

# **Fuel Loading Plan for Dry Storage & Transport**

Zion Nuclear Power Station March 03, 2011 Presentation to NRC



Zion*Solutions* has:

- 10 CFR 50 License Stewardship of ZNPS Units 1 & 2
- Acquired the entire assets of Zion NPS, except SNF
- Leased the ZNPS site property from Exelon
- Taken responsibility for safe storage of SNF
- Assumed all liabilities and obligations for decommissioning and site restoration
- Committed to return the site to Exelon within 10 years with all SNF in dry storage and transport license issued

### Schedule of Fuel-Related Work



#### Start Date

| 1. | Dry storage canisters procurement     | In Progress   |
|----|---------------------------------------|---------------|
| 2. | Fuel top nozzle modifications         | June 2011     |
| 3. | Fuel inspections                      | December 2011 |
| 4. | ISFSI engineering                     | In Progress   |
| 5. | ISFSI construction                    | March 2012    |
| 6. | Fuel Building SFP trolley procurement | In Progress   |
| 7. | Trolley installation & FB upgrades    | March 2012    |
| 8. | Fuel transfer operations              | March 2013    |



- Provide a brief overview of Zion Solutions License Stewardship
- Inform NRC staff of plans for dry cask storage at ZNPS a key part of the decommissioning project now underway
- Present the basis for a fuel loading plan that meets dry storage and off-site transport regulations
- Solicit staff comments now so that all ZNPS fuel can be loaded in confidence

# Dry Fuel Storage & Transport System



- NAC MAGNASTOR Dry Storage Canisters
  - 61 canisters + 4 GTCC waste canisters
  - Up to 37 fuel assemblies / canister
  - Two types of canisters: DFC and non-DFC capable
- NAC MAGNATRAN Transport Cask
  - Fuel canisters
  - GTCC waste canisters





### **ZNPS Fuel Inventory**



- 2,226 Westinghouse 15x15 Assemblies
  - 13 full-length failed fuel rods (in failed rod storage basket)
  - 15 full-length intact fuel rods (in guide tubes of 2 assemblies)
- Top Nozzle IGSCC
  - 1,454 assemblies (65% of total)
- Inserts
  - 1,728 of various types
- Damaged Fuel: Current Count
  - 7 previously identified leaking fuel assemblies (ID by sipping)
  - 1 failed rod storage basket (13 failed fuel rods)
  - 1 fuel assembly with at least 1 breached fuel rod
  - 1 skeleton cage (containing 15 relocated "guide tube" rods)

## **ZNPS Fuel Inventory**



- High Burn Up Fuel
  - 36 assemblies (45,000 MWd/MTU and higher)
- High Reactivity Fuel
  - low burnup with higher initial enrichment
- All fuel well under thermal limit (>14 yr cooled)



- All ZNPS inserts are defined contents in MAGNASTOR SAR, Amendment 3
- 219 full-length Rod Control Cluster Assemblies (RCCA)
  - Includes 6 spares (new RCCAs)
  - Maximum exposure level of 186,000 MWd/MTU
  - Very conservative definition of exposure
    - RCCA exposure = host assembly exposure for each fuel cycle
    - Effectively assumes full RCCA insertion in core at all times
- 16 partial-length RCCAs

#### **ZNPS** Fuel Inserts



- 285 Burnable Poison Rod Assemblies (BPRA)
- 8 Hafnium Flux Reduction Assemblies (HFRA)
- 690 Wet Annular Burnable Assemblies (WABA)
- 14 Primary & Secondary Neutron Source Assemblies (NSA)
- 502 Thimble Plug Devices (TPD)

# **Fuel Modifications & Inspections**



- Modifications
  - Reinforce 1,454 top nozzles with Instrument Tube Tie Rods (ITTR)
  - Transfer 15 loose "guide tube" rods into assembly skeleton cage
- Inspections
  - Recorded 4-sided visual of all 2,226 assemblies
  - Top nozzle spring clamps on all 2,226 assemblies
  - Removable top nozzle lock tubes on 392 assemblies
  - Vacuum sipping of approximately 200 assemblies

