2.5 Socioeconomics

The existing socioeconomic characteristics of the region associated with Fermi 3 are established in this section under five subheadings: 1) Demography, 2) Community Characteristics, 3) Historic Properties, 4) Environmental Justice, and 5) Noise. These sections provide a discussion of the baseline socioeconomic characteristics within a 50-mi radius of the Fermi 3 site. In addition, socioeconomic characteristics are also described for the 10-mi radius and the 3-mi low population zone (LPZ). Data are provided in sufficient detail to support conclusions made in subsequent impact sections regarding the socioeconomic impacts of Fermi 3 construction and operation. The submitted information meets 10 CFR 100.10 and 10 CFR 50.34(a)(1) and serves as a basis for assessing radiological impacts of the station operation and assessment of socioeconomic factors and impacts.

2.5.1 **Demography**

The demographics of the Fermi 3 project area are described in this subsection. In most instances, the population statistics are taken from the 2000 U.S. Census data contained in the LandView[®] 6 software¹. This software is a flexible tool capable of identifying economic and demographic information for selected areas that can be defined as concentric circles lying at various distances from a given geographic location. The most commonly used geographic area in this section is the *region*, defined as the area encompassed by a 50 mile radius from the center of the Fermi 3 power block. The region includes all or a portion of the 16 counties in Michigan and Ohio and 3 counties in Ontario, Canada listed in Table 2.5-1². These areas are also shown in Figure 2.5-1, where a 50 mile circle from Fermi 3 is also drawn.

Figure 2.5-2 indicates the segment population of the area within the 10-mi radius for Fermi 3. On this map and in all sectional maps developed for this section, the location of the Fermi 3 power block is located at the center of the drawing, and concentric circles are drawn around the center at distances of 1, 2, 3, 4, 5, and 10 miles. The circles are divided into 22.5 degree segments with each segment centered on one of the 16 cardinal compass points (e.g. north, north northeast, etc.). Within each area defined by the concentric circles and radial lines, the resident population for 2000 is listed, according to LandView[®] 6.

The 10-mile resident population statistics are also listed in Table 2.5-2. The population within 10 miles of Fermi 3 was 89,198 in 2000. The largest population segment lies west southwest of the site in the City of Monroe. The largest population areas, according to LandView[®] 6, and their

^{1.} LandView[®] 6 software is the result of a collaborative effort among the U.S. Environmental Protection Agency (EPA), the U.S. Census Bureau, the National Oceanic and Atmospheric Administration (NOAA), and the U.S. Geological Survey (USGS) to provide the public readily accessible published federal spatial and demographic data. It is composed of two software programs: the LandView[®] 6 database manager and the MARPLOT[®] map viewer. These two programs work in tandem to create a computer mapping system that displays individual map layers and the associated demographic and spatial data.

^{2.} Generally, Canadian provinces are equivalent to U.S. states, Canadian divisions (many divisions make up a province) are equivalent to U.S. counties, and Canadian subdivisions (many subdivisions make up a division) are equivalent to U.S. tracts (many tracts make up a county).

relative locations and distances to Fermi 3 are shown in Table 2.5-3. Within 10 miles of Fermi 3, the City of Monroe has the largest population (32,339).

Figure 2.5-3 indicates the segment population for the area between 10 and 50 miles of Fermi 3. Within each area defined by the concentric circles and radial lines, the resident population for 2000 (United States) and for 2001³ (Canada) is listed. The resident population statistics are also listed in Table 2.5-4 where it is seen that the total regional population was 5.38 million in 2000. The data indicate that the largest regional population segments lie in the Detroit metropolitan area to the north and northeast, and in the Toledo metropolitan area to the southwest of Fermi 3.

The segment population was derived from LandView[®] 6 using Census Block Points, which represent a small population for a limited but unspecified area around the block point, and are the most accurate method of determining segment population. Figure 2.5-4 shows all the Census Block Points for Monroe County and the demographic information that each block point represents. To develop the population for each segment, the following methodology was used:

- For the 0 to 1 mile distance from the plant, the population was not divided into directional segments. Rather, the population for all Census Block Points lying within the 1 mile radius was summed consistent with Figure 2.5-1 in NUREG 1555.
- For other distances beyond the 1 mile radius, Census Block Point populations were allocated entirely to the segments in which they were reported in LandView[®] 6 (see Figure 2.5-5).

For the segments in Canada, ArcGIS⁴ software was used to find the percentage of each segment lying within a Canadian subdivision; this percentage was then multiplied by the population in each subdivision.

In summary, the population distribution tables and figures indicate that the Fermi site is located in a relatively sparsely populated area, and that there are major population centers to the north (Detroit) and southwest (Toledo) within the 50-mile plant radius. Within a 10 mile radius, the largest population center is associated with the City of Monroe, west-southwest of the site.

2.5.1.1 **Transient Populations**

Transient populations include those populations that do not reside permanently in an area, but are there instead on a temporary basis. There are a large number of categories that can potentially be considered as part of the transient population. Such categories include employees at businesses located outside the workers' area of residence, hotel and motel guests, and patrons of sporting

^{3.} The United States conducts a census every 10 years on the decade. Canada conducts a census every 5 years and on the year following a decade or half decade, therefore all Canada population figures are for the year 2001. Whenever, population figures are given it is assumed that they are in the year 2000 for the United States and in 2001 for Canada, unless otherwise stated. Since the two censuses are only one year apart, whenever U.S. and Canadian populations are combined, population figures will be considered to represent the year 2000.

^{4.} ArcGIS Desktop is a mapping and data analysis software that allows the user to discover patterns, relationships, and trends in data, and to map and integrate data, perform advanced analysis, model and automate operational processes, and display results on professional-quality maps. ArcGIS Desktop is published by ESRI.

events and recreational facilities. There are also special facilities for which populations can be counted as transient, including schools, hospitals and nursing homes, and correctional facilities.

When viewing transient population figures, it should be noted that it is not possible to determine how many persons in some categories (e.g. the workforce at an employer, guests in a hotel, etc.) reside within or outside the study area, meaning that the category can lead to double counting, especially in larger geographic areas. Therefore, the sum of the resident and transient populations tends to overstate the total area population. Nevertheless, transient population estimates can be useful and are provided below for the 0 to 10 mile and 10 to 50 mile radii from Fermi 3.

2.5.1.1.1 Transient Population, 0 to 10 Miles

An estimate of the total transient population for the 10 mile radius of the plant (referred to as the Emergency Planning Zone (EPZ) in COLA Part 5) is provided in COLA Part 5 with the "Fermi Nuclear Power Plant Development of Evacuation Time Estimates" (ETE) (Reference 2.5-1). The ETE reports two transient group populations:

- the transient population (persons who live outside of the 10 mile boundary but enter this
 radius for a specific reason, and then leave the radius; e.g. include campers or recreational
 facility users), and
- commuter-employees (persons who live outside the 10 mile radius yet commute to work within the radius)

The ETE transient information is organized by the distance and compass direction from the Fermi site. Based on the resident population developed above and the total transient population from the ETE, the total 10-mile radius population (permanent plus transient total) is estimated at 106,736 in Table 2.5-5 and the transient population of 17,538 comprises approximately 16.4 percent of this figure.

Based on the resident population developed above and the total transient population from the Evacuation Time Estimate, the total population in the 10 mile radius (resident, transient, and special facilities population) is estimated at 136,633. The total transient population is estimated to comprise approximately 34.7 percent of the total 2000 population in the 0 to 10-mile radius concentric circles.

Figure 2.5-6 is a map of the resident plus transient population distribution in the 10-mile Fermi 3 radius, divided into directional segments. The figure confirms that, in the 10-mile radius, the segment having the largest population is the City of Monroe, west-southwest of the site. Table 2.5-5 also lists the total resident and transient population estimates as well as the population densities for concentric circles within the 10-mile radius of Fermi 3.

2.5.1.1.2 Transient Population, 10 to 50 Miles

The estimated total transient population in 2000 for the Fermi 0 to 50 mile radii is shown in Table 2.5-6 as 200,656. The table also shows the total resident and transient population and the

population density for the 0 to 50 mile concentric circles. Approximately 3.6 percent of the total population in the 0 to 50 mile concentric circle is estimated to be transient.

Figure 2.5-7 is a map of the resident and transient population distribution in the 50 mile Fermi 3 region by segment. The estimated total transient population for each Michigan or Ohio segment within each concentric circle is calculated by combining estimates of the following, as explained further below:

- 2000 U.S. Census commuter information for each county (Reference 2.5-2)
- 2000 U.S. Census information from LandView[®] 6 on the number of Recreational, Seasonal, and Occasional housing units in the 50 mile region (Reference 2.5-3)
- Special facilities transient population data

The 2000 U.S. Census reports commuter inflow and outflow information for each county. Table 2.5-7 lists the commuter inflow and outflow data for counties within 50 miles of the Fermi site. Once this commuter information was compiled, ArcGIS software (Reference 2.5-4) was used to find the percentage of each county lying within a segment. Multiplying this percentage by the commuter net flow for each county produces an estimate of the net commuter transient population for each concentric circle segment for the 10 to 50 mile radii.

The LandView[®] 6 software is used to estimate the transient population associated with the use of recreational, seasonal, or occasional housing units as follows. LandView[®] 6 is used to determine the number of houses in each segment based on Census Block Point data. For each segment, the number of housing units is then multiplied by the percentage of total housing units in the generally corresponding Census Block Group classified as "for recreational, seasonal, or occasional use." The result is an estimate of the number of houses in each segment that are vacant. Next, and to translate this into a population estimate, the number of units for recreational, seasonal, or occasional use for each segment is multiplied by the county's average household size to arrive at the maximum population in recreational, seasonal, or occasional housing units in each segment. Finally, because these units are only occupied part of the year, it is arbitrarily assumed that three quarters of the housing units would only be occupied for three months (one quarter) of the year. Thus, by multiplying the maximum population in recreational, seasonal, or occasional housing units by 0.1875 (0.75 * 0.25) an estimate of the equivalent transient housing population for recreational, seasonal, or occasional use for each segment is derived.

Table 2.5-8 lists special facilities transient population information for several categories (correctional facilities, college dormitories, nursing homes, hospitals, religious group quarters, and other non household living situations) for each county within 50 miles of Fermi 3. ArcGIS software was used to find the percentage of each county lying within a segment. Multiplying this percentage by the transient population for each county produces an estimate of transient population for each concentric circle segment for these several categories.

The transient population for segments in Canada is assumed to be equal to the same percentage as the transient population percentage in the United States. This methodology is deemed appropriate because the transient population makes up a small percentage of the total population,

3.6 percent for the U.S. region within 50 miles of Fermi 3, and the percentage of resident Canadian population to the whole regional resident population is 8.7 percent.

2.5.1.2 **Projected Total Population**

Assessing the potential socioeconomic impact of Fermi 3 requires a population projection. Population projections for the segments within 10 miles of Fermi 3 for 2020 (the assumed first year of operation) and for each subsequent decade for four decades through the year 2060 are based upon the average annual growth rate in United States county census population from 1990 through 2005 (Table 2.5-9) for the regional counties, applied to the 2000 resident and transient population estimate for each segment. ArcGIS software is used to find the percentage of each segment lying within an area. A weighted average growth rate for each segment is calculated by summing up the product of the county growth rate and the segment tract area percentage associated with each county. Figure 2.5-8 shows a graphical representation of this methodology. The transient population was estimated to grow at the same rate as the resident population because schools, employment, and a number of other transient categories are generally linked to resident population. The resulting population projection is shown in Table 2.5-10.

The population projections for the 10 to 50 mile segments from Fermi 3 for 2020 (the projected first year of operation) and for each subsequent decade for four decades through the year 2060 (the projected end of the initial license period plus 10 years) are based upon the average annual growth rate in United States county census population from 1990 through 2005 (Table 2.5-9) and the average annual growth rate in Canadian census subdivision population from 1996 through 2006 (Table 2.5-11), applied to the 2000 (US) and 2001 (Canada), resident and transient population estimate for each segment. The resulting population projections for the 10 to 50 mile segments are shown in Table 2.5-12.

2.5.1.3 LPZ, 10 Mile Radius, and Regional Characteristics

The age and gender distributions in 2000 for the regional counties around Fermi 3 are listed in Table 2.5-13. The table indicates more females than males in the region and that the 35 to 44 age group is the largest age grouping for the more than 5 million people in the regional counties. Table 2.5-14 provides similar information for the Canadian population in the region. Note that to derive the detailed age estimates for the U.S. counties, the methodology requires a change from the previous population estimates made from LandView[®] 6. Previous population estimates in this section were based on census information organized and reported according to Census Block Points that, in the LandView $^{\! @}$ 6 software, allows a relatively precise estimate of population within 50 miles (or other distance) from Fermi 3. However, age distribution is not available at the Census Block Point level in LandView[®] 6, and a larger census reporting area called the Census Block Group (CBG) must be used, as this reporting area does include age distribution data. According to the LandView[®] 6 supporting documentation, the average CBG contains about 39 Census Block Points. The consequence of using this CBG estimating approach is that the block groups do not exactly coincide with the 50 mile (or other distances) radius from Fermi 3. Instead, and as shown in Figure 2.5-9, some of the CBGs near the 50 mile radius extend beyond the 50 mile circle. This has the effect, in the instance of the 50 mile radius, of increasing the resident population from 5,378,266 using the Census Block Point method, to 5,570,309. Likewise, at the 10 mile radius, the CBG estimating approach produces a population of 100,931 rather than the 89,198 estimate under the more precise Census Block Point method. Figure 2.5-10 indicates the CBGs lying wholly or partly within the 10 mile radius. Figure 2.5-11 indicates the CBGs in the low population zone (LPZ).

Racial and ethnic population characteristics for the LPZ, defined as the area within 3 miles of Fermi 3, the 10 mile radius, and the region are listed in Table 2.5-15 for U.S. counties, and in Table 2.5-16 for Canadian populations in the region. To derive the data in the tables, the CBG estimating approach was again used, meaning that CBGs wholly or partly within the selected areas were included in the estimates.

Racial and ethnic population characteristics for the LPZ, defined as the area within 3 miles of Fermi 3, the 10 mile radius, and the region are listed in Table 2.5-15 for U.S. counties, and in Table 2.5-16 for Canadian populations in the region. To derive the data in the tables, the CBG estimating approach was again used, meaning that CBGs wholly or partly within the selected areas were included in the estimates.

Data indicate that for the U.S. counties in the region, the 3.5 million Caucasians comprise 70 percent of the overall population (5.1 million) followed by the 1.1 million African-Americans who account for 22 percent of the regional population. In the LPZ and 10 mile radius, Caucasian populations comprise 94 percent and 93 percent of the total population, respectively. Similarly, some 89 percent of the Canadian population in the region is Caucasian.

Income distribution information by household for the LPZ, 10 mile radius, and the region is listed in Table 2.5-17⁵. As indicated in the table, the largest category in each geographic area is the \$50,000 to \$74,999 grouping. The median household income for households in the LPZ was \$58,325 in 2000, and was \$51,807 for the 10 mile radius and \$47,852 in the region. Table 2.5-18 lists additional income information for the regional counties, Michigan, Ohio, and the U.S. Both Michigan (12.5 percent) and Ohio (11.7 percent) have poverty rates below the national average of 12.7 percent. Monroe County, Michigan, where Fermi 3 is located, has a poverty rate of only 8.7 percent. Table 2.5-19 provides similar income data for the Canadian population, arranged by subdivision within the Province of Ontario.

2.5.1.4 Jurisdictional Population Estimates

Recent population data is available for the counties and municipalities in the selected region from the U.S. Census Bureau. Data for the counties in the region plus selected municipalities is provided in Table 2.5-19-A. From 2000 through 2008, the counties in the region experienced a slight decrease in population, with the cities of Detroit and Toledo also experiencing a decrease in population.

2.5.2 **Community Characteristics**

This subsection describes the community characteristics in the vicinity of the Fermi site. For many of the community characteristics discussed, the emphasis is on Monroe County and Frenchtown Township, although some statistics are also presented for Wayne County, Lucas County and the

^{5.} The corresponding information for the Canadian divisions is not available from the Canadian Census.

two surrounding metropolitan areas of Toledo and Detroit in those categories that could incur a noticeable impact due to Fermi 3 construction or operation. Limited data is also presented for the portion of Canada within the 50-mile Fermi region and the limited amount of data is appropriate due to the expected lack of significant impact on Canadian community facilities and services from the Fermi 3 project.

This overall focus is appropriate because the largest potential for increased demand for community facilities and services, relative to the existing level of services, will be in Monroe County and Frenchtown Township, where Fermi 3 is located. While the large Detroit and Toledo population centers are likely to be home to many of the Fermi 3 construction and operational workforce, these workers will be widely dispersed and many will be commuting to the site from existing residences. thereby avoiding significant new demands for community facilities and services in these areas. Community characteristics in Lucas County and Wayne County that are discussed include those that could be realistically impacted and include the area economic base (Subsection 2.5.2.1), demographics (Subsection 2.5.2.3), social structure (Subsection 2.5.2.4), housing (Subsection 2.5.2.5), education (Subsection 2.5.2.6), police service (Subsection 2.5.2.9.2), fire protection (Subsection 2.5.2.9.3), hospital and ambulance service (Subsection 2.5.2.9.4), highways (Subsection 2.5.2.10.1), airports, ports, and railways (Subsection 2.5.2.10.2), and distinctive characteristics (Subsection 2.5.2.11). Descriptive areas limited to Monroe County and Frenchtown Township include political structure (Subsection 2.5.2.2.1), tax base (Subsection 2.5.2.2.2), recreational facilities (Subsection 2.5.2.7), land use planning and zoning (Subsection 2.5.2.8), water and sewer services (Subsection 2.5.2.9.1), and public transportation services (Subsection 2.5.2.10.2). This focus is consistent with the emphasis of NUREG-1555's discussion of the "relevant region." Subsection 2.5.2 is confined to describing the region's baseline characteristics; while in Section 4.4 and Section 5.8, the respective impacts from Fermi 3 construction and operation are evaluated.

2.5.2.1 Area Economic Base

The region's economic base owes its historical development to manufacturing and, in particular, to the automotive industry. Dating back to the turn of the 20th century and to Henry Ford's early production facilities in Detroit, the regional economy benefited greatly from the assembly line production method and the subsequent emergence of dozens of automobile companies in the first half of the century. During World War II, many regional factories were used to produce armaments for the military and following the war, the region reached new economic heights. As with many manufacturing sectors, however, the regional industrial base began to encounter a sharp downturn during the 1970s as foreign competition ushered in a period of significant structural shift in employment. As seen in the statistics below, the structural shift in regional employment continues to be a significant issue, though there has also been employment growth in some service industries in the recent past.

^{6.} The relevant region as defined by NUREG-1555, Section 2.5.2, is as follows, "The relevant region is limited to that area necessary to include social and economic base for (1) the county in which the proposed plant would located and (2) those specific portions of surrounding counties and urbanized areas from which the construction/operations workforce would principally be drawn, or that would receive stresses to community services by a change in residence of construction/operation workers."

Labor force and employment statistics in 2000 and 2006 are presented in Table 2.5-20 for the Michigan and Ohio counties located within the 50-mile region, the Detroit and Toledo areas, and the region as a whole. The Detroit data is based on the Combined Statistical Area (CSA) shown in Figure 2.5-12 that includes the Michigan counties of Monroe, Wayne, Oakland, Genesee, Lapeer, St. Clair, Livingston, Macomb, and Washtenaw. For Toledo, data is for the Metropolitan Statistical Area (MSA) which is shown in Figure 2.5-13 and includes the Ohio counties of Wood, Fulton, Ottawa, and Lucas.

Table 2.5-20 indicates that the 2000 labor force in Monroe County numbered 77,194 and there were 74,756 people employed. The 2000 unemployment rate for the county was 3.2 percent. Just to the north, Wayne County had a 2000 labor force of 952,300 of which 911,069 were employed; this yielded an unemployment rate of 4.3 percent in 2000. To the South, Lucas County had a 2000 labor force of 227,304 with 217,049 people employed; therefore the unemployment rate for Lucas County was 4.5 percent. The entire region had a labor force of 3,091,011 in 2000, of which 2,977,479 were employed, resulting in an unemployment rate of 3.7 percent. The Detroit CSA accounted for 2,700,947 of the regional labor force in 2000 and had a 5.8 percent unemployment rate. The Toledo MSA had a 2000 labor force of 317,744 in 2000 and the unemployment rate was 4.7 percent.

From 2000 to 2006, the Monroe County employment level decreased by 1.1 percent, Wayne County's employment decreased by 10.1 percent, Lucas County's employment decreased by 2.4 percent, and total employment in the 50-mile region decreased by 6.5 percent. The 2006 unemployment rates for Monroe and Wayne counties were 6.5 percent and 8.4 percent, respectively. For the region as a whole, the 2006 unemployment rate was 6.8 percent. As shown in Table 2.5-20, the Detroit CSA had an unemployment rate of 10.1 percent in 2006 and the Toledo MSA unemployment rate in the same year was 8.2 percent.

Table 2.5-21 lists 2000 and 2006 employment by industry for Monroe County, Wayne County, Lucas County, the Detroit CSA, and the Toledo MSA. Also listed is the industry employment for the 50-mile region in 2000. Data in Table 2.5-21 indicate that the manufacturing industry in the region encountered significant employment losses between 2000 and 2006. In Monroe County, manufacturing employment decreased from 18,120 to 14,587 but this was eclipsed by the manufacturing job loss of 40,973 in Wayne County and 107,853 manufacturing jobs lost in the entire Detroit CSA. In the Toledo MSA, manufacturing jobs decreased only slightly during the 2000 through 2006 period while in Lucas County 5,771 manufacturing jobs were lost.

The largest growth for the region occurred in the educational, health and social services industry, and all four of the county and statistical areas listed in Table 2.5-21 realized an increase in employment in this industry sector during the 2000 through 2006 period. Other industries experiencing growth in Monroe County include retail trade, the finance, insurance, and real estate industry, and the arts, entertainment, recreation, and food services industry.

The three Canadian counties that lie within the 50-mile radius of Fermi 3 are Essex, Chatham-Kent, and Lambton. The combined 2001 employment data for these Canadian counties listed by major industry is presented in Table 2.5-22. As with the U.S. portion of the Fermi region, employment in

the Canadian counties was concentrated in manufacturing and construction (94,290). Other large industries include health and education (45,195), and the trade industries (43,595).

The largest employers in Monroe County are listed in Table 2.5-23. According to the Monroe County Finance Department, the top three employers in Monroe County in 2006 were Automotive Components Holdings, formerly named Visteon Corporation, (approximately 2,000 employees), Detroit Edison Corporation (approximately 1500 employees) and Mercy Memorial Hospital (approximately 1,300 employees). Employment data for 1998 is also listed in the table and reveals a trend toward increased concentration of total county employment among the largest firms. According to the Monroe County Development Corporation, Automotive Components Holding is scheduled to scale down operations in 2008 through a workforce reduction of at least 1,000.

Table 2.5-24 and Table 2.5-25 show the largest employers for Wayne County and Lucas County, respectively. In Wayne County, the largest employer in 2007 was Ford Motor Company with 42,309 employees; down from the 57,659 people employed in 1998. Ford Motor Company was followed by Detroit Public Schools (17,329 employees) and the City of Detroit (13,593 employees). In Lucas County, the three largest employers in 2006 were ProMedica Health Systems (11,265 employees), Mercy Health Partners (6,723 employees), and the University of Toledo (4,987 employees).

