Summary of Stress Analysis Results for the US-APWR Reactor Coolant Loop Piping

Non-proprietary Version

February 2011

©2011 Mitsubishi Heavy Industries, Ltd. All Rights Reserved

Mitsubishi Heavy Industries, LTD.

Revision History

Revision	Page	Description
0	All	Original Issue
1	i & ii	Add the sections and change the page numbers.
	iii	Add the tables and change the page numbers.
	iv	Add the figures and change the page numbers.
	v	Add the acronyms.
	1-1	Change Figure 1-1.
	2-1	Change Table 2-1.
	4-1	Add the nomenclatures in Table 4-1.
	6-1	Add the sentences.
	6-2	Add "according to NB-3600" to the title of Table 6-1.
	6-3	Add Table 6-2.
	7-2	Add the material of nozzles in Table 7-2.
	7-2	Add the values of S_u in Table 7-3.
	7-3	Change the table numbers and add the sentences.
	7-4	Change the figure number.
	7-5	Add Figure 7-1-2.
	7-6 to 7-10	Change the table numbers.
	7-11 to 7-13	Add Tables 7-5-4 to 7-5-9
	7-14	Change the 1 st paragraph.
	7-14 & 7-15	Change the table number.
	7-16	Add Table 7-6-2.
	7-17	Change the table number and title.

Revision History (Contd.)

Revision	Page	Description
1	7-18	Add Table 7-7-2.
	8-1	Add "based on NB-3600" to the title of Section 8.2.
	8-1 & 8-2	Add Section 8.3 and change the sentences in Section 8.4.
	8-3	Change the figure title.
	8-4	Add Figure 8-2.
	9-1	Change the 1 st sentence of Section 9.0.
	9-1	Correct the typing error and add the contents to Table 9-1
	10-1	Add the words "including 6 nozzles" to the 1 st sentence
	10-1 to 10-3	Change the section numbers and the table numbers.
	10-4 to 10-19	Add the contents.
	12-1	Update the revision number of References 4 and 10.
	12-1	Add References 13 through 16.
2	Abstract	Change sentences.
	i & ii	Revise table of contents.
	iii	Revise list of tables.
	iv	Revise list of figures.
	v	Revise list of acronyms.
	1-1	Modify sentences and Figure 1-1.
	2-1	Change contents of Table 2-1.
	3-1	Modify sentences.
	6-1	Modify sentences and remove Table 6-2.
	7-1	Change wording in Table 7-1.
	7-2	Change contents of Table 7-2 and Table 7-3.
	7-3	Modify sentences and remove Figure 7-1-2 and Tables 7-5-4 through 7-5-9.
	7-5 to 7-9	Change contents of Tables 7-5-1 through 7-5-3.

Revision	Page	Description
2	7-10	Modify sentences and remove Table 7-6-2.
	7-12	Modify sentences and remove Table 7-7-2.
	8-1	Remove Section 8.3 and Figure 8-2.
	9-1	Update contents of Table 9-1.
	10-1	Change sentence.
	10-3	Revise stress analysis result.
	10-4 to 10-19	Remove contents.
	11-1 & 11-2	Change Figure 11-1 through Figure 11-3.
	12-1	Update and delete reference documents.

Revision History (Contd.)

© 2011

MITSUBISHI HEAVY INDUSTRIES, LTD.

All Rights Reserved

This document has been prepared by Mitsubishi Heavy Industries, Ltd. ("MHI") in connection with the U.S. Nuclear Regulatory Commission's ("NRC") licensing review of MHI's US-APWR nuclear power plant design. No right to disclose, use or copy any of the information in this document, other than by the NRC and its contractors in support of the licensing review of the US-APWR, is authorized without the express written permission of MHI.

This document contains technology information and intellectual property relating to the US-APWR and it is delivered to the NRC on the express condition that it not be disclosed, copied or reproduced in whole or in part, or used for the benefit of anyone other than MHI without the express written permission of MHI, except as set forth in the previous paragraph.

This document is protected by the laws of Japan, U.S. copyright law, international treaties and conventions, and the applicable laws of any country where it is being used.

MITSUBISHI HEAVY INDUSTRIES, LTD. 16-5, Konan 2-chome, Minato-ku Tokyo 108-8215 Japan

<u>Abstract</u>

This report contains a summary of the structural evaluation of the Reactor Coolant Loop (RCL) piping.

The calculations were based on the loading conditions defined in the US-APWR RCL piping Design Specification (Reference 4) and on the procedures per ASME Boiler & Pressure Vessel Code Section III (Reference 1).

The RCL piping satisfies the applicable structural limits of the 1992 Edition of Section III | including the 1992 addenda.

