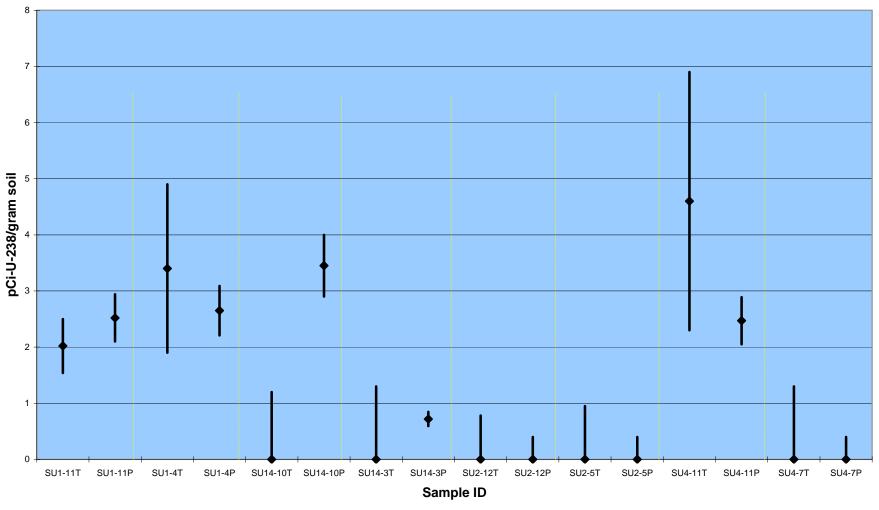


Figure 3-17 QC Results for Gamma Spectroscopy

Key: T = TestAmerica, P=PIKA Lab Error bars: 2 sigma or MDA

APPENDIX A

Final Status Survey Plan

BUILDING 1103A AREA FINAL STATUS SURVEY PLAN

REV. 0

U.S. Army Research Laboratory Aberdeen Proving Ground, MD

Contract No. W52P1J-04-D-0007 Delivery Order No. 0006

Submitted to:

U.S. Army Joint Munitions Command

1 Rock Island Arsenal Rock Island, IL 61299-6000

Submitted by:

CABRERA SERVICES, INC.
103 East Mount Royal Avenue
Baltimore, MD 21202

February 2008

TABLE OF CONTENTS

1.0	INTRODUCTION	1-1
2.0	SITE INFORMATION	2-2
2.1	SITE DESCRIPTION	2-2
2	2.1.1 Building 1103A	2-2
2	2.1.2 Building BRL12	2-3
	2.1.3 Freestanding Vault	
	2.1.4 Pavement and Grounds	
2.2		
3.0	FINAL STATUS SURVEY REQUIREMENTS	
3.1	RADIONUCLIDES OF CONCERN	3-1
3.2		
	$3.2.1$ Soil $DCGL_W$	
	3.2.2 Structures DCGL _W	
3.3	AREA CLASSIFICATION BASED ON CONTAMINATION POTENTIAL	3-3
3.4	IDENTIFICATION OF SURVEY UNITS	3-4
3.5	BACKGROUND REFERENCE AREA AND MATERIALS	3-7
3.6	REFERENCE SYSTEM	3-7
3.7	Survey Design	3-7
Ĵ	3.7.1 Number of Sample Locations for Survey Units	3-8
3.8		
	3.8.1 Surface Scans	
Ĵ	3.8.2 Soil Sampling and Surface Activity Measurements	
4.0	SURVEY INSTRUMENTATION AND TECHNIQUES	4-1
4.1		
	4.1.1 Ludlum Model 43-37	
	4.1.2 Ludlum Model 43-68	
4.2		
4.3	SMEAR SAMPLE COLLECTION AND ANALYSIS	4-3
4.4	GAMMA SCANS	4-1
4.5	VOLUMETRIC SAMPLE COLLECTION AND ANALYSIS	4-1
5.0	SURVEY QUALITY ASSURANCE/QUALITY CONTROL	5-1
5.1		
5.2	INSTRUMENT QC SOURCE AND BACKGROUND CHECKS	5-2
4	5.2.1 Gross Gamma Instruments	5-2
4	5.2.2 Alpha/Beta Detectors and Smear Counter	5-2
5.3	DUPLICATE MEASUREMENTS	5-3

6.0	DATA EVALUATION AND	COMPLIANCE DEMONSTRATION	6-1
6.1	DATA REVIEW AND INVESTIGA	ATION THRESHOLDS	6-1
6.2	DETERMINING COMPLIANCE V	WITH DCGLS	6-2
Ć	6.2.1 Land Area and Structure	e SUs	6-2
Ć	5.2.2 Elevated Measurement (Comparison Criteria	6-3
7.0	REPORTING		7-1
8.0	REFERENCES		8-1

LIST OF TABLES

Table 2-1:	Building 1103A Direct Alpha Measurement Summary	2-5
Table 2-2:	Building 1103A Removable Alpha Measurement Summary	2-6
Table 3-1:	Surface Activity DCGL _W	3-3
Table 3-2:	MARSSIM-Recommended Survey Unit Sizes	3-4
Table 3-3:	Land Area Survey Units	3-4
Table 3-4:	Structure Survey Units	3-6
Table 3-5:	MARSSIM-Recommended FSS Scan Coverage	3-11
Table 4-1:	Beta Surface Scan Sensitivity Assumptions	4-2
Table 4-2:	Integrated Alpha Measurement Sensitivity Assumptions	4-3
Table 4-3:	Removable Surface Activity (Smear) Sensitivity Assumptions	4-3
Table 4-4:	Gamma Scan Survey Sensitivity Assumptions	4-1
Table 6-1:	Land Survey Unit Area Factors	6-3
Table 6-2:	Structure Survey Unit Area Factors	6-3

LIST OF FIGURES

Figure 2-1: Building 1103A Area Layout Figure 2-2: Building 1103A Floor Plan Figure 2-3: Building BRL12 Floor Plan

Figure 2-4: Freestanding Vault

APPENDICES

Appendix A: Land Area Survey Unit Map

Appendix B: Field Instrument Detection Sensitivity

LIST OF ACRONYMS AND ABBREVIATIONS

Argonna National Laboratory	MDC	Minimum Detectable
•	MIDC	Concentration
· ·	MDCR	Minimum Detectable Count
•		Rate
Cabrera Services, Inc.	MDER	Minimum Detectable Exposure Rate
· ·	min	minute(s)
* /	mrem/yr	millirem(s) per year
• ' '		microroentgens per hour
` / *	NaI	sodium iodide
Guideline Level	NIST	National Institute of Standards and Technology
Guideline Level used for	NRC	U.S. Nuclear Regulatory Commission
comparison	P	Probability
Derived Concentration	pCi/g	picocurie(s) per gram
Guideline Level used for non-	QA	Quality Assurance
•	QC	Quality Control
- ' ' -	RDR	Relative Detector Response
_	ROC	Radionuclide of Concern
	sec	second(s)
î de la companya de l	SOP	Standard Operating Procedure
•	SU	Survey Unit
•	TEDE	Total Effective Dose
Final Status Survey Plan		Equivalent
Global Positioning System		cesium-137
•		technetium-99
alternative hypothesis		thorium-230
null hypothesis		thorium-234
Health Physicist		uranium-234
inch(es)		uranium-235
Joint Munitions Command	²³⁸ U	uranium-238
Lower Bound of the Gray Region		
meter(s)		
square meter(s)		
meter(s) per second		
	Code of Federal Regulations centimeter(s) square centimeter(s) count(s) per minute Derived Concentration Guideline Level Derived Concentration Guideline Level used for elevated measurement comparison Derived Concentration Guideline Level used for non- parametric statistical test disintegration(s) per minute Decommissioning Plan Data Quality Objective Depleted Uranium Fluence Rate to Exposure Rate Final Status Survey Final Status Survey Final Status Survey Gamma Walkover Survey alternative hypothesis null hypothesis Health Physicist inch(es) Joint Munitions Command Lower Bound of the Gray Region meter(s) square meter(s)	Aberdeen Proving Grounds Army Research Laboratory background Cabrera Services, Inc. Code of Federal Regulations centimeter(s) square centimeter(s) count(s) per minute Derived Concentration Guideline Level Derived Concentration Guideline Level used for elevated measurement comparison Derived Concentration Guideline Level used for non- parametric statistical test disintegration(s) per minute Decommissioning Plan Data Quality Objective Depleted Uranium Fluence Rate to Exposure Rate Final Status Survey Final Status Survey Final Status Survey Plan Global Positioning System Gamma Walkover Survey alternative hypothesis null hypothesis Health Physicist inch(es) Joint Munitions Command Lower Bound of the Gray Region meter(s) MDCR MDER MDER MDER MDER MDER MDER MDER MDER MEA hr Na1 NIST NRC QA QC RDA QC RDR ROC Sec Sec SOP SU TEDE 137 Cs 99 Tc 230 Th 234 Th 234 U 235 U 235 U 238 U

Manual

MARSSIM

Multi-Agency Radiological

Survey and Site Investigation

1.0 INTRODUCTION

This *Final Status Survey Plan (FSSP)* has been prepared by Cabrera Services, Inc. (CABRERA), under contract to the U.S. Army Joint Munitions Command (JMC), to support the decommissioning of the Building 1103A Area at Aberdeen Proving Ground (APG). This *FSSP* addresses the applicable radiological surveys, sampling, and data analysis necessary to demonstrate that the Building 1103 Area is suitable for unrestricted release following completion of the decommissioning activities outlined in the *Building 1103A Area Decommissioning Plan (DP)*. The Building 1103A Area is under the control of the U.S. Army Research Laboratory (ARL), and is subject to the requirements of its U.S. Nuclear Regulatory Commission (NRC) license (No. SMB-141). The goal of decommissioning activities described in the *DP* is to facilitate the release of the site for unrestricted use.

The proposed derived concentration guideline levels (DCGLs) for soil and structures for the Building 1103A Area are based on the surface activity screening values published by the NRC in NUREG-5512: *Residual Radioactive Contamination from Decommissioning, Parameter Analysis,* Volume 3, Tables 5.19 (NRC, 1999), and a site-specific soil DCGL developed by Argonne National Laboratory (ANL) for the APG Transonic Range (ANL, 1999), which was contaminated with similar source material (i.e., depleted uranium [DU]). Implementation of this *FSSP* will provide the data necessary to demonstrate compliance with the DCGL for structure surfaces and outdoor areas. Specifically, when the DCGLs are applied to the final status survey (FSS) and the data obtained indicates that the requirements of this *FSSP* have been satisfied, the requirements in Title 10 of the Code of Federal Regulations (CFR) Part 20.1402 for unrestricted release are achieved (NRC, 2006).

2.0 SITE INFORMATION

The Building 1103A Area is a former radioactive material processing and storage facility on Spesutie Island at APG. Historical site activities involving DU have resulted in radiological contamination of the buildings and grounds. ARL has responsibility for this area and desires to initiate the decommissioning process so that the area can be released from its NRC Nuclear Materials License requirements.

The general layout of the Building 1103A Area is shown in Figure 2-1. Floor plans of the main buildings comprising this area (i.e., Building 1103A, Building BRL12, and the freestanding vault) are depicted in Figures 2-2 through 2-4, respectively. Historical activities involved the unloading of DU contaminated targets in the central asphalt area; storage and staging of the targets in one of the three vaults; cutting and machining of the targets in Building 1103A (and, to a lesser extent, BRL12); and storage and reloading of the resulting steel pieces in preparation for decontamination, disposal, or reuse.

A characterization survey was conducted at the site in May 2006 to determine the extent of radiological impact to the buildings and grounds. Upon completion of the survey, limited DU activities in the Building 1103A Area were temporarily resumed. Current activities are similar in nature to historical activities conducted at the site, and are being confined to Building 1103A only. It is expected that work involving DU will permanently cease in 2008, at which time the Army is expected to proceed with decommissioning the site.

2.1 Site Description

The Building 1103A Area consists of 3 primary structures: Building 1103A, Building BRL12, and a Freestanding Vault. The site also includes the land areas adjacent to and between these structures.

2.1.1 Building 1103A

Building 1103A houses the main machine shop used for the disassembly of firing range targets contaminated with DU. The Main Area of Building 1103A is constructed of cinder block exterior walls, a concrete slab floor, and a flat tar-and-chip roof. The ceiling is covered in some places with fiberboard. Under the same roof is a small Entry Area, which includes the furnace room, bathroom, meeting room, and changing room. The Entry Area has a droptype acoustic tile ceiling, sheetrock walls, and tile flooring. The walls separating the Entry

and Main Areas consist of sheetrock, and are lined with steel plates on the side facing the Main Area.

On the south side of the building is a Shop Area, which is a wood-frame addition to the main building. This area has a concrete slab floor and a pitched shingle roof. Steel plates line the lower portion of the walls in this area, and fiberglass insulation is present between the wood studs and overhead beams.

Building 1103A contains functioning ventilation, electrical, water supply, and sewer systems. The ventilation system has fiber filters on the air intake vents and exposed ductwork attached to the ceiling. The electrical system panel is located in the Shop Area, and electrical conduit runs along the walls and ceiling throughout the building to supply energy to light fixtures and wall outlets. There is a full bathroom in the Entry Area with sink, toilet, and shower facilities. This area was used for personnel and equipment decontamination during building operations involving radioactive material.

2.1.2 Building BRL12

Building BRL12 was built to provide additional space for machining operations associated with the dismantlement of DU-contaminated targets, as well as shielded storage space for staging the contaminated targets prior to disassembly. The main area (i.e., Central Room) of Building BRL12, where machining was performed, has a concrete floor, sheetrock walls (some of which are lined with steel), and acoustic tile ceiling. There are two air conditioning units mounted in the west wall of the building. The only utility system in the building is the electrical system, which is used to power the air conditioners, light fixtures, and wall outlets.

There are steel-lined storage vaults on the north and south ends of Building BRL12. Both vaults have concrete floors and steel-lined walls and ceilings. A single light fixture hangs from the ceiling in each vault. There is also a small office area situated between the main room and the north end vault. The office has sheetrock walls, tiled floor, and acoustic tile ceiling.

2.1.3 Freestanding Vault

The Freestanding Vault is situated directly southeast of Building BRL12. Like the BRL12 end vaults, this vault was used for the storage of contaminated targets. It has a concrete floor, and the walls and ceiling are completely lined with steel. A single light fixture hangs from the ceiling. Attached to the southern end of the vault is a wooden tool shed where maintenance equipment such as a tractor and snow plow are stored.

2.1.4 Pavement and Grounds

The impacted outdoor areas include approximately one-half acre of asphalt pavement between the buildings and vaults (i.e., Central Asphalt), the small parking lot east of the perimeter fence enclosing the Building 1103A Area (i.e., Adjacent Asphalt), and approximately one-half acre of grass-covered grounds within or adjacent to the Building 1103A Area (i.e., Grounds).

Central Asphalt

The Central Asphalt area, which extends from the south side of Building 1103A to the southern fence, was the site of loading, unloading, and staging of contaminated targets, as well as for the transfer of targets among the disassembly buildings and storage areas. On at least one occasion, contaminated items were dismantled on the asphalt in front of Building BRL12 by using an acetylene torch. The asphalt is cracked in many places, allowing for water seepage, and is prone to slight changes in elevation depending on the moisture content of the underlying soil. Small areas of yellow discoloration and/or DU fragments are present in several locations.

Adjacent Asphalt

The Adjacent Asphalt lies east of Building 1103A and north of Building 1103B. It is presently used as a parking lot for employees working in nearby buildings.

Grounds

The Grounds consist of the lawn adjacent to Building 1103A, as well as the grassy areas south and west of the central asphalt. Grounds were included in the survey to evaluate possible impacts due to airborne migration of DU-contaminated dust and/or waterborne migration of DU-contaminated runoff

2.2 Previous Investigations

In 2006, CABRERA performed a characterization survey of potentially impacted buildings and grounds at the Building 1103A Area. Results of the structures surface contamination surveys and soils volumetric sample analyses completed during the characterization survey are presented in the *Building 1103A Area Characterization Survey Report* (CABRERA, 2007), and summarized below in Tables 2-1 through 2-7. Surface contamination results are presented in units of disintegrations per minute per 100 square centimeters (dpm/100 cm²), and volumetric results are presented in units of picocuries per gram (pCi/g).

Table 2-1: Building 1103A Direct Alpha Measurement Summary

		Alpha Activity (dpm/100cm ²)		
Area	Location	Average	Standard Deviation	Maximum
Main Area	Floor	432	239	864
	Interior Walls	68	42	172
	Ceiling	10	8	26
	Ceiling Horizontal Surfaces	1,245	1,045	2,654
Shop Area	Floor	386	59	428
	Interior Walls	80	62	276
	Ceiling	33	15	52
	Ceiling Horizontal Surfaces	711	771	1562
Entry Area	Floor	87	73	236
	Interior Walls	8	7	20
	Ceiling	*	*	*
	Ceiling Horizontal Surfaces	375	301	812
Exterior Walls	North Wall	22	13	42
	South Wall	43	85	268
	East Wall	13	13	36
	West Wall	12	6	20

^{* =} characterization survey measurements not obtained

Table 2-2: Building 1103A Removable Alpha Measurement Summary

		Alpha Activity (dpm/100cm²)		
Area	Location	Average	Standard Deviation	Maximum
Main Area	Floor	60	36	124
	Interior Walls	28	25	88
	Ceiling	0.4	0.7	1.3
	Ceiling Horizontal Surfaces	284	198	644
Shop Area	Floor	7.0	1.5	8.0
	Interior Walls	16	13	56
	Ceiling	7.2	6.2	18
	Ceiling Horizontal Surfaces	159	145	315
Entry Area	Floor	7.8	7.0	20
	Interior Walls	2.2	1.3	4.3
	Ceiling	*	*	*
	Ceiling Horizontal Surfaces	68	69	179
Exterior Walls	North Wall	0.2	0.6	1.0
	South Wall	1.6	3.1	9.9
	East Wall	0.1	0.5	1.0
	West Wall	0.3	1.0	2.3

^{* =} characterization survey measurements not obtained

Table 2-3: Building BRL12 Direct Alpha Measurement Summary

		Alpha Activity (dpm/100cm ²)			
Area	Location	Average	Standard Deviation	Maximum	
Central Room	Floor	76	55	186	
	Interior Walls	9	12	40	
	Ceiling	19	15	36	
North Vault	Floor	4,030	6,132	14,798	
	Interior Walls	-1	7	10	
	Ceiling	0	0	0	
South Vault	Floor	43	23	68	
	Interior Walls	1	3	6	
	Ceiling	4	0	4	
Office Area	Floor	98	*	98	
	Interior Walls	**	**	**	
	Ceiling	**	**	**	
Exterior Walls	North Wall	5	6	12	
	South Wall	6	5	12	
	East Wall	7	8	22	
	West Wall	4	7	12	

^{* =} single measurement obtained

^{** =} characterization survey measurements not obtained

Table 2-4: Building BRL12 Removable Alpha Measurement Summary

		Alpha Activity (dpm/100cm²)			
Area	Location	Average	Standard Deviation	Maximum	
Central Room	Floor	7.4	4.1	14	
	Interior Walls	4.4	3.2	8.7	
	Ceiling	0.7	0.9	1.3	
North Vault	Floor	274	470	1,107	
	Interior Walls	0.8	1.0	2.3	
	Ceiling	0.4	0.6	0.8	
South Vault	Floor	5.9	4.1	12	
	Interior Walls	0.3	0.7	1.3	
	Ceiling	1.4	1.5	2.4	
Office Area	Floor	7.5	*	7.5	
	Interior Walls	**	**	**	
	Ceiling	**	**	**	
Exterior Walls	North Wall	0.9	1.1	2.3	
	South Wall	0.6	1.2	2.3	
	East Wall	1.0	1.6	3.6	
	West Wall	0.3	0.6	1.0	

^{* =} single measurement obtained

^{** =} characterization survey measurements not obtained

Table 2-5: Freestanding Vault Direct Alpha Measurement Summary

		Alpha Activity (dpm/100cm ²)		
Area	Location	Average	Standard Deviation	Maximum
Interior	Floor	46	14	56
	Interior Walls	16	37	104
	Ceiling	1	1	2
Exterior Walls	North Wall	12	3	16
	South Wall	3	7	10
	East Wall	9	16	20
	West Wall	23	10	38

Table 2-6: Freestanding Vault Removable Alpha Measurement Summary

		Alpha Activity (dpm/100cm ²)		
Area	Location	Average	Standard Deviation	Maximum
Interior	Floor	3.0	2.6	4.8
	Interior Walls	3.3	4.2	12.6
	Ceiling	0.1	0.3	0.3
Exterior Walls	North Wall	1.2	0.7	2.3
	South Wall	0.1	0.8	1.3
	East Wall	1.5	1.1	2.3
	West Wall	0.3	0.6	0.8

Table 2-7: Soil Sample Results Summary for Land Areas

	Maximum Soil Co	ncentration (pCi/g)
Location	²³⁸ U ¹	Total DU ²
Average	160	177
Standard Deviation	398	440
Maximum	1,740	1,925

pCi/g = picocuries per gram

 $^{^{1}}$ = 238 U concentration inferred from reported 234 Th concentration in biased soil samples. 2 = Total DU concentration determined by dividing the 238 U concentration by 0.904 (i.e., assumed activity fraction of 238 U in DU).

3.0 FINAL STATUS SURVEY REQUIREMENTS

A FSS will be planned and conducted for each survey unit (SU) associated with impacted outdoor soil areas, outdoor solid surfaces (i.e., adjacent asphalt parking lot). The FSSP is prepared in accordance with the guidance presented in the *Multi-Agency Radiological Survey* and Site Investigation Manual (MARSSIM; NRC, 2000) and follows the data quality objective (DQO) process. This ensures that all impacted SUs are surveyed with the necessary rigor that corresponds with their respective contamination potential. The DQO process includes the following seven steps:

Step 1: State the problem

Step 2: Identify the decisions

Step 3: Identify inputs to the decisions

Step 4: Define the study boundaries

Step 5: Develop a decision rule

Step 6: Specify the decisions

Step 7: Optimize the survey design

The following sections provide the requirements for the planning phase of the FSS, including the identification of radionuclides of concern (ROCs) and DCGLs, classification and survey unit designations, survey planning parameters, instrumentation, measurement and sampling procedures, and the data quality assessments that will be implemented.

3.1 Radionuclides of Concern

ROCs known to be present in the Building 1103A Area are limited to DU isotopes consisting of uranium-234 (²³⁴U), uranium-235 (²³⁵U), and uranium-238 (²³⁸U) and their short-lived decay progeny. The assumed DU composition is based on the isotopic uranium ratios routinely used for shipments of DU waste from APG (Barg, 1995). The activity fractions are calculated from the weight ratios and specific activities of each uranium isotope. The resulting composition consists of ²³⁴U, ²³⁵U, and ²³⁸U activity fractions of 0.084, 0.012, and 0.904, respectively. This composition is similar to the average activity fractions measured in three DU soil samples described in the ANL report *Derived Uranium Guideline for the*

Depleted Uranium Study Area of the Transonic Range, Aberdeen Proving Ground, Maryland (ANL, 1999).

3.2 Derived Concentration Guideline Levels

As described in MARSSIM (NRC, 2000), a DCGL is a derived radionuclide activity concentration that corresponds to a dose-based release criterion; and a DCGL_W is the DCGL used in non-parametric statistical testing to evaluate compliance with the dose-based criterion across a wide area (i.e., SU). For this FSS, the release criterion is based on the 25 millirem per year (mrem/yr) total effective dose equivalent (TEDE) exposure limit specified in 10 CFR 20, Subpart E: *Radiological Criteria for License Termination* (NRC, 2006). The corresponding DCGLs for soil and structures are described below.

3.2.1 Soil DCGL_W

A DCGL_W of 230 pCi/g total DU will be used for evaluating soils at the Building 1103A Area. Of this total DU DCGL_W, 190 pCi/g is attributable to ²³⁸U. Therefore, if ²³⁸U is used as the indicator parameter for evaluating soil sample results, the total DU DCGL_W is not exceeded if the ²³⁸U concentration does not exceed 190 pCi/g. These values were originally developed for use in decommissioning the APG Transonic Range (ANL, 1999), which was contaminated with source material similar to that at the Building 1103A Area. The total DU DCGL_W is based on a resident-farmer exposure scenario, and represents the modeled radioactivity concentration corresponding to a potential dose of 25 mrem/yr over a 1,000-year period.

3.2.2 Structures DCGL_W

The DCGL $_{\rm W}$ for DU surface activity on structures is based on the screening values published in NUREG/CR-5512, Volume 3, Table 5.19 ($P_{\rm crit}$ = 0.90; NRC, 1999). The primary method of obtaining surface activity measurements for both total and removable activity will be through use of alpha monitoring instrumentation. Therefore, the surface activity screening values have been calculated based on the total number of alpha particles emitted in each of the applicable radioactive decay chains and the percent contribution from each of the uranium isotopes present in DU, as shown in Table 3-1. The DCGL $_{\rm W}$ is calculated using the following formula.

$$DCGL_{W} = \frac{1}{\left(\frac{f_{1}}{DCGL_{1}}\right) + \left(\frac{f_{2}}{DCGL_{2}}\right) + \left(\frac{f_{3}}{DCGL_{3}}\right)}$$

Where:

 $DCGL_W$ = Combined gross activity DCGL

 $f_{L2.3}$ = Activity fraction of individual radionuclide

 $DCGL_{1,2,3}$ = DCGL for individual radionuclide

Table 3-1: Surface Activity DCGL_W

	ROC	NUREG/CR-5512 Screening Level (dpm/100 cm ²)	Total Alphas per Decay	Alpha Based Screening Level (dpm/100 cm²)	DU Alpha DCGL _W (dpm/100 cm ²)
	90.4% ²³⁸ U	101.0	1	101.0	
DU	1.2% ²³⁵ U	97.6	1	97.6	100
	8.4% ²³⁴ U	90.6	1	90.6	

 $dpm/100 cm^2 = disintegrations per minute per 100 square centimeters$

As noted in NUREG/CR-5512 (NRC, 1999), the surface activity screening levels are based on the assumption that the fraction of removable surface contamination is ten percent. Therefore, the removable alpha activity limit applied to the FSS is 10 dpm/100 cm².

3.3 Area Classification Based on Contamination Potential

Based on historical site information and data obtained during the characterization survey, impacted areas at the Building 1103A Area have been subdivided into three categories based on contamination potential as either Class 1, 2, or 3, in accordance with MARSSIM (NRC, 2000). A description of each is provided below:

- Class 1: Buildings or land areas that have a significant potential for radioactive contamination (based on site operating history) or known contamination (based on previous radiological surveys) that exceeds the DCGL_W.
- Class 2: Buildings or land areas, often contiguous to Class 1 areas, that have a potential for radioactive contamination but at levels less than the DCGL_W.
- Class 3: Buildings or land areas that are expected to contain little or no residual contamination based on site operating history or previous radiological surveys.

Furthermore, outdoor solid surfaces, land areas, and buildings have been further subdivided into SUs, which provide the fundamental unit for demonstrating compliance with the applicable $DCGL_W$.

3.4 Identification of Survey Units

All impacted outdoor surfaces, land areas, and structures have been subdivided into Class 1, 2, or 3 SUs. Each SU represents a portion of the site with similar contamination potential. The MARSSIM-recommended SU sizes are provided in Table 3-2.

Table 3-2: MARSSIM-Recommended Survey Unit Sizes

Class	Recommended Survey Area			
	Structures	Land Areas		
1	Up to 100 m ²	Up to 2,000 m ²		
2	100 to 1,000 m ²	2,000 to 10,000 m ²		
3	No limit	No limit		

 m^2 = square meters

Based on the results of characterization surveys and sampling performed, the remediation of land areas will require the removal of pavement in the Central Asphalt area and a six-inch layer of underlying soil. As a result of the asphalt removal, native soil will be exposed and the SUs will be established accordingly.

Land area SUs at the Building 1103A Area have been identified as indicated in Table 3-3. A map of the outdoor land area SUs is provided in Appendix A.

Table 3-3: Land Area Survey Units

Area	Survey Unit	MARSSIM Classification	Matrix
Outdoor Area North	1	1	Soil
Outdoor Area South	2	1	Soil
Adjacent Asphalt Parking Lot	3	2	Pavement
Area Immediately Surrounding the Class 1 Outdoor Areas	4	2	Soil

The remediation of structures will entail the removal of interior fixtures, such as overhead lighting, electrical conduit, ventilation ducting, suspended ceilings, etc. The Building 1103A Shop Area will be removed entirely, leaving behind the concrete floor slab. Similarly, the Storage Shed attached to the Freestanding Vault will be removed. Roofing shingles and tar roof surfacing will be removed from Building 1103A and Building BRL12 roofs, exposing the underlying solid surface for performance of FSS surveys. Remaining structure interior surfaces will be decontaminated, as necessary. The FSS structure SUs are identified in Table 3-4.

Table 3-4: Structure Survey Units

Structure	Area	Survey Unit	MARSSIM Classification
	Floor North	5	1
	Floor South	6	1
	Interior Walls – North and East	7	1
	Interior Walls – West and South	8	1
	Ceiling North	9	1
1103A	Ceiling South	10	1
	Exterior Wall – South	11	1
	Exterior Wall – North, East and West	12	2
	Roof	13	2
	Former Shop Area Concrete Slab	14	1
	Central Area Floor	15	1
	Central Area Interior Walls - North and East	16	2
	Central Area Interior Walls – West and South	17	2
BRL12	Central Area Ceiling	18	2
	North Vault Interior Surfaces	19	1
	South Vault Interior Surfaces	20	2
	Exterior Walls	21	3
	Roof	22	3
	Floor, North and East Walls	23	1
Freestanding Vault	Ceiling, West and South Walls	24	1
	Exterior Walls and Roof	25	2
1103B	Floor	26	3
1103B	Exterior North and West Walls	27	2
1100E	Exterior East Wall	28	3
1100F	1100F Exterior East Wall		3

3.5 Background Reference Area and Materials

Although uranium isotopes present in DU are also present in the environment, the concentrations of uranium isotopes naturally present in soil represents a very small fraction of the soil DCGL $_{\rm W}$. Therefore, the determination of background uranium concentration in soil is not necessary and will not be considered when comparing soil data with the DCGL $_{\rm W}$ or when performing statistical tests. Soil sample data will be used for direct comparison with the soil DCGL $_{\rm W}$ and for performance of the planned non-parametric Sign statistical test without correction for background uranium concentrations.

Structure SUs will also be evaluated using the non-parametric Sign test. Construction material-specific background measurements may be performed in areas of similar construction but without a history of radioactive material use. These material-specific background activity values may then be used to correct direct surface activity measurements for the contribution due to background and natural radioactivity in these materials. However, as a conservative measure, the material-specific background may be assumed to be zero. If used, material-specific background surface material count rates will be subtracted from SU count rates prior to converting the data to units of dpm/100 cm 2 for comparison with the applicable DCGLw.

3.6 Reference System

A reference coordinate system will be utilized for FSS measurements and sampling locations. Direct measurements on structural surfaces will be referenced to prominent building features, or a grid system will be used similar to that implemented for the characterization surveys. Soil sample locations will be referenced to global positioning system (GPS) coordinates obtained using hand-held GPS units.

3.7 Survey Design

Structure surface contamination and DU concentrations in soil will be assessed by collecting the required number of systematic gross alpha surface activity measurements and soil samples within each SU. The Sign test will be used for demonstrating compliance with the applicable DCGL_W.

The statistical test (Sign test) is performed to evaluate the SU mean concentration relative to the null hypothesis (H_0). Simply stated, H_0 assumes the residual contamination in the SU exceeds the release criterion. Provided that the statistical test is satisfied at the desired confidence level, then H_0 is rejected and the alternate hypothesis (H_a), residual contamination

meets the release criterion, is accepted. The data needs for the statistical test will be determined through the processes in the following sections.

3.7.1 Number of Sample Locations for Survey Units

The following sections describe the bases for and derivation of the minimum required measurements and samples per SU.

Estimation of Relative Shift

The relative shift describes the relationship of site residual radionuclide concentrations to the DCGL_w and is calculated using the following equation:

$$\Delta / \sigma = \frac{DCGL_{w} - LBGR}{\sigma}$$

Where:

 $DCGL_W$ = Applicable value from Section 3.2

LBGR = Lower bound of the gray region; normally established as the

estimated mean activity within the survey unit, but may be

adjusted to maximize survey design

 σ = Estimate of the standard deviation of the residual radioactivity,

or the actual standard deviation obtained from characterization

surveys and/or sampling

The DQOs are evaluated for each SU, and the decision errors are selected. The Type 1 error (or probability of incorrectly rejecting H₀ when it is true) is set at 0.05 (i.e., 5%). The Type 2 error (or probability of incorrectly accepting H₀ when it is false) is also set at 0.05. Once these parameters are established and the relative shift is determined, the number of data points required by the statistical test is calculated using MARSSIM Equation 5-2 (NRC, 2000), obtained directly from MARSSIM Table 5.5 (Sign test), or generated using *COMPASS*, *Visual Sample Plan* or *MARSSIM Power* software.

The DCGL_W for soil radioactivity is 230 pCi/g. The LBGR is estimated to be 115 pCi/g, which represents half of the DCGL_W, as suggested in MARSSIM. Using an estimated coefficient of variation of 30% and the LBGR as an estimate of the sample mean, a standard deviation of 34.5 pCi/g is calculated. Using these values and the above equation, the relative shift is initially calculated to be 3.3. Because MARSSIM recommends a relative shift of

between 1 and 3, the LBGR was adjusted downward to achieve a value of 3.0. The corresponding number of samples, as specified in MARSSIM, Table 5.5, is 14.

For both buildings and outdoor solid surfaces (i.e., adjacent asphalt parking lot), the DCGL $_{\rm W}$ for surface alpha radioactivity is 100 dpm/100 cm 2 . The LBGR is conservatively estimated as 70 dpm alpha/100 cm 2 . Using a coefficient of variation of 30% and the LBGR as an estimate of the sample mean, a standard deviation of 21 dpm/100 cm 2 is estimated. Using these values and the above equation, the relative shift is 1.4. The corresponding number of systematic direct measurement locations, as specified in MARSSIM, Table 5.5, is 20.

Adjustment of the Number of Samples and Direct Measurements Based on Scan Sensitivity

Once the minimum number of samples and direct measurements has been determined for each SU, the scan sensitivity for each Class 1 SU type is evaluated to verify that the sensitivity is sufficient to detect small elevated areas of activity (refer to MARSSIM Section 5.5.2.4). This only applies to Class 1 SUs, as elevated areas of activity are not expected in Class 2 or Class 3 SUs.

As discussed in Section 5.4, outdoor land area gamma scans will be performed using a 3-inch by 3=inch (3-in. \times 3 in.) sodium iodide (NaI) detector with a DU scan sensitivity (minimum detectable concentration [MDC]) of 32.9 pCi/g. Because the actual scan sensitivity is lower than the soil DCGL_W, no further evaluation is required, and the previously calculated minimum number of samples (14) is confirmed to be acceptable.

Class 1 structure beta scans will be performed using a Ludlum Model 43-37 or Ludlum Model 43-68 gas proportional detectors. The beta scan minimum detectable count rates (MDCRs) for these two detectors are 397 and 185 counts per minute (cpm), respectively. Because both are higher than the structure alpha DCGL_W, an evaluation is required to determine whether the number of direct alpha measurements calculated is sufficient to detect elevated areas of activity. Using the higher scan MDCR, the need for adjustment is determined using MARSSIM, Equation 5-4, and the area factors listed in MARSSIM, Table 8.2. The actual beta scan MDCR is 397 cpm (rounded to 400 cpm for simplicity), and the corresponding area factor is 4. From MARSSIM, Table 8.2, this equates to an area of 9 square meters (m²). Dividing the maximum SU size for a Class 1 structure, 100 m², by this area provides the adjusted number of direct measurements, 11 per SU, based on the scan sensitivity. This value is less than the minimum number of direct alpha surface activity measurements previously calculated (20); therefore, no additional direct alpha measurements are necessary.

Determining Measurement/Sampling Locations

Measurement and sampling locations will be established in either a random-start/systematic fashion for Class 1 and Class 2 SUs, or at randomly generated locations for Class 3 SUs. Random-start/systematic locations will follow the recommended guidance using a triangular sampling pattern to increase the probability of identifying small areas of residual activity. The linear spacing (L) between data points on a triangular grid pattern is determined by:

$$L = \sqrt{\frac{A}{0.866 \times N}}$$

Where:

L = Triangular grid spacing between sample locations

A = Area of SU

N = Number of sample locations

And the spacing between rows is calculated as:

$$0.866 \times L$$

For land areas, a unique set of GPS coordinates will be generated for each sample location.

3.8 Integrated Survey Strategy

FSS data collected for structure surfaces consists of beta surface activity scans and direct measurements for alpha surface activity. Gamma scans will be performed on outdoor solid surfaces, such as paved areas, in lieu of beta surface activity scans. Smears samples, although not used in the final data quality assessment, will be collected from each direct alpha systematic and biased measurement location to measure removable alpha surface activity. FSS of open land areas will consist of gamma scans to identify locations of residual contamination, and soil samples analyzed for the ROCs. Additional biased measurements and samples will be obtained, as necessary, from locations where scans indicate the potential for elevated activity.

3.8.1 Surface Scans

Surface gamma scans will be performed using NaI scintillation detectors over land areas and outdoor solid surfaces, such as paved areas. Surface scans in building SUs, as well as remaining Building 1103A Shop Area concrete pad will be performed using gas proportional

detectors for beta activity. Detectors will be coupled to ratemeters or ratemeter-scalers with audible indicators.

The recommended surface scan coverage of accessible survey unit areas, as discussed in MARSSIM, is provided in Table 3-5.

 Class
 Structures
 Land Areas

 1
 100%
 100%

 2
 10 to 100% floors and lower walls 10 to 100%
 10 to 100%

 3
 Judgmental
 Judgmental

Table 3-5: MARSSIM-Recommended FSS Scan Coverage

3.8.2 Soil Sampling and Surface Activity Measurements

FSS surface and subsurface soil samples will be collected from Class 1 land areas at predetermined random-start/systematic locations. Additionally, biased samples will be collected from locations where elevated direct gamma radiation is detected by surface gamma scans. Soil samples will be maintained under formal chain-of-custody procedures. Surface soil systematic and biased samples will be analyzed for the ROCs, and results will be reported in units of pCi/g. If a systematic or biased surface soil sample result is greater than or equal to the soil DCGLw, the subsurface sample from the same sample location will be submitted for analysis. For FSS of Class 2 land areas, only surface soil samples will be collected, and these will be analyzed in the same manner as the Class 1 soil samples. There are no Class 3 land area SUs identified in the Building 1103A Area.

FSS direct measurements to quantify total alpha activity on structure surfaces and outdoor solid surfaces will be performed at pre-determined random-start/systematic or random locations, as applicable. Additional biased direct alpha measurements will be performed at locations of elevated activity identified during the scan survey. Direct alpha measurements will be performed using gas proportional or scintillation detectors coupled to ratemeter-scalers.

Smear samples will be collected at each direct systematic or biased surface activity measurement location to quantify the alpha removable contamination within each structure SU. Direct and removable surface activity data will be converted to units of dpm/100 cm² for comparison to the removable alpha activity limit.

Specific FSS survey and sampling requirements for the various types of SUs at the Building 1103A Area are discussed in the following paragraphs.

Class 1 Land Area SUs

Class 1 land area SUs at the Building 1103A Area include the open area between Building 1103A, Building BRL12, and the Freestanding Vault. These include SUs 1 and 2 in Table 3-3. Following removal of the asphalt in the Central Asphalt Area, the entire area will be divided into two Class 1 survey units. A total of 14 surface and 14 subsurface systematic soil samples will be collected in each SU. A gamma scan will be performed over 100 percent of the affected area, and additional biased surface and subsurface soil samples will be collected, if necessary, based on the gamma scan results. The surface soil samples will be submitted immediately for analysis. Upon receipt and review of the analytical data, subsurface soil samples from locations where the associated surface soil sample analytical results exceed the soil DCGL_W will also be submitted for analysis.

Class 2 Land Area SUs

The Class 2 land area SU surrounds the Class 1 SUs discussed in the previous paragraph. This is identified as SU 4 in Table 3-3. A total of 14 systematic surface soil samples will be collected in each of these SUs. A gamma scan will be performed over 10 to 100 percent of these areas, and additional biased sampling will be conducted, as necessary, based on the gamma scan results.

Class 3 Land Area SUs

There are no Class 3 land area SUs at the Building 1103A Area.

Class 1 Outdoor Solid Surface SUs

There are no Class 1 outdoor solid surface SUs at the Building 1103A Area.

Class 2 Outdoor Solid Surface SUs

A single Class 2 outdoor solid surface SU, the adjacent asphalt parking lot (SU 4), has been identified at the Building 1103A Area. A total of 20 systematic direct alpha measurements will be performed in each of the SUs. A smear will be obtained at each direct measurement location to assess removable contamination. A gamma scan with the NaI detector will be performed over 10 to 100 percent of the accessible surface area, and additional biased direct alpha measurements will be obtained, if necessary, based on the gamma scan results.

Class 3 Outdoor Solid Surface SUs

There are no Class 3 outdoor solid surface SUs at the Building 1103A Area.

Class 1 Structure SUs

Class 1 structure SUs include the concrete pad that remains following the demolition and removal of the Building 1103A Shop Area, as well as many structure surfaces associate with Buildings 1103A, BRL12, and the Freestanding Vault. A total of 20 systematic direct alpha measurements will be performed in each of these SUs. Additionally, a smear will be obtained at each direct alpha measurement location to assess removable alpha contamination. Surface activity beta scans will be performed over 100 percent of the accessible surface area. Additional biased direct alpha measurements will be obtained, if necessary, based on the results of the surface activity scans.

Class 2 Structure SUs

Class 2 structure SUs include portions of the Building BRL12 interior surfaces, portions of the Building 1103A and the Freestanding Vault exterior walls, as well as the roofs of these structures. A single Class 2 SU has also been identified for the Building 1103B north and west exterior wall surfaces. A total of 20 systematic direct alpha measurements will be performed in each of these SUs. Additionally, a smear will be obtained at each direct alpha measurement location to assess removable alpha contamination. Surface activity beta scans will be performed over 10 to 100 percent of the accessible surface area. Additional biased direct alpha measurements will be obtained, if necessary, based on the results of the surface activity scans.

Class 3 Structure SUs

Class 3 structures include the Building BRL12 exterior walls and roof and the Buildings 1100E and 1100F east exterior walls. A total of 20 random direct alpha measurements will be collected in each of the SUs. Additionally, a smear will be obtained at each direct alpha measurement location to assess removable alpha contamination. Surface activity beta scans will be performed over 10 percent of the accessible surface area in each SU at locations of greatest contamination potential.

4.0 SURVEY INSTRUMENTATION AND TECHNIQUES

This section describes the instrumentation and methodology that will be used for direct radiation measurement, smear survey collection, gamma scan survey (i.e., gamma walkover survey [GWS]), and volumetric sample analysis during the FSS of the Building 1103A Area. Specific survey and sampling requirements, including types of surveys and percent coverage, numbers and types of samples, and analytical tests to be performed are discussed in Section 3.8. The MDC and MDCR required for the building surface activity scans, integrated alpha surface activity measurements, and GWS are calculated in accordance with MARSSIM (NRC, 2000) and *NUREG-1507: Minimum Detectable Concentrations with Typical Radiation Survey Instruments for Various Contaminants and Field Conditions*, (NRC, 1998).

4.1 Surface Scan Surveys

Building surfaces and outdoor solid concrete surface SUs will be surveyed for radioactivity using direct surface scan and static measurement techniques. Surveys will be performed as described in the following sections and in accordance with the FSS contractor's standard operating procedures (SOPs).

4.1.1 Ludlum Model 43-37

Surface scanning for radioactivity will be performed to identify locations of highest surface activity. Once identified, these locations may be further evaluated by performing integrated alpha activity measurements. Beta scans will be performed on floor surfaces and lower walls using a Ludlum Model 43-37 gas proportional detector (with an active area of 582 cm²), or equivalent. The scan rate for the Ludlum Model 43-37 will not exceed six inches per second as an upper bounding scan rate, with a measurement interval of one observation per second (1/sec). The Ludlum Model 43-37 beta scan MDCR is indicated in Table 4-1. Details of the MDCR calculation for this instrument are presented in Appendix B.

Scans will be performed by moving the active area of the detector over the surface of interest, with the active area of the detector at a maximum height of 2 to 3 in. above the surface. During the scan survey in Class 1 SUs, if the surveyor observes a beta count rate higher than approximately twice the scan MDCR above background, the area will be identified as a potential location for additional biased integrated alpha measurements. During scan surveys in Class 2 and Class 3 SUs, if the surveyor observes a beta count rate higher than the scan MDCR, the area will be identified for additional biased integrated alpha measurements. Scan

assumptions and the action level to be used in identifying potential biased measurement locations using the Ludlum Model 43-37 are provided in Table 4-1.

4.1.2 Ludlum Model 43-68

Some surfaces may not be readily scanned using the Ludlum Model 43-37 detector due to the large size of the detector. These areas may alternatively be scanned with a Ludlum Model 43-68 handheld gas proportional detector (with an active area of 126 cm²), or equivalent. The beta scan assumptions, MDCR, and Class 1 action level for the Ludlum Model 43-68 are provided in Table 4-1. Details of the MDCR calculation for this instrument are presented in Appendix B.

Detector Model No.	Probe Area (cm²)	Probe Width (cm)	Beta Bkg. (cpm)	Observation Interval (observations/sec)	MDCR (cpm)	Class 1 Scan Action Level (cpm above bkg)
43-37	582	15	1386	1	397	800

Table 4-1: Beta Surface Scan Sensitivity Assumptions

cm = centimeter(s) bkg = background

sec = second(s)

126

43-68

cm² = square centimeter(s) cpm = count(s) per minute

1

185

400

4.2 Integrated Direct Surface Measurements

9

300

Integrated direct measurements (i.e., static measurements) of surface alpha radioactivity will be performed to compare contaminant concentrations at discrete sampling locations to the building release criterion and facilitate statistical testing. If necessary, interior surfaces may be cleaned prior to surveying to remove dirt and grime that could shield alpha emissions from surfaces of interest. The cleaning implements used and the wastes generated during cleaning will be collected and stored onsite, then decontaminated and/or disposed in accordance with project waste management procedures. Integrated alpha activity measurements may be performed using the Ludlum Model 43-37 gas proportional detector, Ludlum Model 43-68 handheld gas proportional detector (operating in alpha mode only), Ludlum Model 43-89 handheld scintillation detector (with an active area of 126 cm²), or equivalent. The estimated detector sensitivity and relevant assumptions are presented in Table 4-2.

Integrated alpha measurements will be performed in accordance with the FSS contractor's SOP. The net count rate at each location will be calculated as the difference between the measurement count rate and the background count rate.

Bkg. Count **Probe** Total Alpha Alpha Alpha Count Model Static MDC¹ Time **Efficiency Background** Area Time No. (min) (cm²) (cpm/dpm) (cpm) $(dpm/100 cm^2)$ (min) 43-37 582 0.165 23 18 43-68 1 1 126 0.165 5 64 43-89 1 1 3 79 126 0.111

Table 4-2: Integrated Alpha Measurement Sensitivity Assumptions

min = minute(s)

cpm = count(s) per minute

Bkg = background

dpm = disintegration(s) per minute

 $cm^2 = square centimeter(s)$

4.3 Smear Sample Collection and Analysis

Smear samples will be collected at systematic and biased direct surface activity measurement locations to quantify transferable surface alpha radioactivity. Smear samples will be obtained in accordance with the FSS contractor's SOP and analyzed using a Ludlum Model 43-10-1 detector coupled to a Ludlum Model 2929 dual scaler, or equivalent.

Count times for smears will initially be set at 4 minutes for surface smear measurements and 20 minutes for background measurements. Count times may be adjusted, if necessary, in accordance with the OP. If necessary, smears will be allowed to decay for at least 24 hours to eliminate radon progeny prior to onsite measurement. Smears that must be counted immediately will be recounted after at least 24 hours of decay time, if necessary. The smear sample alpha MDC and relevant assumptions are provided in Table 4-3.

Table 4-3: Removable Surface Activity (Smear) Sensitivity Assumptions

Instrument Model No.	Count Time (min)	Bkg. Count Time (min)	Probe Area (cm²)	Alpha Efficiency (cpm/dpm)	Alpha Background (cpm)	Alpha MDC ¹ (dpm/100 cm ²)
2929	4	20	Smear	0.33	0.8	7

min = minute(s)

cpm = count(s) per minute

Bkg = background

dpm = disintegration(s) per minute

 $cm^2 = square centimeter(s)$

¹Static alpha measurements will be compared to the building surface DCGL_W (100 dpm/100 cm²).

¹Smear measurements of alpha activity will be compared to the removable activity DCGL_W (10 dpm/100 cm²).

4.4 Gamma Scans

Outdoor gamma scans will be performed in accordance with the FSS contractor's SOP. Scan surveys on pavement and land areas will be performed using a Ludlum Model 44-20 three-inch by three-inch (3-in. x 3-in.) NaI detector coupled to a Ludlum Model 2221 ratemeter, or equivalent. This instrument will be enabled with a differential GPS so that activity measurements can be spatially referenced.

The MDC for DU in soil is provided in terms of pCi/g in Table 4-4. A more detailed evaluation of the MDC for the GWS instrumentation is presented in Appendix B.

Table 4-4: Gamma Scan Survey Sensitivity Assumptions

Detector Model No.	Survey Speed (m/sec)	Bkg. (cpm)	Observation Interval (observations/sec)	MDCR ¹ (cpm)	MDC (pCi/g)	
44-20	0.5	27,000	1	2,484	32.9	

m = meter(s)

cpm = count(s) per minute

pCi/g = picocuries per gram

Assumes a surveyor efficiency of 50%

sec = second(s)

MDCR = minimum detectable count rate

MDC = minimum detectable concentration

4.5 Volumetric Sample Collection and Analysis

Volumetric systematic and biased soil samples from land areas will be collected and submitted to an off-site laboratory for analysis by gamma spectroscopy. Samples will be collected in accordance with the FSS contractor's SOP and analyzed in accordance with the analytical laboratory's SOP. The analytical test methods used to analyze radionuclides in volumetric samples at the off-site laboratory will be verified as being able to achieve an MDC of 10% of the soil DCGL_W.

Soil samples will be collected using a hand auger or stainless steel trowel, and homogenized in a stainless steel bowl prior to containerization. During the homogenization of soil samples, twigs, stones, and other non-soil items will be removed from the sample material. The FSS contractor's SOPs will govern the handling, labeling, packaging, preservation, and shipping of samples, as well as sample chain of custody protocol. Field quality control (QC) samples (e.g., duplicate) will be collected and analyzed at a frequency of one per ten target samples. Laboratory QC samples will be prepared and analyzed in accordance with the analytical laboratory's *Quality Assurance Plan*.

5.0 SURVEY QUALITY ASSURANCE/QUALITY CONTROL

Activities associated with this work plan will be performed in accordance with written operating procedures and/or protocols to ensure consistent, repeatable results and to provide auditable documentation of activities. Topics addressed in project procedures and protocols include, but are not limited to, the following:

- Proper use of instrumentation,
- QC source and background checks, and
- Duplicate measurements.

Specific quality assurance (QA) and QC measures to be implemented during the FSS are described in this section.

5.1 Instrumentation Requirements

The Project Health Physicist (HP) will be responsible for selecting the instrumentation required to complete the FSS. Only instrumentation approved by the Project HP will be used to collect radiological data. The Project HP will be responsible for ensuring that individuals are appropriately trained to use the instrumentation and other equipment, and that the selected instrumentation meets the required detection sensitivities. Instrumentation will be operated in accordance with either a written operating procedure or manufacturers' manual, as determined by the Project HP. The procedure and/or manual will provide guidance to field personnel on the proper use and limitations of the instrument.

Instruments used during the FSS will have current calibration and maintenance records that will be maintained onsite for review and inspection. The records will include, at a minimum, the following types of information: description of equipment, equipment identification (model and serial number), manufacturer, date of last calibration, and calibration due date.

Instrumentation will be maintained and calibrated to manufacturers' specifications to ensure that the required traceability, sensitivity, accuracy, and precision of the equipment/instruments are maintained. Instruments will be calibrated at a facility possessing appropriate NRC and/or Agreement State licenses for performing calibrations using National Institute of Standards and Technology (NIST) traceable sources.

5.2 Instrument QC Source and Background Checks

The following subsections describe the techniques that will be used to evaluate accuracy and precision of measurements obtained using project instrumentation. Daily instrument response check data and calibration certificates for each instrument will be included in an appendix to the FSS Report.

5.2.1 Gross Gamma Instruments

NaI detectors coupled to count rate meters and GPS systems will be used to perform gamma walkover surveys and integrated fixed location measurements, as well as to frisk equipment and personnel. Instruments will be calibrated at least annually at a facility possessing appropriate NRC and/or Agreement State licenses for performing calibrations using NIST-traceable standards.

Gross gamma instruments will be response-checked daily for QC purposes by comparing the instrument response to a cesium-137 (¹³⁷Cs) source. Response checks will consist of a one-minute integrated count of the ¹³⁷Cs source positioned in a reproducible geometry (i.e., a jig). The acceptance criteria for these instrument response checks are +/- 20% of the mean response generated using ten initial source checks and ten measurements of ambient background. A response check outside these limits will be cause for evaluation of conditions (e.g., instrument operation, source/detector geometry), and the response check will be repeated once prior to field use of that instrument. Instruments that fail the second response check will be removed from service. During daily response checks, instruments will be inspected for physical damage, battery voltage levels, current calibration, and erroneous readings, in accordance with the FSS contractor's SOPs.

Background checks will be performed daily for each instrument. These checks will be performed to monitor fluctuations in ambient gamma background that could impact the interpretation of the gross gamma measurements, not to monitor the performance of the instruments. The results of the background measurements will be recorded and presented on a control chart.

5.2.2 Alpha/Beta Detectors and Smear Counter

Alpha/beta detectors (e.g., Ludlum Models 43-68, 43-37, and 43-89) and a smear counter (Ludlum Model 2929) will be used to obtain quantitative measurements for final status survey purposes. These instruments will be calibrated at least annually at a facility possessing

appropriate NRC and/or Agreement State licenses for performing calibrations using NIST-traceable standards.

Instruments used for quantitative measurements will be response checked daily by comparing response to designated thorium–230 (²³⁰Th) and technetium-99 (⁹⁹Tc) NIST-traceable sources and to ambient background. Response checks will consist of a one-minute count of the ²³⁰Th and ⁹⁹Tc sources positioned in a reproducible geometry and location within the detector system. Background measurements will be performed in an identical fashion for a twentyminute count, with the source removed. The acceptance criteria for these instrument response checks will be two and three-sigma of the mean response generated using ten initial source checks and ten measurements of ambient background. A response check outside the twosigma range, but within the three-sigma range will be cause for a recount prior to further evaluation. A response check outside the two-sigma range on the second count or three-sigma range on the initial count will be cause for further evaluation prior to continued use. A response check outside these limits is cause for an evaluation of conditions (e.g., instrument operation, source/detector geometry) prior to further counts and/or removal of the instrument from service. Instruments must pass a response check prior to field use. During daily response checks, instruments used to obtain radiological data will also be inspected for physical damage, battery voltage levels, current calibration, and erroneous readings, in accordance with the FSS contractor's SOPs.

5.3 Duplicate Measurements

Duplicate measurements will be required for 10% of the total soil samples collected from all SUs. Duplicate measurements of radioactivity concentration will be compared to the initial analytical results by determining a z-score and comparing it against the performance criteria as follows.

The z-score for each data set will be calculated using the following equation:

$$Z - score = \frac{\left| Sample - Duplicate \right|}{\sqrt{\sigma_{Sample}^2 + \sigma_{Duplicate}^2}}$$

Where:

Sample = First sample value (original),

Duplicate = Second sample value (duplicate),

 σ_{Sample} = 2σ counting uncertainty of the sample, and,

 $\sigma_{\text{Duplicate}}$ = 2σ counting uncertainty of the duplicate.

The calculated z-score results will be compared to a performance criterion of less than or equal to 1.96. Calculated z-scores less than 1.96 will be considered acceptable, and values greater than 1.96 will be investigated for possible discrepancies in analytical precision, or for sources of disagreement with the following assumptions of the test:

- The sample measurement and duplicate or replicate measurement are of the same normally distributed population.
- The standard deviations, σ_{Sample} and $\sigma_{Duplicate}$, represent the true standard deviation of the measured population.

6.0 DATA EVALUATION AND COMPLIANCE DEMONSTRATION

The data generated during the FSS will be reviewed to ensure that the quality and quantity are consistent with the FSSP and design assumptions. Data deemed to be acceptable will be used to evaluate compliance with the DCGLs established for this site, as described below.

6.1 Data Review and Investigation Thresholds

Analytical data received from the off-site laboratory will be reviewed to ensure that the data are of acceptable quality for its intended use. The following types of information will be evaluated:

- Correlation among the FSSP, chain-of-custody, and laboratory reports with respect to sample identification numbers and analytical methods;
- Whether project-specific MDCs were achieved;
- Instrumentation or cross-contamination issues that may have impacted the integrity and/or accuracy of reported results; and
- Comparison of QC sample data to project acceptability criteria.

The FSS measurement data for each SU will be evaluated by comparing the standard deviations of data sets with the assumptions used in establishing the number of data points for each SU. Individual and average data values will be compared with the applicable $DCGL_W$ for the SU, and proper survey area classification will be confirmed. Individual measurements in excess of the $DCGL_W$ for Class 1 and 2 areas will be further investigated by means of additional measurements and evaluation of background.

For Class 3 structure SUs, measurements in excess of 50% of the DCGL $_{\rm W}$ will be investigated. This is less conservative than the recommendation provided in MARSSIM (NRC, 2000), which suggests that any measurements higher than the MDCR be investigated. However, a higher investigation threshold is necessary due to the low DCGL $_{\rm W}$ values relative to background. Should a SU require further investigation, reclassification, remediation, and/or re-survey, a determination of the cause will be initiated, and the data conversion and assessment process will be repeated for new data sets.