Table 2.5-26 lists the industry employment projections for Michigan and the Detroit MSA in 2014, as made by the Michigan Department of Labor and Economic Growth. In making its projections, the department includes Monroe County as part of the Detroit MSA, along with the counties of Wayne, Lapeer, Macomb, Oakland, and St. Clair (note that this list differs from the counties in the Detroit CSA). According to the Michigan Department of Labor and Economic Growth, employment between 2004 and 2014 will increase by 6.9 percent overall in the Detroit MSA, although manufacturing employment will decline by 11.4 percent and the durable goods manufacturing sector is projected to decrease by 13.4 percent. The overall growth will be driven by the service industries, with professional and business services (18.9 percent), educational and health services (11.2 percent), and the leisure and hospitality industry (10.6 percent) projected to experience the largest growth rates. At the state level, the overall growth from 2004 through 2014 is projected to be 7.9 percent.

Table 2.5-27 shows the 2014 industry employment projections for the Toledo MSA. It is projected that by 2014, there will be an employment decrease of 4,230 in the goods producing sector with manufacturing to experience a decrease of 5,030 jobs. However, service producing industries will experience an employment increase of nearly 26,990 jobs within the Toledo MSA. Table 2.5-28 provides additional employment information for Monroe County by listing recent and expected changes in employment.

The most detailed view of the regional workforce in relation to the needs of the Fermi 3 project during construction and operation is seen when comparing the key occupational requirements of the project (in Sections 4.8 and 5.8) with the available labor force for these occupations.

Concerning the available heavy construction industry craft workers in the region, Table 2.5-28(A) lists the key craft and the location of the primary and supporting union halls that will provide key

craft workers to the project. Also listed is the number of craft workers at the identified union halls in 2009, and the direct journeyman wages by craft. At the state level, Table 2.5-28(B) lists the 2006 and projected 2016 labor force at the state level for Michigan and Ohio for several craft occupations that will be required on the Fermi 3 project.

Staffing requirements during the Fermi 3 operational phase will consist of multiple occupational classifications. The 2004 study prepared for the Department of Energy (DOE) titled: "Study of Construction Technologies and Schedules, O&M Staffing and Cost, Decommissioning Costs and Funding Requirements for Advanced Reactor Designs (Volume 1)", called the DOE staffing study herein, lists more than 200 staffing job categories required for the operation of a nuclear power plant, organized into several departments. The functional departments are listed below, and some of the key job categories for each department are also identified:

- Management includes director positions over O&M and safety, plus various corporate services such as financial support.
- Operations includes manager of operations positions and support, shift licensed and non-licensed operators, shift supervisors, operations engineers, refueling operators, clerks and administrative support.
- Engineering includes the engineering manager and administrative support, systems engineers, reactor engineers, component engineers, civil and mechanical engineers, and records clerks.
- Maintenance includes the maintenance manager and administrative support, electricians and electrical supervisors, mechanics and supervisors, I&C technicians, outage scheduling personnel, outage inspectors, and maintenance procurement workers.
- Outage and Planning includes the outage and planning manager and administrative support, the nuclear scheduling supervisor, electrical schedulers and planners, mechanical schedulers and planners, I&C schedulers and planners, unit outage coordinator, and turbine maintenance specialists.
- Major Modification and Site Support includes the nuclear support services manager and administrative support, the construction engineering supervisor, construction engineers, quality inspectors, electrical construction specialists and supervisors, civil/mechanical construction specialists and supervisors, project controls specialists and supervisors, labor support and supervisors, and construction equipment management.
- Organizational Effectiveness includes the licensing supervisor and engineers, nuclear safety supervisor, and corrective action coordinators.
- Radiation Protection includes radiation protection manager and administrative support, health physicist technicians and supervisors, radwaste technicians and supervisor, and chemistry technicians and supervisor.
- Training includes the nuclear training manager and administrative support, operations
 initial training supervisor and staff, operations continuing training supervisor and staff, and
 maintenance/rad protection training supervisor and staff.

- Security includes the protection services manager and administrative support, security supervisors, security officers, safety and loss prevention personnel, and the site emergency planning personnel.
- Supply Chain Management includes the supply chain manager and administrative support, the warehouse supervisor and storekeepers, receiving and inspection workers, and emergent sourcing specialists.
- Telecommunications includes the IT manager, business analysts, local area network field services workers, and telecommunications services.

Data at the state level for several occupations that closely correspond with many of the job categories in the DOE staffing study is shown in Table 2.5-28(C). This table indicates the historic and projected labor force and wage data for key occupations in Michigan and Ohio that would include many of the Fermi 3 occupational jobs.

In addition, Table 2.5-28(C) indicates the average hourly wages for each occupation by state. The average hourly rate in 2008 varied widely by occupation, ranging from a low of \$12.21 (\$2008) per hour for security guards to \$47.98 (\$2008) per hour for general and operations managers. Additional employment considerations pertaining to the impacts of Fermi 3 during construction and operation will be discussed in Chapter 4 and Chapter 5, respectively.

2.5.2.2 Area Political Structure and Taxation

The Fermi site is located within the Frenchtown Charter Township in Monroe County. This section discusses the relationship between counties, townships, villages, and cities in Michigan, and provides recent tax information for Monroe County and Frenchtown Township. The main focus of the subsection is Frenchtown Township and Monroe County due to the fact that it is these areas that will be primarily impacted and will receive the majority of the tax benefits generated by Fermi 3.

2.5.2.2.1 **Political Structure**

In Michigan, counties have always been the basic unit of local government and possible configurations include the county commission form, the county controller form and the county executive form. Historically, townships are the oldest subunit area within counties and their roots extend back to the Northwest Ordinance of 1785, which called for surveys that divided the land into six-mile squares (Reference 2.5-7). These areas were organized into political units in Michigan under the Township Act of 1827, which created the position of the township supervisor who also sat on the county board of supervisors. This arrangement was confirmed and the role of township government was further refined in the 1850 Michigan Constitution, when the township offices of supervisor, clerk, highway commissioner, constables, a highway overseer, and justices of the peace were created. Townships were also designated as a corporate body with the right to sue or to be sued in the 1850 Constitution. As opposed to cities and villages, townships and counties do not have home rule powers, meaning that they only have those powers and authority expressly provided or inferred by state law (Reference 2.5-7).

Today, Michigan townships are designated either as general law townships or as charter townships. The charter township is afforded additional discretions not available to the general law township, and charter townships are generally immune from annexation by a neighboring city. General Law townships have no ability to levy an income tax and have stricter limits than charter townships with regard to property taxes that can be levied without voter approval.

By 2000, there were 1242 townships in Michigan, and 127 had adopted the charter township form of government through a vote of the county board or through a citizen vote (Reference 2.5-7). Many townships offer complete public facilities and services including water and wastewater supply and treatment, police and fire protection, and parks and recreational services. Most township revenues are derived from the state, collected from user fees, or generated from interest on investments. Frenchtown Township is a charter township governed by a seven member board. As will be subsequently discussed, the township provides multiple public facilities and services, including fire protection, water, zoning, and parks and recreation (Reference 2.5-8).

Historically, as the state population continued to grow during the 1800s, villages and small cities naturally began to arise. To accommodate the need for local government in such communities, the Michigan Constitution of 1850 called for the state legislature to allow for the incorporation of cities and villages. Between 1850 and 1895, there were 89 cities and 297 villages incorporated in the state. The primary difference between a village and city in Michigan is that cities tend to be larger, and villages remain within the township, meaning that those within the village continue to pay township taxes and have a voice in township government. Conversely, the formation of a city removes the area from the township government, though city residents continue to pay county taxes and have a voice in county government (Reference 2.5-7).

In addition to the aforementioned classifications, Michigan law allows for the formation of special-purpose districts and authorities if there is a need for services that do not match-up with existing governmental boundaries. Examples can include police and fire services, joint agencies for electric power, parks and recreational authorities, and transportation authorities (Reference 2.5-7).

In general, local government is financed through a number of tax sources, and this revenue is allocated to various account funds. The largest of these funds is usually the general fund that typically generates revenues through ad-valorem property taxes. These taxes generally apply to all non-government and non-church property. The basic unit of taxation is the mill, which is one-tenth of a cent, or 1/1000 of a dollar. In Michigan, the mill levy is applied to 50 percent of the assessed value when determining property taxes (Reference 2.5-7).

Another primary source of local funding in Michigan is the state revenue sharing program in which the state distributes sales taxes collected to cities, counties, villages, and townships. As of 2002, state revenue sharing was determined by the constitutional requirement of 15 percent of the 4 percent gross collections of the state sales tax, and a statutory requirement that 21.3 percent of the 4 percent gross collections of the state sales tax be distributed to local governments (Reference 2.5-7).

Monroe County is divided into nine distinct geographic districts, each of which elects a representative to the Monroe County Board of Commissioners for a two-year term (Reference 2.5-9). Once the Board is elected, a Chairman and Vice Chairman are selected, as is a County Administrator who acts as the Chief Operating officer and is responsible for administrative compliance with Board polices, state laws, and the fiscal integrity of the county (Reference 2.5-10). The Monroe County Board of Commissioners maintains four standing committees:

- Finance Committee. This committee consists of all Board members and is concerned with budgets, expenditures, auditing and economic development.
- Personal Services/Human Resources Committee. This committee is comprised of four members appointed by the Chairman with responsibilities ranging from the health department to housing.
- Physical Resources Committee. This committee consists of four members appointed by the Chairman with duties consisting of management over procurement, roads, drainage, parks and recreation, 911 dispatch, and historic sites.
- Judiciary, Law Enforcement and Public Safety Committee. This committee consists of four members appointed by the Chairman, and oversees the local courts, sheriff, emergency medical services, and emergency management. (Reference 2.5-10)

2.5.2.2.2 **Taxation**

Tax information for Monroe County from 2001 through 2005 is provided in Table 2.5-29, which lists the property tax rate per \$1000 (also known as a mil or mil rate) of taxable value in several categories of taxes and for overlapping locations within the county. The school district category had the highest property tax rate in the county, and these taxes averaged 26.80 per \$1000 of taxable property in 2005. By way of comparison, the township average rate in 2005 was 2.72 mils, and the total county direct rate was 5.41 mils.

Table 2.5-30 details the value of taxable property within Monroe County by land type, classified by residential, agricultural, commercial, industrial, developmental, and personal property. As of 2005, the total assessed value in the county was \$6.9 billion of which \$4.1 billion was residential and \$1.0 billion was industrial. The total true cash value of property was \$13.9 billion.

Table 2.5-31 lists the leading property tax payers in Monroe County in 2006 and 1997. The entity with the highest assessed property value in 2006 was Detroit Edison which had a taxable assessed value of \$822,719,335 or 12.6 percent of the total county taxable assessed value (this is down from the 1997 assessed value of \$1,178,001,644 when the figure was 31.4 percent of the Monroe County total). There was significantly less taxable assessed value of the second ranked entity, Automotive Components Holding, which had a taxable assessed value of \$104,799,157 and accounted for 1.6 percent of the county total and that, as previously mentioned, will undergo a significant downsizing in 2008. Table 2.5-32 and Table 2.5-33 list the largest tax payers for Wayne County and Lucas County, respectively.

Table 2.5-70 shows the Fermi 2 property taxes, nuclear fuel property tax, and the total Fermi 2 property taxes paid from 2002 to 2007. As seen in Table 2.5-70, over the past 5 years, Fermi 2 has paid \$142,243,792 in total property taxes. Also, during this same time period the taxes paid by Fermi 2 per year has decreased by approximately \$10 million, i.e. Fermi 2 paid \$29,506,399 in total property taxes in 2002 and paid \$19,057,947 in total property taxes in 2007 (this decline in taxes paid concurs with the declining assessed value of Fermi 2 shown in Table 2.5-31). Table 2.5-71 shows the 2007 millage rate composition for the Frenchtown Charter Township. Fermi 2 is in the Jefferson Resort School District and in 2007 paid a millage rate of approximately 46.7 mils. Of this total, approximately 6.7 mils went to the Frenchtown Township, 13.2 mils went to Monroe County (including the Monroe Intermediate School District, Monroe Community College, Monroe County Library), 25.0 mils went to the school district (of which 6 mils went to the state), and the remaining 2.8 mills went to the Resort Authority.

Taxable property and the resulting property tax revenues are a major source of the total township revenue. According to Table 2.5-34, property tax revenues accounted for 55 percent of the total Frenchtown Township revenue in 2001, and ranged from 38 percent to 70 percent of the total township revenues in the 1989 through 2001 period. Table 2.5-35 lists the value of taxable property by category in Frenchtown Township as reported in the 2002 township Master Plan. The table indicates that in 2002, the leading category in taxable value was the industrial classification, which accounted for 62 percent of the property value and includes real property values for the utility category (Reference 2.5-11). The residential category accounted for 31 percent of the taxable value of property in Frenchtown Township in 2002.

The Frenchtown Master Plan contains a significant discussion about the tax benefits of the Fermi plant. Key text is provided below:

Around 1980, Frenchtown Township became the site of Detroit Edison's Enrico Fermi power generation facility located on the shore of Lake Erie. As a result, total SEV [State Equalized Value] of property in the Township increased by 500 percent between 1980 and 1988. In 1989, the Fermi plant (building and land alone) represented fully 74 percent of the property tax base in the Township. While this represented a windfall for the Township, it is in fact a temporary condition... [B]eginning around the year 2000, the taxable value of the Fermi plant began to decline and will continue to decline in coming years. By 2002, the Fermi plant represented only 49 percent of the property tax base in the Township (Reference 2.5-11).

The Master Plan then discusses the trend of residential property accounting for an increasing percent of the overall township property tax base (from 10 percent in 1988 to 27 percent in 2002) and notes that "residential land uses cost more in terms of the services that the local community must deliver than the tax revenue they typically generate." Although the overall residential property value in the township is increasing, as indicated by the rate of increase in residential value exceeding the rate of increase in the number of residential units, the Master Plan makes the following conclusion regarding overall Township funding sources:

The trends would suggest that it will be important in the future to continue efforts to bring sufficient industrial, office and or commercial development to the Township to partially offset the decline in taxable value occurring at the Fermi Plant. Failure to do so may create a future dilemma between higher tax rates and lower levels of Township services. (Reference 2.5-11)

In addition to property tax benefits accruing to the local community, Table 2.5-72 indicates that significant sales tax revenues are associated with the operation of Fermi 2. The Applicant has estimated that sales tax revenues arising from Fermi 2 operation and maintenance (O&M) and capital expenditures for the years 2002 through 2007 averaged approximately \$1.154 million per year in direct sales taxes (those taxes generated by Fermi 2 direct expenditures). These tax revenues were realized by Michigan and Ohio, each of which has a 6 percent sales tax rate.

Also shown in Table 2.5-72 are the estimated indirect sales tax benefits associated with Fermi 2. The Applicant estimates that, between 2002 and 2007, an annual average of \$4.44 million in indirect sales tax revenues were generated in Michigan and Ohio.

Table 2.5-36 lists the per capita taxes paid in Michigan and Ohio and ranks the state data relative to other states. Michigan ranks high in terms of per capita corporate income taxes at 9th and tobacco products taxes at 2nd. The per capita taxes in Michigan rank toward the bottom in terms of individual income tax at 32nd and motor fuel taxes at 43rd, while total per capita taxes rank 25th in the nation. Ohio ranks 21st in the nation in total per capita taxes while ranking 8th in individual income taxes and 22nd in corporate income taxes.

Table 2.5-37 displays Michigan's general property tax collection broken down by jurisdiction for the years 2004 and 2005, while Table 2.5-38 lists the taxes and fees collected by the state of Michigan from 2001 to 2006.

2.5.2.3 **Demographics**

Detailed demographic information for the Fermi region and segments at various distances from Fermi 3 are provided in Subsection 2.5.1. This section will present additional discussion related to the demographics of Monroe, Wayne, and Lucas Counties, plus selected cities within these counties as these communities will be the areas primarily impacted by Fermi 3. Section 4.4 and Section 5.8 provide onsite labor information for the construction and operation periods.

With its location between two MSAs, Monroe County is influenced to the north by Detroit and to the south by Toledo; yet the community has retained its character as a relatively rural area, as approximately 75 percent of the county is cropland, with small and medium sized villages and cities distributed throughout the county (Reference 2.5-12). As seen in Figure 2.5-14, population centers within the 10-mile radius include Woodland Beach (2.9 miles away to the west-southwest of the Fermi site and having a population of 2179); Carleton (9.4 miles northwest and a population of 2,561); Detroit Beach (4.0 miles west-southwest and a population of 2,289); Flat Rock (9.5 miles north and a population of 8,488); Gibraltar (9.5 miles north-northeast and a population of 4,264); Rockwood (7.6 miles north and a population of 4,726); and Stony Point (1.3 miles south-southwest and a population of 1,175). The City of Monroe (5.5 miles away at the closest point to the

southwest) is the largest city in Monroe County and the largest city lying within the 10-mile radius. As of 2000, the City of Monroe had a population of 32,229. This population figure included 10,293 people in the labor force, of which 9,938 were employed and 355 were unemployed (an unemployment rate of 2.1 percent) (Reference 2.5-13).

According to the U.S. Census Bureau, the total 2006 resident population of Monroe County was approximately 155,000, equating to 281 people per square mile (an increase of 16 people per square mile from the year 2000). By comparison, the state of Michigan had a population density of 177.7 people per square mile in 2006, a slight increase from the 175 persons per square mile in 2000 (Reference 2.5-14).

In sharp contrast, Wayne County to the north had a 2006 population of 1.97 million and is the most populous county within Michigan and the 11th most populous county in the United States (Reference 2.5-15). The land area is 623 square miles (3,165 people per square mile) and the county is made up of 43 civil divisions. The City of Detroit, the Wayne County seat, is the largest governmental division within the county having a 2006 population of approximately 871,000 (Reference 2.5-16 and Reference 2.5-17). The City of Detroit's land area is 139 square miles (6,267 people per square mile), which accounts for 22 percent of the total land area of Wayne County, and the city includes approximately 50 percent of the county's total population. Detroit is also the largest city in Michigan and the 10th largest city in the United States (Reference 2.5-18).

To the south of Monroe County lies Lucas County, Ohio and is comprised of 340 square miles of land. In 2000, Lucas County had a population density of 1338 people per square mile of land compared to 277 people per square mile for Ohio as a whole (Reference 2.5-19). The largest city in Lucas County is Toledo, which had a 2000 population of approximately 309,000. Toledo's land area is 81 square miles giving it a population density of 3,890 people per square mile (Reference 2.5-20).

2.5.2.4 Social Structure

Monroe County is a moderately populated county located between Detroit and Toledo. While Monroe County residents live in a semi-rural area, the City of Monroe and other smaller cities offer local access for the procurement of basic goods, services, and recreational opportunities. For specialized goods and services, the population is able to commute to Detroit or Toledo. Detroit and Toledo also provide regional employment opportunities in a wide range of industries and specialties. Census data indicate, for example, that while 51.1 percent of Monroe County residents are employed in the county, 18.4 percent commute to Lucas County (Ohio) and 17.7 percent of local workers commute to Wayne County (Table 2.5-55).

As the county's second largest employer, Detroit Edison, and the Fermi plant in particular, helps keep the number of local residents working in Monroe County relatively high. The anticipated additions of Fermi 3 will further contribute to regional employment diversity and add to the importance of Detroit Edison as an employer in Monroe County.

2.5.2.5 **Housing**

Key housing information is presented in Table 2.5-39 for the 50-mile regional counties, the Canadian districts, and the states of Michigan and Ohio. Monroe County had 56,471 housing units in 2000, of which 53,772 were occupied. The heavily populated Wayne County, just to the north, had 826,145 housing units in 2000; 768,440 of these were occupied. To the south, Lucas County had 196,259 housing units in 2000 with 182,847 of those being occupied. The total number of housing units in the entire 50-mile region was 2,436,635 in 2000; 2,288,055 of these were occupied and there were 148,580 vacant housing units. These vacant houses, plus other housing options, will be more than adequate to support the influx of construction and operational workers; these issues are further discussed in Section 4.4 and Section 5.8, respectively. The state of Michigan had a total of 4,234,279 housing units and Ohio had 4,783,051 housing units in 2000. There were 233,550 housing units in the Canadian area of the 50-mile region.

Table 2.5-40 lists occupancy tenure data for the housing located in the U.S. portion of the 50-mile region. As seen in the table, according to U.S. Census data, approximately 45 percent of the population had moved into their homes in the previous 5 years, and this high percentage is partially a function of the economic downturn in the region that has caused many households to relocate.

Changes in the Monroe, Wayne, and Lucas County housing characteristics from 2000 through 2006 are shown in Table 2.5-41, along with renter and owner cost data. Between 2000 and 2006, the number of units in Monroe County increased by 12 percent, much higher than the 2 percent increase in Wayne County and the 3 percent increase in Lucas County, although the number of units in Monroe County remains far below those in Wayne and Lucas counties. Between 2000 and 2006, the number of vacant units in Monroe County increased from 2,699 units to 4,685, but this 74 percent increase is mild compared to the 115 percent increase in Wayne County. During the same time period there was a 71 percent increase in vacancies within Lucas County. Wayne County had 124,280 vacant housing units in 2006, while Lucas County had 22,938. Housing unit renter costs were comparable between the three counties in 2000 and 2006, with the 2006 monthly cost of a rental home of \$695 in Monroe County, \$719 in Wayne County, and \$594 in Lucas County. Wayne and Monroe County had average monthly mortgage costs of slightly more than \$1,350 in 2006 while Lucas County's costs were slightly below these at \$1,215.

Table 2.5-42 indicates the adequacy of housing structures in the regional counties in 2000 as well as the totals for Michigan and Ohio. In general, it can be concluded that the housing stock in Monroe County had a lower incidence of inadequacy than the average for Michigan, and was comparable to the average for Ohio. Wayne County, on the other hand, had a significantly higher percentage of housing units lacking plumbing and complete kitchen facilities than either state, as well as a higher percentage of units without telephone service, and a higher percentage of overcrowded units. Lucas County was comparable to Monroe County in the percent of houses lacking plumbing, kitchen, and telephones facilities as well as the sharing the same percentage of housing units with greater than one occupant per room.

More recent housing data is available for the counties in the selected region from the U.S. Census Bureau's American Community Survey. Data for all Michigan counties is provided in Table 2.5-42-A

for the year 2007. Data for the Ohio counties is also provided in the table and is either for 2007 or for the period 2005-2007, as not all Ohio region counties were surveyed in 2007.

Table 2.5-42-B includes projections of the number of occupied housing units for the southeast Michigan region. The forecast is made by the Southeast Michigan Council of Governments (SEMCOG) and is from the April, 2008 document 2035 Forecast for Southeast Michigan.

Table 2.5-42-C lists information on the number of manufactured housing or mobile homes in Monroe County as of 2006. Mobile homes, especially those in mobile home parks, will be a primary housing option for workers during the construction of Fermi 3 due to the availability of this type of housing and the affordability of this option (prices for mobile homes in 2006 in Monroe County were generally between \$40,000 and \$100,000). Available mobile homes together with vacant houses and other lodging alternatives will be options for construction workers relocating to the area temporarily. As of 2006, Monroe County had 29 mobile home parks and 7,451 licensed sites in these parks. There was a 17.2 percent vacancy rate of the sites surveyed in 2006, up from 14.3 percent in 2004. When applied to the 7,451 licensed mobile home sites, the estimated number of vacant mobile home sites in 2006 was 1,282.

Table 2.5-42-D lists the total number of manufactured home parks and sites for Southeast Michigan in 2000 and 2006. In 2006, there were 74,521 manufactured housing sites in 285 mobile home parks in Southeast Michigan. The number of sites in 2006 represents a 6.5 percent increase compared to the number of sites in 2000.

Table 2.5-42-E lists the building permit activity for Southeast Michigan from 1989 through 2008, including the number of new building permits issued, the number of demolitions, and the net change in housing. As shown in the table, there has been a dramatic decrease in the number of building permits for new housing in 2007 and 2008, and this is attributed to the national economic downturn as well as the worsening regional economy. In 2008, there was a net decrease of housing units, and this was the first time in the 20-year period that there has been a net decrease in regional housing units.