Table of Contents

INTRODUCTION				
SUM	SUMMARY OF RESULTS			
CONCLUSIONS				
NOM	ENCLA	TURE	4-1	
ASSI	JMPTIC	ONS AND OPEN ITEMS	5-1	
5.1	ASSU	MPTIONS	5-1	
5.2	OPEN	ITEMS	5-1	
ACC	EPTAN	CE CRITERIA	6-1	
DESI	gn inf	PUT	7-1	
7.1	GEON	IETRY	7-1	
7.2	MATE	RIAL	7-2	
7.3	LOAD	S, LOAD COMBINATIONS, AND TRANSIENTS	7-3	
	7.3.1	Pressure Loads and Temperature	7-3	
	7.3.2	Mechanical Loads	7-3	
	7.3.3	Thermal and Pressure Transient Loads	7-10	
	7.3.4	Load Combinations	7-12	
MET	HODOL	_OGY	8-1	
8.1	HEAT	TRANSFER COEFFICIENTS AND THERMAL ANALYSIS	8-1	
8.2	STRE	SS CALCULATION BASED ON NB-3600	8-1	
8.3	(DELET	red)		
8.4	FATIG	UE ANALYSIS METHOD	8-2	
COM	PUTEF	R PROGRAMS USED	9-1	
STRUCTURAL ANALYSIS RESULTS10-1				
10.1 RCL PIPING10-1				
	SUM CON NOM ASSU 5.1 5.2 ACCI DESI 7.1 7.2 7.3 METI 8.1 8.2 8.3 8.4 COM STRU	SUMMARY CONCLUSIO NOMENCLA ASSUMPTIO 5.1 ASSU 5.2 OPEN ACCEPTAN DESIGN INF 7.1 GEON 7.2 MATE 7.3 LOAD 7.3 T.3.1 7.3.2 7.3.3 7.3.3 7.3.4 METHODOL 8.1 8.1 HEAT 8.2 STRES 8.3 (DELET 8.4 FATIG STRUCTUR	SUMMARY OF RESULTS CONCLUSIONS	

	10.1.1 Evaluated Part Dimensions10	D-1
	10.1.2 Stress Results10	0-3
11.0	LEAK-BEFORE-BREAK EVALUATION1	1-1
	11.1 EVALUATION METHOD	1-1
	11.2 EVALUATION RESULTS	1-1
12.0	REFERENCES	2-1

Appendix 1	Reactor Coolant Loop Piping Stress Calculation Formula	A1-	-1

List of Tables

Table 2-1	Summary of Most Limiting Results	2-1
Table 4-1	Symbols and Definition	4-1
Table 6-1	RCL Piping Stress Limits according to NB-3600	6-2
Table 7-1	RCL Piping Basic Design Drawing List	7-1
Table 7-2	Materials of Construction	7-2
Table 7-3	Material Property for SA-336 Grade F316	7-2
Table 7-4	Pressures and Temperatures	7-3
Table 7-5-1	Member Load of Hot Leg	7-5
Table 7-5-2	Member Load of Crossover Leg	7-6
Table 7-5-3	Member Load of Cold Leg	7-9
Table 7-6-1	Design Transients	7-10
Table 7-7-1	Load Combinations for the design based on NB-3600	7-12
Table 9-1	Computer Program Used	9-1
Table 10-1-1	RCL Piping Dimensions	10-2
Table 10-1-2	RCL Piping Stress Result Summary	10-3

1

List of Figures

Figure 1-1	Schematic view of the RCL piping	1-1
Figure 7-1-1	Coordinate System for RCL Piping	7-4
Figure 8-1	Stress Evaluation Process (NB-3600)	8-2
Figure 11-1	Hot Leg LBB Evaluation Result	11-1
Figure 11-2	Crossover Leg LBB Evaluation Result	11-2
Figure 11-3	Cold Leg LBB Evaluation Result	11-2

List of Acronyms

The following list defines the acronyms used in this document.

BAC	Bounding Analysis Curve
FE	Finite Element
LBB	Leak Before Break
RCL	Reactor Coolant Loop
RCP	Reactor Coolant Pump
RCS	Reactor Coolant System
RV	Reactor Vessel
SG	Steam Generator
SRSS	Square Root Sum of Square
SSE	Safe Shutdown Earthquake
1/3 SSE	Level B Service Loading Earthquake

1.0 INTRODUCTION

This Technical Report contains a summary of the stress analysis results for the US-APWR | RCL piping. The content of this report follows the ASME guidelines for Design Reports (Section III Division 1 Appendix C).

The RCL piping consists of hot leg, crossover leg and cold leg as shown in Figure 1-1.

This report provides structural evaluations for the three parts of RCL piping.

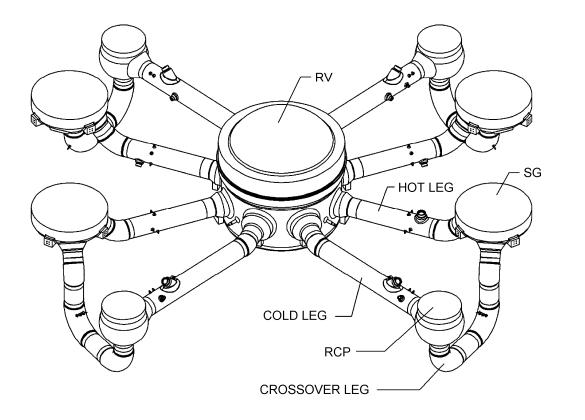


Figure 1-1 Schematic view of the RCL piping

2.0 SUMMARY OF RESULTS

The most limiting results of the RCL piping are listed in Table 2-1. The structural analysis results and the LBB evaluation results are summarized in Sections 10 and 11 respectively.

Section	Evaluated Part	Max Stress / Allowable Ratio	Highest Fatigue Usage Factor	LBB Evaluation
10.1 & 11	Hot Leg			
10.1 & 11	Crossover Leg			
10.1 & 11	Cold Leg			

Note 1: The max stress / allowable ratio is the ratio of the calculated stress intensity (or pressure) to the allowable stress intensity (or allowable pressure). Therefore, any ratio less than or equal to 1.0 is acceptable.

 $Ratio = \frac{Calculated stress intensity (or Pressure)}{Allowable stress intensity (or Allowable pressure)}$

Note 2: The fatigue calculations performed in this report meet the requirement of the ASME Code of Reference. Environmental fatigue per RG 1.207 will be evaluated separately.

3.0 CONCLUSIONS

The US-APWR RCL piping is designed to the requirements of the ASME Boiler and Pressure Vessel Code, 1992 Edition including the 1992 Addenda for the Design, Service Loadings and Operating Conditions as specified in the Design Specification (Reference 4).