6.2 Determining Compliance With DCGLs

As discussed in Section 3.2, both soil concentration and surface activity DCGLs have been developed for evaluation of the FSS data. These DCGLs address the mean activity concentration over a wide area (i.e., the DCGL $_{\rm W}$), and also provide for small areas of elevated contamination in excess of the DCGL $_{\rm W}$ (i.e., the DCGL $_{\rm EMC}$). Demonstrations of compliance with both requirements for each SU are discussed in the following sections.

6.2.1 Land Area and Structure SUs

Land area systematic soil samples and structure SU direct surface activity measurements will be evaluated using the Sign test. Individual sample activity values and the average SU activity will be calculated. If all values from the random or random-start/systematic locations for a SU are less than the guideline (DCGL $_{\rm w}$ for Class 1 and 2 land and structure SUs; 50% of the DCGL $_{\rm w}$ for Class 3 structure SUs), the SU satisfies the criterion and no further evaluation is necessary.

If the average activity value is greater than the guideline, the SU does not satisfy the criterion and further investigation, possible reclassification, remediation, and/or re-survey is required. If the average activity value is less than the guideline, but some individual values are greater, data evaluation using the Sign test will be performed, as follows:

- 1. List each of the sample results or SU measurements.
- 2. Subtract each measurement or sample result from the guideline value.
- 3. Discard all differences that are "0"; determine a revised sample size.
- 4. Count the number of positive differences; this value is the test statistic, S+.
- 5. Compare the value of S+ to the critical value in MARSSIM Table I.3 (NRC, 2000) for the appropriate sample size and decision level.

If S+ is greater than the critical value, the null hypothesis is rejected and the SU meets the established criteria. If S+ is less than or equal to the critical value, the null hypothesis is not rejected, and the SU does not meet the established criteria; investigation, remediation, reclassification, and/or re-survey should be performed, as appropriate.

6.2.2 Elevated Measurement Comparison Criteria

Soil samples or direct surface activity measurement results from Class 1 SUs that exceed the $DCGL_W$ must also be evaluated for compliance with the $DCGL_{EMC}^{-1}$. The statistical tests for demonstrating compliance are such that some samples/measurements may exceed the $DCGL_W$, yet the null hypothesis may still be rejected. Therefore, both the statistically based and biased samples exceeding the $DCGL_W$ must be compared with a $DCGL_{EMC}$ that corresponds with the size of a given area of elevated activity, defined as the $DCGL_W$ times the Area Factor.

Default area factors for land SUs and structures, obtained from MARSSIM Table 5.6 and Table 5.7 (NRC, 2000), which will be applied to the FSS are provided in Table 6-1 and Table 6-2.

Table 6-1: Land Survey Unit Area Factors

Area (m ²):	1	3	10	30	100	300	1,000	3,000	10,000
²³⁸ U Area Factor:	30.6	18.3	11.1	8.4	6.7	4.4	1.3	1.0	1.0

Table 6-2: Structure Survey Unit Area Factors

Area (m ²):	1	4	9	16	25	36
²³⁸ U Area Factor:	35.7	9.0	4.0	2.2	1.4	1.0

When individual samples or measurements with elevated concentrations are less than the respective $DCGL_{EMC}$, the impact of multiple hot spots on the mean concentration in a SU must also be evaluated. This will be performed using MARSSIM Equation 8-2 (NRC, 2000). Any measurement that exceeds the $DCGL_W$ within a Class 2 or Class 3 SU will be investigated as discussed in Section 6.1, and may require reclassification of the SU.

W52P1J-04-D-0007/0006

 $^{^1}$ Soil sample and direct surface activity results from Class 2 and Class 3 survey units are not expected to exceed the DCGL_w. Therefore, the DCGL_{EMC} does not apply to Class 2 and Class 3 survey units. A confirmed result from one of these survey units in excess of the DCGL_w will typically require reclassification of all or part of the survey unit to Class 1.

7.0 REPORTING

The results of the FSS will be compiled into a detailed *FSS Report*. The contents of the report will provide all applicable data and documentation necessary to demonstrate the Building 1103A Area is suitable for unrestricted release in accordance with 10 CFR 20, Subpart E.

8.0 REFERENCES

- ANL, 1999. Derived Uranium Guidelines for the Depleted Uranium Study Area of the Transonic Range, Aberdeen Proving Ground, Maryland. M. Picel and S. Kamboj, Argonne National Laboratory, Environmental Assessment Department. April 1999.
- Barg, 1995. Specific Manufacturing Capability Program, Depleted Uranium Constituents and Decay Heating. Lockheed Idaho presentation. October 3, 1995.
- CABRERA, 2007. Building 1103A Area Characterization Survey Report. Cabrera Services, Inc. May 2007.
- NRC, 1998. Minimum Detectable Concentrations with Typical Radiation Survey Instruments for Various Contaminants and Field Conditions. NUREG-1507. U.S. Nuclear Regulatory Commission. June 1998.
- NRC, 1999. *Residual Radioactive Contamination from Decommissioning, Parameter Analysis*. NUREG-CR-5512, Volume 3. U.S. Nuclear Regulatory Commission. October 1999.
- NRC, 2000. *Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM)*, NUREG-1575. U.S. Nuclear Regulatory Commission, U.S. Department of Defense, U.S. Environmental Protection Agency, and U.S. Department of Energy. August 2000.
- NRC, 2006. Title 10, Code of Federal Regulations, Part 20, Subpart E, January 2006.

FIGURES

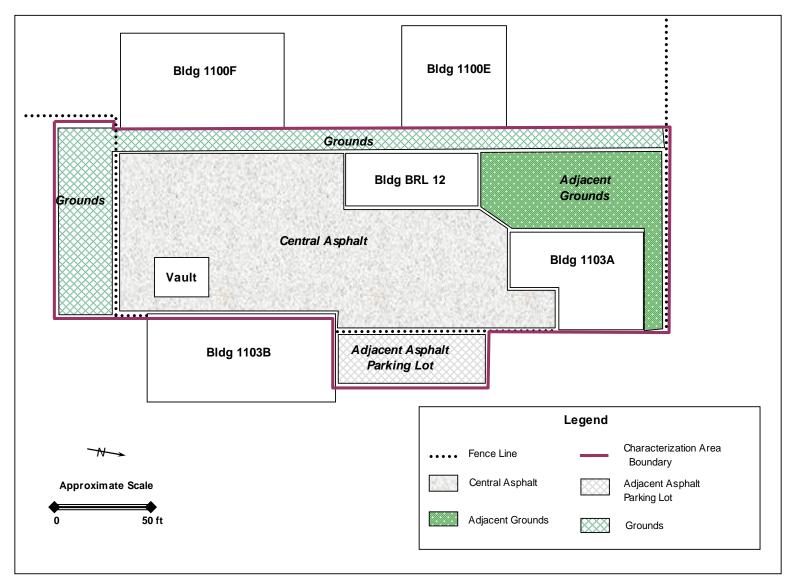


FIGURE 2-1: BUILDING 1103A AREA LAYOUT

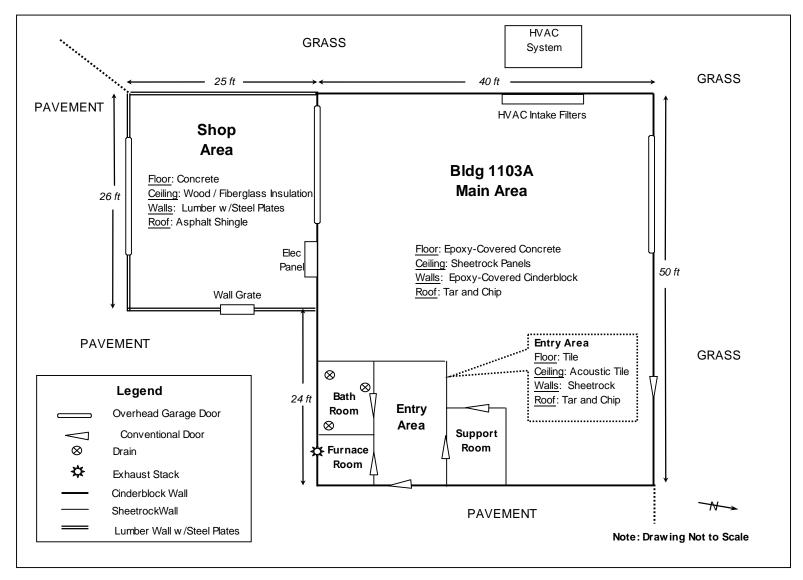


FIGURE 2-2: BUILDING 1103A FLOOR PLAN

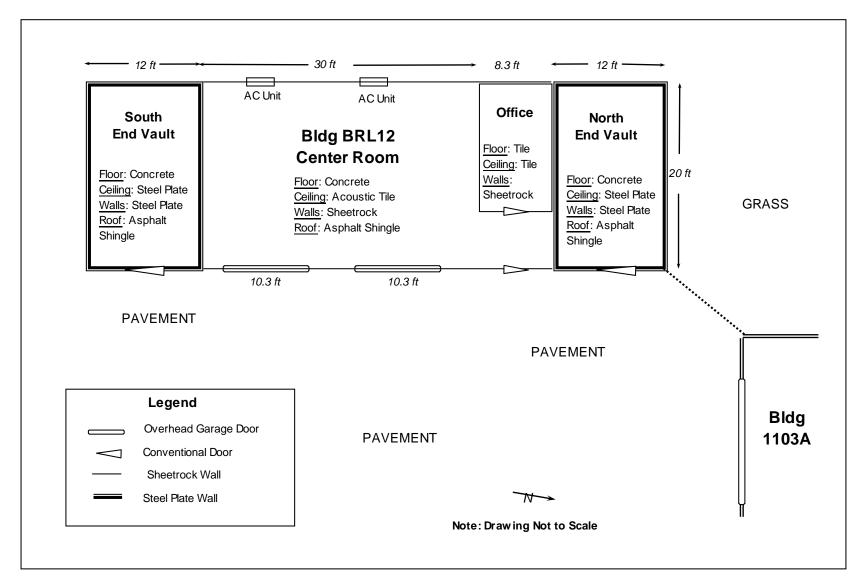


FIGURE 2-3: BUILDING BRL12 FLOOR PLAN

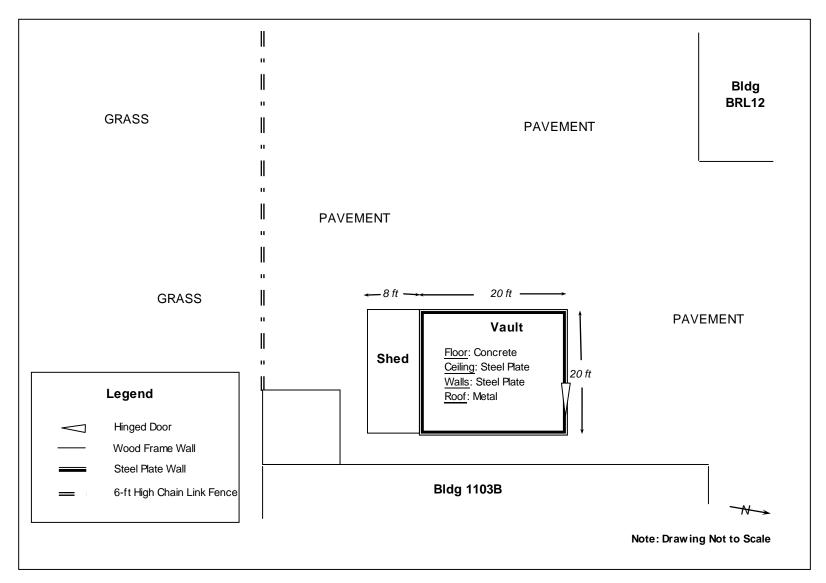
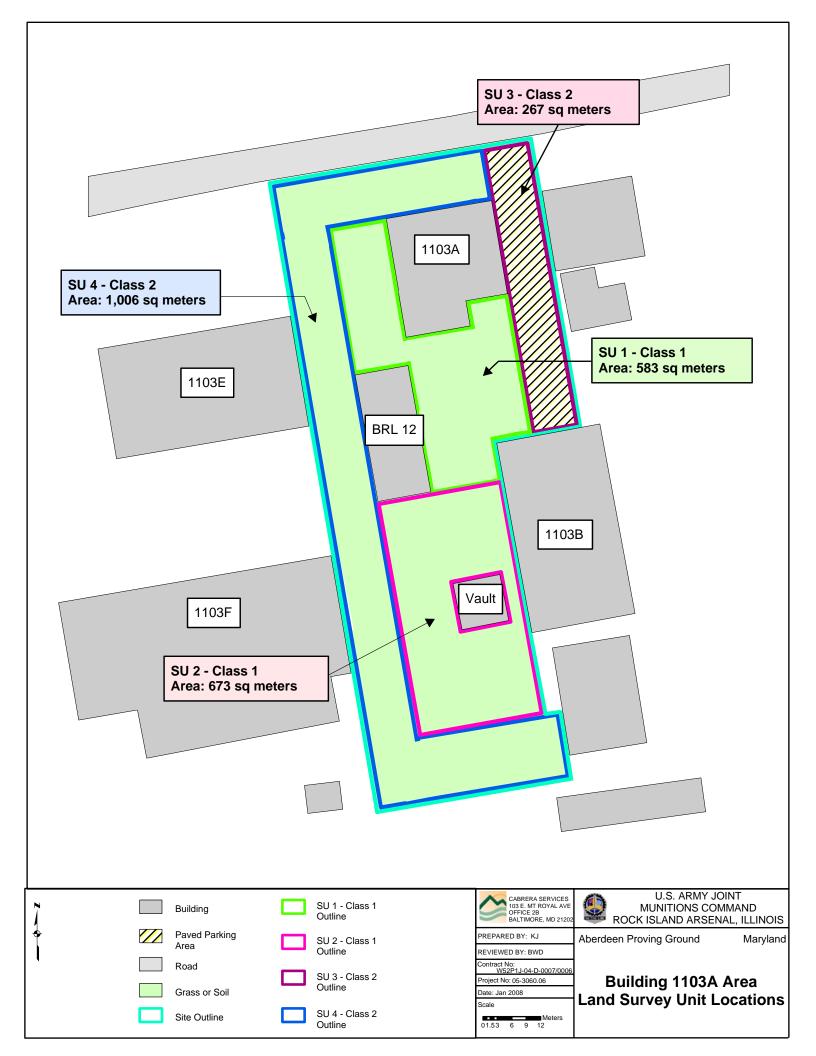
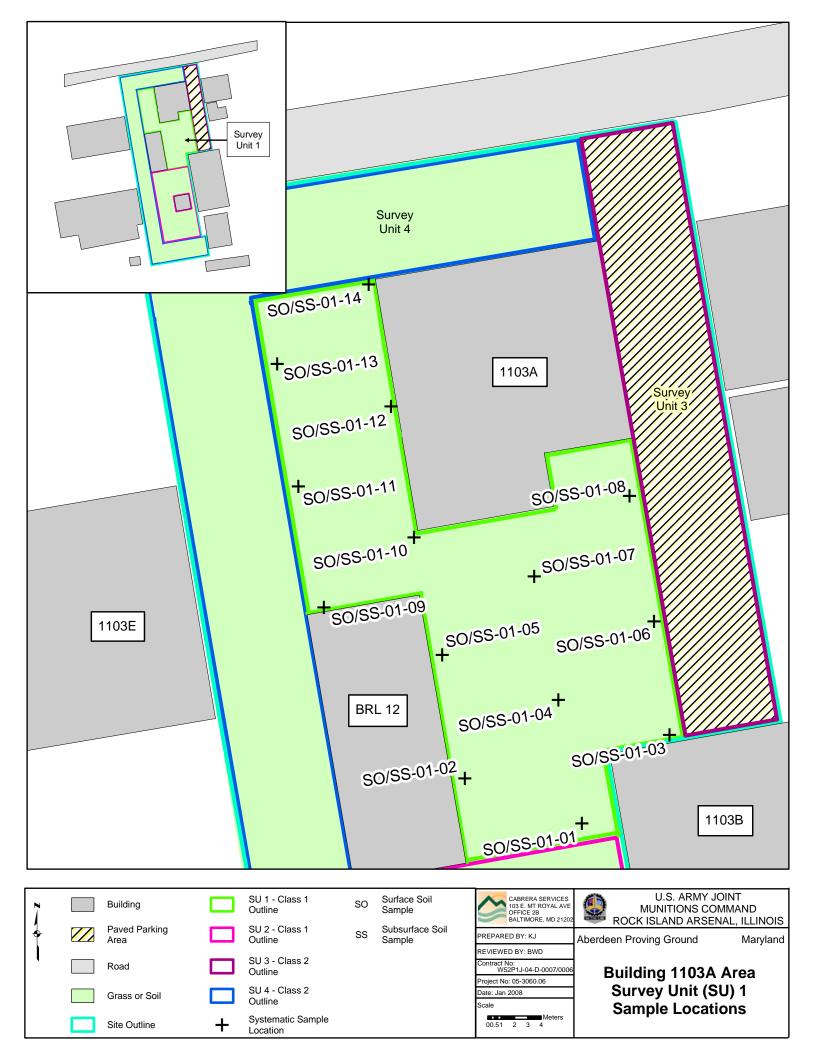
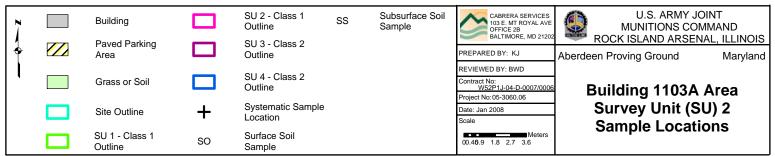
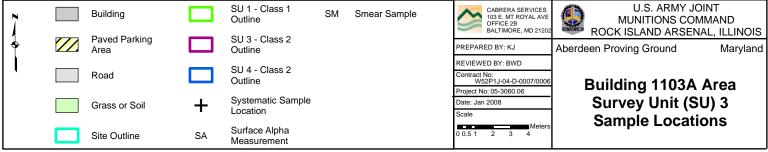
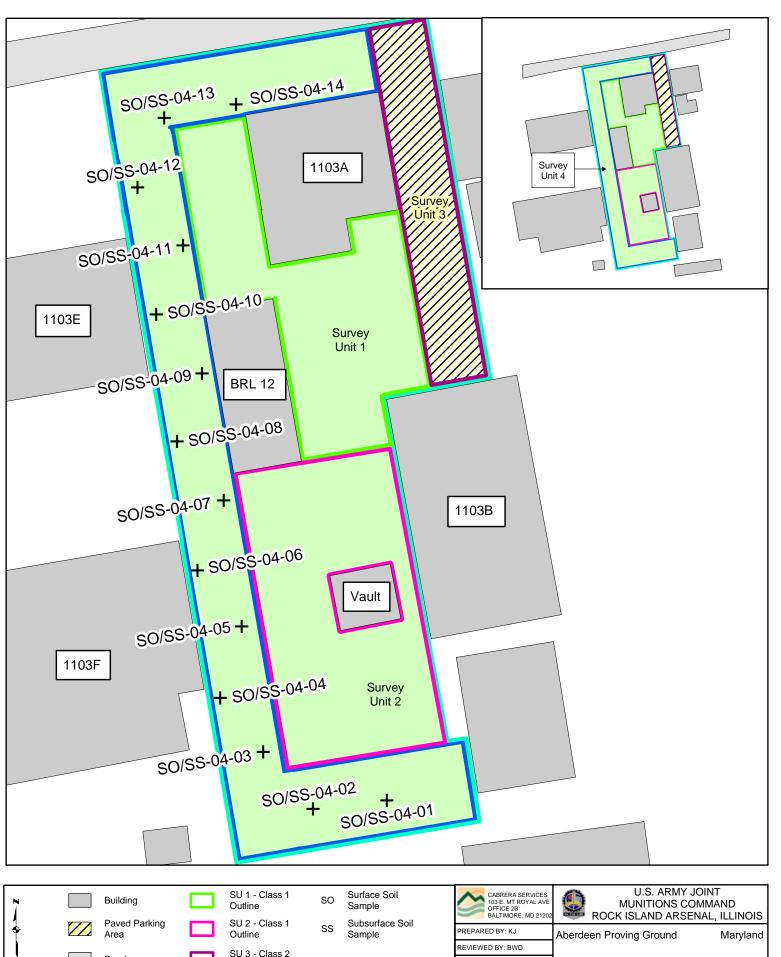




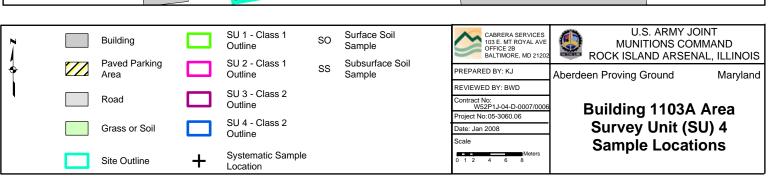
FIGURE 2-4: FREESTANDING VAULT

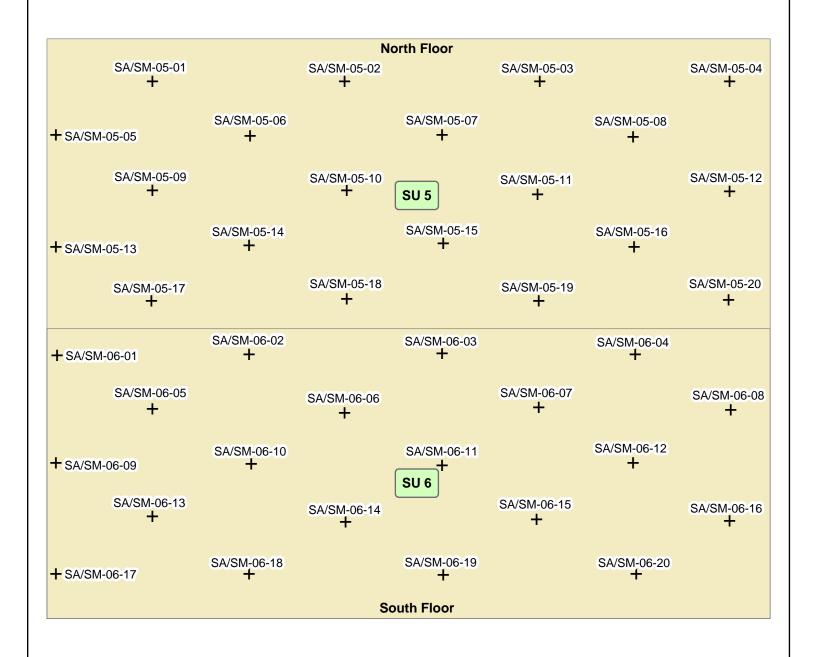

APPENDIX A

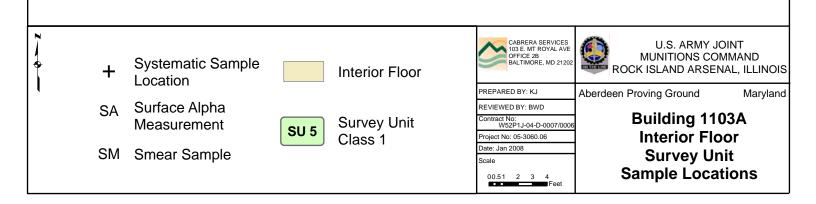
SURVEY UNIT MAPS

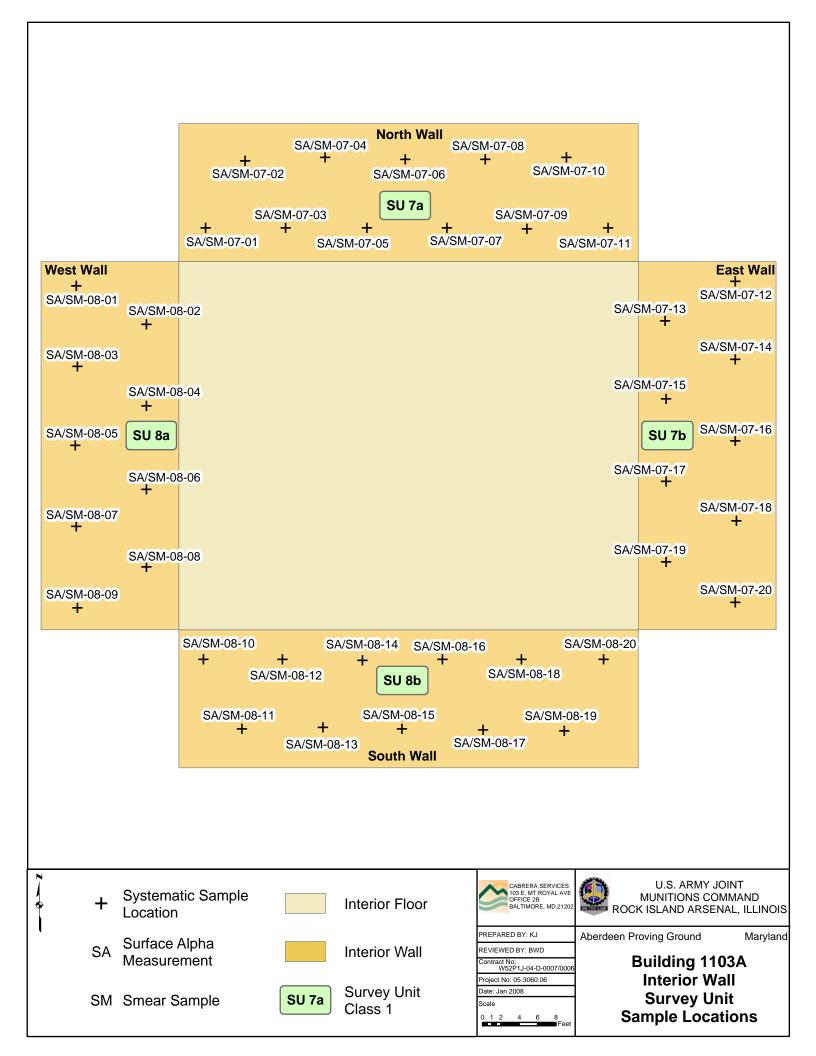


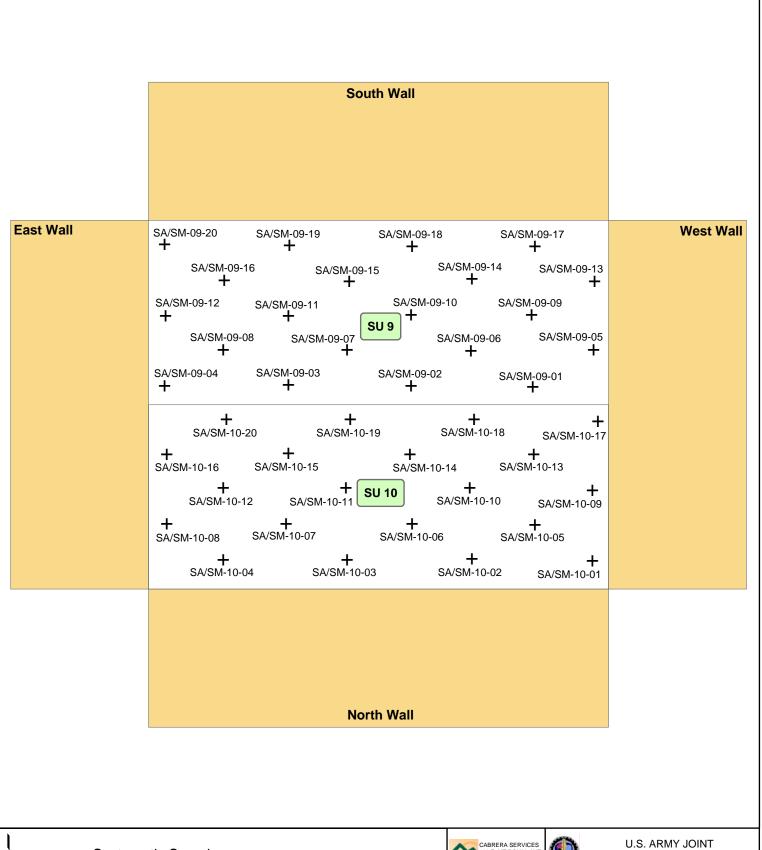


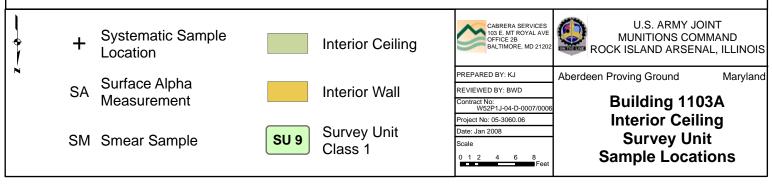


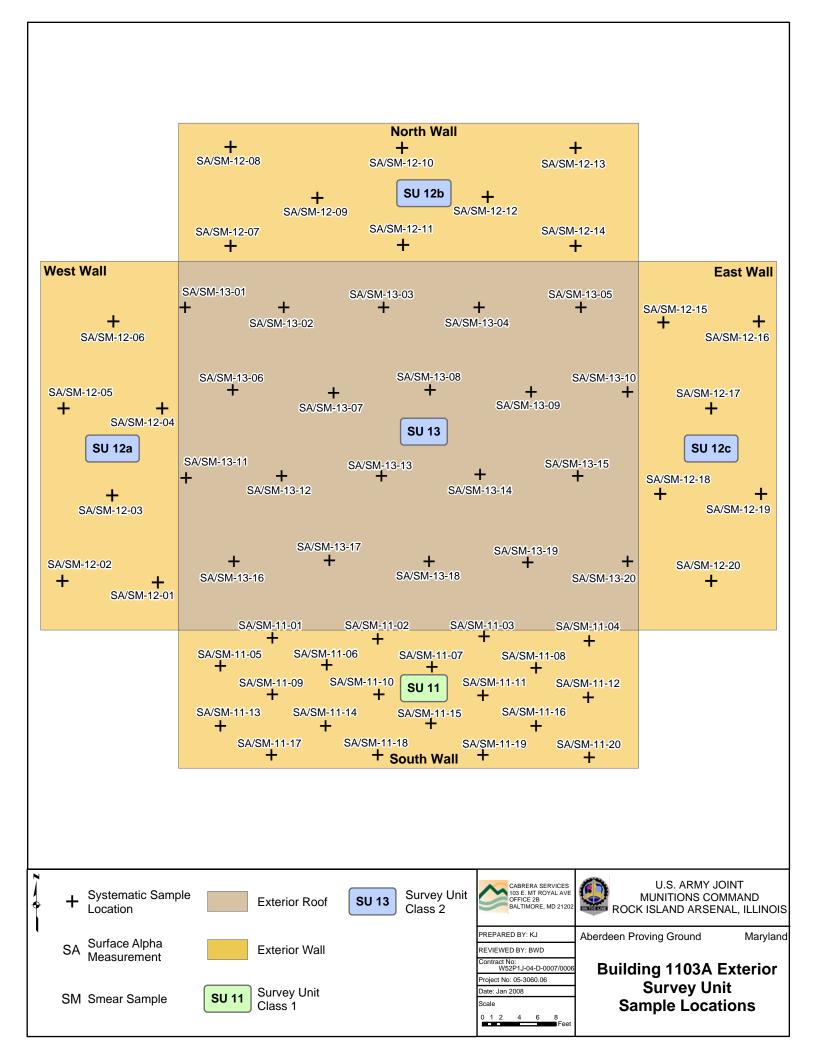


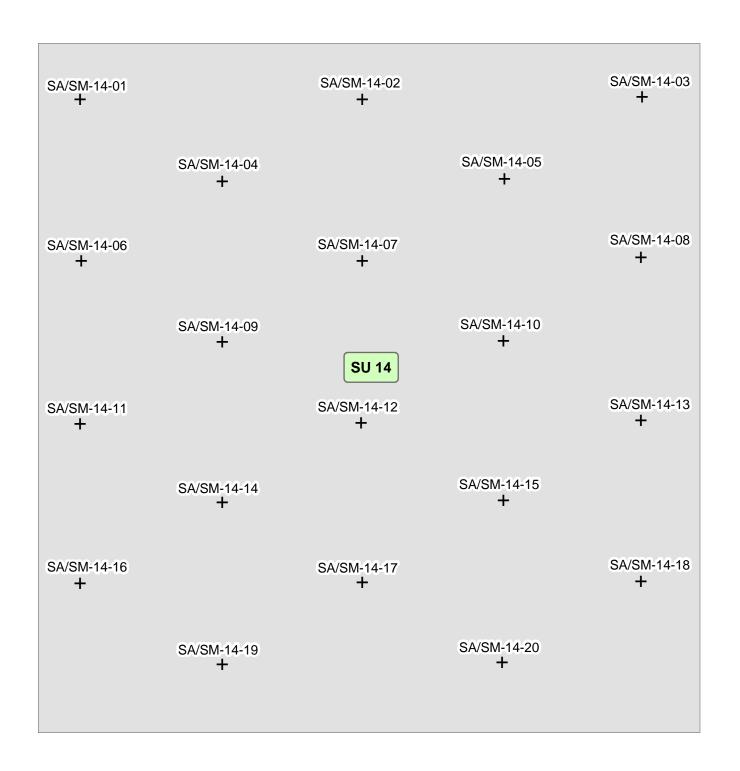


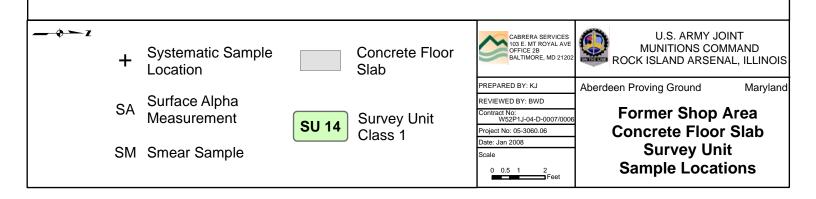


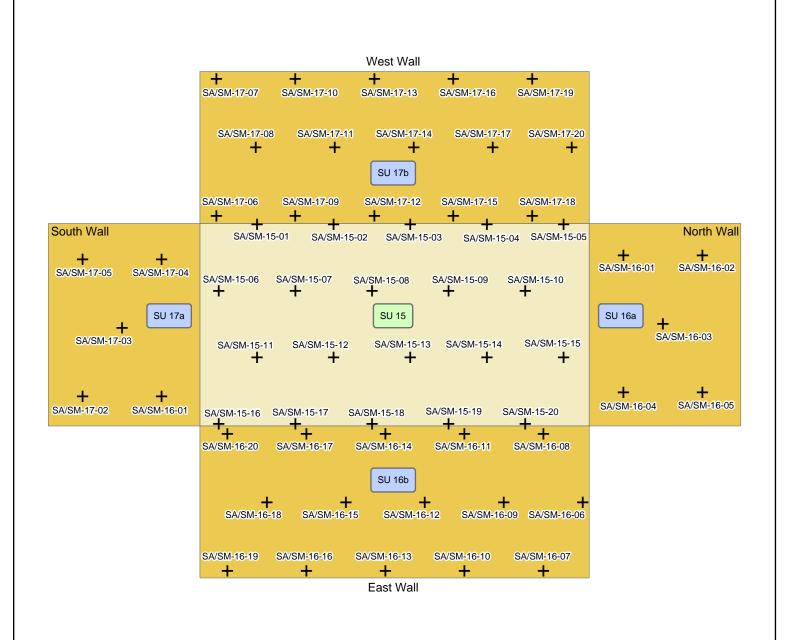


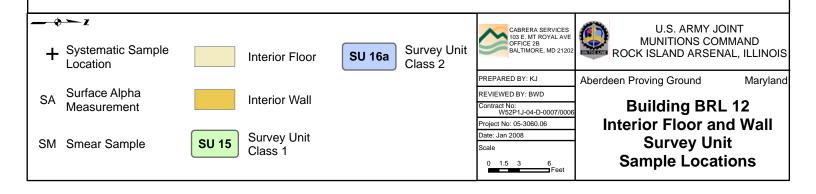


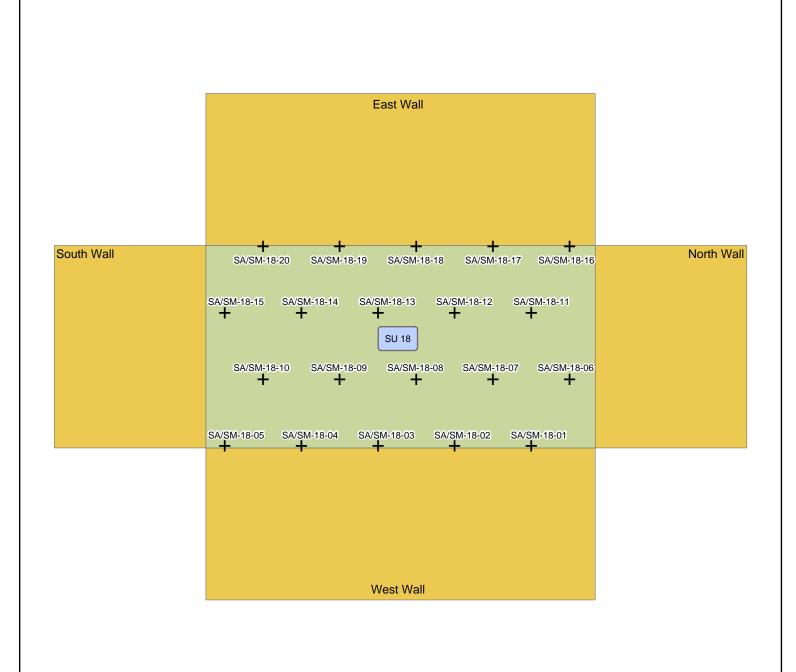


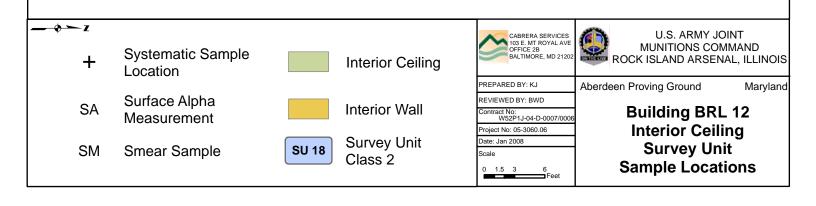


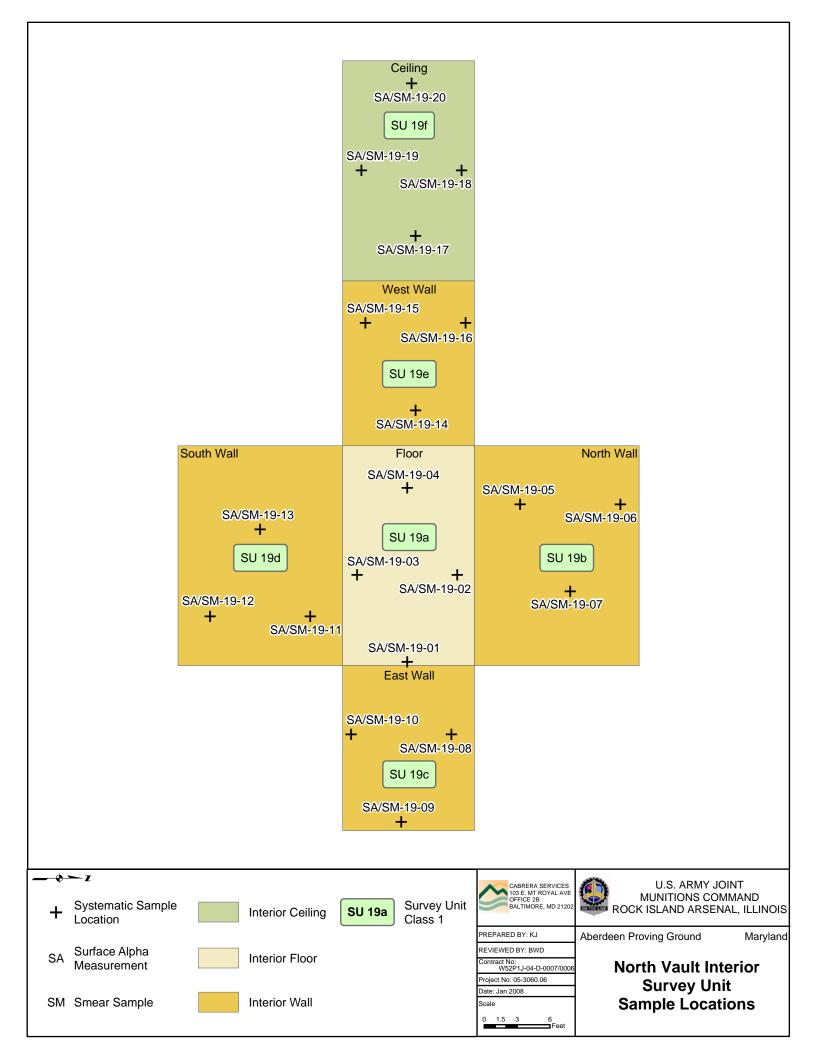


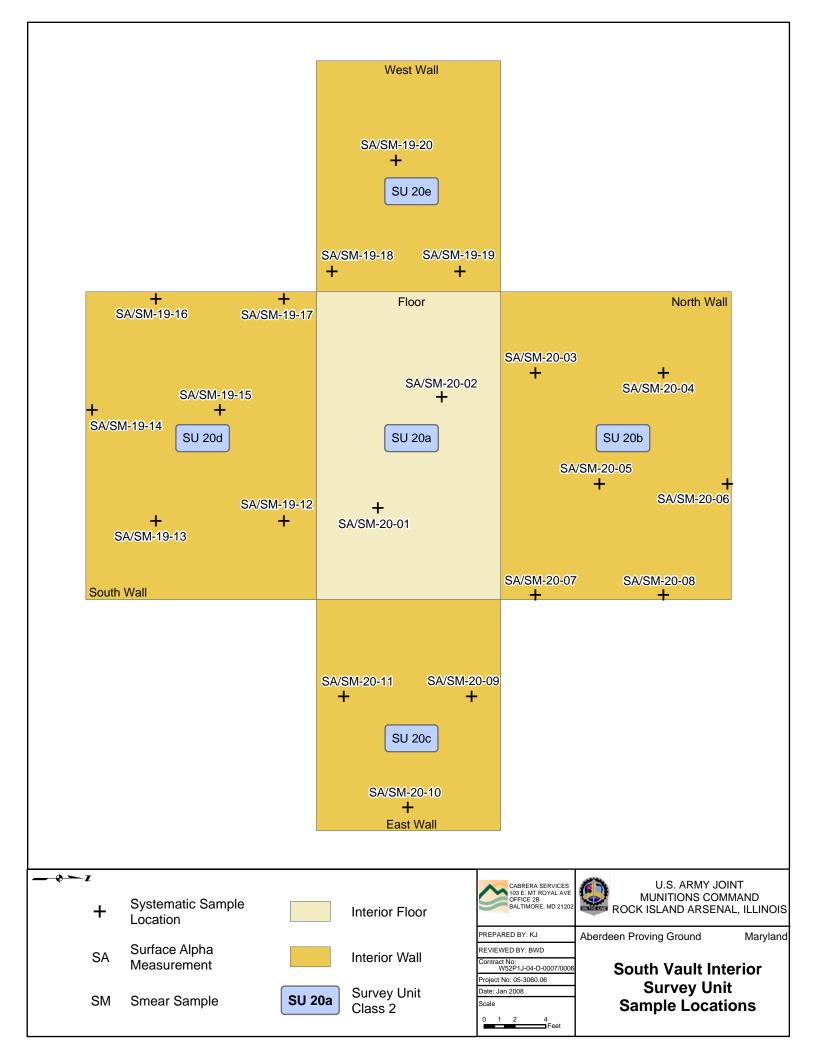


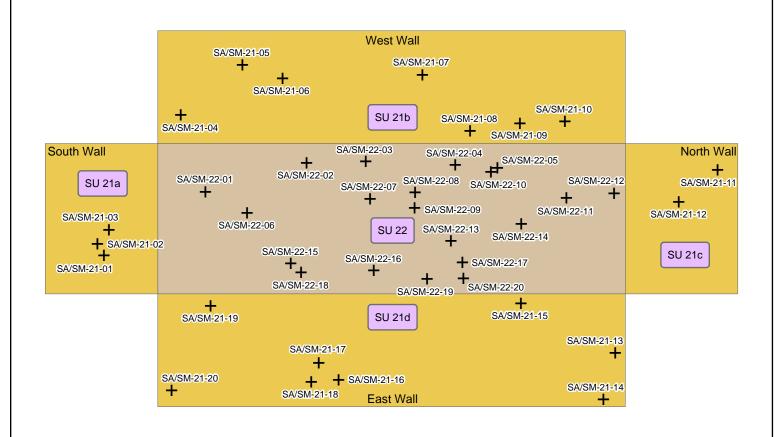


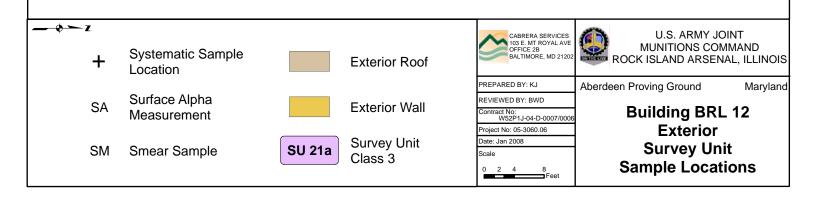


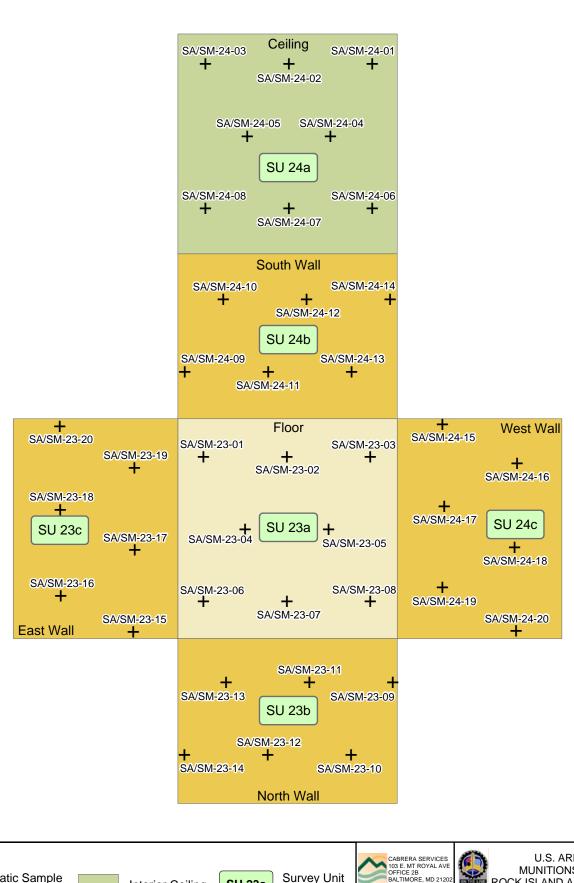


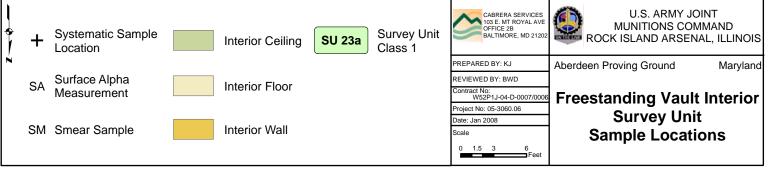


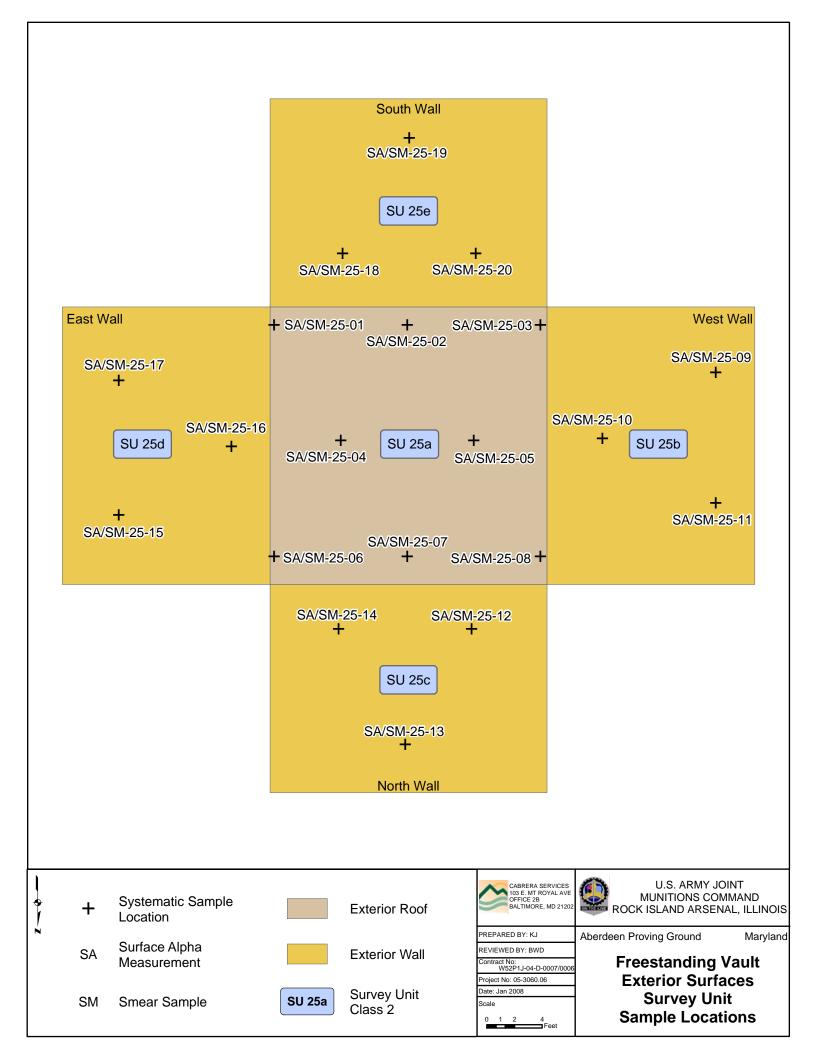


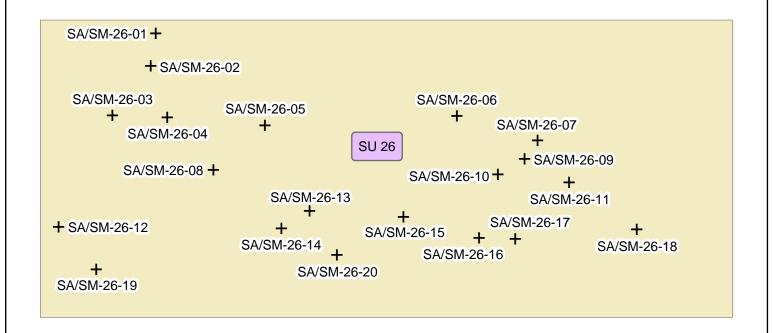


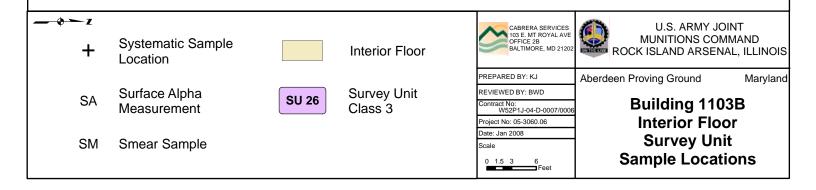


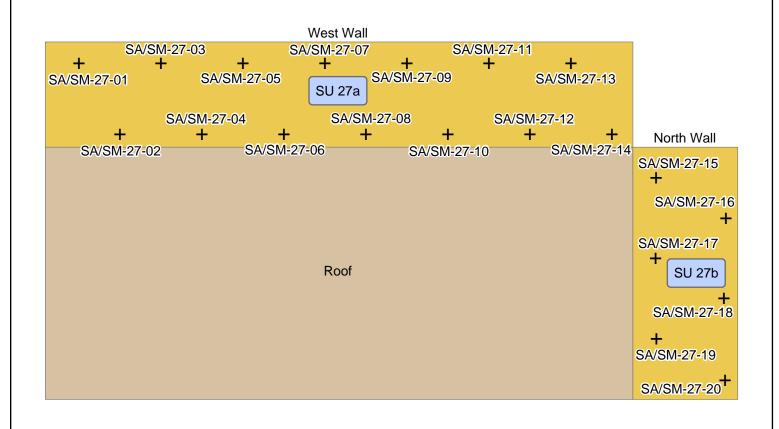


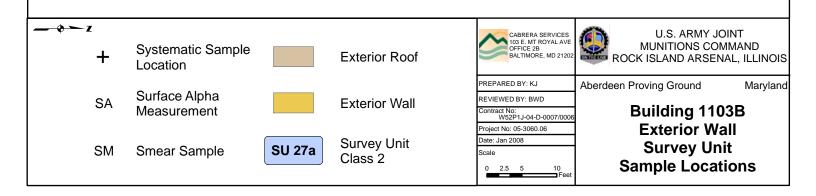


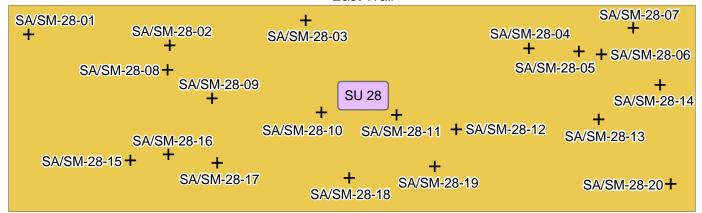


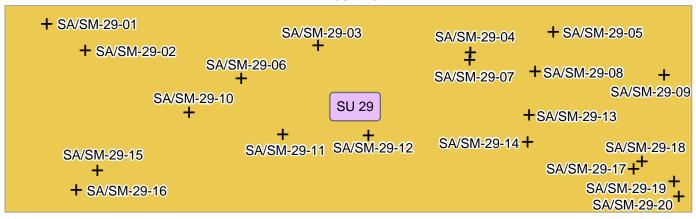


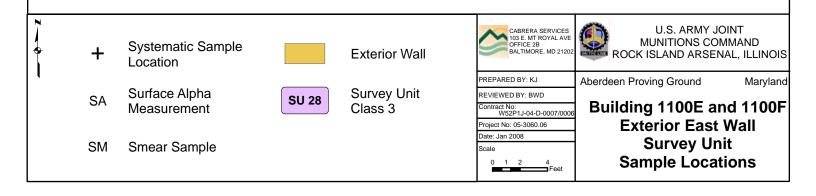












Building 1100E East Wall

Building 1100F East Wall

APPENDIX B

FIELD INSTRUMENT DETECTION SENSITIVITY

FIELD INSTRUMENTATION DETECTION SENSITIVITY

Introduction

This appendix describes the detection sensitivities for field instrumentation used during the final status survey (FSS) of the Building 1103A Area of the U.S. Army Research Laboratory (ARL) located at Aberdeen Proving Ground (APG) in Aberdeen, Maryland. This includes instruments used for gamma walkover surveys (GWS) of land areas, and instruments used for detection of contamination on building and/or structure surfaces through surface activity scans and direct measurements of total and removable surface contamination.

Radionuclides of concern (ROC) known to be present in the area are limited to depleted uranium (DU) isotopes (i.e., uranium-234 [²³⁴U], uranium-235 [²³⁵U], and uranium-238 [²³⁸U]) and their short-lived decay progeny. DU composition is based on the isotopic uranium weight ratios routinely used for shipments of DU waste from APG (Barg, 1995). The activity fractions are calculated from the weight ratios and specific activities of each uranium isotope. The resulting composition consists of ²³⁴U, ²³⁵U, and ²³⁸U activity fractions of 0.084, 0.012, and 0.904, respectively. This composition is similar to the 0.190, 0.021, 0.790 average activity fractions measured in three DU soil samples described in the Argonne National Laboratory (ANL) report *Derived Uranium Guideline for the Depleted Uranium Study Area of the Transonic Range, Aberdeen Proving Ground, Maryland* (ANL, 1999).

The parent radionuclides in the two radioactive decay chains associated with DU, ²³⁸U and ²³⁵U, emit alpha particles. The daughter products in both chains decay by emission of alpha or beta particles, some with accompanying emission of gamma rays. The decay schemes for both are very well documented, and this knowledge is used in the design of the FSS and selection of appropriate survey instruments and analysis methods.

As presented in the following sections, the GWS minimum detectable concentration (MDC) for DU plus progeny in soil, using a 3"x3" sodium iodide (NaI) scintillation detector, is 32.9 picocuries per gram (pCi/g). The instrument scan minimum detectable count rate (MDCR), integrated or static measurement MDC, and the MDC for smear analysis are also presented in the following sections.

Gamma Walkover Survey Detection Sensitivity

The GWS will be performed using a Ludlum 44-20 3-in.x 3-in. NaI scintillation detector or equivalent detector. The GWS is accomplished by walking at a speed of approximately 1.5 feet per second (0.5 meters per second) with the detector at a height of approximately 2 to 3 in. above the ground surface. Results are recorded in units of counts per minute (cpm). The determination of NaI detection sensitivity (i.e., MDC in soil) for DU is provided below. This evaluation assumes the contaminant is present in the upper 15 centimeters (cm) layer of soil with an area of 56 cm for modeling and calculation purposes.

The methodology used to determine the NaI scintillation detector scan MDC is based on the Nuclear Regulatory Commission (NRC) document, *NUREG-1507: Minimum Detectable Concentrations with Typical Radiation Survey Instruments for Various Contaminants and Field Conditions*, dated December 1997. Factors included in this analysis are the surveyor scan efficiency, index of sensitivity, natural background of the surveyed area, scan rate, detector-to-source geometry, areal extent of the hot spot, and energy and yield of gamma emissions.

The computer code *Microshield* was used to model the presence of a normalized 1 pCi/g of total DU with its 50-year decay progeny in soil with the further assumption that the activity is uniformly distributed to a depth of 15 cm and spread over a disk shaped area having a diameter of 56 cm. The non-contaminated soil cover has zero thickness (i.e., contamination is at the surface), and there is a 0.051-cm aluminum shield simulating the cover of the NaI detector to complete the model source term. The dose point is centered over the contaminated disk of soil. This model is consistent with the *NUREG-1507* methodology and provides for the calculation of a count rate-to-exposure rate ratio in terms of counts per minute (cpm) to microroentgens per hour (μ R/hr). Additional details and discussion describing the *NUREG-1507* analysis methodology are described in that publication.