Table 2.5-42-F lists short term accommodations within 50 miles of Monroe City. As seen in the table there are over 375 accommodation establishments including, hotels and motels, bed and breakfast, cabins and cottages, condos, historic inns, and campgrounds.

Section 4.4 provides further discussion on workers requiring temporary and permanent housing during construction phase, while Section 5.8 discusses workers need for permanent and temporary housing during the operation phase.

2.5.2.6 Educational System

The Monroe County educational system includes nine public school districts, two charter schools, fifteen parochial and private schools, and the schools in the Monroe County Intermediate School

^{7. 2006} Annual Building Activities Report, Monroe County Planning Department, p. 42.

^{8. 2006} Annual Building Activities Report, Monroe County Planning Department, p. 43.

District (ISD). Key statistics for the school districts and charter schools are provided in Table 2.5-43 (Table 2.5-44 and Table 2.5-45 show the districts, and the number of students and schools per district for Wayne County and Lucas County, respectively). As shown in the Table 2.5-43, there are 55 schools among the districts and academies listed for Monroe County. The total enrollment in these schools was 25,963 in 2005-2006 and there were 1435.1 full time equivalent teachers. The resulting average student/teacher ratio was 18.1, although the ratio in the various districts ranged from a low of 10.4 to a high of 19.6. The student/teacher can be used as a capacity indicator but ratio reflects the teachers' workload and indicates the availability of teachers to the students; therefore the lower the ratio the higher the availability of services a teacher may offer a student. Monroe County's 18.1 student/teacher ratio is a little above the 2005-2006 national average of 15.7 and Michigan's 17.4 (Reference 2.5-134). But even though Monroe County's student/teacher ratio is a little higher than the state and national average local school officials from Monroe ISD, Monroe Public Schools, and Jefferson Public School foresaw no problems stemming from capacity related issues. When asked if there respective districts foresaw any capacity issues they responded that at this time there is constant or declining enrollment and that there is capacity for future growth.

The school districts and charter schools listed in Table 2.5-43 benefit from the activities of the Monroe County ISD that, among its other duties, acts as a regional agency connecting local school districts with the Michigan Department of Education to provide various services that individual school districts may not be able to afford independently. Special services include communications and information support services, a comprehensive health program, curriculum consultation, special education services, diagnostic support, and early childhood special education support among other services (Reference 2.5-21).

Table 2.5-46 presents revenue and expenditure data for the school districts and charter schools in Monroe County in the 2004-2005 school year. The Monroe Public School District had the largest budget, with revenues of \$60.4 million, followed by the Monroe ISD, with revenue of \$42.8 million. Table 2.5-47 compares median expenditures per student in Michigan, Ohio, and the U.S. Data indicate that the median expenditure per pupil in the U.S. was \$9,392 in 2004-2005 compared to \$9,103 in Michigan and \$8,687 in Ohio.

The demographic breakdown of the school population within Monroe County is as follows: nursery school and preschool: 1,545 students; kindergarten: 2,260 students; elementary school (grades 1-8): 16,168 students; high school (grades 9-12): 9,365 students; and college or graduate school: 8,258. For grades 1 through 8, 13.2 percent of the students are enrolled in private schools versus the state average of 11.2 percent. Students in grades 9 through 12 have a private enrollment rate of 8.5 percent compared to 8.7 percent at the state level (Reference 2.5-22).

The largest public school districts within the region are the Detroit City School District and the Toledo City School District. To the north of Monroe County, the Detroit City School District has a total of 235 schools spanning pre-kindergarten to twelfth grade. The student population for the district is 133,255 with 7187.2 full-time equivalent (FTE) classroom teachers giving the district a student/teacher ratio of 18.5. To the south, the Toledo City School district has 58 schools covering grades pre-kindergarten to twelfth. The district educates a total of 30,423 students with 1852.1 FTE classroom teachers equating to a 16.4 student teacher ratio.

In addition to the high schools and elementary schools, there are a number of colleges within Monroe County. These include: Monroe County Community College (Monroe), Monroe County Community College-Whitman Center (Temperance), Siena Heights College (Division of Monroe Community College), Eastern Michigan University (Monroe), and Spring Arbor University. The largest of which, Monroe County Community College was established in 1964 goal with the objective of providing a high quality preparatory education for those planning to attend a 4 year university, as well as offering occupational programs. The current enrollment at this college is 4433 students, with 85.6 percent of the student being residents of Monroe County (Reference 2.5-23).

Other major colleges in the region include: Wayne State University (Detroit), University of Detroit-Mercy (Detroit), University of Michigan (Ann Arbor), University of Michigan-Dearborn, and Eastern Michigan University (Ypsilanti) (Reference 2.5-24), and the University of Toledo and Bowling Green State University in Ohio. The largest of these is the University of Michigan, which had an enrollment on its Ann Arbor campus of 40,025 in the fall of 2006, followed by Wayne State University with an enrollment of 33,137 in the fall of 2005 (Reference 2.5-25 and Reference 2.5-26).

In Monroe County, there are 103,857 individuals aged 25 and over. In 2006, there were 2,770 people with less than 9th grade education, 10,451 with a 9th to 12th grade education but no diploma, 39,147 high school graduates (including equivalency), 25,997 with some college but no degree, 9,278 with an Associate's degree, 11,715 with a Bachelors degree and 4,499 people with graduate or professional degrees (Reference 2.5-22).

2.5.2.7 Public and Private Recreational Facilities

Recreational facilities and programs in Monroe County are administered by a ten member Parks and Recreation Commission, who are appointed by the County Board of Commissioners. The Parks and Recreation Commission develop a 5-Year Recreation Plan for the county, with the most recent plan drafted in January 2008. The mission statement of the Commission, as stated in the Recreation Plan, is to:

...plan, acquire, develop, and maintain, in cooperation with all interested individuals and groups, a responsive, efficient, and creative natural resource based park and recreation system available to all citizens, composed of a variety of services, park areas and special facilities that contribute to the well-being of the individual, the family, and the social and economic health of the Monroe County community. (Reference 2.5-12)

The Commission works closely with the Monroe County Planning Department and the Purchasing and Property Maintenance Division, with the relationship between these groups and the county Board of Commissioners illustrated in Figure 2.5-15.

Monroe County has a well-developed system of recreational facilities and programs. The recreational facilities in the county are listed in Table 2.5-48, where additional information on location, type of facility, and size is provided. Within Monroe County, there are five park classifications. These classifications and the amount of acreage devoted to these classifications include: 1) county parks (221 acres), 2) state owned parks (7413 acres), 3/4) city and township parks (821.5 acres), and 5) neighborhood and subdivision parks (233.6 acres) (Reference 2.5-12).

In addition, Monroe County has nine campgrounds occupying 1593.7 acres, a total of thirty-seven marinas with 3946 boat slips, ten public access sites occupying 1410.5 acres, fifteen shooting ranges and sportsmen's clubs, twenty-five golf courses/driving ranges, and eleven miscellaneous recreational facilities (Reference 2.5-12).

Table 2.5-49 lists recreational and lodging facilities within the 10-mile radius, and Figure 2.5-16 depicts several recreational facilities within the vicinity of Fermi, including wildlife conservation areas that provide hiking, fishing, and other recreation opportunities. The closest areas to Fermi 3 that are used for recreation are along the Lake Erie shore and are associated with the resort communities at Stony Point Beach, about 2 miles south, and Estral Beach, 2 miles northeast. Swimming and some boating activity occurs in these areas (Reference 2.5-27). The Detroit River International Wildlife Refuge (DRIWR) extends along the shore of Lake Erie from the River Raisin to the south of the Fermi site to southern Detroit north of the Fermi site. The area encompasses 656 acres of the Fermi site as part of the refuge, that part of which is not open to the public (Reference 2.5-28).

In addition to the areas described above, the following areas in the Fermi 3 vicinity are available for recreation (note that the utilization of these facilities is not tracked):

- Swan Creek: 0.52 mile north of the Fermi site (just north of the Fermi property boundary)
- Pointe Mouillee State Game Area: 3.1 miles northeast
- William C. Sterling State Park: 4.8 miles south-southwest
- Captain Norman Heck Park: 5.5 miles southwest
- Raisin River Golf Club: 5.4 miles southwest
- Lake Erie Metropark (Wayne County): 6.6 miles north-northeast
- Monroe Multi-Sport Complex: approximately 7 miles southwest in Monroe

2.5.2.8 Local Land Use Planning and Zoning

The Monroe County Planning Department & Commission (Planning Commission) is responsible for a wide range of county functions, including land use planning, zoning, specialized research, interface with state and federal agencies, and economic development. The Planning Commission consists of 11 members appointed to three year terms by the County Board of Commissioners.

One of the key agencies that interface with the Planning Commission is the Southeast Michigan Council of Governments (SEMCOG). This regional agency aims to solve regional government problems, increase governmental efficiency, promote economic development, improve the region's water quality and transportation system, perform statistical analyses, and to generally help members improve the quality of life of the region's residents. SEMCOG receives funding from federal and state grants, contracts and membership fees. There are 155 current members of SEMCOG including Monroe, Livingston, Macomb, Oakland, St. Clair, and Washtenaw Counties (Reference 2.5-29 and Reference 2.5-30).

In its zoning function, the Planning Commission is mandated to review all township zoning applications (Reference 2.5-31). Official cases are given to the Planning Commission for review after a Township Planning Commission reviews the case and before the final decision is made by the Township Board. The County Planning Commission's recommendations on a zoning case are provided to the townships, which make the final ruling through the Township Board. In 2004, the Planning Commission provided recommendations on 68 zoning-related cases. The zoning cases reviewed are shown in Table 2.5-50, which indicates that changes in zoning ordinance texts constituted 26 of the total cases, followed by 18 reviews involving single family residences and 11 cases involving commercial zoning issues. From 2000 through 2004, the average percent of cases each year that the County Planning Commission agreed with the Township Planning Commission recommendation was 82.6 percent (non-weighted average), and the final Township Board decision agreed with the County Planning Commission recommendation an average of 85.6 percent of the time (Reference 2.5-31).

While much of Monroe County is zoned for rural land use and 75 percent of the land area is devoted to crop production, there are a number of areas zoned for industrial and utility use (Reference 2.5-12). Frenchtown Township also includes significant parcels of land zoned for industrial and utility use, and the 2002 zoning in effect for the township can be seen in Figure 2.5-17. This figure indicates that the Fermi site in the extreme eastern part of the township and bordering on Lake Erie has a designated land use of utility as is a corridor extending from the Fermi site to I-75 and following the highway for much of its route through the township.

Table 2.5-51 indicates the acreage devoted to various land uses in Monroe and Wayne Counties, and in Frenchtown Township in 1990 and 2000. In Monroe County, the largest classification was agricultural (more than 62 percent of the acreage in 2000), though the category declined by 7 percent from 1990. This was followed by residential land use (14.8 percent), woodlands and wetlands (11 percent), non residential (5.7 percent), and grassland and shrub (3.4 percent). Industrial and commercial/office land uses, while each comprising less than 1 percent of the overall acreage in 2000, nevertheless grew at respective rates of 41 percent and 32 percent between 1990 and 2000 in Monroe County. In Frenchtown Township, agricultural land use accounted for 51 percent of total acreage in 2000, followed by residential land use (19 percent), woodland and wetland land use (9.4 percent of all acreage), and transportation and utility uses (4.5 percent).

Figure 2.5-18 indicates the future land use plans for Frenchtown Township as presented in the most recent (2002) Master Plan. As seen in the figure, the Fermi site land use is expected to remain classified as utility. South of the site, the land is anticipated to remain a low and medium density residential area. The Fermi site is expected to be surrounded primarily by agricultural lands, open areas and woodlands to the west and north, with the possibility of a waterfront opportunity area northwest of the site. Regarding this possibility, the Master Plan states:

The Master Plan recommends that the Township continue to search for new lake front recreation opportunities. Township acquisition of lakefront property is one alternative. As noted later, a more feasible approach might be to allow private mixed use development along the waterfront, where such development would maximize exposure, access, and orientation to the lake. Two areas where this type of mixed use development would be

feasible are designated on the Future Land Use Map: in the far northeast corner of the Township, and south of Point Aux Peaux and Brest Roads (Reference 2.5-11).

The Master Plan also anticipates pursing development and allocating significant parcels to industrial use, primarily the land area in the northern two-thirds of the township just east of I 75. Related to utility land use, the Master Plan states "The Future Land Use Map acknowledges the continued presence of the Enrico Fermi Energy Center by designating the entire complex as "utilities." (Reference 2.5-11)

2.5.2.9 Social Services and Public Facilities

2.5.2.9.1 Water and Sewer Services

The Frenchtown Township Water Treatment Plant, constructed in 1994, draws water from Lake Erie at a joint intake facility at Pointe Aux Peaux Road; this intake facility is shared with the City of Monroe. The plant is operated by Frenchtown Township and recently expanded the capacity from 4 million gallons per day (mgd) to 8 mgd. The current capacity is expected to be sufficient for at least the next 20 years. Table 2.5-52 indicates that the average daily demand was 2.10 mgd in 2001, and the maximum day demand in 2001 was 3.73 mgd, below the all time high of 3.88 mgd in 1998 (Reference 2.5-11).

The 2002 Master Plan indicated that the water distribution system in the township included more than 70 miles of water transmission main and two 500,000 gallon elevated storage tanks. Areas served by the township water supply plant and transmission mains in 2002 are indicated in Figure 2.5-19.

Sewer service in Frenchtown Township is provided by the City of Monroe. Waste water is collected and sent to the City's treatment plant located on the Raisin River on the east side of the city. Figure 2.5-20 illustrates the areas within Frenchtown Township served at the time the Master Plan was prepared. The treatment capacity at the plant is 24 mgd in dry weather conditions and 30 mgd during storm conditions, although flows of more than 50 mgd have been documented during major storm events, indicating that the collection system is not water tight and is subject to overload during storm events (Reference 2.5-11). According to the 2002 Master Plan, a sanitary sewer capacity analysis was underway for the township, and the study would include recommendations to allow for continued growth.

2.5.2.9.2 Police Service

Police Service in Monroe County is provided by the Monroe County Sherriff's Office, the City of Monroe, and the Michigan State Police. The Sheriff's Office includes 80 officers, 30 of whom serve various villages, cities and townships that have contracted for additional police services. These officers are under the direction of a commander who supervises the lieutenants in command of the three district offices, and the five sergeants who serve as shift supervisors for the 24-7 operation (Reference 2.5-32). The Monroe County Sheriff's Office also has a number of specialty divisions consisting of an Administrative Division, a Detective Bureau, a Marine Unit, a Special Response Team, a Youth Services Team, and a Traffic Services Division that enforces traffic laws on

secondary roadways in Monroe County (Reference 2.5-33). At this time, according to officials of the Monroe County Sheriff's office, there are no plans for expansion. Rather, they are trying to maintain status quo. They indicated that due to the fact that Monroe County recently tightened finances and that the sheriff's department currently receives the largest portion of the budget for law enforcement, there would be no new hirings.

To facilitate rapid response, the Sheriff's Office has three district offices that serve specific portions of the county. District One services Frenchtown, plus the townships of Ash, Berlin, Monroe, and Raisinville. An additional District One substation exists in Monroe Township at the Inmate Dormitory, on East Dunbar Road, east of LaPlaisance Road. The district is staffed by 20 Deputy Sheriffs who are assisted by detectives from the Monroe office (Reference 2.5-34). According to the 2002 Frenchtown Township Master Plan, the Monroe County Sheriff's Office also provides patrol services through contractual arrangements with Frenchtown Township (Reference 2.5-11). Four officers are specifically assigned to Frenchtown Township as contract officers, along with a lieutenant and a detective. The southern portion of the Township is also served by officers assigned to the Monroe Township substation.

District Two of the Monroe County Sheriff's Office is headquartered behind the Bedford Township Hall and encompasses Lasalle, Ida, Whiteford, Bedford and Erie Townships. Current staffing at this District consists of 12 uniformed officers and 2 detectives (Reference 2.5-35).

District Three is headquartered in the Dundee Township Hall with substations in the City of Petersburg and in the Village Offices in Dundee. Deputies assigned to these offices provide police services on a contract basis to the City of Petersburg and the Village of Dundee. The district is comprised of Dundee, Summerfield, Milan, London, and Exeter Townships (Reference 2.5-36).

Primary roadways in Monroe County are served by officers in the Second District of the Michigan Highway Patrol. This district includes six counties that also encompass Detroit and areas north. The Second District has a local office in Monroe; Monroe Post #28 (Reference 2.5-37).

Monroe County has two existing jails. One is located on Second Street in the City of Monroe and is linked to the courthouse via a skywalk. The jail was built in 1981 and was originally designed to hold 127 inmates. Subsequent renovations increased the capacity to 183 inmates. Nevertheless, overcrowding became an issue and in 1999, Monroe County purchased 155 acres of land on East Dunbar Road and began the construction of two 80 man dormitory style-housing units plus an administrative support unit. The administrative support unit was constructed to support a prisoner population of 400 and includes medical, classroom, training, maintenance, administration and public areas (Reference 2.5-38).

The City of Monroe also maintains a police force, which dates to 1837. Currently, the city police department has a staff of 48 officers plus 10 civilian support personnel, who maintain records, enforce parking regulations, operate computers and manage patrol vehicles. The department provides uniform road patrol, consisting of officers assigned to one of three main shifts and providing 24-hour police coverage. Other units include the Multi-Jurisdictional Drug Task Force, School Resource Officers, Traffic & Safety, the Detective Bureau, Court Officers, Juvenile Officers,

the K-9 Unit, and Motorcycle Units. The city police department is located in the same building as the Monroe County Sheriff's Department (Reference 2.5-39)

To the north, the Wayne County Sheriff's Department has more than 1,300 officers making it the second largest law enforcement agency in Michigan (Reference 2.5-40). The Wayne County Sheriff's Department also operates a 2,600 inmate capacity jail, as well as services in the areas of fugitive apprehension, internet investigations, border enforcement, child rescue, drug and prostitution enforcement, and other services. The City of Detroit Police Department consists of a total of 4,154 full time sworn personnel (Reference 2.5-41). The Lucas County Sheriff's Office has 515 employees including correction officers, deputy sheriff and clerks, 9-1-1 operators, dispatchers, medical staff and clerical staff. (Reference 2.5-42)

2.5.2.9.3 Fire Protection

Fire protection in Monroe County is provided through 17 fire departments organized at the township and city level; in total, there are 22 fire stations located in the county. Table 2.5-53 lists and describes these fire stations and Figure 2.5-21 shows the fire districts within the county. In total, there are 447 firefighters within Monroe County including 240 volunteer firefighters, 144 paid per call firefighters, and 63 career firefighters. Most of the fire departments are manned by volunteer staff; however, the Monroe City Departments are classified as having career firefighters, and the Frenchtown Township Fire Department employs mostly career firefighters. The Frenchtown Township fire districts on Figure 2.5-21 are District 32-1 and District 32-2. District 41 is the City of Monroe.

The Frenchtown Township Fire Department has a total of four fire stations and 22 career firefighters. There are also 17 paid per call firefighters and one non-firefighting employee. Figure 2.5-22 indicates the location of the four stations in the township, one of which is adjacent to and southeast of Fermi 3. This is township Fire Station No. 4 is listed in the 2002 Master Plan as being more than 25 years old. Stations 1 and 2 are staffed by full time professional firefighters, while Stations 3 and 4 are staffed by part time, paid per call firefighters (Reference 2.5-11). Officials from Frenchtown Township Fire Department indicated that there are no plans for expansion at this time.

The nearby City of Monroe Fire Department has three stations and 41 career firefighters. An engine company is deployed at each station, and two of the stations also house ambulances (Reference 2.5-43).

To help the firefighters in the county, the Monroe County Fire Association Inc. was created to further develop skill sets such as firefighting and rescue work and represents all the firefighters within Monroe County. The association educates by gathering and dispensing information to members and also promoting legislation for the betterment of all departments. The twenty-five member fire departments and six non-fire department members represent every fire department within the county, as well as Washtenaw County, Wayne County and Washington Township in Ohio (Reference 2.5-44).

There are numerous fire departments to the north and south of Monroe County. To the north, Wayne County has a total of 45 fire departments, the largest of which is the City of Detroit Fire Department. The firefighting division of the Detroit Fire Department has approximately 1141 firefighters located at 45 stations around the city. To the south, Lucas County has 16 fire departments, the largest of which is the Toledo Fire Department with 521 firefighters and 37 non-firefighting employees. The Toledo Fire Department has an average minimum daily staffing of 103 Firefighters and Officers housed at 17 stations within the city.

2.5.2.9.4 Community Emergency Planning

The emergency planning for Monroe County is conducted by the Emergency Management Division. The division is responsible for planning and coordination of large-scale emergency and disaster events that include the following categories:

- Natural
- Technological
- National Security
- Nuclear

In addition to the aforementioned planning and coordination efforts the Emergency Management Division also provides the following services to the county:

- Maintenance of an emergency operations center that can be activated 24 hours a day, 7 days a week
- Maintenance of a database that allows for the procurement of needed resources in emergency
- Public education programs to educate the community about emergency situations
- Provide emergency information to the public in times of emergency
- Coordinates volunteer organizations
- Maintains and operates a county-wide early warning siren system; comprised of 105 outdoor sirens (Reference 2.5-45)

2.5.2.9.5 Hospital and Ambulance Service

Hospital service to Monroe County is provided by Mercy Memorial Hospital in the City of Monroe. The address is 718 North Macomb Street, Monroe which is just off Highway 125. The hospital has 136 full-time physicians and 185 full-time equivalent registered nurses. There are 235 licensed beds in the hospital. The average daily patient census for Mercy Memorial Hospital for the time period of December 2007 thru February 2008 was 114 patients. This equates to an average of 48.5 percent capacity utilization. If Monroe County's average annual growth rate in total population of 0.94 percent is applied to the average daily patient census, the 2020 average daily census would be approximately 128 patients and the hospital would be operating at a 54.5 percent capacity utilization level. The emergency room is staffed 24-hours a day, seven days a week through the

Schumacher Group, which is under contract with the hospital. The physicians manning the emergency room are approved by the local physicians and the hospital's Board of Commissioners.

Mercy Hospital offers a wide range of services including cardiac rehabilitation, pulmonary rehabilitation, family-centered birthing place, occupational health services, sleep disorder center, pastoral care, pain management, rape crisis center, health information management, nutrition and diabetes education, outpatient surgical center, hospice care, comprehensive mental health, 24-hour emergency care, rehabilitation services, home respiratory care, home health care, nursing center, lab locations, and a forensic nurse examiner.

In addition to Mercy Memorial Hospital, there are fifteen other hospitals/healthcare facilities in Wayne County excluding Detroit, sixteen within Detroit, and an additional twelve in Toledo. A list of regional hospitals and their addresses is provided in Table 2.5-54. The largest of these regional facilities is the Detroit Medical Center, which has more 2000 licensed beds and over 3,000 affiliated physicians and is the biggest non-governmental employer in the City of Detroit. The nearest burn unit in the region is St. Vincent's Hospital in Toledo, but most burn patients from Monroe County are usually sent to the University of Michigan Hospital.

The Monroe County Health Department also provides multiple health-related services to the community. Located at 2353 South Custer Road in Monroe, the Health Department's mission is to protect the public's health through health promotion, disease prevention, and linking people to personal health services (Reference 2.5-46).