From the results summarized in this report and a review of the piping design drawings, it is concluded that the RCL piping satisfies the requirements of the ASME Code.

4.0 NOMENCLATURE

Symbol	Unit	Definition
Sm	ksi/psi	Design stress intensity
S_y	ksi/psi	Yield stress
Su	ksi/psi	Tensile strength
Р	psi	Design pressure
P_a	psi	Maximum allowable internal pressure defined in NB-3641.1
P_L	ksi	General primary membrane stress
P_b	ksi	Primary bending stress
Q	ksi	Secondary stress
C_4	_	Constant number defined in NB-3653.7. (=1.3 for austenitic material)
E	psi	Modulus of elasticity
У′	-	Constant number defined in NB-3653.7
α	1/°F	Coefficient of thermal expansion
ΔT_1	°F	Range of temperature difference between T_o and T_i of the piping assuming equivalent linear temperature distribution
To	°F	Temperature of the outside surface
T_i	°F	Temperature of the inside surface

Table 4-1 Symbols and definition

5.0 ASSUMPTIONS AND OPEN ITEMS

5.1 Assumptions

All dimensions used in the evaluation (diameter, thickness and bend radius of elbow) are nominal values.

5.2 Open Items

There are no open items in this Technical Report.

6.0 ACCEPTANCE CRITERIA

The RCL piping is evaluated in accordance with NB-3600.

Table 6-1 specifies the RCL piping stress limits according to NB-3600.

Condition	Stress Category	Stress Limits	Remarks
Design	Primary Stress	1.5 S _m	NB-3652
	Primary Plus Secondary Stress	3 S _m	NB-3653
	Usage Factor	1.0	NB-3653.5
Level A/B	Thermal Bending Stress	3 S _m	NB-3653.6
	Primary Plus Secondary Membrane Stress Excluding Thermal Bending and Expansion Stress	3 S _m	NB-3653.6
	Thermal Stress Ratchet	ΔT_1 range $\leq y' S_y C_4 / (0.7 E \alpha)$	NB-3653.7
Level B	Permissible Pressure	1.1 <i>P</i> _a	NB-3654.1
Level D	Primary Stress	Min (1.8 S _m , 1.5 S _y)	NB-3654.2
Level C	Permissible Pressure	1.5 <i>P</i> a	NB-3655.1
Level C	Primary Stress	Min (2.25 S _m , 1.8 S _y)	NB-3655.2
	Permissible Pressure	2 P _a	NB-3656
Level D	Primary Stress	Min (3 S _m , 2 S _y)	NB-3656

Table 6-1	RCL Piping Stress Limits according to NB-3600

7.0 DESIGN INPUT

7.1 Geometry

The RCL piping basic drawings used to supply dimensions for the stress evaluation are listed in Table 7-1.

No.	Drawing Title	Reference Number
1	Reactor Coolant Loop Piping Design Drawings	N0-F700L11

Table 7-1 RCL Piping Basic Design Drawing List

7.2 Material

The materials for the RCL piping are listed in Table 7-2.

Part	Material					
Straight pipe	SA-336 Grade F316					
Elbows	SA-336 Grade F316					

Table 7-2 Materials of Construction

The material strength properties used in the stress are obtained from ASME Section II.

	•		
Temperature, °F	S _m , ksi	S _y , ksi	S _u , ksi
70	20.0	30.0	70.0
100	20.0	30.0	70.0
200	20.0	25.9	70.0
300	20.0	23.4	68.0
400	19.3	21.4	67.1
500	18.0	20.0	67.0
600	17.0	18.9	67.0
650	16.6	18.5	67.0

 Table 7-3 Material Properties for SA-336 Grade F316

7.3 Loads, Load Combinations, and Transients

The loads, load combinations and transients are defined in the Design Specification (Reference 4). The following is a summary of those used for the RCL piping structural evaluations.

7.3.1 Pressure Loads and Temperature

Parameter	Value
Design pressure	2500 psia (2485 psig)
Design temperature	650 °F
Normal operating pressure	2250 psia (2235psig)
Normal operating temperature (Hot side)	617.0 °F
Normal operating temperature (Cold side)	550.6 °F

Table 7-4 Pressures and Temperatures

7.3.2 Mechanical Loads

Mechanical loads are dead weight, thermal expansion load, seismic load and accident load. These loads are obtained from the Design Specification (Reference 4).

Tables 7-5-1 through 7-5-3 provide the member loads of the RCL piping used in the structural evaluations and Figure 7-1-1 shows the coordinate system of the RCL piping.