## **Top Nozzle Modifications**



- Addresses Information Notice 2002-09
- Instrument Tube Tie Rods installed via design change process
- 50.59 safety evaluation
- Minimum axial structural capacity > 2 x fuel assembly weight
- Installation to be performed by Westinghouse team under Zion Solutions oversight

#### **Top Nozzle Modifications**



- Dry Storage 10 CFR 72
  - Conformance to MAGNASTOR CoC criteria
    - ITTR is a subcomponent of the fuel assembly
    - Modified fuel is intact and moved with standard tooling
    - Structural, thermal, shielding, criticality, confinement evaluated in MAGNASTOR SAR Application, Amendment 3
  - NEI Generic Issue I-10-01 Top Nozzle IGSCC
    - ITTR modifications are consistent with NEI White Paper
    - MAGNASTOR SAR Application, Amendment 3 specifically addresses ITTR modification

#### **Top Nozzle Modifications**



- Transport 10 CFR 71
  - Conformance to MAGNATRAN CoC criteria
    - ITTR meets structural criteria for normal and accident conditions of transport
    - Spacers, inserts and basket configuration
      - Constrains lateral movement of top nozzle
      - Reduces secondary impact effects on ITTR assemblies by minimizing gap between top nozzle and canister lid
- Physical properties used consistently in 72/71 analyses

#### High Burn Up Fuel



- ISG-11, revision 3 Regulatory Guidance
  - "Fuel with burnup generally exceeding 45 GWd/MTU"
  - Application of uncertainty factor not stipulated
  - Place all damaged assemblies in Damaged Fuel Cans
- ZNPS Loading Plan
  - Place 36 fuel assemblies with nominal burn up > 45 GWd/MTU in Damaged Fuel Cans

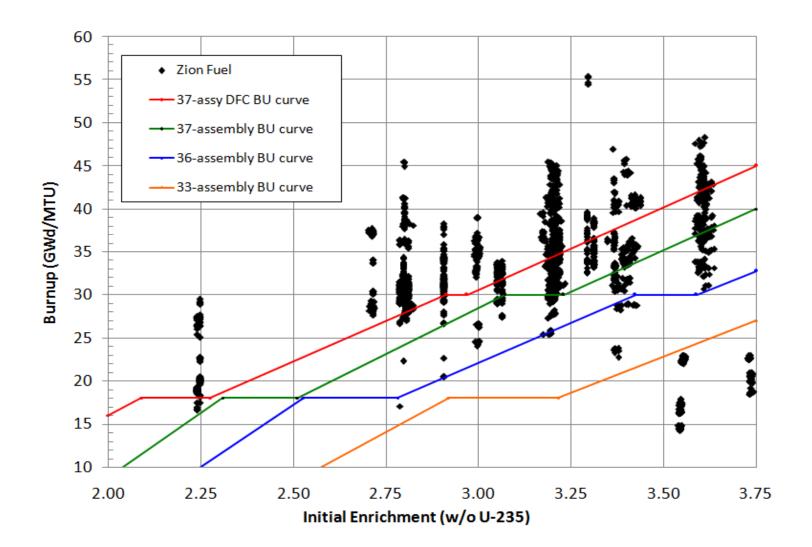
#### **High Reactivity Fuel**



- Under burned fuel mostly resulted from premature plant shutdown (normally 3 cycle fuel)
- Key issue for decommissioned plants
  - Must load, dry store, and eventually ship all SNF
  - No opportunity to repackage this fuel in the spent fuel pool
- 10 CFR 71 Criticality Requirement
  - K<sub>eff</sub> < 0.95 under fresh water ingress
  - Results in assembly minimum burnup requirements
- Some ZNPS under burned fuel with higher enrichments fall below the MAGNATRAN loading curves