Ambulance service and 9-1-1 emergency response for most county residents (except for the City of Monroe which is served by the City of Monroe Fire Department) is provided by Monroe Community Ambulance (MCA), which has ambulances stationed around the clock at strategic locations in the county, such as at selected fire stations, to provide timely response to medical emergencies. Paramedic emergency ambulances are staffed with experienced paramedics and outfitted with advanced lifesaving equipment. MCA also has a program called MCA Plus in which county residents can pay a tax deductible membership fee and avoid paying a user fee or deductible payment should medically necessary ambulance service be required within the county or to the out-of-county service area that includes six other counties and 2,500 square miles (Reference 2.5-47).

2.5.2.10 Transportation System

2.5.2.10.1 **Highways**

There is a highly developed transportation network in the 50-mile Fermi region, with the network laid out in a predominantly north-south direction that connects Detroit with areas to the south. The roadway network in Monroe County is illustrated in Figure 2.5-23. The major route that passes through the Frenchtown Township is Interstate 75, which is the major transportation link between Detroit and Toledo, and extends southward to its termination in southern Florida. Interstate 275 also splits from I-75 in Monroe County, heading toward the western portion of Detroit in Wayne County. Two other major highways within Frenchtown Township and Monroe County include U.S.

24 (also called North Telegraph Road due west of the Fermi site) and M-125 which merges into U.S. 24 due west of the Fermi site (Reference 2.5-11).

Monroe County had 1882 miles of roads and 345 bridges in 2006 (Reference 2.5-48). The transportation network within Frenchtown Township was comprised of 190 miles of roads with 27 bridges (Reference 2.5-49). The well-developed transportation network provides several commuting alternatives to the site from within Monroe County and beyond.

From the north, the primary route to the Fermi site would likely be the southbound I-75 exit at the Newport Road/Swan Creek Road, then proceeding southeast to the site via Swan Creek Road, followed by heading south on North Dixie Highway, and finally taking Fermi Drive southeast into the site. Traffic heading south on I-275 could also use this route after exiting to north-bound I-75 and taking Swan Creek Road. For traffic traveling to the site on I-75 from the south, the primary route would be to take the North Dixie Highway exit near the City of Monroe, and then travel northeast to Fermi Drive. These roads near the Fermi site can also be accessed from U.S. 24, and M-125.

In terms of comparing traffic levels on North Dixie Highway with the estimated capaCity of the highway, the *Highway Capacity Manual* (HCM) issued by the Transportation Research Board is widely used to estimate highway capacity. While the capacity level of a two-lane rural highway is difficult to estimate (as it depends on multiple factors such as directional flow, vehicle mix, lighting conditions, physical dimensions of the highway, weather, posted speed limit, and other factors), a reasonable maximum capacity of 2800 passenger car equivalents per hour can be assumed under ideal conditions. (Reference 2.5-135) If this figure is reduced to 1000 per hour to account for the fact that ideal conditions are seldom present on any road and the conditions on North Dixie Highway, this would imply a maximum daily volume of approximately 24,000 for North Dixie Highway, meaning that on a 24-hour basis, there remains ample excess capacity. Although, this measure can be misleading because it does not capture short-term problems that could be present during peak traffic flow periods.

Figure 2.5-24 lists 24-hour traffic counts for the roadway network in Frenchtown Township and near the Fermi site with the highest traffic counts on North Dixie Highway occurring near the City of Monroe. Figure 2.5-25 shows the 24-hour traffic counts near the Fermi site with the two-way 24-hour traffic count on North Dixie Highway near Fermi Drive at 5,580 vehicles.

Table 2.5-55 includes data reflecting the commuter populations of Frenchtown Township and Monroe County. Specifically, the table indicates the commuting origin and destination of community residents, and the origin of those working within Frenchtown Township and Monroe County. In 2000, there were 7,413 people working within Frenchtown Township. Of this figure 1838 workers originated from within the township, followed by 1520 who originated from the City of Monroe, and 779 workers who originated from Monroe Township. Regarding the destination of the 9,518 Frenchtown Township resident workers, 2,276 workers commuted to the City of Monroe, 1,838 workers stayed within Frenchtown Township, and 635 workers commuted to Monroe Township.

In 2000, there were a total of 48,526 people working within Monroe County; 35,202 workers were Monroe County residents; followed by 4,456 workers originating from Lucas County, Ohio; and

4,111 workers originating from Wayne County. The destinations of the 68,835 employed residents within Monroe County are as follows: 35,202 worked within Monroe County, 12,654 workers commuted to Lucas County Ohio, and 12,161 workers commuted to Wayne County.

Table 2.5-56 denotes the number and methods of those who commuted to work in Frenchtown Township and Monroe County in 2000. In Frenchtown Township, 8,381 workers drove alone, 826 workers carpooled, and 110 people walked to work. In Monroe County, 60,671 workers drove alone, 5627 workers carpooled, and 704 people walked to work.

There are multiple road and bridge development projects outlined in the Michigan Department of Transportation 5-year plan from 2008-2012; Table 2.5-57 lists each project and the first year of construction. In addition, Table 2.5-58 lists proposed transportation projects within Monroe County. Not included on this list is the recent I-75 reconstruction as it enters Wayne County. Also Dixie Highway was undergoing repavement construction work just north of Fermi in August 2007.

Section 4.4 and Section 5.8 address the number of daily commuting workers during operation and construction, respectively.

2.5.2.10.2 Public Transportation, Airports, Ports, and Railways

In addition to private commuting, Monroe County has a public bus transportation system; the Lake Erie Transit (LET). LET has 68 employees, 28 vehicles and provided transportation for 384,768 passengers in the fiscal year 2006 (Reference 2.5-50). Within Monroe County the LET has eight distinct routes which transports passengers to most of Monroe's popular destinations, and for the Townships of Bedford and Frenchtown LET offers a Dial-a-ride service. This service provides curbside pick-up to customers and takes them to their destination within the respective township or to another one of LET's fixed route lines (Reference 2.5-51).

The region contains a number of airports, the largest of which is the Detroit Metropolitan Wayne County Airport (DTW) located 19 miles north-northwest of the Fermi site. DTW occupies 6700 acres and has six runways ranging from 12,000 to 8000 feet and 150 passenger gates. In 2006, DTW had a passenger volume of 36 million passengers which ranked as 10th largest in the United States and the 19th largest in the world. DTW contributes to an estimated \$7.6 billion per year economic impact within the Detroit area (Reference 2.5-52).

Another commuter airport in the region is Coleman A. Young International Airport, formerly known as Detroit City Airport, located north-northeast of the Fermi site. Coleman A. Young is a two runway airport with a 53,000 square foot passenger terminal and an average daily operation of 225 commercial corporate and private flights (Reference 2.5-53). To the south is Toledo Express Airport, which has four runways, 96 aircraft based on the field and serves more than half a million passengers annually. The Toledo Express Airport recently began a 4-year \$22 million renovation project (Reference 2.5-54 through Reference 2.5-56).

In addition to these major passenger airports, the Willow Run Airport is located twenty-four miles to the northwest of the Fermi site. Willow Run is one of the nation's largest airports for handling cargo air freight. Willow Run consists of five runways that handle more that 400 million pounds of cargo

annually. Table 2.5-59 lists additional smaller airports that serve Monroe County (Reference 2.5-57).

There is a significant amount of barge traffic on Lake Erie near the project site, most of which is in transit to or from the Port of Monroe, the Port of Detroit, or the Port of Toledo, all of which are a part of the Great Lakes St. Lawrence Seaway System. Since 1959, the St. Lawrence Seaway has provided a link between the world and the Midwest. The Seaway System is 2,000 miles long and is responsible for annual commerce exceeding 200 million net tons. In addition, over thirty million people rely on this system either for recreation or commerce.

Table 2.5-60 provides data for the ports of Monroe, Detroit, and Toledo. The Port of Monroe is the closet to the Fermi site, located approximately 7 miles to the southeast. In 2003, it handled just over a million tons of cargo, of which more than 80 percent was coal. The Port of Monroe is serviced by two railroads, has immediate access to Interstate 75, and is within five miles of a regional airport. The Port of Detroit, as of 2001, handled an overall annual tonnage of just under seventeen million, and the Port of Toledo in 2003 handled just under ten million tons of cargo.

The Canadian National Railway (CN), the CSX Transportation (CSX), and the Norfolk Southern Railway (NS) all run through Frenchtown Township in a southwest to northeast direction. The CSX runs parallel to Telegraph Road (US-24) while NS and the CN railways run in a narrow corridor just east of I-75 (Reference 2.5-11 and Reference 2.5-58).

2.5.2.11 Distinctive Characteristics

The Fermi 50-mile region is distinguished by a rich history that pre-dates the U.S. Constitution. One of the highlights of this history is that the region helped lead the nation's industrial economic boom in the 20th century. As the transportation network advanced over the past several decades, Monroe County has become increasingly integrated with the larger metropolitan areas to the north and south, yet has been able to largely retain a rural atmosphere. This section briefly describes some of the regional history and distinctive characteristics of the region.

The history of Monroe County is linked to French missionaries who first came to Monroe County as early as 1634, though a trading post and fort were not established in the county until 1778. The first settlement in the county was called Frenchtown and consisted of one hundred French families who came to the area from Detroit and Canada. Frenchtown has the distinction as the site of one of bloodiest battles of the War of 1812. Following the war, Monroe County was established in July 1817 and named in anticipation of President James Monroe's visit to the Michigan territory (Reference 2.5-59).

Today, tourism in Monroe County remains linked to this history as can be seen in the various museums and historical sites that attract tourists each year. One of the more popular museums is Monroe County Historical Museum. It displays early Monroe history, artifacts of General George Armstrong Custer, Indian lore, and other region specific cultural relics. Other Museums include: Old Mill Museum, Monroe County Labor Museum, and Martha Baker Country Store Museum (Reference 2.5-60). There are also a number of historic sites in the area. Some of the more famous ones include the Navarre Anderson Trading Post, Michigan's oldest residence and

considered the best example of French colonial architecture in the state. The River Raisin Battlefield Visitor Center, a remembrance to the largest battle fought in the War of 1812. The Custer Home purchased by General Custer and his brother are also tourist attractions (Reference 2.5-61). In addition to the aforementioned museums and sites, Table 2.5-61 provides a list of local tourist and recreational attractions in Monroe County.

The history of Detroit is also storied. In 1701 a French Officer named Antoine de la Mothe founded a settlement called Fort Detroit, but during the French and Indian War (1760), British troops gained control and changed the name to Detroit. The United States eventually took control of Detroit in 1796 under the Jay Treaty, and most of the settlement subsequently burned down in 1805. During the rebuilding, Detroit became the capital of Michigan; and continued in this role until 1847. Also during this period, Detroit became a key stop on the Underground Railroad.

Detroit has many significant architectural buildings, with a number of them on the National Register of Historic Places. Among the most noteworthy is the Ford Motor Company's River Rouge Complex, for a time the largest single manufacturing complex in the United States, with peak employment of about 120,000 during World War II. During the first half of the 20th century the automobile plant achieved a milestone in self-sufficiency and vertical integration, featuring a continuous work flow from iron ore and other raw materials to finished automobiles. The complex included dock facilities, blast furnaces, open-hearth steel mills, foundries, a rolling mill, metal stamping facilities, an engine plant, a glass manufacturing building, a tire plant, and its own power house supplying steam and electricity (Reference 2.5-62). Detroit also has numerous neighborhoods and historic districts that are listed on the National Register of Historic Places, including Lafavette Park which is part of the Mies van der Rohe residential district and Indian Village. Adding to this culturally rich heritage are the many history, science, and art museums located in the Detroit area. A few examples include: The Henry Ford and Motown Historical Museum (history), the New Detroit Science Center and Motor Cities National Heritage Area (science), and the Detroit Institute of Arts and Museum of Contemporary Art Detroit (art) (Reference 2.5-63).

Detroit is the largest city in the state of Michigan and the Wayne County seat. It is also a major port city on the Detroit River and Lake Erie. At its peak, Detroit was the 4th largest city in the United States, but has been declining in rank since the 1960's. Detroit, sometimes nicknamed the Motor City, is known as the world's automotive center and houses the "Big Three" automobile companies (General Motors, Ford, and Chrysler). The city also became well known in the 1960s as a source of popular music, largely through the rise of Motown Records; hence, the city is also nicknamed Motown.

Detroit has four border crossings into Canada. The Ambassador Bridge and the Detroit-Windsor Tunnel provide motor vehicle thoroughfares, the Michigan Central Railway Tunnel provides railroad access and Detroit-Windsor Truck Ferry, located near the Windsor Salt Mine and Zug Island, provides water transport of heavy vehicles.

^{9.} The automotive industry accounts directly or indirectly for 1 out of every 10 jobs in the United States. http://www.autoalliance.org/index.cfm?objectid=2EB2CCD2-1D09-317F-BB2409EF20317559

Toledo was once a part of Monroe County but following the very brief 1835 Toledo War was allocated to Ohio as part of the brokered settlement that awarded the Upper Peninsula to Michigan. Today, Toledo is known as the Glass City because of its long history of innovation in all aspects of the glass industry: windows, bottles, windshields, construction materials, and glass art, of which the Toledo Museum of Art has a large collection. Also, the first all glass building was constructed in Toledo in 1936, this was the building for the Owens-Illinois Glass Company. Toledo has also been known as the "Auto Parts Capital of the World." The Jeep vehicle has been manufactured in Toledo since 1941, and the Big Three all have factories in metropolitan Toledo.

The general decline in the nation's manufacturing sector, especially in the auto industry, has significantly impacted the employment base of Detroit and, to a lesser degree, Toledo. Both metropolitan areas have fought to revitalize their cities and to bring in new industry that would create employment opportunities. Perhaps the most visible example of this effort was the development of the Renaissance Center, located in downtown Detroit, which has helped the city become a major tourist attraction and convention city. The city hosted Super Bowl XL in 2006.

The region also benefits from a number of large and respected institutes of higher education. These include the University of Michigan and Wayne State University in Michigan, and the University of Toledo and Bowling Green State University in Ohio.

2.5.3 Historic Properties

In support of the Fermi 3 project, surveys of cultural resources (above-ground and archaeological) were conducted to identify historic resources in and near the Fermi 3 project area and to assess possible Fermi 3 impacts to these resources. Additionally, preliminary investigations were conducted along the transmission line route from the Fermi 3 project area to the Milan substation in Washtenaw County to identify previously recorded historic resources. The cultural resources investigations for the Fermi 3 project have been carried out pursuant to Section 106 of the National Historic Preservation Act (NHPA), as amended (P.L. 89-665, October 15, 1966; 16 U.S.C. 470) and its implementing regulations (36 CFR 800), which require federal agencies to take into account their activities on historic resources that may be impacted as a result of project activities. The work reported herein conforms to the requirements of the NHPA, as well as the guidance contained in NUREG-1555, and the requirements of the Michigan State Historic Preservation Office (SHPO). The members of the archaeological and above-ground resources teams meet or exceed the qualifications set out in the Secretary of the Interior's Qualification Standards. The work conducted for the project and the work products conform to the Secretary of the Interior's Standards and Guidelines and the standards established by the Michigan SHPO.

2.5.3.1 Prior Cultural Resources Surveys

Site and Vicinity

Prior to the field survey, no formal cultural resources investigations had been conducted in the Fermi 3 area or in the vicinity. A search of records maintained at the Office of the State Archaeologist (OSA), the State of Michigan Archives, and the Monroe County Museum revealed only one report on the archaeological resources in the Fermi 3 area, i.e., a letter from the director of

the University of Michigan Museum of Anthropology, documenting his visit to the site shortly after construction of Fermi 2. No excavations were undertaken during this visit and no archaeological finds were noted. The archaeological site files maintained at the OSA record four sites within a 2-mile radius of the Fermi site. These sites are summarized in Table 2.5-62. One site is located within the Fermi 3 project area, a "Native American" site of unknown age and function and described in the site files as a "lithic scatter on beach." None of the sites within the Fermi 3 area has been field verified, nor has any been assessed for National Register of Historic Places (NRHP) eligibility.

The National Archeological Data Base (NADB), maintained by the National Park Service Archeology Program, lists 72 titles of reports of archaeological resources in Monroe County; only one of which contains information about the resources within the Fermi 3 project area (NADB record 5538). This is the report of an unverified prehistoric site recorded in the Holmquist Atlas maintained at Wayne State University. The National Register Information System (NRIS) online data base contains two National Register-listed archaeological sites in Monroe County, the North Maumee Bay Archeological District and the River Raisin Battlefield Site, neither of which is within 2 miles of the Fermi 3 project area.

The files maintained at the Michigan SHPO record 22 above-ground resources within a 10 mile radius of Fermi 3 that are listed on the National Register of Historic Places or have been determined eligible for listing in the NRHP. These sites are summarized in Table 2.5-63.

Only one systematic survey has been conducted for above-ground resources within a 10 mile radius of the Fermi 3 vicinity, the 1973 Monroe County Building Survey, which exists as a collection of photographs and data cards maintained at the Monroe County Historical Museum. No accompanying report was located, and the goal of the survey is unknown, although it appears, from review of the photographs and data cards, that the primary focus of the survey was to document resources within the City of Monroe. For resources located within 10 miles of Fermi 3, the records in the 1973 survey report duplicate the information on file at the Michigan SHPO office (Reference 2.5-120).

A search of the information housed at the Monroe County Historical Museum and the Monroe County Library System's Ellis Reference and Information Center did not reveal any other previously recorded NRHP-listed or NRHP-eligible above-ground resources within a 10-mile radius of Fermi 3.

<u>Transmission Corridors</u>

The portion of the transmission line route from the Fermi 3 project area north to the Sumpter-Post Road junction (near Haggerty and Arkona Roads) will utilize an existing transmission line route. Therefore, the preliminary survey of historic resources was limited to the new transmission line route from the Sumpter-Post Road junction in Wayne County to the Milan substation in Washtenaw County. A search of the files at the OSA revealed 77 previously recorded archaeological sites within 1.5 miles of the proposed transmission lines from the Fermi 3 project area to the Milan substation. A summary of these sites is contained in Table 2.5-64. Fifteen reports on file at the OSA contain information regarding investigations conducted in the area of the proposed

transmission line route. Of these 15 reports, six are reports of amateur surveys or collections. The remaining nine reports detail contract surveys conducted for municipal projects (e.g., wetland mitigation, proposed landfill and wastewater treatment facilities). The most recent of these surveys was conducted in 2002 on a 65-acre parcel in Wayne County. The other surveys were conducted primarily during the early 1980s and the early 1990s. All surveys conducted in the proposed transmission line route or in the near vicinity identified either prehistoric or historic archaeological sites.

Six archaeological sites are crossed by the new transmission route from the Sumpter-Post Road junction to the Milan substation. All six occur in Wayne County. Five of the sites are prehistoric and one is historic. All have been determined not eligible for listing in the NRHP.

The files maintained at the Michigan SHPO record no NRHP-listed or NRHP-eligible above-ground resources within 1.5 miles of the new transmission route from the Sumpter-Post Road junction to the Milan substation.

The only systematic survey of above-ground resources known for the transmission line area is the 1973 Monroe County Building Survey referenced above. This survey shows no resources in the vicinity of the transmission line route (Reference 2.5-120).

2.5.3.2 Current Cultural Resources Survey

Site and Vicinity

Geographically, the project area is comprised of portions of Berlin Township in the northern section of the area and Frenchtown Township in the southern section. A broad expanse of agricultural fields defines large portions of the area, particularly in those areas at some distance from the Lake Erie shore. In recent years, a number of the once open fields have become the site of newly erected houses and subdivisions. Remnants of historic communities like Oldport and Brest are evident, although the dominating presence in the area remains the beachfront resort communities. These communities have their roots in the late nineteenth century, but were greatly expanded during the first decades of the twentieth century. A description of the ecology of the site area is provided in Subsection 2.4.1 and Subsection 2.4.2.

Transmission Corridor

The transmission line route travels through Monroe, Wayne, and Washtenaw counties (Figure 2.2-3). The portion of the new transmission route from the Sumpter-Post Road junction to the Milan substation, which is the subject of the preliminary survey, is sited east-west through Wayne and Washtenaw counties. Land use along the corridor is characterized primarily by low-density residential development and heavily wooded undeveloped property. Agricultural property is prominent in the study area. Few obviously commercial properties were identified in the study area, and industrial properties were not encountered. An extensive landfill is situated at the far east end of the study area. A description of the ecology of the transmission corridor is provided in Subsection 2.4.1.9 and Subsection 2.4.2.9.

2.5.3.2.1 Area of Potential Effect Delineation

The area of potential effect (APE) is defined as "...the geographic area within which an undertaking may directly or indirectly cause changes in the character or use of historic properties, if any such properties exist" (36 CFR 800.16(d)). In consultation with the SHPO, two APEs were delineated, one for archaeological resources and one for above-ground resources. Overall, the APE for archaeological resources is limited to construction-impacted ground within the Fermi site. To reduce the likelihood of additional archeological surveys as more detailed construction plans are developed, the APE covers a broader expanse of the Fermi site than the current construction impact areas described in Chapter 4 for non-cultural resource impacts. At the outset of the archaeological fieldwork, the archaeological APE included a series of interconnected roadway grades (60 acres), a stone quarry (48 acres), two spoil disposal zones (11 acres and 12 acres), and two previously affected Fermi site locations comprised of a 37-acre tract and a 172-acre tract. Additions to the Fermi site redesign consisted of a 53-acre "EF2 Parking Warehouse, etc" tract on the northwest margin of the site, a 24-acre construction laydown area and a 5.5-acre meteorological (MET) tower, both located at the southern margin of the site. In addition, the APE includes a tentative access road corridor from the MET tower site to Pointe Aux Peaux Road. Acreage values include areas that are based on an initial proposed site layout. The projected impact areas shown in Figure 2.5-27 encompass the current postulated APE. The current archaeological APE encompasses approximately 551 acres (Figure 2.5-27).

At the determination of the Michigan SHPO, the APE for above-ground resources was reduced from the 10-mile radius set out in NUREG-1555 to an area encompassing the Fermi site and the communities of Estral Beach, Stony Point, and Woodland Beach, with boundaries as follows:

Beginning at the approximate intersection of Masserant Road with the Lake Erie shoreline, due southwest to the approximate intersection of Sandy Creek Road with the Lake Erie shoreline; north to North Dixie Highway; due northeast along North Dixie Highway to Port Sunlight Road; south on Port Sunlight Road to Masserant Road; east on Masserant Road to the point of beginning (Figure 2.5-28).

For the new transmission lines, the preliminary survey of APE for both archaeological resources and above-ground resources measured 1.5 miles on either side of an assumed 300 feet wide corridor centerline. The transmission line route from the Fermi 3 project area north to the Sumpter-Post Road junction will utilize an existing transmission line route. Therefore, the APE for both archaeological and above-ground resources included only the undeveloped portion of the new transmission line route from the Sumpter-Post Road junction in Wayne County to the existing Milan substation in Washtenaw County.

2.5.3.2.2 Prefield Research and Field Methods

Prior to the cultural resources survey, documents housed at the SHPO, OSA, Monroe County Historical Museum, and Monroe County Library System Ellis Reference and Information Center were consulted to obtain information pertaining to historic land use and the existence of known historic sites in the Fermi 3 area and along the new transmission line route to the Milan substation.

The initial Phase I archaeological survey began in November 2007 and was completed in April 2008. Survey of the Construction laydown area and a portion of the MET tower site and tentative access road was conducted on October 20, 2009. A desk-top analysis was conducted in 2010 for those portions of the MET tower site and tentative access road corridor that were not subjected to field survey in 2009 and the new 345 kV transmission corridor. This desk-top analysis indicated that no further field surveys of these area were required. The methods employed in these studies entailed a combination of pedestrian surface inspections and shovel testing. Walk-over surface examinations were limited to areas exhibiting surface visibility of greater than 50 percent. Both surface inspection and shovel testing were carried out along 50-foot transects, with shovel tests spaced as 50-foot intervals. This approach was modified where access was hampered by saturated soils or flooding. Wet and flooded areas were commonly encountered throughout the undeveloped portions of the property; therefore, opportunistic shovel testing at drier elevations was routinely carried out. Similarly, the extensive made lands and spoil deposits comprising much of the property were avoided when they could be recognized and confirmed through field verification. Shovel test soils were screened through 1/4- inch metal hardware cloth and trowel sorted. Each unit was backfilled upon the completion of field examination. Shovel test excavations were restricted to a maximum depth of 1 foot below the existing ground surface.