Fluence Rate to Exposure Rate (unitless)

The fluence rate to exposure rate (FRER) may be approximated by:

FRER ~
$$(1 \mu R/hr)/(E_v) (\mu_{en}/\rho)_{air}$$

Where:

 E_{γ} = energy of the gamma photon of concern, keV $(\mu_{en}/\rho)_{air}$ = the mass energy absorption coefficient for air, cm²/g

The FRER over a gamma energy range of 40 keV to 2 MeV is provided in Table 1.

TABLE 1: FLUENCE TO EXPOSURE RATE (FRER)

Energy _γ , keV	$(\mu_{\rm en}/\rho)_{\rm air},{\rm cm}^2/{\rm g}$	FRER
15	1.29	0.0517
20	0.516	0.0969
30	0.147	0.2268
40	0.064	0.3906
50	0.0384	0.5208
60	0.0292	0.5708
80	0.0236	0.5297
100	0.0231	0.4329
150	0.0251	0.2656
200	0.0268	0.1866
300	0.0288	0.1157
400	0.0296	0.0845
500	0.0297	0.0673
600	0.0296	0.0563
800	0.0289	0.0433
1,000	0.0280	0.0357
1,500	0.0255	0.0261
2,000	0.0234	0.0214

Probability of Interaction Through Detector End for a Given Energy

The probability, P, of a gamma ray interaction in the NaI scintillation crystal entering through the end of the crystal is given by:

Probability (P) = 1-e<sup>-(
$$\mu/\rho$$
)NaI(X)(ρ NaI)</sup>

Where:

 $(\mu/\rho)_{NaI}$ = the mass attenuation coefficient for NaI

X = the thickness through the bottom edge (end facing the soil) of the 3"x3"

NaI crystal, 7.6cm

 ρ = the density of the NaI crystal, 3.67 g/cm³

The probability of interaction in the NaI detector over the same energy range is provided in Table 2.

TABLE 2: PROBABILITY OF INTERACTION (P)

Energy _γ , keV	$(\mu/\rho)_{NaI}$, cm ² /g	P
15	47.4	1.00
20	22.3	1.00
30	7.45	1.00
40	19.3	1.00
50	10.7	1.00
60	6.62	1.00
80	3.12	1.00
100	1.72	1.00
150	0.625	1.00
200	0.334	1.00
300	0.167	0.99
400	0.117	0.96
500	0.0955	0.93
600	0.0826	0.90
800	0.0676	0.85
1,000	0.0586	0.80
1,500	0.0469	0.73
2,000	0.0413	0.68

Relative Detector Response

The relative detector response (RDR) by energy is determined by multiplying the FRER by the probability (P) of an interaction and is given by:

$$RDR = FRER \times P$$

The RDR for a NaI detector over the same energy range is provided in Table 3.

TABLE 3: RELATIVE DETECTOR RESPONSE (RDR)

Energy _γ , keV	FRER	P	RDR
15	0.0517	1.00	0.0517
20	0.0969	1.00	0.0969
30	0.2268	1.00	0.2268
40	0.3906	1.00	0.3906
50	0.5208	1.00	0.5208
60	0.5708	1.00	0.5708
80	0.5297	1.00	0.5297
100	0.4329	1.00	0.4329
150	0.2656	1.00	0.2656
200	0.1866	1.00	0.1866
300	0.1157	0.99	0.1146
400	0.0845	0.96	0.0812
500	0.0673	0.93	0.0626
600	0.0563	0.90	0.0507
800	0.0433	0.85	0.0367
1,000	0.0357	0.80	0.0287
1,500	0.0261	0.73	0.0191
2,000	0.0214	0.68	0.0146

Determination of CPM per µR/HR as a Function of Energy

The equivalent FRER, P, and RDR may be calculated for a NaI scintillation detector at the Cs-137 energy of 662 keV. Manufacturers of this equipment typically provide an instrument response in terms of cpm and μ R/hr at the Cs-137 energy level. This point allows determination of the cpm per μ R/hr and, ultimately, the activity concentration and minimum detection sensitivity in terms of pCi/g.

Based on measured counts in a known field it is estimated that a typical Ludlum Model 44-20 NaI response is 2,700 cpm/µR/hr. Using the same methodology as shown in the tables above, the FRER, P, and RDR can be calculated. The mass energy absorption coefficient for air and the mass attenuation coefficient for NaI are interpolated from tables in the *Radiological Health Handbook, Revised Edition*, dated January 1970, pages 139 and 140. These values are provided for Cs-137 in Table 4.

TABLE 4: FRER, P, AND RDR FOR CS-137 GAMMA ENERGY (BA-137M)

Energy _γ , keV	FRER	$(\mu_{\rm en}/\rho)_{\rm air}$, cm ² /g	$(\mu/\rho)_{\text{NaI}}, \text{cm}^2/\text{g}$	P	RDR
662	0.0514	0.0294	0.0780	0.89	0.0455

The detector response (in terms of cpm) to a different energy is based on the ratio of the RDR at that energy to the known Cs-137 energy RDR, as shown in the following equation:

$$cpm/\mu R/hr$$
, $E_i = (cpm_{Cs-137}) x (RDR_{Ei}) / (RDR_{Cs-137})$
= $(2,700) x (RDR_{Ei}) / (RDR_{Cs-137})$

The NaI count rate over the same gamma energy range presented previously is provided in Table 5.

Table 5: Count Rate (E_i) in cpm/µR/hr

Energy _γ , keV	$\mathbf{RDR}_{\mathrm{Ei}}$	NaI Detector, E _i , cpm per μR/hr
15	0.0517	3064
20	0.0969	5745
30	0.2268	13445
40	0.3906	23161
50	0.5208	30881
60	0.5708	33842
80	0.5297	31404
100	0.4329	25667
150	0.2656	15748
200	0.1866	11061
300	0.1146	6797
400	0.0812	4816
500	0.0626	3714
600	0.0507	3005
662	0.0455	2700
800	0.0367	2175
1,000	0.0287	17404
1,500	0.0191	1131
2,000	0.0146	867

Finally, the count rate to exposure rate ratio for the DU isotopes and progeny gamma emissions and the contribution to the total exposure rate are determined using the output of the *Microshield* runs and the count rate to exposure rate ratios from Table 5. The weighted cpm/µR/hr over the same energy range in previous tables is presented in Table 6.

TABLE 6: WEIGHTED COUNT RATE TO EXPOSURE RATE IN CPM/µR/HR

keV	MicroShield Exposure Rate With Buildup (μR/hr)	Count Rate to Exposure Rate (cpm/µR/hr)	Weighted Count Rate to Exposure Rate (cpm/µR/hr)
15	7.662E-09	3064	0
20	6.224E-11	5745	0
30	4.751E*06	13445	8
40	8.301E-09	23161	0
50	7.223E-07	30881	3
60	3.724E-04	33842	1545
80	5.073E-05	31404	195
100	1.656E-03	25667	5212
150	1.272E-04	15748	246
200	6.157E-04	11061	835
300	1.432E-05	6797	12
400	1.608E-05	4816	9
500	2.927E-05	3714	13
600	1.416E-04	3005	52
800	1.023E-03	2175	273
1,000	3.968E-03	1704	829
1,500	1.162E-04	1131	16
2,000	1.873E-05	867	2
Total	8.155E-03		9252

Scan MDC Value

The scan MDC is calculated using the *NUREG-1507* methodology, where the average number of background counts in a one second interval, b_i, is cpm/60.

For the Ludlum 3" x 3" NaI scintillation detector and a background count rate of 27,000 cpm, the calculated background counts in a one second interval is:

$$b_i = (27,000 \text{ cpm}) / (60 \text{ sec/min}) = 450 \text{ counts}$$

The minimum detectable count rate (MDCR) is:

MDCR =
$$(d') x (b_i)^{0.5} x (60 \text{ sec/min})$$

Where:

d' = 1.38 from *NUREG-1507* Table 6.1, which represents the rate of detection at a 95% true positive proportion with a false positive proportion of 60%.

The resulting MDCR is:

$$MDCR = (1.38) \times (450 \text{ counts/sec})^{0.5} \times (60 \text{ sec/min}) = 1.756 \text{ cpm}$$

The MDCR for the surveyor is represented as follows:

$$MDCR_{surveyor} = MDCR / (p)^{0.5}$$

Where:

P = surveyor efficiency, equal to 0.75 to 0.5 as given by *NUREG-1507* (0.5 is selected as a conservative choice).

The resulting surveyor MDCR is:

$$MDCR_{surveyor} = 1,756 / 0.707 = 2,484 \text{ cpm}$$

The minimum detectable exposure rate (MDER) for the surveyor, obtained from the MDCR_{surveyor} divided by the Table 6 weighted count rate to exposure rate value of 9,252 cpm/µR/hr for DU and progeny, is:

MDER =
$$(2,484 \text{ cpm})/(9,252 \text{ cpm}/\mu\text{R/hr}) = 0.2685 \mu\text{R/hr}$$

The scan MDC is then equal to the ratio of the MDER in the field to the exposure rate determined for the normalized 1 pCi/g concentration of total DU, and is represented as follows:

Scan MDC = (Normalized $DU_{Total\ Conc}$)x(Exposure Rate MDCR_{Surveyor})/(Exposure Rate_{normalized\ DU\ conc}) The resulting scan MDC for the outdoor GWS is:

Scan MDC =
$$(1 \text{ pCi/g}) \times (0.2685 \text{ }\mu\text{R/hr}) / (8.155\text{E}-03 \text{ }\mu\text{R/hr}) = 32.9 \text{ }\mu\text{Ci/g}$$

Building and/or Structure Surface Activity Measurements

As indicated in the work plan, building and/or structure surfaces will be surveyed using direct surface scan and static measurement techniques. Smears will also be obtained and analyzed to determine the amount of removable contamination present on a surface. Surveys will be performed in accordance with standard operating procedures.

Surface scans will be performed using instruments capable of measuring the beta emissions from the DU radionuclides. Since many of the interior building surfaces within the scope of this FSS are known to be contaminated, the scan survey will attempt to determine the distribution of contaminants, as well as identify areas of contamination significantly higher than other areas (hot spots). The results of the beta scan surveys will then be used to identify locations for collection of biased integrated or static alpha total surface activity measurements and collection of smears to determine the removable contamination fraction in these areas. Because many of the interior surfaces are known to be contaminated with DU, the postulated hot spot area for performance of scan surveys is 1 square meter (m²).

For the purpose of building surface and/or structure FSS, a hot spot is defined as any area exhibiting greater than two times the instrument minimum detectable count rate (MDCR). Following completion of the beta scan surveys, integrated or static alpha measurements may be performed at systematic and/or biased locations, including hot spot areas identified through surface beta scans. Smears may also be obtained at these locations to determine the removable fraction of contamination present on the surface. Only the results of the integrated or static alpha measurements will be compared to the screening limits presented in the work plan.

Beta surface scans may be performed using a Ludlum Model 43-37 floor monitor (582 cm²) gas proportional detector, Ludlum Model 43-68 hand-held gas proportional detector (126 cm²), or equivalent instrumentation. Integrated or static surface activity measurements may be performed using the Ludlum Model 43-37 floor monitor, Ludlum Model 43-68 gas proportional detector, Ludlum Model 43-89 ZnS scintillation detector (126 cm²), or equivalent instrumentation. Smears may be analyzed using a Ludlum Model 2929 scaler coupled to a Ludlum Model 43-10-1 scintillation detector. The following sections discuss the detection sensitivity for each of these instruments used for FSS surveys.

Beta Scan Minimum Detectable Count Rate

The detection sensitivity derived for instruments used to perform beta scans focuses on the information provided directly from the measurement and available to the surveyor for decisions regarding survey performance. Therefore, the beta scan sensitivity is derived in terms of the measurement MDCR. The MDCR is determined for the Ludlum Model 43-37 floor monitor and the Ludlum Model 43-68 gas proportional detector, using *MARSSIM* Equations 6-8 and 6-9.

The observed background count (b') is defined as the number of background counts observed within the observation interval (i). The equation used for calculating b' is as follows:

$$b' = (BCPM) * (i) * (1 min/60 sec) = counts/interval$$

Where:

BCPM = instrument or reference area background count rate (cpm) i = observation interval (seconds)

The minimum detectable number of net source counts in the interval is given by s_i . Therefore, for an ideal observer, the number of source counts required for a specified level of performance can be arrived at by multiplying the square root of the number of background counts by the detectability value associated with the desired performance (d'), as shown below:

$$s_i = d\sqrt{b}$$
 MARSSIM Equation 6-8

The MDCR is defined as the increase above background recognizable during a survey in a given period of time. The variable, d, is defined as the index of sensitivity and is dependent on the selected decision errors for Type I (alpha) and Type II (beta) errors. A true positive error (1- β) of 95% and a false positive error (alpha) of 60% may be selected to be consistent with NUREG 1507. The value of 1.38 was obtained from *NUREG* 1507, Table 6.1 (*MARSSIM* Table 6.5).

MDCR (cpm) =
$$si \times (60/i)$$
 MARSSIM Equation 6-9

The measurement interval (i) for both the Ludlum Model 43-37 and Ludlum Model 43-68 is one per second.

Ludlum Model 43-68

The background count rate for the Ludlum Model 43-68 reported by the manufacturer is 300 cpm (consistent with a typical concrete background count rate for this instrument).

b' = (300 cpm) * (1) * (1 min/60 sec) = 5 counts in the 1 second observation interval

Using d = 1.38:

$$s_i = 1.38\sqrt{5}$$

$$s_i = 3.1$$

Thus, the Ludlum Model 43-68 beta scan MDCR is:

MDCR (cpm) =
$$3.1 \times (60/1) = 185$$
 cpm (above background)

The beta scan action level for identifying a hot spot would therefore be:

Scan Action Level (MDCR) = MDCR
$$\times 2$$

= 370 cpm above background

For simplicity and to aid in surveyor decisions, this value is rounded to **400 cpm above** background.

Ludlum Model 43-37

The beta scan MDCR for the Ludlum Model 43-37 floor monitor is same manner as the Ludlum Model 43-68 except the background is adjusted to account for the significant increase in detector area. This is accomplished simply by multiplying the Ludlum Model 43-68 background by the ratio of the Ludlum Model 43-37 detector area (582 cm²) to the Ludlum Model 43-68 detector area (126 cm²) or 4.6.

Ludlum Model
$$43-37 \text{ BCPM} = 300 \text{ x } 4.6 = 1386 \text{ cpm}$$

Using this background count rate, the values and formulas from the previous section, the Ludlum Model 43-37 floor monitor beta scan MDCR is 397 cpm above background. Rounding for simplicity and ease, the MDCR is approximately 400 cpm above background, resulting in a beta scan action level for the Ludlum Model 43-37 of **800 cpm above background**.

Integrated (Static) Alpha Surface Activity Measurements

Integrated direct measurements (i.e., static measurements) of surface alpha contamination will be performed to compare contaminant concentrations at discrete sampling locations to the screening limit presented in the work plan.

Integrated alpha activity measurements will be performed using a Ludlum Model 43-37 gas proportional detector, Ludlum Model 43-68 gas proportional detector, Ludlum Model 43-89 handheld scintillation detector, or equivalent. Although the background count rates are slightly different, the parameters and static measurement requirements are very similar for the Ludlum Model 43-68 and Ludlum Model 43-89 detectors.

Since the background and gross (or sample) count times are the same for all three detectors, the following equation is used to determine instrument MDC:

MDC (dpm/100cm²) =
$$\frac{3 + 4.65 \sqrt{(R_b)}}{\frac{[DA]}{100} [\varepsilon_i] [\varepsilon_s]}$$
 MARSSIM Equation 6-7

Where:

 ε_i = instrument efficiency (cpm/dpm)

 ε_s = surface efficiency (unitless) R_b = background count rate (cpm)

DA = detector area (cm^2)

For the purpose of this evaluation, instrument efficiency values (ε_i) were obtained from *NUREG 1507*, Table 4.4. Surface efficiency values (ε_s) were obtained from *NUREG 1507*, Table 5.5, for a sealed concrete surface with distributed alpha emitting radioactive source.

When using large area detectors, such as the detector associated with the Ludlum Model 43-37, it is typically not appropriate to account for detector area corrections. This is because the area of contamination is assumed to be much smaller than the detector area, on the order of 100 cm². However, since it is known that many interior surfaces are contaminated, and the postulated hot spot is much greater than the Ludlum Model 43-37 detector area, this correction is necessary and appropriate.

The integrated or static measurement MDC and assumptions used for each of the detectors are presented in Table 7. The MDC was determined using the above equation.

TABLE 7: INTEGRATED/STATIC MEASUREMENT MDC AND ASSUMPTIONS

Ludlum Model No.	Count Time (min)	Bkg Count Time (min)	Detector Area (cm²)	ε _i (cpm/dpm)	\mathcal{E}_{s}	α Bkg (cpm)	α Static MDC (dpm/100 cm²)
43-37	1	1	582	0.349	0.473	10	18
43-68	1	1	126	0.349	0.473	5	64
43-89	1	1	126	0.259	0.428	3	79

min = minutes

 cm^2 = square centimeters

cpm = counts per minute

dpm = disintegrations per minute

bkg = background

Removable Contamination (Smear) Analysis MDC

Smear samples will be collected at biased building surface locations, as appropriate, to quantify transferable/removable surface alpha contamination. Samples of removable surface contamination are typically obtained by wiping a surface area of 100 cm² using a cloth or paper disc or other suitable media. These samples (smears) will be analyzed using a Ludlum 2929 scaler coupled to a Ludlum Model 43-10-1 scintillation detector. Since the background and gross (sample) count times for this instrument are typically different when analyzing smears for alpha emitting contamination, the following equation is used to determine the measurement MDC:

Smear MDC (dpm/100 cm²) =
$$\frac{3 + 3.29 \sqrt{(R_b)(T_s)(1 + \frac{T_s}{T_b})}}{(T_s)(\varepsilon_i)}$$
 NUREG 1507, Equation 3-11

Where:

ε_i = instrument efficiency (cpm/dpm)
 R_b = background count rate (cpm)
 T_b = background count time (minutes)
 T_s = sample count time (minutes)

The smear analysis MDC and assumptions are presented in Table 8.

TABLE 8: SMEAR ANALYSIS MDC AND ASSUMPTIONS

Ludlum Model No.	Count Time (min)	Bkg Count Time (min)	Probe Area (cm²)	α Efficiency (cpm/dpm)	α Bkg (cpm)	α Static MDC (dpm/100 cm²)
2929	4*	20	Smear	0.33	0.8	7

min = minutes cpm = counts per minute cm^2 = square centimeters

dpm = disintegrations per minute

Summary

GWS sensitivity parameters, beta surface scan MDCRs, and static measurement and smear analysis MDCs have been calculated for each instrument to be used during the FSS. Calculation of MDCs for each instrument ensures that direct measurements are performed using radiation survey instrumentation sufficient to evaluate radiological conditions in accordance with the requirements of the work plan. Due to the potential variations of conditions in the field, parameters such as static measurement and smear count times may be adjusted onsite with the permission of the project Health Physicist.

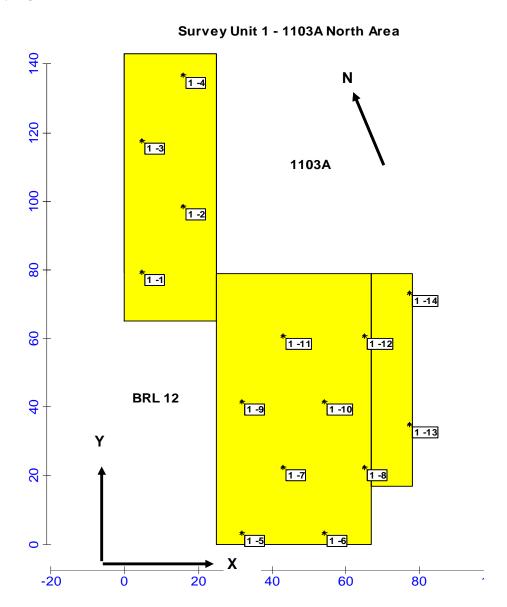
^{*} Actual sample count time may be determined based on actual measured alpha background count rate and detector specific alpha efficiency. Background and sample count times may be adjusted to maintain a target MDC not greater than 10 dpm/100 cm² or 10% of the screening limit presented in the work plan.

APPENDIX B

Appendix B1 Static and Sample Locations
Appendix B2 Static Results
Appendix B3 Smear Results
Appendix B4 Investigation Results

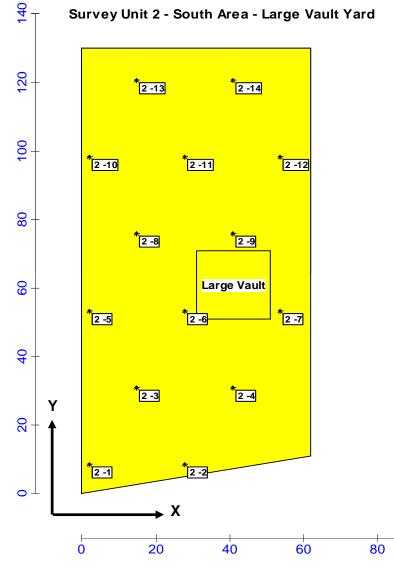
Spreadsheets Provided on CD

APPENDIX B1


Static and Sample Locations

APG Bldg 1103A Project - FSS Survey Unit Descriptions

Survey Unit ID	Structure	Survey Unit Description	Horiz N-S (ft)	Horiz E-W	Wall Ht	Wall Ht	Surface	Surface Area	MARSSIM
				(ft)	Low (ft)	High (ft)	Area (ft ²)	(m ²)	Class
1	North Area 1103A	BRL12 Yard					5950	552.8	1
2	South Area	Large Vault Yard					7719	717.1	1
3	East Area	Asphalt East Parking Lot					4650	432.0	2
4	Perimeter Area	North, West, South Border					12500	1161.3	2
5	1103A	Floor North	19.34	48.75	n/a	n/a	942.8	87.6	1
6	1103A	Floor South	19.34	48.75	n/a	n/a	942.8	87.6	1
7	1103A	Interior Walls N & E	38.67	48.75	10	12	923.0	85.7	1
8	1103A	Interior Walls W & S	38.67	48.75	10	12	923.0	85.7	1
9	1103A	Ceiling North	20	50	n/a	n/a	1000.0	92.9	1
10	1103A	Ceiling South	20	50	n/a	n/a	1000.0	92.9	1
11	1103A	Exterior Wall - South	0	50	10	12	550.0	51.1	1
12	1103A	Exterior Walls - N, E & W	40	50	10	12	1350.0	125.4	2
12A	1103A	Entrance Room Interior	9	4.5	8.6	n/a	313.2	29.1	1
12B	1103A	Entrance Room Exterior	9	4.5	8.6	n/a	272.7	25.3	2
13	1103A	Roof	40	50	n/a	n/a	2000.0	185.8	2
14	1103A	Former Shop Area Floor							1
15	BRL12	Floor	39.4	20	0		788.0	73.2	1
19	BRL12 N Vault	Interior FI, N & E Walls	12.2	20	12		630.4	58.6	1
19A	BRL12 N Vault	Interior Ceil, W & S Walls	12.2	20	12		630.4	58.6	1
19B	BRL12 N Vault	Roof & Exterior Walls	12.2	20	12		1212.0	112.6	2
20	BRL12 S Vault	Interior Surfaces	12.2	20	12		1260.8	117.1	2
20A	BRL12 S Vault	Roof & Exterior Walls	12.2	20	12		1212.0	112.6	2
23	Freestanding Vault	Fl, N & E Walls	20	20	15		1000.0	92.9	1
24	Freestanding Vault	Ceil. W & S Walls	20	20	15		1000.0	92.9	1
25	Freestanding Vault	ext Walls & roof	20	20	15		1600.0	148.6	1*
26	1103 B	Floor	80	43	1.5		3440	319.6	3
27	1103 B	Exterior N & W Walls	151	40	10		1510	140.3	2
28	1100 E	Exterior E Wall	60.25	n/a	30	35	1958.125	181.9	3
29	1100 E	Exterior E Wall	62	11/4	10	33	620	57.6	3
Reclassified f	rom 2 to 1								

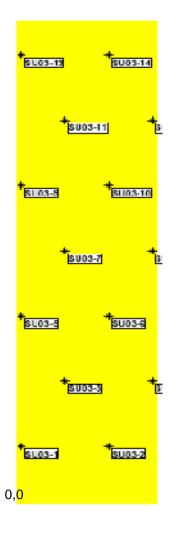

APG Building 1103 A Project - FSS Outdoor Area Sampling & Measurement Locations

Measure ment No.	Location	Dist. East (X Coord. ft.)	Dist North (Y Coord. ft.)
1-1	Ground	4.7	79.3
1-2	Ground	15.8	98.5
1-3	Ground	4.7	117.7
1-4	Ground	15.8	136.9
1-5	Ground	31.9	3.2
1-6	Ground	54.1	3.2
1-7	Ground	43.0	22.4
1-8	Ground	65.2	22.4
1-9	Ground	31.9	41.6
1-10	Ground	54.1	41.6
1-11	Ground	43.0	60.8
1-12	Ground	65.2	60.8
1-13	Ground	77.4	35.0
1-14	Ground	77.4	73.4

APG Building 1103 A Project - FSS Outdoor Area Sampling & Measurement Locations

Measure ment No.	Location	Dist. East (X Coord. ft.)	Dist North (Y Coord. ft.)
2 -1	Ground	1.9	8.6
2 -2	Ground	27.8	8.6
2 -3	Ground	14.9	31.1
2 -4	Ground	40.7	31.1
2 -5	Ground	1.9	53.5
2 -6	Ground	27.8	53.5
2 -7	Ground	53.7	53.5
2 -8	Ground	14.9	75.9
2 -9	Ground	40.7	75.9
2 -10	Ground	1.9	98.3
2 -11	Ground	27.8	98.3
2 -12	Ground	53.7	98.3
2 -13	Ground	14.9	120.7
2 -14	Ground	40.7	120.7

Area: Area 8

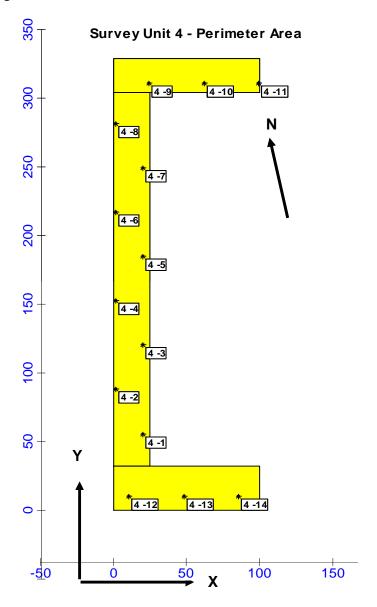

X Coord Y Coord Label Value

Type Historical

APG Building 1103 A Project - FSS Outdoor Area Sampling & Measurement Locations

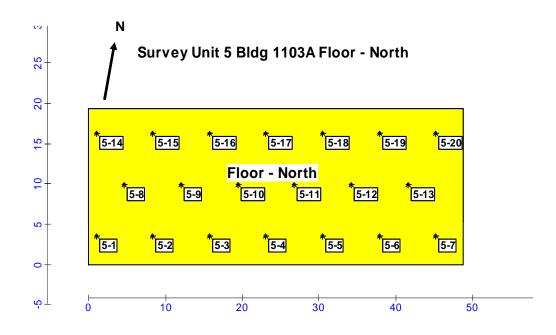
Dist. East (X Dist North (Y Measurement Location Coord. ft.) Coord. ft.) No. 3 -1 Ground 1.1 14.2 3 -2 Ground 19.8 14.2 30.4 3 -3 10.5 Ground 3 -4 Ground 29.2 30.4 Ground 3 -5 1.1 46.6 19.8 3 -6 Ground 46.6 3 -7 10.5 62.8 Ground 3 -8 Ground 29.2 62.8 3 -9 Ground 1.1 79.0 3 -10 Ground 19.8 79.0 10.5 95.2 3 -11 Ground 29.2 95.2 3 -12 Ground 3 -13 1.1 111.4 Ground 19.8 3 -14 111.4 Ground

Survey Unit 03. Ea

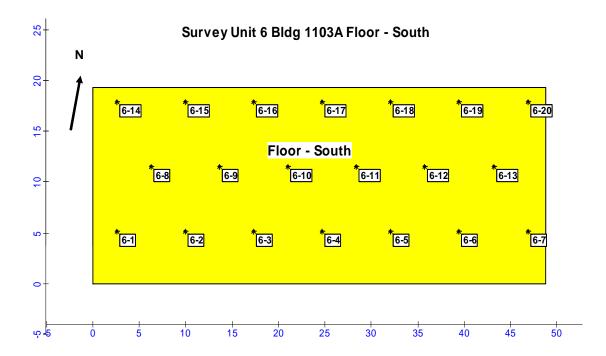


†

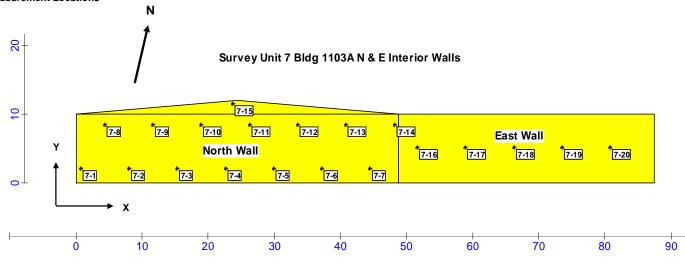
Υ


APG Building 1103 A Project - FSS Outdoor Area Sampling & Measurement Locations

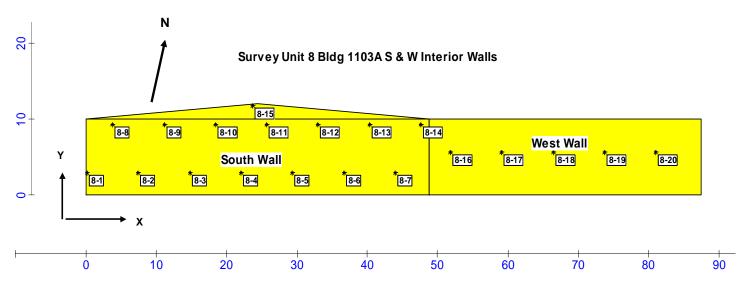
Measure ment No.	Location	Dist. East (X Coord. ft.)	Dist North (Y Coord. ft.)
4 -1	Ground	20.2	55.6
4 -2	Ground	1.6	87.9
4 -3	Ground	20.2	120.2
4 -4	Ground	1.6	152.4
4 -5	Ground	20.2	184.7
4 -6	Ground	1.6	217.0
4 -7	Ground	20.2	249.2
4 -8	Ground	1.6	281.5
4 -9	Ground	24.6	311.0
4 -10	Ground	61.9	311.0
4 -11	Ground	99.2	311.0
4 -12	Ground	10.9	10.3
4 -13	Ground	48.1	10.3
4 -14	Ground	85.4	10.3


APG Building 1103A - FSS Fixed Alpha Measurement Locations

Measurem	Location	Dist. East	Dist North	Dist up Wall
ent No.		(X Coord. ft.)	(Y Coord. ft.)	(Z coord ft.)
5-1	Floor	1	3.5	n/a
5-2	Floor	8.4	3.5	n/a
5-3	Floor	15.7	3.5	n/a
5-4	Floor	23.1	3.5	n/a
5-5	Floor	30.5	3.5	n/a
5-6	Floor	37.9	3.5	n/a
5-7	Floor	45.2	3.5	n/a
5-8	Floor	4.7	9.9	n/a
5-9	Floor	12	9.9	n/a
5-10	Floor	19.4	9.9	n/a
5-11	Floor	26.8	9.9	n/a
5-12	Floor	34.2	9.9	n/a
5-13	Floor	41.6	9.9	n/a
5-14	Floor	1	16.3	n/a
5-15	Floor	8.4	16.3	n/a
5-16	Floor	15.7	16.3	n/a
5-17	Floor	23.1	16.3	n/a
5-18	Floor	30.5	16.3	n/a
5-19	Floor	37.9	16.3	n/a
5-20	Floor	45.2	16.3	n/a

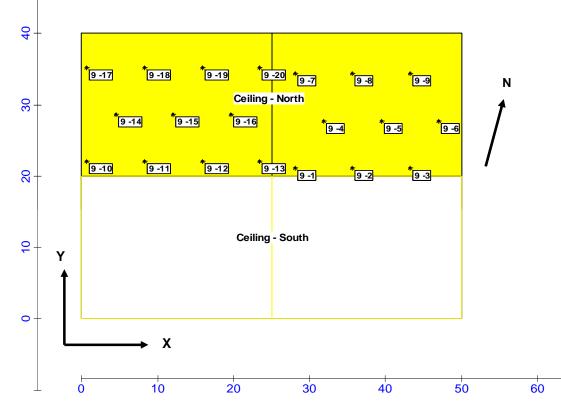

APG Building 1103A - FSS Fixed Alpha Measurement Locations

Measure	Location	Dist. East	Dist North (Y	Dist up Wall
ment No.		(X Coord. ft.)	Coord. ft.)	(Z coord ft.)
6-1	Floor	2.6	5.1	n/a
6-2	Floor	10	5.1	n/a
6-3	Floor	17.3	5.1	n/a
6-4	Floor	24.7	5.1	n/a
6-5	Floor	32.1	5.1	n/a
6-6	Floor	39.5	5.1	n/a
6-7	Floor	46.8	5.1	n/a
6=8	Floor	6.3	11.5	n/a
6-9	Floor	13.6	11.5	n/a
6-10	Floor	21	11.5	n/a
6-11	Floor	28.4	11.5	n/a
6-12	Floor	35.8	11.5	n/a
6-13	Floor	43.2	11.5	n/a
6-14	Floor	2.6	17.9	n/a
6-15	Floor	10	17.9	n/a
6-16	Floor	17.3	17.9	n/a
6-17	Floor	24.7	17.9	n/a
6-18	Floor	32.1	17.9	n/a
6-19	Floor	39.5	17.9	n/a
6-20	Floor	46.8	17.9	n/a

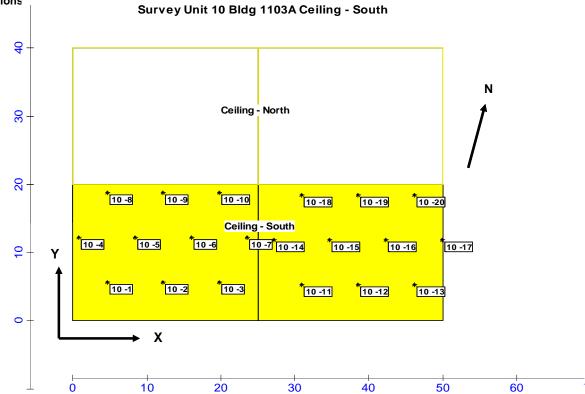

APG Building 1103A - FSS Fixed Alpha Measurement Locations

Measure	Location	Dist E X	Dist up
ment No.		coord (ft)	Wall Y
			coord (ft)
7-1	N Wall	0.7	2.2
7-2	N Wall	8	2.2
7-3	N Wall	15.3	2.2
7-4	N Wall	22.6	2.2
7-5	N Wall	29.9	2.2
7-6	N Wall	37.2	2.2
7-7	N Wall	44.5	2.2
7-8	N Wall	4.4	8.5
7-9	N Wall	11.7	8.5
7-10	N Wall	19	8.5
7-11	N Wall	26.3	8.5
7-12	N Wall	33.6	8.5
7-13	N Wall	40.9	8.5
7-14	N Wall	48.2	8.5
7-15	N Wall	23.8	11.6
7-16	E Wall	51.6	5.2
7-17	E Wall	58.9	5.2
7-18	E Wall	66.2	5.2
7-19	E Wall	73.5	5.2
7-20	E Wall	80.8	5.2

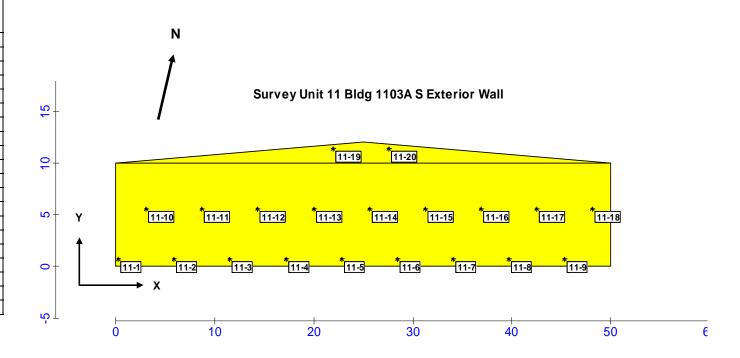
APG Building 1103A - FSS Fixed Alpha Measurement Locations


Measure ment No.	Location	Dist E X coord (ft)	-
ment no.		00014 (11)	coord (ft)
8-1	S Wall	0.2	2.9
8-2	S Wall	7.5	2.9
8-3	S Wall	14.8	2.9
8-4	S Wall	22.1	2.9
8-5	S Wall	29.4	2.9
8-6	S Wall	36.7	2.9
8-7	S Wall	44.0	2.9
8-8	S Wall	3.8	9.3
8-9	S Wall	11.1	9.3
8-10	S Wall	18.4	9.3
8-11	S Wall	25.7	9.3
8-12	S Wall	33.0	9.3
8-13	S Wall	40.3	9.3
8-14	S Wall	47.6	9.3
8-15	S Wall	23.7	11.8
8-16	W Wall	51.9	5.6
8-17	W Wall	59.2	5.6
8-18	W Wall	66.5	5.6
8-19	W Wall	73.8	5.6
8-20	W Wall	81.1	5.6

APG Building 1103A - FSS Fixed Alpha Measurement Locations

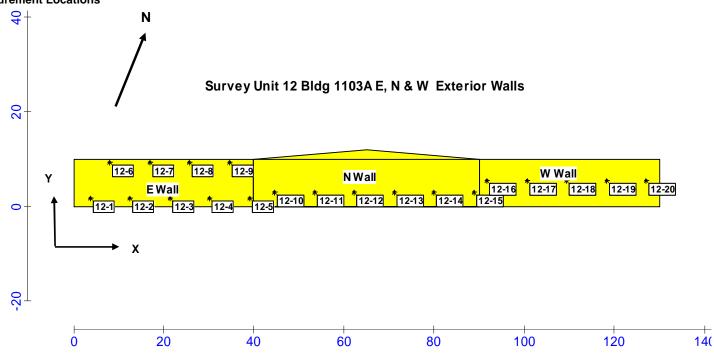

Measurement No.	Location	Dist. East (X Coord. ft.)	Dist North (Y Coord. ft.)
		14.7	,
9 -1	Ceiling	28.0	21.2
9 -2	Ceiling	35.6	21.2
9 -3	Ceiling	43.2	21.2
9 -4	Ceiling	31.8	27.8
9 -5	Ceiling	39.4	27.8
9 -6	Ceiling	47.0	27.8
9 -7	Ceiling	28.0	34.4
9 -8	Ceiling	35.6	34.4
9 -9	Ceiling	43.2	34.4
9 -10	Ceiling	0.7	22.1
9 -11	Ceiling	8.3	22.1
9 -12	Ceiling	15.9	22.1
9 -13	Ceiling	23.5	22.1
9 -14	Ceiling	4.5	28.7
9 -15	Ceiling	12.1	28.7
9 -16	Ceiling	19.7	28.7
9 -17	Ceiling	0.7	35.3
9 -18	Ceiling	8.3	35.3
9-19	Ceiling	15.9	35.3
9-20	Ceiling	23.5	35.3

Survey Unit 9 Bldg 1103A Ceiling - North


APG Building 1103A - FSS Fixed Alpha Measurement Locations

Measurement No.	Location	Dist. East (X Coord.	Dist North (Y Coord.
		` ft.)	` ft.)
10 -1	Ceiling	4.6	5.7
10 -2	Ceiling	12.2	5.7
10 -3	Ceiling	19.8	5.7
10 -4	Ceiling	0.8	12.3
10 -5	Ceiling	8.4	12.3
10 -6	Ceiling	16.0	12.3
10 -7	Ceiling	23.6	12.3
10 -8	Ceiling	4.6	18.8
10 -9	Ceiling	12.2	18.8
10 -10	Ceiling	19.8	18.8
10 -11	Ceiling	30.9	5.3
10 -12	Ceiling	38.5	5.3
10 -13	Ceiling	46.1	5.3
10 -14	Ceiling	27.1	11.9
10 -15	Ceiling	34.7	11.9
10 -16	Ceiling	42.3	11.9
10 -17	Ceiling	49.9	11.9
10 -18	Ceiling	30.9	18.5
10 -19	Ceiling	38.5	18.5
10 -20	Ceiling	46.1	18.5

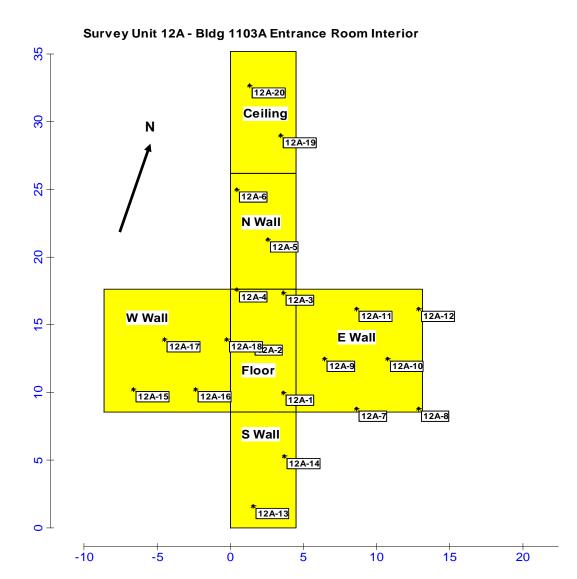
APG Building 1103A - FSS Fixed Alpha Measurement Locations


Measure	Location	Dist up	DistEast
ment No.		Wall Y	X coord
		coord (ft)	(ft)
11-1	S Wall	0.7	0.3
11-2	S Wall	0.7	5.9
11-3	S Wall	0.7	11.5
11-4	S Wall	0.7	17.2
11-5	S Wall	0.7	22.8
11-6	S Wall	0.7	28.4
11-7	S Wall	0.7	34.1
11-8	S Wall	0.7	39.7
11-9	S Wall	0.7	45.3
11-10	S Wall	5.6	3.1
11-11	S Wall	5.6	8.7
11-12	S Wall	5.6	14.4
11-13	S Wall	5.6	20
11-14	S Wall	5.6	25.6
11-15	S Wall	5.6	31.3
11-16	S Wall	5.6	36.9
11-17	S Wall	5.6	42.5
11-18	S Wall	5.6	48.2
11-19	S Wall	11.4	21.9
11-20	S Wall	11.4	27.6

Area: Area 4

APG Building 1103A - FSS Fixed Alpha Measurement Locations

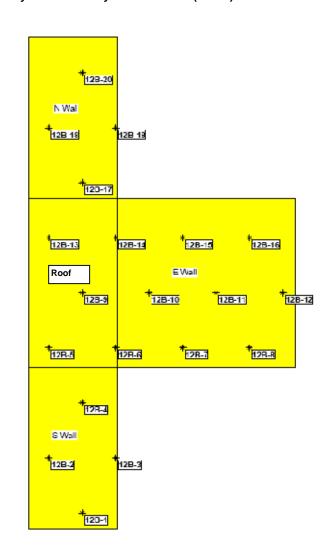
Measure	Location	Dist X	Dist up
ment No.		coord (ft)	Wall Y
		, ,	coord (ft)
12-1	E Wall	3.7	1.8
12-2	E Wall	12.5	1.8
12-3	E Wall	21.3	1.8
12-4	E Wall	30.2	1.8
12-5	E Wall	39.0	1.8
12-6	E Wall	8.1	9.4
12-7	E Wall	16.9	9.4
12-8	E Wall	25.8	9.4
12-9	E Wall	34.6	9.4
12-10	N Wall	44.6	3.0
12-11	N Wall	53.5	3.0
12-12	N Wall	62.3	3.0
12-13	N Wall	71.1	3.0
12-14	N Wall	79.9	3.0
12-15	N Wall	88.8	3.0
12-16	W Wall	91.7	5.5
12-17	W Wall	100.6	5.5
12-18	W Wall	109.4	5.5
12-19	W Wall	118.2	5.5
12-20	W Wall	127.1	5.5


Are:	а.	Δrc	22	6
710	α.	\neg	5a	U

X Coord	Y Coord	Label	Value	Type Historical
3.7	1.8	12-1		Systei
12.5	1.8	12-2		Systei

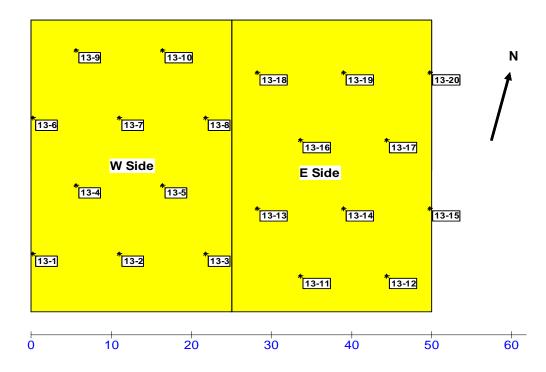
FSS Fixed Alpha Measurement Locations

Measure	Location	2D X	2 D Y	3D Dist E	3D Dist N	3D Dist
ment No.		Coord.	Coord.	X coord	Y coord	Height Z
		(ft)	(ft)	(ft)	(ft)	coord (ft)
12A-1	Floor	3.6	10.0	3.6	10.0	0.0
12A-2	Floor	1.5	13.7	1.5	13.7	0.0
12A-3	Floor	3.6	17.4	3.6	17.4	0.0
12A-4	N Wall	0.5	17.6	0.5	17.6	0.0
12A-5	N Wall	2.6	21.3	2.6	17.6	3.7
12A-6	N Wall	0.5	25.0	0.5	17.6	7.4
12A-7	E Wall	8.6	8.9	4.5	0.3	4.1
12A-8	E Wall	12.8	8.9	4.5	0.3	8.3
12A-9	E Wall	6.5	12.5	4.5	3.9	2.0
12A-10	E Wall	10.7	12.5	4.5	3.9	6.2
12A-11	E Wall	8.6	16.2	4.5	7.6	4.1
12A-12	E Wall	12.8	16.2	4.5	7.6	8.3
12A-13	S Wall	1.5	1.6	1.5	0.0	1.6
12A-14	S Wall	3.7	5.3	3.7	0.0	5.3
12A-15	W Wall	-6.6	10.3	0.0	1.7	2.0
12A-16	W Wall	-2.4	10.3	0.0	1.7	6.2
12A-17	W Wall	-4.5	13.9	0.0	5.3	4.1
12A-18	W Wall	-0.2	13.9	0.0	5.3	8.4
12A-19	Ceiling	3.5	29.0	3.5	2.8	8.6
12A-20	Ceiling	1.3	32.7	1.3	6.5	8.6

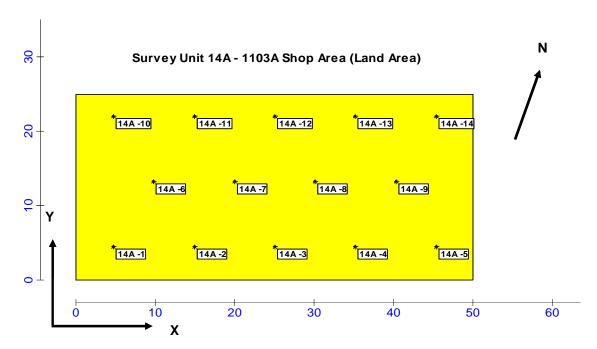

Tran	slation Rule	s From 2D	to 3D			
Coo	rdinates for	Survey Unit	t 12A			
Translation	Rules from	2D to 3D C	Coordinates			
Surface	urface 3D X 3D Y 3D Z					
Floor	2DX	2DY	0			
N. Wall	2DX 17.6 2DY-17.6					
E. Wall	E. Wall 4.5 2DY-8.6 2DX-4.5					
S. Wall	S. Wall 2DX 0 2DY					
W. Wall 0 2DY-8.6 8.6+2DX						
Ceiling	2DX	2DY-26.2	8.6			

- FSS Fixed Alpha Measurement Location

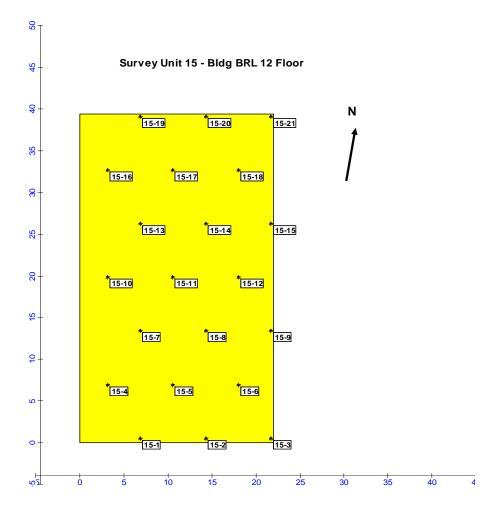
Measure ment No.	Location	Dist. North	Dist. East	Dist. Up Wall
12B-1	S Wall	Х	2.7	0.8
12B-2	S Wall	Х	1.0	3.8
12B-3	S Wall	Х	4.4	3.8
12B-4	S Wall	Х	2.7	6.7
12B-5	Roof	1.0	1.0	Х
12B-6	Roof	1.0	4.4	х
12B-7	E Wall	1.0	Х	5.7
12B-8	E Wall	1.0	х	2.3
12B-9	Roof	4.0	2.7	х
12B-10	E Wall	4.0	Х	7.0
12B-11	E Wall	4.0	Х	3.6
12B-12	E Wall	4.0	х	0.2
12B-13	Roof	6.9	1.0	х
12B-14	Roof	6.9	4.4	x
12B-15	E Wall	6.9	х	5.3
12B-16	E Wall	6.9	Х	1.9
12B-17	N Wall	Х	2.7	7.8
12B-18	N Wall	Х	1.0	4.8
12B-19	N Wall	Х	4.4	4.8
12B-20	N Wall	Х	2.7	1.9


Survey Unit 12B Entry Room Exterior (1103A)

APG Building 1103A - FSS Fixed Alpha Measurement Locations


Measure ment No.	Location	Dist. East (X Coord.	North	Dist up Wall (Z	
		ft.)	(Y Coord. ft.)	coord ft.)	8+
13-1	Roof	0.3	8	n/a	4
13-2	Roof	11	8	n/a	
13-3	Roof	21.8	8	n/a	
13-4	Roof	5.6	17.3	n/a	
13-5	Roof	16.4	17.3	n/a	- 30
13-6	Roof	0.3	26.6	n/a	
13-7	Roof	11	26.6	n/a	
13-8	Roof	21.8	26.6	n/a	
13-9	Roof	5.6	35.9	n/a	
13-10	Roof	16.4	35.9	n/a	- R
13-11	Roof	33.6	4.9	n/a	
13-12	Roof	44.4	4.9	n/a	
13-13	Roof	28.2	14.2	n/a	
13-14	Roof	39	14.2	n/a	
13-15	Roof	49.7	14.2	n/a	6+
13-16	Roof	33.6	23.5	n/a	
13-17	Roof	44.4	23.5	n/a	
13-18	Roof	28.2	32.8	n/a	
13-19	Roof	39	32.8	n/a	
13-20	Roof	49.7	32.8	n/a	<u>o</u> ⊥

Survey Unit 13 Bldg 1103A Roof


APG Building 1103 A Project - FSS Outdoor Area Sampling & Measurement Locations

Measure ment No.	Location	Dist. East (X Coord. ft.)	Dist North (Y Coord. ft.)
14A -1	Ground	4.8	4.5
14A -2	Ground	14.9	4.5
14A -3	Ground	25.1	4.5
14A -4	Ground	35.2	4.5
14A -5	Ground	45.4	4.5
14A -6	Ground	9.9	13.3
14A -7	Ground	20	13.3
14A -8	Ground	30.2	13.3
14A -9	Ground	40.3	13.3
14A -10	Ground	4.8	22.1
14A -11	Ground	14.9	22.1
14A -12	Ground	25.1	22.1
14A -13	Ground	35.2	22.1
14A -14	Ground	45.4	22.1

APG Building BRL12 - FSS Fixed Alpha Measurement Locations

Measurement	Location	Dist. East	Dist North	Dist up Wall
No.		(X Coord. ft.)	(Y Coord. ft.)	(Z coord ft.)
15-1	Floor	6.8	0.6	n/a
15-2	Floor	14.3	0.6	n/a
15-3	Floor	21.7	0.6	n/a
15-4	Floor	3.1	7	n/a
15-5	Floor	10.6	7	n/a
15-6	Floor	18	7	n/a
15-7	Floor	6.8	13.4	n/a
15-8	Floor	14.3	13.4	n/a
15-9	Floor	21.7	13.4	n/a
15-10	Floor	3.1	19.9	n/a
15-11	Floor	10.6	19.9	n/a
15-12	Floor	18	19.9	n/a
15-13	Floor	6.8	26.3	n/a
15-14	Floor	14.3	26.3	n/a
15-15	Floor	21.7	26.3	n/a
15-16	Floor	3.1	32.7	n/a
15-17	Floor	10.6	32.7	n/a
15-18	Floor	18	32.7	n/a
15-19	Floor	6.8	39.2	n/a
15-20	Floor	14.3	39.2	n/a
15-21	Floor	21.7	39.2	n/a

8

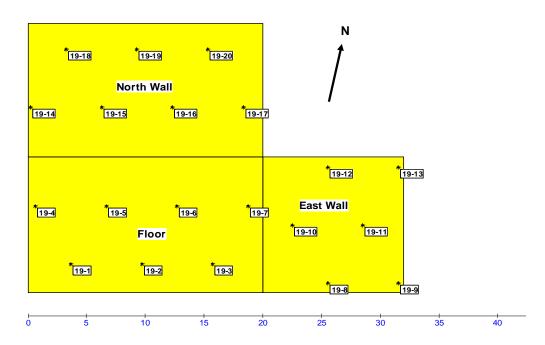
25

8-

15

9-

2

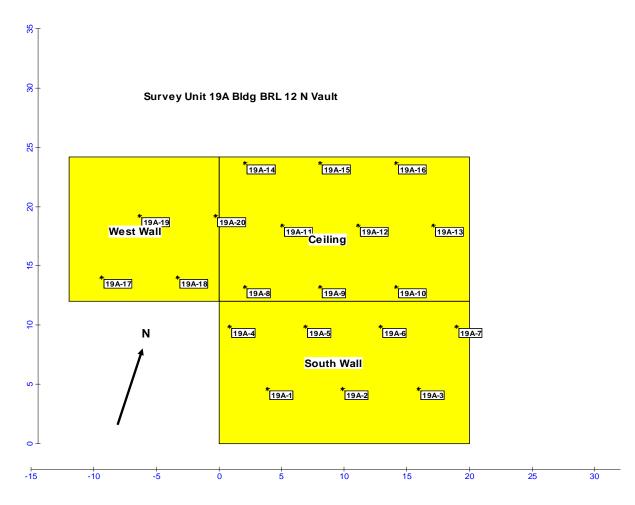

APG Building BRL12, N Vault - FSS Fixed Alpha Measurement Locations

Measure ment No.	Location	2D X Coord. (ft)	2 D Y Coord. (ft)	3D Dist E X coord (ft)	3D Dist N Y coord (ft)	3D Dist up Wall Z coord (ft)
19-1	Floor	3.7	2.5	3.7	2.5	0
19-2	Floor	9.7	2.5	9.7	2.5	0
19-3	Floor	15.7	2.5	15.7	2.5	0
19-4	Floor	0.7	7.8	0.7	7.8	0
19-5	Floor	6.7	7.8	6.7	7.8	0
19-6	Floor	12.7	7.8	12.7	7.8	0
19-7	Floor	18.7	7.8	18.7	7.8	0
19-8	E Wall	25.5	0.8	20	0.8	5.5
19-9	E Wall	31.6	0.8	20	0.8	11.6
19-10	E Wall	22.5	6	20	6	2.5
19-11	E Wall	28.5	6	20	6	8.5
19-12	E Wall	25.5	11.3	20	11.3	5.5
19-13	E Wall	31.6	11.3	20	11.3	11.6
19-14	N Wall	0.2	16.6	0.2	12.2	4.4
19-15	N Wall	6.3	16.6	6.3	12.2	4.4
19-16	N Wall	12.3	16.6	12.3	12.2	4.4
19-17	N Wall	18.3	16.6	18.3	12.2	4.4
19-18	N Wall	3.2	21.9	3.2	12.2	9.7
19-19	N Wall	9.3	21.9	9.3	12.2	9.7
19-20	N Wall	15.3	21.9	15.3	12.2	9.7

Translation Rules From 2D to 3D Coordinates for Survey Unit 19

Surface 3D X		3D Y	3D Z
Floor	2DX	2DY	0
E Wall	20	2DY	2DX-20
N Wall	2DX	12.2	2DY-12.2