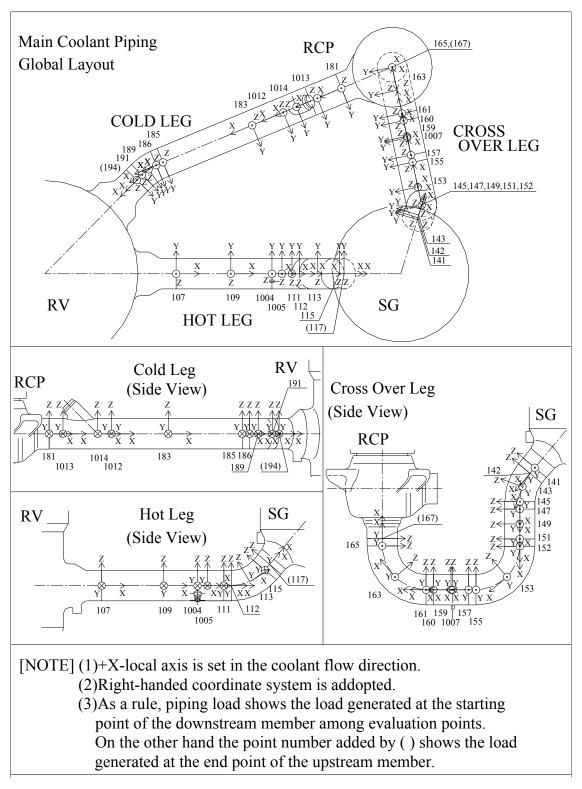


Figure 7-1-1 Coordinate System for RCL piping

Node No.	Loading	Fx (kips)	Fy (kips)	Fz (kips)	Mx (kips ⋅ in)	My (kips ∙ in)	Mz (kips ∙ in)
	Dead Weight	-					
	Thermal						
107	Seismic (1/3 SSE)						
	Seismic (SSE)						
	Accident						
	Dead Weight						
	Thermal						
109	Seismic (1/3 SSE)						
	Seismic (SSE)						
	Accident						
	Dead Weight						
	Thermal						
111	Seismic (1/3 SSE)						
	Seismic (SSE)						
	Accident						
	Dead Weight						
	Thermal						
112	Seismic (1/3 SSE)						
	Seismic (SSE)						
	Accident						
	Dead Weight						
	Thermal						
113	Seismic (1/3 SSE)						
	Seismic (SSE)						
	Accident						
	Dead Weight						
	Thermal						
115	Seismic (1/3 SSE)						
	Seismic (SSE)						
	Accident						
	Dead Weight						
	Thermal						
117	Seismic (1/3 SSE)						
	Seismic (SSE)						
	Accident	_					

 Table 7-5-1
 Member Load of Hot Leg

Node	Looding	Fx	Fy	Fz	Mx	My	Mz
No.	Loading	(kips)	(kips)	(kips)	(kips ⋅ in)	(kips • in)	(kips ⋅ in)
	Dead Weight	-					[
	Thermal						
141	Seismic (1/3 SSE)						[
	Seismic (SSE)						 :
	Accident						
	Dead Weight						
	Thermal						
142	Seismic (1/3 SSE)						
	Seismic (SSE)						
	Accident						
	Dead Weight						
	Thermal						
143	Seismic (1/3 SSE)						
	Seismic (SSE)						
	Accident						
	Dead Weight						
	Thermal						
145	Seismic (1/3 SSE)						
	Seismic (SSE)						
	Accident						
	Dead Weight						
	Thermal						
147	Seismic (1/3 SSE)						
	Seismic (SSE)						
	Accident						
	Dead Weight						
	Thermal						
149	Seismic (1/3 SSE)						
	Seismic (SSE)						
	Accident						
	Dead Weight						
	Thermal						
151	Seismic (1/3 SSE)						
	Seismic (SSE)						
	Accident	_					'

 Table 7-5-2
 Member Load of Crossover Leg (1/3)

Mada			F		Mx	NA.	Mz
Node No.	Loading	Fx (kips)	Fy (kips)	Fz (kips)	(kips ⋅ in)	My (kips ∙ in)	(kips • in)
	Dead Weight	-					
	Thermal						
152	Seismic (1/3 SSE)						
	Seismic (SSE)						
	Accident						
	Dead Weight						
	Thermal						
153	Seismic (1/3 SSE)						
	Seismic (SSE)						
	Accident						
	Dead Weight						
	Thermal						
155	Seismic (1/3 SSE)						
	Seismic (SSE)						
	Accident						
	Dead Weight						
	Thermal						
157	Seismic (1/3 SSE)						
	Seismic (SSE)						
	Accident						
	Dead Weight						
	Thermal						
159	Seismic (1/3 SSE)						
	Seismic (SSE)						
	Accident						
	Dead Weight						
	Thermal						
160	Seismic (1/3 SSE)						
	Seismic (SSE)						
	Accident						
	Dead Weight						
	Thermal						
161	Seismic (1/3 SSE)						
	Seismic (SSE)						
	Accident	_					

 Table 7-5-2
 Member Load of Crossover Leg (2/3)

Node No.	Loading		Fx (kips)	Fy (kips)	Fz (kips)	Mx (kips ⋅ in)	My (kips ∙ in)	Mz (kips ⋅ in)
	Dead Weight	$\left(\right)$						[[]]
	Thermal							
163	Seismic (1/3 SSE)							
	Seismic (SSE)							
	Accident							
	Dead Weight							
	Thermal							
165	Seismic (1/3 SSE)							
	Seismic (SSE)							
	Accident							
	Dead Weight							
	Thermal							
167	Seismic (1/3 SSE)							
	Seismic (SSE)							
	Accident	\int						

 Table 7-5-2
 Member Forces of Crossover Leg (3/3)

Node No.	Loading	Fx (kips)	Fy (kips)	Fz (kips)	Mx (kips ⋅ in)	My (kips ⋅ in)	Mz (kips ∙ in)
	Dead Weight						
	Thermal						
181	Seismic (1/3 SSE)						
	Seismic (SSE)						
	Accident						
	Dead Weight						
	Thermal						
183	Seismic (1/3 SSE)						
	Seismic (SSE)						
	Accident						
	Dead Weight						
	Thermal						
185	Seismic (1/3 SSE)						
	Seismic (SSE)						
	Accident						
	Dead Weight						
	Thermal						
186	Seismic (1/3 SSE)						
	Seismic (SSE)						
	Accident						
	Dead Weight						
	Thermal						
189	Seismic (1/3 SSE)						
	Seismic (SSE)						
	Accident						
	Dead Weight						
	Thermal						
191	Seismic (1/3 SSE)						
	Seismic (SSE)						
	Accident						
	Dead Weight						
	Thermal						
194	Seismic (1/3 SSE)						
	Seismic (SSE)						
	Accident						

Table 7-5-3 Member Load of Cold Leg

7.3.3 Thermal and Pressure Transient Loads

The design transients used in the structural evaluations are listed in Table 7-6-1.