The above-ground resources survey began in December 2007 and was completed in April 2008. Architectural historians photographed and mapped resources within the APE that were at least 50 years old and "...possess a degree of integrity above the norm for the area..." Resources were photographed showing the façade and one other elevation in the same image. Where this was not possible, resources were photographed to obtain the view that would best allow for assessment of age and integrity. For complexes containing more than one building, such as farmsteads, streetscape views of the overall property were obtained to illustrate the buildings' relationship to each other. The location of each resource was plotted on a USGS quadrangle map, and photographic details (e.g., photograph number, date, and direction of view) were recorded on standard photography logs.

The field view for the transmission route preliminary survey took place on June 18 2008. During the field view, the transmission line route was evaluated for the existence of potentially significant above-ground resources. At that time, the transmission line study area was also visually inspected from existing roadways for evidence of obvious disturbance and the existence of landforms that are known to contain archaeological sites (e.g., sandy hummocks).

2.5.3.3 Consultation

In preliminary SHPO consultation, the OSA noted that the project area, especially the Lake Erie shoreline, is sensitive for archaeological resources, and the area had not been systematically examined. Based on the archaeological sensitivity of the Fermi site and the lack of prior systematic surveys in the area, the OSA required an archaeological survey of the project area. The SHPO further identified a preliminary APE for above-ground resources. Subsequent consultation resulted in a modified APE and scope of work as detailed in the preceding subsection. A report has been provided to the SHPO regarding the above ground resources of the site and vicinity.

Inquiries were made with Native American tribal agencies having historical ties to the Fermi site geographic area. These consultations did not result in any concerns regarding the further development of the Fermi site.

2.5.3.4 Archaeological Site Results

The archaeological survey resulted in the identification of seven archaeological sites (4 prehistoric, 2 historic, 1 multi-component [prehistoric/historic]) within the Fermi site and vicinity. All are located within the archaeological APE. However, only two sites are located within the Fermi 3 site, the five other sites are located outside of Detroit Edison-owned property. None of these sites is recommended eligible for listing in the NRHP.

Preliminary investigations of the transmission line route from the Sumpter-Post Road junction to the Milan substation, owned by ITC *Transmission*, indicate a moderate to high potential for encountering archaeological resources. It is unclear, however, whether any sites would be eligible for listing on the NRHP.

2.5.3.4.1 Prehistoric Sites

Four sites represent isolated findspots consisting of chert debitage found on the surface. The context in which the artifacts were found had been compromised by continued plowing. These artifacts are indicative of the presence of prehistoric peoples in the area at some time in prehistory; however, little other data can be gathered from these sites. None of these prehistoric sites is recommended eligible for listing on the NRHP.

2.5.3.4.2 Historic Sites

Two historic sites located within the Fermi property represent likely farmstead sites dating to the early to mid-twentieth century. One site is a historic farmstead site dating to the ca. 1930s-1960s. The site was identified by the presence of four poured concrete and concrete block foundations and one brick (house) foundation. Bottle glass and historic ceramic sherds were scattered throughout the site. A farmstead at the approximate location of the site is shown on aerial photographs of the site dating to 1949 and 1957. A 1961 aerial photograph shows the site; however, it cannot be determined from this aerial if the site contains structures or merely foundations. This late-dating farmstead is unlikely to provide information about the historic settlement and use of the area; therefore, this site is not recommended eligible for listing in the NRHP. The second site is a scatter of temporally non-diagnostic historic debris and three marked pet burials near the location of the new meteorological tower. Aerials dating to 1949, 1957 and 1961 show farmsteads along Point Aux Peaux Road in the vicinity of the site. It is likely that the site is associated with one of there farmsteads; however, this site is unlikely to provide significant information about the historic settlement of the area and it is not recommended eligible for listing in the NRHP. Detroit Edison has conducted an investigation into the archeological resources which could be impacted as a result of the construction of the Fermi 3 discharge line. There are no known archeological resources within the planned path of the discharge line. There is considered to be a moderate to high sensitivity for unidentified maritime resources. (Reference 2.5-138)

2.5.3.4.3 Multi-Component Sites

One multi-component site was found during the archaeological survey. It was identified through the discovery of a single piece of chert debitage located on the surface and a scatter of historic bottle glass and ceramic sherds. Neither the prehistoric nor the historic component is likely to provide significant information about this site or the people who occupied it; therefore, this site is not recommended eligible for listing on the NRHP.

2.5.3.5 Above-ground Resources Results

Eighty-three above-ground sites within the above-ground APE were recorded. One four-building district and 19 individual sites are recommended as eligible for listing on the NRHP. One previously determined NRHP-eligible above-ground resource, a residence, is situated within the Fermi 3 APE, but it is not located in the Fermi 3 project area. The house was determined eligible for listing on the NRHP by the Michigan SHPO in 1995. The above-ground resources APE contains no other above-ground resources listed on or determined eligible for listing on the NRHP.

The current above-ground resources survey resulted in the identification of one four-building district and 19 individual properties that are recommended eligible for listing on the NRHP. A detailed description of these buildings has been provided to the SHPO. Although these resources are located within above-ground resources APE, none is located within the Fermi 3 site. The only resource of possible note within the Fermi site is the Enrico Fermi Atomic Power Plant, Unit 1 (Fermi 1). Fermi 1 was not evaluated as part of this cultural resources survey. An assessment is in progress to determine Fermi 1 NRHP eligibility.

2.5.3.6 Site National Register Eligibility

The archaeological APE contains no archaeological resources listed in or determined to be eligible for listing in the NRHP. One prehistoric archaeological site is located within the archaeological APE. This site was identified on the basis of archival material and has not been field verified, nor has it been assessed by the SHPO for NRHP eligibility. No NRHP-eligible archaeological sites have been identified as a result of the archaeological survey.

The Fermi 3 site contains no above-ground resources that are listed in the NRHP or that have been determined eligible for listing in the NRHP. The Fermi 1 site which requires demolition as part of the Fermi 3 project plan meets the NRHP eligibility requirements. Fermi 1's history has been documented in detail (Reference 2.5-139) and has been submitted to the Michigan SHPO as part of its consideration for nomination to the NRHP. If nominated, mitigation plans will be developed and implemented prior to its demolition.

2.5.4 Environmental Justice

The Environmental Justice analysis presented in this subsection has its impetus in Executive Order 12898, "Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations," which was issued on February 11, 1994. The order was designed to focus the attention of Federal agencies on the human health and environmental conditions in minority and low-income communities. This Executive Order has been adopted in the nuclear regulations

through NRR Office Letter No. 906, Revision 2, "Procedural Guidance for Preparing Environmental Assessments and Considering Environmental Issues," September 21, 1999. Through this letter, environmental justice reviews involve identifying off-site environmental impacts, their geographic locations, minority and low-income populations that may be affected, the significance of such effects and whether they are disproportionately high and adverse compared to the population at large within the geographic area, and if so, what mitigative measures are available, and which will be implemented.

This approach is consistent with the EPA objectives concerning environmental justice which include "the fair treatment and meaningful involvement of all people regardless of race, color, national origin, or income with respect to the development, implementation, and enforcement of environmental laws, regulations, and policies" (Reference 2.5-121).

2.5.4.1 **Methodology**

This subsection provides an indication of the minority and low-income populations within a 50 mile radius surrounding Fermi 3. The characteristics of the population within the 50 mile region were determined through the use of the LandView[®] 6 software (see Subsection 2.5.1 and Subsection 2.5.2 for more information on this software). The analysis evaluates data at the state, county, and Census Block Group (CBG) level.

Table 2.5-65 summarizes county and state minority and low-income population data at the CBG level. According to the table, there were a total of 4596 CBGs within the 50-mile region. The impacts on minority and low-income populations from construction and operation will be further addressed in Section 4.4 and Section 5.8, respectively.

In addition to the CBG analysis of minority and low-income populations, the environmental justice methodology involved contacting local officials and citizens likely to have knowledge of any subsistence living activities on or near the site. Such activities could include subsistence fishing, subsistence farming activities, or the culturally significant use of the acreage to be used for Fermi 3. As described below, all indications are that no subsistence activities are occurring on or near the site.

2.5.4.1.1 **Minority Populations**

For purposes of making an environmental justice determination, the NRC defines a "minority" racial population as "American Indian or Alaskan Native; Asian: Native Hawaiian or Pacific Islander; or Black races, or Hispanic ethnicity." A "minority population" is defined to exist if the percentage of minorities within an environmental impact area (or CBGs) exceeds the percentage of minorities in the state in which the impact area or CBGs are located 1) by 20 percentage points or more, or 2) if the percentage of minorities in the impact area or CBGs is 50 percent or greater (Reference 2.5-122).

Using the two aforementioned guidelines and comparing the data to the state minority percentage of 21.45 in Michigan and 15.99 percent in Ohio shown in Table 2.5-66, Table 2.5-65 lists the number of minority CBGs by state and within the 50-mile region. Figure 2.5-29 depicts the minority

counties in the 50-mile region, and Figure 2.5-30 depicts the minority CBGs within the 50-mile region. Only Wayne County (52.89 percent minority) qualifies as a minority regional county, and 1438 CBGs within the 50-mile region qualified as minority CBGs.

2.5.4.1.2 **Low-Income Populations**

The U.S. Census Bureau determines the number of low-income families in a given area by comparing the actual income of a family against the low-income threshold established for the corresponding family category, which includes the variables of family size, the number of children, and the age of the householder (Reference 2.5-123). For purposes of evaluating environmental justice impacts, a low-income population is defined to exist in an area if 1) the percentage of households within an environmental impact area or CBG living below the poverty level exceeds the percentage of low-income households within the state by 20 percentage points, or 2) the percentage of low-income households in the impact area or CBG is 50 percent or greater (Reference 2.5-122).

There were no counties that qualified as low-income within the 50 mile region. As presented in Table 2.5-65 and Figure 2.5-31, there were 572 low-income CBGs within the 50 mile region.

2.5.4.2 **Analysis**

The following subsections provide the results of Environmental Justice review for the Fermi 3 region. Related construction and operational impacts are described in Subsection 4.4.3 and Subsection 5.8.3, respectively.

2.5.4.2.1 **Minority Populations**

Of the 1438 CBGs (or 31.29 percent of the total CBGs within the region) that qualify as minority within the 50-mile region, only one CBG lies within Monroe County, meaning that 125 of 126 CBGs in the county are not of concern from a minority environmental justice perspective. The single CBG that qualifies as minority in Monroe County is located approximately 8 miles to the southwest of the Fermi site in the City of Monroe. No CBGs lying partly or wholly in Frenchtown Township are minority.

The majority of the regional CBGs classified as minority lie to the north and south of the Fermi site in Wayne County and Lucas County, respectively. There are 1,124 minority CBGs in Wayne County, most of which are in the City of Detroit, and 113 minority CBGs in Lucas County, most of which are located in Toledo.

There is only one Native American population residence within the 50-mile region. The population is located on Walpole Island, approximately 50 miles to northeast of the site. The island is inhabited by the Chippewa, Potawatomi, and Ottawa peoples; in 2001 the population was 1843. (Reference 2.5-124)

2.5.4.2.2 Low-Income Populations

As indicated in Table 2.5-67, 10.5 percent of the Michigan population is low-income (or living in poverty), and 10.6 percent of the Ohio population is low-income. Under the adopted criteria, no counties within a 50-mile region qualify as low-income population areas, but 572 CBGs (or 12.45 percent of the CBGs shown on Table 2.5-65) qualify as low-income. Figure 2.5-31 indicates that only one CBG out of 126 within Monroe County qualifies as low-income, and this CGB lies approximately 8 miles southeast of the Fermi site. The majority of low-income CBGs lie to the north and south in Wayne County and Lucas County, respectively. Specifically, there were 428 low-income CBGs in Wayne County (most of which are located in Detroit), and 71 low-income CBGs in Lucas County (most of which are located in Toledo).

2.5.4.2.3 Migrant Labor

Migrant labor or migrant workers are defined by the U.S. Department of Agriculture (USDA) as "a farm worker whose employment required travel that prevented the migrant worker from returning to his/her permanent place of residence the same day." (Reference 2.5-125) Table 2.5-68 lists 2002 regional statistics for farms with hired labor and for farms with hired migrant labor. In 2002, Monroe County had 35 farms with migrant labor out of 268 farms with hired labor, resulting in 13.1 percent of the farms within the county hiring migrant labor. To the north, Wayne County had 5 farms with migrant labor out of 52 farms with hired labor, equating to 9.6 percent of the farms in the county employing migrant labor. The figures for Monroe and Wayne County are close to the Michigan state average of 11.5 percent of farms employing migrant labor. To the south, Lucas County had 24 farms employing migrant labor out of 136 farms in the county with hired labor in 2002. This ratio equates to 17.7 percent of Lucas County farms employing migrant labor which is substantially above the Ohio state average of 3.1 percent.

2.5.4.2.4 Subsistence Uses

Subsistence refers to the use of natural resources as food for consumption and for ceremonial and traditional cultural purposes, usually by low income or minority populations. Specific examples of subsistence uses include gathering plants for direct consumption (rather than produced for sale from farming operations), for use as medicine, or in ritual practices. Fishing or hunting activities associated with direct consumption (rather than for sport), associated with use in ceremonies are other examples.

Determining the presence of subsistence use can be difficult, as data at the county or CBG level is aggregated and not usually structured to identify such uses on or near the site, where any impacts arising from the construction or operation of Fermi 3 would arise. Frequently, the best means of investigating the presence of subsistence use is through dialogue with the local population who are most likely to know of such activity. This may include county officials as well as land owners in the immediate vicinity who would have knowledge of subsistence activity.

For the Fermi 3 analysis, contact was made with the Monroe County Sheriff and the Superintendent of the Monroe County Intermediate School District. In addition, two local church officials and a local land owner who has farmed more than 200 acres approximately 2 miles from the site for more than

30 years were contacted about subsistence uses. Through discussions with each of these individuals, no populations involved in subsistence use activities (as described above) were identified on or near the site. This is consistent with the controlled access to the Fermi site, and the use of the adjacent land either for farmland or for residences.

2.5.5 **Noise**

This section provides a description of the existing acoustical environment around the Fermi site. The existing acoustical environment was determined by an ambient sound level survey conducted on November 26-28, 2007, with Fermi 2 in operation. The survey was conducted in accordance with applicable standards, including ANSI S12.9 (Reference 2.5-128), ANSI S12.18 (Reference 2.5-129), and ANSI S1.13 (Reference 2.5-130). In order to effectively quantify and qualify the existing daily sound levels, the ambient survey included both continuous monitoring and short-term measurements. This section provides information regarding the existing acoustical environment for subsequent discussion in Chapter 3, Chapter 4, and Chapter 5.

A description of the Fermi site and vicinity is included in Subsection 2.2.1. Figure 2.5-32 shows the Fermi site and the seven noise monitoring locations (NMLs) identified during the survey. The NMLs were chosen based on the location of the nearest noise-sensitive receptors (i.e., the nearest residences) within 5 miles of the Fermi site.

The weather conditions during the survey were generally conducive to the measurement of sound levels. The temperature range was between 18 and 39°F and relative humidity range was between 45 and 100 percent. (With regards to relative humidity, even at times when the air was saturated there was no precipitation during the survey.) Skies were generally overcast and winds were generally calm, with the exception of a brief period of relatively high average wind speed between 10:00 a.m. and 3:00 p.m. on November 27, 2007 (discussed in more detail below). Since the survey was conducted during the late fall, many of the surrounding deciduous trees had shed their leaves.

The noises observed during the survey were typical for suburban areas and are summarized in Table 2.5-69. Observed noise sources generally included distant and local traffic noise, birds, dogs barking, some intermittent gunshot noise from the Fermi firing range, and the Fermi cooling towers. The Fermi cooling towers were faintly audible at five of the seven NMLs during the survey, as shown in Table 2.5-69.

Continuous noise monitoring was conducted at NMLs 1-3 for 24 hours between 3:00 a.m. on November 27 through 3:00 a.m. on November 28, 2008, to capture typical ambient daytime and nighttime sound level trends. In addition to the continuous monitoring, manned, short-term noise measurements were conducted at NMLs 1-7. These short-term measurements helped to qualify the surrounding noise sources and to provide an indication of the spectral content of the existing acoustical environment. The measurement period was 10 minutes in length in order to capture sound levels representative of each location during different time periods throughout the day.

Measurements at each NML included L_{90} and L_{eq} sound level metrics. The L_{90} is the 90-percentile exceeded sound level; i.e., the sound level that was exceeded for 90 percent of the measurement

period. The L_{90} is referred to as the residual sound level; it provides a measure of the background sound level without the influence of loud, transient noise sources (Reference 2.5-128). The L_{dn} is the day-night average sound level over a 24-hour period and is derived using the hourly equivalent continuous sound levels ($L_{eq,1h}$) measured over a 24-hour period. The derivation of L_{dn} includes applying a 10 dB penalty to the nine nighttime hours between 10:00 p.m. and 7:00 a.m. (Reference 2.5-131). Figure 2.5-33 shows the hourly L_{eq} sound levels at NMLs 1-3 for the 24-hour measurement period, along with the associated L_{dn} for each receptor. Figure 2.5-34 shows the hourly L_{90} sound levels at NMLs 1-3 for the 24-hour measurement period. In general, the highest sound levels were experienced during the late morning / early afternoon hours between 10 a.m. and 2 p.m., which is typical for suburban areas due to, e.g., increases in highway and local traffic flow. The lowest sound levels were experienced during the late night / early morning hours between approximately 11:00 p.m. and 3:00 a.m., when noise in suburban areas from major sources (such as highways) reaches a minimum. There was also a period of high average wind speed between 10 a.m. and 3 p.m. on November 27, 2007, which contributed to the sound levels shown in Figure 2.5-33 and Figure 2.5-34.

Section 5.3.4 of NUREG-1555 states that "(n)oise levels are acceptable if the day-night average sound level outside a residence is less than 65 decibels." This requirement is consistent with U.S. Department of Housing and Urban Development (HUD) guidelines in 24 CFR 51.101(8), *Exterior noise goals*, for outdoor sound levels (Reference 2.5-132). There are no state or county noise regulations for Michigan or Monroe County, respectively. The Frenchtown Township Charter Township Zoning Ordinance provides noise regulations for uses established in Commercial and Manufacturing Districts (Reference 2.5-133). However, as stated in Section 2.2, the Fermi site is located within a Public Service District. Therefore, the Frenchtown Township noise regulations are not applicable to the Fermi site. Nonetheless, the Frenchtown Township noise regulations for Manufacturing uses are consistent with both the NUREG-1555 and HUD guidelines for outdoor sound levels (i.e., $L_{dn} \le 65 \text{ dBA}$).

Table 2.5-69 provides the location of each NML; the lowest L_{90} sound level measured during the survey for each location; the L_{dn} sound level measured over the 24-hour survey period for NML-1, NML-2, and NML-3; and the noise sources that were generally observed during the survey at each NML. All seven NMLs represent the nearest noise-sensitive receptors (i.e., the nearest residences) to the Fermi facility. The approximate distance from each NML to Fermi 2 equipment is provided in Table 2.5-69. The NML-6 sound level can be considered to be representative of the nighttime background sound level typically experienced by residences nearest to the existing transmission lines leading away from the Fermi site and includes noise contributions from the existing transmission lines.

It should be noted that a period of high average wind speed was observed between approximately 10 a.m. and 3 p.m. on November 27, 2007. The average wind speed during this period was high enough to have affected sound level measurements, which will have affected the measured L_{dn} sound level, particularly at NML-1 and NML-2. It is estimated that the L_{dn} sound level for a 24-hour period with lower winds during the 10 a.m. to the 3 p.m. period could be approximately 3-7 dB lower than the L_{dn} sound level indicated for NML-1 and NML-2 in Table 2.5-69 and Figure 2.5-33.

Nonetheless, even including the period of higher average wind speed, the measured existing L_{dn} sound levels for NML-1, NML-2, and NML-3 are below 65 dBA.

2.5.6 References

- 2.5-1 KLD Associates, Inc., "Fermi Nuclear Power Plant Development of Evacuation Time Estimate," May 2008.
- 2.5-2 United States Census 2000, "County To County Worker Flow Files," http://www.census.gov/population/www/cen2000/commuting.html, accessed 19 November 2007.
- 2.5-3 LandView[®] 6 on DVD with MARPLOTS[®], a Viewer for EPA, Census Bureau and USGS data and maps, (Census Block Groups), December 2003.
- 2.5-4 ArcGIS, "GIS and Mapping Software," http://www.esri.com/software/arcgis/, accessed 30 April 2008.
- 2.5-5 City Data.com, "General Information," http://www.citydata.com/, accessed 13 September 2007.
- 2.5-6 U.S. Census Bureau, "State & County QuickFacts," http://quickfacts.census.gov/qfd/states/, accessed 13 September 2007.
- 2.5-7 Vanderberg, A.G., "Michigan Local Government Structure, Services and Practices," July 8, 2002.
- 2.5-8 Monroe County Chamber of Commerce, "Featured Communities," http://monroemi.usachamber.com/custom2.asp?pageid=639, accessed 10 December 2007.
- 2.5-9 Monroe County, "Commissioner Districts," http://www.co.monroe.mi.us/Monroe/default.aspx?PageId=71, accessed 17 December 2007.
- 2.5-10 Monroe County, "Board of Commissioners By-Laws and Rules of Procedures," Appendix A, April 2005.
- 2.5-11 James D. Anulewicz Associates, Inc. in conjunction with McKenna Associates, Inc., "Master Plan - Charter Township of Frenchtown, Monroe County, Michigan, 2002," June 2003.
- 2.5-12 Monroe County, "5-Year Recreation Plan 2008-2012," Draft for Public Review, January 2008.

- 2.5-13 U.S. Census Bureau, "Monroe City 2000 Selected Economic Characteristics," http://factfinder.census.gov/servlet/QTTable?_bm=y&-geo_id=16000US2655020&-qr_na me=DEC_2000_SF3_U_DP3&-ds_name=DEC_2000_SF3_U&-_lang=en&-_sse=on, accessed 17 December 2007.
- 2.5-14 U.S. Census Bureau, "Monroe County, Michigan—State and County Quickfacts," http://quickfacts.census.gov/qfd/states/26/26115.html, accessed 21 December 2007.
- 2.5-15 U.S. Census Bureau, "Wayne County, Michigan 2006 Population Estimates," http://factfinder.census.gov/servlet/DTTable?_bm=y&-geo_id=05000US26163&-ds_name =PEP_2006_EST&-mt_name=PEP_2006_EST_G2006_T001, accessed 28 February 2008.
- 2.5-16 Wayne County, "About Wayne County," http://www.waynecounty.com/about/, accessed 11 December 2007.
- 2.5-17 U.S. Census Bureau, "Detroit City, Michigan 2006 Population Estimates," http://factfinder.census.gov/servlet/DTTable?_bm=y&-geo_id=16000US2622000&-ds_na me=PEP_2006_EST&-redoLog=false&-mt_name=PEP_2006_EST_G2006_T001, accessed 28 February 2008.
- 2.5-18 Wayne County, "Statistics—General Profile," http://www.waynecounty.com/jed/stats/general.htm, accessed 27 December 2007.
- 2.5-19 U.S. Census Bureau, "Lucas County, Ohio Quickfacts," http://quickfacts.census.gov/qfd/states/39/39095.html, accessed 7 February 2008.
- 2.5-20 U.S. Census Bureau, "Toledo (city), Ohio Quickfacts," http://quickfacts.census.gov/qfd/states/39/3977000.html, accessed 7 February 2008.
- 2.5-21 Monroe County, "Educational Directory 2007-2008," 2007.
- 2.5-22 U.S. Census Bureau, "Monroe County 2006 Select Social Characteristics," http://factfinder.census.gov/servlet/ADPTable?_bm=y&-geo_id=05000US26115&-qr_nam e=ACS_2006_EST_G00_DP2&-ds_name=ACS_2006_EST_G00_&-_lang=en&-_sse=on , accessed 3 February 2008.
- 2.5-23 Monroe County Community College, "General Information about the College," http://www.monroeccc.edu/aboutus.htm, accessed 7 December 2007.
- 2.5-24 Monroe County Chamber of Commerce, "Education—Excellence from Preschool to College," http://monroemi.usachamber.com/custom2.asp?pageid=2548, accessed 10 December 2007.
- 2.5-25 University of Michigan, "U_M 2006 enrollment tops 40,000," http://www.ns.umich.edu/htdocs/releases/story.php?id=999, accessed 3 January 2008.