#### **High Reactivity Fuel**




- Loading Plan to Meet Minimum Burnup Requirements
  - Compare fuel burnup & enrichment to MAGNATRAN SAR burnup curves
  - Qualify under-burned fuel by
    - Using partially-loaded canister configurations
    - Inserting (and crediting) Rod Control Cluster Assemblies in very-low-burnup assemblies
  - Accounting for effects of burnup uncertainty to demonstrate MAGNATRAN SAR & CoC compliance

# Partially-Loaded Canister Configurations



- Configurations evaluated in MAGNATRAN SAR
  - Configuration-specific burnup curves
  - Specific tech specs for each partial configuration
  - 37, 36, and 33-assembly configuration options in SAR
  - Canister with damaged fuel cans also specifically evaluated
- Preferential (zone) loading not used
  - Assembly qualification applies for all basket locations
- Permanently blocked canister basket locations
  - Physically blocked to prevent assembly mis-loading
  - Significant canister reactivity reduction

## Zion Spent Fuel Inventory vs.MAGNATRAN Burnup Curves



**ZIONSOLUTIONS** LLC

# MAGNATRAN CoC Basis for Use of RCCA's ZIONSOLUTIONS LLC

- Fuel & (full-length) RCCA physical parameters
  - Key physical dimensions
  - Initial RCCA absorber and cladding materials (e.g., Ag-In-Cd)
- Maximum allowable RCCA exposure (200 GWd/MTU)
  - Licensee determines method of calculating RCCA exposure
- Assemblies with RCCAs restricted to nine center basket locations
- Burnup & enrichment requirements for assemblies
  - Initial enrichment ≤3.8% for assemblies with RCCAs (covers Zion)
  - No minimum burnup for assemblies with RCCAs
  - Other assemblies must meet applicable minimum burnup requirements

## Loading High Reactivity Fuel with RCCA's



- All ZNPS fuel loaded with <u>any</u> ZNPS RCCA qualify for loading in a fully-loaded (37 assembly) canister, including DFC canisters
- There are enough RCCA's to cover all high-reactivity ZNPS fuel
  - Number of RCCA's (219) exceeds number of assemblies (186) that do not qualify for fully-loaded or 36-element canister
  - With full use of RCCA's, only 37 and 36-element canisters are needed for all ZNPS fuel



- MAGNATRAN SAR places responsibility for determination of burnup uncertainty on the licensee (Zion*Solutions* in this case)
- Zion Solutions will account for uncertainty by reducing recorded burnup by total uncertainty before comparing to SAR burnup curve
- Assembly mis-load event addressed in MAGNATRAN SAR

# Published Guidance on Burnup Uncertainty



- ISG-8
  - Suggests burnup measurements for all loaded fuel or a large sample of assemblies
    - Addresses uncertainty in recorded burnup values
    - Addresses possibility of mis-loaded fuel
  - Suggests combining measurement and calculation error to determine total uncertainty level
  - Uncertainty determined by comparing measured and calculated burnup values for large sampling of assemblies

# Published Guidance on Burnup Uncertainty



- NUREG/CR-6998
  - Error in recorded burnup values < 5%</li>
    - Comparison of in-core measured values to recorded values
    - Uncertainty level closer to 2% in most cases
  - Historically, in-pool burnup measurement techniques not as accurate as in-core measurements
    - In-pool (~2-5%) vs. in-core (~2%)
    - Measurements may not be useful for estimating recorded burnup value uncertainty

# Published Guidance on Burnup Uncertainty



- NUREG/CR-6998
  - Assembly mis-load guidance
    - Chance of mis-load in a dry storage cask: 10<sup>-3</sup> to 10<sup>-5</sup>
    - Suggests that double mis-load not credible (< 10<sup>-6</sup>)
    - Single unburned assembly increases k<sub>eff</sub> by 2.0-3.5%
    - Crude burnup measurement sufficient to detect unburned fuel

## Industry Precedents on Burnup Uncertainty



- Uncertainty Factors
  - Typically 2% to 5% uncertainty factor applied for dry cask storage loading (non-criticality)
  - Similar uncertainty factors applied for spent fuel pool loading (criticality)
  - In-pool assembly burnup measurements not performed
- Calculation Methods
  - Comparison of core physics calculations to in-core measurements (95% confidence level)
  - Comparison of core calorimetry data to calculated core thermal output
- In-pool assembly burnup measurements not performed