These transients were determined based on a 60-year plant operating period and are classified into the ASME Level A, Level B, Level C, Level D service conditions, or Test condition, depending on the expected frequency of occurrence and severity of the event.

Mark	Transient	Occurrence	Remark
Level A S	ervice Condition		
l-a	Plant heat-up (50F/h)	120	
l-b	Plant cooldown (100F/h)	120	Includes Transient for Loss of offsite power with natural circulation cooldown (10 times) and Safe shutdown (1 time)
I-c-1	Ramp load increase between 15% and 100% of full power (5% of full power per minute)	600	
I-c-2	Ramp load increase between 50% and 100% of full power (5% of full power per minute)	19,200	
I-d-1	Ramp load decrease between 15% and 100% of full power (5% of full power per minute)	600	
I-d-2	Ramp load decrease between 50% and 100% of full power (5% of full power per minute)	19,200	
l-e	Step load increase of 10% of full power	600	
l-f	Step load decrease of 10% of full power	600	
l-g	Large step load decrease with turbine bypass	60	
l-h(i)	Steady-state fluctuations and load regulation (Steady state fluctuations)	1 x 10 ⁶	$P_P \pm 50 psi, T_{hot}, T_{cold}, T_{ave} \pm 3.1 F$
l-h(ii)	Steady-state fluctuations and load regulation (Load regulation)	8 x 10 ⁵	
l-i	Main feedwater cycling	2,100	
l-j	Refueling	60	Water is replaced in 10minutes
l-k	Ramp load increase between 0% and 15% of full power	600	
I-I	Ramp load decrease between 0% and 15% of full power	600	
l-m	RCP startup	3,000	
l-n	RCP shutdown	3,000	
l-o	Core lifetime extension	60	
I-p	Primary leakage test	120	
l-q	Turbine roll test	10	

Table 7-6-1 Design Transients (1/2)

Table 7-6-1	Design Transients (2/2)
-------------	-------------------------

Mark	Transient	Occurrence	Remark
Level	B Service Condition		
ll-a	Loss of load	60	
II-b	Loss of offsite power	60	
II-c	Partial loss of reactor coolant flow	30	
ll-d(i)	Reactor trip from full power With no inadvertent cooldown	60	
ll-d(ii)	Reactor trip from full power With cooldown and no safety injection	30	Includes Transient for excessive feedwater flow
II-d(iii)	Reactor trip from full power With cooldown and safety injection	10	
ll-e	Inadvertent RCS depressurization	30	
II-f	Control rod drop	30	
ll-g	Inadvertent safeguards actuation	30	
ll-h	Emergency feedwater cycling	700	
II-i	Cold over-pressure	30	
II-j	Excessive feedwater flow	—	Covered by Transient for reactor trip from full power ii)
II-k	Loss of offsite power with natural circulation cooldown		Covered by Transient for plant cooldown
II-I	Partial loss of emergency feedwater	30	Use Figure for Transient of loss of offsite power
II-m	Safe Shutdown	—	Covered by Transient for plant cooldown
Level	C Service Condition		
III-a	Small loss of coolant accident	5	
III-b	Small steam line break	5	
III-c	Complete loss of flow	5	
III-d	Small feedwater line break	5	
III-e	SG tube rupture	5	
Level	D Service Condition		·
IV-a	Large loss of coolant accident	1	
IV-b	Large steam line break	1	
IV-c	RCP locked rotor	1	
IV-d	Control rod ejection	1	
IV-e	Large feedwater line break	1	
Test (Condition		
V-a	Primary side hydrostatic test	10	

7.3.4 Load Combinations

The load combinations specified in Reference 4 were used in the structural evaluations. The combinations of pressure, temperatures and member loads are provided in Table 7-7-1.

The names used for member loads refer directly to the names specified in Tables 7-5-1 through 7-5-3.

System Operating Condition	Service Stress Limit	Service Loading Combination
Design	Design	Design pressure ⁽¹⁾⁽²⁾
Design	Design	Dead weight loads (2)
Normal	Level A	Level A thermal & pressure transients
normai	LeverA	Thermal loads
		Level B maximum pressure (1)(2)
	Level B	Level B thermal & pressure transients
Upset		Dead weight loads ⁽²⁾
		Thermal loads
		Seismic (1/3 SSE) loads
	Level C	Level C maximum pressure (1)(2)
Emergency		Dead weight loads ⁽²⁾
	Level D	Level D maximum pressure (1)(2)
Faulted		Dead weight loads ⁽²⁾
		±SRSS(Seismic(SSE) loads + Accident loads) ⁽²⁾

Table 7-7-1 Load Combinations for the design based on NB-3600

Note 1: Applied to permissible pressure evaluations.

Note 2: Applied to primary stress evaluations.

8.0 METHODOLOGY

8.1 Heat Transfer Coefficients and Thermal Analysis

The ABAQUS computer program was used to determine temperature distributions of the RCL piping. ABAQUS is a general purpose finite element computer program used by MHI in the design and analysis of nuclear components. ABAQUS is available in the public domain and has been used by MHI for U.S. replacement steam generator and replacement reactor vessel closure head projects.