Survey Unit 19 Bldg BRL 12 N Vault

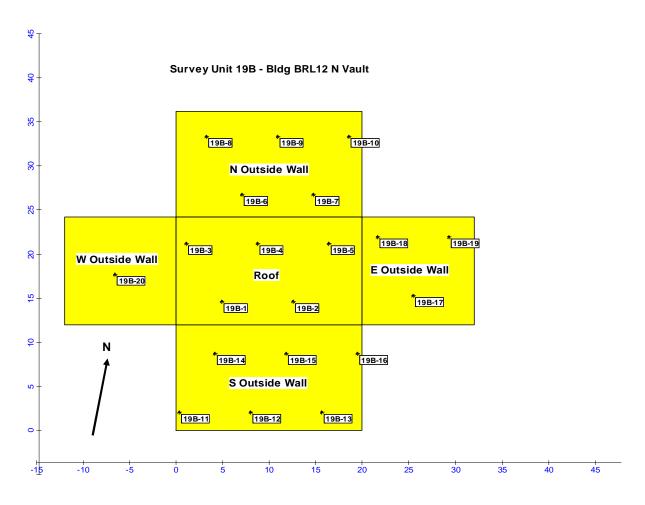


FSS Fixed Alpha Measurement Locations

Measure ment No.	Location	2D X Coord.	2 D Y Coord.	3D Dist E X coord	3D Dist N Y coord	3D Dist Height Z
		(ft)	(ft)	(ft)	(ft)	coord (ft)
19A-1	S Wall	3.9	4.6	3.9	0	4.6
19A-2	S Wall	9.9	4.6	9.9	0	4.6
19A-3	S Wall	15.9	4.6	15.9	0	4.6
19A-4	S Wall	0.8	9.9	0.8	0	9.9
19A-5	S Wall	6.9	9.9	6.9	0	9.9
19A-6	S Wall	12.9	9.9	12.9	0	9.9
19A-7	S Wall	18.9	9.9	18.9	0	9.9
19A-8	Ceiling	2	13.2	2	1.2	12
19A-9	Ceiling	8.1	13.2	8.1	1.2	12
19A-10	Ceiling	14.1	13.2	14.1	1.2	12
19A-11	Ceiling	5.1	18.5	5.1	6.5	12
19A-12	Ceiling	11.1	18.5	11.1	6.5	12
19A-13	Ceiling	17.1	18.5	17.1	6.5	12
19A-14	Ceiling	2	23.7	2	11.7	12
19A-15	Ceiling	8.1	23.7	8.1	11.7	12
19A-16	Ceiling	14.1	23.7	14.1	11.7	12
19A-17	W Wall	-9.4	14	0	2	2.6
19A-18	W Wall	-3.3	14	0	2	8.7
19A-19	W Wall	-6.3	19.2	0	7.2	5.7
19A-20	W Wall	-0.3	19.2	0	7.2	11.7

Translation Rules From 2D to 3D Coordinates for Survey Unit 19A

Surface	3D X	3D Y	3D Z
S Wall	2DX	0	2DY
Ceiling	2DX	2DY-12	12
W Wall	0	2DY-12	12+2Dx

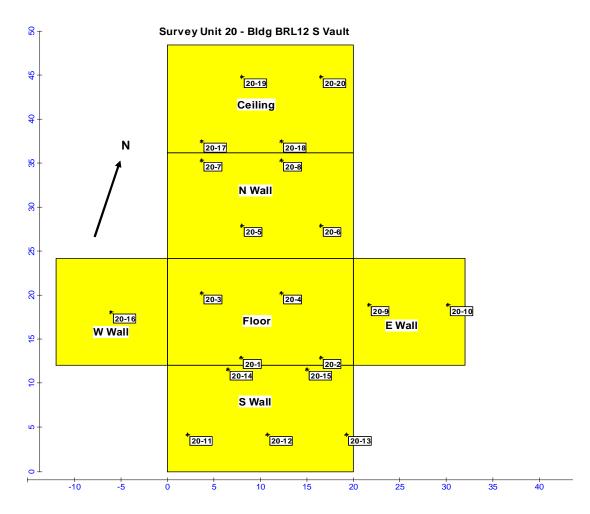


FSS Fixed Alpha Measurement Locations

Measure ment No.	Location	2D X Coord. (ft)	2 D Y Coord. (ft)	3D Dist E X coord (ft)	3D Dist N Y coord (ft)	3D Dist Height Z coord (ft)
19B-1	Roof	6	27.3	6	15.3	12
19B-2	Roof	15.4	27.3	15.4	15.3	12
19B-3	Roof	9.1	33.4	9.1	21.4	12
19B-4	Roof	18.5	33.4	18.5	21.4	12
19B-5	Roof	4.4	41.5	4.4	29.5	12
19B-6	N Wall	7.1	26.8	7.1	12.2	9.4
19B-7	N Wall	14.7	26.8	14.7	12.2	9.4
19B-8	N Wall	3.2	33.4	3.2	12.2	2.8
19B-9	N Wall	10.9	33.4	10.9	12.2	2.8
19B-10	N Wall	18.6	33.4	18.6	12.2	2.8
19B-11	S Wall	0.3	2.1	0.3	0	2.1
19B-12	S Wall	8	2.1	8	0	2.1
19B-13	S Wall	15.7	2.1	15.7	0	2.1
19B-14	S Wall	4.2	8.7	4.2	0	8.7
19B-15	S Wall	11.8	8.7	11.8	0	8.7
19B-16	S Wall	19.5	8.7	19.5	0	8.7
19B-17	E Wall	25.5	15.3	20	3.3	6.5
19B-18	E Wall	21.7	22	20	10	10.3
19B-19	E Wall	29.3	22	20	10	2.7
19B-20	W Wall	-6.6	17.7	0	5.7	5.4

Translation Rules From 2D to 3D Coordinates for Survey Unit 19B

Translation Rules from 2D to 3D Coordinates							
			Coordinates				
Surface	3D X	3D Y	3D Z				
Roof	2DX	2DY-12	12				
N. Wall	2DX	12.2	36.2-2DY				
S. Wall	2DX	0	2DY				

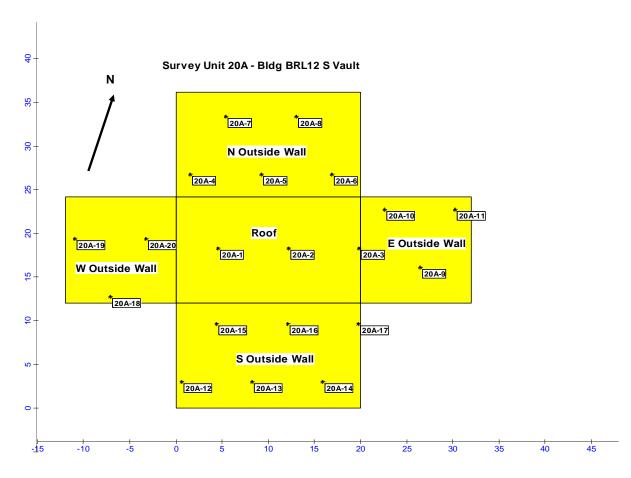


FSS Fixed Alpha Measurement Locations

Measure ment No.	Location	2D X Coord. (ft)	2 D Y Coord. (ft)	3D Dist E X coord (ft)	3D Dist N Y coord (ft)	3D Dist Height Z coord (ft)
20-1	Floor	8	12.9	8	12.9	0
20-2	Floor	16.5	12.9	16.5	12.9	0
20-3	Floor	3.7	20.3	3.7	20.3	0
20-4	Floor	12.2	20.3	12.2	20.3	0
20-5	N Wall	8	27.9	8	12.2	8.3
20-6	N Wall	16.5	27.9	16.5	12.2	8.3
20-7	N Wall	3.7	35.3	3.7	12.2	0.9
20-8	N Wall	12.3	35.3	12.3	12.2	0.9
20-9	E Wall	21.6	19	20	7	10.6
20-10	E Wall	30.2	19	20	7	2
20-11	S Wall	2.2	4.2	2.2	0	4.2
20-12	S Wall	10.7	4.2	10.7	0	4.2
20-13	S Wall	19.3	4.2	19.3	0	4.2
20-14	S Wall	6.5	11.6	6.5	0	11.6
20-15	S Wall	15	11.6	15	0	11.6
20-16	W Wall	-6	18.1	0	6.1	6
20-17	Ceiling	3.7	37.5	3.7	10.9	12
20-18	Ceiling	12.2	37.5	12.2	10.9	12
20-19	Ceiling	8	44.9	8	3.5	12
20-20	Ceiling	16.5	44.9	16.5	3.5	12

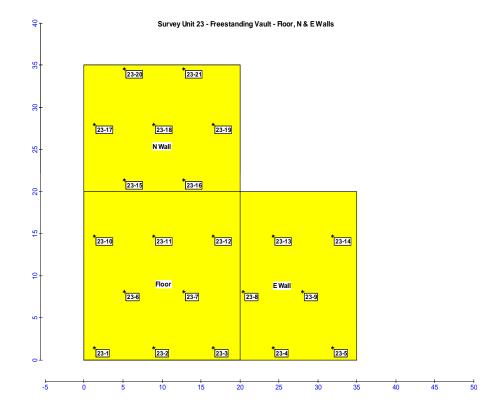
Translation Rules From 2D to 3D Coordinates for Survey Unit 19B

Translation Rules from 2D to 3D Coordinates						
Surface	3D X	3D Y	3D Z			
Floor	2DX	2DY	0			
N. Wall	2DX	12.2	36.2-2DY			
E. Wall	20	2DY-12	32-2-DX			
S. Wall	2DX	0	2DY			
W. Wall	0	2DY-12	12+2DX			
Ceiling	2DX	48.4-2DY	12			

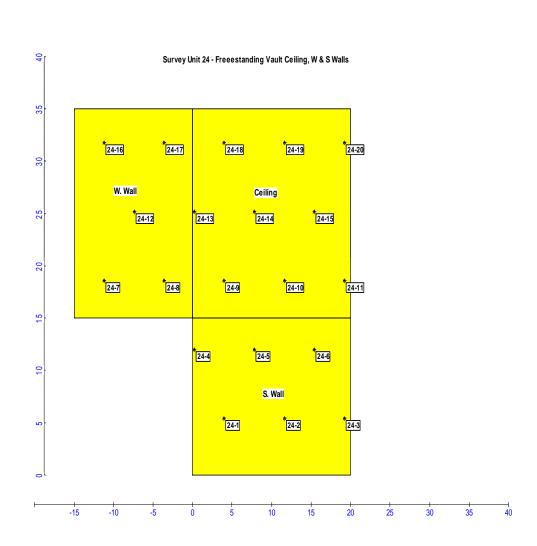


FSS Fixed Alpha Measurement Locations

Measure ment No.	Location	2D X Coord. (ft)	2 D Y Coord. (ft)	3D Dist E X coord (ft)	3D Dist N Y coord (ft)	3D Dist Height Z coord (ft)
20A-1	Roof	4.5	18.3	4.5	6.3	12
20A-2	Roof	12.2	18.3	12.2	6.3	12
20A-3	Roof	19.9	18.3	19.9	6.3	12
20A-4	N Wall	1.6	26.7	1.6	12.2	9.5
20A-5	N Wall	9.2	26.7	9.2	12.2	9.5
20A-6	N Wall	16.9	26.7	16.9	12.2	9.5
20A-7	N Wall	5.4	33.4	5.4	12.2	2.8
20A-8	N Wall	13.1	33.4	13.1	12.2	2.8
20A-9	E Wall	26.4	16.1	20	4.1	5.6
20A-10	E Wall	22.6	22.7	20	10.7	9.4
20A-11	E Wall	30.3	22.7	20	10.7	1.7
20A-12	S Wall	0.6	3	0.6	0	3
20A-13	S Wall	8.3	3	8.3	0	3
20A-14	S Wall	15.9	3	15.9	0	3
20A-15	S Wall	4.4	9.7	4.4	0	9.7
20A-16	S Wall	12.1	9.7	12.1	0	9.7
20A-17	S Wall	19.8	9.7	19.8	0	9.7
20A-18	W Wall	-7.1	12.8	0	0.8	4.9
20A-19	W Wall	-10.9	19.4	0	7.4	1.1
20A-20	W Wall	-3.3	19.4	0	7.4	8.7

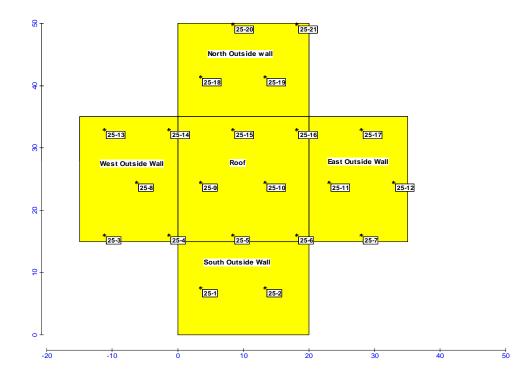

Translation Rules From 2D to 3D Coordinates for Survey Unit 19B

Translation Rules from 2D to 3D Coordinates						
Surface	3D X	3D Y	3D Z			
Roof	2DX	2DY-12	20			
N. Wall	2DX	12.2	36.2-2DY			
E. Wall	20	2DY-12	32-2-DX			

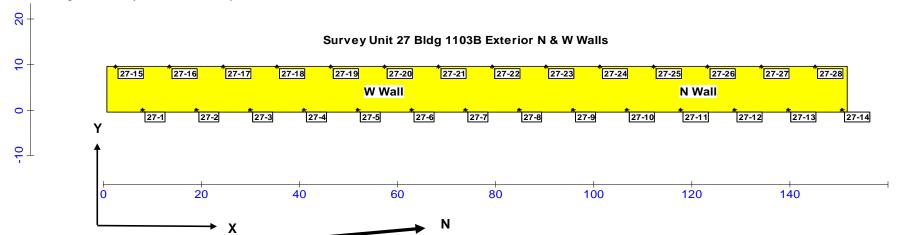

Measurement	Location	Dist. East	Dist.	Dist. Up
No.		(ft)	North (ft)	Wall (ft)
23-4	East Wall	n/a	1.5	4.2
23-5	East Wall	n/a	1.5	11.9
23-8	East Wall	n/a	8.1	0.4
23-9	East Wall	n/a	8.1	8
23-13	East Wall	n/a	14.7	4.2
23-14	East Wall	n/a	14.7	11.9
23-1	Floor	1.3	1.5	n/a
23-2	Floor	8.9	1.5	n/a
23-3	Floor	16.6	1.5	n/a
23-6	Floor	5.1	8.1	n/a
23-7	Floor	12.8	8.1	n/a
23-10	Floor	1.3	14.7	n/a
23-11	Floor	8.9	14.7	n/a
23-12	Floor	16.6	14.7	n/a
23-15	North Wall	5.1	n/a	1.4
23-16	North Wall	12.8	n/a	1.4
23-17	North Wall	1.3	n/a	8
23-18	North Wall	8.9	n/a	8
23-19	North Wall	16.6	n/a	8
23-20	North Wall	5.1	n/a	14.6
23-21	North Wall	12.8	n/a	14.6

LOCATIONS FOR FIXED ALPHAS

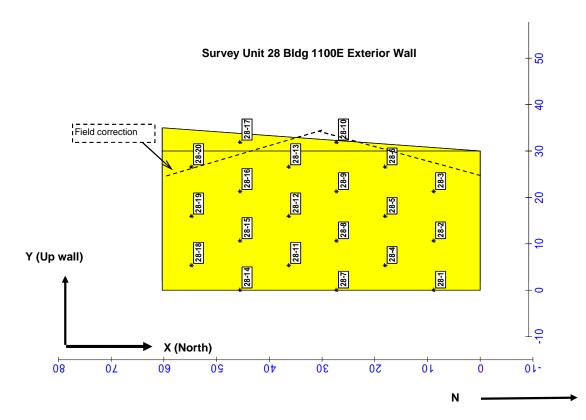
Measurement	Location	Dist. East	Dist.	Dist. Up
No.		(ft)	North (ft)	Wall (ft)
24-9	Ceiling	4.0	3.6	n/a
24-10	Ceiling	11.6	3.6	n/a
24-11	Ceiling	19.2	3.6	n/a
24-13	Ceiling	0.2	10.2	n/a
24-14	Ceiling	7.8	10.2	n/a
24-15	Ceiling	15.4	10.2	n/a
24-18	Ceiling	4.0	16.8	n/a
24-19	Ceiling	11.6	16.8	n/a
24-20	Ceiling	19.2	16.8	n/a
24-1	South Wall	4.0	n/a	5.5
24-2	South Wall	11.6	n/a	5.5
24-3	South Wall	19.2	n/a	5.5
24-4	South Wall	0.2	n/a	12.0
24-5	South Wall	7.8	n/a	12.0
24-6	South Wall	15.4	n/a	12.0
24-7	West Wall	n/a	3.6	3.8
24-8	West Wall	n/a	3.6	11.4
24-12	West Wall	n/a	10.2	7.6
24-16	West Wall	n/a	16.8	3.8
24-17	West Wall	n/a	16.8	11.4

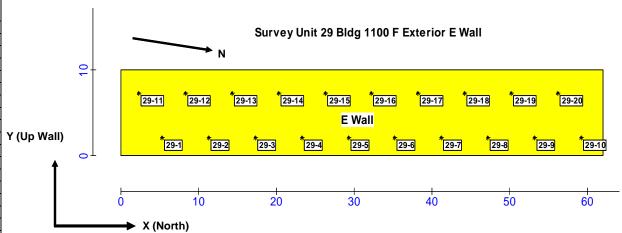


SU-24 - LARGE VAULT, Part 2


Measurement No.	Location	Dist. East (ft)	Dist. North (ft)	Dist. Up Wall (ft)
25-7	E. Wall	n/a	1.0	7.1
25-11	E. Wall	n/a	9.5	12.0
25-12	E. Wall	n/a	9.5	2.2
25-17	E. Wall	n/a	18.0	7.1
25-18	N. Wall	3.5	n/a	8.5
25-19	N. Wall	13.3	n/a	8.5
25-20	N. Wall	8.4	n/a	0.1
25-21	N. Wall	18.2	n/a	0.1
25-5	Roof	8.4	1.0	n/a
25-6	Roof	18.2	1.0	n/a
25-9	Roof	3.5	9.5	n/a
25-10	Roof	13.3	9.5	n/a
25-15	Roof	8.4	18.0	n/a
25-16	Roof	18.2	18.0	n/a
25-1	S. Wall	3.5	n/a	7.6
25-2	S. Wall	13.3	n/a	7.6
25-3	W. Wall	n/a	1.0	3.8
25-4	W. Wall	n/a	1.0	13.6
25-8	W. Wall	n/a	9.5	8.7
25-13	W. Wall	n/a	18.0	3.8
25-14	W. Wall	n/a	18.0	13.6

Survey Unit 25 - Freestanding Vault - Roof and Exterior Walls


	Location	Dist. East (X Coord. ft.)	Dist North (Y Coord. ft.)	06	Surv	ey Unit	26 - BI	dg 1103B Flo	oor		
			-	80							
26-1	Floor	2.5	1.1		* 26-19		* 26-20	* 26-21		N	
26-2	Floor	17.3	1.1							A	
26-3	Floor	32.1	1.1							Ī	
26-4	Floor	9.9	13.9	02						- 1	
26-5	Floor	24.7	13.9								
26-6	Floor	39.5	13.9			* 26-16		* 26-17	* 26-18		
26-7	Floor	2.5	26.7			20 10		20 11	20 10	- 1	
26-8	Floor	17.3	26.7	09						•	
26-9	Floor	32.1	26.7								
26-10	Floor	9.9	39.6								
26-11	Floor	24.7	39.6		* 26-13		* 26-14	* 26-15			
26-12	Floor	39.5	39.6	50	[20-13]		20-14	20-13			
26-13	Floor	2.5	52.4								
26-14	Floor	17.3	52.4								
26-15	Floor	32.1	52.4								
26-16	Floor	9.9	65.2	40		* 26-10		* 26-11	* 26-12		
26-17	Floor	24.7	65.2			20-10		20-11	20-12		
26-18	Floor	39.5	65.2								
26-19	Floor	2.5	78								
26-20	Floor	17.3	78	30							
26-21	Floor	32.1	78		* 26-7		* 26-8	* 26-9			
							26-8	→ 26-9			
Area: Area	1			20							
X Coord	Y Coord	Label		2							
2.5	1.1	26-1									
17.3	1.1	26-2				* 26-4		* 26-5	* 26-6		
32.1	1.1	26-3		6							
9.9	13.9	26-4		_							
24.7	13.9	26-5									
39.5	13.9	26-6									
2.5	26.7	26-7			<u>*</u> 26-1		* 26-2	*26-3			
17.3	26.7	26-8			201		202	200			
32.1	26.7	26-9		-	+	+			-	-	
9.9	39.6	26-10		-10	0	10	20	30	40	5 0	60
24.7	39.6	26-11									
39.5	39.6	26-12									
2.5	52.4	26-13									
17.3	52.4	26-14									
32.1	52.4	26-15									
9.9	65.2	26-16									
9.9 24.7	65.2	26-17									
39.5	65.2	26-18									
2.5	78	26-19									
17.3	78	26-20									
32.1	78	26-21									
٠٤.١	, 0	20 21									


Measurement	Location	X Coord.	Y Up Wall
No.		(ft.)	Coord. (ft.)
27-1	Wall	7.9	0.1
27-2	Wall	18.9	0.1
27-3	Wall	29.9	0.1
27-4	Wall	40.9	0.1
27-5	Wall	51.9	0.1
27-6	Wall	62.8	0.1
27-7	Wall	73.8	0.1
27-8	Wall	84.8	0.1
27-9	Wall	95.8	0.1
27-10	Wall	106.8	0.1
27-11	Wall	117.7	0.1
27-12	Wall	128.7	0.1
27-13	Wall	139.7	0.1
27-14	Wall	150.7	0.1

Measurement	Location	X Coord.	Y Up Wall
No.		(ft.)	Coord. (ft.)
27-15	Wall	2.4	9.6
27-16	Wall	13.4	9.6
27-17	Wall	24.4	9.6
27-18	Wall	35.4	9.6
27-19	Wall	46.4	9.6
27-20	Wall	57.3	9.6
27-21	Wall	68.3	9.6
27-22	Wall	79.3	9.6
27-23	Wall	90.3	9.6
27-24	Wall	101.3	9.6
27-25	Wall	112.3	9.6
27-26	Wall	123.2	9.6
27-27	Wall	134.2	9.6
27-28	Wall	145.2	9.6

Measurement	Location	Dist Up Wall	Dist. North
No.		(Y Coord. ft.)	(X Coord. ft.)
28-1	E Wall	0.1	8.8
28-2	E Wall	10.7	8.8
28-3	E Wall	21.4	8.8
28-4	E Wall	5.4	18
28-5	E Wall	16.1	18
28-6	E Wall	26.7	18
28-7	E Wall	0.1	27.2
28-8	E Wall	10.7	27.2
28-9	E Wall	21.4	27.2
28-10	E Wall	32	27.2
28-11	E Wall	5.4	36.4
28-12	E Wall	16.1	36.4
28-13	E Wall	26.7	36.4
28-14	E Wall	0.1	45.6
28-15	E Wall	10.7	45.6
28-16	E Wall	21.4	45.6
28-17	E Wall	32	45.6
28-18	E Wall	5.4	54.8
28-19	E Wall	16.1	54.8
28-20	E Wall	26.7	54.8

Measurement	Location	Dist. North	Dist Up Wall
No.		(X Coord. ft.)	(Y Coord. ft.)
29-1	E Wall	5.3	2.1
29-2	E Wall	11.3	2.1
29-3	E Wall	17.3	2.1
29-4	E Wall	23.3	2.1
29-5	E Wall	29.3	2.1
29-6	E Wall	35.2	2.1
29-7	E Wall	41.2	2.1
29-8	E Wall	47.2	2.1
29-9	E Wall	53.2	2.1
29-10	E Wall	59.2	2.1
29-11	E Wall	2.3	7.3
29-12	E Wall	8.3	7.3
29-13	E Wall	14.3	7.3
29-14	E Wall	20.3	7.3
29-15	E Wall	26.3	7.3
29-16	E Wall	32.3	7.3
29-17	E Wall	38.2	7.3
29-18	E Wall	44.2	7.3
29-19	E Wall	50.2	7.3
29-20	E Wall	56.2	7.3

APPENDIX B2

Static Results

Model 2360	225173
Detector 43-93	237000
Static Count Time (min)	1.0
Background Count Time (min)	1.0
α Efficiency Correction Factor	9.4
Area Correction Factor	1.12

Structure	East parking lot

dpm/100 cm ²					
$> \alpha$ Flag $> \beta$ Flag					
400	NI/A				

Survey Unit ID	Measurement No.	Date	Field Background (cpm)		Static Counts (cpm)		Static (dpm/100 cm²)		Tech. Initial
			α	β	α	β	α	β	
SU-3	3~1	11/23/09	2	N/A	9	N/A	73.79		
SU-3	3~2	11/23/09	2	N/A	4	N/A	21.08		
SU-3	3~3	11/23/09	2	N/A	6	N/A	42.16		
SU-3	3~4	11/23/09	2	N/A	3	N/A	10.54		
SU-3	3~5	11/23/09	2	N/A	5	N/A	31.62		
SU-3	3~6	11/23/09	2	N/A	3	N/A	10.54		
SU-3	3~7	11/23/09	2	N/A	7	N/A	52.71		
SU-3	3~8	11/23/09	2	N/A	4	N/A	21.08		
SU-3	3~9	11/23/09	2	N/A	4	N/A	21.08		
SU-3	3~10	11/23/09	2	N/A	4	N/A	21.08		
SU-3	3~11	11/23/09	2	N/A	11	N/A	94.87		
SU-3	3~12	11/23/09	2	N/A	5	N/A	31.62		
SU-3	3~13	11/23/09	2	N/A	1	N/A	-10.54		
SU-3	3~14	11/23/09	2	N/A	4	N/A	21.08		

Model 2360	193654
Detector 43-93	236970
Detector 43-93	230970
Static Count Time (min)	1.0
Background Count Time (min)	1.0
α Efficiency Correction Factor	7.8
Area Correction Factor	1.12

Structure 1103A Floor

dpm/100 cm ²				
$> \alpha$ Flag	>β Flag			

Survey Unit ID	Measurement No.	Date	Field Backg	round (cpm)	Static Co	unts (cpm)	Static (dp	m/100 cm²)	Tech. Initial
			α	β	α	β	α	β	
SU-5	5~1	11/02/09	0	N/A	1	N/A	8.78		
SU-5	5~2	11/02/09	0	N/A	3	N/A	26.35		
SU-5	5~3	11/02/09	0	N/A	0	N/A	0.00		
SU-5	5~4	11/02/09	0	N/A	2	N/A	17.57		
SU-5	5~5	11/02/09	0	N/A	1	N/A	8.78		
SU-5	5~6	11/02/09	0	N/A	1	N/A	8.78		
SU-5	5~7	11/02/09	0	N/A	0	N/A	0.00		
SU-5	5~8	11/02/09	0	N/A	3	N/A	26.35		
SU-5	5~9	11/02/09	0	N/A	0	N/A	0.00		
SU-5	5~10	11/02/09	0	N/A	2	N/A	17.57		
SU-5	5~11	11/02/09	0	N/A	2	N/A	17.57		
SU-5	5~12	11/02/09	0	N/A	3	N/A	26.35		
SU-5	5~13	11/02/09	0	N/A	3	N/A	26.35		
SU-5	5~14	11/02/09	0	N/A	0	N/A	0.00		
SU-5	5~15	11/02/09	0	N/A	4	N/A	35.14		
SU-5	5~16	11/02/09	0	N/A	5	N/A	43.92		
SU-5	5~17	11/02/09	0	N/A	1	N/A	8.78		
SU-5	5~18	11/02/09	0	N/A	0	N/A	0.00		
SU-5	5~19	11/02/09	0	N/A	1	N/A	8.78		
SU-5	5~20	11/02/09	0	N/A	1	N/A	8.78		

Model 2360	225173
Detector 43-93	237000
Static Count Time (min)	1.0
Background Count Time (min)	1.0
α Efficiency Correction Factor	9.4
Area Correction Factor	1.12

Structure 1103A Floor

dpm/100 cm ²						
$> \alpha$ Flag	$> \alpha$ Flag $> \beta$ Flag					

Survey Unit ID	Measurement No.	Measurement No. Date Field Background (cpm)		round (cpm)	Static Counts (cpm)		Static (dpm/100 cm²)		Tech. Initial
			α	β	α	β	α	β	
SU-6	6~1	11/12/09	3	N/A	1	N/A	-21.08		
SU-6	6~2	11/12/09	3	N/A	8	N/A	52.71		
SU-6	6~3	11/12/09	3	N/A	2	N/A	-10.54		
SU-6	6~4	11/12/09	3	N/A	3	N/A	0.00		
SU-6	6~5	11/12/09	3	N/A	1	N/A	-21.08		
SU-6	6~6	11/12/09	3	N/A	4	N/A	10.54		
SU-6	6~7	11/12/09	3	N/A	2	N/A	-10.54		
SU-6	6~8	11/12/09	3	N/A	2	N/A	-10.54		
SU-6	6~9	11/12/09	3	N/A	1	N/A	-21.08		
SU-6	6~10	11/12/09	3	N/A	3	N/A	0.00		
SU-6	6~11	11/12/09	3	N/A	2	N/A	-10.54		
SU-6	6~12	11/12/09	3	N/A	0	N/A	-31.62		
SU-6	6~13	11/12/09	3	N/A	0	N/A	-31.62		
SU-6	6~14	11/12/09	3	N/A	0	N/A	-31.62		
SU-6	6~15	11/12/09	3	N/A	4	N/A	10.54		
SU-6	6~16	11/12/09	3	N/A	2	N/A	-10.54		
SU-6	6~17	11/12/09	3	N/A	3	N/A	0.00		
SU-6	6~18	11/12/09	3	N/A	2	N/A	-10.54		
SU-6	6~19	11/12/09	3	N/A	1	N/A	-21.08		
SU-6	6~20	11/12/09	3	N/A	2	N/A	-10.54		

Model 2360	193654
Detector 43-93	236970
Static Count Time (min)	1.0
Background Count Time (min)	1.0
α Efficiency Correction Factor	7.8
Area Correction Factor	1.12

Structure 1103A Walls

dpm/100 cm ²					
> α Flag > β Flag					

Survey Unit ID	Measurement No.	Date	Field Background (cpm)		Static Counts (cpm)		Static (dpm/100 cm²)		Tech. Initial
			α	β	α	β	α	β	
SU-7	7~1	11/02/09	0	N/A	3	N/A	26.35		
SU-7	7~2	11/02/09	0	N/A	inaccessible	N/A			
SU-7	7~3	11/02/09	0	N/A	0	N/A	0.00		
SU-7	7~4	11/02/09	0	N/A	3	N/A	26.35		
SU-7	7~5	11/02/09	0	N/A	8	N/A	70.27		
SU-7	7~6	11/02/09	0	N/A	4	N/A	35.14		
SU-7	7~7	11/02/09	0	N/A	6	N/A	52.71		
SU-7	7~8	11/02/09	0	N/A	6	N/A	52.71		
SU-7	7~9	11/02/09	0	N/A	4	N/A	35.14		
SU-7	7~10	11/02/09	0	N/A	2	N/A	17.57		
SU-7	7~11	11/02/09	0	N/A	5	N/A	43.92		
SU-7	7~12	11/02/09	0	N/A	2	N/A	17.57		
SU-7	7~13	11/02/09	0	N/A	2	N/A	17.57		
SU-7	7~14	11/02/09	0	N/A	1	N/A	8.78		
SU-7	7~15	11/02/09	0	N/A	0	N/A	0.00		
SU-7	7~16	11/02/09	0	N/A	3	N/A	26.35		
SU-7	7~17	11/02/09	0	N/A	2	N/A	17.57		
SU-7	7~18	11/02/09	0	N/A	1	N/A	8.78		
SU-7	7~19	11/02/09	0	N/A	1	N/A	8.78		
SU-7	7~20	11/02/09	0	N/A	0	N/A	0.00		

Model 2360	193654
Detector 43-93	236970
Static Count Time (min)	1.0
Background Count Time (min)	1.0
α Efficiency Correction Factor	7.8
Area Correction Factor	1.12

Structure 1103A Walls

dpm/100 cm ²					
$> \alpha$ Flag $> \beta$ Flag					
400	N1/A				

Survey Unit ID	Measurement No.	Date	Field Background (cpm)		Static Cou	nts (cpm)	Static (dp	m/100 cm²)	Unity Calc.
			α	β	α	β	α	β	
SU-8	8~1	11/02/09	0	N/A	4	N/A	35.14		
SU-8	8~2	11/02/09	0	N/A	0	N/A	0.00		
SU-8	8~3	11/02/09	0	N/A	4	N/A	35.14		
SU-8	8~4	11/02/09	0	N/A	3	N/A	26.35		
SU-8	8~5	11/02/09	0	N/A	2	N/A	17.57		
SU-8	8~6	11/02/09	0	N/A	inaccessible	N/A			
SU-8	8~7	11/02/09	0	N/A	14	N/A	122.98		0.23
SU-8	8~8	11/02/09	0	N/A	2	N/A	17.57		
SU-8	8~9	11/02/09	0	N/A	1	N/A	8.78		
SU-8	8~10	11/02/09	0	N/A	3	N/A	26.35		
SU-8	8~11	11/02/09	0	N/A	2	N/A	17.57		
SU-8	8~12	11/02/09	0	N/A	inaccessible	N/A			
SU-8	8~13	11/02/09	0	N/A	3	N/A	26.35		
SU-8	8~14	11/02/09	0	N/A	1	N/A	8.78		
SU-8	8~15	11/02/09	0	N/A	3	N/A	26.35		
SU-8	8~16	11/02/09	0	N/A	2	N/A	17.57		
SU-8	8~17	11/02/09	0	N/A	1	N/A	8.78		
SU-8	8~18	11/02/09	0	N/A	5	N/A	43.92		
SU-8	8~19	11/02/09	0	N/A	7	N/A	61.49		
SU-8	8~20	11/02/09	0	N/A	4	N/A	35.14		
							29.77	ave	0.30
								sum	0.56

Model 2360	225173
Detector 43-93	237000
Static Count Time (min)	1.0
Background Count Time (min)	1.0
α Efficiency Correction Factor	9.4
Area Correction Factor	1.12

Structure 1103A ceiling

dpm/100 cm ²					
$> \alpha$ Flag $> \beta$ Flag					

Survey Unit ID	Measurement No.	Date	Field Background (cpm)		Field Background (cpm) Static Counts		Static (dpi	m/100 cm²)	Tech. Initial
			α	β	α	β	α	β	
SU-9	9~1	11/13/09	1	N/A	0	N/A	-10.54		
SU-9	9~2	11/13/09	1	N/A	2	N/A	10.54		
SU-9	9~3	11/13/09	1	N/A	3	N/A	21.08		
SU-9	9~4	11/13/09	1	N/A	1	N/A	0.00		
SU-9	9~5	11/13/09	1	N/A	3	N/A	21.08		
SU-9	9~6	11/13/09	1	N/A	2	N/A	10.54		
SU-9	9~7	11/13/09	1	N/A	0	N/A	-10.54		
SU-9	9~8	11/13/09	1	N/A	3	N/A	21.08		
SU-9	9~9	11/13/09	1	N/A	1	N/A	0.00		
SU-9	9~10	11/13/09	1	N/A	0	N/A	-10.54		
SU-9	9~11	11/13/09	1	N/A	0	N/A	-10.54		
SU-9	9~12	11/13/09	1	N/A	0	N/A	-10.54		
SU-9	9~13	11/13/09	1	N/A	0	N/A	-10.54		
SU-9	9~14	11/13/09	1	N/A	2	N/A	10.54		
SU-9	9~15	11/13/09	1	N/A	0	N/A	-10.54		
SU-9	9~16	11/13/09	1	N/A	2	N/A	10.54		
SU-9	9~17	11/13/09	1	N/A	1	N/A	0.00		
SU-9	9~18	11/13/09	1	N/A	1	N/A	0.00		
SU-9	9~19	11/13/09	1	N/A	2	N/A	10.54		
SU-9	9~20	11/13/09	1	N/A	1	N/A	0.00		

Model 2360	225173
Detector 43-93	237000
Static Count Time (min)	1.0
Background Count Time (min)	1.0
α Efficiency Correction Factor	9.4
Area Correction Factor	1.12

Structure 1103A ceiling

 $dpm/100 cm^{2}$ > α Flag > β Flag

100 N/A

Survey Unit ID	Measurement No.	Date	Field Background (cpm)		Static Counts (cpm)		Static (dpm/100 cm ²)		Tech. Initial
			α	β	α	β	α	β	
SU-10	10~1	11/13/09	1	N/A	0	N/A	-10.54		
SU-10	10~2	11/13/09	1	N/A	1	N/A	0.00		
SU-10	10~3	11/13/09	1	N/A	2	N/A	10.54		
SU-10	10~4	11/13/09	1	N/A	4	N/A	31.62		
SU-10	10~5	11/13/09	1	N/A	1	N/A	0.00		
SU-10	10~6	11/13/09	1	N/A	2	N/A	10.54		
SU-10	10~7	11/13/09	1	N/A	0	N/A	-10.54		
SU-10	10~8	11/13/09	1	N/A	1	N/A	0.00		
SU-10	10~9	11/13/09	1	N/A	5	N/A	42.16		
SU-10	10~10	11/13/09	1	N/A	2	N/A	10.54		
SU-10	10~11	11/13/09	1	N/A	0	N/A	-10.54		
SU-10	10~12	11/13/09	1	N/A	0	N/A	-10.54		
SU-10	10~13	11/13/09	1	N/A	0	N/A	-10.54		
SU-10	10~14	11/13/09	1	N/A	0	N/A	-10.54		
SU-10	10~15	11/13/09	1	N/A	1	N/A	0.00		
SU-10	10~16	11/13/09	1	N/A	3	N/A	21.08		
SU-10	10~17	11/13/09	1	N/A	0	N/A	-10.54		
SU-10	10~18	11/13/09	1	N/A	0	N/A	-10.54		
SU-10	10~19	11/13/09	1	N/A	3	N/A	21.08		
SU-10	10~20	11/13/09	1	N/A	3	N/A	21.08		
SU-10	Investigation for scan data	11/13/09	1	N/A	1	N/A	0.00		
SU-10	Investigation for scan data	11/13/09	1	N/A	2	N/A	9.41		
SU-10	Investigation for scan data	11/13/09	1	N/A	1	N/A	0.00		
SU-10	Investigation for scan data	11/13/09	1	N/A	1	N/A	0.00		
SU-10	Investigation for scan data	11/13/09	1	N/A	1	N/A	0.00		
SU-10	Investigation for scan data	11/13/09	1	N/A	0	N/A	-9.41		
SU-10	Investigation for scan data	11/13/09	1	N/A	3	N/A	18.82		

Model 2360	225173
Detector 43-93	237000
Static Count Time (min)	1.0
Background Count Time (min)	1.0
α Efficiency Correction Factor	9.4
Area Correction Factor	1.12

Structure 1103A Exterior

dpm/100 cm ²				
$> \alpha$ Flag $> \beta$ Flag				
100 N/A				

Survey Unit ID	Measurement No.	Date	Field Background (cpm)		Static Counts (cpm)		Static (dpm/100 cm ²)		Unity Calc.
			α	β	α	β	α	β	
SU-11	11~1	11/17/09	2	N/A	8	N/A	63.25		
SU-11	11~2	11/17/09	2	N/A	3	N/A	10.54		
SU-11	11~3	11/17/09	2	N/A	19	N/A	179.20		0.14
SU-11	11~4	11/17/09	2	N/A	2	N/A	0.00		
SU-11	11~5	11/17/09	2	N/A	3	N/A	10.54		
SU-11	11~6	11/17/09	2	N/A	8	N/A	63.25		
SU-11	11~7	11/17/09	2	N/A	1	N/A	-10.54		
SU-11	11~8	11/17/09	2	N/A	13	N/A	115.95		0.07
SU-11	11~9	11/17/09	2	N/A	16	N/A	147.58		0.10
SU-11	11~10	11/17/09	2	N/A	5	N/A	31.62		
SU-11	11~11	11/17/09	2	N/A	14	N/A	126.49		0.08
SU-11	11~12	11/17/09	2	N/A	5	N/A	31.62		
SU-11	11~13	11/17/09	2	N/A	5	N/A	31.62		
SU-11	11~14	11/17/09	2	N/A	9	N/A	73.79		
SU-11	11~15	11/17/09	2	N/A	4	N/A	21.08		
SU-11	11~16	11/17/09	2	N/A	4	N/A	21.08		
SU-11	11~17	11/17/09	2	N/A	6	N/A	42.16		
SU-11	11~18	11/17/09	2	N/A	4	N/A	21.08		
SU-11	11~19	11/17/09	2	N/A	inaccessible	N/A			
SU-11	11~20	11/17/09	2	N/A	inaccessible	N/A			
							54.46	ave	0.54
								sum	0.94

Model 2360	225173
Detector 43-93	237000
Static Count Time (min)	1.0
Background Count Time (min)	1.0
α Efficiency Correction Factor	9.4
Area Correction Factor	1.12

Structure 1103A Exterior

dpm/100 cm ²					
$> \alpha$ Flag $> \beta$ Flag					

Survey Unit ID	Measurement No.	Date	Field Background (cpm)		Static Cou	ınts (cpm)	Static (dpi	m/100 cm²)	Unity Calc.
			α	β	α	β	α	β	
SU-12	12~1	11/16/09	1	N/A	4	N/A	31.62		
SU-12	12~2	11/16/09	1	N/A	inaccessible	N/A			
SU-12	12~3	11/16/09	1	N/A	7	N/A	63.25		
SU-12	12~4	11/16/09	1	N/A	4	N/A	31.62		
SU-12	12~5	11/16/09	1	N/A	5	N/A	42.16		
SU-12	12~6	11/16/09	1	N/A	inaccessible	N/A			
SU-12	12~7	11/16/09	1	N/A	3	N/A	21.08		
SU-12	12~8	11/16/09	1	N/A	16	N/A	158.12		0.09
SU-12	12~9	11/16/09	1	N/A	9	N/A	84.33		
SU-12	12~10	11/16/09	1	N/A	7	N/A	63.25		
SU-12	12~11	11/16/09	1	N/A	4	N/A	31.62		
SU-12	12~12	11/16/09	1	N/A	10	N/A	94.87		
SU-12	12~13	11/16/09	1	N/A	7	N/A	63.25		
SU-12	12~14	11/16/09	1	N/A	inaccessible	N/A			
SU-12	12~15	11/16/09	1	N/A	8	N/A	73.79		
SU-12	12~16	11/16/09	1	N/A	4	N/A	31.62		
SU-12	12~17	11/16/09	1	N/A	8	N/A	73.79		
SU-12	12~18	11/16/09	1	N/A	9	N/A	84.33		
SU-12	12~19	11/16/09	1	N/A	8	N/A	73.79		
SU-12	12~20	11/16/09	1	N/A	12	N/A	115.95		0.04
							75.55	ave	0.76
								sum	0.89

Model 2360	225173
Detector 43-93	237000
Static Count Time (min)	1.0
Background Count Time (min)	1.0
α Efficiency Correction Factor	9.4
Area Correction Factor	1.12

Structure 1103A Foyer Interior

dpm/100 cm ²				
$> \alpha$ Flag $> \beta$ Flag				
400	N1/A			

Survey Unit ID	Measurement No.	Date	Field Background (cpm)		Static Counts (cpm)		Static (dpm/100 cm ²)		Tech. Initial
			α	β	α	β	α	β	
SU-12A	12A-1	11/12/09	3	N/A	3	N/A	0.00		
SU-12A	12A-2	11/12/09	3	N/A	4	N/A	10.54		
SU-12A	12A-3	11/12/09	3	N/A	8	N/A	52.71		
SU-12A	12A-4	11/12/09	3	N/A	3	N/A	0.00		
SU-12A	12A-5	11/12/09	3	N/A	2	N/A	-10.54		
SU-12A	12A-6	11/12/09	3	N/A	2	N/A	-10.54		
SU-12A	12A-7	11/12/09	3	N/A	3	N/A	0.00		
SU-12A	12A-8	11/12/09	3	N/A	4	N/A	10.54		
SU-12A	12A-9	11/12/09	3	N/A	1	N/A	-21.08		
SU-12A	12A-10	11/12/09	3	N/A	0	N/A	-31.62		
SU-12A	12A-11	11/12/09	3	N/A	3	N/A	0.00		
SU-12A	12A-12	11/12/09	3	N/A	1	N/A	-21.08		
SU-12A	12A-13	11/12/09	3	N/A	3	N/A	0.00		
SU-12A	12A-14	11/12/09	3	N/A	2	N/A	-10.54		
SU-12A	12A-15	11/12/09	3	N/A	4	N/A	10.54		
SU-12A	12A-16	11/12/09	3	N/A	3	N/A	0.00		
SU-12A	12A-17	11/12/09	3	N/A	2	N/A	-10.54		
SU-12A	12A-18	11/12/09	3	N/A	4	N/A	10.54		
SU-12A	12A-19	11/12/09	3	N/A	4	N/A	10.54		
SU-12A	12A-20	11/12/09	3	N/A	0	N/A	-31.62		

Model 2360	225173
Detector 43-93	237000
Static Count Time (min)	1.0
Background Count Time (min)	1.0
α Efficiency Correction Factor	4.7
Area Correction Factor	1.12

Structure 1103A Foyer Ext.

dpm/100 cm ²					
$> \alpha$ Flag $> \beta$ Flag					
100					

Survey Unit ID	Measurement No.	Date	Field Background (cpm)		Static Counts (cpm)		Static (dpm/100 cm ²)		Unity Calc.
•			α	β	α	β	α	β	
SU-12B	12B-1	11/17/09	2	N/A	2	N/A	0.00		
SU-12B	12B-2	11/17/09	2	N/A	2	N/A	0.00		
SU-12B	12B-3	11/17/09	2	N/A	4	N/A	10.54		
SU-12B	12B-4	11/17/09	2	N/A	6	N/A	21.08		
SU-12B	12B-5	11/17/09	2	N/A	16	N/A	73.79		
SU-12B	12B-6	11/17/09	2	N/A	22	N/A	105.41		0.20
SU-12B	12B-7	11/17/09	2	N/A	5	N/A	15.81		
SU-12B	12B-8	11/17/09	2	N/A	1	N/A	-5.27		
SU-12B	12B-9	11/17/09	2	N/A	16	N/A	73.79		
SU-12B	12B-10	11/17/09	2	N/A	5	N/A	15.81		
SU-12B	12B-11	11/17/09	2	N/A	6	N/A	21.08		
SU-12B	12B-12	11/17/09	2	N/A	3	N/A	5.27		
SU-12B	12B-13	11/17/09	2	N/A	8	N/A	31.62		
SU-12B	12B-14	11/17/09	2	N/A	16	N/A	73.79		
SU-12B	12B-15	11/17/09	2	N/A	15	N/A	68.52		
SU-12B	12B-16	11/17/09	2	N/A	1	N/A	-5.27		
SU-12B	12B-17	11/17/09	2	N/A	2	N/A	0.00		
SU-12B	12B-18	11/17/09	2	N/A	4	N/A	10.54		
SU-12B	12B-19	11/17/09	2	N/A	3	N/A	5.27		
SU-12B	12B-20	11/17/09	2	N/A	2	N/A	0.00		
							26.09	ave.	0.26
								sum	0.46

Model 2360	225173
Detector 43-93	237000
Static Count Time (min)	1.0
Background Count Time (min)	1.0
α Efficiency Correction Factor	9.4
Area Correction Factor	1.12

Structure 1103A

dpm/100 cm ²					
$> \alpha$ Flag $> \beta$ Flag					

Survey Unit ID	Measurement No.	Date	Field Background (cpm)		Static Counts (cpm)		Static (dpi	m/100 cm²)	Unity Calc.
			α	β	α	β	α	β	
SU-13	13-1	11/17/09	2	N/A	8	N/A	63.25		
SU-13	13-2	11/17/09	2	N/A	6	N/A	42.16		
SU-13	13-3	11/17/09	2	N/A	0	N/A	-21.08		
SU-13	13-4	11/17/09	2	N/A	6	N/A	42.16		
SU-13	13-5	11/17/09	2	N/A	5	N/A	31.62		
SU-13	13-6	11/17/09	2	N/A	3	N/A	10.54		
SU-13	13-7	11/17/09	2	N/A	2	N/A	0.00		
SU-13	13-8	11/17/09	2	N/A	6	N/A	42.16		
SU-13	13-9	11/17/09	2	N/A	6	N/A	42.16		
SU-13	13-10	11/17/09	2	N/A	6	N/A	42.16		
SU-13	13-11	11/17/09	2	N/A	7	N/A	52.71		
SU-13	13-12	11/17/09	2	N/A	13	N/A	115.95		0.20
SU-13	13-13	11/17/09	2	N/A	4	N/A	21.08		
SU-13	13-14	11/17/09	2	N/A	8	N/A	63.25		
SU-13	13-15	11/17/09	2	N/A	1	N/A	-10.54		
SU-13	13-16	11/17/09	2	N/A	4	N/A	21.08		
SU-13	13-17	11/17/09	2	N/A	10	N/A	84.33		
SU-13	13-18	11/17/09	2	N/A	4	N/A	21.08		
SU-13	13-19	11/17/09	2	N/A	3	N/A	10.54		
SU-13	13-20	11/17/09	2	N/A	6	N/A	42.16		
							35.84	ave	0.36
								sum	0.56

Model 2360	225173
Detector 43-93	237000
Static Count Time (min)	1.0
Background Count Time (min)	1.0
α Efficiency Correction Factor	9.4
Area Correction Factor	1.12

Structure BRL12 Pad

dpm/100 cm ²				
$> \alpha$ Flag $> \beta$ Flag				
100 NI/A				

Survey Unit ID	Measurement No.	Date	Field Background (cpm)		Static Counts (cpm)		Static (dpm/100 cm ²)		Unity Calc.
-			α	β	α	β	α	β	
SU-15	15-1	11/17/09	2	N/A	3	N/A	10.54		
SU-15	15-2	11/17/09	2	N/A	12	N/A	105.41		0.17
SU-15	15-3	11/17/09	2	N/A	9	N/A	73.79		
SU-15	15-4	11/17/09	2	N/A	7	N/A	52.71		
SU-15	15-5	11/17/09	2	N/A	8	N/A	63.25		
SU-15	15-6	11/17/09	2	N/A	15	N/A	137.04		0.25
SU-15	15-7	11/17/09	2	N/A	12	N/A	105.41		0.17
SU-15	15-8	11/17/09	2	N/A	4	N/A	21.08		
SU-15	15-9	11/17/09	2	N/A	5	N/A	31.62		
SU-15	15-10	11/17/09	2	N/A	2	N/A	0.00		
SU-15	15-11	11/17/09	2	N/A	3	N/A	10.54		
SU-15	15-12	11/17/09	2	N/A	4	N/A	21.08		
SU-15	15-13	11/17/09	2	N/A	7	N/A	52.71		
SU-15	15-14	11/17/09	2	N/A	1	N/A	-10.54		
SU-15	15-15	11/17/09	2	N/A	7	N/A	52.71		
SU-15	15-16	11/17/09	2	N/A	4	N/A	21.08		
SU-15	15-17	11/17/09	2	N/A	1	N/A	-10.54		
SU-15	15-18	11/17/09	2	N/A	4	N/A	21.08		
SU-15	15-19	11/17/09	2	N/A	1	N/A	-10.54		
SU-15	15-20	11/17/09	2	N/A	3	N/A	10.54		
							37.95	ave	0.38
								sum	0.96

Model 2360	225173
Detector 43-93	237000
Static Count Time (min)	1.0
Background Count Time (min)	1.0
α Efficiency Correction Factor	4.7
Area Correction Factor	1.12

Structure BRL12 N Vault

dpm/100 cm ²				
$> \alpha$ Flag $> \beta$ Flag				
400	N1/A			

Survey Unit ID	Measurement No.	Date	Field Backg	round (cpm)	Static Co	unts (cpm)	Static (dpi	m/100 cm²)	Tech. Initial
			α	β	α	β	α	β	
SU-19	19-1	11/17/09	2	N/A	1	N/A	-5.27		
SU-19	19-2	11/17/09	2	N/A	1	N/A	-5.27		
SU-19	19-3	11/17/09	2	N/A	2	N/A	0.00		
SU-19	19-4	11/17/09	2	N/A	3	N/A	5.27		
SU-19	19-5	11/17/09	2	N/A	4	N/A	10.54		
SU-19	19-6	11/17/09	2	N/A	4	N/A	10.54		
SU-19	19-7	11/17/09	2	N/A	3	N/A	5.27		
SU-19	19-8	11/17/09	2	N/A	0	N/A	-10.54		
SU-19	19-9	11/17/09	2	N/A	3	N/A	5.27		
SU-19	19-10	11/17/09	2	N/A	3	N/A	5.27		
SU-19	19-11	11/17/09	2	N/A	1	N/A	-5.27		
SU-19	19-12	11/17/09	2	N/A	3	N/A	5.27		
SU-19	19-13	11/17/09	2	N/A	6	N/A	21.08		
SU-19	19-14	11/17/09	2	N/A	2	N/A	0.00		
SU-19	19-15	11/17/09	2	N/A	6	N/A	21.08		
SU-19	19-16	11/17/09	2	N/A	5	N/A	15.81		
SU-19	19-17	11/17/09	2	N/A	2	N/A	0.00		
SU-19	19-18	11/17/09	2	N/A	5	N/A	15.81		
SU-19	19-19	11/17/09	2	N/A	3	N/A	5.27		
SU-19	19-20	11/17/09	2	N/A	1	N/A	-5.27		
SU-19	Investigation for 19F24	11/19/09	0	N/A	4	N/A	18.82		
SU-19	Investigation for 19F24	11/19/09	0	N/A	5	N/A	23.53		
SU-19	Investigation for 19F25	11/19/09	0	N/A	2	N/A	9.41		
SU-19	Investigation for 19F25	11/19/09	0	N/A	5	N/A	23.53		
SU-19	Investigation for 19F25	11/19/09	0	N/A	2	N/A	9.41		

Model 2360	225173
Detector 43-93	237000
Static Count Time (min)	1.0
Background Count Time (min)	1.0
α Efficiency Correction Factor	4.7
Area Correction Factor	1.12

Structure BRL12 N Vault

dpm/100 cm ²				
$> \alpha$ Flag $> \beta$ Flag				
400	N1/A			

Survey Unit ID	Measurement No.	Date	Field Background (cpm)		Static Counts (cpm)		Static (dpm/100 cm ²)		Tech. Initial
			α	β	α	β	α	β	
SU 19-A	19A-1	11/18/09	1	N/A	1	N/A	0.00		
SU 19-A	19A-2	11/18/09	1	N/A	1	N/A	0.00		
SU 19-A	19A-3	11/18/09	1	N/A	2	N/A	5.27		
SU 19-A	19A-4	11/18/09	1	N/A	0	N/A	-5.27		
SU 19-A	19A-5	11/18/09	1	N/A	0	N/A	-5.27		
SU 19-A	19A-6	11/18/09	1	N/A	1	N/A	0.00		
SU 19-A	19A-7	11/18/09	1	N/A	1	N/A	0.00		
SU 19-A	19A-8	11/18/09	1	N/A	0	N/A	-5.27		
SU 19-A	19A-9	11/18/09	1	N/A	0	N/A	-5.27		
SU 19-A	19A-10	11/18/09	1	N/A	3	N/A	10.54		
SU 19-A	19A-11	11/18/09	1	N/A	1	N/A	0.00		
SU 19-A	19A-12	11/18/09	1	N/A	1	N/A	0.00		
SU 19-A	19A-13	11/18/09	1	N/A	1	N/A	0.00		
SU 19-A	19A-14	11/18/09	1	N/A	2	N/A	5.27		
SU 19-A	19A-15	11/18/09	1	N/A	3	N/A	10.54		
SU 19-A	19A-16	11/18/09	1	N/A	4	N/A	15.81		
SU 19-A	19A-17	11/18/09	1	N/A	2	N/A	5.27		
SU 19-A	19A-18	11/18/09	1	N/A	1	N/A	0.00		
SU 19-A	19A-19	11/18/09	1	N/A	0	N/A	-5.27		
SU 19-A	19A-20	11/18/09	1	N/A	0	N/A	-5.27		

Model 2360	225173
Detector 43-93	237000
Static Count Time (min)	1.0
Background Count Time (min)	1.0
α Efficiency Correction Factor	4.7
Area Correction Factor	1.12

Structure BRL12 N Vault

dpm/100 cm ²					
$> \alpha$ Flag $> \beta$ Flag					
100					

Survey Unit ID	Measurement No.	Date	Field Background (cpm)		und (cpm) Static Counts (cpm)		Static (dpm/100 cm ²)		Tech. Initial
			α	β	α	β	α	β	
SU-19B	19B-1	11/17/09	2	N/A	3	N/A	5.3		
SU-19B	19B-2	11/17/09	2	N/A	6	N/A	21.1		
SU-19B	19B-3	11/17/09	2	N/A	3	N/A	5.3		
SU-19B	19B-4	11/17/09	2	N/A	1	N/A	-5.3		
SU-19B	19B-5	11/17/09	2	N/A	2	N/A	0.0		
SU-19B	19B-6	11/17/09	2	N/A	2	N/A	0.0		
SU-19B	19B-7	11/17/09	2	N/A	2	N/A	0.0		
SU-19B	19B-8	11/17/09	2	N/A	1	N/A	-5.3		
SU-19B	19B-9	11/17/09	2	N/A	2	N/A	0.0		
SU-19B	19B-10	11/17/09	2	N/A	3	N/A	5.3		
SU-19B	19B-11	11/17/09	2	N/A	2	N/A	0.0		
SU-19B	19B-12	11/17/09	2	N/A	5	N/A	15.8		
SU-19B	19B-13	11/17/09	2	N/A	2	N/A	0.0		
SU-19B	19B-14	11/17/09	2	N/A	3	N/A	5.3		
SU-19B	19B-15	11/17/09	2	N/A	2	N/A	0.0		
SU-19B	19B-16	11/17/09	2	N/A	3	N/A	5.3		
SU-19B	19B-17	11/17/09	2	N/A	4	N/A	10.5		
SU-19B	19B-18	11/17/09	2	N/A	4	N/A	10.5		
SU-19B	19B-19	11/17/09	2	N/A	2	N/A	0.0		
SU-19B	19B-20	11/17/09	2	N/A	4	N/A	10.5	_	

Model 2360	225173
Detector 43-93	237000
Static Count Time (min)	1.0
Background Count Time (min)	1.0
α Efficiency Correction Factor	4.7
Area Correction Factor	1.12