- 2.5-26 Wayne State University, "WSU Student Profile," http://wayne.edu/about/students.php, accessed 3 February 2008.
- 2.5-27 NUS Corporation, Rockville, Maryland, "Fermi Site Demography, Land and Water Use Survey," March 1973.
- 2.5-28 Hartig, J., U.S. Fish and Wildlife Services, "Detroit International Wildlife Refuge."
- 2.5-29 Southeast Michigan Council of Governments, "What SEMCOG does," http://www.semcog.org/WhatSEMCOGdoes.aspx, accessed 26 December 2007.
- 2.5-30 Southeast Michigan Council of Governments, "Members," http://www.semcog.org/SEMCOGMemberList.aspx?ekmensel=c580fa7b_252_412_btnlin k, accessed 26 December 2007.
- 2.5-31 Monroe County, "2004 Annual Report Monroe County Planning Department and Commission," March 2005.
- 2.5-32 Monroe County, "Citizen Assistance Responders," http://www.co.monroe.mi.us/Monroe/default.aspx?PageId=294, accessed 1 May 2008.
- 2.5-33 Monroe County, "Sheriff's Department-What we do," http://www.co.monroe.mi.us/Monroe/default.aspx?PageId=121, accessed 10 December 2007.
- 2.5-34 Monroe County, "Sheriff's Department District One," http://www.co.monroe.mi.us/Monroe/default.aspx?PageId=471, accessed 3 February 2008.
- 2.5-35 Monroe County, "Sheriff's Department District Two," http://www.co.monroe.mi.us/Monroe/default.aspx?PageId=291, accessed 3 February 2008.
- 2.5-36 Monroe County, "Sheriff's Department District Three," http://www.co.monroe.mi.us/Monroe/default.aspx?PageId=292, accessed 3 February 2008.
- 2.5-37 Michigan State Police, "Monroe Post #28," http://www.michigan.gov/msp/0,1607,7-123-1584_3436_4678---,00.html, accessed 18 December 2008.
- 2.5-38 Monroe County, "Monroe County Sheriff's Office Jail History," http://www.co.monroe.mi.us/Monroe/default.aspx?PageId=308, accessed 3 February 2008.
- 2.5-39 City of Monroe, Michigan, "Monroe Police Department," http://www.ci.monroe.mi.us/Police_1.cfm, accessed 3 February 2008.

- 2.5-40 Wayne County, "Sheriff of Wayne County," http://www.waynecounty.com/sheriff/info.htm, accessed 11 December 2007.
- 2.5-41 Reaves, B.A., and M.J. Hickman, "Law Enforcement Management and Administrative Statistics, 2000: Data for Individual Stat and Local Agencies with 100 or More Officers," March 2004.
- 2.5-42 Lucas County, "Lucas County Sheriff," http://www.co.lucas.oh.us/sheriff/, accessed 31 March 2008.
- 2.5-43 City of Monroe, "The Monroe Fire Department," http://www.ci.monroe.mi.us/Fire_1.cfm, accessed 20 December 2007.
- 2.5-44 Monroe County, "Monroe County Fire Association, Inc," http://www.co.monroe.mi.us/monroe/default.aspx?PageId=83, accessed 20 December 2007.
- 2.5-45 Monroe County, "Monroe County Emergency Management Division," http://www.co.monroe.mi.us/Monroe/default.aspx?Pageid=47, accessed 18 February 2008.
- 2.5-46 Monroe County, "Monroe County Health Department," http://www.co.monroe.mi.us/Monroe/default.aspx?PageId=41, accessed 5 February 2008.
- 2.5-47 Monroe County Ambulance, "2007-2008 Membership Program with Monroe Community Ambulance," 2007.
- 2.5-48 Southeast Michigan Council of Governments, "Community Transportation Profile-Monroe County," http://www.semcog.org/Data/Apps/comprof/transportation.cfm?cpid=5999, accessed 24 December 2007.
- 2.5-49 Southeast Michigan Council of Governments, "Community Transportation Profile-Frenchtown Township," http://www.semcog.org/Data/Apps/comprof/transportation.cfm?cpid=5050, accessed 26 December 2007.
- 2.5-50 Michigan Department of Transportation, "Lake Erie Transit," http://www.michigan.gov/mdot/0,1607,7-151-9625_21607-164483--,00.html, accessed 19 February 2008.
- 2.5-51 Lake Erie Transit, "Transit Services," http://www.lakeerietransit.com/transitservices.html, accessed 19 February 2008.
- 2.5-52 Metro Airport, "Press Room: Facts, DTW Facts," http://www.metroairport.com/about/facts.asp, accessed 10 December 2007.

- 2.5-53 City of Detroit Official Website, "Coleman A. Young International Airport," http://www.ci.detroit.mi.us/Departments/Airport/tabid/72/Default.aspx, accessed 11 December 2007.
- 2.5-54 Airnav.com, "Toledo Express Airport," http://www.airnav.com/airport/KTOL, accessed 30 December 2007.
- 2.5-55 Toledo-Lucas County Port Authority, "Air Services," http://www.toledoportauthority.org/services/airservices.asp, accessed 5 February 2008.
- 2.5-56 Goliath Business Knowledge on Demand, "Midwestern Update," http://goliath.ecnext.com/coms2/gi_0199-460161/Midwestern-update-convention-centers. html, accessed 5 February 2008.
- 2.5-57 Willow Run Airport, "Airport Information," http://www.willowrunairport.com/information/, accessed 10 December 2007.
- 2.5-58 Michigan Department of Transportation, "Michigan's Railroad System," http://www.michigan.gov/documents/MDOT_Official_Rail_130897_7.pdf, accessed 7 February 2008.
- 2.5-59 Monroe County, "Monroe County History," http://www.co.monroe.mi.us/Monroe/default.aspx?PageId=163, accessed 17 Januarary 2008.
- 2.5-60 Monroe County Michigan Tourism Bureau, "Museums," http://www.monroeinfo.com/museums.html, accessed 19 February 2008.
- 2.5-61 Monroe County Michigan Tourism Bureau, "Historic Sites," http://www.monroeinfo.com/historicsites.html, accessed 19 February 2008.
- 2.5-62 Michigan History, Arts and Library, "Ford River Rouge Complex," http://www.michigan.gov/hal/0,1607,7-160-15481_19267_20424-54580--,00.html, accessed 1 February 2008.
- 2.5-63 Pure Michigan, "Detroit Museums," http://www.michigan.org/travel/attractions/?m=2;10&city=G2974, accessed 19 February 2007.
- 2.5-64 U.S. Department of Labor Bureau of Labor Statistics, "Employment and Unemployment," http://www.bls.gov/data/home.htm, accessed 23 January 2008.
- 2.5-65 Land View® 6 on DVD with MARPLOTS®, a Viewer for EPA, Census Bureau and U.S.GS data and maps, (County Information), December 2003.

- 2.5-66 U.S. Census Bureau, "Monroe County 2000 Selected Economic Characteristics," http://factfinder.census.gov/servlet/QTTable?_bm=y&-geo_id=05000US26115&-qr_name =DEC_2000_SF3_U_DP3&-ds_name=DEC_2000_SF3_U&-_lang=en&-_sse=on, accessed 17 December 2007.
- 2.5-67 U.S. Census Bureau, "Monroe County 2006 Selected Economic Characteristics," http://factfinder.census.gov/servlet/ADPTable?_bm=y&-qr_name=ACS_2006_EST_G00_DP3&-geo_id=05000US26115&-ds_name=ACS_2006_EST_G00_&-_lang=en&-_s, accessed 15 January 2008.
- 2.5-68 U.S. Census Bureau, "Wayne County 2000 Selected Economic Characteristics," http://factfinder.census.gov/servlet/QTTable?_bm=y&-geo_id=05000US26163&-qr_name = DEC_2000_SF3_U_DP3&-ds_name=DEC_2000_SF3_U&-_lang=en&-_sse=on, accessed 17 December 2007.
- 2.5-69 U.S. Census Bureau, "Wayne County 2006 Selected Economic Characteristics," http://factfinder.census.gov/servlet/ADPTable?_bm=y&-geo_id=05000US26163&-qr_nam e=ACS_2006_EST_G00_DP3&-ds_name=ACS_2006_EST_G00_&-_lang=en&-redoLog =false&-_sse=on, accessed 17 December 2007.
- 2.5-70 U.S. Census Bureau, "Lucas County 2000 Selected Economic Characteristics," http://factfinder.census.gov/servlet/QTTable?_bm=y&-geo_id=05000US39095&-qr_name =DEC_2000_SF3_U_DP3&-ds_name=DEC_2000_SF3_U&-_lang=en&-_sse=on, accessed 1 April 2008.
- 2.5-71 U.S. Census Bureau, "Lucas County 2006 Selected Economic Characteristics," http://factfinder.census.gov/servlet/ADPTable?_bm=y&-geo_id=05000US39095&-qr_nam e=ACS_2006_EST_G00_DP3&-ds_name=ACS_2006_EST_G00_&-_lang=en&-_sse=on , accessed 1 April 2008.
- 2.5-72 U.S. Census Bureau, "Detroit Combined Statistical Area and Toledo Metropolitan Statistical Area 2000 Selected Economic Characteristics,"

 http://factfinder.census.gov/servlet/QTTable?_bm=y&-context=qt&-qr_name=ACS_C2SS
 _EST_G00_QT03&-ds_name=ACS_C2SS_EST_G00_&-tree_id=700&-redoLog=&-all_g
 eo_types=N&-_caller=geoselect&-geo_id=38000US2162&-geo_id=38000US8400&-searc
 h_results=01000US&-format=&-_lang=en, accessed 21 January 2008.
- 2.5-73 U.S. Census Bureau, "Detroit Combined Statistical Area 2006 Selected Economic Characteristics,"

 http://factfinder.census.gov/servlet/ADPTable?_bm=y&-context=adp&-qr_name=ACS_20
 06_EST_G00_DP3&-ds_name=ACS_2006_EST_G00_&-tree_id=306&-redoLog=false&-caller=geoselect&-geo_id=33000US220&-format=&-_lang=en, accessed 21 January 2008.

- 2.5-74 U.S. Census Bureau, "Toledo Metropolitan Statistical Area 2006 Selected Economic Characteristics,"

 http://factfinder.census.gov/servlet/ADPTable?_bm=y&-context=adp&-qr_name=ACS_20
 06_EST_G00_DP3&-ds_name=ACS_2006_EST_G00_&-tree_id=306&-redoLog=false&-caller=geoselect&-geo_id=31000US45780&-format=&-_lang=en, accessed 21 January 2008.
- 2.5-75 Statistics Canada, "2001 Essex Community Profile,"
 http://www12.statcan.ca/english/Profil01/CP01/Details/Page.cfm?Lang=E&Geo1=CD&Code1=3537&Geo2=PR&Code2=35&Data=Count&SearchText=essex&SearchType=Begins &SearchPR=01&B1=All&Custom, accessed 5 February 2008.
- 2.5-76 Statistics Canada, "2001 Chatham-Kent Community Profile,"
 http://www12.statcan.ca/english/Profil01/CP01/Details/Page.cfm?Lang=E&Geo1=CD&Code1=3536&Geo2=PR&Code2=35&Data=Count&SearchText=Chatham-Kent&SearchType=Contains&SearchPR=01&B1=All&Custom, accessed 5 February 2008.
- 2.5-77 Statistics Canada, "2001 Lambton Community Profile,"
 http://www12.statcan.ca/english/Profil01/CP01/Details/Page.cfm?Lang=E&Geo1=CD&Code1=3538&Geo2=PR&Code2=35&Data=Count&SearchText=lambton&SearchType=Begins&SearchPR=01&B1=All&Custom, accessed 5 February 2008.
- 2.5-78 County of Monroe, "Comprehensive Annual Financial Report," December 31, 2006.
- 2.5-79 Wayne County, "Charter County of Wayne, Michigan Comprehensive Annual Financial Report," September 30, 2007.
- 2.5-80 Lucas County, "Comprehensive Annual Financial Report," December 31, 2006.
- 2.5-81 Michigan Department of Labor and Economic Growth, "Detroit Area Industry Employment Forecasts 2004-2014," http://www.milmi.org/admin/uploadedPublications/590_nac_01.htm, accessed 17 December 2007.
- 2.5-82 Michigan Department of Labor and Economic Growth, "Michigan Statewide Industry Employment Forecasts 2004-2014," http://www.milmi.org/admin/uploadedPublications/591_nac_02.htm, accessed 24 January 2008.
- 2.5-83 The Ohio Department of Job and Family Services, "Toledo MSA Job Outlook to 2014," March 2006.
- 2.5-84 Citizens Research Council (CRC) Memorandum, "Tax Revenue Comparison: Michigan and the U.S. Average," June 2004.
- 2.5-85 State of Michigan, "Annual Report of the Michigan State Treasurer," Fiscal year 2005-2006.

- 2.5-86 U.S. Census Bureau, "2000 Monroe County Selected Housing Characteristics," http://factfinder.census.gov/servlet/QTTable?_bm=y&-geo_id=05000U.S.26115&-qr_nam e=DEC_2000_SF3_U_DP4&-ds_name=DEC_2000_SF3_U&-_lang=en&-_sse=on, accessed 23 January 2008.
- 2.5-87 U.S. Census Bureau, "2000 Wayne County Selected Housing Characteristics," http://factfinder.census.gov/servlet/QTTable?_bm=y&-geo_id=05000U.S.26163&-qr_nam e=DEC_2000_SF3_U_DP4&-ds_name=DEC_2000_SF3_U&-_lang=en&-redoLog=false &-_sse=on, accessed 17 December 2007.
- 2.5-88 Southeast Council of Michigan Governments, "Community Housing Profile Monroe County," http://www.semcog.org/Data/Apps/comprof/housing.cfm?cpid=5999, accessed 22 January 2008.
- 2.5-89 Southeast Council of Michigan Governments, "Community Housing Profile Wayne County," http://www.semcog.org/Data/Apps/comprof/housing.cfm?cpid=1999, accessed 22 January 2008.
- 2.5-90 U.S. Census Bureau, "2006 Monroe County Selected Housing Characteristics," http://factfinder.census.gov/servlet/ADPTable?_bm=y&-qr_name=ACS_2006_EST_G00_DP4&-geo_id=05000U.S.26115&-ds_name=ACS_2006_EST_G00_&-_lang=en&-_sse=on, accessed 7 December 2007.
- 2.5-91 U.S. Census Bureau, "2006 Wayne County Selected Housing Characteristics," http://factfinder.census.gov/servlet/ADPTable?_bm=y&-geo_id=05000U.S.26163&-qr_na me=ACS_2006_EST_G00_DP4&-ds_name=ACS_2006_EST_G00_&-_lang=en&-redoLo g=false&-_sse=on, accessed 27 December 2007.
- 2.5-92 U.S. Census Bureau, "2000 Lucas County Selected Housing Characteristics," http://factfinder.census.gov/servlet/QTTable?_bm=y&-geo_id=05000US39095&-qr_name =DEC_2000_SF3_U_DP4&-ds_name=DEC_2000_SF3_U&-_lang=en&-_sse=on, accessed 1 April 2008.
- 2.5-93 U.S. Census Bureau, "2006 Lucas County Selected Housing Characteristics," http://factfinder.census.gov/servlet/ADPTable?_bm=y&-geo_id=05000US39095&-qr_nam e=ACS_2006_EST_G00_DP4&-ds_name=ACS_2006_EST_G00_&-_lang=en&-_s, accessed 1 April 2008.
- 2.5-94 National Center for Education Statistics, "Search results—Monroe County Michigan," http://nces.ed.gov/ccd/districtsearch/district_list.asp?Search=1&details=1&InstName=&DistrictID=&Address=&City=&State=26&Zip=&Miles=&County=monroe&PhoneAreaCode=&Phone=&DistrictType=1&DistrictType=2&DistrictType=3&DistrictType=4&DistrictType=5&DistrictType=6&DistrictType=7&NumOfStudents=&NumOfStudentsRange=more&NumOfSchools=&NumOfSchoolsRange=more, accessed 23 January 2008.

- 2.5-95 National Center for Education Statistics, "Search results—Wayne County Michigan," http://nces.ed.gov/ccd/districtsearch/district_list.asp?Search=1&details=1&InstName=&DistrictID=&Address=&City=&State=26&Zip=&Miles=&County=way, accessed 2 April 2008.
- 2.5-96 National Center for Education Statistics, "Search results—Lucas County Ohio," http://nces.ed.gov/ccd/districtsearch/district_list.asp?Search=1&details=1&InstName=&DistrictID=&Address=&City=&State=39&Zip=&Miles=&County=Luc, accessed 2 April 2008.
- 2.5-97 National Center for Education Statistics, "Monroe County Public Schools," http://nces.ed.gov/ccd/schoolsearch/school_list.asp?Search=1&InstName=&SchoolID=& Address=&City=&State=26&Zip=&Miles=&County=&PhoneAreaCode=&Phone=&District Name=monroe&DistrictID=&SchoolType=1&SchoolType=2&SchoolType=3&SchoolType=4&SpecificSchlTypes=all&IncGrade=-1&LoGrade=-1&HiGrade=-1, accessed 3 March 2008.
- 2.5-98 National Center for Education Statistics, "Revenues and Expenditures for Public Elementary and Secondary School Districts: School Year 2004-05," http://nces.ed.gov/pubs2007/revexpdist05/tables/table_2.asp?referrer=list, accessed 31 January 2008.
- 2.5-99 Advent Engineering Services, Inc., "Evacuation Time Estimate Analyses of the Fermi 2 Nuclear Power Plant Emergency Planning Zone," March 2003.
- 2.5-100 Southeast Michigan Council of Governments, "Community Land Use Profile—Frenchtown Township," http://www.semcog.org/Data/Apps/comprof/landuse.cfm?cpid=5050, accessed 25 January 2008.
- 2.5-101 Southeast Michigan Council of Governments, "Community Land Use Profile—Monroe County," http://www.semcog.org/Data/Apps/comprof/landuse.cfm?cpid=5999, accessed 25 January 2008.
- 2.5-102 Fire Departments Net, "Monroe County Fire Departments," http://www.firedepartments.net/county/MI/MonroeCounty.html, accessed 10 December 2007.
- 2.5-103 Wayne County, "About Wayne County—Health Care Facilities," http://www.waynecounty.com/about/healthCenters.htm, accessed 27 December 2007.
- 2.5-104 Toledo, "Toledo Area Hospitals," http://www.toledo.com/hospitals/index.php, accessed 3 January 2008.
- 2.5-105 Michigan Department of Transportation (MDOT), "Five Year Transportation Program 2008-2012," 6 November 2007.
- 2.5-106 Airnav.com, "Mills Field," http://www.airnav.com/airport/MI53, accessed 7 February 2008.

- 2.5-107 Airnav.com, "Erie Aerodrome," http://www.airnav.com/airport/M84, accessed 26 December 2007.
- 2.5-108 Airnav.com, "Carls Airport," http://www.airnav.com/airport/78MI, accessed 7 February 2008.
- 2.5-109 Airnav.com, "Gradolph Field Airport," http://www.airnav.com/airport/88G, accessed 26 December 2007.
- 2.5-110 Airnav.com, "Custer Airport," http://www.airnav.com/airport/TTF, accessed 26 December 2007.
- 2.5-111 Airnav.com, "Wickenheiser Airport," http://www.airnav.com/airport/W87, accessed 2 December 2007.
- 2.5-112 Airnav.com, "Toledo Suburban Airport," http://www.airnav.com/airport/KDUH, accessed 26 December 2007.
- 2.5-113 Airnav.com, "Gross Ile Airport," http://www.airnav.com/airport/KONZ, accessed 4 May 2008.
- 2.5-114 Airnav.com, "Newport Woods Airport," http://www.airnav.com/airport/9MI2, accessed 4 May 2008.
- 2.5-115 Great Lakes St. Lawrence Seaway System, "Port of Monroe," http://www.greatlakes-seaway.com/en/navigating/map/index.html, accessed 17 Januaray 2008.
- 2.5-116 Great Lakes St. Lawrence Seaway System, "Port of Detroit," http://www.greatlakes-seaway.com/en/navigating/map/index.html, accessed 17 Januaray 2008.
- 2.5-117 Great Lakes St. Lawrence Seaway System, "Port of Toledo," http://www.greatlakes-seaway.com/en/navigating/map/index.html, accessed 17 Januaray 2008.
- 2.5-118 Great Lakes St. Lawrence Seaway System, "Port of Windsor," http://www.greatlakes-seaway.com/en/navigating/map/index.html, accessed 7 February 2008.
- 2.5-119 Pure Michigan, "Monroe County Attractions," http://www.michigan.org/travel/attractions/?city=G3323&m=2, accessed 19 February 2008.
- 2.5-120 Monroe County Historic Building Survey, Building cards on file at the Monroe County Historical Museum, Monroe, Michigan, 1973.

- 2.5-121 U.S. Environmental Protection Agency, "Environmental Justice," http://www.epa.gov/compliance/environmentaljustice/index.html, accessed 19 July 2007.
- 2.5-122 U.S. Nuclear Regulatory Commission, "Procedural Guidance for Preparing Environmental Assessments and Considering Environmental Issues," NRR Office Instruction No. LIC-203, Revision 1, May 24, 2004.
- 2.5-123 U.S. Census Bureau, Housing and Household Economic Statistics Division, "Poverty Thresholds 2000," http://www.census.gov/hhes/www/poverty/threshld/thresh00.html, accessed 1 August 2007.
- 2.5-124 Statistics Canada, "Walpole Island 46,"
 http://www12.statcan.ca/english/Profil01/CP01/Details/Page.cfm?Lang=E&Geo1=CSD&C
 ode1=3538004&Geo2=PR&Code2=35&Data=Count&SearchText=Walpole%20Island&S
 earchType=Begins&SearchPR=35&B1=All&Custom, accessed 27 February 2008.
- 2.5-125 United States Department of Agriculture 2002 Census, "Appendix A," http://www.nass.usda.gov/census/census02/volume1/us/us2appxa.pdf, accessed 28 April 2008.
- 2.5-126 United States Department of Agriculture 2002 Census, "Michigan Hired Farm Labor –Workers and Payroll 2002," http://www.nass.usda.gov/census/census02/volume1/mi/st26_2_007_007.pdf, accessed 28 April 2008.
- 2.5-127 United States Department of Agriculture 2002 Census, "Ohio Hired Farm Labor –Workers and Payroll 2002," http://www.nass.usda.gov/census/census02/volume1/oh/st39_2_007_007.pdf, accessed 28 April 2008.
- 2.5-128 American National Standards Institute (ANSI), "Quantities and Procedures for Description and Measurement of Environmental Sound, Part 1," S12.9-1988, 2003.
- 2.5-129 American National Standards Institute (ANSI), "Procedures for Outdoor Measurement of Sound Pressure Level," S12.18-1994, 2004.
- 2.5-130 American National Standards Institute (ANSI), "Measurement of Sound Pressure Levels in Air," S1.13-2005.
- 2.5-131 U.S. Environmental Protection Agency (EPA), "Information on Levels of Environmental Noise Requisite to Protects Public Health and Welfare with an Adequate Margin of Safety," Pub. No. 550/9-74-004, March 1974.
- 2.5-132 Housing and Urban Development (HUD), "Subpart B—Noise Abatement and Control," 24 CFR 51, 1996.