Heat transfer coefficients on the inner and outer surfaces of the piping are required to define the temperature distributions during transients. Classical Handbook heat transfer equations (References 6, 7 and 8) were used to calculate the heat transfer coefficients.

Finite element thermal analyses were performed for all Level A and Level B transients to define the time-dependent temperature distributions of the piping. The primary coolant temperature versus time curves were applied to all wetted surfaces with appropriate heat transfer coefficients as discussed above. The outside surfaces under the piping insulation were considered adiabatic.

8.2 Stress Calculation based on NB-3600

Stress calculation was performed in accordance with NB-3650 using the MCPEVALSI. This program uses input of dimensions, pressure, temperature and load data of the piping, and calculates primary, secondary and peak stress according to the equations described in Appendix 1.

Figure 8-1 shows the stress calculation process.

8.3 (Deleted)

8.4 Fatigue Analysis Method

The fatigue analysis was based on the rules of NB-3650. This rule requires calculation of the total stress, including the peak stress, to determine the allowable number of stress cycles for the specified Service Loadings. In the RCL piping analysis, the MCPEVALSI was used to calculate fatigue usage factors.

The design transients for Level A and B service conditions (Table 7-6-1) were used in the evaluation of cyclic fatigue. The effect of 300 cycles of a 1/3 SSE seismic event was also included in the evaluation of cyclic fatigue, treated as a Level B service condition. The number of cycles assumed for the 1/3 SSE seismic event was based on a fatigue usage factor equivalent to that for a single SSE event of 20 cycles.

Figure 8-1 Stress Evaluation Process (NB-3600)

9.0 COMPUTER PROGRAMS USED

Refer to Figure 8-1 for a visual description of the stress evaluation process. The table below provides a brief description of each of the computer programs used.

No.	Program Name	Version	Description
1 ABAQUS		6.7-1	ABAQUS is a general purpose finite element computer code that performs a wide range of linear and nonlinear engineering simulations.
			ABAQUS is used for thermal analysis in RCL piping evaluation.
2	MCPFEM	2.0	MCPFEM is an MHI Code that makes ABAQUS input files for thermal analysis.
3	MCPEVALPRI	2.0	MCPEVALPRI is an MHI Code that extracts temperature data from ABAQUS output files.
4	MCPEVALSI	5.0	MCPEVALSI is an MHI Code that calculates the stresses and usage factors in accordance with NB-3600.

 Table 9-1 Computer Program Description

All these computer programs were verified and validated in compliance with the MHI quality assurance program. The computer programs were validated using one of the methods described below. Verification tests demonstrate the capability of the computer program to produce valid results for the test problems encompassing the range of permitted usage defined by the program documentation.

- Hand calculations
- Known solution for similar or standard problem
- Acceptable experimental test results
- Published analytical results
- Results from other similar verified programs

10.0 STRUCTURAL ANALYSIS RESULTS

This section summarizes the results of the analyses for the RCL piping.

The stress calculation was performed using computer programs and hand calculations.

The reported results are generally conservative and larger than the actual values if more detailed calculations were performed; but since they all meet the ASME Code allowable limits, further analysis is not necessary.

10.1 RCL piping

10.1.1 Evaluated Part Dimensions

The RCL piping dimensions are listed in Table 10-1-1.

Evaluated	Node	Outer Diameter	Thickness	Bend Radius of
Part	No.	(in)	(in)	Elbow (in)
	107 🧹	-		
	109			
	111			
Hot Leg	112			
	113			
	115			
	117			
	141			
	142			
	143			
	145			
	147			
	149			
	151			
	152			
Crossover	153			
Leg	155			
	157			
	159			
	160			
	161			
	163			
	165			
	167			
	181			
	183			-
	185			
Cold Leg	186			-
	189			
	103			
	191			
	194			

Table 10-1-1 RCL piping dimensions

10.1.2 Stress Results

The stress-to-allowable ratios (calculated stress divided by allowable value), the fatigue cumulative usage factors for the most limiting locations are summarized in Table 10-1-2.

o			Stress-to-Allowable Ratio			
Condition	Stress Category	ASME Ref.	Hot Leg	Cross- over Leg	Cold Leg	
Design	Primary Stress	NB-3652				
	Primary Plus Secondary Stress	NB-3653.1				
	Usage Factor	NB-3653.5				
	Thermal Bending Stress	NB-3653.6				
Level A/B	Primary Plus Secondary Membrane Stress Excluding Thermal Bending and Expansion Stress	NB-3653.6				
	Thermal Stress Ratchet	NB-3653.7				
	Permissible Pressure	NB-3654.1		· · · ·		
	Primary Stress	NB-3654.2				
Level C	Permissible Pressure	NB3655.1				
LeverC	tionStress CategoryASME Ref.gnPrimary StressNB-3652IPrimary Plus Secondary StressNB-3653.1IUsage FactorNB-3653.5IUsage FactorNB-3653.6IThermal Bending StressNB-3653.6IPrimary Plus Secondary Membrane Stress Excluding Thermal Bending and Expansion StressNB-3653.6Thermal Stress RatchetNB-3653.7IIBPermissible PressureNB-3654.1ICPermissible PressureNB-3655.1ICPermissible PressureNB-3655.2Permissible PressureNB-3655.2IPermissible PressureNB-3656					
	Permissible Pressure	NB-3656		· · · · ·		
Level D	Primary Stress	NB-3656				

Table 10-1-2 RCL Piping Stress Result Summary

11.0 LEAK-BEFORE-BREAK EVALUATION

This section describes the leak-before-break (LBB) evaluation results for the RCL piping.

11.1 Evaluation Method

The bounding analysis curve (BAC) approach, which is summarized in Appendix 2 of MUAP-09011 (Reference 12), was applied to the evaluation.