Structure BRL12 S Vault

dpm/100 cm ²				
> α Flag > β Flag				
100 N/A				

Survey Unit ID	Measurement No.	Date	Field Background (cpm)		ground (cpm) Static Counts (cpm)		Static (dpm/100 cm²)		Tech. Initial
			α	β	α	β	α	β	
SU-20	20-1	11/18/09	1	N/A	6	N/A	26.35		
SU-20	20-2	11/18/09	1	N/A	5	N/A	21.08		
SU-20	20-3	11/18/09	1	N/A	2	N/A	5.27		
SU-20	20-4	11/18/09	1	N/A	4	N/A	15.81		
SU-20	20-5	11/18/09	1	N/A	1	N/A	0.00		
SU-20	20-6	11/18/09	1	N/A	1	N/A	0.00		
SU-20	20-7	11/18/09	1	N/A	0	N/A	-5.27		
SU-20	20-8	11/18/09	1	N/A	11	N/A	52.71		
SU-20	20-9	11/18/09	1	N/A	1	N/A	0.00		
SU-20	20-10	11/18/09	1	N/A	1	N/A	0.00		
SU-20	20-11	11/18/09	1	N/A	1	N/A	0.00		
SU-20	20-12	11/18/09	1	N/A	5	N/A	21.08		
SU-20	20-13	11/18/09	1	N/A	1	N/A	0.00		
SU-20	20-14	11/18/09	1	N/A	3	N/A	10.54		
SU-20	20-15	11/18/09	1	N/A	0	N/A	-5.27		
SU-20	20-16	11/18/09	1	N/A	0	N/A	-5.27		
SU-20	20-17	11/18/09	1	N/A	2	N/A	5.27		
SU-20	20-18	11/18/09	1	N/A	0	N/A	-5.27		
SU-20	20-19	11/18/09	1	N/A	0	N/A	-5.27		
SU-20	20-20	11/18/09	1	N/A	2	N/A	5.27		

Model 2360	225173
Detector 43-93	237000
Static Count Time (min)	1.0
Background Count Time (min)	1.0
α Efficiency Correction Factor	4.7
Area Correction Factor	1.12

Structure BRL12 S Vault

dpm/100 cm ²				
$> \alpha$ Flag $> \beta$ Flag				
400 NI/A				

Survey Unit ID	Measurement No.	Date	Field Backg	round (cpm)	Static Co	unts (cpm)	Static (dp	m/100 cm²)	Tech. Initial
			α	β	α	β	α	β	
SU-20A	20A-1	11/17/09	2	N/A	1	N/A	-5.27		
SU-20A	20A-2	11/17/09	2	N/A	5	N/A	15.81		
SU-20A	20A-3	11/17/09	2	N/A	9	N/A	36.89		
SU-20A	20A-4	11/17/09	2	N/A	4	N/A	10.54		
SU-20A	20A-5	11/17/09	2	N/A	5	N/A	15.81		
SU-20A	20A-6	11/17/09	2	N/A	4	N/A	10.54		
SU-20A	20A-7	11/17/09	2	N/A	1	N/A	-5.27		
SU-20A	20A-8	11/17/09	2	N/A	4	N/A	10.54		
SU-20A	20A-9	11/17/09	2	N/A	1	N/A	-5.27		
SU-20A	20A-10	11/17/09	2	N/A	3	N/A	5.27		
SU-20A	20A-11	11/17/09	2	N/A	3	N/A	5.27		
SU-20A	20A-12	11/17/09	2	N/A	4	N/A	10.54		
SU-20A	20A-13	11/17/09	2	N/A	1	N/A	-5.27		
SU-20A	20A-14	11/17/09	2	N/A	1	N/A	-5.27		
SU-20A	20A-15	11/17/09	2	N/A	3	N/A	5.27		
SU-20A	20A-16	11/17/09	2	N/A	4	N/A	10.54		
SU-20A	20A-17	11/17/09	2	N/A	0	N/A	-10.54		
SU-20A	20A-18	11/17/09	2	N/A	5	N/A	15.81		
SU-20A	20A-19	11/17/09	2	N/A	1	N/A	-5.27		
SU-20A	20A-20	11/17/09	2	N/A	3	N/A	5.27		

Model 2360	193654
Detector 43-93	198509
Static Count Time (min)	1.0
Background Count Time (min)	1.0
α Efficiency Correction Factor	3.9
Area Correction Factor	1.12

Structure Freestanding Vault

dpm/100 cm ²				
$> \alpha$ Flag $> \beta$ Flag				
100 N/A				

Survey Unit ID	Measurement No.	Date	Field Background (cpm)		Static Counts (cpm)		Static (dpm/100 cm ²)		Tech. Initial
			α	β	α	β	α	β	
SU-23	23-1	09/16/09	1	N/A	3	N/A	8.78		
SU-23	23-2	09/16/09	1	N/A	4	N/A	13.18		
SU-23	23-3	09/16/09	1	N/A	5	N/A	17.57		
SU-23	23-4	09/16/09	1	N/A	3	N/A	8.78		
SU-23	23-5	09/16/09	1	N/A	2	N/A	4.39		
SU-23	23-6	09/16/09	1	N/A	10	N/A	39.53		
SU-23	23-7	09/16/09	1	N/A	1	N/A	0.00		
SU-23	23-8	09/16/09	1	N/A	2	N/A	4.39		
SU-23	23-9	09/16/09	1	N/A	1	N/A	0.00		
SU-23	23-10	09/16/09	1	N/A	4	N/A	13.18		
SU-23	23-11	09/16/09	1	N/A	4	N/A	13.18		
SU-23	23-12	09/16/09	1	N/A	3	N/A	8.78		
SU-23	23-13	09/16/09	1	N/A	1	N/A	0.00		
SU-23	23-14	09/16/09	1	N/A	0	N/A	-4.39		
SU-23	23-15	09/17/09	0	N/A	0	N/A	0.00		
SU-23	23-16	09/17/09	0	N/A	2	N/A	8.78		
SU-23	23-17	09/17/09	0	N/A	1	N/A	4.39		
SU-23	23-18	09/17/09	0	N/A	1	N/A	4.39		
SU-23	23-19	09/17/09	0	N/A	0	N/A	0.00		
SU-23	23-20	09/17/09	0	N/A	1	N/A	4.39		
SU-23	23-21	09/17/09	0	N/A	0	N/A	0.00		
SU-23	Investigation for 23F32	11/24/09	1	N/A	4	N/A	11.76		

Model 2360	193654
Detector 43-93	198509
Static Count Time (min)	1.0
Background Count Time (min)	1.0
α Efficiency Correction Factor	4.7
Area Correction Factor	1.12

Structure Freestanding Vault

dpm/100 cm ²					
> α Flag > β Flag					

Survey Unit ID	Measurement No.	Date	Field Backg	round (cpm)	Static Co	unts (cpm)	Static (dp	m/100 cm²)	Tech. Initial
			α	β	α	β	α	β	
SU-24	24-1	09/17/09	0	N/A	0	N/A	0.00		
SU-24	24-2	09/17/09	0	N/A	1	N/A	5.26		
SU-24	24-3	09/17/09	0	N/A	1	N/A	5.26		
SU-24	24-4	09/17/09	0	N/A	0	N/A	0.00		
SU-24	24-5	09/17/09	0	N/A	0	N/A	0.00		
SU-24	24-6	09/17/09	0	N/A	1	N/A	5.26		
SU-24	24-7	09/17/09	0	N/A	1	N/A	5.26		
SU-24	24-8	09/17/09	0	N/A	0	N/A	0.00		
SU-24	24-9	09/17/09	0	N/A	0	N/A	0.00		
SU-24	24-10	09/17/09	0	N/A	0	N/A	0.00		
SU-24	24-11	09/17/09	0	N/A	0	N/A	0.00		
SU-24	24-12	09/17/09	0	N/A	0	N/A	0.00		
SU-24	24-13	09/17/09	0	N/A	0	N/A	0.00		
SU-24	24-14	09/17/09	0	N/A	1	N/A	5.26		
SU-24	24-15	09/17/09	0	N/A	1	N/A	5.26		
SU-24	24-16	09/17/09	0	N/A	1	N/A	5.26		
SU-24	24-17	09/17/09	0	N/A	0	N/A	0.00		
SU-24	24-18	09/17/09	0	N/A	0	N/A	0.00		
SU-24	24-19	09/17/09	0	N/A	0	N/A	0.00		
SU-24	24-20	09/17/09	0	N/A	0	N/A	0.00		

Model 2360	193654
Detector 43-93	198509
Static Count Time (min)	1.0
Background Count Time (min)	1.0
α Efficiency Correction Factor	3.9
Area Correction Factor	1.12

Structure Freestanding Vault

dpm/100 cm ²					
$> \alpha$ Flag $> \beta$ Flag					
100	NI/A				

Survey Unit ID	Measurement No.	Date	Field Backs	round (cpm)	Static Co	unts (cpm)	Static (dpi	m/100 cm²)	Unity Calc.
			α	β	α	β	α	β	
SU-25	25-1	11/19/09	0	N/A	1	N/A	4.39		
SU-25	25-2	11/19/09	0	N/A	0	N/A	0.00		
SU-25	25-3	11/19/09	0	N/A	1	N/A	4.39		
SU-25	25-4	11/19/09	0	N/A	1	N/A	4.39		
SU-25	25-5	11/19/09	0	N/A	1	N/A	4.39		
SU-25	25-6	11/19/09	0	N/A	16	N/A	70.27		
SU-25	25-7	11/19/09	0	N/A	13	N/A	57.10		
SU-25	25-8	11/19/09	0	N/A	24	N/A	105.41		0.18
SU-25	25-9	11/19/09	0	N/A	3	N/A	13.18		
SU-25	25-10	11/19/09	0	N/A	8	N/A	35.14		
SU-25	25-11	11/19/09	0	N/A	22	N/A	96.63		
SU-25	25-12	11/19/09	0	N/A	5	N/A	21.96		
SU-25	25-13	11/19/09	0	N/A	4	N/A	17.57		
SU-25	25-14	11/19/09	0	N/A	4	N/A	17.57		
SU-25	25-15	11/19/09	0	N/A	0	N/A	0.00		
SU-25	25-16	11/19/09	0	N/A	27	N/A	118.59		0.21
SU-25	25-17	11/19/09	0	N/A	14	N/A	61.49		
SU-25	25-18	11/19/09	0	N/A	1	N/A	4.39		
SU-25	25-19	11/19/09	0	N/A	5	N/A	21.96		
SU-25	25-20	11/19/09	0	N/A	6	N/A	26.35		
SU-25	25-21	11/19/09	0	N/A	8	N/A	35.14		
							34.30	ave	0.34
								sum	0.73

Model 2360	193654
Detector 43-93	236970
Static Count Time (min)	1.0
Background Count Time (min)	1.0
α Efficiency Correction Factor	9.4
Area Correction Factor	1.12

Structure 1103B floor

dpm/100 cm ²					
$> \alpha$ Flag $> \beta$ Flag					
4.000 NI/A					

Survey Unit ID	Measurement No.	Date	Field Backg	round (cpm)	Static Co	unts (cpm)	Static (dpr	m/100 cm²)	Tech. Initial
			α	β	α	β	α	β	
SU-26	26-1	10/21/09	2	N/A	0	N/A	-21.06		
SU-26	26-2	10/21/09	2	N/A	1	N/A	-10.53		
SU-26	26-3	10/21/09	2	N/A	3	N/A	10.53		
SU-26	26-4	10/21/09	2	N/A	0	N/A	-21.06		
SU-26	26-5	10/21/09	2	N/A	4	N/A	21.06		
SU-26	26-6	10/21/09	2	N/A	2	N/A	0.00		
SU-26	26-7	10/21/09	2	N/A	0	N/A	-21.06		
SU-26	26-8	10/21/09	2	N/A	0	N/A	-21.06		
SU-26	26-9	10/21/09	2	N/A	1	N/A	-10.53		
SU-26	26-10	10/21/09	2	N/A	2	N/A	0.00		
SU-26	26-11	10/21/09	2	N/A	1	N/A	-10.53		
SU-26	26-12	10/21/09	2	N/A	1	N/A	-10.53		
SU-26	26-13	10/21/09	2	N/A	2	N/A	0.00		
SU-26	26-14	10/21/09	2	N/A	2	N/A	0.00		
SU-26	26-15	10/21/09	2	N/A	2	N/A	0.00		
SU-26	26-16	10/21/09	2	N/A	2	N/A	0.00		
SU-26	26-17	10/21/09	2	N/A	0	N/A	-21.06		
SU-26	26-18	10/21/09	2	N/A	0	N/A	-21.06		
SU-26	26-19	10/21/09	2	N/A	1	N/A	-10.53		
SU-26	26-20	10/21/09	2	N/A	1	N/A	-10.53		
SU-26	26-21	10/21/09	2	N/A	1	N/A	-10.53		

Model 2360	225173
Detector 43-93	237000
Static Count Time (min)	1.0
Background Count Time (min)	1.0
α Efficiency Correction Factor	4.7
Area Correction Factor	1.12

Structure 1103B Exterior

 $\begin{array}{c|c} dpm/100 cm^2 \\ > \alpha \ Flag & > \beta \ Flag \\ \hline 100 & N/A \end{array}$

Survey Unit ID	Measurement No.	Date	Field Backg	round (cpm)	Static Co	unts (cpm)	Static (dp	m/100 cm²)	Tech. Initial
			α	β	α	β	α	β	
SU-27	27~1	11/05/09	3	N/A	5	N/A	10.54		
SU-27	27~2	11/05/09	3	N/A	14	N/A	57.98		
SU-27	27~3	11/05/09	3	N/A	18	N/A	79.06		
SU-27	27~4	11/05/09	3	N/A	11	N/A	42.16		
SU-27	27~5	11/05/09	3	N/A	5	N/A	10.54		
SU-27	27~6	11/05/09	3	N/A	17	N/A	73.79		
SU-27	27~7	11/05/09	3	N/A	12	N/A	47.44		
SU-27	27~8	11/05/09	3	N/A	15	N/A	63.25		
SU-27	27~9	11/05/09	3	N/A	4	N/A	5.27		
SU-27	27~10	11/05/09	3	N/A	1	N/A	-10.54		
SU-27	27-11	11/16/09	1	N/A	3	N/A	10.54		
SU-27	27-12	11/16/09	1	N/A	1	N/A	0.00		
SU-27	27-13	11/16/09	1	N/A	1	N/A	0.00		
SU-27	27-14	11/16/09	1	N/A	8	N/A	36.89		
SU-27	27-15	11/16/09	1	N/A	5	N/A	21.08		
SU-27	27-16	11/16/09	1	N/A	5	N/A	21.08		
SU-27	27-17	11/16/09	1	N/A	12	N/A	57.98		
SU-27	27-18	11/16/09	1	N/A	5	N/A	21.08		
SU-27	27-19	11/16/09	1	N/A	10	N/A	47.44		
SU-27	27-20	11/16/09	1	N/A	6	N/A	26.35		
SU-27	27-21	11/16/09	1	N/A	6	N/A	26.35		
SU-27	27-22	11/16/09	1	N/A	14	N/A	68.52		
SU-27	27-23	11/16/09	1	N/A	9	N/A	42.16		
SU-27	27-24	11/16/09	1	N/A	12	N/A	57.98		
SU-27	27-25	11/16/09	1	N/A	4	N/A	15.81		
SU-27	27-26	11/16/09	1	N/A	10	N/A	47.44		
SU-27	27-27	11/16/09	1	N/A	9	N/A	42.16		

Model 2360	225173
Detector 43-93	237000
Static Count Time (min)	1.0
Background Count Time (min)	1.0
α Efficiency Correction Factor	4.7
Area Correction Factor	1.12

Structure	1103B Exterior

dpm/100 cm ²					
>α Flag	>β Flag				
100	N/A				

Survey Unit ID	Measurement No.	Date	Field Background (cpm)		pm) Static Counts (cpm		Static (dpm/100 cm ²)		Tech. Initial
			α	β	α	β	α	β	
SU-27	27-28	11/16/09	1	N/A	7	N/A	28.24		
							33.95	ave	

Model 2360	225173
Detector 43-93	237000
Static Count Time (min)	1.0
Background Count Time (min)	1.0
α Efficiency Correction Factor	4.7
Area Correction Factor	1.12

Structure 1100E Exterior

 $\begin{array}{c|c} dpm/100 cm^2 \\ > \alpha Flag & > \beta Flag \\ \hline 100 & N/A \\ \end{array}$

Survey Unit ID	Measurement No.	Date	Field Background (cpm) α β		Static Counts (cpm) α β		Static (dpm/100 cm ²)		
•							α β		
SU-28	28~1	11/16/09	7.1	N/A	2	N/A	-26.88		
SU-28	28~2	11/16/09	7.1	N/A	11	N/A	20.56		
SU-28	28~3	11/16/09	7.1	N/A	11	N/A	20.56		
SU-28	28~4	11/16/09	7.1	N/A	7	N/A	-0.53		
SU-28	28~5	11/16/09	7.1	N/A	13	N/A	31.10		
SU-28	28~6	11/16/09	7.1	N/A	20	N/A	67.99		
SU-28	28~7	11/16/09	7.1	N/A	7	N/A	-0.53		
SU-28	28~8	11/16/09	7.1	N/A	3	N/A	-21.61		
SU-28	28~9	11/16/09	7.1	N/A	12	N/A	25.83		
SU-28	28~10	11/16/09	7.1	N/A	6	N/A	-5.80		
SU-28	28~11	11/16/09	7.1	N/A	5	N/A	-11.07		
SU-28	28~12	11/16/09	7.1	N/A	5	N/A	-11.07		
SU-28	28~13	11/16/09	7.1	N/A	17	N/A	52.18		
SU-28	28~14	11/16/09	7.1	N/A	3	N/A	-21.61		
SU-28	28~15	11/16/09	7.1	N/A	13	N/A	31.10		
SU-28	28~16	11/16/09	7.1	N/A	18	N/A	57.45		
SU-28	28~17	11/16/09	7.1	N/A	inaccessible	N/A			
SU-28	28~18	11/16/09	7.1	N/A	5	N/A	-11.07		
SU-28	28~19	11/16/09	7.1	N/A	11	N/A	20.56		
SU-28	28~20	11/16/09	7.1	N/A	inaccessible	N/A			
SU-28	Investigation of 28~6	12/20/10	7.1	N/A	14	N/A	32.47		
SU-28	Investigation of 28~6	12/20/10	7.1	N/A	22	N/A	70.12		
SU-28	Investigation of 28~6	12/20/10	7.1	N/A	22	N/A	70.12		
SU-28	Investigation of 28~6	12/20/10	7.1	N/A	12	N/A	23.06		
SU-28	Investigation of 28~6	12/20/10	7.1	N/A	14	N/A	32.47		
SU-28	Investigation of 28~6	12/20/10	7.1	N/A	12	N/A	23.06		
						_	19.52	ave	_

Model 2360	193682
Detector 43-93	236970
Static Count Time (min)	1.0
Background Count Time (min)	1.0
α Efficiency Correction Factor	4.4
Area Correction Factor	1.12

Structure 1100F Exterior

dpm/1	00 cm ²
> \alpha Flag	>β Flag

Survey Unit ID	Measurement No.	Date	Field Backg	round (cpm)	Static Co	unts (cpm)	Static (dp	m/100 cm²)	Tech. Initial
			α	β	α	β	α	β	
SU-29	29~1	11/05/09	3	N/A	3	N/A	0.00		
SU-29	29~2	11/05/09	3	N/A	4	N/A	4.98		
SU-29	29~3	11/05/09	3	N/A	4	N/A	4.98		
SU-29	29~4	11/05/09	3	N/A	3	N/A	0.00		
SU-29	29~5	11/05/09	3	N/A	10	N/A	34.84		
SU-29	29~6	11/05/09	3	N/A	3	N/A	0.00		
SU-29	29~7	11/05/09	3	N/A	4	N/A	4.98		
SU-29	29~8	11/05/09	3	N/A	3	N/A	0.00		
SU-29	29~9	11/05/09	3	N/A	3	N/A	0.00		
SU-29	29~10	11/05/09	3	N/A	4	N/A	4.98		
SU-29	29~11	11/05/09	3	N/A	8	N/A	24.89		
SU-29	29~12	11/05/09	3	N/A	8	N/A	24.89		
SU-29	29~13	11/05/09	3	N/A	5	N/A	9.96		
SU-29	29~14	11/05/09	3	N/A	5	N/A	9.96		
SU-29	29~15	11/05/09	3	N/A	7	N/A	19.91		
SU-29	29~16	11/05/09	3	N/A	6	N/A	14.93		
SU-29	29~17	11/05/09	3	N/A	3	N/A	0.00		
SU-29	29~18	11/05/09	3	N/A	3	N/A	0.00		
SU-29	29~19	11/05/09	3	N/A	1	N/A	-9.96		
SU-29	29~20	11/05/09	3	N/A	6	N/A	14.93		
							8.21	ave	

APPENDIX B3

Smear Results

	Ludlum 2929 SN 196230 Cal Due 11/25	/10													
	lpha eff	β eff		Sample	Count Ti	me (min)	Daily E	kg Count T	ime (min)						
	0.2905	0.3364			4.0			40.0					dpm/1	00 cm ²	
			<u>-</u> '	-						•			α Flag	β Flag	
					1		ı		1				10	100	
				ground		le Total							> a flag	> β flag	Tech.
seq. #	Sample ID#	Date	Total	Counts*	Co	unts	Backgro	und (cpm)	Sample Co	unts (cpm)	Sample (dp	om/100 cm²)	Ŭ		Initial
			α	β	α	β	α	β	α	β	α	β	FLAG	FLAG	
327	APG-1103A-SU-3-01	12/10/2009	5	2369	0	266	0.1	59.2	0.00	67	-0.4	22			CWG
328	APG-1103A-SU-3-02	12/10/2009	5	2369	0	230	0.1	59.2	0.00	58	-0.4	-5			CWG
329	APG-1103A-SU-3-03	12/10/2009	5	2369	5	224	0.1	59.2	1.25	56	3.9	-10			CWG
330	APG-1103A-SU-3-04	12/10/2009	5	2369	0	264	0.1	59.2	0.00	66	-0.4	20			CWG
331	APG-1103A-SU-3-05	12/10/2009	5	2369	1	202	0.1	59.2	0.25	51	0.4	-26			CWG
332	APG-1103A-SU-3-06	12/10/2009	5	2369	1	237	0.1	59.2	0.25	59	0.4	0			CWG
333	APG-1103A-SU-3-07	12/10/2009	5	2369	1	256	0.1	59.2	0.25	64	0.4	14			CWG
334	APG-1103A-SU-3-08	12/10/2009	5	2369	3	245	0.1	59.2	0.75	61	2.2	6			CWG
335	APG-1103A-SU-3-09	12/10/2009	5	2369	0	250	0.1	59.2	0.00	63	-0.4	10			CWG
336	APG-1103A-SU-3-10	12/10/2009	5	2369	0	207	0.1	59.2	0.00	52	-0.4	-22			CWG
337	APG-1103A-SU-3-11	12/10/2009	5	2369	2	235	0.1	59.2	0.50	59	1.3	-1			CWG
338	APG-1103A-SU-3-12	12/10/2009	5	2369	0	238	0.1	59.2	0.00	60	-0.4	1			CWG
339	APG-1103A-SU-3-13	12/10/2009	5	2369	2	260	0.1	59.2	0.50	65	1.3	17			CWG
340	APG-1103A-SU-3-14	12/10/2009	5	2369	4	240	0.1	59.2	1.00	60	3.0	2			CWG
10	APG-1103A-SU-15-01	12/4/2009	13	2398	1	221	0.3	60.0	0.25	55	-0.3	-14			CWG
11	APG-1103A-SU-15-02	12/4/2009	13	2398	2	272	0.3	60.0	0.50	68	0.6	24			CWG
12	APG-1103A-SU-15-03	12/4/2009	13	2398	1	223	0.3	60.0	0.25	56	-0.3	-12			CWG
13	APG-1103A-SU-15-04	12/4/2009	13	2398	1	211	0.3	60.0	0.25	53	-0.3	-21			CWG
14	APG-1103A-SU-15-05	12/4/2009	13	2398	3	256	0.3	60.0	0.75	64	1.5	12			CWG
15	APG-1103A-SU-15-06	12/4/2009	13	2398	2	219	0.3	60.0	0.50	55	0.6	-15			CWG
16	APG-1103A-SU-15-07	12/4/2009	13	2398	2	250	0.3	60.0	0.50	63	0.6	8			CWG
17	APG-1103A-SU-15-08	12/4/2009	13	2398	0	262	0.3	60.0	0.00	66	-1.1	16			CWG
18	APG-1103A-SU-15-09	12/4/2009	13	2398	4	221	0.3	60.0	1.00	55	2.3	-14			CWG
19	APG-1103A-SU-15-10	12/4/2009	13	2398	1	263	0.3	60.0	0.25	66	-0.3	17			CWG
20	APG-1103A-SU-15-11	12/4/2009	13	2398	0	235	0.3	60.0	0.00	59	-1.1	-4			CWG
21	APG-1103A-SU-15-12	12/4/2009	13	2398	1	247	0.3	60.0	0.25	62	-0.3	5			CWG
22	APG-1103A-SU-15-13	12/4/2009	13	2398	3	228	0.3	60.0	0.75	57	1.5	-9			CWG
23	APG-1103A-SU-15-14	12/4/2009	13	2398	0	240	0.3	60.0	0.00	60	-1.1	0			CWG
24	APG-1103A-SU-15-15	12/4/2009	13	2398	1	202	0.3	60.0	0.25	51	-0.3	-28			CWG
25	APG-1103A-SU-15-16	12/4/2009	13	2398	3	228	0.3	60.0	0.75	57	1.5	-9			CWG
26	APG-1103A-SU-15-17	12/4/2009	13	2398	0	218	0.3	60.0	0.00	55	-1.1	-16			CWG
27	APG-1103A-SU-15-18	12/4/2009	13	2398	0	245	0.3	60.0	0.00	61	-1.1	4			CWG
28	APG-1103A-SU-15-19	12/4/2009	13	2398	4	231	0.3	60.0	1.00	58	2.3	-7			CWG
29	APG-1103A-SU-15-20	12/4/2009	13	2398	2	240	0.3	60.0	0.50	60	0.6	0			CWG
30	APG-1103A-SU-15-21	12/4/2009	13	2398	0	230	0.3	60.0	0.00	58	-1.1	-7			CWG
31	APG-1103A-SU-19-01	12/10/2009	5	2369	2	238	0.1	59.2	0.50	60	1.3	1			CWG

	Ludlum 2929 SN 196230 Cal Due 11/25/1	0													
	lpha eff	β eff		Sample	Count Ti	me (min)	Daily E	3kg Count T	ime (min)						
	0.2905	0.3364			4.0			40.0					dpm/1	00 cm ²	
				B									α Flag	β Flag	
													10	100	
			Back	ground	Samp	le Total							> a flag	. 0 (10.00	Tech.
seq. #	Sample ID#	Date	Total	Counts*	Co	unts	Backgro	und (cpm)	Sample Co	unts (cpm)	Sample (dp	om/100 cm ²)	> a nay	> β flag	Initial
			α	β	α	β	α	β	α	β	α	β	FLAG	FLAG	
32	APG-1103A-SU-19-02	12/10/2009	5	2369	0	223	0.1	59.2	0.00	56	-0.4	-10			CWG
33	APG-1103A-SU-19-03	12/10/2009	5	2369	0	221	0.1	59.2	0.00	55	-0.4	-12			CWG
34	APG-1103A-SU-19-04	12/10/2009	5	2369	2	256	0.1	59.2	0.50	64	1.3	14			CWG
35	APG-1103A-SU-19-05	12/10/2009	5	2369	0	241	0.1	59.2	0.00	60	-0.4	3			CWG
36	APG-1103A-SU-19-06	12/10/2009	5	2369	0	229	0.1	59.2	0.00	57	-0.4	-6			CWG
37	APG-1103A-SU-19-07	12/10/2009	5	2369	0	284	0.1	59.2	0.00	71	-0.4	35			CWG
38	APG-1103A-SU-19-08	12/10/2009	5	2369	2	233	0.1	59.2	0.50	58	1.3	-3			CWG
39	APG-1103A-SU-19-09	12/10/2009	5	2369	0	257	0.1	59.2	0.00	64	-0.4	15			CWG
40	APG-1103A-SU-19-10	12/10/2009	5	2369	0	248	0.1	59.2	0.00	62	-0.4	8			CWG
41	APG-1103A-SU-19-11	12/10/2009	5	2369	2	234	0.1	59.2	0.50	59	1.3	-2			CWG
42	APG-1103A-SU-19-12	12/10/2009	5	2369	1	248	0.1	59.2	0.25	62	0.4	8			CWG
43	APG-1103A-SU-19-13	12/10/2009	5	2369	1	252	0.1	59.2	0.25	63	0.4	11			CWG
44	APG-1103A-SU-19-14	12/10/2009	5	2369	0	218	0.1	59.2	0.00	55	-0.4	-14			CWG
45	APG-1103A-SU-19-15	12/10/2009	5	2369	2	257	0.1	59.2	0.50	64	1.3	15			CWG
46	APG-1103A-SU-19-16	12/10/2009	5	2369	4	254	0.1	59.2	1.00	64	3.0	13			CWG
47	APG-1103A-SU-19-17	12/10/2009	5	2369	1	228	0.1	59.2	0.25	57	0.4	-7			CWG
48	APG-1103A-SU-19-18	12/10/2009	5	2369	0	242	0.1	59.2	0.00	61	-0.4	4			CWG
49	APG-1103A-SU-19-19	12/10/2009	5	2369	0	224	0.1	59.2	0.00	56	-0.4	-10			CWG
50	APG-1103A-SU-19-20	12/10/2009	5	2369	1	227	0.1	59.2	0.25	57	0.4	-7			CWG
- 00	711 0 1100/1 00 10 20	12/10/2000	O	2000	•		0.1	00.2	0.20	0,	0.1	,			
51	APG-1103A-SU-19B-01	12/10/2009	5	2369	2	229	0.1	59.2	0.50	57	1.3	-6			CWG
52	APG-1103A-SU-19B-02	12/10/2009	5	2369	2	238	0.1	59.2	0.50	60	1.3	1			CWG
53	APG-1103A-SU-19B-03	12/10/2009	5	2369	3	236	0.1	59.2	0.75	59	2.2	-1			CWG
54	APG-1103A-SU-19B-04	12/10/2009	5	2369	2	268	0.1	59.2	0.50	67	1.3	23			CWG
55	APG-1103A-SU-19B-05	12/10/2009	5	2369	0	265	0.1	59.2	0.00	66	-0.4	21			CWG
56	APG-1103A-SU-19B-06	12/10/2009	5	2369	1	254	0.1	59.2	0.25	64	0.4	13			CWG
57	APG-1103A-SU-19B-07	12/10/2009	5	2369	2	247	0.1	59.2	0.50	62	1.3	8			CWG
58	APG-1103A-SU-19B-08	12/10/2009	5	2369	1	235	0.1	59.2	0.25	59	0.4	-1			CWG
59	APG-1103A-SU-19B-09	12/10/2009	5	2369	0	230	0.1	59.2	0.00	58	-0.4	-5			CWG
60	APG-1103A-SU-19B-10	12/10/2009	5	2369	0	240	0.1	59.2	0.00	60	-0.4	2			CWG
61	APG-1103A-SU-19B-11	12/10/2009	5	2369	2	248	0.1	59.2	0.50	62	1.3	8			CWG
62	APG-1103A-SU-19B-12	12/10/2009	5	2369	2	253	0.1	59.2	0.50	63	1.3	12			CWG
63	APG-1103A-SU-19B-13	12/10/2009	5	2369	2	232	0.1	59.2	0.50	58	1.3	-4			CWG
												1			
64	APG-1103A-SU-19B-14	12/10/2009	5	2369	1	247	0.1	59.2	0.25	62	0.4	8			CWG
65	APG-1103A-SU-19B-15	12/10/2009	5	2369	1	207	0.1	59.2	0.25	52	0.4	-22			CWG
66	APG-1103A-SU-19B-16	12/10/2009	5	2369	1	240	0.1	59.2	0.25	60	0.4	2			CWG
67	APG-1103A-SU-19B-17	12/10/2009	5	2369	1	229	0.1	59.2	0.25	57	0.4	-6			CWG
68	APG-1103A-SU-19B-18	12/10/2009	5	2369	2	259	0.1	59.2	0.50	65	1.3	16			CWG

	Ludlum 2929 SN 196230 Cal Due 11/25/	10													
	lpha eff	β eff		Sample	Count Ti	me (min)	Daily E	kg Count T	ime (min)	1					
	0.2905	0.3364			4.0			40.0					dpm/1	00 cm ²	
ų.				B						4			α Flag	β Flag	
													10	100	
			Back	ground	Samp	le Total							> a flag	. 0 (10.00	Tech.
seq. #	Sample ID#	Date	Total	Counts*	Co	unts	Backgro	und (cpm)	Sample Co	unts (cpm)	Sample (dp	om/100 cm ²)	> a nay	> β flag	Initial
			α	β	α	β	α	β	α	β	α	β	FLAG	FLAG	
69	APG-1103A-SU-19B-19	12/10/2009	5	2369	1	222	0.1	59.2	0.25	56	0.4	-11			CWG
70	APG-1103A-SU-19B-20	12/10/2009	5	2369	2	228	0.1	59.2	0.50	57	1.3	-7			CWG
71	APG-1103A-SU-20-01	12/9/2009	4	2398	0	241	0.1	60.0	0.00	60	-0.3	1			CWG
72	APG-1103A-SU-20-02	12/9/2009	4	2398	0	245	0.1	60.0	0.00	61	-0.3	4			CWG
73	APG-1103A-SU-20-03	12/9/2009	4	2398	1	249	0.1	60.0	0.25	62	0.5	7			CWG
74	APG-1103A-SU-20-04	12/9/2009	4	2398	0	216	0.1	60.0	0.00	54	-0.3	-18			CWG
75	APG-1103A-SU-20-05	12/9/2009	4	2398	0	226	0.1	60.0	0.00	57	-0.3	-10			CWG
76	APG-1103A-SU-20-06	12/9/2009	4	2398	1	237	0.1	60.0	0.25	59	0.5	-2			CWG
77	APG-1103A-SU-20-07	12/9/2009	4	2398	1	232	0.1	60.0	0.25	58	0.5	-6			CWG
78	APG-1103A-SU-20-08	12/9/2009	4	2398	0	220	0.1	60.0	0.00	55	-0.3	-15			CWG
79	APG-1103A-SU-20-09	12/9/2009	4	2398	1	243	0.1	60.0	0.25	61	0.5	2			CWG
80	APG-1103A-SU-20-10	12/9/2009	4	2398	0	231	0.1	60.0	0.00	58	-0.3	-7			CWG
81	APG-1103A-SU-20-11	12/9/2009	4	2398	1	233	0.1	60.0	0.25	58	0.5	-5			CWG
82	APG-1103A-SU-20-12	12/9/2009	4	2398	0	242	0.1	60.0	0.00	61	-0.3	2			CWG
83	APG-1103A-SU-20-13	12/9/2009	4	2398	1	229	0.1	60.0	0.25	57	0.5	-8			CWG
84	APG-1103A-SU-20-14	12/9/2009	4	2398	1	265	0.1	60.0	0.25	66	0.5	19			CWG
85	APG-1103A-SU-20-15	12/9/2009	4	2398	0	231	0.1	60.0	0.00	58	-0.3	-7			CWG
86	APG-1103A-SU-20-16	12/9/2009	4	2398	0	232	0.1	60.0	0.00	58	-0.3	-6			CWG
87	APG-1103A-SU-20-17	12/9/2009	4	2398	1	213	0.1	60.0	0.25	53	0.5	-20			CWG
88	APG-1103A-SU-20-18	12/9/2009	4	2398	0	242	0.1	60.0	0.00	61	-0.3	2			CWG
89	APG-1103A-SU-20-19	12/9/2009	4	2398	1	255	0.1	60.0	0.25	64	0.5	11			CWG
90	APG-1103A-SU-20-20	12/9/2009	4	2398	0	252	0.1	60.0	0.00	63	-0.3	9			CWG
												-			
121	APG-1103A-SU-20A-01	12/9/2009	4	2398	1	242	0.1	60.0	0.25	61	0.5	2			CWG
122	APG-1103A-SU-20A-02	12/9/2009	4	2398	2	216	0.1	60.0	0.50	54	1.4	-18			CWG
123	APG-1103A-SU-20A-03	12/9/2009	4	2398	1	237	0.1	60.0	0.25	59	0.5	-2			CWG
124	APG-1103A-SU-20A-04	12/9/2009	4	2398	3	249	0.1	60.0	0.75	62	2.2	7			CWG
125	APG-1103A-SU-20A-05	12/9/2009	4	2398	0	216	0.1	60.0	0.00	54	-0.3	-18			CWG
126	APG-1103A-SU-20A-06	12/9/2009	4	2398	0	226	0.1	60.0	0.00	57	-0.3	-10			CWG
127	APG-1103A-SU-20A-07	12/9/2009	4	2398	2	242	0.1	60.0	0.50	61	1.4	2			CWG
128	APG-1103A-SU-20A-08	12/9/2009	4	2398	0	225	0.1	60.0	0.00	56	-0.3	-11			CWG
129	APG-1103A-SU-20A-09	12/9/2009	4	2398	0	232	0.1	60.0	0.00	58	-0.3	-6			CWG
130	APG-1103A-SU-20A-10	12/9/2009	4	2398	2	223	0.1	60.0	0.50	56	1.4	-12			CWG
131	APG-1103A-SU-20A-11	12/9/2009	4	2398	2	214	0.1	60.0	0.50	54	1.4	-19			CWG
132	APG-1103A-SU-20A-12	12/9/2009	4	2398	4	219	0.1	60.0	1.00	55	3.1	-15			CWG
133	APG-1103A-SU-20A-13	12/9/2009	4	2398	0	240	0.1	60.0	0.00	60	-0.3	0			CWG
134	APG-1103A-SU-20A-14	12/9/2009	4	2398	1	243	0.1	60.0	0.25	61	0.5	2			CWG
10+	AI 0-1100A-00-20A-14	12/3/2003		2000		270	0.1	00.0	0.20	UI	0.0				OVVO

	Ludlum 2929 SN 196230 Cal Due 11/2	25/10													
	lpha eff	β eff		Sample	Count Ti	me (min)	Daily E	3kg Count T	ime (min)						
	0.2905	0.3364			4.0			40.0					dpm/1	00 cm ²	
				-						<u>.</u> "			α Flag	β Flag	
					•								10	100	
			Back	ground	Samp	le Total						_	> a flag	> β flag	Tech.
seq. #	Sample ID#	Date	Total	Counts*	Co	unts	Backgro	und (cpm)	Sample Co	unts (cpm)	Sample (dr	om/100 cm ²)			Initial
			α	β	α	β	α	β	α	β	α	β	FLAG	FLAG	
135	APG-1103A-SU-20A-15	12/9/2009	4	2398	0	254	0.1	60.0	0.00	64	-0.3	11			CWG
136	APG-1103A-SU-20A-16	12/9/2009	4	2398	0	205	0.1	60.0	0.00	51	-0.3	-26			CWG
137	APG-1103A-SU-20A-17	12/9/2009	4	2398	2	240	0.1	60.0	0.50	60	1.4	0			CWG
138	APG-1103A-SU-20A-18	12/9/2009	4	2398	1	244	0.1	60.0	0.25	61	0.5	3			CWG
139	APG-1103A-SU-20A-19	12/9/2009	4	2398	0	244	0.1	60.0	0.00	61	-0.3	3			CWG
140	APG-1103A-SU-20A-20	12/9/2009	4	2398	1	245	0.1	60.0	0.25	61	0.5	4			CWG
141	APG-1103A-SU-23-01	12/11/2009	13	2331	2	229	0.3	58.3	0.50	57	0.6	-3			CWG
142	APG-1103A-SU-23-02	12/11/2009	13	2331	0	231	0.3	58.3	0.00	58	-1.1	-2			CWG
143	APG-1103A-SU-23-03	12/11/2009	13	2331	3	231	0.3	58.3	0.75	58	1.5	-2			CWG
144	APG-1103A-SU-23-04	12/11/2009	13	2331	1	254	0.3	58.3	0.25	64	-0.3	16			CWG
145	APG-1103A-SU-23-05	12/11/2009	13	2331	2	241	0.3	58.3	0.50	60	0.6	6			CWG
146	APG-1103A-SU-23-06	12/11/2009	13	2331	5	208	0.3	58.3	1.25	52	3.2	-19			CWG
147	APG-1103A-SU-23-07	12/11/2009	13	2331	7	230	0.3	58.3	1.75	58	4.9	-2			CWG
148	APG-1103A-SU-23-08	12/11/2009	13	2331	3	249	0.3	58.3	0.75	62	1.5	12			CWG
149	APG-1103A-SU-23-09	12/11/2009	13	2331	3	243	0.3	58.3	0.75	61	1.5	7			CWG
150	APG-1103A-SU-23-10	12/11/2009	13	2331	1	219	0.3	58.3	0.25	55	-0.3	-10			CWG
151	APG-1103A-SU-23-11	12/15/2009	3	2352	0	235	0.1	58.8	0.00	59	-0.3	0			CWG
152	APG-1103A-SU-23-12	12/15/2009	3	2352	2	242	0.1	58.8	0.50	61	1.5	5			CWG
153	APG-1103A-SU-23-13	12/15/2009	3	2352	2	226	0.1	58.8	0.50	57	1.5	-7			CWG
154	APG-1103A-SU-23-14	12/15/2009	3	2352	1	203	0.1	58.8	0.25	51	0.6	-24			CWG
155	APG-1103A-SU-23-15	12/15/2009	3	2352	1	228	0.1	58.8	0.25	57	0.6	-5			CWG
156	APG-1103A-SU-23-16	12/15/2009	3	2352	2	239	0.1	58.8	0.50	60	1.5	3			CWG
157	APG-1103A-SU-23-17	12/15/2009	3	2352	1	222	0.1	58.8	0.25	56	0.6	-10			CWG
158	APG-1103A-SU-23-18	12/15/2009	3	2352	3	222	0.1	58.8	0.75	56	2.3	-10			CWG
159	APG-1103A-SU-23-19	12/15/2009	3	2352	2	243	0.1	58.8	0.50	61	1.5	6			CWG
160	APG-1103A-SU-23-20	12/15/2009	3	2352	2	217	0.1	58.8	0.50	54	1.5	-14			CWG
161	APG-1103A-SU-23-21	12/15/2009	3	2352	0	258	0.1	58.8	0.00	65	-0.3	17			CWG
274	APG-1103A-SU-24-01	12/17/2009	6	2338	0	226	0.2	58.5	0.00	57	-0.5	-6			CWG
275	APG-1103A-SU-24-02	12/17/2009	6	2338	0	236	0.2	58.5	0.00	59	-0.5	2			CWG
276	APG-1103A-SU-24-03	12/17/2009	6	2338	0	230	0.2	58.5	0.00	58	-0.5	-3			CWG
277	APG-1103A-SU-24-04	12/17/2009	6	2338	1	218	0.2	58.5	0.25	55	0.3	-12			CWG
278	APG-1103A-SU-24-05	12/17/2009	6	2338	0	236	0.2	58.5	0.00	59	-0.5	2			CWG
279	APG-1103A-SU-24-06	12/17/2009	6	2338	2	225	0.2	58.5	0.50	56	1.2	-7			CWG
280	APG-1103A-SU-24-07	12/17/2009	6	2338	0	246	0.2	58.5	0.00	62	-0.5	9			CWG
281	APG-1103A-SU-24-08	12/17/2009	6	2338	1	230	0.2	58.5	0.25	58	0.3	-3			CWG
282	APG-1103A-SU-24-09	12/17/2009	6	2338	0	227	0.2	58.5	0.00	57	-0.5	-5			CWG

	Ludlum 2929 SN 196230 Cal Due 11	/25/10													
	lpha eff	β eff		Sample		me (min)	Daily B	kg Count T	ime (min)						•
	0.2905	0.3364			4.0			40.0					dpm/1	00 cm ²	
				-						='			α Flag	β Flag	
					1		T		1				10	100	
				ground		le Total						•	> a flag	> β flag	Tech.
seq. #	Sample ID#	Date	Total	Counts*	Co	unts	Backgrou	ınd (cpm)	Sample Co	unts (cpm)	Sample (dp	om/100 cm²)	Ŭ		Initial
			α	β	α	β	α	β	α	β	α	β	FLAG	FLAG	
283	APG-1103A-SU-24-10	12/17/2009	6	2338	1	206	0.2	58.5	0.25	52	0.3	-21			CWG
284	APG-1103A-SU-24-11	12/17/2009	6	2338	2	228	0.2	58.5	0.50	57	1.2	-4			CWG
285	APG-1103A-SU-24-12	12/17/2009	6	2338	0	224	0.2	58.5	0.00	56	-0.5	-7			CWG
286	APG-1103A-SU-24-13	12/17/2009	6	2338	0	223	0.2	58.5	0.00	56	-0.5	-8			CWG
287	APG-1103A-SU-24-14	12/17/2009	6	2338	1	225	0.2	58.5	0.25	56	0.3	-7			CWG
288	APG-1103A-SU-24-15	12/17/2009	6	2338	0	222	0.2	58.5	0.00	56	-0.5	-9			CWG
289	APG-1103A-SU-24-16	12/17/2009	6	2338	0	252	0.2	58.5	0.00	63	-0.5	14			CWG
290	APG-1103A-SU-24-17	12/17/2009	6	2338	1	255	0.2	58.5	0.25	64	0.3	16			CWG
291	APG-1103A-SU-24-18	12/17/2009	6	2338	2	269	0.2	58.5	0.50	67	1.2	26			CWG
292	APG-1103A-SU-24-19	12/17/2009	6	2338	0	217	0.2	58.5	0.00	54	-0.5	-12			CWG
293	APG-1103A-SU-24-20	12/17/2009	6	2338	0	241	0.2	58.5	0.00	60	-0.5	5			CWG
294	APG-1103A-SU-25-01	12/17/2009	6	2338	0	256	0.2	58.5	0.00	64	-0.5	16			CWG
295	APG-1103A-SU-25-02	12/17/2009	6	2338	1	200	0.2	58.5	0.25	50	0.3	-25			CWG
296	APG-1103A-SU-25-03	12/17/2009	6	2338	3	216	0.2	58.5	0.75	54	2.1	-13			CWG
297	APG-1103A-SU-25-04	12/17/2009	6	2338	1	245	0.2	58.5	0.25	61	0.3	8			CWG
298	APG-1103A-SU-25-05	12/17/2009	6	2338	1	224	0.2	58.5	0.25	56	0.3	-7			CWG
299	APG-1103A-SU-25-06	12/17/2009	6	2338	1	245	0.2	58.5	0.25	61	0.3	8			CWG
300	APG-1103A-SU-25-07	12/17/2009	6	2338	0	235	0.2	58.5	0.00	59	-0.5	1			CWG
301	APG-1103A-SU-25-08	12/17/2009	6	2338	1	219	0.2	58.5	0.25	55	0.3	-11			CWG
302	APG-1103A-SU-25-09	12/17/2009	6	2338	1	223	0.2	58.5	0.25	56	0.3	-8			CWG
303	APG-1103A-SU-25-10	12/17/2009	6	2338	0	220	0.2	58.5	0.00	55	-0.5	-10			CWG
304	APG-1103A-SU-25-11	12/17/2009	6	2338	0	247	0.2	58.5	0.00	62	-0.5	10			CWG
305	APG-1103A-SU-25-12	12/17/2009	6	2338	1	231	0.2	58.5	0.25	58	0.3	-2			CWG
306	APG-1103A-SU-25-13	12/17/2009	6	2338	2	222	0.2	58.5	0.50	56	1.2	-9			CWG
307	APG-1103A-SU-25-14	12/17/2009	6	2338	1	245	0.2	58.5	0.25	61	0.3	8			CWG
308	APG-1103A-SU-25-15	12/17/2009	6	2338	1	223	0.2	58.5	0.25	56	0.3	-8			CWG
309	APG-1103A-SU-25-16	12/17/2009	6	2338	1	206	0.2	58.5	0.25	52	0.3	-21			CWG
310	APG-1103A-SU-25-17	12/17/2009	6	2338	1	257	0.2	58.5	0.25	64	0.3	17			CWG
311	APG-1103A-SU-25-18	12/17/2009	6	2338	0	237	0.2	58.5	0.00	59	-0.5	2			CWG
312	APG-1103A-SU-25-19	12/17/2009	6	2338	2	242	0.2	58.5	0.50	61	1.2	6			CWG
313	APG-1103A-SU-25-20	12/17/2009	6	2338	1	250	0.2	58.5	0.25	63	0.3	12			CWG
314	APG-1103A-SU-25-21	12/17/2009	6	2338	2	212	0.2	58.5	0.50	53	1.2	-16			CWG
315	APG-1103A-SU-27-15	12/7/2009	9	2547	0	219	0.2	63.7	0.00	55	-0.8	-27			CWG
316	APG-1103A-SU-27-16	12/7/2009	9	2547	1	244	0.2	63.7	0.25	61	0.1	-8			CWG
317	APG-1103A-SU-27-17	12/7/2009	9	2547	3	236	0.2	63.7	0.75	59	1.8	-14			CWG
318	APG-1103A-SU-27-18	12/7/2009	9	2547	1	230	0.2	63.7	0.25	58	0.1	-18			CWG