## Burnup Uncertainty Effect on ZNPS Load Plan



- ZNPS-Specific Evaluation Methodology
  - Model ZNPS assembly inventory and burnup curves for 37, 36 and 33-assembly cask configurations
  - Consider burnup uncertainty levels of 0%, 2%, and 5%
  - Reduce fuel assembly burnup values by applying uncertainty %
  - Compare resulting burnup to three burnup curves
  - Determine number of assemblies that qualify for each cask configuration
  - Account for effects of RCCA inserts (for criticality suppression)
  - Determine number of casks required to load all ZNPS fuel

## Burnup Uncertainty Impact Evaluation Results



#### Number of Zion Assemblies Qualified for Loading (with RCCA Inserts)

|                                  | Assembly Burnup Uncertainty |      |      |      |
|----------------------------------|-----------------------------|------|------|------|
|                                  | 0%                          | 2%   | 5%   | 10%  |
| 37-assembly DFC Configuration    | 1454                        | 1331 | 1095 | 728  |
| 37-assembly Intact Configuration | 2052                        | 1978 | 1858 | 1590 |
| 36-assembly Intact Configuration | All                         | All  | All  | 2175 |
| 33-assembly Intact Configuration | All                         | All  | All  | All  |

#### Canister Type Distributions Required for Zion Assembly Inventory

|                                  | Assembly Burnup Uncertainty |    |    |     |  |
|----------------------------------|-----------------------------|----|----|-----|--|
|                                  | 0%                          | 2% | 5% | 10% |  |
| 37-assembly DFC Configuration    | 39                          | 35 | 29 | 18  |  |
| 37-assembly Intact Configuration | 17                          | 19 | 21 | 25  |  |
| 36-assembly Intact Configuration | 5                           | 7  | 11 | 16  |  |
| 33-assembly Intact Configuration | 0                           | 0  | 0  | 2   |  |
| Spare Assembly Locations         | 26                          | 24 | 20 | 7   |  |

# **ZNPS Assembly Burnup Determination**



- Uncertainty Factor Applied to Recorded Burnup Values
  - 5% factor is planned to be applied, consistent with:
    - NUREG/CR-6998 guidance
    - Industry precedent
- In-pool assembly burnup measurements not planned for ZNPS
  - Sufficient basis to conservatively assume 5% (NUREG/CR-6998)
  - In-pool measurements probably not useful for correcting recorded values or determining their uncertainty (NUREG/CR-6998)



- Addressing Potential Assembly Mis-Loads
  - MAGNATRAN SAR evaluation
    - Shows  $k_{eff} < 0.97$  for single assembly mis-load
    - Mis-loaded assembly bounds all ZNPS fuel (4.0%-15 GWd/MTU)
    - Multiple mis-loads not credible (< 10<sup>-6</sup>)
    - Actual k<sub>eff</sub> < 0.95 by wide margin (fission products)</li>
  - Conclusion: Criticality due to mis-loaded fuel not credible for ZNPS fuel inventory



- Fuel Loading Operational Verifications
  - Load plan development using CaskLoader software
  - Fuel assembly move sheet generation using TracWorks software
  - Stringent fuel handling administrative controls including serial number dual verification
  - Continuous Quality Control and Engineering oversight
  - All fuel loads videotaped to document fuel / insert serial number independent verification

#### Load Plan Summary



- 2,226 assemblies in 61 MAGNASTOR canisters
- 1,728 fuel inserts
- 1,454 assemblies modified with ITTR's
- Damaged & High Burnup Fuel
  - Load in Damaged Fuel Cans (~10 + 36)
- High Reactivity Fuel
  - Use of partially loaded canisters & RCCA's
  - Fuel relying on RCCA's will be placed in center 9 basket slots
  - Burnup uncertainty of 5% will be applied
- Load plan compliant with MAGNASTOR and MAGNATRAN storage and transport systems