- 2.5-133 Frenchtown Charter Township, "Noise," Zoning Ordinance No. 200, Article 29.04.1, February 2004.
- 2.5-134 The National Center For Educational Statistics, "Public Elementary and Secondary School Student Enrollment, High School Completions, and Staff From the Common Core of Data: School Year 2005–06," http://nces.ed.gov/pubs2007/pesenroll06/tables/table_6.asp, accessed 9 June 2008.
- 2.5-135 Transportation Research Board National Research Council, "Highway Capacity Manual Special Report 209," Washington, D.C., 1985.
- 2.5-136 Michigan Government, "Michigan Statewide Construction and Extraction Occupation Forecasts 2006-2016". Available online at: http://www.milmi.org/admin/uploadedPublications/721_occ_g47.htm, accessed on October 21, 2009.
- 2.5-137 Ohio Labor market Information, "2016 Ohio Job Outlook Occupational Projections" Available online at: http://ohiolmi.com/proj/Projections/Ohio/Occupation.pdf, accessed on October 21, 2009.
- 2.5-138 Letter from the Commonwealth Cultural Resource Group to Doug Timpe (Black & Veatch) with the subject "Submerged Sites Sensitivity Study, Fermi 3 Project, Monroe County, Michigan" dated December 1, 2008
- 2.5-139 Preliminary National Register of Historic Places Evaluation for the Enrico Fermi Atomic Power Plant Monroe County, Lagoona Beach, Michigan, March 2009

Table 2.5-1 U.S. and Canadian Counties within a 50-Mile Radius of Fermi 3

Michigan Counties	Ohio Counties	Ontario CA Counties
Jackson	Erie	Essex
Lenawee	Fulton	Chatham-Kent
Livingston	Henry	Lambton
Macomb	Lucas	
Monroe*	Ottawa	
Oakland	Sandusky	
Washtenaw	Seneca	
Wayne	Wood	

^{*} Location of Fermi 3

Table 2.5-2 Resident Population Distribution by Segment, 1 to 10 Miles from the Fermi Site (2000)

Cardinal Compass	Mile Range							
Direction	0-1 ¹	1-2	2-3	3-4	4-5	5-10		
NORTH		83	397	218	188	12,715		
N-NE		124	46	26	71	7,212		
NE	•	282	204	0	0	0		
E-NE		0	0	0	0	0		
EAST		0	0	0	0	0		
E-SE		0	0	0	0	0		
SE		0	0	0	0	0		
S-SE	121	0	0	0	0	0		
SOUTH	121	1,154	0	0	0	0		
S-SW		259	0	0	0	0		
SW		280	0	106	162	1,609		
W-SW		115	1,279	2,426	1,341	35,180		
WEST		185	213	219	518	4,863		
W-NW		28	0	70	263	5,066		
NW		195	392	203	776	5,521		
N-NW		205	199	240	191	4,253		
Total Population Per Segment	121	2,910	2,730	3,508	3,510	76,419		
Total Population: All Segments	89,198							

1. Per NUREG-1555, Figure 2.5-1, Census Block Points were summed within the 1-mile radius, rather than divided into directional segments.

Table 2.5-3 Largest Population Areas within 10 Miles of the Fermi Site (2000)

Populated Place	Population	Distance from Fermi 3 (Mi)
Stony Point	1,775	1.3
Woodland Beach	2,179	2.9
Detroit Beach	2,289	4.0
Monroe	32,339	5.5
Rockwood	4,726	7.6
Carleton	2,562	9.4
Flat Rock	8,488	9.5
Gibraltar	4,264	9.5

Table 2.5-4 Resident Population Distribution by Segment, 0 to 50 Miles from the Fermi Site (2000)

Cardinal Compass	Mile Range							
Direction	0-10 ¹	10-20	20-30	30-40	40-50			
NORTH		121,416	453,510	571,939	365,114			
N-NE		107,027	354,880	725,303	453,907			
NE		15,533	123,981	36,136	5,371			
E-NE		10,242	17,807	22,751	19,742			
EAST		2,220	4,917	11,590	2,351			
E-SE		-	-	256	-			
SE		-	67	8,110	43,157			
S-SE	89,198	-	1,540	17,199	28,286			
SOUTH	09,190	-	7,621	14,145	27,723			
S-SW		3,547	112,020	36,023	40,991			
SW		12,453	265,684	111,951	28,032			
W-SW		8,945	10,475	10,573	8,240			
WEST		6,730	8,705	37,023	30,762			
W-NW		5,732	20,446	19,167	16,759			
NW		17,938	122,093	138,391	67,173			
N-NW	24,388		221,758	179,240	149,989			
Total Population Per Segment	89,198	336,170	1,725,503	1,939,797	1,287,597			
Total Population: All Segments			5,378,266					

1. Per NUREG-1555, Figure 2.5-2, Census Block Points were summed within the 1-mile radius, rather than divided into directional segments.

Table 2.5-5 Resident and Transient Population and Density by 0 to 10-Mile Concentric Circles from Fermi 3 (2000)

		Population			Population Density
Concentric Circle	Resident	Transient	Total	(Sq Mi)	(Persons/Sq Mi)
0 – 1 Mile	121	449	570	3.1	181
1 – 2 Mile	2,910	14	2,924	9.4	310
2 – 3 Mile	2,730	30	2,760	15.7	176
3 – 4 Mile	3,508	226	3,734	22.0	170
4 – 5 Mile	3,510	2,153	5,663	28.3	200
5 - 10 Mile	76,419	14,666	91,085	235.6	387
0 - 10 Mile	89,198	17,538	106,736	314.2	340
Michigan overall			9,938,444	56,804	175

Column totals may not equal the sum of the components due to rounding

Table 2.5-6 Resident and Transient Population and Density by 0 to 50-Mile Concentric Circles from Fermi 3 (2000)

		Population		Area	Population Density
Concentric Circle	Resident	Transient	Total	(Sq Mi)	(Persons/Sq Mi)
0 - 10 Mile	89,198	17,538	106,736	314	340
10 - 20 Mile	336,170	10,906	347,076	942	368
20 - 30 Mile	1,725,503	44,433	1,769,936	1,571	1127
30 - 40 Mile	1,939,797	70,601	2,010,398	2,199	914
40 - 50 Mile	1,287,597	57,178	1,344,775	2,827	476
0 - 50 Mile	5,378,266	200,656	5,578,922	7,854	710
Michigan overall			9,938,444	56,804	175
Ohio overall			11,353,140	40,948	277

Column totals may not equal the sum of the components due to rounding

Table 2.5-7 Commuter Information for the Fermi 3 Region (2000)

County	Inflow	Outflow	Net flow
Jackson Co, MI	9,899	16,929	-7,030
Lenawee Co, MI	6,160	14,759	-8,599
Livingston Co, MI	20,093	45,884	-25,791
Macomb Co, MI	116,045	158,944	-42,899
Monroe Co, MI	12,886	33,633	-20,747
Oakland Co, MI	287,517	174,731	112,786
St, Clair Co, MI	8,203	28,113	-19,910
Washtenaw Co, MI	69,192	39,361	29,831
Wayne Co, MI	226,899	208,906	17,993
Erie Co, OH	9,680	9,366	314
Fulton Co, OH	8,676	8,124	552
Henry Co, OH	3,151	5,977	-2,826
Lucas Co, OH	49,919	32,211	17,708
Ottawa Co, OH	4,175	8,510	-4,335
Sandusky Co, OH	7,452	9,335	-1,883
Seneca Co, OH	5,388	10,504	-5,116
Wood Co, OH	26,509	27,099	-590
Totals	871,844	832,386	39,458

Table 2.5-8 Special Facilities Transient Population Data for the Regional Counties (2000)

Number of People Living in:

				·		
County	State Prisons/ Local Jails ¹	College Dormitories ²	Nursing Homes	Hospitals or Wards ³	Religious Group Quarters ⁴	Other non-house hold living situations ⁵
Jackson Co, MI	7,327	761	1,139	153	253	405
Lenawee Co, MI	2,597	1,005	543	299	602	131
Livingston Co, MI	423	3	212	119	330	178
Macomb Co, MI	2,513		3,935	502	167	1,177
Monroe Co, MI	300		507	73	301	329
Oakland Co, MI	2,571	1,837	4,327	1,753	1,483	1,773
St. Clair Co, MI	274		605	152	448	174
Washtenaw Co, MI	3,318	14,898	1,244	1,194	222	453
Wayne Co, MI	7,783	1,254	10,061	4,661	1,493	6,726
Erie Co, OH	108		1,443	37	223	175
Fulton Co, OH	5		372	17	27	13
Henry Co, OH	180		294	31		74
Lucas Co, OH	591	2,505	3,663	628	414	871
Ottawa Co, OH	72		382	137	32	2
Sandusky Co, OH	99		621	101	69	105
Seneca Co, OH	8	751	369	195	311	19
Wood Co, OH	232	6,377	777	87	88	144
Total:	28,401	29,391	30,494	10,139	6,463	12,749

Notes:

- 1. Includes local jails (including police lockups), halfway houses, state prisons, juvenile institutions (including short-term care, detention or diagnostic centers), other correctional institutions, federal prisons, and military disciplinary barracks
- 2. Includes college quarters off campus
- 3. Includes homes for the mentally/physically handicapped/ill, hospitals/wards and hospices for chronically ill, orthopedic wards, institutions for the deaf or blind, patients who have no usual home elsewhere
- 4. Includes workers' dormitories, agriculture workers' dormitories on farms, other group homes
- 5. Includes other noninstitutional group quarters, job corps and vocational training facilities

Source: Reference 2.5-5

Table 2.5-9 United States Population and Average Annual Growth Rates

	Historical a	Historical and Estimated Population		Average Annual Growth R		
U.S. Division	1990	2000	1-Jul-05	'90-'00	00-'05	'90-'05
Michigan	9,295,297	9,938,444	10,100,833	0.67%	0.32%	0.56%
Jackson Co, MI	149,756	158,422	163,432	0.56%	0.62%	0.58%
Lenawee Co, MI	91,476	98,890	101,778	0.78%	0.58%	0.71%
Livingston Co, MI	115,645	156,951	181,404	3.10%	2.94%	3.05%
Macomb Co, MI	717,400	788,149	828,950	0.94%	1.01%	0.97%
Monroe Co, MI	133,600	145,945	153,772	0.89%	1.05%	0.94%
Oakland Co, MI	1,083,592	1,194,156	1,213,669	0.98%	0.32%	0.76%
St. Clair Co, MI	145,607	164,235	171,079	1.21%	0.82%	1.08%
Washtenaw Co, MI	282,937	322,895	342,124	1.33%	1.16%	1.27%
Wayne Co, MI	2,111,687	2,061,162	1,990,932	-0.24%	-0.69%	-0.39%
Ohio	10,847,115	11,353,140	11,470,685	0.46%	0.21%	0.37%
Erie Co, OH	76,779	79,551	78,374	0.36%	-0.30%	0.14%
Fulton Co, OH	38,498	42,084	42,888	0.89%	0.38%	0.72%
Henry Co, OH	29,108	29,210	29,431	0.03%	0.15%	0.07%
Lucas Co, OH	462,361	455,054	447,410	-0.16%	-0.34%	-0.22%
Ottawa Co, OH	40,029	40,985	41,430	0.24%	0.22%	0.23%
Sandusky Co, OH	61,963	61,792	61,279	-0.03%	-0.17%	-0.07%
Seneca Co, OH	59,733	58,683	57,373	-0.18%	-0.45%	-0.27%
Wood Co, OH	113,269	121,065	123,889	0.67%	0.46%	0.60%
All Regional Counties	5,713,440	5,979,229	6,029,214	0.46%	0.17%	0.36%

Table 2.5-10 1 to 10 Mile Resident and Transient Population Projections (2000, 2008, 2020, 2030, 2040, 2050, and 2060) (Sheet 1 of 5)

	Year	1-2	2-3	3-4	4-5	5-10	Total			
	Year	Population in the 0-1 Mile Range								
	2000		570							
	2008			11	163					
	2020			11	153					
	2030			11	144					
	2040			11	133					
	2050			11	122					
	2060			11	109					
North	2000	83	397	218	188	14,146	15,032			
	2008	89	427	234	202	14,505	15,457			
	2020	100	478	262	226	15,061	16,127			
	2030	109	525	288	249	15,541	16,712			
	2040	120	577	317	273	16,036	17,323			
	2050	132	634	348	300	16,547	17,961			
	2060	145	696	382	329	17,074	18,626			
N-NE	2000	124	46	26	2,071	9,912	12,179			
	2008	133	49	28	2,232	9,834	12,276			
	2020	149	55	31	2,498	9,718	12,451			
	2030	164	60	34	2,743	9,623	12,624			
	2040	180	66	37	3,013	9,529	12,825			
	2050	198	73	41	3,309	9,436	13,057			
	2060	217	80	45	3,634	9,343	13,319			

Table 2.5-10 1 to 10 Mile Resident and Transient Population Projections (2000, 2008, 2020, 2030, 2040, 2050, and 2060) (Sheet 2 of 5)

	Year	1-2	2-3	3-4	4-5	5-10	Total
NE	2000	282	204	0	0	0	486
	2008	303	219	0	0	0	522
	2020	340	246	0	0	0	586
	2030	373	270	0	0	0	643
	2040	410	296	0	0	0	706
	2050	450	325	0	0	0	775
	2060	494	358	0	0	0	852
E-NE	2000	0	0	0	0	0	0
	2008	0	0	0	0	0	0
	2020	0	0	0	0	0	0
	2030	0	0	0	0	0	0
	2040	0	0	0	0	0	0
	2050	0	0	0	0	0	0
	2060	0	0	0	0	0	0
East	2000	0	0	0	0	0	0
	2008	0	0	0	0	0	0
	2020	0	0	0	0	0	0
	2030	0	0	0	0	0	0
	2040	0	0	0	0	0	0
	2050	0	0	0	0	0	0
	2060	0	0	0	0	0	0
E-SE	2000	0	0	0	0	0	0
	2008	0	0	0	0	0	0
	2020	0	0	0	0	0	0
	2030	0	0	0	0	0	0
	2040	0	0	0	0	0	0
	2050	0	0	0	0	0	0
	2060	0	0	0	0	0	0

Table 2.5-10 1 to 10 Mile Resident and Transient Population Projections (2000, 2008, 2020, 2030, 2040, 2050, and 2060) (Sheet 3 of 5)

	Year	1-2	2-3	3-4	4-5	5-10	Total
SE	2000	0	0	0	0	0	0
	2008	0	0	0	0	0	0
	2020	0	0	0	0	0	0
	2030	0	0	0	0	0	0
	2040	0	0	0	0	0	0
	2050	0	0	0	0	0	0
	2060	0	0	0	0	0	0
S-SE	2000	0	0	0	0	0	0
	2008	0	0	0	0	0	0
	2020	0	0	0	0	0	0
	2030	0	0	0	0	0	0
	2040	0	0	0	0	0	0
	2050	0	0	0	0	0	0
	2060	0	0	0	0	0	0
South	2000	1,154	0	0	0	0	1,154
	2008	1,243	0	0	0	0	1,243
	2020	1,391	0	0	0	0	1,391
	2030	1,528	0	0	0	0	1,528
	2040	1,679	0	0	0	0	1,679
	2050	1,844	0	0	0	0	1,844
	2060	2,025	0	0	0	0	2,025
S-SW	2000	259	0	0	0	0	259
	2008	279	0	0	0	0	279
	2020	312	0	0	0	0	312
	2030	343	0	0	0	0	343
	2040	376	0	0	0	0	376
	2050	413	0	0	0	0	413
	2060	454	0	0	0	0	454

Table 2.5-10 1 to 10 Mile Resident and Transient Population Projections (2000, 2008, 2020, 2030, 2040, 2050, and 2060) (Sheet 4 of 5)

	Year	1-2	2-3	3-4	4-5	5-10	Total
SW	2000	280	0	106	162	8,526	9,074
	2008	301	0	114	174	9,190	9,779
	2020	337	0	127	195	10,284	10,943
	2030	370	0	140	214	11,295	12,019
	2040	407	0	154	235	12,405	13,201
	2050	447	0	169	258	13,624	14,498
	2060	491	0	186	284	14,963	15,924
W-SW	2000	115	1,309	2,426	1,458	38,357	43,665
	2008	123	1,410	2,614	1,571	41,344	47,062
	2020	138	1,578	2,926	1,758	46,267	52,667
	2030	152	1,734	3,213	1,931	50,814	57,844
	2040	167	1,904	3,529	2,121	55,808	63,529
	2050	183	2,091	3,876	2,329	61,293	69,772
	2060	201	2,297	4,257	2,558	67,317	76,630
West	2000	185	213	219	554	5,003	6,174
	2008	199	229	236	597	5,392	6,653
	2020	223	256	264	668	6,034	7,445
	2030	245	282	290	733	6,627	8,177
	2040	269	309	318	806	7,279	8,981
	2050	295	340	349	885	7,994	9,863
	2060	324	373	384	972	8,780	10,833
W-NW	2000	28	0	70	263	5,066	5,427
	2008	30	0	75	283	5,460	5,848
	2020	33	0	84	317	6,110	6,544
	2030	37	0	92	348	6,711	7,188
	2040	40	0	101	382	7,370	7,893
	2050	44	0	111	420	8,095	8,670
	2060	49	0	122	461	8,890	9,522

Table 2.5-10 1 to 10 Mile Resident and Transient Population Projections (2000, 2008, 2020, 2030, 2040, 2050, and 2060) (Sheet 5 of 5)

	Year	1-2	2-3	3-4	4-5	5-10	Total
NW	2000	195	392	379	776	5,802	7,544
	2008	210	422	408	836	6,253	8,129
	2020	235	472	457	936	6,998	9,098
	2030	258	519	502	1,028	7,686	9,993
	2040	283	570	551	1,129	8,441	10,974
	2050	311	626	605	1,240	9,271	12,053
	2060	342	687	665	1,361	10,182	13,237
N-NW	2000	219	199	290	191	4,273	5,172
	2008	236	214	312	205	4,450	5,417
	2020	264	240	349	230	4,731	5,814
	2030	290	263	384	253	4,978	6,168
	2040	318	289	421	277	5,239	6,544
	2050	349	317	463	305	5,513	6,947
	2060	384	349	508	335	5,801	7,377

Table 2.5-11 Canadian Population and Average Annual Growth Rates

	Histo	Average Annual Growth Rate				
Canadian Subdivision	1996	2001	2006	'96-'01	'01-'06	'96-'06
Ontario	10,753,573	11,410,046	12,160,282	1.19%	1.28%	1.24%
Amherstburg	19,273	20,339	21,748	1.08%	1.35%	1.22%
Chatham-Kent	109,350	107,341	108,177	-0.37%	0.16%	-0.11%
Essex	19,437	20,085	20,032	0.66%	-0.05%	0.30%
Kingsville	18,409	19,619	20,908	1.28%	1.28%	1.28%
Lakeshore	26,127	28,746	33,245	1.93%	2.95%	2.44%
LaSalle	20,556	25,285	27,652	4.23%	1.81%	3.01%
Leamington	25,389	27,138	28,833	1.34%	1.22%	1.28%
Pelee	283	256	287	-1.99%	2.31%	0.14%
Tecumseh	23,151	25,105	24,224	1.63%	-0.71%	0.45%
Walpole Island 46	1,525	1,843	1,878	3.86%	0.38%	2.10%
Windsor	197,694	208,402	216,473	1.06%	0.76%	0.91%
All Subdivisions	461,194	484,159	503,457	0.98%	0.78%	0.88%

Table 2.5-12 10 to 50 Mile Resident and Transient Population Projections (2000, 2008, 2020, 2030, 2040, 2050, and 2060) (Sheet 1 of 4)

Cardinal Compass	Mile Range							
Direction	Year	10-20	20-30	30-40	40-50	Total		
North	2000	126,286	461,805	589,430	391,250	1,568,771		
	2008	122,381	447,527	608,376	415,635	1,593,919		
	2020	116,750	426,934	637,944	455,093	1,636,721		
	2030	112,255	410,499	663,679	490,821	1,677,254		
	2040	107,934	394,696	690,452	529,354	1,722,436		
	2050	103,779	379,502	718,305	570,912	1,772,498		
	2060	99,784	364,893	747,281	615,732	1,827,690		
N-NE	2000	110,927	363,265	731,939	446,579	1,652,710		
	2008	112,409	372,223	739,588	481,669	1,705,889		
	2020	114,670	386,077	751,213	539,541	1,791,501		
	2030	116,589	398,015	761,040	593,044	1,868,688		
	2040	118,540	410,323	770,996	651,854	1,951,713		
	2050	120,523	423,010	781,081	716,495	2,041,109		
	2060	122,540	436,091	791,299	787,547	2,137,477		
NE	2000	16,227	128,415	37,448	5,553	187,643		
	2008	17,859	140,785	44,592	6,614	209,850		
	2020	20,620	161,611	57,944	8,598	248,773		
	2030	23,245	181,300	72,077	10,699	287,321		
	2040	26,204	203,388	89,658	13,312	332,562		
	2050	29,539	228,167	111,527	16,565	385,798		
	2060	33,299	255,965	138,730	20,612	448,606		
E-NE	2000	10,608	18,443	23,564	20,448	73,063		
	2008	11,176	19,782	27,221	22,628	80,807		
	2020	12,088	21,976	33,798	26,343	94,205		
	2030	12,904	23,989	40,477	29,901	107,271		
	2040	13,775	26,187	48,476	33,939	122,377		
	2050	14,705	28,586	58,056	38,523	139,870		
	2060	15,698	31,204	69,529	43,725	160,156		

Table 2.5-12 10 to 50 Mile Resident and Transient Population Projections (2000, 2008, 2020, 2030, 2040, 2050, and 2060) (Sheet 2 of 4)

Cardinal Compass	Mile Range						
Direction	Year	10-20	20-30	30-40	40-50	Total	
East	2000	2,299	5,092	12,004	2,435	21,830	
	2008	2,354	5,485	13,290	2,592	23,721	
	2020	2,441	6,134	15,482	2,847	26,904	
	2030	2,516	6,734	17,582	3,078	29,910	
	2040	2,593	7,392	19,967	3,329	33,281	
	2050	2,672	8,114	22,676	3,599	37,061	
	2060	2,754	8,907	25,753	3,892	41,306	
E-SE	2000	0	0	265	0	265	
	2008	0	0	267	0	267	
	2020	0	0	272	0	272	
	2030	0	0	276	0	276	
	2040	0	0	280	0	280	
	2050	0	0	284	0	284	
	2060	0	0	288	0	288	
SE	2000	0	100	9,884	43,966	53,950	
	2008	0	101	10,055	44,528	54,684	
	2020	0	104	10,317	45,386	55,807	
	2030	0	107	10,542	46,113	56,762	
	2040	0	109	10,770	46,852	57,731	
	2050	0	112	11,004	47,602	58,718	
	2060	0	114	11,243	48,365	59,722	
S-SE	2000	0	1,467	16,677	28,597	46,741	
	2008	0	1,494	16,883	28,585	46,962	
	2020	0	1,535	17,197	28,568	47,300	
	2030	0	1,571	17,463	28,553	47,587	
	2040	0	1,607	17,733	28,539	47,879	
	2050	0	1,645	18,007	28,524	48,176	
	2060	0	1,683	18,286	28,510	48,479	