Aberdeen Proving Ground - Building 1103A Final Status Survey Results

Sample ID# Date Total Counts Counts Sample Counts (cpm) Sample (dpm/100 cm²) > 8 flag > 8 flag 1 flag		Ludlum 2929 SN 196230 Cal Due 11/25	5/10	1												
Sample 10# Sample 10# Date Da			'	1	Sample	Count Ti	me (min)	Daily E	3kg Count T	ime (min)						
Sample ID# Date Sackground Total Counts Counts		0.2905	0.3364			4.0			40.0					dpm/1	00 cm ²	i
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				_							_				. 0	•
Sample ID# Date Total Counts C			1			T -		1		1		1		10	100	
APG-1103A-SU-27-19 1277/2009 9 2547 3 254 0.2 63.7 0.75 64 1.8 1.8 1.0 1.					-			l	., ,				2	> a flag	> β flag	Tech.
APG-1103A-SU-27-29	seq. #	Sample ID#	Date							•	unts (cpm)		m/100 cm ⁻)	FLAG	, ,	Initial
320	240	ADC 4400A CIL 07 40	40/7/0000		P						β		В	FLAG	FLAG	CWG
321				_			_									
APG-1103A-SU-27-22																CWG
APG-1103A-SU-27-23							_					_	<u> </u>			CWG
APG-1103A-SU-27-24 127/2009 9 2547 1 246 0.2 63.7 0.25 62 0.1 -6 C1	322			_									_			CWG
APG-1103A-SU-27-25	222				_			_			_	_				CWG
324 APG-1103A-SU-27-26 12/7/2009 9 2547 2 223 0.2 63.7 0.50 56 0.9 -24 C1	323											_	_			CWG
APG-1103A-SU-27-27				_	_											CWG
APG-1103A-SU-27-28				_	_											CWG
1 APG-1100E-SU-28-01					_											CWG
2 APG-1100E-SU-28-02 12/7/2009 9 2547 1 248 0.2 63.7 0.25 62 0.1 -5 C1 3 APG-1100E-SU-28-03 12/7/2009 9 2547 2 241 0.2 63.7 0.50 60 0.9 -10 C1 4 APG-1100E-SU-28-04 12/7/2009 9 2547 1 242 0.2 63.7 0.50 60 0.9 -10 C1 5 APG-1100E-SU-28-05 12/7/2009 9 2547 1 242 0.2 63.7 0.25 61 0.1 -9 C1 6 APG-1100E-SU-28-06 12/7/2009 9 2547 0 270 0.2 63.7 0.00 68 -0.8 11 C1 6 APG-1100E-SU-28-06 12/7/2009 9 2547 3 252 0.2 63.7 0.75 63 1.8 -2 C1 7 APG-1100E-SU-28-07 12/7/2009 9 2547 1 241 0.2 63.7 0.25 60 0.1 -10 C1 7 APG-1100E-SU-28-08 12/7/2009 9 2547 1 241 0.2 63.7 0.25 60 0.1 -10 C1 7 APG-1100E-SU-28-08 12/7/2009 9 2547 1 225 0.2 63.7 0.25 60 0.1 -22 C1 7 APG-1100E-SU-28-09 12/7/2009 9 2547 1 225 0.2 63.7 0.50 63 0.9 -2 C1 7 APG-1100E-SU-28-09 12/7/2009 9 2547 2 252 0.2 63.7 0.50 63 0.9 -2 C1 7 APG-1100E-SU-28-10 12/7/2009 9 2547 2 252 0.2 63.7 0.50 63 0.9 -2 C1 7 APG-1100E-SU-28-11 12/7/2009 9 2547 2 252 0.2 63.7 0.50 63 0.9 -2 C1 7 APG-1100E-SU-28-11 12/7/2009 9 2547 2 252 0.2 63.7 0.50 63 0.9 -1 APG-1100E-SU-28-11 12/7/2009 9 2547 1 231 0.2 63.7 0.50 64 0.9 -1 C1 12 APG-1100E-SU-28-11 12/7/2009 9 2547 1 251 0.2 63.7 0.50 64 0.9 -1 C1 12 APG-1100E-SU-28-11 12/7/2009 9 2547 1 251 0.2 63.7 0.50 64 0.9 -1 C1 12 APG-1100E-SU-28-13 12/7/2009 9 2547 1 236 0.2 63.7 0.50 64 0.9 -1 C1 12 APG-1100E-SU-28-13 12/7/2009 9 2547 1 236 0.2 63.7 0.50 56 0.9 -24 0.1 C1 14 APG-1100E-SU-28-14 12/7/2009 9 2547 1 236 0.2 63.7 0.50 56 0.9 -24 0.1 C1 14 APG-1100E-SU-28-15 12/7/2009 9 2547 1 236 0.2 63.7 0.50 56 0.9 -24 0.1 C1 14 APG-1100E-SU-28-15 12/7/2009 9 2547 1 236 0.2 63.7 0.50 56 0.9 -24 0.1 C1 14 APG-1100E-SU-28-15 12/7/2009 9 2547 1 236 0.2 63.7 0.50 56 0.9 -24 0.1 C1 14 APG-1100E-SU-28-16 12/7/2009 9 2547 1 236 0.2 63.7 0.50 56 0.9 -24 0.2 0.1 C1 14 APG-1100E-SU-28-16 12/7/2009 9 2547 1 236 0.2 63.7 0.50 56 0.9 -24 0.2 0.1 C1 14 APG-1100E-SU-28-16 12/7/2009 9 2547 1 236 0.2 63.7 0.50 56 0.9 -24 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	326	APG-1103A-SU-27-28	12/7/2009	9	2547	4	215	0.2	63.7	1.00	54	2.7	-30			CWG
2 APG-1100E-SU-28-02 12/7/2009 9 2547 1 248 0.2 63.7 0.25 62 0.1 -5 C1 3 APG-1100E-SU-28-03 12/7/2009 9 2547 2 241 0.2 63.7 0.50 60 0.9 -10 C1 4 APG-1100E-SU-28-04 12/7/2009 9 2547 1 242 0.2 63.7 0.50 60 0.9 -10 C1 5 APG-1100E-SU-28-05 12/7/2009 9 2547 1 242 0.2 63.7 0.25 61 0.1 -9 C1 6 APG-1100E-SU-28-06 12/7/2009 9 2547 0 270 0.2 63.7 0.00 68 -0.8 11 C1 6 APG-1100E-SU-28-06 12/7/2009 9 2547 3 252 0.2 63.7 0.75 63 1.8 -2 C1 7 APG-1100E-SU-28-07 12/7/2009 9 2547 1 241 0.2 63.7 0.25 60 0.1 -10 C1 7 APG-1100E-SU-28-08 12/7/2009 9 2547 1 241 0.2 63.7 0.25 60 0.1 -10 C1 7 APG-1100E-SU-28-08 12/7/2009 9 2547 1 225 0.2 63.7 0.25 60 0.1 -22 C1 7 APG-1100E-SU-28-09 12/7/2009 9 2547 1 225 0.2 63.7 0.25 56 0.1 -22 C1 7 APG-1100E-SU-28-09 12/7/2009 9 2547 2 252 0.2 63.7 0.50 63 0.9 -2 C1 7 APG-1100E-SU-28-10 12/7/2009 9 2547 2 252 0.2 63.7 0.50 63 0.9 -2 C1 7 APG-1100E-SU-28-11 12/7/2009 9 2547 2 252 0.2 63.7 0.50 63 0.9 -2 C1 7 APG-1100E-SU-28-11 12/7/2009 9 2547 2 252 0.2 63.7 0.50 63 0.9 -1 APG-1100E-SU-28-11 12/7/2009 9 2547 1 251 0.2 63.7 0.50 64 0.9 -1 C1 12 APG-1100E-SU-28-11 12/7/2009 9 2547 1 251 0.2 63.7 0.50 64 0.9 -1 C1 12 APG-1100E-SU-28-13 12/7/2009 9 2547 1 236 0.2 63.7 0.50 64 0.9 -1 C1 12 APG-1100E-SU-28-13 12/7/2009 9 2547 1 236 0.2 63.7 0.50 64 0.9 -1 C1 12 APG-1100E-SU-28-13 12/7/2009 9 2547 1 236 0.2 63.7 0.50 66 0.9 -24 0.1 C1 14 APG-1100E-SU-28-14 12/7/2009 9 2547 1 236 0.2 63.7 0.50 56 0.9 -24 0.1 C1 14 APG-1100E-SU-28-15 12/7/2009 9 2547 1 236 0.2 63.7 0.50 56 0.9 -24 0.1 C1 14 APG-1100E-SU-28-15 12/7/2009 9 2547 1 236 0.2 63.7 0.50 56 0.9 -24 0.1 C1 14 APG-1100E-SU-28-15 12/7/2009 9 2547 1 236 0.2 63.7 0.50 56 0.9 -24 0.1 C1 14 APG-1100E-SU-28-15 12/7/2009 9 2547 1 236 0.2 63.7 0.50 56 0.9 -24 0.2 0.1 C1 14 APG-1100E-SU-28-15 12/7/2009 9 2547 1 236 0.2 63.7 0.50 56 0.9 -24 0.2 0.1 C1 14 APG-1100E-SU-28-16 12/7/2009 9 2547 1 236 0.2 63.7 0.50 56 0.9 -24 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2																
3 APG-1100E-SU-28-03	1			_	_											CWG
4 APG-1100E-SU-28-04 12/7/2009 9 2547 1 242 0.2 63.7 0.25 61 0.1 -9 CO 5 APG-1100E-SU-28-05 12/7/2009 9 2547 0 270 0.2 63.7 0.00 68 -0.8 11 CO 6 APG-1100E-SU-28-06 12/7/2009 9 2547 3 252 0.2 63.7 0.75 63 1.8 -2 CO 7 APG-1100E-SU-28-07 12/7/2009 9 2547 1 241 0.2 63.7 0.25 60 0.1 -10 CO 8 APG-1100E-SU-28-08 12/7/2009 9 2547 1 225 0.2 63.7 0.25 56 0.1 -22 CO 9 APG-1100E-SU-28-08 12/7/2009 9 2547 2 252 0.2 63.7 0.50 63 0.9 -2 CO 10 APG-1100E-SU-28-10					_			_					_			CWG
5 APG-1100E-SU-28-05 12/7/2009 9 2547 0 270 0.2 63.7 0.00 68 -0.8 11 CV 6 APG-1100E-SU-28-06 12/7/2009 9 2547 3 252 0.2 63.7 0.75 63 1.8 -2 CV 7 APG-1100E-SU-28-07 12/7/2009 9 2547 1 241 0.2 63.7 0.25 60 0.1 -10 CV 8 APG-1100E-SU-28-08 12/7/2009 9 2547 1 225 0.2 63.7 0.25 56 0.1 -22 CV 8 APG-1100E-SU-28-08 12/7/2009 9 2547 2 252 0.2 63.7 0.25 56 0.1 -2 CV 9 APG-1100E-SU-28-09 12/7/2009 9 2547 2 252 0.2 63.7 0.50 63 0.9 -2 CV 10 APG-1100E-SU-28-11					_			_								CWG
6 APG-1100E-SU-28-06 12/7/2009 9 2547 3 252 0.2 63.7 0.75 63 1.8 -2 CV APG-1100E-SU-28-07 12/7/2009 9 2547 1 241 0.2 63.7 0.25 60 0.1 -10 CV APG-1100E-SU-28-08 12/7/2009 9 2547 1 225 0.2 63.7 0.25 56 0.1 -22 CV APG-1100E-SU-28-09 12/7/2009 9 2547 2 252 0.2 63.7 0.50 63 0.9 -2 CV APG-1100E-SU-28-10 12/7/2009 9 2547 2 232 0.2 63.7 0.50 58 0.9 -17 CV APG-1100E-SU-28-11 12/7/2009 9 2547 2 254 0.2 63.7 0.50 58 0.9 -17 CV APG-1100E-SU-28-12 12/7/2009 9 2547 2 254 0.2 63.7 0.50 64 0.9 -1 CV APG-1100E-SU-28-12 12/7/2009 9 2547 1 251 0.2 63.7 0.50 64 0.9 -1 CV APG-1100E-SU-28-13 12/7/2009 9 2547 1 251 0.2 63.7 0.25 63 0.1 -3 CV APG-1100E-SU-28-14 12/7/2009 9 2547 1 251 0.2 63.7 0.25 59 0.1 -14 CV APG-1100E-SU-28-14 12/7/2009 9 2547 1 236 0.2 63.7 0.25 59 0.1 -14 CV APG-1100E-SU-28-15 12/7/2009 9 2547 2 223 0.2 63.7 0.50 56 0.9 -24 CV APG-1100E-SU-28-15 12/7/2009 9 2547 1 231 0.2 63.7 0.55 56 1.8 -24 CV APG-1100E-SU-28-16 12/7/2009 9 2547 1 231 0.2 63.7 0.55 56 1.8 -24 CV APG-1100E-SU-28-16 12/7/2009 9 2547 1 231 0.2 63.7 0.25 58 0.1 -18 CV APG-1100E-SU-28-16 12/7/2009 9 2547 1 231 0.2 63.7 0.25 58 0.1 -18 CV APG-1100E-SU-28-16 12/7/2009 9 2547 1 231 0.2 63.7 0.25 58 0.1 -18 CV APG-1100E-SU-28-16 12/7/2009 9 2547 1 231 0.2 63.7 0.25 58 0.1 -18 CV APG-1100E-SU-28-16 12/7/2009 9 2547 1 231 0.2 63.7 0.25 58 0.1 -18 CV APG-1100E-SU-28-16 12/7/2009 9 2547 1 231 0.2 63.7 0.25 58 0.1 -18 CV APG-1100E-SU-28-18 12/7/2009 9 2547 1 231 0.2 63.7 0.25 58 0.1 -18 CV APG-1100E-SU-28-18 12/7/2009 9 2547 1 231 0.2 63.7 0.25 58 0.1 -18 CV APG-1100E-SU-28-18 12/7/2009 9 2547 1 231 0.2 63.7 0.25 58 0.1 -18 CV APG-1100E-SU-28-18 12/7/2009 9 2547 1 231 0.2 63.7 0.25 58 0.1 -18 CV APG-1100E-SU-28-18 12/7/2009 9 2547 0 247 0.2 63.7 0.00 62 -0.8 -6				_	_			_			_					CWG
7 APG-1100E-SU-28-07 12/7/2009 9 2547 1 241 0.2 63.7 0.25 60 0.1 -10 CV 8 APG-1100E-SU-28-08 12/7/2009 9 2547 1 225 0.2 63.7 0.25 56 0.1 -22 CV 9 APG-1100E-SU-28-09 12/7/2009 9 2547 2 252 0.2 63.7 0.50 63 0.9 -2 CV 10 APG-1100E-SU-28-10 12/7/2009 9 2547 2 232 0.2 63.7 0.50 58 0.9 -17 CV 11 APG-1100E-SU-28-11 12/7/2009 9 2547 2 254 0.2 63.7 0.50 64 0.9 -1 CV 12 APG-1100E-SU-28-12 12/7/2009 9 2547 1 251 0.2 63.7 0.50 64 0.9 -1 CV 12 APG-1100E-SU-28-13 12/7/2009 9 2547 1 251 0.2 63.7 0.25 63 0.1 -3 CV 14 APG-1100E-SU-28-14 12/7/2009 9 2547 1 236 0.2 63.7 0.25 59 0.1 -14 CV 14 APG-1100E-SU-28-14 12/7/2009 9 2547 1 236 0.2 63.7 0.50 56 0.9 -24 CV 15 APG-1100E-SU-28-14 12/7/2009 9 2547 1 236 0.2 63.7 0.50 56 0.9 -24 CV 15 APG-1100E-SU-28-15 12/7/2009 9 2547 1 231 0.2 63.7 0.50 56 0.9 -24 CV 15 APG-1100E-SU-28-15 12/7/2009 9 2547 1 231 0.2 63.7 0.50 56 0.9 -24 CV 16 APG-1100E-SU-28-16 12/7/2009 9 2547 1 231 0.2 63.7 0.50 56 0.9 -24 CV 16 APG-1100E-SU-28-16 12/7/2009 9 2547 1 231 0.2 63.7 0.55 58 0.1 -18 CV 17 APG-1100E-SU-28-16 12/7/2009 9 2547 1 231 0.2 63.7 0.25 58 0.1 -18 CV 17 APG-1100E-SU-28-18 12/7/2009 9 2547 0 247 0.2 63.7 0.25 58 0.1 -18 CV 17 APG-1100E-SU-28-18 12/7/2009 9 2547 0 247 0.2 63.7 0.00 62 -0.8 -6 CV				_	_			_								CWG
8						3										CWG
9 APG-1100E-SU-28-09 12/7/2009 9 2547 2 252 0.2 63.7 0.50 63 0.9 -2 C1 10 APG-1100E-SU-28-10 12/7/2009 9 2547 2 232 0.2 63.7 0.50 58 0.9 -17 C1 11 APG-1100E-SU-28-11 12/7/2009 9 2547 2 254 0.2 63.7 0.50 64 0.9 -1 C1 12 APG-1100E-SU-28-12 12/7/2009 9 2547 1 251 0.2 63.7 0.50 64 0.9 -1 C1 13 APG-1100E-SU-28-13 12/7/2009 9 2547 1 251 0.2 63.7 0.25 63 0.1 -3 C1 14 APG-1100E-SU-28-14 12/7/2009 9 2547 1 236 0.2 63.7 0.25 59 0.1 -14 C1 15 APG-1100E-SU-28-15 12/7/2009 9 2547 2 223 0.2 63.7 0.50 56 0.9 -24 C1 16 APG-1100E-SU-28-16 12/7/2009 9 2547 1 231 0.2 63.7 0.25 58 0.1 -18 C1 17 APG-1100E-SU-28-18 12/7/2009 9 2547 0 247 0.2 63.7 0.25 58 0.1 -18 C1 18 C1 19 C1 10 C1 11 C1 12 C1 13 APG-1100E-SU-28-14 12/7/2009 9 2547 1 231 0.2 63.7 0.50 56 0.9 -24 C1 14 APG-1100E-SU-28-15 12/7/2009 9 2547 1 231 0.2 63.7 0.55 56 1.8 -24 C1 15 APG-1100E-SU-28-16 12/7/2009 9 2547 1 231 0.2 63.7 0.25 58 0.1 -18 C1 17 APG-1100E-SU-28-18 12/7/2009 9 2547 0 247 0.2 63.7 0.00 62 -0.8 -6 C1						1		_								CWG
10 APG-1100E-SU-28-10 12/7/2009 9 2547 2 232 0.2 63.7 0.50 58 0.9 -17 C1 11 APG-1100E-SU-28-11 12/7/2009 9 2547 2 254 0.2 63.7 0.50 64 0.9 -1 C1 12 APG-1100E-SU-28-12 12/7/2009 9 2547 1 251 0.2 63.7 0.25 63 0.1 -3 C1 13 APG-1100E-SU-28-13 12/7/2009 9 2547 1 236 0.2 63.7 0.25 59 0.1 -14 C1 14 APG-1100E-SU-28-14 12/7/2009 9 2547 2 223 0.2 63.7 0.50 56 0.9 -24 C1 15 APG-1100E-SU-28-15 12/7/2009 9 2547 3 222 0.2 63.7 0.50 56 0.9 -24 C1 16 APG-1100E-SU-28-16 12/7/2009 9 2547 1 231 0.2 63.7 0.25 58 0.1 -18 C1 17 APG-1100E-SU-28-18 12/7/2009 9 2547 0 247 0.2 63.7 0.00 62 -0.8 -6 C1				_	_											CWG
11 APG-1100E-SU-28-11 12/7/2009 9 2547 2 254 0.2 63.7 0.50 64 0.9 -1 CV 12 APG-1100E-SU-28-12 12/7/2009 9 2547 1 251 0.2 63.7 0.25 63 0.1 -3 CV 13 APG-1100E-SU-28-13 12/7/2009 9 2547 1 236 0.2 63.7 0.25 59 0.1 -14 CV 14 APG-1100E-SU-28-14 12/7/2009 9 2547 2 223 0.2 63.7 0.50 56 0.9 -24 CV 15 APG-1100E-SU-28-15 12/7/2009 9 2547 3 222 0.2 63.7 0.75 56 1.8 -24 CV 16 APG-1100E-SU-28-16 12/7/2009 9 2547 1 231 0.2 63.7 0.25 58 0.1 -18 CV 17 APG-1100E-SU-28-18 12/7/2009 9 2547 0 247 0.2 63.7 0.00	9	APG-1100E-SU-28-09	12/7/2009	9	2547	2	252	0.2		0.50	63	0.9				CWG
12 APG-1100E-SU-28-12 12/7/2009 9 2547 1 251 0.2 63.7 0.25 63 0.1 -3 CV 13 APG-1100E-SU-28-13 12/7/2009 9 2547 1 236 0.2 63.7 0.25 59 0.1 -14 CV 14 APG-1100E-SU-28-14 12/7/2009 9 2547 2 223 0.2 63.7 0.50 56 0.9 -24 CV 15 APG-1100E-SU-28-15 12/7/2009 9 2547 3 222 0.2 63.7 0.75 56 1.8 -24 CV 16 APG-1100E-SU-28-16 12/7/2009 9 2547 1 231 0.2 63.7 0.25 58 0.1 -18 CV 17 APG-1100E-SU-28-18 12/7/2009 9 2547 0 247 0.2 63.7 0.00 62 -0.8 -6 CV	10	APG-1100E-SU-28-10	12/7/2009	9	_	2	232	0.2			58	0.9	-17			CWG
13 APG-1100E-SU-28-13 12/7/2009 9 2547 1 236 0.2 63.7 0.25 59 0.1 -14 CV 14 APG-1100E-SU-28-14 12/7/2009 9 2547 2 223 0.2 63.7 0.50 56 0.9 -24 CV 15 APG-1100E-SU-28-15 12/7/2009 9 2547 3 222 0.2 63.7 0.75 56 1.8 -24 CV 16 APG-1100E-SU-28-16 12/7/2009 9 2547 1 231 0.2 63.7 0.25 58 0.1 -18 CV 17 APG-1100E-SU-28-18 12/7/2009 9 2547 0 247 0.2 63.7 0.00 62 -0.8 -6 CV	11	APG-1100E-SU-28-11	12/7/2009	9	-	2	254				64		-1			CWG
14 APG-1100E-SU-28-14 12/7/2009 9 2547 2 223 0.2 63.7 0.50 56 0.9 -24 CV 15 APG-1100E-SU-28-15 12/7/2009 9 2547 3 222 0.2 63.7 0.75 56 1.8 -24 CV 16 APG-1100E-SU-28-16 12/7/2009 9 2547 1 231 0.2 63.7 0.25 58 0.1 -18 CV 17 APG-1100E-SU-28-18 12/7/2009 9 2547 0 247 0.2 63.7 0.00 62 -0.8 -6 CV	12	APG-1100E-SU-28-12	12/7/2009	9	2547	1	251	0.2	63.7	0.25	63	0.1	-3			CWG
15 APG-1100E-SU-28-15 12/7/2009 9 2547 3 222 0.2 63.7 0.75 56 1.8 -24 CV 16 APG-1100E-SU-28-16 12/7/2009 9 2547 1 231 0.2 63.7 0.25 58 0.1 -18 CV 17 APG-1100E-SU-28-18 12/7/2009 9 2547 0 247 0.2 63.7 0.00 62 -0.8 -6 CV	13	APG-1100E-SU-28-13	12/7/2009	9	2547	1	236	0.2	63.7	0.25	59	0.1				CWG
16 APG-1100E-SU-28-16 12/7/2009 9 2547 1 231 0.2 63.7 0.25 58 0.1 -18 CV 17 APG-1100E-SU-28-18 12/7/2009 9 2547 0 247 0.2 63.7 0.00 62 -0.8 -6 CV	14	APG-1100E-SU-28-14	12/7/2009	9	2547	2	223	0.2	63.7	0.50	56	0.9	-24			CWG
17 APG-1100E-SU-28-18 12/7/2009 9 2547 0 247 0.2 63.7 0.00 62 -0.8 -6 CV	15	APG-1100E-SU-28-15	12/7/2009	9	2547	3	222	0.2	63.7	0.75	56	1.8	-24			CWG
	16	APG-1100E-SU-28-16	12/7/2009	9	2547	1	231	0.2	63.7	0.25	58	0.1	-18			CWG
18 APG-1100E-SIL-28-19 12/7/2009 9 2547 4 226 0.2 63.7 1.00 57 2.7 -21 CV	17	APG-1100E-SU-28-18	12/7/2009	9	2547	0	247	0.2	63.7	0.00	62	-0.8	-6			CWG
10 ALC-1100E-00-20-10 12/1/2003 3 2347 4 220 0.2 00.7 1.00 37 2.7 -21 0	18	APG-1100E-SU-28-19	12/7/2009	9	2547	4	226	0.2	63.7	1.00	57	2.7	-21			CWG

Aberdeen Proving Ground - Building 1103A Final Status Survey Results

Ludlum 2929 SN 174039 Cal	Due 08/10/10
α eff	β eff
0.3559	0.1814

Sample	Count Tim	ne (min)	Daily Bk	g Count Tir	me (min)
	4.0			10.0	

 $\begin{array}{ccc} dpm/100 cm^2 \\ \alpha & Flag & \beta & Flag \\ \hline 10 & 100 \end{array}$

			_	und Total	-	e Total			-	Counts		(dpm/100	> a flag	> β flag	Tech.
seq.#	Sample ID#	Date	Cou	nts*	Cou	ınts	Backgrou	ınd (cpm)	(cp	om)	cr	n²)	ŭ	, ha	Initial
			α	β	α	β	α	β	α	β	α	β	FLAG	FLAG	
	BLDG 1103A,SURVEY UNIT														
260	6,SOUTH FLOOR 6-1	11/5/2009	2	460	0	180	0	46	0	45	-1	-6			JF
261	SOUTH FLOOR 6-2	11/5/2009	2	460	1	129	0	46	0	32	0	-76			JF
262	SOUTH FLOOR 6-3	11/5/2009	2	460	1	160	0	46	0	40	0	-33			JF
263	SOUTH FLOOR 6-4	11/5/2009	2	460	0	152	0	46	0	38	-1	-44			JF
264	SOUTH FLOOR 6-5	11/5/2009	2	460	0	147	0	46	0	37	-1	-51			JF
265	SOUTH FLOOR 6-6	11/5/2009	2	460	0	159	0	46	0	40	-1	-34			JF
266	SOUTH FLOOR 6-7	11/5/2009	2	460	0	163	0	46	0	41	-1	-29			JF
267	SOUTH FLOOR 6-8	11/5/2009	2	460	1	210	0	46	0	53	0	36			JF
268	SOUTH FLOOR 6-9	11/5/2009	2	460	1	179	0	46	0	45	0	-7			JF
269	SOUTH FLOOR 6-10	11/5/2009	2	460	0	180	0	46	0	45	-1	-6			JF
270	SOUTH FLOOR 6-11	11/5/2009	2	460	0	151	0	46	0	38	-1	-45			JF
271	SOUTH FLOOR 6-12	11/5/2009	2	460	0	139	0	46	0	35	-1	-62			JF
272	SOUTH FLOOR 6-13	11/5/2009	2	460	1	170	0	46	0	43	0	-19			JF
273	SOUTH FLOOR 6-14	11/5/2009	2	460	1	162	0	46	0	41	0	-30			JF
274	SOUTH FLOOR 6-15	11/5/2009	2	460	0	178	0	46	0	45	-1	-8			JF
275	SOUTH FLOOR 6-16	11/5/2009	2	460	0	180	0	46	0	45	-1	-6			JF
276	SOUTH FLOOR 6-17	11/5/2009	2	460	0	170	0	46	0	43	-1	-19			JF
277	SOUTH FLOOR 6-18	11/5/2009	2	460	2	188	0	46	1	47	1	6			JF
278	SOUTH FLOOR 6-19	11/5/2009	2	460	0	159	0	46	0	40	-1	-34			JF
279	SOUTH FLOOR 6-20	11/5/2009	2	460	0	132	0	46	0	33	-1	-72			JF

Ludlum 2929	Ludlum 2929 SN 196230 Cal Due 1							
	β eff							
0	0.3363							

Sample	Count Ti	me (min)	Daily B	kg Count T	ime (min)
	4.0			10.0	

	α σπ	b en		Sample	Count 11	me (min)	Daily B	kg Count i	ime (min)						
	0.2845	0.3363			4.0			10.0					dpm/1	00 cm ²	
													α Flag	β Flag	
													10	100	
			Back	ground	Samp	le Total								0.41	Tech.
seq. #	Sample ID#	Date		Counts*		unts	Backgrou	und (cpm)	Sample Co	unts (cpm)	Sample (dp	m/100 cm ²)	> a flag	> β flag	Initial
			α	β	α	β	α	β	α	β	α	β	FLAG	FLAG	
1	APG-1103A-SU-10-01	11/19/2009	7	2181	2	217	0.2	54.5	0.50	54	1.1	-1			CWG
2	APG-1103A-SU-10-02	11/19/2009	7	2181	1	209	0.2	54.5	0.25	52	0.3	-7			CWG
3	APG-1103A-SU-10-03	11/19/2009	7	2181	1	218	0.2	54.5	0.25	55	0.3	0			CWG
4	APG-1103A-SU-10-04	11/19/2009	7	2181	1	194	0.2	54.5	0.25	49	0.3	-18			CWG
5	APG-1103A-SU-10-05	11/19/2009	7	2181	1	200	0.2	54.5	0.25	50	0.3	-13			CWG
6	APG-1103A-SU-10-06	11/19/2009	7	2181	1	194	0.2	54.5	0.25	49	0.3	-18			CWG
7	APG-1103A-SU-10-07	11/19/2009	7	2181	0	212	0.2	54.5	0.00	53	-0.6	-5			CWG
8	APG-1103A-SU-10-08	11/19/2009	7	2181	0	221	0.2	54.5	0.00	55	-0.6	2			CWG
9	APG-1103A-SU-10-09	11/19/2009	7	2181	0	206	0.2	54.5	0.00	52	-0.6	-9			CWG
10	APG-1103A-SU-10-10	11/19/2009	7	2181	0	199	0.2	54.5	0.00	50	-0.6	-14			CWG
11	APG-1103A-SU-10-11	11/19/2009	7	2181	1	242	0.2	54.5	0.25	61	0.3	18			CWG
12	APG-1103A-SU-10-12	11/19/2009	7	2181	1	223	0.2	54.5	0.25	56	0.3	4			CWG
13	APG-1103A-SU-10-13	11/19/2009	7	2181	1	218	0.2	54.5	0.25	55	0.3	0			CWG
14	APG-1103A-SU-10-14	11/19/2009	7	2181	1	220	0.2	54.5	0.25	55	0.3	1			CWG
15	APG-1103A-SU-10-15	11/19/2009	7	2181	0	216	0.2	54.5	0.00	54	-0.6	-2			CWG
16	APG-1103A-SU-10-16	11/19/2009	7	2181	1	200	0.2	54.5	0.25	50	0.3	-13			CWG
17	APG-1103A-SU-10-17	11/19/2009	7	2181	1	196	0.2	54.5	0.25	49	0.3	-16			CWG
18	APG-1103A-SU-10-18	11/19/2009	7	2181	0	206	0.2	54.5	0.00	52	-0.6	-9			CWG
19	APG-1103A-SU-10-19	11/19/2009	7	2181	2	222	0.2	54.5	0.50	56	1.1	3			CWG
20	APG-1103A-SU-10-20	11/19/2009	7	2181	3	201	0.2	54.5	0.75	50	2.0	-13			CWG
21	APG-1103A-SU-11-01	11/19/2009	7	2181	0	198	0.2	54.5	0.00	50	-0.6	-15			CWG
22	APG-1103A-SU-11-02	11/19/2009	7	2181	1	210	0.2	54.5	0.25	53	0.3	-6			CWG
23	APG-1103A-SU-11-03	11/19/2009	7	2181	11	241	0.2	54.5	2.75	60	9.0	17			CWG
24	APG-1103A-SU-11-04	11/19/2009	7	2181	1	232	0.2	54.5	0.25	58	0.3	10			CWG
25	APG-1103A-SU-11-05	11/19/2009	7	2181	1	188	0.2	54.5	0.25	47	0.3	-22			CWG
26	APG-1103A-SU-11-06	11/19/2009	7	2181	0	212	0.2	54.5	0.00	53	-0.6	-5			CWG
27	APG-1103A-SU-11-07	11/19/2009	7	2181	1	216	0.2	54.5	0.25	54	0.3	-2			CWG
28	APG-1103A-SU-11-08	11/19/2009	7	2181	1	197	0.2	54.5	0.25	49	0.3	-16			CWG
29	APG-1103A-SU-11-09	11/19/2009	7	2181	0	227	0.2	54.5	0.00	57	-0.6	7			CWG
30	APG-1103A-SU-11-10	11/19/2009	7	2181	0	176	0.2	54.5	0.00	44	-0.6	-31			CWG
31	APG-1103A-SU-11-11	11/19/2009	7	2181	3	218	0.2	54.5	0.75	55	2.0	0			CWG
32	APG-1103A-SU-11-12	11/19/2009	7	2181	1	189	0.2	54.5	0.25	47	0.3	-22			CWG
33	APG-1103A-SU-11-13	11/19/2009	7	2181	0	219	0.2	54.5	0.00	55	-0.6	1			CWG
34	APG-1103A-SU-11-14	11/19/2009	7	2181	0	230	0.2	54.5	0.00	58	-0.6	9			CWG
35	APG-1103A-SU-11-15	11/19/2009	7	2181	1	220	0.2	54.5	0.25	55	0.3	1			CWG
36	APG-1103A-SU-11-16	11/19/2009	7	2181	3	209	0.2	54.5	0.75	52	2.0	-7			CWG
37	APG-1103A-SU-11-17	11/19/2009	7	2181	0	212	0.2	54.5	0.00	53	-0.6	-5			CWG
38	APG-1103A-SU-11-18	11/19/2009	7	2181	0	210	0.2	54.5	0.00	53	-0.6	-6			CWG

Ludlum 2929	SN 196230	Cal Due 1	2/08/09
	β eff		
(0.3363		

Sample	Count Ti	me (min)	Daily B	kg Count T	ime (min)
	4.0			10.0	

dpm/100 cm² α Flag β Flag

													10	100	
			Back	ground	Samp	le Total							> a flag	. 0 (10.00	Tech.
seq.#	Sample ID#	Date	Total	Counts*	Co	unts	Backgrou	und (cpm)	Sample Co	unts (cpm)	Sample (dp	om/100 cm ²)	> a nay	> β flag	Initial
	·		α	β	α	β	α	β	α	β	α	β	FLAG	FLAG	
39	APG-1103A-SU-12-01	11/19/2009	7	2181	2	188	0.2	54.5	0.50	47	1.1	-22			CWG
40	APG-1103A-SU-12-02 N/A	11/19/2009	7	2181	0	215	0.2	54.5	0.00	54	-0.6	-2			CWG
41	APG-1103A-SU-12-03	11/19/2009	7	2181	0	222	0.2	54.5	0.00	56	-0.6	3			CWG
42	APG-1103A-SU-12-04	11/19/2009	7	2181	0	210	0.2	54.5	0.00	53	-0.6	-6			CWG
43	APG-1103A-SU-12-05	11/19/2009	7	2181	1	233	0.2	54.5	0.25	58	0.3	11			CWG
44	APG-1103A-SU-12-06	11/19/2009	7	2181	0	222	0.2	54.5	0.00	56	-0.6	3			CWG
45	APG-1103A-SU-12-07	11/19/2009	7	2181	0	208	0.2	54.5	0.00	52	-0.6	-8			CWG
46	APG-1103A-SU-12-08	11/19/2009	7	2181	1	227	0.2	54.5	0.25	57	0.3	7			CWG
47	APG-1103A-SU-12-09	11/19/2009	7	2181	0	194	0.2	54.5	0.00	49	-0.6	-18			CWG
48	APG-1103A-SU-12-10	11/19/2009	7	2181	0	185	0.2	54.5	0.00	46	-0.6	-25			CWG
49	APG-1103A-SU-12-11	11/19/2009	7	2181	2	215	0.2	54.5	0.50	54	1.1	-2			CWG
50	APG-1103A-SU-12-12	11/19/2009	7	2181	2	206	0.2	54.5	0.50	52	1.1	-9			CWG
51	APG-1103A-SU-12-13	11/19/2009	7	2181	1	231	0.2	54.5	0.25	58	0.3	10			CWG
52	APG-1103A-SU-12-14 N/A	11/19/2009	7	2181	0	204	0.2	54.5	0.00	51	-0.6	-10			CWG
53	APG-1103A-SU-12-15	11/19/2009	7	2181	0	249	0.2	54.5	0.00	62	-0.6	23			CWG
54	APG-1103A-SU-12-16	11/19/2009	7	2181	0	211	0.2	54.5	0.00	53	-0.6	-5			CWG
55	APG-1103A-SU-12-17	11/19/2009	7	2181	0	205	0.2	54.5	0.00	51	-0.6	-10			CWG
501	APG-1103A-SU-12-18	11/19/2009	7	2181	0	206	0.2	54.5	0.00	52	-0.6	-9			CWG
502	APG-1103A-SU-12-19	11/19/2009	7	2181	1	189	0.2	54.5	0.25	47	0.3	-22			CWG
503	APG-1103A-SU-12-20	11/19/2009	7	2181	0	221	0.2	54.5	0.00	55	-0.6	2			CWG
504	APG-1103A-SU-12A-01	11/19/2009	7	2181	0	217	0.2	54.5	0.00	54	-0.6	-1			CWG
505	APG-1103A-SU-12A-02	11/19/2009	7	2181	0	211	0.2	54.5	0.00	53	-0.6	-5			CWG
506	APG-1103A-SU-12A-03	11/19/2009	7	2181	2	192	0.2	54.5	0.50	48	1.1	-19			CWG
507	APG-1103A-SU-12A-04	11/19/2009	7	2181	0	208	0.2	54.5	0.00	52	-0.6	-8			CWG
508	APG-1103A-SU-12A-05	11/19/2009	7	2181	0	231	0.2	54.5	0.00	58	-0.6	10			CWG
509	APG-1103A-SU-12A-06	11/19/2009	7	2181	0	195	0.2	54.5	0.00	49	-0.6	-17			CWG
510	APG-1103A-SU-12A-07	11/19/2009	7	2181	1	213	0.2	54.5	0.25	53	0.3	-4			CWG
511	APG-1103A-SU-12A-08	11/19/2009	7	2181	0	231	0.2	54.5	0.00	58	-0.6	10			CWG
512	APG-1103A-SU-12A-09	11/19/2009	7	2181	0	225	0.2	54.5	0.00	56	-0.6	5			CWG
513	APG-1103A-SU-12A-10	11/19/2009	7	2181	1	212	0.2	54.5	0.25	53	0.3	-5			CWG
514	APG-1103A-SU-12A-11	11/20/2009	10	2181	2	199	0.3	54.5	0.50	50	0.9	-14			CWG
515	APG-1103A-SU-12A-12	11/20/2009	10	2181	2	227	0.3	54.5	0.50	57	0.9	7			CWG
516	APG-1103A-SU-12A-13	11/20/2009	10	2181	0	237	0.3	54.5	0.00	59	-0.9	14			CWG
517	APG-1103A-SU-12A-14	11/20/2009	10	2181	1	218	0.3	54.5	0.25	55	0.0	0			CWG
518	APG-1103A-SU-12A-15	11/20/2009	10	2181	4	223	0.3	54.5	1.00	56	2.6	4			CWG
519	APG-1103A-SU-12A-16	11/20/2009	10	2181	0	213	0.3	54.5	0.00	53	-0.9	-4			CWG
520	APG-1103A-SU-12A-17	11/20/2009	10	2181	3	222	0.3	54.5	0.75	56	1.8	3			CWG
521	APG-1103A-SU-12A-18	11/20/2009	10	2181	1	246	0.3	54.5	0.25	62	0.0	21			CWG

Ludlum 29	Ludlum 2929 SN 196230 Cal Due 1							
	α eff							
	0.3363							

Sample Count Time (min)	Daily Bkg Count Time (min)
4.0	10.0

dpm/100 cm² α Flag β Fla

β Flag

													10	100	
			Back	ground	Samp	le Total									Tech.
seq.#	Sample ID#	Date		Counts*	•	unts	Backgrou	und (cpm)	Sample Co	unts (cpm)	Sample (dp	m/100 cm ²)	> a flag	> β flag	Initial
554:			α	В	α	В	α	β	α	β	α	В	FLAG	FLAG	
522	APG-1103A-SU-12A-19	11/20/2009	10	2181	0	204	0.3	54.5	0.00	51	-0.9	-10			CWG
523	APG-1103A-SU-12A-20	11/20/2009	10	2181	2	259	0.3	54.5	0.50	65	0.9	30			CWG
524	APG-1103A-SU-12B-01	11/20/2009	10	2181	3	219	0.3	54.5	0.75	55	1.8	1			CWG
525	APG-1103A-SU-12B-02	11/20/2009	10	2181	4	243	0.3	54.5	1.00	61	2.6	19			CWG
526	APG-1103A-SU-12B-03	11/20/2009	10	2181	4	227	0.3	54.5	1.00	57	2.6	7			CWG
527	APG-1103A-SU-12B-04	11/20/2009	10	2181	6	225	0.3	54.5	1.50	56	4.4	5			CWG
528	APG-1103A-SU-12B-05	11/20/2009	10	2181	1	222	0.3	54.5	0.25	56	0.0	3			CWG
529	APG-1103A-SU-12B-06	11/20/2009	10	2181	1	230	0.3	54.5	0.25	58	0.0	9			CWG
530	APG-1103A-SU-12B-07	11/20/2009	10	2181	8	210	0.3	54.5	2.00	53	6.2	-6			CWG
531	APG-1103A-SU-12B-08	11/20/2009	10	2181	5	250	0.3	54.5	1.25	63	3.5	24			CWG
532	APG-1103A-SU-12B-09	11/20/2009	10	2181	3	216	0.3	54.5	0.75	54	1.8	-2			CWG
533	APG-1103A-SU-12B-10	11/20/2009	10	2181	1	198	0.3	54.5	0.25	50	0.0	-15			CWG
534	APG-1103A-SU-12B-11	11/20/2009	10	2181	2	215	0.3	54.5	0.50	54	0.9	-2			CWG
535	APG-1103A-SU-12B-12	11/20/2009	10	2181	12	249	0.3	54.5	3.00	62	9.7	23			CWG
536	APG-1103A-SU-12B-13	11/20/2009	10	2181	6	211	0.3	54.5	1.50	53	4.4	-5			CWG
537	APG-1103A-SU-12B-14	11/20/2009	10	2181	6	259	0.3	54.5	1.50	65	4.4	30			CWG
538	APG-1103A-SU-12B-15	11/20/2009	10	2181	2	221	0.3	54.5	0.50	55	0.9	2			CWG
539	APG-1103A-SU-12B-16	11/20/2009	10	2181	0	210	0.3	54.5	0.00	53	-0.9	-6			CWG
540	APG-1103A-SU-12B-17	11/20/2009	10	2181	1	199	0.3	54.5	0.25	50	0.0	-14			CWG
541	APG-1103A-SU-12B-18	11/20/2009	10	2181	7	242	0.3	54.5	1.75	61	5.3	18			CWG
542	APG-1103A-SU-12B-19	11/20/2009	10	2181	1	212	0.3	54.5	0.25	53	0.0	-5			CWG
543	APG-1103A-SU-12B-20	11/20/2009	10	2181	0	192	0.3	54.5	0.00	48	-0.9	-19			CWG
544	APG-1103A-SU-13-01	11/20/2009	10	2181	1	207	0.3	54.5	0.25	52	0.0	-8			CWG
545	APG-1103A-SU-13-02	11/20/2009	10	2181	1	224	0.3	54.5	0.25	56	0.0	4			CWG
546	APG-1103A-SU-13-03	11/20/2009	10	2181	2	207	0.3	54.5	0.50	52	0.9	-8			CWG
547	APG-1103A-SU-13-04	11/20/2009	10	2181	1	208	0.3	54.5	0.25	52	0.0	-8			CWG
548	APG-1103A-SU-13-05	11/20/2009	10	2181	0	200	0.3	54.5	0.00	50	-0.9	-13			CWG
549	APG-1103A-SU-13-06	11/20/2009	10	2181	4	217	0.3	54.5	1.00	54	2.6	-1			CWG
550	APG-1103A-SU-13-07	11/20/2009	10	2181	1	214	0.3	54.5	0.25	54	0.0	-3			CWG
551	APG-1103A-SU-13-08	11/20/2009	10	2181	2	207	0.3	54.5	0.50	52	0.9	-8			CWG
552	APG-1103A-SU-13-09	11/20/2009	10	2181	1	207	0.3	54.5	0.25	52	0.0	-8			CWG
553	APG-1103A-SU-13-10	11/20/2009	10	2181	1	237	0.3	54.5	0.25	59	0.0	14			CWG
554	APG-1103A-SU-13-11	11/20/2009	10	2181	3	226	0.3	54.5	0.75	57	1.8	6			CWG
555	APG-1103A-SU-13-12	11/20/2009	10	2181	1	205	0.3	54.5	0.25	51	0.0	-10			CWG
556	APG-1103A-SU-13-13	11/20/2009	10	2181	0	231	0.3	54.5	0.00	58	-0.9	10			CWG
557	APG-1103A-SU-13-14	11/20/2009	10	2181	0	223	0.3	54.5	0.00	56	-0.9	4			CWG
558	APG-1103A-SU-13-15	11/20/2009	10	2181	0	222	0.3	54.5	0.00	56	-0.9	3			CWG
559	APG-1103A-SU-13-16	11/20/2009	10	2181	2	218	0.3	54.5	0.50	55	0.9	0			CWG

Ludlum 2929	SN 196230	Cal Due 1	12/08/09						
	β eff								
0	0.2845								

Sample Count Time (min)	Daily Bkg Count Time (min)
4.0	10.0

dpm/100 cm²

L	0.20.0	0.0000					<u> </u>						α Flag	β Flag	
													10	100	
			Back	ground	Samp	e Total									Tech.
seq.#	Sample ID#	Date		Counts*	•	unts	Backgrou	ınd (cpm)	Sample Co	unts (cpm)	Sample (dp	m/100 cm ²)	> a flag	> β flag	Initial
55q. <i>ii</i>	Gampio is:	Date	α	В	α	β	α	В	α	β	α	В В	FLAG	FLAG	miliai
560	APG-1103A-SU-13-17	11/20/2009	10	2181	1	220	0.3	54.5	0.25	55	0.0	1			CWG
561	APG-1103A-SU-13-18	11/20/2009	10	2181	2	232	0.3	54.5	0.50	58	0.9	10			CWG
562	APG-1103A-SU-13-19	11/20/2009	10	2181	1	213	0.3	54.5	0.25	53	0.0	-4			CWG
563	APG-1103A-SU-13-20	11/20/2009	10	2181	1	228	0.3	54.5	0.25	57	0.0	7			CWG
564	APG-1103A-SU-29-01	11/16/2009	9	2171	0	221	0.2	54.3	0.00	55	-0.8	3			CWG
565	APG-1103A-SU-29-02	11/16/2009	9	2171	0	224	0.2	54.3	0.00	56	-0.8	5			CWG
566	APG-1103A-SU-29-03	11/16/2009	9	2171	1	212	0.2	54.3	0.25	53	0.1	-4			CWG
567	APG-1103A-SU-29-04	11/16/2009	9	2171	0	222	0.2	54.3	0.00	56	-0.8	4			CWG
568	APG-1103A-SU-29-05	11/16/2009	9	2171	0	203	0.2	54.3	0.00	51	-0.8	-10			CWG
569	APG-1103A-SU-29-06	11/16/2009	9	2171	0	216	0.2	54.3	0.00	54	-0.8	-1			CWG
570	APG-1103A-SU-29-07	11/16/2009	9	2171	2	230	0.2	54.3	0.50	58	1.0	10			CWG
571	APG-1103A-SU-29-08	11/16/2009	9	2171	0	208	0.2	54.3	0.00	52	-0.8	-7			CWG
572	APG-1103A-SU-29-09	11/16/2009	9	2171	2	199	0.2	54.3	0.50	50	1.0	-13			CWG
573	APG-1103A-SU-29-10	11/16/2009	9	2171	4	209	0.2	54.3	1.00	52	2.7	-6			CWG
574	APG-1103A-SU-29-11	11/16/2009	9	2171	0	209	0.2	54.3	0.00	52	-0.8	-6			CWG
575	APG-1103A-SU-29-12	11/16/2009	9	2171	0	203	0.2	54.3	0.00	51	-0.8	-10			CWG
576	APG-1103A-SU-29-13	11/16/2009	9	2171	3	208	0.2	54.3	0.75	52	1.8	-7			CWG
577	APG-1103A-SU-29-14	11/16/2009	9	2171	0	213	0.2	54.3	0.00	53	-0.8	-3			CWG
578	APG-1103A-SU-29-15	11/16/2009	9	2171	3	226	0.2	54.3	0.75	57	1.8	7			CWG
579	APG-1103A-SU-29-16	11/16/2009	9	2171	0	234	0.2	54.3	0.00	59	-0.8	13			CWG
580	APG-1103A-SU-29-17	11/16/2009	9	2171	2	217	0.2	54.3	0.50	54	1.0	0			CWG
581	APG-1103A-SU-29-18	11/16/2009	9	2171	1	214	0.2	54.3	0.25	54	0.1	-2			CWG
582	APG-1103A-SU-29-19	11/16/2009	9	2171	0	205	0.2	54.3	0.00	51	-0.8	-9			CWG
583	APG-1103A-SU-29-20	11/16/2009	9	2171	1	230	0.2	54.3	0.25	58	0.1	10			CWG
320	APG-1103A-SU5-01	11/12/2009	7	2007	2	195	0.2	50.2	0.50	49	1.1	-4			CWG
321	APG-1103A-SU5-02	11/12/2009	7	2007	1	223	0.2	50.2	0.25	56	0.3	17			CWG
322	APG-1103A-SU5-03	11/12/2009	7	2007	1	232	0.2	50.2	0.25	58	0.3	23			CWG
323	APG-1103A-SU5-04	11/12/2009	7	2007	0	222	0.2	50.2	0.00	56	-0.6	16			CWG
324	APG-1103A-SU5-05	11/12/2009	7	2007	0	212	0.2	50.2	0.00	53	-0.6	8			CWG
325	APG-1103A-SU5-06	11/12/2009	7	2007	0	214	0.2	50.2	0.00	54	-0.6	10			CWG
326	APG-1103A-SU5-07	11/12/2009	7	2007	2	208	0.2	50.2	0.50	52	1.1	5			CWG
327	APG-1103A-SU5-08	11/12/2009	7	2007	1	225	0.2	50.2	0.25	56	0.3	18			CWG
328	APG-1103A-SU5-09	11/12/2009	7	2007	1	216	0.2	50.2	0.25	54	0.3	11			CWG
329	APG-1103A-SU5-10	11/12/2009	7	2007	1	216	0.2	50.2	0.25	54	0.3	11			CWG
330	APG-1103A-SU5-11	11/12/2009	7	2007	0	242	0.2	50.2	0.00	61	-0.6	31			CWG
331	APG-1103A-SU5-12	11/12/2009	7	2007	1	195	0.2	50.2	0.25	49	0.3	-4			CWG
332	APG-1103A-SU5-13	11/12/2009	7	2007	1	198	0.2	50.2	0.25	50	0.3	-2			CWG
333	APG-1103A-SU5-14	11/12/2009	7	2007	0	189	0.2	50.2	0.00	47	-0.6	-9			CWG

	Ludlum 2929 SN 196230 Cal Di α eff	β eff		Sample	Count Ti	me (min)	Daily B	kg Count T	ime (min)	1					
	0.2845	0.3363			4.0	1	, ,	10.0]				dpm/1	00 cm ²	
			ļl							_			α Flag	β Flag	
													10	100	
			Back	ground	Samp	le Total							> a flag	> β flag	Tech.
seq. #	Sample ID#	Date	Total	Counts*	Co	unts	Backgrou	und (cpm)	Sample Co	unts (cpm)	Sample (dp	om/100 cm²)	J		Initial
			α	β	α	β	α	β	α	β	α	β	FLAG	FLAG	
334	APG-1103A-SU5-15	11/12/2009	7	2007	0	212	0.2	50.2	0.00	53	-0.6	8			CWG
335	APG-1103A-SU5-16	11/12/2009	7	2007	2	211	0.2	50.2	0.50	53	1.1	8			CWG
336	APG-1103A-SU5-17	11/12/2009	7	2007	1	194	0.2	50.2	0.25	49	0.3	-5			CWG
337	APG-1103A-SU5-18	11/12/2009	7	2007	0	196	0.2	50.2	0.00	49	-0.6	-3			CWG
338	APG-1103A-SU5-19	11/12/2009	7	2007	0	221	0.2	50.2	0.00	55	-0.6	15			CWG
339	APG-1103A-SU5-20	11/12/2009	7	2007	0	211	0.2	50.2	0.00	53	-0.6	8			CWG
340	APG-1103A-SU7-01	11/13/2009	5	2145	2	213	0.1	53.6	0.50	53	1.3	-1			CWG
341	APG-1103A-SU7-02	11/13/2009	5	2145	0	215	0.1	53.6	0.00	54	-0.4	0			CWG
342	APG-1103A-SU7-03	11/13/2009	5	2145	1	220	0.1	53.6	0.25	55	0.4	4			CWG
343	APG-1103A-SU7-04	11/13/2009	5	2145	0	230	0.1	53.6	0.00	58	-0.4	12			CWG
344	APG-1103A-SU7-05	11/13/2009	5	2145	3	205	0.1	53.6	0.75	51	2.2	-7			CWG
345	APG-1103A-SU7-06	11/13/2009	5	2145	0	211	0.1	53.6	0.00	53	-0.4	-3			CWG
346	APG-1103A-SU7-07	11/13/2009	5	2145	0	205	0.1	53.6	0.00	51	-0.4	-7			CWG
347	APG-1103A-SU7-08	11/13/2009	5	2145	1	211	0.1	53.6	0.25	53	0.4	-3			CWG
348	APG-1103A-SU7-09	11/13/2009	5	2145	1	215	0.1	53.6	0.25	54	0.4	0			CWG
349	APG-1103A-SU7-10	11/13/2009	5	2145	0	203	0.1	53.6	0.00	51	-0.4	-9			CWG
350	APG-1103A-SU7-11	11/13/2009	5	2145	0	196	0.1	53.6	0.00	49	-0.4	-14			CWG
351	APG-1103A-SU7-12	11/13/2009	5	2145	0	209	0.1	53.6	0.00	52	-0.4	-4			CWG
352	APG-1103A-SU7-13	11/13/2009	5	2145	0	193	0.1	53.6	0.00	48	-0.4	-16			CWG
353	APG-1103A-SU7-14	11/13/2009	5	2145	0	204	0.1	53.6	0.00	51	-0.4	-8			CWG
354	APG-1103A-SU7-15	11/13/2009	5	2145	0	217	0.1	53.6	0.00	54	-0.4	2			CWG
355	APG-1103A-SU7-16	11/13/2009	5	2145	0	223	0.1	53.6	0.00	56	-0.4	6			CWG
356	APG-1103A-SU7-17	11/13/2009	5	2145	0	226	0.1	53.6	0.00	57	-0.4	9			CWG
357	APG-1103A-SU7-18	11/13/2009	5	2145	0	216	0.1	53.6	0.00	54	-0.4	1			CWG
358	APG-1103A-SU7-18/EW	11/13/2009	5	2145	0	213	0.1	53.6	0.00	53	-0.4	-1			CWG
359	APG-1103A-SU7-19	11/13/2009	5	2145	0	205	0.1	53.6	0.00	51	-0.4	-7			CWG
360	APG-1103A-SU7-20	11/13/2009	5	2145	3	211	0.1	53.6	0.75	53	2.2	-3			CWG
361	APG-1103A-SU8-01	11/16/2009	9	2171	0	213	0.2	54.3	0.00	53	-0.8	-3			CWG
362	APG-1103A-SU8-02	11/16/2009	9	2171	1	198	0.2	54.3	0.25	50	0.1	-14			CWG
363	APG-1103A-SU8-03	11/16/2009	9	2171	0	216	0.2	54.3	0.00	54	-0.8	-1			CWG
364	APG-1103A-SU8-04	11/16/2009	9	2171	2	194	0.2	54.3	0.50	49	1.0	-17			CWG
365	APG-1103A-SU8-05	11/16/2009	9	2171	2	182	0.2	54.3	0.50	46	1.0	-26			CWG
366	APG-1103A-SU8-06	11/16/2009	9	2171	0	197	0.2	54.3	0.00	49	-0.8	-15			CWG
367	APG-1103A-SU8-07	11/16/2009	9	2171	26	246	0.2	54.3	6.50	62	22.1	21	FLAG		CWG
368	APG-1103A-SU8-08	11/16/2009	9	2171	1	227	0.2	54.3	0.25	57	0.1	7			CWG
369	APG-1103A-SU8-09	11/16/2009	9	2171	0	222	0.2	54.3	0.00	56	-0.8	4			CWG
370	APG-1103A-SU8-10	11/16/2009	9	2171	5	206	0.2	54.3	1.25	52	3.6	-8			CWG
371	VDC-1103V-SI I8-11	11/16/2000	0	2171	0	108	0.2	5/2	0.00	50	-O 8	1.1			CWG

371

APG-1103A-SU8-11

0.2

54.3

0.00

-0.8

CWG

198

2171

11/16/2009

Ludlum 2929	Ludlum 2929 SN 196230 Cal Due 1								
	α eff		β eff						
	0.2845								

Sample Count Time (m	in)	Daily Bkg Count Time (min)							
4.0			10.0						

	α επ	p en		Sample	Count II	me (min)	Daily E	skg Count I	ime (min)						
	0.2845	0.3363			4.0			10.0					dpm/1	00 cm ²	
				_									α Flag	β Flag	
													10	100	
			Back	ground	Samp	le Total						•		0.41	Tech.
seq.#	Sample ID#	Date	Total	Counts*	Co	unts	Backgro	und (cpm)	Sample Co	unts (cpm)	Sample (dp	m/100 cm ²)	> a flag	> β flag	Initial
•	•		α	β	α	β	α	β	ά	β	α	β	FLAG	FLAG	
372	APG-1103A-SU8-12	11/16/2009	9	2171	1	227	0.2	54.3	0.25	57	0.1	7			CWG
373	APG-1103A-SU8-13	11/16/2009	9	2171	0	244	0.2	54.3	0.00	61	-0.8	20			CWG
374	APG-1103A-SU8-14	11/16/2009	9	2171	0	223	0.2	54.3	0.00	56	-0.8	4			CWG
375	APG-1103A-SU8-15	11/16/2009	9	2171	1	204	0.2	54.3	0.25	51	0.1	-10			CWG
376	APG-1103A-SU8-16	11/16/2009	9	2171	1	215	0.2	54.3	0.25	54	0.1	-2			CWG
377	APG-1103A-SU8-17	11/16/2009	9	2171	0	240	0.2	54.3	0.00	60	-0.8	17			CWG
378	APG-1103A-SU8-18	11/16/2009	9	2171	1	224	0.2	54.3	0.25	56	0.1	5			CWG
379	APG-1103A-SU8-19	11/16/2009	9	2171	1	249	0.2	54.3	0.25	62	0.1	24			CWG
380	APG-1103A-SU8-20	11/16/2009	9	2171	0	231	0.2	54.3	0.00	58	-0.8	10			CWG
381	APG-1103A-SU-9-01	11/19/2009	7	2181	1	194	0.2	54.5	0.25	49	0.3	-18			CWG
382	APG-1103A-SU-9-02	11/19/2009	7	2181	1	218	0.2	54.5	0.25	55	0.3	0			CWG
383	APG-1103A-SU-9-03	11/19/2009	7	2181	0	206	0.2	54.5	0.00	52	-0.6	-9			CWG
384	APG-1103A-SU-9-04	11/19/2009	7	2181	2	221	0.2	54.5	0.50	55	1.1	2			CWG
385	APG-1103A-SU-9-05	11/19/2009	7	2181	1	239	0.2	54.5	0.25	60	0.3	16			CWG
386	APG-1103A-SU-9-06	11/19/2009	7	2181	2	188	0.2	54.5	0.50	47	1.1	-22			CWG
387	APG-1103A-SU-9-07	11/19/2009	7	2181	0	233	0.2	54.5	0.00	58	-0.6	11			CWG
388	APG-1103A-SU-9-08	11/19/2009	7	2181	1	230	0.2	54.5	0.25	58	0.3	9			CWG
389	APG-1103A-SU-9-09	11/19/2009	7	2181	2	231	0.2	54.5	0.50	58	1.1	10			CWG
390	APG-1103A-SU-9-10	11/19/2009	7	2181	2	229	0.2	54.5	0.50	57	1.1	8			CWG
391	APG-1103A-SU-9-11	11/19/2009	7	2181	1	226	0.2	54.5	0.25	57	0.3	6			CWG
392	APG-1103A-SU-9-12	11/19/2009	7	2181	0	228	0.2	54.5	0.00	57	-0.6	7			CWG
393	APG-1103A-SU-9-13	11/19/2009	7	2181	1	200	0.2	54.5	0.25	50	0.3	-13			CWG
394	APG-1103A-SU-9-14	11/19/2009	7	2181	1	192	0.2	54.5	0.25	48	0.3	-19			CWG
395	APG-1103A-SU-9-15	11/19/2009	7	2181	0	225	0.2	54.5	0.00	56	-0.6	5			CWG
396	APG-1103A-SU-9-16	11/19/2009	7	2181	1	204	0.2	54.5	0.25	51	0.3	-10			CWG
397	APG-1103A-SU-9-17	11/19/2009	7	2181	1	210	0.2	54.5	0.25	53	0.3	-6			CWG
398	APG-1103A-SU-9-18	11/19/2009	7	2181	1	195	0.2	54.5	0.25	49	0.3	-17			CWG
399	APG-1103A-SU-9-19	11/19/2009	7	2181	0	221	0.2	54.5	0.00	55	-0.6	2			CWG
400	APG-1103A-SU-9-20	11/19/2009	7	2181	0	211	0.2	54.5	0.00	53	-0.6	-5			CWG
401	APG-1103B-SU-26-001	11/16/2009	9	2171	1	223	0.2	54.3	0.25	56	0.1	4			CWG
402	APG-1103B-SU-26-002	11/16/2009	9	2171	0	202	0.2	54.3	0.00	51	-0.8	-11			CWG
403	APG-1103B-SU-26-003	11/16/2009	9	2171	1	202	0.2	54.3	0.25	51	0.1	-11			CWG
404	APG-1103B-SU-26-004	11/16/2009	9	2171	2	205	0.2	54.3	0.50	51	1.0	-9			CWG
405	APG-1103B-SU-26-005	11/16/2009	9	2171	1	198	0.2	54.3	0.25	50	0.1	-14			CWG
406	APG-1103B-SU-26-006	11/16/2009	9	2171	1	191	0.2	54.3	0.25	48	0.1	-19			CWG
407	APG-1103B-SU-26-007	11/16/2009	9	2171	1	202	0.2	54.3	0.25	51	0.1	-11			CWG
408	APG-1103B-SU-26-008	11/16/2009	9	2171	0	215	0.2	54.3	0.00	54	-0.8	-2			CWG
409	APG-1103B-SU-26-009	11/16/2009	9	2171	1	197	0.2	54.3	0.25	49	0.1	-15			CWG

Aberdeen Proving Ground - Building 1103A Final Status Survey Results

Ludlum 2929 SN 196230 Cal Due 1	
lpha eff	β eff
0.2845	0.3363

Sample Count Time (min	Daily Bkg Count Time (min)
4.0	10.0

		р о		Campic	Count II	110 (111111)	Dully D	ing Count i	11110 (111111)						
	0.2845	0.3363			4.0			10.0					dpm/1	00 cm ²	
_				-									α Flag	β Flag	
													10	100	
			Back	ground	Samp	e Total								0.41	Tech.
seq.#	Sample ID#	Date	Total	Counts*	Co	unts	Backgrou	und (cpm)	Sample Co	unts (cpm)	Sample (dp	om/100 cm ²)	> a nay	> β flag	Initial
	·		α	β	α	β	α	β	α	β	α	β	FLAG	FLAG	
409	APG-1103B-SU-26-010	11/16/2009	9	2171	0	217	0.2	54.3	0.00	54	-0.8	0			CWG
410	APG-1103B-SU-26-011	11/16/2009	9	2171	4	195	0.2	54.3	1.00	49	2.7	-16			CWG
411	APG-1103B-SU-26-012	11/16/2009	9	2171	0	207	0.2	54.3	0.00	52	-0.8	-8			CWG
412	APG-1103B-SU-26-013	11/16/2009	9	2171	4	202	0.2	54.3	1.00	51	2.7	-11			CWG
413	APG-1103B-SU-26-014	11/16/2009	9	2171	1	188	0.2	54.3	0.25	47	0.1	-22			CWG
414	APG-1103B-SU-26-015	11/16/2009	9	2171	0	180	0.2	54.3	0.00	45	-0.8	-28			CWG
415	APG-1103B-SU-26-016	11/16/2009	9	2171	1	198	0.2	54.3	0.25	50	0.1	-14			CWG
416	APG-1103B-SU-26-017	11/16/2009	9	2171	1	190	0.2	54.3	0.25	48	0.1	-20			CWG
417	APG-1103B-SU-26-018	11/16/2009	9	2171	1	217	0.2	54.3	0.25	54	0.1	0			CWG
418	APG-1103B-SU-26-019	11/16/2009	9	2171	0	210	0.2	54.3	0.00	53	-0.8	-5			CWG
419	APG-1103B-SU-26-020	11/16/2009	9	2171	0	209	0.2	54.3	0.00	52	-0.8	-6			CWG
n/a	APG/1103A/SU8-07RECOUNT	1/5/2010	4	2374	14	348	0.1	59.4	3.50	87	11.9	82	FLAG		CWG

Aberdeen Proving Ground - Building 1103A Final Status Survey Results

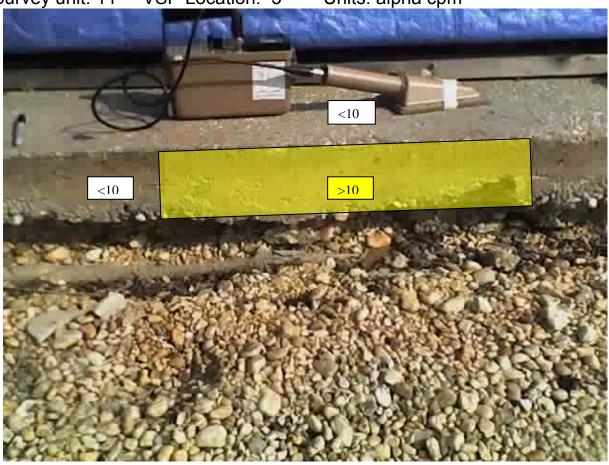
Sample	Count Tim	e (min)	Daily Bk	g Count Tir	ne (min)
	4.0			10.0	

dpm/100 cm² α Flag β Flag 10 100

			Backgrou	und Total	Sample	e Total			Sample	Counts	Sample ((dpm/100	. a floa	. 0 (10.00	Tech.
seq.#	Sample ID#	Date	Cou	nts*	Cou	ınts	Backgrou	und (cpm)	(ср	m)	cr	n²)	> a flag	> β flag	Initial
			α	β	α	β	α	β	α	β	α	β	FLAG	FLAG	
	19A-7 NORTH VAULT														
1	INTERIOR	10/5/2009	1	436	1	167	0.1	43.6	0.25	42	0.4	-10			JF
2	19A-8	10/5/2009	1	436	2	60	0.1	43.6	0.50	15	1.1	-161			JF
3	19A-9	10/5/2009	1	436	3	160	0.1	43.6	0.75	40	1.8	-20			JF
4	19A-10	10/5/2009	1	436	2	197	0.1	43.6	0.50	49	1.1	32			JF
5	19A-11	10/5/2009	1	436	0	192	0.1	43.6	0.00	48	-0.3	25			JF
6	19A-12	10/5/2009	1	436	1	138	0.1	43.6	0.25	35	0.4	-51			JF
7	19A-13	10/5/2009	1	436	1	155	0.1	43.6	0.25	39	0.4	-27			JF
8	19A-18	10/5/2009	1	436	2	207	0.1	43.6	0.50	52	1.1	46			JF
9	19A-14	10/5/2009	1	436	1	164	0.1	43.6	0.25	41	0.4	-15			JF
10	19A-15	10/5/2009	1	436	1	185	0.1	43.6	0.25	46	0.4	15			JF
11	19A-16	10/5/2009	1	436	0	201	0.1	43.6	0.00	50	-0.3	37			JF
12	19A-17	10/5/2009	1	436	0	169	0.1	43.6	0.00	42	-0.3	-8			JF
13	19A-18	10/5/2009	1	436	2	187	0.1	43.6	0.50	47	1.1	18			JF
14	19A-19	10/5/2009	1	436	1	168	0.1	43.6	0.25	42	0.4	-9			JF
15	19A-20	10/5/2009	1	436	1	178	0.1	43.6	0.25	45	0.4	5			JF
16	19A-1	10/5/2009	1	436	0	174	0.1	43.6	0.00	44	-0.3	-1			JF
17	19A-2	10/5/2009	1	436	1	169	0.1	43.6	0.25	42	0.4	-8			JF
18	19A-3	10/5/2009	1	436	0	156	0.1	43.6	0.00	39	-0.3	-26			JF
19	19A-4	10/5/2009	1	436	1	187	0.1	43.6	0.25	47	0.4	18			JF
20	19A-5	10/5/2009	1	436	2	175	0.1	43.6	0.50	44	1.1	1			JF
21	19A-6	10/5/2009	1	436	2	165	0.1	43.6	0.50	41	1.1	-13			JF

APPENDIX B4

Investigation Results

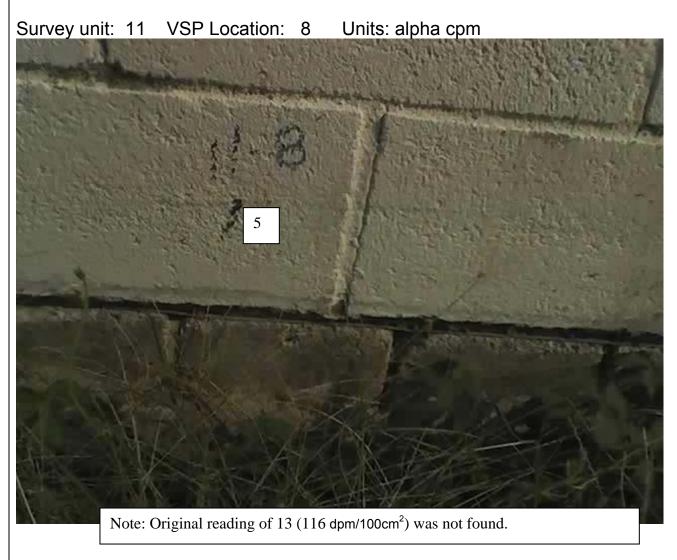

PIKA International, Inc. Cdgtf ggp'Rt qxlpi 'I t qwpf '/'Dwlrf lpi '3325C'HlpcriUwwu'Uwt xg{ 'T guwnu Radiological Survey Report

MKM Form 8-1 Rev. 03

DATE: 8/26/2010	TIME: 09:00		INSTRUMEN [*]	TATION USE	D	
SURVEY NUMBER: AP	G-2-1	MODEL	S/N	% EFF.	CAL DUE	BKGD
LOCATION: Aberdeen Pr	oving Ground	LMI 2360	225237	0.46	11/23/10	0
SURVEYOR: J. Cehn		LMI 43-93	PR236961	-	11/23/10	-
REVIEWED BY:	carne Apolito					
RSO/HP:	Joel I Cla	•				

Description of drawing: APO Bldg 1103A Exterior South Wall

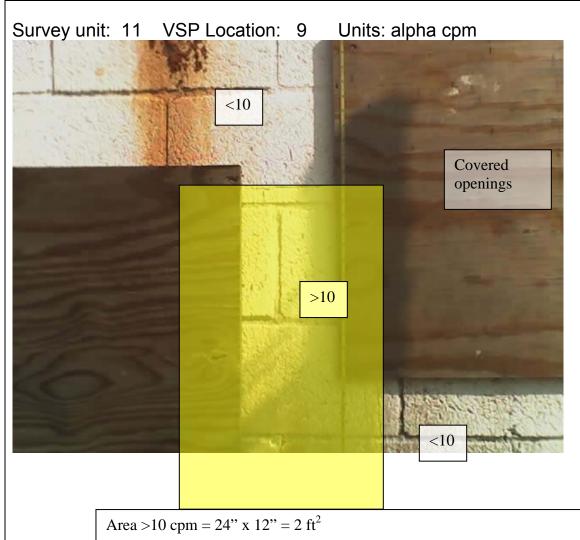
Survey unit: 11 VSP Location: 3 Units: alpha cpm



Area >10 cpm = 31" x 5" \approx 1.5 ft²

Routine	Non-routine	X	All radiation readings in μr/hr unless otherwise noted. ##denotes smear location or fixed α/β readings.
Comments: Post-MARSSIM survey to delineate eleva	ited areas.		#denotes contact radiation readings. #/#denotes contact / 1 meter radiation readings.
DCGLw ≈ 10cpm (100 dpm/100cm	n ²)		*denotes highest radiation reading on contact. Δdenotes A/S location.