11.2 Evaluation Results

The BACs for the RCL piping were taken from Reference 11.

The RCL piping stress calculation results were plotted in Figures 11-1 through 11-3.

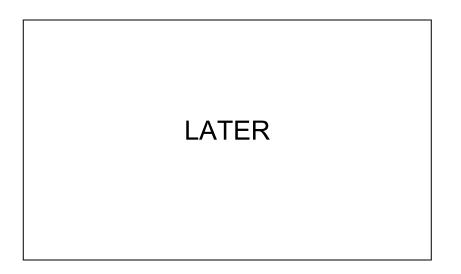


Figure 11-1 Hot Leg LBB Evaluation Result

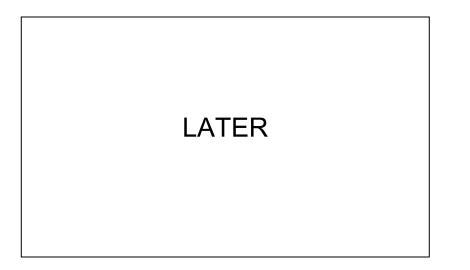


Figure 11-2 Crossover Leg LBB Evaluation Result

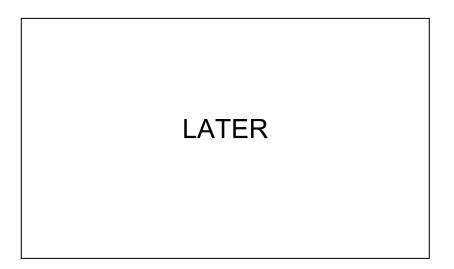


Figure 11-3 Cold Leg LBB Evaluation Result

12.0 REFERENCES

- 1. ASME Boiler and Pressure Vessel Code, Section III, Nuclear Power Plant Components, 1992 Edition including 1992 Addenda
- 2. ASME Boiler and Pressure Vessel Code, Section II Material Specification, 2001 Edition through 2003 Addenda
- 3. N0-FB10L01 Rev.3, "US-APWR Standard Design General Design Specification for Class 1 Components"
- 4. N0-F700L01, Rev.4, "US-APWR Reactor Coolant Loop Piping Design Specification"
- 5. SIMULIA, "ABAQUS Analysis User's manual", Version 6.7, 2007.
- 6. Warren M. Rohsenow, James P. Hartnett and Yung I. Cho, "Handbook of Heat Transfer", Third Edition, McGraw Hill, 1998.
- 7. Eckert and Drake, "Heat & Mass Transfer", Second Edition, 1959.
- 8. Frank Kreith, Principles of HEAT TRANSFER third edition, 1976.
- 9. (Deleted)
- 10. N0-F700L11 Rev.4, "US-APWR Reactor Coolant Loop Piping Design Drawings"
- 11. N0-CG00005 Rev.2, "US-APWR Bounding Analysis Curves for Leak Before Break Evaluation"
- 12. MUAP-09011-P Rev.2, "Summary of Stress Analysis Results for the US-APWR Reactor Coolant Loop Branch Piping"
- 13. (Deleted)
- 14. (Deleted)
- 15. (Deleted)
- 16. (Deleted)

Appendix 1 Reactor Coolant Loop Piping Stress Calculation Formula

1. Introduction

This Appendix describes the stress calculation formula used in the RCL piping evaluation.

2. Design condition

2.1 Primary stress [NB-3652, Eq.(9)]

$B_1 \frac{PD_o}{2t} + B$	$L_2 \frac{D_o}{2I} M_i \leq 1.5 S_m$
<i>B</i> ₁ , <i>B</i> ₂	: Stress indices
Р	: Design pressure, psi
D_o	: Outside diameter, in
t	: Wall thickness, in
Ι	: Moment of inertia, in ³
Mi	: Resultant moment due to dead weight (The other mechanical load is equal to zero for the RCL piping.), in-lb
Sm	: Allowable design stress intensity value at the design temperature, psi

3. Level A/B service condition

3.1 Primary plus secondary stress [NB-3653.1, Eq.(10)]

$$S_n = C_1 \frac{P_o D_o}{2t} + C_2 \frac{D_o}{2l} M_i + C_3 E_{ab} \left| \alpha_a T_a - \alpha_b T_b \right| \le 3S_m$$

- C_1, C_2, C_3 : Stress indices
- *P*_o : Range of pressure, psi
- *M_i* : Resultant range of moment due to the followings, in-lb
 - Thermal expansion load
 - Mechanical load (equal to zero for the RCL piping)
 - Seismic load (only included in 1/3 SSE seismic event)
- E_{ab} : Average modulus of elasticity of the two sides at room temperature, psi
- α_a, α_b : Coefficient of thermal expansion at room temperature, 1/°F
- T_a, T_b : Range of average temperature of structural discontinuity, °F
- *S_m* : Allowable design stress intensity value at the temperature of normal operation, psi

The other symbols are same as Section 2.1.

3.2 Peak stress [NB-3653.2, Eq.(11)]

$$S_{\rho} = K_1 C_1 \frac{P_0 D_0}{2t} + K_2 C_2 \frac{D_0}{2I} M_i + \frac{1}{2(1-\nu)} K_3 E \alpha \left| \Delta T_1 \right|$$
$$+ K_3 C_3 E_{ab} \left| \alpha_a T_a - \alpha_b T_b \right| + \frac{1}{1-\nu} E \alpha \left| \Delta T_2 \right|$$

- K_1, K_2, K_3 : Stress indices
- *E* : Modulus of elasticity at room temperature, psi
- α : Coefficient of thermal expansion at room temperature, 1/°F
- ΔT_1 : Range of the temperature difference between the temperature of the outside T_o and the temperature of the inside surface T_i of the piping product assuming moment generating equivalent linear temperature distribution, °F
- ΔT_2 : Range of the nonlinear thermal gradient through the wall thickness not included in ΔT_1 , °F

v : Poisson's ratio (=0.3)

The other symbols are same as Section 3.1.