DATE: 8/26/2010	TIME: 09:15		INSTRUMEN	TATION USE	INSTRUMENTATION USED										
SURVEY NUMBER: APO	G-2-2	MODEL	S/N	% EFF.	CAL DUE	BKGD									
LOCATION: Aberdeen Pr	oving Ground	LMI 2360	225237	0.46	11/23/10	0									
SURVEYOR: J. Cehn		LMI 43-93	PR236961	-	11/23/10	-									
REVIEWED BY:	une Haslett														
RSO/HP:	Jod I Cl_														


Description of drawing: APG Bldg 1103A Exterior South Wall

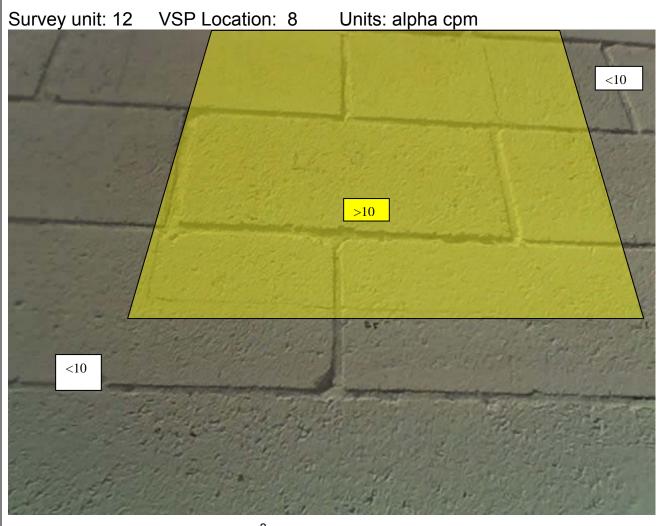
Routine (Daily / Weekly / Monthly) Non-routine Comments:	X	All radiation readings in μr/hr unless otherwise noted. ##denotes smear location or fixed α/β readings.
Post-MARSSIM survey to delineate elevated areas.		#denotes contact radiation readings. #/#denotes contact / 1 meter radiation readings.
DCGLw ≈ 10cpm (100 dpm/100cm ²)		*denotes highest radiation reading on contact. Δdenotes A/S location.

DATE: 8/26/2010 TIME: 09:30	INSTRUMENTATION USED					
SURVEY NUMBER: APG-2-3	MODEL	S/N	% EFF.	CAL DUE	BKGD	
LOCATION: Aberdeen Proving Ground	LMI 2360	225237	0.46	11/23/10	0	
SURVEYOR: J. Cehn	LMI 43-93	PR236961	-	11/23/10	-	
REVIEWED BY: RSO/HP: Part T Cl						

Description of drawing: ARG Bldg 1103A Exterior South Wall

All radiation readings in µr/hr unless otherwise noted. X Routine (Daily / Weekly / Monthly) Non-routinedenotes smear location or fixed α/β readings. Comments: #......denotes contact radiation readings. Post-MARSSIM survey to delineate elevated areas. #/#...denotes contact / 1 meter radiation readings. *.....denotes highest radiation reading on contact. DCGLw \approx 10cpm (100 dpm/100cm²) Δdenotes A/S location.

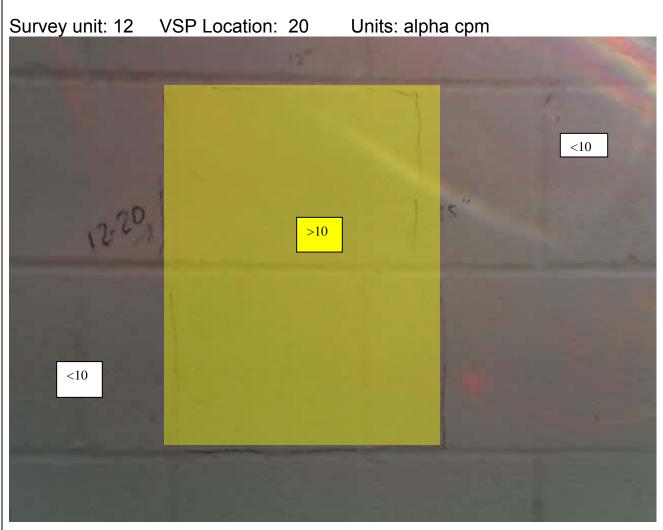
DATE: 8/26/2010	TIME: 09:55	INSTRUMENTATION USED					
SURVEY NUMBER: AP	G-2-4	MODEL	S/N	% EFF.	CAL DUE	BKGD	
LOCATION: Aberdeen Pr	oving Ground	LMI 2360	225237	0.46	11/23/10	0	
SURVEYOR: J. Cehn		LMI 43-93	PR236961	-	11/23/10	-	
REVIEWED BY:	ine Haslett						
RSO/HP:	Smot Cl-						


Description of drawing: AP6 Bldg 1103A Exterior South Wall

Routine (Daily / Weekly / Monthly) Comments:	Non-routine)	(#)denotes smear location or fixed α/β readings.
Post-MARSSIM survey to delineate elevated	d areas.	#denotes contact radiation readings. # / #denotes contact / 1 meter radiation readings.
DCGLw ≈ 10cpm (100 dpm/100cm ²)		 *denotes highest radiation reading on contact. Δdenotes A/S location.

DATE: 8/26/2010 TIME: 10:40		INSTRUMENTATION USED					
SURVEY NUMBER: APG-2-5	MODEL	S/N	% EFF.	CAL DUE	BKGD		
LOCATION: Aberdeen Proving Ground	LMI 2360	225237	0.46	11/23/10	0		
SURVEYOR: J. Cehn	LMI 43-93	PR236961	-	11/23/10	1		
REVIEWED BY: Jeanne Haslett							
RSO/HP: Joel T Cl							

Description of drawing: APG Bldg 1103A Exterior East Wall



Area >10 cpm \approx 24" x 25" \approx 4 ft²

Routine (Daily / Weekly / Monthly) Non-routine	# denotes smear location or fixed a/R readings
Comments:	2denotes sineal location of fixed d/p readings.
Post-MARSSIM survey to delineate elevated areas.	#denotes contact radiation readings. # / #denotes contact / 1 meter radiation readings.
	*denotes highest radiation reading on contact.
DCGLw ≈ 10cpm (100 dpm/100cm ²)	Δdenotes A/S location.

DATE: 8/26/2010	TIME: 10:20	INSTRUMENTATION USED					
SURVEY NUMBER: APG-2-6		MODEL	S/N	% EFF.	CAL DUE	BKGD	
LOCATION: Aberdeen Pr	oving Ground	LMI 2360	225237	0.46	11/23/10	0	
SURVEYOR: J. Cehn		LMI 43-93	PR236961	-	11/23/10	-	
REVIEWED BY: RSO/HP:	Joel I Cl						

Description of drawing: ARG Bldg 1103A Exterior West Wall

Area >10 cpm \approx 12" x 15" = 1.25 ft²

Routine (Daily / Weekly / Monthly) Non-routine	X	All radiation readings in μr/hr unless otherwise noted.
Comments:		#denotes smear location or fixed α/β readings.
Post-MARSSIM survey to delineate elevated areas.	#denotes contact radiation readings.	
DCGLw ≈ 10cpm (100 dpm/100cm ²)		#/#denotes contact / 1 meter radiation readings. *denotes highest radiation reading on contact. Δdenotes A/S location.

DATE: Dec. 20, 2010*	TIME: 12:00	INSTRUMENTATION USED					
SURVEY NUMBER:		MODEL		S/N	% EFF.	CAL DUE	BKGD
LOCATION: APG, Bldg. 1103A Area		LMI 2360	22	:5218		6/9/11	7.1
SURVEYOR: Pat Marine		LMI 43-93	PR2	236955			срт а
REVIEWED BY: R. Markla	and C O						
RSO/HP:	<u>. (.) </u>						
Description of drawing: S	Survey Unit 28, locatio	n #6 on east wall o	of Bldg. 1	100E			
Re-count of static cou packground. Data atta		6 (circled). Also	investig	ation of r	material		
	Surv	ey Unit 28 Bldg	1100E E	ast Exteri	or Wall	_	20
							40
F		28-17	, , , , , , , , , , , , , , , , , , ,				
Field corre	1		* [88]				.08
	28-20	28-13		28 kg			က
		28-16 *	* 28-9		28-3		
	28-19	28-12		28-2 *		+	20
	*	[*] 28-15	* 28-8	*			
		<u>*</u> 2	*[2]	[4]	*[2]	+	9.
	**************************************	[4] * [28-11]		* 28-4			
		128-14 28-14	28-7		* 		-0
							. 0
							7
08 07	09 09	07	30	20	01	0 0	 -
Routine [] (Da	ily / Weekly / Monthly) Non-routing	X	All radiation re	eadings in µr/hr ι	unless otherwis	e noted.
Comments:	ing / vvocidity / infolitility	, 14011-104(111)		#)denot	es smear location	n or fixed α/β re	eadings.
					es contact radiat		eadings.
* Material backgrounds taken on subsequent dates; material is metal siding.			*	·denot	es highest radiates A/S location.		_

Data for 1-min alpha counts (all cpm)

	Survey Data ²				
	gross	net ³			
Bkgd. ¹	7.1	n/a			
	22	14.9			
	22	14.9			
	12	4.9			
	14	6.9			
	12	4.9			
	8	0.9			
	12	4.9			
	14	6.9			
Ave.	14.5	7.4			

Notes:

- Background from table below.
 at/near location 28-6
- 3, Net of background

Backgrnd.	Data					
_	west	south	north			
from	5	7	10			
unimpacted	6	6	4			
sides of	13	7	8			
Bldg.1100E	5					
	5					
Grand	10					
Average	5					
=7.1	7					
	9					
	7					
	7.2	6.7	7.3			

APPENDIX C1

Beta Scan Data

SU 5 scans

SU 6 scans

SU 7 scans

SU 8 scans

SU 9 scans

SU 10 scans

SU 11 scans

SU 12 scans

SU 12A scans

SU 12B scans

SU 13 scans

SU 15 scans

SU 19 scans

SU 19A scans

SU 20 scans

SU 20A scans

SU 23 scans

SU 24 scans

SU 25 scans

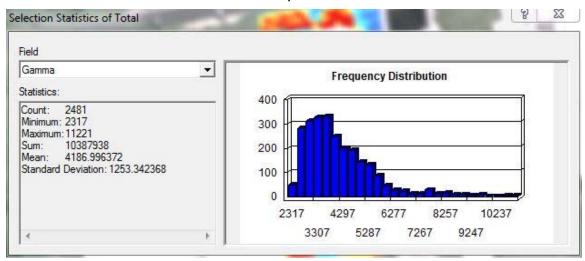
SU 26 scans

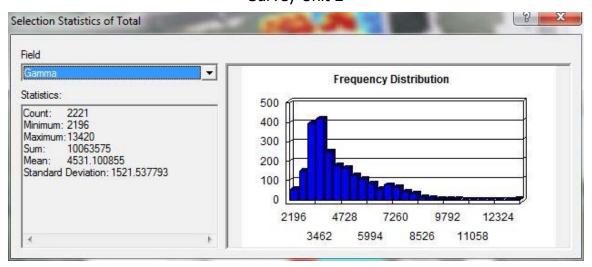
SU 28 scans

SU 29 scans

Provided on CD

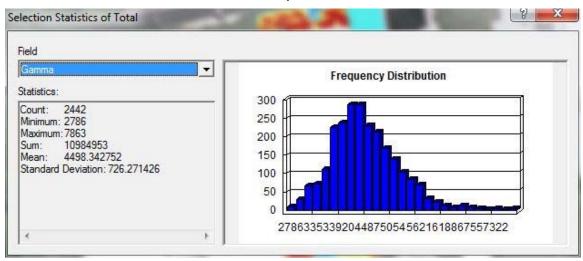
APPENDIX C2


Gamma Scan Data Histograms

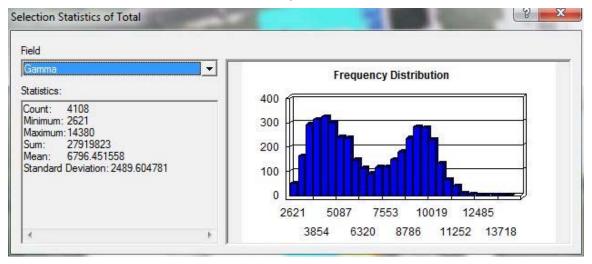

APPENDIX C2

Gamma Scan Data Histograms

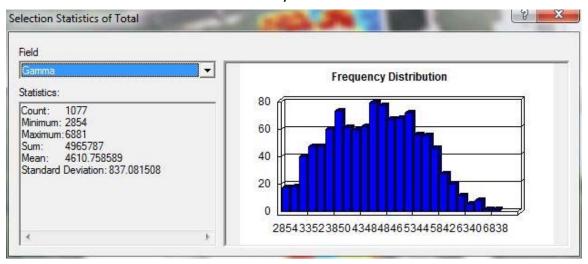
Survey Unit 1



Survey Unit 2



Survey Unit 3



Survey Unit 4

Survey Unit 14

APPENDIX D

Soils Data

Uranium in Soils QC Soils

Provided on CD

Results of Gamma Spec Analysis for Depleted Uranium in APG Soils

	pCi/g U-238	Total Curies	grams U-238	pCi/g	Total Curies	grams U-235		
Sample ID:	(Th-234)	U-238	per Sample	U-235	U-235	per sample	U-235/U-238 Ra	atio
							6.4227E-02	This Sample
	0.60	5.9600E-13	1.7898E-06	0.246	2.4600E-13	1.1495E-07	7.2529E-03	Natural
SU-1-1							785.53	% Diff from Natual
							1.0346E-01	This Sample
	0.37	3.7000E-13	1.1111E-06	0.246	2.4600E-13	1.1495E-07	7.2529E-03	Natural
SU-1-2							1326.43	% Diff from Natual
							5.4596E-03	This Sample
	0.93	9.3200E-13	2.7988E-06	0.033	3.2700E-14	1.5280E-08	7.2529E-03	Natural
SU-1-3							-24.73	% Diff from Natual
							5.3729E-03	This Sample
	2.65	2.6500E-12	7.9580E-06	0.092	9.1500E-14	4.2757E-08	7.2529E-03	Natural
SU-1-4							-25.92	% Diff from Natual
								This Sample
	0.90	9.0200E-13	2.7087E-06	0.038	3.8200E-14	1.7850E-08	7.2529E-03	
SU-1-5								% Diff from Natual
								This Sample
	0.37	3.7000E-13	1.1111E-06	0.246	2.4600E-13	1.1495E-07	7.2529E-03	
SU-1-6								% Diff from Natual
								This Sample
	0.80	8.0100E-13	2.4054E-06	0.246	2.4600E-13	1.1495E-07	7.2529E-03	
SU-1-7								% Diff from Natual
	4.70	4 70005 40	5 40545 00	0.070	7.00005.44	0.50075.00		This Sample
011.4.0	1.70	1.7000E-12	5.1051E-06	0.076	7.6200E-14	3.5607E-08	7.2529E-03	
SU-1-8								% Diff from Natual
	40.00	4.00005.44	0.04005.05	0.000	0.00005.40	4 00745 07		This Sample
011.4.0	12.80	1.2800E-11	3.8438E-05	0.222	2.2200E-13	1.0374E-07	7.2529E-03	% Diff from Natual
SU-1-9								This Sample
	5.95	5.9500E-12	1.7868E-05	0.123	1.2300E-13	5.7477E-08	7.2529E-03	
SU-1-10	5.95	5.9500E-12	1.7000E-03	0.123	1.2300E-13	3.7477E-00		% Diff from Natual
30-1-10								This Sample
-	2.52	2.5200E-12	7.5676E-06	0.037	3.6700E-14	1.7150E-08	7.2529E-03	
SU-1-11	2.02	2.3200L-12	7.3070L-00	0.037	3.0700L-14	1.7 1301-00		% Diff from Natual
00 1 11								This Sample
	1.93	1.9300E-12	5.7958E-06	0.040	3.9600E-14	1.8505E-08	7.2529E-03	
SU-1-12			0000_ 00	0.0.0	0.00001			% Diff from Natual
00 1 12								This Sample
	0.89	8.9200E-13	2.6787E-06	0.022	2.2000E-14	1.0280E-08	7.2529E-03	
SU-1-13								% Diff from Natual
							2.3256E-03	This Sample
	2.75	2.7500E-12	8.2583E-06	0.041	4.1100E-14	1.9206E-08		
SU-1-14								% Diff from Natual
							1.0346E-01	This Sample
	0.37	3.7000E-13	1.1111E-06	0.246	2.4600E-13	1.1495E-07	7.2529E-03	Natural
SU-2-1							1326.43	% Diff from Natual
								This Sample
	0.02	2.0000E-14	6.0060E-08	0.036	3.6100E-14	1.6869E-08	7.2529E-03	
SU-2-2						·		% Diff from Natual
								This Sample
	0.57	5.7400E-13	1.7237E-06	0.246	2.4600E-13	1.1495E-07	7.2529E-03	
SU-2-3								% Diff from Natual
								This Sample
	0.37	3.7000E-13	1.1111E-06	0.246	2.4600E-13	1.1495E-07	7.2529E-03	
SU-2-4								% Diff from Natual
					0.405==			This Sample
	0.37	3.7000E-13	1.1111E-06	0.246	2.4600E-13	1.1495E-07	7.2529E-03	
SU-2-5							1326.43	% Diff from Natual

Results of Gamma Spec Analysis for Depleted Uranium in APG Soils

	pCi/g U-238	Total Curies	grams U-238	pCi/g	Total Curies	grams U-235		
Sample ID:	(Th-234)	U-238	per Sample	U-235	U-235	per sample	U-235/U-238 Ra	atio
							8.6801E-02	This Sample
	0.44	4.4100E-13	1.3243E-06	0.246	2.4600E-13	1.1495E-07	7.2529E-03	
SU-2-6							1096.77	% Diff from Natual
							6.7751E-02	This Sample
	0.57	5.6500E-13	1.6967E-06	0.246	2.4600E-13	1.1495E-07	7.2529E-03	Natural
SU-2-7							834.12	% Diff from Natual
								This Sample
	13.90	1.3900E-11	4.1742E-05	0.235	2.3500E-13	1.0981E-07	7.2529E-03	
SU-2-8								% Diff from Natual
								This Sample
	3.92	3.9200E-12	1.1772E-05	0.071	7.0700E-14	3.3037E-08	7.2529E-03	
SU-2-9								% Diff from Natual
	0.70	7 00005 40	0.00045.00	0.040	0.40005.40	4 4 4055 07		This Sample
011.0.40	0.79	7.8800E-13	2.3664E-06	0.246	2.4600E-13	1.1495E-07	7.2529E-03	
SU-2-10								% Diff from Natual
	0.07	8.6900E-13	2.6096E-06	0.004	2.3500E-14	1 00015 00	7.2529E-03	This Sample
CLL 0.44	0.87	8.6900E-13	2.6096E-06	0.024	2.3500E-14	1.0981E-08		% Diff from Natual
SU-2-11								This Sample
	0.01	1.1700E-14	3.5135E-08	0.246	2.4600E-13	1.1495E-07	7.2529E-03	
QU 2 12	0.01	1.1700E-14	3.3133E-06	0.240	2.4600E-13	1.1495E-07		% Diff from Natual
SU-2-12								This Sample
	0.37	3.7000E-13	1.1111E-06	0.246	2.4600E-13	1.1495E-07	7.2529E-03	
SU-2-13	0.57	3.7000L-13	1.111112-00	0.240	2.4000L-13	1.14936-07		% Diff from Natual
30-2-13								This Sample
	0.89	8.9200E-13	2.6787E-06	0.246	2.4600E-13	1.1495E-07	7.2529E-03	
SU-2-14	0.00	0.02002 10	2.07072 00	0.210	2.10002 10	1111002 01		% Diff from Natual
00 2 14								This Sample
	0.37	3.7000E-13	1.1111E-06	0.246	2.4600E-13	1.1495E-07	7.2529E-03	
SU-4-1								% Diff from Natual
							3.1121E-01	This Sample
	0.05	5.3000E-14	1.5916E-07	0.106	1.0600E-13	4.9533E-08	7.2529E-03	Natural .
SU-4-2							4190.88	% Diff from Natual
							4.6260E-03	This Sample
	2.21	2.2100E-12	6.6366E-06	0.066	6.5700E-14	3.0701E-08	7.2529E-03	Natural
SU-4-3							-36.22	% Diff from Natual
							3.0677E-01	This Sample
	0.02	2.1000E-14	6.3063E-08	0.041	4.1400E-14	1.9346E-08	7.2529E-03	Natural
SU-4-4								% Diff from Natual
								This Sample
	20.50	2.0500E-11	6.1562E-05	0.338	3.3800E-13	1.5794E-07	7.2529E-03	
SU-4-5								% Diff from Natual
		4.0000= ::	1.0010= 5=	0.0==	5.04635	0.40=0====		This Sample
011.1.5	0.04	4.0000E-14	1.2012E-07	0.053	5.3400E-14	2.4953E-08	7.2529E-03	
SU-4-6								% Diff from Natual
	0.07	2 70005 40	4 4444 5 00	0.040	0.46005.40	1 1 1 0 5 5 7 7		This Sample
011.4.7	0.37	3.7000E-13	1.1111E-06	0.246	2.4600E-13	1.1495E-07	7.2529E-03	
SU-4-7								% Diff from Natual
	0.05	4 6000E 4 4	1 20145 07	0.100	1.0000 = 12	5 0025E 00		This Sample
SII 4 0	0.05	4.6000E-14	1.3814E-07	0.109	1.0900E-13	5.0935E-08	7.2529E-03	% Diff from Natual
SU-4-8								This Sample
	0.98	9.8000E-13	2.9429E-06	0.110	1.1000E-13	5.1402E-08	7.2529E-03	
SU-4-9	0.30	J.0000L-13	2.07231-00	0.110	1.1000L-13	J. 1702L-00		% Diff from Natual
30.4-3								This Sample
	0.06	6.0000E-14	1.8018E-07	0.063	6.2600E-14	2.9252E-08	7.2529E-03	
SU-4-10	0.00	0.0000L 14	1.00102 07	0.000	0.20002 14	2.02021 00		% Diff from Natual
00 4 -10							2100.71	, o Din nom Natual

Results of Gamma Spec Analysis for Depleted Uranium in APG Soils

	pCi/g U-238		grams U-238	pCi/g	Total Curies	grams U-235		
Sample ID:	(Th-234)	U-238	per Sample	U-235	U-235	per sample	U-235/U-238 Ratio	
							7.8119E-03 This	
	2.47	2.4700E-12	7.4174E-06	0.124	1.2400E-13	5.7944E-08	7.2529E-03 Natu	
SU-4-11							7.71 % Dif	f from Natual
							3.0468E-01 This	
	0.05	5.0000E-14	1.5015E-07	0.098	9.7900E-14	4.5748E-08	7.2529E-03 Natu	ıral
SU-4-12							4100.77 % Dif	f from Natual
							2.6648E-01 This	
	0.08	8.0000E-14	2.4024E-07	0.137	1.3700E-13	6.4019E-08	7.2529E-03 Natu	
SU-4-13							3574.06 % Dif	
							5.2301E-01 This	
	0.04	3.6000E-14	1.0811E-07	0.121	1.2100E-13	5.6542E-08	7.2529E-03 Natu	ıral
SU-4-14							7111.06 % Dif	f from Natual
							3.2949E-03 This	
	2.98	2.9800E-12	8.9489E-06	0.063	6.3100E-14	2.9486E-08	7.2529E-03 Natu	ıral
SU-14-1							-54.57 % Dif	f from Natual
							4.2056E-03 This	Sample
	2.22	2.2200E-12	6.6667E-06	0.060	6.0000E-14	2.8037E-08	7.2529E-03 Natu	ıral
SU-14-2							-42.02 % Dif	f from Natual
							2.3806E-03 This	Sample
	0.72	7.1900E-13	2.1592E-06	0.011	1.1000E-14	5.1402E-09	7.2529E-03 Natu	ıral
SU-14-3							-67.18 % Dif	f from Natual
							4.8736E-03 This	Sample
	3.03	3.0300E-12	9.0991E-06	0.095	9.4900E-14	4.4346E-08	7.2529E-03 Natu	ıral .
SU-14-4							-32.80 % Dif	
							5.3915E-02 This	
	0.71	7.1000E-13	2.1321E-06	0.246	2.4600E-13	1.1495E-07	7.2529E-03 Natu	
SU-14-5							643.35 % Dif	f from Natual
							1.0346E-01 This	Sample
	0.37	3.7000E-13	1.1111E-06	0.246	2.4600E-13	1.1495E-07	7.2529E-03 Natu	
SU-14-6							1326.43 % Dif	
							1.0346E-01 This	Sample
	0.37	3.7000E-13	1.1111E-06	0.246	2.4600E-13	1.1495E-07	7.2529E-03 Natu	
SU-14-7							1326.43 % Dif	f from Natual
							1.0346E-01 This	
	0.37	3.7000E-13	1.1111E-06	0.246	2.4600E-13	1.1495E-07	7.2529E-03 Natu	
SU-14-8							1326.43 % Dif	f from Natual
							3.2430E-03 This	
	3.33	3.3300E-12	1.0000E-05	0.069	6.9400E-14	3.2430E-08	7.2529E-03 Natu	
SU-14-9	0.00					0.2.002	-55.29 % Dif	
00 0							1.5065E-03 This	
	3.45	3.4500E-12	1.0360E-05	0.033	3.3400E-14	1.5607E-08	7.2529E-03 Natu	
SU-14-10			30				-79.23 % Dif	
22 /							8.1101E-02 This	
	0.47	4.7200E-13	1.4174E-06	0.246	2.4600E-13	1.1495E-07	7.2529E-03 Natu	
SU-14-11		00_ 10		0			1018.17 % Dif	
55 / 1 1 1							1.0346E-01 This	
	0.37	3.7000E-13	1.1111E-06	0.246	2.4600E-13	1.1495E-07	7.2529E-03 Natu	
SU-14-12	0.07	211 2002 10					1326.43 % Dif	
33 14 12							1.0346E-01 This	
	0.37	3.7000E-13	1.1111E-06	0.246	2.4600E-13	1.1495E-07	7.2529E-03 Natu	
SU-14-13	0.07	5.7 500L 10		5.Z-T0	2.10002 10	111 7002 07	1326.43 % Dif	
00 14-10							2.1653E-03 This	
	0.96	9.6300E-13	2.8919E-06	0.013	1.3400E-14	6.2617E-09	7.2529E-03 Natu	
SU-14-14	0.50	0.0000E-10	2.00101 00	0.013	1.0-1001-14	0.201712 03	-70.15 % Dif	
00-14-14			l				7 U. 10 /6 DII	om rvatuai

Sample ID: Example

	Grams of		grams U-238
pCi/g U-238	Sample	Total Curies	per Sample
14.40	1600	2.3040E-08	6.9189E-02
pCi/g U-235		Total Curies	grams U-235
0.24		3.8880E-10	1.8168E-04

		U-235/U-238 Ratio				
Depleted		2.6259E-03 This Samp				
	0	7.2529E-03	Natural			
	0	-63.80	% Diff from Natual			

Enter pCi/g and grams of sample from analysis report.

Natural Abundance			
0.7200% U-235			
99.2745% U-238			_
Specific Activ	vity		
Ci/g = 3.33E-07	t 1/2 =	4.47E+09 yr	
U-238			
Ci/g = 2.14E-06	t 1/2 =	7.1E+08 yr	
U-235			
Ci/g = 2.30E+04	t1/2 =	24.2 days	
Th-234			
Specific Activity Cald	culation	Conversions	
		1dps =	1bq
Ci/g = 1.30E + 08		1bq =	27 pCi
t1/2 (days) x	atomic wt	1Ci =	3.7E9dps

	Bob's Ratio by Activity	/	
Isotope	U238		
Half-life	1.41E+17 sec		
A.W.	238.050788 g	N. Abd.	Activity
SpA	3.36E-07 Ci/g	99.2745	3.33E-05
Isotope	U235		
Half-life	2.22E+16 sec		
A.W.	235.043928 g	0.72	1.55E-06
SpA	2.16E-06 Ci/g		
		Ratio Natura	al
Sample	pCi/g	U235/238	0.0466
U235	0.239	Ratio Samp	le
U238	7.78	U235/238	0.0307
		Ratio	
Less than 1	indicates depletion	Samp/Nat	0.6588
Greater than	n 1 indicates enrichment	-34.12 %	Diff from Natual
Look at cou	nting statistics		
to see if und	ertainties overlap natural.		

Sample ID

pCi/g U-238	Grams of Sample	Total Curies
19.10	1600	3.0560E-08
	Grams of	
pCi/g U-235	Grams of Sample	Total Curies
pCi/g U-235		Total Curies 1.4400E-09

^{**}Enter pCi/g from analysis report in Column A

		Ratio	
		U235/238	0.0466
Isotope	U238		
Half-life	1.41E+17 sec		
A.W.	238.050788 g	N. Abd.	Activity Ci
SpA	3.36E-07 Ci/g	99.2745	3.33E-05

Isotope	U235		
Half-life	2.22E+16 sec		
A.W.	235.043928 g	N. Abd.	Activity Ci
SpA	2.16E-06 Ci/g	0.7200	1.55E-06

TestAmerica Laboratories, Inc.

ANALYTICAL REPORT

APG

Lot #: F9L100438

PIKA International, Inc.

PIKA International, Inc. 12723 Capricorn Drive Suite 500 Stafford, TX 77477

TESTAMERICA LABORATORIES, INC.

Ray Clay
Project Manager

December 23, 2009

Case Narrative LOT NUMBER: F9L100438

This report contains the analytical results for the 10 samples received under chain of custody by TestAmerica St. Louis on December 9, 2009. These samples are associated with your APG project.

The analytical results included in this report meet all applicable quality control procedure requirements.

The test results in this report meet all NELAP requirements for parameters in which accreditations are held by TestAmerica St. Louis. Any exceptions to NELAP requirements are noted in the case narrative. **TestAmerica St. Louis' Florida certification number is E87689.** The case narrative is an integral part of this report.

This report shall not be reproduced, except in full, without the written approval of the laboratory.

All chemical analysis results are based upon sample as received, wet weight, unless noted otherwise. All radiochemistry results are based upon sample as dried and ground with the exception of tritium, unless requested wet weight by the client.

Observations/Nonconformances

Reference the chain of custody and condition upon receipt report for any variations on receipt conditions and temperature of samples on receipt.

There are no observations or nonconformances associated with the analysis in this lot.

METHODS SUMMARY

F9L100438

PARAMETER

ANALYTICAL PREPARATION METHOD

Gamma Spectroscopy - Cesium-137 & Hits

EML GA-01-R MOD

References:

EML

"ENVIRONMENTAL MEASUREMENTS LABORATORY PROCEDURES MANUAL" HASL-300 28TH EDITION, VOLUME I and II DEPARTMENT OF ENERGY

SAMPLE SUMMARY

F9L100438

WO #	SAMPLE‡	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
LQVD2 LQVD3 LQVD6 LQVD7 LQVEA LQVEC LQVEE LQVEF LQVEJ LQVEL	001 002 003 004 005 006 007 008 009 010	SU1 1-11 SU1 1-4 SU2 2-5 SU2 2-12 SU4 4-7 SU4 4-11 SU14A 14A-10 (SU 14-10) SU14A 14A-03 (SU 14-03) APG11-APG20 (waste samples - 2) APG81-APG90	11/23/09 11/23/09 11/23/09 11/23/09 11/23/09 11/23/09 11/23/09 10/13/09 10/20/09	13:05 08:50 08:30 13:49 13:40 09:15 09:57 14:30
NOTE (S)) :			

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

PIKA International, Inc. Client Sample ID: SU1 1-11

Radiochemistry

Lab Sample ID: F9L100438-001

Work Order: Matrix:

LQVD2 SOLID Date Collected:

11/23/09

Date Received:

1100 12/09/09 0910

Total	
Imaget	

Parameter	Result	Qual	Uncert. (2 g+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Cs-137 & F	lits by DOE GA-	01-R MOD	pq	i/g	Batch # 9	351249	Yld %
Cesium 137	0.020	υ	0.022	0.200	0.035	12/17/09	12/18/09
Uranium 235	-0.03	ប	1.4		0.3	12/17/09	12/18/09
Uranium 238	2.02		0.48	•	1.1	12/17/09	12/18/09
Other Detected 1	Radionuclides						
Thorium 234	2.02		0.48		1.1	12/17/09	12/18/09
							

NOTE (S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

PIKA International, Inc. Client Sample ID: SU1 1-4

Radiochemistry

Lab Sample ID: F9L100438-002

Work Order: Matrix:

LOVD3 SOLID Date Collected:

11/23/09 1305

Date Received:

12/09/09 0910

Total

Parameter	Result	Qual	Uncert. (2 g+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Cs-137 &	Hits by DOE GA-	01-R MOD	ρq	i/g	Batch #	9351249	Yld %
Cesium 137	0.177	J	0.074	0.200	0.059	12/17/09	12/18/09
Uranium 235	0.04	υ	0.23		0.40	12/17/09	12/18/09
Uranium 238	3.4		1.5		1.9	12/17/09	12/18/09
Other Detected	Radionuclides						
Actinium 228	0.77		0.30		0.30	12/17/09	12/18/09
Bismuth 214	0.61		0.18		0.20	12/17/09	12/18/09
Lead 212	0.76		0.14		0.13	12/17/09	12/18/09
Lead 214	0.69		0.14		0.12	12/17/09	12/18/09
Potassium 40	5.5		1.4		1	12/17/09	12/18/09
Thallium 208	0.249		0.074		0.066	12/17/09	12/18/09
Thorium 234	3.4		1.5		1.9	12/17/09	12/18/09

NOTE(S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

Result is greater than sample detection limit but less than stated reporting limit.

Result is less than the sample detection limit.

PIKA International, Inc. Client Sample ID: SU2 2-5

Radiochemistry

Lab Sample ID: F9L100438-003

Work Order: Matrix:

LQVD6 SOLID

Date Collected:

11/23/09

0850

Date Received:

12/09/09

0910

by DOE GA-0	4			mdc		Date
	T-K MOD	ρÇ	i/g	Batch # !	9351249	Yld %
0.007	U	0.025	0.200	0.045	12/17/09	12/18/09
-0.06	U	0.43		0.20	12/17/09	12/18/09
0.02	U	0.50		0.95	12/17/09	12/18/09
onuclides					. = / , = 2	,,,
0.18		0.11		0.14	12/17/09	12/18/09
0.141		0.060		0.090		,,
0.160		0.059				12/18/09
1.44		0 61			,	,_,
	0.02 onuclides 0.18 0.141	0.02 U onuclides 0.18 0.141 0.160	0.02 U 0.50 omuclides 0.18 0.11 0.141 0.060 0.160 0.059	-0.06 U 0.43 0.02 U 0.50 DRUCLIDES 0.18 0.11 0.141 0.060 0.160 0.059	-0.06 U 0.43 0.20 0.02 U 0.50 0.95 0 0.11 0.14 0.141 0.060 0.090 0.160 0.059 0.071	-0.06 U 0.43 0.20 12/17/09 0.02 U 0.50 0.95 12/17/09 Domuclides 0.18 0.11 0.14 12/17/09 0.141 0.060 0.090 12/17/09 0.160 0.059 0.071 12/17/09

NOTE(S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

PIKA International, Inc. Client Sample ID: SU2 2-12

Radiochemistry

Lab Sample ID: F9L100438-004

Work Order: Matrix:

LQVD7 SOLID Date Collected:

11/23/09 0830

Date Received:

12/09/09 0910

Total

Parameter	Result	Qual	Uncert. (2 σ+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Cs-137 & H	its by DOE GA-(01-R MOD	Oq	i/g	Batch #	9351249	Yld %
Cesium 137	-0.002	U	0.026	0.200	0.053	12/17/09	12/18/09
Uranium 235	-0.04	U	0.49		0.21	12/17/09	12/18/09
Uranium 238	0.56	U	0.29		0.78	12/17/09	12/18/09
Other Detected R	adionuclides						
Lead 212	0.102		0.044		0.055	12/17/09	12/18/09
Potassium 40	0.84		0.56		0.81	12/17/09	12/18/09

NOTE(S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

PIKA International, Inc.

Client Sample ID: SU4 4-7

Radiochemistry

Lab Sample ID: F9L100438-005

Work Order: Matrix:

LOVEA SOLID

Date Collected:

11/23/09 1349

Date Received:

12/09/09 0910

Total	
Image	

Result	Qual	Uncert. (2 c+/-)	RL	mdc	Prep Date	Analysis Date
			Ci/g	Batch # :	9351249	Yld %
-		0.031	0.200	0.058	12/17/09	12/18/09
		0.12		0.21	12/17/09	12/18/09
-	Ŭ	1.6		1.3	12/17/09	12/18/09
Radionuclides						
0.69		0.42		0.66	12/17/09	12/18/09
	Hits by DOE GA- 0.0 0.04 -0.4 Radionuclides	Hits by DOE GA-01-R MOD 0.0 U 0.04 U -0.4 U	Result Qual (2 g+/-) Hits by DOE GA-01-R MOD po 0.0 U 0.031 0.04 U 0.12 -0.4 U 1.6 Radionuclides	Result Qual (2 g+/-) RL Hits by DOE GA-01-R MOD pCi/g 0.0 U 0.031 0.200 0.04 U 0.12 -0.4 U 1.6 Radionuclides	Result Qual (2 o+/-) RL mdc Hits by DOE GA-01-R MOD pCi/g Batch # : 0.0 U 0.031 0.200 0.058 0.04 U 0.12 0.21 -0.4 U 1.6 1.3 Radionuclides	Hits by DOE GA-01-R MOD pCi/g Batch # 9351249 0.0 U 0.031 0.200 0.058 12/17/09 0.04 U 0.12 0.21 12/17/09 -0.4 U 1.6 1.3 12/17/09 Radionuclides 0.69 0.42 0.42 0.42 0.42 0.42

NOTE(S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

PIKA International, Inc. Client Sample ID: SU4 4-11

Radiochemistry

Lab Sample ID: F9L100438-006

Work Order:

Matrix:

LOVEC SOLID

Date Collected: Date Received:

11/23/09 1340

12/09/09 0910

Total

Parameter	Result	Qual	Uncert. (2 g+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Cs-137 & I	Hits by DOE GA-	01-R MOD	pq	Ci/g	Batch #	9351249	Yld %
Cesium 137	0.42		0.11	0.20	0.08	12/17/09	12/18/09
Uranium 235	0.20	ប	0.35		0.59	12/17/09	12/18/09
Uranium 238	4.6		2.3		2.8	12/17/09	12/18/09
Other Detected 1	Radionuclides						
Actinium 228	1.17		0.34		0.32	12/17/09	12/18/09
Bismuth 214	1.08		0.23		0.20	12/17/09	
Lead 212	1.10		0.18		0.17	12/17/09	12/18/09
Lead 214	1.08		0.25		0.24	12/17/09	
Potassium 40	9.1		1.7		1.3	12/17/09	12/18/09
Thallium 208	0.371		0.099		0.096	•	
Thorium 234	4.6					12/17/09	12/18/09
111011011 254	4.6		2.3		2.8	12/17/09	12/18/09

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

PIKA International, Inc. Client Sample ID: SU14A 14A-10

Radiochemistry

Lab Sample ID: F9L100438-007

Work Order: Matrix:

LOVEE SOLID Date Collected:

11/23/09 0915

Date Received:

12/09/09 0910

otal		
ncert.		
2 σ+/-)	RL	mdc

Parameter	Result	Qual	Uncert. (2 g+/-)	RL	mdc	Prep Date	Analysis Date
	Hits by DOE GA-	01-R MOD	pı	Ci/g	Batch #	9351249	Yld %
Cesium 137	0.011	υ	0.031	0.200	0.055	12/17/09	12/21/09
Uranium 235	-0.03	U	0.56		0.28	12/17/09	12/21/09
Uranium 238	0.86	υ	0.81		1.2	12/17/09	12/21/09

NOTE(S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

Result is less than the sample detection limit.

Lot F9L100438

PIKA International, Inc. Client Sample ID: SU14A 14A-03

Radiochemistry

Lab Sample ID: F9L100438-008

Work Order: Matrix:

LOVEF SOLID Date Collected:

11/23/09

Date Received:

0957

12/09/09 0910

Tot	a	1

Result	Qual	(2 g+/-)	RL	mdc	Prep Date	Analysis Date
	1-R MOD	pq	Ci/g	Batch #	9351249	Yld %
-0.0001	U ·	0.028	0.200	0.054	12/17/09	12/18/09
0.03	U	0.14		0.27		12/18/09
0.34	U	0.81		1.3	•	12/18/09
dionuclides					=, = . , 55	,,,
0.144		0.074		0.12	12/17/09	12/18/09
	-0.0001 0.03 0.34	0.03 U 0.34 U dionuclides	Result Qual (2 c+/-) Lts by DOE GA-01-R MOD -0.0001 U 0.028 0.03 U 0.14 0.34 U 0.81	0.0001 U 0.028 0.200 0.03 U 0.14 0.34 U 0.81	Result Qual (2 c+/-) RL mdc its by DOE GA-01-R MOD pCi/g Batch # -0.0001 U 0.028 0.200 0.054 0.03 U 0.14 0.27 0.34 U 0.81 1.3	Result Qual (2 c+/-) RL mdc Prep Date Lts by DOE GA-01-R MOD pCi/g Batch # 9351249 -0.0001 U 0.028 0.200 0.054 12/17/09 0.03 U 0.14 0.27 12/17/09 0.34 U 0.81 1.3 12/17/09 ddionuclides

NOTE(S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

PIKA International, Inc. Client Sample ID: APG11-APG20

Radiochemistry

Lab Sample ID: F9L100438-009

LOVEJ

Date Collected:

10/13/09

Work Order: Matrix:

SOLID

Date Received:

12/09/09 0910

Total

Parameter	Result	Qual	Uncert. (2 g+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Cs-137 & 1	Hits by DOE GA-(1-R MOD	p	Ci/g	Batch #	9351249	Yld %
Cesium 137	-0.0003	ប	0.024	0.200	0.048	12/17/09	12/18/09
Uranium 235	0.06	ΰ	0.12		0.21	12/17/09	12/18/09
Uranium 238	1.74		0.46		1.0	12/17/09	12/18/09
Other Detected	Radionuclides				_ · ·	22/21/09	12/10/03
Bismuth 214	0.190		0.083		0.085	12/17/09	12/18/09
Lead 212	0.129		0.052		0.067	12/17/09	12/18/09
Potassium 40	1.60		0.65		0.69	12/17/09	
Thallium 208	0.051		0.029		0.042		12/18/09
Thorium 234	1.74					12/17/09	12/18/09
	±•/#		0.46	•	1.0	12/17/09	12/18/09

NOTE (S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

PIKA International, Inc. Client Sample ID: APG81-APG90

Radiochemistry

Lab Sample ID: F9L100438-010

Work Order:

Matrix:

LOVEL

Date Collected: Date Received:

10/20/09

1340 12/09/09 0910

SOLID

Total

Parameter	Result	Qual	Uncert. (2 ₀ +/-)	RL	mdc	Prep Date	Analysis Date
	Hits by DOE GA-	01-R MOD	pq	Ci/g	Batch #	9351249	Yld %
Cesium 137	0.019	υ	0.031	0.200	0.052	12/17/09	12/18/09
Uranium 235	0.38		0.23		0.28	12/17/09	12/18/09
Uranium 238	16.3		1.7		1.9	12/17/09	12/18/09
Other Detected	Radionuclides					,_,,	22/20/03
Actinium 228	0.247		0.095		0.065	12/17/09	12/18/09
Lead 212	0.143		0.061		0.077	12/17/09	12/18/09
Lead 214	0.091		0.051		0.076		
Thorium 234	16.3		1.7		1.9	12/17/09 12/17/09	12/18/09 12/18/09

NOTE(S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

METHOD BLANK REPORT

Radiochemistry

Client Lot ID:

F9L100438

Matrix:

SOLID

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	MDC		Prep Date	Lab Sample ID Analysis Date
Gamma Cs-137 & Cesium 137 Uranium 235 Uranium 238	Hits by DOE G -0.002 0.11 -0.06	A-01-R MOD U U U	pCi/g 0.030 0.14 0.75	Batch # 0.200	9351249 0.058 0.24 1.2	Yld %	12/17/09 12/17/09 12/17/09	9L170000-249E 12/18/09 12/18/09 12/18/09

NOTE(S)

Data are incomplete without the case narrative.

MDC is determined using instrument performance only Bold results are greater than the MDC.

Laboratory Control Sample Report

Radiochemistry

Client Lot ID:

F9L100438

Matrix:

SOLID

			Total Uncert.		Lab	Sample ID
Parameter	Spike Amount	Result	(2 g+/-)	MDC	% Yld % Rec	QC Control Limits
Gamma Cs-137 & E	lits by DOE GA-01	-R MOD	pCi/g	GA-01-R MOD	F91.1	L70000-249C
Americium 241	98.8	97.1	8.3	2.9		
Cesium 137	37.1	38.9	2.4	0.3	98	(90 - 110)
Cobalt 60	61.4	60.0	3.5		105	(90 - 110)
	Batch #:		3.3	0.2	98	(90 - 110)
	Baten #:	9351249		Analysis Date:	12/18/09	

DUPLICATE EVALUATION REPORT

Radiochemistry

Client Lot ID:

F9L100438

Matrix:

SOLID

Date Sampled:

11/23/09

Date Received: 12/09/09

D	SAMPLE		Total Uncert.		DUPLICA	THE	Total Uncert.	Ç	QC Sample ID	
Parameter	Result		(2σ+/-) % Yld		Result		(2 g+/~)	% Yld	Precisio	on
Gamma Cs-137 & Hit	s by DOE	GA-01-I	R MOD	pCi/g	GA-0	1-R M	OD	F9	L100438-00	 1
Cesium 137	0.020	U	0.022		0.012	U	0.024			-
Uranium 235	-0.03	U	1.4			-	0.024		45	%RPD
Uranium 238	2.02	Ü			0.037	U	0.097		6140	%RPD
			0.48		2.30		0.48		13	%RPD
Other Dedected Radio	onuclides									
Thorium 234	2.02		0.48		2.30		0.48		13	8000
	Ва	tch #:	9351249	(Sample)	93512	249 (D	uplicate)	,	13	%RPD

NOTE (S)

Data are incomplete without the case narrative. Calculations are performed before rounding to avoid round-off error in calculated results

Result is less than the sample detection limit.