3.3 Alternating stress and cumulative usage factor [NB-3653.3 to NB-3653.5]

$$S_{alt} = \frac{S_p}{2}$$
 for $S_n \le 3S_m$

Cumulative usage factor (UF) is evaluated in accordance with NB-3222.4(e)(5).

$$UF \leq 1.0$$

3.4 Simplified elastic-plastic discontinuity analysis

In case of $S_n > 3S_m$, the simplified elastic-plastic discontinuity analysis is used.

(a) Thermal bending stress [NB-3653.6(a)]

$$S_e = C_2 \frac{D_o}{2I} M_i^* \leq 3S_m$$

 M_i^* : Range of moment due to thermal expansion load, in-lb The other symbols are same as Section 3.1 (b) Primary plus secondary stress excluding thermal bending and thermal expansion stresses [NB-3653.6(b)]

$$C_1 \frac{P_0 D_0}{2t} + C_2 \frac{D_0}{2I} M_i + C'_3 E_{ab} \left| \alpha_a T_a - \alpha_b T_b \right| \le 3S_m$$

 C_3 ' : Stress index

The other symbols are same as Section 3.1

(c) Alternating stress and cumulative usage factor [NB-3653.6(c)]

$$\begin{aligned} S_{alt} &= K_e \frac{S_p}{2} \\ K_e &= 1.0 , \text{ for } S_n \leq 3S_m \\ K_e &= 1.0 + \frac{1-n}{n(m-1)} \left(\frac{S_n}{3S_m} - 1 \right), \text{ for } 3S_m < S_n < 3mS_m \\ K_e &= \frac{1}{n}, \text{ for } S_n \geq 3mS_m \end{aligned}$$

m = 1.7, n = 0.3 for austenitic stainless steel

Cumulative usage factor (UF) is evaluated in accordance with NB-3222.4(e)(5).

$$UF \leq 1.0$$

(d) Thermal stress ratchet [NB-3653.7]

$$\Delta T_1$$
 range $\leq \frac{y'S_y}{0.7E\alpha}C_4$

У'

: Refer to the table below.

Х	0.3	0.5	0.7	0.8
У′	3.33	2.00	1.20	0.80

x : Equal to $(PD_o/2t)(1/S_y)$

P : Maximum pressure for the set of conditions under consideration, psi

- C_4 : Equal to 1.3 for austenitic stainless steel
- S_y : Yield point at the average fluid temperature of the load set, psi

4. Level B service condition

4.1 Permissible pressure [NB-3654.1]

$$P_M \leq 1.1P_a$$

$$P_{a} = \frac{2S_{m}t}{D_{o} - 2yt}$$

P_M	: Maximum	pressure in L	_evel B	service	condition.	psi
• M	. Waximam	precoure in t		001 1100	oonanion,	201

P_a : Maximum allowable internal pressure defined in NB-3641.1, psi

y : Equal to 0.4

The other symbols are same as Section 2.1.

4.2 Primary stress [NB-3654.2]

$$B_1 \frac{P_M D_o}{2t} + B_2 \frac{D_o}{2I} M_i \le Min(1.8S_m, 1.5S_y)$$

- *P_M* : Maximum pressure in Level B service condition, psi
- *M_i* : Resultant moment due to dead weight (Mechanical load is equal to zero for the RCL piping.), in-lb
- *S_m* : Allowable design stress intensity value at the maximum temperature in Level B service condition, psi
- *S_y* : Yield strength at the maximum temperature in Level B service condition, psi

The other symbols are same as Section 2.1.

5. Level C service condition

5.1 Permissible pressure [NB-3655.1]

 $P_M \leq 1.5 P_a$

 P_M : Maximum pressure in Level C service condition, psi The other symbols are same as Section 4.1.

5.2 Primary stress [NB-3655.2]

$$B_1 \frac{P_M D_0}{2t} + B_2 \frac{D_0}{2I} M_i \le Min(2.25S_m, 1.8S_y)$$

- *P_M* : Maximum pressure in Level C service condition, psi
- *M_i* : Resultant moment due to dead weight (Mechanical load is equal to zero for the RCL piping.), in-lb
- *S_m* : Allowable design stress intensity value at the maximum temperature in Level C service condition, psi
- *S_y* : Yield strength at the maximum temperature in Level C service condition, psi

The other symbols are same as Section 4.1.

6. Level D service condition

6.1 Permissible pressure [NB-3656 (b)]

 $P_M \leq 2P_a$

Mi

 P_M : Maximum pressure in Level D service condition, psi The other symbols are same as Section 4.1.

6.2 Primary stress [NB-3655.2]

$$B_1 \frac{P_M D_o}{2t} + B_2 \frac{D_o}{2I} M_i \leq \operatorname{Min}(3S_m, 2S_y)$$

- *P_M* : Maximum pressure in Level D service condition, psi
 - : Resultant moment due to the followings, in-lb
 - Dead weight
 - Mechanical load (equal to zero for the RCL piping.)
 - Seismic load (SSE)
 - Accident load
- *S_m* : Allowable design stress intensity value at the maximum temperature in Level D service condition, psi
- *S_y* : Yield strength at the maximum temperature in Level D service condition, psi