Ę	>	KA					Cux	\	Chain of C	ustody R	Reco	ord	Γ	Feder	x Airb	ill #				Do	cument No.	12-1	
P	iΚA	International, I	nc.				20	\$ 129.00°			Fal	100	43						<u> </u>		Page <u>1</u>	12-1 of <u>2</u>	
p	roie	ect Number	08-07-172			ì	Project Fax	916-92			BILI	LING	ADDF	RESS:	• • • • • • • • • • • • • • • • • • • •	SEI	ND RE	EPOR	T TO:	LAB	ADDRESS:		
	-	ect Name	APG				Reg'd Report Da							nal, Inc. Dr., St			A Inte		nal /e., Ste 100				
	-	ect Contact	Jeanne Haslet	ł	_		Lab Contact				Staf	ford, T	TX 774	477)-5525		McG	Clellar ention:	1, CA	95652				
	_	ect Phone	916-920-9840		-		Lab Phone						340-5			1			nc.com				
· —	10)	sett mone			_		Lab 1 Hone		···							<u> </u>	JIO III Q	pinan	10.0011				
#	#	Sample ID# a	and Description		Vlatri TYP		CONTAINER TYPE (G, P)	VOLUME	NUMBER O			4	Al	NALYSIS	S REQL	ESTED)		DATE &	S TIME ECTED	INSTR	PECIAL UCTIONS / OTES	
				AIR	AQUEOUS	FILTER					SW 6020 Metals	HASL 300 Gamma Spec					\$				eser	·	
1 1		APG11-1	HG20		一,	√		1.5 L	1	none	X	Х							10/13/	ノムスパ	1050	narin	
, 2		APG81-	APGAD		,			1.5L	,	none	X	X							10/20	109	,	1 (201 - 1/3	
3	- 1	/ 11 	711 7 152		7			,,,,		none									1-1-4-7	<u>/</u>			
4										none	1												
E	\neg				\top					none	1						-			•			
e	\neg		· · · · · · · · · · · · · · · · · · ·		\exists					none													
7	_				1					none													
8	7									none	Ì	<u> </u>										.	
S	am	nple TAT Reces/Comments			impl		Archiv	e for	Months.	x Dispos	al by	Lab		Retu	rn to c	origin	QC	Req	uirements:				
			Ω	A			/7	- 27 - 9r		DY TRACK				.1	. P	,							
1)		Relinquished		7	1	<u>Z</u>			Time: 11:3				Ву:	Δ	X	<u></u>		_	Date: 277			247	
2)		Relinquished		ng	10	e.			Time: <u>/6 0</u>				Ву:	UMG	ple:	50 9	m	_	Date: <u>//2</u>				
3))	Relinquished	Ву:						Time:			eived						_	Date:		Time: _		
4))	Relinquished	Ву:				Date:		Time:		Rec	eived	By:					_	Date:		Time: _		

_
መ
К
Η
Ω
а
V.
\Box
•
\vdash
ō
č
F
70

							6700 a si s ³ (session e los 1 perses 7				:				-							
	IKA A International, I	nc.	9	~	35)		Chain of Cus F9L 10043	_	eco	rd		Fed	ex Airl	iU#					Doc P	ument No Page 1	12-1 of <u>1</u>
Pro Pro	ject Number ject Name ject Contact ject Phone	08-07-172 APG Jeanne Haslett 916-920-9840			R La	roject Fax eq'd Report Da ab Contact ab Phone	916-920	0-9163		PIKA 1272 Staff Phor	LING A Intent 23Capt ford, T ne: 28 281-3	nation ricom X 774 1-340	nal, In Dr., \$ 177 -5525	Ste 500	PII 50 Mo	KA Into 25 Arr Clella ention	EPOR ematio nold Av n, CA : Jean opikair	nal e., S 9565 ine	te 100 2	LAB A	DDRESS:	
#	Sample ID#	and Description		latrix TYPE		CONTAINER TYPE (G, P)	VOLUME	NUMBER OF CONTAINERS	PRESER -VATIVE			ΑA	EALYS	IS REQU	ESTE	D			DATE & TII COLLECTI		INSTRU	CIAL CTIONS / TES
	·		AIR	AQUEOUS	FILTER					SW 6020 Metals	HASL 300 Gemma Spec										Ore	h
1	Su1.	1-11		X			1.54	1	none		Х							1	1/23/09	1100	650 i	nariv
2	Su1	1-4		X			1.5L		none	_	X							_		305		
3	Suz	2-5		X			1.5L	1	none	4_	^ X			-	1-1	_			c	४६८		
4	Suz.	2-12		X	\perp		1.54	- 1	none		^ X				1					830		· · · · · · ·
5	SU4	4-7	_	X	_		1.5L	. 1		<u> </u>	^ X			44	$\perp \perp$			\perp		349		
6	SU4	4-11	_	X			1.52		none	-									ļ.,	1340		
7	SU 141	14A-10	_	_X			1.5L	1	none	↓	X			$\bot \bot$				ļ. <u>.</u>	-	1915		
8	SU 14A	14A-03		X			1.54	1	none	1	×							\	/ 0	957		
																Τ-						·

Sample TAT Reg'd: Standard	Sample Disposal:	Archive forMonths.	x Disposal by Lab Return to or	igin QC Requirements:
Notes/Comments:				
REPORT U238				

			CUSTODY TI	RACKING		
1)	Relinquished By:	Date: 12 -67 -09	Time: [[137	Received By:	Date: 0700009	Time: 1137
2)	Relinquished By: Chang the	Date: 12/8/69	Time: 1601	Received By:	Date: 12-9-09	Time: 9:10
3)	Relinquished By:	Date:	Time:	Received By:	Date:	Time:
4)	Relinquished By:	Date:	Time:	Received By:	Date:	Time:

TestAme	erica Lot	#(s): _	F9L1064	38		-				
THE LEADER IN ENVIRONMENT	ntal testing	-				-				
Client: — Quote No:		-	330			• • •				
COC/RFA No: _ Initiated By:	Pres Pres	D	ate: 16	1-9-09	Time: 970					
Intuated by:	Shipp	_	formation	, , , ,	_ 1 mie;					
Shipper: Fee Shipping # (s):* 1. <u>1982 04</u>	· ·			Commin To	fultiple Packages: (Y) N mperature (s):** outh f (6) 12/14/04	···				
				- ^{2.} -b	<u>/ </u>					
	·				8.					
4	9. 10.			_ 4,	9,					
	correspond to Numbered Sample Temp lines				10					
	or yes, "N" for no and "N/A" for not applicable):				tals-Liquid or Rad tests- Liquid or Solid	S				
1 (V) N	Are there custody seals present on the cooler?	8.	Y N	Are there cus	tody seals present on bottles?					
I Z I Y I IVI IVIA I	Do custody seals on cooler appear to be tampered with?	9.	Y N NA	Do custody se tampered with	eals on bottles appear to be					
2 (V) N	Were contents of cooler frisked after	10.	Y N WA	Was sample r	eceived with proper pH1? (If no	<u>,</u>				
4 (V) N	opening, but before unpacking? Sample received with Chain of Custody?	11.	(Y) N	make note be Sample receive	ved in proper containers?					
5 (V) N N/A	Does the Chain of Custody match sample ID's on the container(s)?	12.	Y N NA	Headspace in (If Yes, note san	VOA or TOX liquid samples?					
6. Y 10	Was sample received broken?	13.	Y N NA	Was Internal	COC/Workshare received?					
1	Is sample volume sufficient for analysis?	14.	YNGA	Was pH taker	by original TestAmerica lab?					
1 For DOE-AL (Pantex, LA)	NL, Sandia) sites, pH of ALL containers received r	nust be	verified, EXCEPT V	OA, TOX and soils						
Notes: K Following	Sample with lid Dartie	۸. ۵	l - 0 - (بناليه ملا	rontainer - Out	Tool back				
SI. D	- D. D.	3 0	D. Same	THE DATE IN	1 Confedior - pur	TIO DOOR				
Sh1 2	1-4									
544	4-7									
Shl	1-11									
& Sample ?	Sh14A 14A-03 re	300M	ed with	hid com	Pletely off-comm) <u>+</u>				
get 1:0	1 book 30 or too full	<i>)</i> - :	Sample m	wthy still	in Container					
Lie attacked e-mail groceed with all samples / 190 12 110-89										
(D) Client Contact Na			Informed by:	K.CKAI	1 1009.09					
☐ Sample(s) process ☐ Sample(s) on hold		If rela	eased, notify:	,						
Project Management F		,	· · · · —	12-13-09						
	mpleted at the time the items are be that person is required to apply their admin-	R MITL	AL AND THE DAT	E NEXT TO THAT						

Lot F9L100438

APPENDIX E

Instrument Calibration Reports

Designer and Manufacturer of Scientific and Industrial Instruments

CERTIFICATE OF CALIBRATION

LUDLUM MEASUREMENTS, INC. POST OFFICE BOX 810 PH. 325-235-5494

501 OAK STREET	FAX NO. 325-235-4672
SWEETWATER, TEXAS	79556. U.S.A.

CUSTON	IER PIKA INTE	RNATIONAL							ORDER N	102	0134551/3	338474
Mfg.	Ludlum Meas	surements, Inc.	Model		2350-	1		Seria	al No	22	21027	
Cal. Date	29-	-May-09 Ca	al Due Date		29-May-10		Cal. Inte	rval	1 Year	Meterface	•	N/A
Check mark	applies to app	olicable instr. and/or	detector IAW mfg.	spec.	T.	7	6 °F	RH_	41	% Alt	703.8	8 mm Hg
New	Instrument Ins	trument Received	Within Toler.	+-10%	10-20%	Ou	t of Tol.	Req	uiring Rep	air Oth	ner-See co	mments
▼ Mech	nanical check		_						V 1	nput Sens. I	inearity	
	Resp. check	▼ Reset of			▼ Window	Operation	n				,	
	check		Setting check				(Min. Volt)	4	1.4 VDC	:		
	meter Linearity che Log check		ted Dose check ad check		✓ Recycle ✓ Scaler R					eshold Ratio 1	00 =	4 m\
		with LMI SOP 14.8						n LMI S		v 02/07/97.		
✓ H	V Readout (2 point	s) Ref./Inst	500	_/	498	V	Ref./Inst.		2000	/	999	V
COMME	NTS: Firmw	are: 37122N28										
	ware: 37123N05											
Calibrat	ed using 5' ca	ble.										
Gamma Cali	ibration: GM detectors	s positioned perpendicu	lar to source except f	or M 44-	9 in which the fro	ont of prot	oe faces sou	rce.				
		, , , , , , , , , , , , , , , , , , , ,				Units/		Dead Tir		Calibra	ation	Linoaritu
	Probe Model	Serial #	High Voltage	Thr	eshold	Time Ba			on Factor	Calibra Consta		Linearity ±10%*
Detector #	43-37 A	PR216878	1250		100	7 /		1.82356		1.000000		
Detector #	43-37 B	PR216878	1700	1	00	7 /	1 2	2.31475	7E-05	1.000000	DE+00	
Detector #	43-68 A	PR216846	1200	1	00	7 /	1	1.66987	0E-05	1.000000	DE+00	
Detector #	43-68 B	PR216846	1650	1	00	7 /	1 2	2.089564	4E-05	1.000000	DE+00	
Detector #												
Detector #												
Detector #												
Detector #					_				-			
Detector #												
Detector #												
	- rad,1 Gray2 rem3	S Sv,4 R,5 C/Kg6 -	Disintegrations,- Co	ounts8	Ci/cm sq.9 Bo	q/cm sq.				-		
Time Base≀	- Seconds Minutes,									attached dete		
	REFERENCE	INSTRUMEI RECEIVED		RUMEN			RENCE		NSTRUME RECEIVED		INSTRUM	
Digital Readout	CAL. POINT 400kcpm			R REA	- 1	CAL. F	400cpm			(0)		READING* •(•)
rtoudout	40kcpm			-005	1		40cpm	_		1		4 1
	4kcpm	400		400	1		-					•
		the above instrument has been on members, or have been o										
		quirements of ANSI/NCSL				otarito or ric	avo boon donv			Calibration Lice		-1963
Reference	Instruments an	d/or Sources: Cs-	-137 Gamma S/N				3-394/1122	1	131 🗌 78	1 059	280	60646
1162	G112 M565	5105 T1008 [T879 E552	E551	720 7	'34	1616	N	leutron Am-2	241 Be S/N T-	304	
✓ Alph	na S/NPu	ı239 s/n 5283	✓ Beta S/N		Tc99 s/n	5296		Othe	r			
√ m 5	500 S/N	114520	_				✓ Multim	eter S/N	١	7840103	0	
Calibrated B	By: Sebash	- Ceballos					Date	29-1	May -0	9		
Reviewed B	· ·	1. W.					Date 3	1.00	12.5			

FORM C44C 10/15/2008

This certificate shall not be reproduced except in full, without the written approval of Ludlum Measurements, Inc.

POST OFFICE BOX 810 PH. 325-235-5494 501 OAK STREET FAX NO. 325-235-4672 SWEETWATER, TEXAS 79556, U.S.A.

Bench Test Data

Detector	43-37 A	Serial No.	PR216878		Order #.	20134551/3384	174
Customer	PIKA INTERNATIO	ONAL					
Counter	2350-1	Serial No.	221027	Co	unter Input Sensitivity	4.00	mV
Count Time	e/min.			Distance	Source to Detector	Surface	
Other C	al Constant = 1.000	0000E+00 Dead	Time = 1.823569E	-05			
High Voltage	e Background	Isotope Pus Size 24 6	239 Isotope 00 dpm Size		Isotope	Isotope	
1150	V 5	5,665					
1200	1	5,805					
*1250	3	5,913					
1300	。 3	5,929					
135	0 4	5,974					
						,	
Gas n	roportional dete	ctor count rate	decreased ≤ 10%	after 15 hou	ır static test using	39" cable.	
Signature	Sebast	Ceballos			Date	29-May-09	

Ludium Measurements, Inc. certifies that the above instrument has been calibrated by standards traceable to the National Institute of Standards and Technology, or to the calibration facilities of other International Standards Organization members, or have been derived from accepted values of natural physical constants or have been derived by the ratio type of calibration techniques.

The calibration system conforms to the requirements of ANSI/NCSL Z540-1-1994 and ANSI N323-1978.

State of Texas Calibration License No. LO-1963

FORM C4D 04/09/2003

POST OFFICE BOX 810 PH. 325-235-5494 501 OAK STREET FAX NO. 325-235-4672 SWEETWATER, TEXAS 79556, U.S.A.

Bench Test Data

Detector	43-37 B	Serial No. PR2	216878	Order #.	20134551/33847	74
Customer PIK	A INTERNATIO	NAL				
Counter	2350-1	Serial No. 2210)27	Counter Input Sensitivity	4.00	_ mV
Count Time	/min.			Distance Source to Detector	Surface	
Other Cal Co	onstant = 1.0000	000E+00 Dead Time = 1	2.314757E-05			
High Voltage	Background	Isotope Tc99 Size 33,200 dpm	Isotope	Isotope Size	Isotope	
1650V	539	10,177				
1675	703	11,174				
*1700	995	12,164				
1725	1,197	12,856				
The case are a second	utional data	ton count vete description	200 < 100 - 5	ter 15 hour static test using	20# pabl =	
Signature	Sebast		- 100 all		29 - May - 09	

Ludlum Measurements, Inc. certifies that the above instrument has been calibrated by standards traceable to the National Institute of Standards and Technology, or to the calibration facilities of other International Standards Organization members, or have been derived from accepted values of natural physical constants or have been derived by the ratio type of calibration techniques.

The calibration system conforms to the requirements of ANSI/NCSL Z540-1-1994 and ANSI N323-1978.

State of Texas Calibration License No. LO-1963

FORM C4D 04/09/2003

POST OFFICE BOX 810 PH. 325-235-5494 501 OAK STREET

FAX NO. 325-235-4672

SWEETWATER, TEXAS 79556, U.S.A.

Bench Test Data

Detector	43-68 A	Serial No. PR2	16846	Order #.	20134551/33847	4
Customer	PIKA INTERNATIO	NAL				
Counter _	2350-1	Serial No. 2210	27	Counter Input Sensitivity	4.00	_ mV
Count Time	1 min.			Distance Source to Detector	surface	
Other Ca	Constant = 1.0000	000E+00 Dead Time = 1	1.669870E-05			
High Voltage	Background	Isotope Pu 239 Size 24,600 dp ==	Isotope Size	Isotope Size	Isotope Size	
11001	υ	5,864				
1150	0	6.027				
*1200	3	6,159				
1250	1	6,114				
1300	(6,065				
Gas pr	oportional detec	tor count rate decreas	sed ≤ 10% aft	er 15 hour static test using	39" cable.	
Signature		Ceballus			9-May -09	

Ludium Measurements, Inc. certifies that the above instrument has been calibrated by standards traceable to the National Institute of Standards and Technology, or to the calibration facilities of other International Standards Organization members, or have been derived from accepted values of natural physical constants or have been derived by the ratio type of calibration techniques.

The calibration system conforms to the requirements of ANSI/NCSL Z540-1-1994 and ANSI N323-1978.

State of Texas Calibration License No. LO-1963

FORM C4D 04/09/2003

Serving The Nuclear Industry Since 1962

POST OFFICE BOX 810 PH. 325-235-5494 501 OAK STREET

FAX NO. 325-235-4672

SWEETWATER, TEXAS 79556, U.S.A.

Bench Test Data

Detector	43-68 B	Serial No. PR2	16846	Order #.	20134551/3384	174
Customer PI	KA INTERNATIO	NAL				
Counter	2350-1	Serial No. 2210	27	Counter Input Sensitivity	4.00	mV
Count Time	/min.			Distance Source to Detector	Surface	
Other Cal C	Constant = 1.0000	000E+00 Dead Time = 2	2.089564E-05			
High Voltage	Background	Isotope Tc99 Size 33,200 dpm	Isotope Size	Isotope Size	Isotope	
1600N	217	11,266				
1625	261	12,155				
* 1650	311	12,083				
1675	357	12,098				
Gas prop	ortional detec	tor count rate decreas	ed ≤ 10% aft	er 15 hour static test using	39" cable.	
	Schast		200 41		29-May - 09	
	00000				- Triang of	

Ludlum Measurements, Inc. certifies that the above instrument has been calibrated by standards traceable to the National Institute of Standards and Technology, or to the calibration facilities of other International Standards Organization members, or have been derived from accepted values of natural physical constants or have been derived by the ratio type of calibration techniques.

The calibration system conforms to the requirements of ANSI/NCSL Z540-1-1994 and ANSI N323-1978.

State of Texas Calibration License No. LO-1963

FORM C4D 04/09/2003

Serving The Nuclear Industry Since 1962

CERTIFICATE OF CALIBRATION

LUDLUM MEASUREMENTS, INC.

POST OFFICE BOX 810 PH. 325-235-5494

501 OAK STREET

FAX NO. 325-235-4672

SWEETWATER, TEXAS 79556, U.S.A.

CUSTON	MER PIKA INTERNATI	ONAL -				ORDER NO.	20119667/331787
Mfg	<u>Ludium Me</u> asurer	nents, Inc Mo	odel				554
Mfg	Ludium Measuren	ments, Inc Mo	odel	43-93			18509
Cal. Dat	e 11-Nov-	-08 Cal Due	Date1	1-Nov-09	Cal. Interval		
	ark 🗹 applies to applie					42 % A	
	Instrument Instrum						
✓ Med F/S R ✓ Audi	hanical ck. lesp. ck	✓ Meter Zeroe ✓ Reset ck. ✓ Alarm Setting	d □ ☑ g ck. ☑	Background St. Window Opera Batt. ck. (Min.)	btract	☐ Input Se ☐ Geotrop C ☐ RS-232 F	ns. Linearity Dism Port OK
Instrument	Volt Set 725	V	_				
✓ H	V Readout (2 points)	Ref./Inst500	1500	V Ref./Inst	1500 / /	500 v	
Alph Beta Beta Over Instru	a Threshold: Threshold: Window: doad SeT To wment calibrated with voltage set with deter).	(EEPROM S User Time: Alpha Alarm Beta Alarm: A/B Alarm: Model 2360 Calibration	1.0 50000 50000 50000	1/2008	
Gamma Calibra	tion: GM detectors positioned per				AENT DECID	North Association	
	RANGE/MULTIPLII		ERENCE POINT		MENT REC'D ND READING"	INSTRUME METER RE	
	x1000	400k cr			400		00
	x1000	100k cr	om		100		20
	<u>x100</u>	40k cr			400		20
	x100 x10	10k cr 4k cr			100 400		20
	X10		om		100		0
	x1	400 cr	omm		400	40	
	Xl	100 c;	om	**	100		00
	Uncertainty within ± 10%	C.F. within ± 20%			ALI	L Range(s) Cali	brated Electronically
	REFERENCE	INSTRUMENT	INSTRUMENT	3		STRUMENT	INSTRUMENT
Digital	CAL. POINT	RECEIVED	METER READING*	CAL. F	POINT RE	CEIVED	METER READING*
Readout	400kcpm	39861 (0)	39861(0)	Log Scale			*
	40kcpm 4kcpm	3996 400 (3996				
	400cpm	40	40				
	40cpm	4 1	4 1				
atten nitenacia	rements, Inc. certifies that the onal Standards Organization r	nembers, or have been de	rived from accepted values	of natural physical co	nal Institute of Standards on Standards or have been de	and Technology, or to	the calibration facilities of
ne colloration	system contorns to the requi	rements of ANSI/NCSL 2540	-1-1994 and ANSI N323-1978		Sto	ate of Texas Calibro	tion License No. LO-1963
	e Instruments and/o		4/1122	☐781 ☐ 059 ☐E552 ☐ E551	☐ 280 ☐ 60646 ☐ 720 ☐ 734 ☐] 1616	utron Am-241 Be S/N T-304
✓ Alph	na S/N Pu239 S	N: 5282	Beta S/N	Tc99 SN: 5296	[] Other		SN: 5281
☑ m 50	00 S/N 19056	6	Oscilloscope S/N		📝 Multin	neter S/N	86250390
Calibrate	d By:	son Fl			Date	NOU-08	
Reviewed	d By: R	ah Hi			Date II N		
This certifica							

POST OFFICE BOX 810 PH. 325-235-5494

501 OAK STREET

FAX NO. 325-235-4672

SWEETWATER, TEXAS 79556, U.S.A.

Bench Test Data For Detector

Detector	43-93	Serial No.	YR198	509		Orde	r#. <u>201</u>	19667/331787
Customer PIK	A INTERNATIO	NAL			Alpha	Input Sensitivi	ty	20mv
Counter	2360	Serial No	19365	4		Input Sensitiv	_	.5mv
Count Time _	1 Minute					Beta Wind	ow3	0 mv
Other					Distance Sour			ortare
				Po 239		T. 00		SaVan
High Voltage	Bac	kground	Size	35515dp		C 99 33077dpm	Size	5r /90 107687dpn
-	Alpha	Beta	Alpha	Beta :	Alpha	Beta	Alpha	8eta
700	1-2-	164	8790	578	<u> 8</u>	3845		26104
225	<u> </u>	226	9260	777	13	5506		33004
_ 750	7	407	9449	1218	15	6862	0	37089
			-	1 1 2 2 3 5 5				
-				i 				
_		*		* * * * * * * * * * * * * * * * * * *				
-	 			*				
		1		3 8 8 9				<u> </u>
				k k k g				<u> </u>
		1						<u> </u>
		* * *						:
						-	· · · · · · · · · · · · · · · · · · ·	
								<u> </u>
		:						
Gas Propor	tional detector	count rate dec	treased < 109	% after 15 hou	r static test using	a 39" cable		:
					static test using		alpha/beta	counter.
		,						
Signature	1		lan			Dete	11-	00-08
agriciore	11 00	N 1 /				Date	1112	00-08

Designer and Manufacturer Scientific and Industrial Instruments

CERTIFICATE OF CALIBRATION

LUDLUM MEASUREMENTS, INC.

POST OFFICE BOX 810 PH. 325-235-5494 FAX NO. 325-235-4672 **501 OAK STREET**

SWEETWATER, TEXAS 79556, U.S.A.

CUSTOM	ER PIKA INTERNATIONAL		3)	ORDER NO	20134288/338292
		nc. Model	2360	Serial No. 375	5173
Mfg	Ludlum Measurements, I	200 C C C C C C C C C C C C C C C C C C		Serial No. PA ?	27000
Mfg	Ludlum Measurements, I		29-May-10 C		
	e29-May-09				% Alt700.8 mm Hg
Check ma	ırk 🗹 applies to applicable i	nstr. and/or detector IAW m	nfg. spec. T	The Company of the Co	
☐ New	Instrument Instrument Rec	ceived Within Toler. +-1			
☐ F/S R ✓ Audi	esp. ck	Meter Zeroed Reset ck. Alarm Setting ck. I SOP 14.8 rev 12/05/89.		Lum .	
Instrument	Volt Set 850 v				
	V Readout (2 points) Ref./In:	st. <u>500</u> / 500	V Ref./Inst20	000 / 2000	V
Firmy	ware Version: 39010 n 29		(EEPROM Settin	gs)	
	a Threshold: 140 nV	 	User Time:	1.0	
20.70	Threshold: 37-V		Alpha Alarm: o	199999	
	Window: 320V		Beta Alarm:	399999	
	rload set to simula	Le light leak		99999	
	ument calibrated with a 15	cable.		te: 39. May. 69	
				e Due: 29-May/0	
High	voltage set with detector _c	CONNICTION	Calibration Da	(1.1. Kg)	
Gamma Calibra	ation: GM detectors positioned perpendicular	REFERENCE	INSTRUMEN		RUMENT
	RANGE/MULTIPLIER	CAL. POINT	"AS FOUND		ER READING*
	x1000	400k cpm		<u> 2/w</u>	N
	x1000	100k cpm		400	
	x100	40k cpm	_ <u> μω</u> /ω		رب دن
	x100	10k cpm	2/w	400	
	x10	4k cpm	/ω	10	0
	x10	1k cpm	2/00	400	
	x1	400 cpm	//00		
	x1	100 cpm		All Pangel	s) Calibrated Electronically
	*Uncertainty within ± 10% C.F. w	recommendation and an arrangement of the contraction of the contractio			November 1997
	REFERENCE INSTRU CAL. POINT RECEI	JMENT INSTRUMEN VED METER REA	DING* CAL. POIN		METER READING*
Digital	400kcpm 3999	99 (0) 39999 (Log Scale		
Readout	400kcpm 5199 40kcpm 5199		/		
	4kcpm Uw				
	400cpm Чо	40			
	40cpm 1	ц			
	urements, Inc. certifies that the above in ional Standards Organization members on system conforms to the requirements			stitute of Standards and Technolo nts or have been derived by the r State of Texas	gy, or to the calibration facilities of atio type of calibration techniques. Calibration License No. LO-1963
		The second secon		280 60646	
Cs-137 Gar	ce Instruments and/or Sou mma S/N 1162 G112 G	M565 S-394/1122 M565 S105 T1008 S		720 734 1616	☐ Neutron Am-241 Be S/N T-304
✓ Alp	ha S/N Pu239 2928-0	D1 Beta S/N	Tc99 NI-EV SrY90 4016	Other	
√ m 5	63893 63893	☐ Oscilloscope	S/N	Multimeter S/N_	93870637
Calibrate	\ \				

This certificate shall not be reproduced except in full, without the written approval of Ludlum Measurements, Inc. FORM C22S 10/15/2008

Passed Dielectric (Hi-Pot) and Continuity Test AC Inst. Only Failed: _

POST OFFICE BOX 810 PH. 325-235-5494 FAX NO. 325-235-4672 501 OAK STREET

SWEETWATER, TEXAS 79556, U.S.A.

Bench Test Data For Detector

Detector	43-93	Serial No.	PA 23700	٥٥		Orde	er#2013	4288/338292
Customer PIKA					Alpha	Input Sensitiv	ity	mV
Counter	2360	Serial No. 7	25173		Beta	Input Sensitiv	ity	mV
Count Time								mV
Other Plat		n with	15° cable		Distance Sou	rce to Detect		
High	Back	kground	Size 1	Pu 239 25,200 apr	Size 3	7c 99 (77,600dpn	Isotope _ Size :	Sry50 ~55, wldpn Beta
Voltage	Alpha	Beta	Alpha	Beta	Alpha	2973		5809
875	1	165	5707	!	5	3847		17410
* P50	1		5359		5	4871		14093
Gas Proport Gas proport	ional detector	count rate de	ecreased ≤ 10 ecreased ≤ 10	% after 15 ha	our static test using r static test using	ng 39" cable.	d alpha/beta	counter.
Signature $\underline{\qquad}$	crany	Thong	54			Date	24. Ma.	J-09

Designer and Manufacturer of Scientific and Industrial Instruments

CERTIFICATE OF CALIBRATION

LUDLUM MEASUREMENTS, INC.

POST OFFICE BOX 810 PH. 325-235-5494

501 OAK STREET

FAX NO. 325-235-4672

SWEETWATER, TEXAS 79556, U.S.A.

CUSTO	MER PIKA INTERNAT	IONAL			OF	RDER NO.	20137527/340279
Mfg.	Ludlum Measurem	N 1000 - 200	odel	2360	Serial N	10. 193682	
Mfg.	Ludium Measurem		odel	43-93	Serial N	o. PR236970	
1993 BOOK 1				23-Jul-10	Cal. Interval	terretori inserti in in	face 202-855
Cal. Dat	ark √applies to applicable				B °F RH	45 % A	
			Within Toler. +-10%	10-20% \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		eraction of the contraction	her-See comments
							ns. Linearity
Y	chanical ck.	Meter Zeroe	accounts.	Background Subt Window Operation		Geotropis	
	Resp. ck	Reset ck. Alarm Settin	a ck	Batt. ck. (Min. Vol		RS-232 F	
the state of the s	dio ck. prated in accordance with I				dance with LMI SOP	14.9 rev 02/07/9	97.
			2/03/09.	Cambratou in acco.			
		V	1.500	V Ref./Inst.	1500 / 1486	6 V	
\checkmark	HV Readout (2 points)	Ref./Inst. 500	/ 504				
Firm	nware Version: 39010	n24		(EEPROM Se	ettings)		
Alpi	ha Threshold: 120 mV			User Time:	1.0 minutes		
Bet	a Threshold: 3.5mV			Alpha Alarm:	50000		
Bet	a Window: 30 mV			Beta Alarm:	50000		
Ove	erload set to simula	ate a light leak		A/B Alarm:	50000		
Inst	trument calibrated with a	39" C- cable.		Model 2360 [01163160		
High	h voltage set with detector	disconnecte	6	Calibration D	ate Due: 07/23	3/2010	
COMM	ENTS:						
	RANGE/MULTIPL		FERENCE AL. POINT		MENT REC'D ND READING"	INSTRUM METER R	
	x1000	400k		400		400	
	x1000	100k		100		100	
	x100	40k	cpm	400		400	
	x100		cpm	_ 100		100	
	x10		cpm	400		400	
	x10		cpm	400		400	
	<u>x1</u>		cpm	100		100	
	x1		Срп		ALL	Range(s) Calil	brated Electronically
		C.F. within ± 20%	INIOTOLINENT.	REFER		TRUMENT	INSTRUMENT
	REFERENCE	INSTRUMENT RECEIVED	INSTRUMENT METER READING			CEIVED	METER READING*
Digital	CAL. POINT	RECEIVED	WILTER READING	Log	J., (1)		
Digital Readout	400kcpm	40098(0)	40098(0)	Scale			
	40kcpm	4010	4010	-			-
	4kcpm	401	401	l			
	400cpm	40	40				
	40cpm	4 4	4 ,	to the Medianal Institute of	of Standards and Technolog	y or to the calibration	facilities of
other Internat	surements, Inc. certifies that the abo tional Standards Organization mem	bers, or have been derive	d from accepted values of flature	al physical constants or ha			echniques. ion License No. LO-1963
The calibration	on system conforms to the requirem	ents of ANSI/NCSL Z540-	1-1994 and ANSI N323-1978			Of Texas Calibrati	OIT Election No. 20 Too
	nce Instruments and/o		-394/11221131 _ 105	781	280	616 Ne	utron Am-241 Be S/N T-304
	amma S/N 1162 G1			\$5280;Sr90Y90#52			
	pha S/N Pu239	relies Areas	Oscilloscope S/N			ter S/N	
✓ m	500 S/N 23827	<u> </u>					
Calibrate	ed By: James K. Mulse				Date <u>23-Jul-09</u>		
Reviewe	ed By: " Rhamb	Ham			Date 24 Jul	09	

This certificate shall not be reproduced except in full, without the written approval of Ludlum Measurements, Inc. FORM C22S 10/15/2008

Passed Dielectric (Hi-Pot) and Continuity Test AC Inst. Failed: _

POST OFFICE BOX 810 PH. 325-235-5494 **501 OAK STREET**

FAX NO. 325-235-4672

SWEETWATER, TEXAS 79556, U.S.A.

Bench Test Data For Detector

Detector 43-93 Serial No. <u>PR236970</u>					Order #. 20137527/340279				
Customer	PIKA INTERNAT	IONAL			Alpha	Input Sensitivity	120	mV	
Counter	2360	Serial No. 19	3682		Beta	Input Sensitivity	3.5	mV	
Count Time	1Minute	1878 - 16				Beta Window	30	mV	
					Distance Sour	rce to Detector	Surface	£	
High Voltage	Bac Alpha	kground Beta		Pu 239 24640.45 dpm Beta		L99 13239.85 dpm Beta		5r90Y90 105874.21 dg- Beta	
775	0	125	5415	312	36	10587	0	27246	
800	0	159	5629	414	26	14535	ł	33430	
825	0	250	5679	565	31	18384	0	37571	
							2500000		
(<u>*</u>									
8									
				-					
						4			
	portional detector of			0% after 15 hour		g 39" cable. 39" cable and alpha	/heta coun	ter	
Gas prop	portional detector c	ount rate decrease	ea ≤ it	7% alter 5 flour s	static test using	oo dable and alpha	, 5014 00411		
Signature	James K. M. B. S.	9				Date 2	3-JUL-09		

Designer and Manufacturer Scientific and Industrial Instruments

CERTIFICATE OF CALIBRATION

LUDLUM MEASUREMENTS, INC.

POST OFFICE BOX 810 PH. 325-235-5494

501 OAK STREET

FAX NO. 325-235-4672

SWEETWATER, TEXAS 79556, U.S.A.

CUSTO	MER PIKA	INTERNATIONAL					ORD	ER NO.	2014	13814/344064
Mfg.	Ludlum	Measurements, Inc.	Model		2360		Serial No.	,	22523	7
Mfg.	Ludlum	Measurements, Inc.	Model		43-93		Serial No.		PR 237	1000
Cal. Da		23-Nov-09	Cal Due Date	23-1	Nov-10	Cal. Inte	- erval <u>1)</u>			
Check ma	ark √ applies t	to applicable instr. and	/or detector IAW mi	g. spec.	T	<u>70</u> °F	RH	25 %	Alt	698.8 mm Hg
∏ Nev	y Instrument	Instrument Receive	d Within Tota	er. +-10% 📋 1	0-20% 📋 Ou	t of Tol. 🕟	Requiring Re	epair [] Other-Se	e comments
Med Med	chanical ck.	⊘ Met	er Zeroed	_ в	ackground Sul	btract			t Sens. Line	earity
F/S	Resp. ck	☑ Res	et ck.		Vindow Operati				tropism	
Aud			m Setting ck.	_	att. ck. (Min. V				232 Port Of	<
		fance with LMI SOP 14	4.8 rev 12/05/89.	∐ Ca	dibrated in acc	ordance wil	IN LMI SOP 14	1.9 rev Uz	707/97.	
	it Volt Set						. 15	, .	Pa	placed tobe
Δ	HV Readout (2	points) Ref./inst	500/	<u>505</u> ν	Ref./Inst.	1500		<u>/</u> v		
Fim	nware Version:	39010NZ4			(EEPROM					
•	ha Threshold:	150mr			User Time:		.0	_		
	a Threshold:	<u> 3:5mr </u>			Alpha Alam		9999			
	a Window: erload < ₄ :	30 mV	-11 W		Beta Alarm: A/B Alarm:	000	1999			
	rument calibrat	t tosum Auto a liq	cable.		Model 2360		1777 /-	n constal		
	h voltage set wi		comeded		Calibration	*****	1/23/3	2010	***	
COMM										
	RANGE/N	ectors positioned perpend MULTIPLIER	REFERENC CAL. POIN	Œ	INSTRU "AS FOL	MENT R JND REA	EC'D	METE	UMENT R READI	NG*
	X1000_		400 Kcpm		<u>L</u>	<u>{≎∞</u> /∞○			400 100	
	X1000 X100		100 Kcpm 40 Kcpm			400			400	
	X100		10 Kcpm			100	·		190	
	X10		4 Kcpm			100			400 100	- TENER -
	X10 X1		1 Kcpm 400 cpm			400			400	
	<u>X1</u>		100 cpm			/60	- <u>-</u> -		/00	
		nin ± 10% C.F. within ± 3	· · · · · · · · · · · · · · · · · · ·				R	ange(s)	Calibrated	Electronically
	REFERENCE			RUMENT	REFE	RENCE	INSTR	UMENT	IN:	STRUMENT
	CAL. POINT	RECEIVE	METE	R READING	CAL. I	POINT	RECE	VED	ME	ETER READING*
Digital Readout	400 K c	nm Uoou	9 cm 4 c	1049 (0) S	.og Scale					
	40 K c			4005					_	
	4 K cr		7	400 7					- –	
	400 cj 40 cj			4			,			
vii m Haac			has been calibrated by sta	indards traesable to 1	ne National Institute	of Standards	and Technology, a	to the calib	ration facilities	of
ther internati	ional Standards Org	les that the above insutation in anization members, or have b to the requirements of ANSI/N	een derived from accepte	d values of natural ph	ysical constants or	have been der	ived by the tatio ty	реол сажина	uon tecnnique:	s. nse No, LO-1963
		nts and/or Sources		☐1131 ☐7	781 059	☐280 	60648	-		
		162 G112 M66					734 161	6 [] Neutron An	n-241 Be S/N T-304
		PU-239#2928		TC-99#5] Other			
√ m :	500 S/N	189606	Oscilloso	cope S/N			Multimeter	S/N	938	370637
Calibrate	ed By:	Duona	Tackon			_ Date _	23-4	<u> </u>	9	
Reviews	ed By:	Rhada V	Hair	gerer - Lawrence of a Marin process of		_ Date _	<u>23N ou o</u>	9		
This certific	cale shall not be rep	roduced except in full, withou	t the written approval of Li	ıdlum Measurements,	inc.		nst. Passe		c (Hi-Pot) and	d Continuity Test

FORM C4B 04/09/2003

LUDLUM MEASUREMENTS, INC.

POST OFFICE BOX 810 PH. 325-235-5494 501 OAK STREET

FAX NO. 325-235-4672

SWEETWATER, TEXAS 79556, U.S.A.

Bench Test Data For Detector

Det	ector	43-93	Serial No	PRZ36°	16/		Order	#. 2014	3814/344064
Cus	tomer p	IKA INTERNAT	TONAL			Aipha i	Input Sensitivity	, <u> </u>	Z <u>o</u> mV
Cou	nter	2360	Serial No	19365	1		Input Sensitivit	_	5.5mV
Cou	nt Time	1Minute					Beta Windo		07 mV
Oth		P : A APPARENT About				Distance Sour	ce to Detector	<u>_Se</u>	u fisce
	High	Sac	kground		0-239 25,740pm	Isotope 🧻 Size	C <u>99</u> 28,800cpm	Size	5 <u>190y</u> 90 105,007don
-	Voltage	Alpha	Beta.	Alpha	Beta	Alpha	Beta	Aipha	Beta
	775		140_	523	388	8	4635	<u> </u>	28665
*_	800		218	5800	461	<u> </u>	5785	<u>3</u>	34906
	825		767	5907	548	8	6768		3937/
_	<u> 250</u>	1	352	5932	<i>7</i> 20	8	7855	0	41264
			<u> </u>		!		1		1
			! !		 		1		i i
			! !		! } L		1		<u> </u>
			3 1 3		; i ;				! !
J-			:				1		1
			!						!
			1						i i
		- † -	E d		1 1		•		
_	0348-page		1				1		1
_					; ;	 			1
_					1 	 		· · · · · · · · · · · · · · · · · · ·	1
	<u> </u>				, 	 	1		.1
	O-2 D		Allet rate degrees	d 109	/ affect 15 hour	l r static test using	30" cable		
			count rate decrease ount rate decrease				39" cable and alp	ha/beta counte	er.
ĻJ	One broke	inditol adream, a				•			
		<u></u>							
		X) .						
Sia	nature	4 tus	Just Act	000 _			Date	23400	W-09
3			7/				MIN 2 MIN		

Serving The Nuclear Industry Since 1962

ERG

Certificate of Calibration

Calibration and Voltage Plateau

Environmental Restoration Group, Inc. 8809 Washington St NE, Suite 150 Albuquerque, NM 87113 (505) 298-4224 www.ERGoffice.com

Meter:	Manufacturer:	Ludlum	Model Number:	2221	Serial Numb	er:	108878
Detector:	Manufacturer:	Ludlum	Model Number:	FIDLER	Serial Numb	er:	010807G
Source Distr Source Geo Threshold:	ponse Check ance: Contact metry: Side	ndow:	✓ THR/WIN Oper ✓ Reset Check Other: 3/4" Other:	ration Audio Ch HV Check (+/- 2. Cable Length: Temperature: 7	5%): ✓ 500 V ☐ 39-inch ✓ 72 73 F Relative	✓ 1000 V 2-inch □ O	
Range/Mul	tiplier Ref	erence Setting	"As Found Reading	ng" Meter R	eading	Integrated 1-min count	Log Scale Count
x 100	0	400	400	400)	399028	400
x 100	0	100	100	100	0		100
x 100)	40	400	400)	39899	400
x 100)	10	100	100	0		100
x 10		4	400	400)	3989	400
x 10		1	100	100)		100
x 1		400	400	400)	398	400
x 1		100	100	100			100
High Vol	tage	Source Count	s Bac	kground		Voltage Pl	ateau
700 800 900 950 1000 1050 1100 1200	s: Recommended	4264 83088 127837 153639 161439 163814 163157 163243 163279		5507 mE = 30	200000 T 150000 - 100000 - 50000 - 0 - SEZONDS	ogn ran	1100 1200
Ludlum pu	burce: Th-230 (course: Tc-99 (b)	d/or Sources: r:□ 97743	8/09) sn: 4098-03 /09) sn: 4099-03	☐ Gamma S ☑ Other Sou ibration Date: /6	arce: Am-241	5.32 uCi (2/1	28 (8/09) sn: 4097-03 e: 10-6-16

CERTIFICATE OF CALIBRATION

Electroplated Alpha Standard						
5.0.# 6065 P.O.# 789945						
Description of Standard:						
Model No. DNS-16S Serial No. 5292-04 Isotope Pu-239						
Electroplated on polished Ni disc, 0.79 mm thick.						
Total diameter of 4.77 cm and an active diameter of 4.45 cm.						
The radioactive material is permanently fixed to the disc by heat treatment without any covering over the active surface.						
Measurement Method:						
The 2pi alpha emission rate was measured using an internal gas flow proportional chamber. Absolute counting of alpha particles emitted in the hemisphere above the active surface was verified by counting above, below, and at the operative voltage. The calibration is traceable to NIST by reference to an NIST calibrated alpha source $S/N = 4001-02$.						
Measurement Result:						
The observed alpha particles emitted from the surface of the disc per minute (cpm) on the calibration date was:						
<u> 18,100 + 541</u>						
The total disintegration rate (dpm) assuming 1.5% backscatter of alpha particles from the surface of the disc, was:						
± 1.070 (0.0160 μ Ci)						
The uncertainty of the measurement is 3 %, which is the sum of random counting error at the 99% confidence level, and the estimated upper limit of systematic error in this measurement.						
Calibrated by: ART REUST Reviewed by: Shere Y. Bares						
Calibration Technician: Other Q.A. Representative: Authory W. Noth						
Calibration Date: 6-22-2004 Reviewed Date: 6-13-04						

CERTIFICATE OF CALIBRATION

Electroplated Alpha Standard						
S.O.# <u>66</u> 28						
P.O.#_705764						
Description of Standard:						
Model No. DNS-16S Serial No. 5283-04 Isotope Pu-239						
Electroplated on polished disc, 0.79 mm thick.						
Total diameter of 4.77 cm and an active diameter of 4.45 cm.						
The radioactive material is permanently fixed to the disc by heat treatment without any covering over the active surface.						
Measurement Method:						
The 2pi alpha emission rate was measured using an internal gas flow proportional chamber. Absolute counting of alpha particles emitted in the hemisphere above the active surface was verified by counting above, below, and at the operative voltage. The calibration is traceable to NIST by reference to an NIST calibrated alpha source $s/N_{_\4001-02}$.						
Measurement Result:						
The observed alpha particles emitted from the surface of the disc per minute (opm) on the calibration date was:						
12,500 + 374						
The total disintegration rate (dpm) assuming 1.5% backscatter of alpha particles from the surface of the disc, was:						
$24,600$ + 738 (0.0111 μ Ci)						
The uncertainty of the measurement is3_%, which is the sum of random counting error at the 99% confidence level, and the estimated upper limit of systematic error is this measurement. Calibrated by:ART REUST Reviewed by:						
Calibration Technician: Anthony W. Toth						
Calibration Date: 5-17-2007 Reviewed Date: 5-17-07						

CERTIFICATE OF CALIBRATION

_	erectrobrateo	Aipha Standar	a	
Description of Standard:			5.0 P.C	3812 0.# 774925
Model No. \$94-1	_ Serial No	2928-01	Isotope	Pu-239
Electroplated on polished	Ni disc	0.79	n	m thick.
Total diameter of 3.18	cm and	an active diam	eter of 2.	54 cm.
The radioactive material is covering over the active sur		ed to the disc	: by heat trea	tment without any
Measurement Method:				
The 2pi alpha emission rate chamber. Absolute counting active surface was verified calibration is traceable to 2393/91 · Measurement Result: The observed alpha particles the calibration date was:	of alpha partic by counting abo NIST by referen	cles emitted in ove, below, and nce to an NIST	the hemisphe dat the opera calibrated al	re above the tive voltage. The pha source S/N_
12,600	<u>+</u>	377		
The total disintegration rat surface of the disc, was:	e (dpm) assumir	ng 0% backscatt	er of alpha p	particles from the
25,200	<u>+</u>	754	(0.0113	μCi)
The uncertainty of the measurerror at the 99% confidence this measurement.	level, and the	estimated uppe	er limit of sy	stematic error in
Calibrated by: ART REUST		Reviewed by:	Tombons	4
Calibration Technician:		Q.A. Rep		Loth Bunhan
Calibration Date: 10-24-2	2001	Reviewed	Date: /o	-24-01

1380 Seaboard Industrial Blvd. Atlanta, Georgia 30318 Tel 404·352·8677 Fax 404-352-2837 www.analyticsinc.com

CERTIFICATE OF CALIBRATION

Standard Radionuclide Source

76595-763

Cs-137 47 mm Diameter Glass Fiber Filter in Auminum Planchet

Customer: PIKA International, Inc. P.O. No.: 0701151-001, Item 3

This standard radionuclide source was prepared gravimetrically from a calibrated master solution. The master solution was calibrated with an ionization chamber that was calibrated by the National Physical Laboratory, Teddington, U.K., and is directly traceable to national standards.

Radionuclide purity and calibration were checked by germanium gamma-ray spectrometry. The nuclear decay rate and assay date for this source are given below.

ANALYTICS maintains traceability to the National Institute of Standards and Technology through Measurements Assurance Programs as described in USNRC Reg. Guide 4.15, Revision 1

ISOTOPE:

Cs-137

ACTIVITY (Bq):

4.949 E1

HALF-LIFE:

3.007 El years

CALIBRATION DATE:

January 30, 2008 12:00 EST

RELATIVE EXPANDED

UNCERTAINTY (k=2):

3.3%

Comments:

Impurities: γ-impurities <0.1%

Diameter of active area: 47 mm. Low smooth bottom planchet. Source covering 0.85 mg/cm^2 mylar.

No expiration date has been given for this source due to the fragile nature of the mylar covering. This source should be carefully tested for leakage at least every six months. If leakage is detected this source should be disposed of by approved radioactive waste disposal procedures.

QA Approved:

D. M. Montgomery, QA Manager

End of Certificate

1380 Seaboard Industrial Blvd. Atlanta, Georgia 30318 Tel 404*352*8677 Fax 404*352*2837 www.analyticsinc.com

CERTIFICATE OF CALIBRATION

Standard Radionuclide Source

76593-763

47 mm Diameter Glass Fiber Filter in Aluminum Planchet

Customer: PIKA International, Inc. P.O. No.: 0701151-001, Item 1

This standard radionuclide source was prepared gravimetrically from a calibrated master solution. The Am-241 was calibrated by liquid scintillation counting. All other radionuclides were calibrated with an ionization chamber that was calibrated by the National Physical Laboratory, Teddington, U.K., and is directly traceable to national standards.

Radionuclide purity and calibration were checked with a germanium gamma spectrometer system. The nuclear decay rate and assay date for this source are given below.

ANALYTICS maintains traceability to the National Institute of Standards and Technology through Measurements Assurance Programs as described in USNRC Reg. Guide 4.15, Revision 1.

CALIBRATION DATE: January 29, 2008 12:00 EST

ISOTOPE: Am-241 Cs-137 ACTIVITY (Bq): 1.688 E2 1.684 E2

HALF LIFE: 4.322 E2 Y 3.007 E1 Y

RELATIVE EXPANDED
UNCERTAINTY(k=2): 3.3% 3.3%

Comments

Impurities: γ-impurities <0.1%, α-impurities <0.1%

Diameter active area: 47 mm. Low smooth bottom planchet. Source covering 0.85 mg/cm^2 mylar.

No expiration date has been given for this source due to the fragile nature of the mylar covering. This source should be carefully tested for leakage at least every six months. If leakage is detected this source should be disposed of by approved radioactive waste disposal procedures.

Source Prepared By: 1 Kusmun tor

W. I. Taskaeva, Radiochemist

QA Approved:

D. M. Montgomery, OA Manager

Date: 1/3/ 08

End of Certificate

1380 Seaboard Industrial Blvd. Atlanta, Georgia 30318 Tel 404-352-8677 Fax 404-352-2837 www.analyticsinc.com

CERTIFICATE OF CALIBRATION

Standard Radionuclide Source

76594-763

Am-241 47 mm Diameter Glass Fiber Filter in Aluminum Planchet

Customer: PIKA International Inc. P. O. No.: 0701151-001, Item 2

This standard radionuclide source was prepared gravimetrically from a calibrated master solution. The master solution was calibrated by liquid scintillation counting. The calibration was checked by alpha counting after source preparation.

ANALYTICS maintains traceability to the National Institute of Standards and Technology through Measurements Assurance Programs as described in USNRC Reg. Guide 4.15, Revision 1.

Isotope:

Am-241

Activity (Bq):

1.652 E1

Half-Life:

4.322 E2 years

Calibration Date:

January 30, 2008 12:00 EST

Relative Expanded

Uncertainty (k=2):

3.3%

Comments:

Impurities: γ -impurities <0.1%, α -impurities <0.1%

Diameter of active area: 47 mm. Low smooth bottom planchet. Source covering 0.85 mg/cm² mylar.

No expiration date has been given for this source due to the fragile nature of the mylar covering. This source should be carefully tested for leakage at least every six months. If leakage is detected this source should be disposed of by approved radioactive waste disposal procedures.

Source Prepared By:

M. I. Taskaeva, Radiochemist

QA Approved:

D. M. Montgmery, QA Manager

Date: 1/31/08

End of Certificate

Designer and Manufacturer of Scientific and Industrial Instruments

CERTIFICATE OF CALIBRATION

LUDLUM MEASUREMENTS, INC.

POST OFFICE BOX 810 PH. 325-235-5494

FAX NO. 325-235-4672 501 OAK STREET SWEETWATER, TEXAS 79556 U

CUSTOMER PIKA INTERNATIONA			77772 37	351000-74
Mfg. <u>Ludlum Measuremen</u>	ts, Inc Model	2360	Serial No. 2252/8 37	
Mfa Ludlum Measuremen	ts, Inc. Model	43-93	Serial No	
Cal Date 9-Jun-10	Cal Due Date	9-Jun-11 Cal	. Interval <u>1 Year</u> Meterface	202-855
Check mark ✓ applies to applicab	le instrand/or detector IAW m	ifg. spec. T °F	RH53_ % Alt700	. <u>8</u> mm Hg
Check mark applies to applicab	Pacaived Within Toler +-1	0% □ 10-20% □ Out of Tol	. Requiring Repair Other-See cor	nments
		Background Subtract	☐ Input Sens. Linearity	
	✓ Meter Zeroed ✓ Reset ck.	Window Operation	✓ Geotropism	
☐ F/S Resp. ck✓ Audio ck.	Alarm Setting ck.	Batt. ck. (Min. Volt)	2.2_VDC	
Calibrated in accordance with		Calibrated in accorde	ance with LMI SOP 14.9 rev 02/07/97.	
Instrument Volt Set 825 V				
HV Readout (2 points) Ref	./Inst/	V Ref./Inst150	01 <u>_1504</u> _v	
Firmware Version: 390)0	. 24	(EEPROM Settings	5)	
Alpha Threshold: 120 h			. 0	
Beta Threshold: 3-4 m		Alpha Alarm: 9		
Reta Window: 30 MI	J	Beta Alarm: 9		
Overload Let to six	rulate light leak		79999	
Instrument calibrated with a	5' cable.		= 9. Sunc. 10	
High voltage set with detector	discomected	Calibration Date	Due: 9.2ung.11	
COMMENTS:				
		and of each of coop course		
Gamma Calibration: GM detectors positioned perpend	REFERENCE	INSTRUMENT	REC'D INSTRUMENT	
DANCE (AALII TIDI IED		"AS FOUND R	1,200	
RANGE/MULTIPLIER ×1000	400k cpm	400	460	_
×1000	100k cpm	100	///	
×100	40k cpm	400	100	
x100	10k cpm	100 400	400	
x10	4k cpm	100	100	_
x10	1k cpm	400	400	
xl	400 cpm 100 cpm]00	100	
xl			ALL Range(s) Calibrated Elec	tronically
*Uncertainty within ± 10% C	STRUMENT INSTRUMEN	T REFERENCE	INSTRUMENT INSTRU	
KEI EKE. O	ECEIVED METER REA		RECEIVED METER	MENT
CALITOIN	CEIVED	DING		
Digital				MENT
Keddooi400KCpiii	399900 39990	Log Scale		MENT
40kcpm _=	3999 / 3999 3995 / 3995	Log Scale		MENT
40kcpm - 4kcpm	3995 / 3999	Log Scale		MENT
40kcpm - 4kcpm - 400cpm - 40cpm	3995 (3995 3995 (3995 399 (399 40) 40	Scale		MENT READING*
40kcpm 4kcpm 400cpm 400cpm 4ucpm 4ucpm	39990(a) 39990 3995 (3995 399 (3995 40 40 40 90 e instrument has been delived from accept	Log Scale andards traceable to the National Instited values of natural physical constants	ute of Standards and Technology, or to the calibration s or have been derived by the ratio type of collibration State of Texas Calibration License	MENT READING*
40kcpm 40cpm 400cpm 400cpm 400cpm 40cpm 40cpm Ludlum Measurements, Inc. certifies that the abother International Standards Organization men The calibration system conforms to the requirem	39990 3995 3995 3995 3995 3996 40 40 40 40 40 40 40 40 40 40 40 40 40 4	Log Scale andards traceable to the National Instit led values of natural physical constants N323-1978	ute of Standards and Technology, or to the calibration is or have been derived by the ratio type of calibration State of Texas Calibration License	MENT READING*
40kcpm 4kcpm 400cpm 400cpm 400cpm	3999 (3995 (39	Log Scale andards traceable to the National Instituted values of natural physical constants N323-1978 1131 781 059 28 1879 E552 E551 72	State of Texas Calibration License 30	MENT READING* In facilities of techniques. No. LO-1963
40kcpm 40kcpm 40cpm 400cpm 400cpm 400cpm 40cpm 4	39990 (a) 39990 (b) 39990 (c) 3995 (c) 3995 (c) 3990 (c)	Log Scale andards traceable to the National Instituted values of natural physical constants N323-1978 1131 781 059 28 1879 E552 E551 72 Tc99:NI-EV,Sry90:4016	State of Texas Calibration License	AENT READING* Infacilities of techniques. No. LO-1963
40kcpm 4kcpm 400cpm 400	39990 (a) 39990 (b) 39990 (c) 3995 (c) 3995 (c) 3990 (c)	Log Scale andards traceable to the National Instituted values of natural physical constants N323-1978 1131	State of Texas Calibration License 30	MENT READING* Infacilities of techniques. No. LO-1963

This certificate shall not be reproduced except in full, without the written approval of Ludlum Measurements, Inc. FORM C22S 03/11/2010 Page _____ of _____

Calibrated By: _____CCAT-

Reviewed By:

Passed Dielectric (Hi-Pot) and Continuity Test AC Inst. Only Failed: _

Date

FORM C4B 03/11/2010

LUDLUM MEASUREMENTS, INC.

POST OFFICE BOX 810 PH. 325-235-5494 **501 OAK STREET**

FAX NO. 325-235-4672

SWEETWATER, TEXAS 79556, U.S.A.

Bench Test Data For Detector

Detector	43-93	Serial No	PN2369	55		Order	20/5 #. 2015/ ح	55 65-2 5284/351080-A
Customer PIK	A INTERNATIO	NAL			Alpha I	nput Sensitivit	y	
Counter	2360	Serial No. 2	25218		Beta	Input Sensitivi	17	<u>4</u> mv
Count Time _						Beta Windo	ow _ <u>_ ع</u> ز	mV
Other				[Distance Sour	ce to Detecto	or Sur	t411
High Voltage		kground Beta	Isotope _	Pu739 = 24,8634p	Isotope <u>7</u>	299 27,604dpn Beta	Isotope .	<u>Sry90</u> = <u>53,636</u> dpr Beta
800	1	118	5884	464	3	3648		11041
X875	1	198	5918	666	υ	4699	0	130/0
850	2	270	6013	876	0	5794	0	15/35
Gas Propo	ortional detector	r count rate de	creased ≤ 10	0% after 15 hour 0% after 5 hour	r static test using	ng 39" cable.	d alpha/beta	counter.
Signature _	Crany	Thoma	542			Date	9. June	7.10

• Serving The Nuclear Industry Since 1962 •

Model 2360 Log Data Date: 06/09/2010 Time: 09:13:47 AM Page: 1

Header 1: John Q Public Header 2: Serial#225218 Header 3: Ser#PR236955 Header 4: Site:Building 1 Header 5: Room 7 EastWall Header 6: More Comments? Location: Table 007

Calibration Due Date: 06/09/2011 Model 2360 Date: 06/09/2010 Model 2360 Time: 09:13:01 AM

Logged Samples: 0

User PC Scaler Count Time: 1.0 minutes

Alpha Ratemeter Alarm Setpoint: 999999

Beta Ratemeter Alarm Setpoint: 999999

Alpha + Beta Ratemeter Alarm Setpoint: 999999

Alpha Scaler Alarm Setpoint: 999999

Beta Scaler Alarm Setpoint: 999999

Alpha + Beta Scaler Alarm Setpoint: 999999

Regulatory Comments and Replies

PIKA'S RESPONSES TO NRC COMMENTS ON THE FSSR FOR 1103A AREA

1. Survey Unit 25 does not appear to meet the criteria based on the information submitted. Please refer to Appendix B2 Static Results page 21 of 26. In the Tech initial is the measured portion for each spot above the criteria and the average. When added together it is 1.06 which is greater than the 1.0 criteria. Please explain in detail why this area is releasable or perform more decontamination and perform a follow up survey.

Reply: It appears that the data submitted for this Survey unit does not support release. PIKA reviewed the calculations and found that the instrument efficiency was higher than what was used in the spreadsheet. An efficiency for a different instrument was incorrectly entered for SU25. After the error was corrected, the unity rule calculation came to 0.73, which meets the criterion. Appendix B2 and the text will be revised to show the new results.

2. Not enough detailed information is provided to determine the Methodology of determining how instrument alpha efficiency was determined for the instrumentation used in the field. Please provide the size of alpha source used, the NIST certified value for the source, and the calculation to determine alpha efficiency.

Reply: The efficiencies were determined by a vendor, Ludlum Instruments. PIKA obtained the certificates for sources used by Ludlum, and these will be added to Appendix E of the FSSR. The method used is as follows. A nominal 2 inch diameter Pu-239 source is placed under the detector and a one minute count is taken. The result (net of background) is ratioed to the 2 pi source emission rate, as certified by the source vendor. Alpha backscatter was ignored, since it is less than a 1.5% correction (per the source vendor). Also, they do a linearity check over the entire 100cm² detector area. They move the source around the detector area, looking for non-linearity. If they find a problem, they fail the calibration.

An example for one instrument (LMI 2360, SN 193654) is:

Source #5282 (Eberline), 2 pi emission rate: $18,100 \pm 541$ per minute.

Count rate over source (per Ludlum), 9260 cpm.

Ratio: 9260/18100 = 0.51, which is the instrument efficiency.

3. It appears from your alpha surveys that you are using a surface efficiency of 0.5 for alpha contamination. Per ISO-7503 recommendations, the alpha surface efficiency should be 0.25. The 0.25 surface efficiency for alpha is in agreement with NUREG01507, Minimum Detectable Concentrations with typical Radiation Survey Instruments for Various Contaminants and Field Conditions. Please

specify the surface efficiency value used and its basis or adjust all of your alpha measurements and reevaluate the survey units.

Reply: A surface efficiency of 0.5 was applied to the instrument efficiencies, as you noted. After further review, PIKA agrees that a surface efficiency of 0.25 is more appropriate for surfaces such as concrete walls and floors. For other surfaces, however, we feel that a higher surface efficiency is warranted. A number of survey units have a surface of metal siding, which has a much smoother surface than concrete. This is also true of the smooth steel of the storage vaults. NUREG-1507, Table 5.5, presents a surface efficiency of 0.555 for stainless steel and Th-230, using a ZnS detector. This roughly matches our conditions with smooth metal surfaces, U-234, -235 and -238 having similar emissions, and the Ludlum 43-93 ZnS scintillation probe.

Alpha activities will be re-calculated for all concrete surface survey units and the FSSR will be revised accordingly.

4. The removable surface activity survey did not appear to account for a alpha self-absorption factor for counting the wipes. Please justify the self-absorption factor of 1.0 or adjust the results of the wipe tests and evaluate.

Reply: The wipe test efficiency was determined using a spiked fiber wipe, similar to what is used in the field. This was prepared as a counting standard by Eckert & Ziegler to accurately determine the efficiency of our wipe counter (Ludlum Model 2929). The standard rests in an aluminum planchette that is similar to the planchettes used in counting the field wipes. PIKA feels that this counting standard accurately reflects conditions that could affect results, including self-absorption. A copy of the source certification will be added to Appendix E of the FSSR.

5. Appendix E does not appear to have the certificates of calibration For the instruments used in Appendix B. Please provide these certificates.

Reply: There were five instruments used, one for beta scanning (Ludlum Model 2350-1), one for gamma scanning (Ludlum Model 2221/FIDLER), and three for alpha static measurements (Ludlum Model 2360). Appendix E will be updated to include certificates of calibration for each of these.

6. SU28, after being recalculated, is above the DCGL. I believe your plan says that you will re-investigate any point above the DCGL. I would suggest you resurvey that point with a longer count time and better statistics. If it is lower than the DCGL, modify the report with an explanation. If it is above the DCGL then, split into two class one areas and resurvey, modify report as necessary.

Reply: This area of SU 28 was investigated and alpha levels similar to the original survey were found. Also, the investigation attempted to confirm the background value for the metal siding surface of this SU. We discovered that a background for this material was never measured. Alpha backgrounds were taken on the three un-affected sides of Bldg. 1100E. The average of sixteen one-minute counts at various locations was 7.1 cpm. This compares to $9.4~\mathrm{cpm}$ in SU28. Thus, the survey unit is not elevated above the DCGL 1 .

The calculations for fixed readings (Appendix B2) will be updated with the correct background and investigational readings. The investigation survey report will be included in Appendix B4.

-

¹ We suspect the high backgrounds are due to radon daughters plating out on the metal siding. Another building on the base, with the same siding and paint, exhibited similar alpha backgrounds.