Table 2.5-12 10 to 50 Mile Resident and Transient Population Projections (2000, 2008, 2020, 2030, 2040, 2050, and 2060) (Sheet 3 of 4)

Cardinal Compass	Mile Range									
Direction	Year	10-20	20-30	30-40	40-50	Total				
South	2000	166	8,116	13,136	27,293	48,711				
	2008	163	8,202	13,193	27,091	48,649				
	2020	158	8,333	13,279	26,793	48,563				
	2030	155	8,444	13,351	26,546	48,496				
	2040	152	8,556	13,424	26,302	48,434				
	2050	148	8,670	13,497	26,060	48,375				
	2060	145	8,785	13,570	25,820	48,320				
S-SW	2000	3,789	115,973	37,284	42,979	200,025				
	2008	3,812	117,045	38,847	45,018	204,722				
	2020	3,847	118,673	41,316	48,259	212,095				
	2030	3,877	120,047	43,494	51,138	218,556				
	2040	3,907	121,436	45,786	54,188	225,317				
	2050	3,937	122,842	48,198	57,421	232,398				
	2060	3,967	124,264	50,738	60,846	239,815				
SW	2000	10,965	270,798	121,157	33,280	436,200				
	2008	11,788	272,133	120,372	34,105	438,398				
	2020	13,141	274,148	119,205	35,383	441,877				
	2030	14,387	275,838	118,241	36,484	444,950				
	2040	15,750	277,539	117,285	37,619	448,193				
	2050	17,243	279,251	116,337	38,790	451,621				
	2060	18,877	280,973	115,396	39,997	455,243				
W-SW	2000	6,896	7,699	12,189	8,175	34,959				
	2008	7,433	8,264	12,725	8,657	37,079				
	2020	8,318	9,190	13,575	9,434	40,517				
	2030	9,135	10,040	14,327	10,135	43,637				
	2040	10,033	10,970	15,120	10,888	47,011				
	2050	11,019	11,985	15,957	11,696	50,657				
	2060	12,102	13,095	16,840	12,565	54,602				

Table 2.5-12 10 to 50 Mile Resident and Transient Population Projections (2000, 2008, 2020, 2030, 2040, 2050, and 2060) (Sheet 4 of 4)

ardinal Compass	Mile Range									
Direction	Year	10-20	20-30	30-40	40-50	Total				
West	2000	4,676	6,513	36,417	30,483	78,089				
	2008	5,040	6,968	38,549	32,267	82,824				
	2020	5,640	7,711	41,985	35,141	90,477				
	2030	6,194	8,390	45,081	37,731	97,396				
	2040	6,803	9,129	48,405	40,511	104,848				
	2050	7,472	9,933	51,974	43,497	112,876				
	2060	8,206	10,808	55,807	46,702	121,523				
W-NW	2000	4,181	23,120	27,245	26,576	81,122				
	2008	4,515	25,232	29,915	29,019	88,681				
	2020	5,067	28,768	34,420	33,112	101,367				
	2030	5,578	32,090	38,688	36,960	113,316				
	2040	6,141	35,796	43,485	41,256	126,678				
	2050	6,760	39,930	48,877	46,051	141,618				
	2060	7,442	44,541	54,937	51,403	158,323				
NW	2000	21,003	129,325	148,411	72,477	371,216				
	2008	21,223	141,425	164,240	84,721	411,609				
	2020	21,558	161,731	191,205	107,075	481,569				
	2030	21,842	180,863	217,028	130,146	549,879				
	2040	22,129	202,258	246,338	158,189	628,914				
	2050	22,420	226,184	279,607	192,275	720,486				
	2060	22,715	252,941	317,370	233,704	826,730				
N-NW	2000	29,054	229,806	193,348	164,684	616,892				
	2008	28,216	225,322	203,502	185,988	643,028				
	2020	27,004	218,761	219,742	223,223	688,730				
	2030	26,034	213,440	234,261	259,885	733,620				
	2040	25,099	208,248	249,739	302,570	785,656				
	2050	24,198	203,182	266,240	352,265	845,885				
	2060	23,329	198,239	283,831	410,122	915,521				

Table 2.5-13 United States Age and Gender Distribution Surrounding Fermi 3 (2000)

Population Parameter	Low Population Zone ¹	10 Mile Radius	Region ²
Gender			
Male	4,879	49,745	2,467,388
Female	4,679	51,186	2,618,762
Age			
Less than 5 years	594	7,118	347,933
5-9 years	699	7,672	385,901
10-14 years	829	7,781	374,869
15-19 years	858	7,254	348,222
20-24 years	554	6,281	326,312
25-34 years	1249	13,860	739,901
35-44 years	1,660	16,582	816,740
45-54 years	1506	14,738	698,877
55-59 years	467	4,903	240,281
60-64 years	328	3,663	182,136
65-74 years	455	5,996	324,723
75-84 years	260	3,765	228,474
85 years and up	99	1,318	71,781
Total	9,558	100,931	5,086,150

Methodology: CBG estimating approach

Notes:

1. Low population zone (LPZ) is defined as the area located within a 3-mile radius of Fermi 3

2. Region is defined as the area located within a 50-mile radius from Fermi 3

Table 2.5-14 Canadian Age and Gender Distribution Surrounding Fermi 3, 50-Mile Radius (2001)

Population Parameter	Region ¹
Gender	
Male	237,530
Female	244,775
Age	
0-4 years	29,770
5-14 years	66,905
15-19 years	33,580
20-24 years	31,850
25-44 years	145,455
45-54 years	66,350
55-64 years	44,240
65-74 years	34,785
75-84 years	22,570
85 years and over	6,810
Total	482,315

Notes:

1. Region is defined as the area located within a 50-mile radius from Fermi 3

Table 2.5-15 United States Racial and Ethnic Distribution Surrounding the Fermi Site (2000)

	Low Population Zone ¹	10 Mile Radius	Region ²
Ethnicity			
African American	120	2,096	1137912
Asian	8	583	126707
Caucasian	8,991	94,199	3547397
Hawaiian	3	13	1247
Hispanic	281	2,318	163480
Native American	44	365	16387
Some Other Race	111	1,357	93020
Total	9,558	100,931	5,086,150

Methodology: CBG estimating approach

Notes:

1. Low population zone (LPZ) is defined as the area located within a 3-mile radius of Fermi 3

2. Region is defined as the area located within a 50-mile radius from the planned Fermi 3

Table 2.5-16 Canadian Racial and Ethnic Distribution Surrounding Fermi 3, 50-mi Radius (2001)

Ethnicity	Region ¹
Caucasian	423,940
Aboriginal	6,165
Chinese	6,205
South Asian	6,960
Black	10,870
Filipino	3,165
Latin American	2,825
Southeast Asian	3,295
Arab	8,800
West Asian	1,180
Korean	605
Japanese	310
Visible minority; n.i.e	1,500
Multiple visible minorities	490
Total	476,310

Methodology: Canadian Subdivisions

Notes:

1. Region is defined as the area located within a 50-mile radius from Fermi 3

Table 2.5-17 United States Household Income Distribution Surrounding Fermi 3 (2000)

Income Category	Households in the LPZ ¹	Households in the 10 Mile Radius	Households in the Region ²
Less than \$10,000	151	2,774	172,233
\$10,000 to \$14,999	111	1,875	107,276
\$15,000 to \$24,999	333	4,061	226,515
\$25,000 to \$34,999	400	4,192	229,373
\$35,000 to \$49,999	550	6,204	302,877
\$50,000 to \$74,999	671	8,521	395,535
\$75,000 to \$99,999	517	5,327	237,507
\$100,000 to \$149,999	357	3807	193,007
\$150,000 to \$199,999	124	786	50,281
\$200,000 or More	64	533	48,531
Median Household Income	\$58,325	\$51,807	\$47,852

^{*} Methodology: CBG estimation approach

Notes:

1. Low population zone (LPZ) is defined as the area located within a 3-mile radius of Fermi 3

2. Region is defined as the area located within a 50-mile radius from the planned Fermi 3

Table 2.5-18 United States County and State Median Household Income Data

	Households	Persons per household	Median Household Income	Per capita money income	Persons below poverty, percent
	2000	2000	2004	1999	2004
County					
Jackson County, MI	58,168	2.55	\$43,559	\$20,171	12.70%
Lenawee County, MI	35,930	2.61	\$47,944	\$20,186	9.20%
Livingston County, MI	55,384	2.80	\$71,683	\$28,069	5.10%
Macomb County, MI	309,203	2.52	\$58,784	\$24,446	8.20%
Monroe County, MI	53,772	2.69	\$53,838	\$22,458	8.70%
Oakland County, MI	471,115	2.51	\$64,293	\$32,534	7.80%
St. Clair County, MI	62,072	2.62	\$48,095	\$21,582	10.20%
Washtenaw County, MI	125,327	2.41	\$55,437	\$27,173	11.10%
Wayne County, MI	768,440	2.64	\$38,743	\$20,058	18.80%
Erie County, OH	31,727	2.45	\$44,515	\$21,530	9.60%
Fulton County, OH	15,480	2.69	\$47,958	\$18,999	7.10%
Henry County, OH	10,935	2.62	\$45,573	\$18,667	7.30%
Lucas County, OH	182,847	2.44	\$40,277	\$20,518	14.70%
Ottawa County, OH	16,474	2.45	\$46,849	\$21,973	7.50%
Sandusky County, OH	23,717	2.56	\$42,793	\$19,239	8.90%
Seneca County, OH	22,292	2.56	\$39,620	\$17,027	9.80%
Wood County, OH	45,172	2.51	\$46,191	\$21,284	8.00%
U.S.	105,480,101	2.59	\$44,334	\$21,587	12.70%
Michigan	3,785,661	2.56	\$44,409	\$22,168	12.50%
Ohio	4,445,773	2.49	\$43,371	\$21,003	11.70%
·					

Table 2.5-19 Canadian Census Division Median Household Income Data (2001)

	Households	Persons per household	Median household Income	Per capita money income	Persons below poverty, percent
Subdivision					
Amherstburg	7,230	2.81	\$65,594	\$23,317.01	NA
Chatham-Kent	41,950	2.56	\$46,517	\$18,179.34	NA
Essex	7,420	2.71	\$57,364	\$21,191.98	NA
Kingsville	6,805	2.88	\$61,191	\$21,224.57	NA
Lakeshore	9,895	2.91	\$72,228	\$24,862.45	NA
LaSalle	8,380	3.02	\$81,022	\$26,852.46	NA
Leamington	9,260	2.93	\$48,467	\$16,537.86	NA
Pelee	NA	NA	NA	NA	NA
Tecumseh	8,385	2.99	\$80,991	\$27,050.77	NA
Walpole	NA	NA	NA	NA	NA
Windsor	83,825	2.49	\$46,949	\$18,884.18	NA
Province					
Ontario	4,219,410	2.70	\$53,626	\$19,830.78	NA

Table 2.5-19-A Population Data for the Fermi 3 Region Counties and Selected Cities

	2000	2001	2002	2003	2004	2005	2006	2007	2008
Michigan	9,938,444	10,004,341	10,037,303	10,065,881	10,090,280	10,093,266	10,083,878	10,049,790	10,003,422
Monroe	145,945	147,631	148,566	149,649	151,041	152,242	153,150	153,331	152,949
Monroe City	22,076	21,769	21,589	21,573	21,604	21,599	21,616	21,488	21,374
Wayne	2,061,162	2,058,087	2,052,396	2,044,832	2,035,701	2,024,183	2,009,204	1,981,654	1,949,929
City of Detroit	951,270	935,637	927,802	926,035	923,352	920,675	918,849	916,936	912,062
Oakland	1,194,156	1,201,330	1,200,284	1,203,036	1,205,936	1,205,877	1,204,666	1,202,287	1,202,174
Livingston	156,951	163,333	168,102	171,644	175,739	179,427	182,075	182,655	182,575
Macomb	788,149	800,000	807,173	813,733	820,633	825,228	828,282	829,364	830,663
Washtenaw	322,895	329,239	333,636	337,093	340,725	344,025	346,185	347,969	347,376
Jackson	158,422	159,761	160,802	161,839	161,790	162,573	162,867	162,706	160,180
Lenawee	98,890	99,586	100,185	100,491	100,945	100,983	101,313	101,345	100,801
St. Clair	164,235	165,824	166,721	168,359	169,548	169,525	170,187	169,840	168,894
Ohio	11,353,140	11,391,298	11,410,582	11,430,306	11,445,095	11,450,954	11,458,390	11,477,641	11,485,910
Lucas	455,054	454,392	453,244	452,015	449,044	446,458	443,908	442,408	440,456
City of Toledo	313,619	311,848	309,684	307,750	304,112	301,144	297,618	295,614	293,201
Fulton	42,084	42,152	42,205	42,254	42,576	42,633	45,512	42,482	42,485
Ottawa	40,985	40,972	40,915	41,127	41,302	41,294	41,200	41,069	40,823
Henry	29,210	29,135	29,236	29,143	29,160	29,185	29,210	28,902	28,841
Sandusky	61,792	61,675	61,684	61,398	61,431	61,233	61,110	60,927	60,637
Seneca	58,683	58,314	57,943	57,755	57,532	57,246	56,860	56,688	56,461
Erie	79,551	79,228	78,643	78,472	78,365	77,786	77,423	77,162	77,062
Wood	121,065	121,891	121,951	122,358	123,569	123,975	124,127	124,811	125,340
Total, Region Counties	5,979,229	6,012,550	6,023,686	6,035,198	6,045,037	6,043,873	6,034,279	6,005,600	5,967,646

Source: U.S. Census Bureau, Population Estimates, 2008 Estimates of Incorporated Places and Minor Civil Divisions, All States, incorporated places only. Available at http://www.census.gov/popest/cities/cities.html

Table 2.5-20 Regional Employment Data (2000 and 2006)

			20	000			2000-2006			
		Labor Force	Employ- ment	Unemploy- ment	Unemploy- ment Rate, Percent	Labor Force	Employ- ment	Unemploy- ment	Unemploy- ment Rate, Percent	Percent Change in Employment
Michigan	Monroe	77,194	74,756	2,438	3.2	79,051	73,936	5,115	6.5	-1.1
Counties	Wayne	952,300	911,069	41,231	4.3	894,058	818,844	75,214	8.4	-10.1
	Jackson	79,088	76,396	2,692	3.4	78,785	73,160	5,625	7.1	-4.2
	Lenawee	51,699	49,769	1,930	3.7	50,586	46,897	3,689	7.3	-5.8
	Livingston	89,687	87,314	2,373	2.6	94,228	89,214	5,014	5.3	2.2
	Macomb	433,912	418,171	15,741	3.6	421,446	391,252	30,194	7.2	-6.4
	Oakland	675,896	656,461	19,435	2.9	630,690	594,361	36,329	5.8	-9.5
	Washtenaw	185,202	180,898	4,304	2.3	191,462	182,667	8,795	4.6	1.0
Ohio	Lucas	227,304	217,049	10,255	4.5	226,172	211,883	14,289	6.3	-2.4
Counties	Fulton	22,695	21,786	909	4.0	23,387	21,998	1,389	5.9	1.0
	Henry	15,272	14,618	654	4.3	16,173	15,197	976	6.0	4.0
	Erie	42,168	40,380	1,788	4.2	42,663	40,145	2,518	5.9	-0.6
	Ottawa	21,404	20,320	1,084	5.1	21,944	20,412	1,532	7.0	0.5
	Sandusky	32,819	31,453	1,366	4.2	33,427	31,508	1,919	5.7	0.2
	Seneca	30,954	29,629	1,325	4.3	31,431	29,769	1,662	5.3	0.5
	Wood	66,346	64,027	2,319	3.5	68,447	64,857	3,590	5.2	1.3
Region		3,091,011	2,977,479	113,532	3.7	2,988,136	2,783,519	204,617	6.8	-6.5
Detroit CS	A	2,700,947	2,544,486	156,461	5.8	2,714,017	2,439,109	274,908	10.1	-4.1
Toledo MS	A	317,744	302,749	14,995	4.7	344,837	316,706	28,131	8.2	4.6

Source: Reference 2.5-72 through Reference 2.5-74

Table 2.5-21 Area Employment by Industry (2000 and 2006) (Sheet 1 of 2)

	Monroe County		Wayne	Wayne County		Lucas County		Detroit CSA		Toledo MSA	
Industry	2000	2006	2000	2006	2000	2006	2000	2006	2000	2006	2000
Agriculture, forestry, fishing and hunting, and mining	894	788	1,044	965	866	440	6,405	6,965	918	2,581	12,409
Construction	5,370	5,299	39,296	34,634	12,230	12,028	152,923	133,451	14,787	18,614	156,170
Manufacturing	18,120	14,587	185,856	144,883	38,774	33,003	571,992	464,139	54,833	54,404	634,663
Wholesale trade	2,307	2,402	26,904	24,153	8,411	6,791	85,105	78,589	12,491	9,444	94,005
Retail trade	8,430	8,811	90,905	84,515	25,977	24,467	293,743	277,391	35,712	37,328	321,218
Transportation and warehousing, and utilities	5,112	5,388	54,387	46,478	11,599	12,552	108,062	103,280	19,029	19,821	130,039
Information	973	1,188	21,231	19,086	4,079	4,058	66,888	56,068	5,855	5,788	65,196
Finance and insurance, and real estate and rental and leasing	2,669	4,224	50,591	53,936	10,258	11,421	143,764	157,182	16,252	15,016	157,808
Professional, scientific, and management, and administrative and waste management services	4,012	5,093	77,890	74,914	19,036	16,845	247,998	255,136	24,961	25,169	267,823
Educational services, and health care, and social assistance	12,891	16,499	158,342	164,573	46,342	51,115	470,184	519,322	61,939	76,213	542,599
Arts, entertainment, and recreation, and accommodation, and food services	4,894	6,620	68,026	72,197	17,110	17,714	203,540	208,121	33,343	29,063	204,648
Other services, except public administration	3,054	3,726	42,366	37,643	10,226	8,652	115,713	106,692	13,087	13,246	125,170

Table 2.5-21 Area Employment by Industry (2000 and 2006) (Sheet 2 of 2)

	Monroe	County	Wayne (County	Lucas (County	Detroit	t CSA	Toledo	MSA	Region
Industry	2000	2006	2000	2006	2000	2006	2000	2006	2000	2006	2000
Public administration	1,618	2,937	34,272	26,042	7,111	6,666	78,169	72,773	9,542	10,019	91,589

Source: Reference 2.5-64 through Reference 2.5-74

Table 2.5-22 Employment by Industry for Canadian Counties in the 50-mi Region (2001)

Industry	Employment
Agriculture and other resource-based industries	18,740
Manufacturing and construction industries	94,290
Wholesale and retail trade	43,595
Finance and real estate	11,385
Health and education	45,195
Business services	39,345
Other services	58,580

Includes the Canadian counties of Essex, Chatham-Kent, and Lambton that lie within the 50-mile radius of Fermi 3.

Source: Reference 2.5-75 through Reference 2.5-77

Table 2.5-23 Monroe County Principal Employers (2006 and 1998)

Employer	Employees, 2006	Percent of Total County Employment	Employees, 1998	Percent of Total County Employment
Automotive Components Holdings (Formerly Visteon Corporation)	2,000	3.39	1,400	2.58
Detroit Edison Corp.	1,500	2.55	1,480	2.72
Mercy Memorial Hospital	1,300	2.21	811	1.49
Meijer Inc.	1,025	1.74	900	1.66
Monroe Public Schools	1,000	1.70	803	1.48
Monroe County	741	1.26	786	1.45
Bedford Public Schools	725	1.23	515	0.95
Cabela's	650	1.10	-	0.00
MacSteel (Formerly North Star Steel)	500	0.85	-	0.00
Monroe Auto Equipment	500	0.85	500	0.92
Guardian Industries Corp.	500	0.85	500	0.92
La-Z-Boy Inc	500	0.85	500	0.92
Totals	10,941	18.57	8,195	15.08

Table 2.5-24 Charter County of Wayne, Michigan Principal Employers (2007 and 1998)

2007 1998 Percentage of Total Percentage of Total **Employer County Employment County Employment Employees Employees** Ford Motor Company 42,309 5.23 57,659 6.33 **Detroit Public Schools** 17,329 2.14 17,286 1.90 City of Detroit 13,593 17,302 1.90 1.68 Henry Ford Health System 11,475 1.42 9,872 1.08 **Detroit Medical Center** 10,190 1.26 13,967 1.90 U.S. Postal Service 9,396 1.16 Chrysler LLC * 15,834 1.53 9,000 1.11 **General Motors Corporation** 11,067 1.22 7,843 0.97 Oakwood Healthcare Inc. 7,510 0.93 6,653 1.74 U.S. Government 7,417 0.92 14,140 0.73 7,136 0.78 St. John Health System 136062 170,916 Total 16.83 6.00 **Total Wayne County Employment** 808,380 910,396

Table 2.5-25 Lucas County Principal Employers (2007 and 1997)

Top 2006 Private & Public Employers

Top 1997 Private & Public Employers

Employer	Number of Employees	Percentage of Total Employment	Employer	Number of Employees	Percentage of Total Employment
ProMedica Health Systems	11,265	5.31%	Mercy Health Partners	6,680	3.06%
Mercy Health Partners	6,723	3.17%	Daimler-Chrysler/Toledo Jeep	5,400	2.47%
University of Toledo	4,987	2.35%	Toledo Public Schools	5,319	2.44%
Toledo Public Schools	4,554	2.15%	University of Toledo	5,245	2.40%
Lucas County	4,168	1.96%	General Motors/Power Train	4,600	2.11%
Daimler-Chrysler/Toledo Jeep	3,548	1.67%	Seaway Foodtown	4,548	2.08%
Kroger	3,503	1.65%	Toledo Hospital	4,506	2.06%
U.T. Health Science Campus	3,300	1.56%	Lucas County	4,300	1.97%
City of Toledo	2,979	1.40%	Medical University of Ohio	3,442	1.58%
State of Ohio	2,487	1.17%	City ·of Toledo	3,017	1.38%
General Motors/Power Train	2,112	1.00%	Andersons	2,962	1.36%
United Parcel Service	2,108	0.99%	Kroger	2,667	1.22%
Andersons	1,766	0.83%	Meijers	2,000	0.92%
HCR Manor Care	1,745	0.82%	State of Ohio	1,990	0.91%
Meijers	1,721	0.81%	United Parcel Service	1,946	0.89%
Top ten total employed	56,966	26.85%	Top Ten Total Employed	58,622	26.85%
Total Employed in Lucas County	212164		Total Employed in Lucas County	218331	

Table 2.5-26 Detroit MSA and Michigan Industry Employment Forecasts (2004 – 2014) (Sheet 1 of 2)

Detroit MSA Michigan **Employment** Change **Employment** Change 2004 2014 2004 2014 Level Percent Level Percent Total Wage and Salary 7.9 2,026,680 2,166,530 139,850 6.9 4,394,360 4,743,180 348,820 Employment Natural Resources and 1,190 1,160 -30 -2.0 8,160 7,900 -260 -3.1 Mining Construction 82,610 89,020 6,410 7.7 191,540 208,620 17,080 8.9 Manufacturing 295,640 262,070 -33,570 -11.4 697,290 653,070 -44,220 -6.3 **Durable Goods** 250,990 217,310 -33,680 -13.4 547,950 503,050 -44900 -8.2 44,650 44,750 100 0.2 149,340 150,010 670 0.5 Nondurable Goods

Table 2.5-26 Detroit MSA and Michigan Industry Employment Forecasts (2004 – 2014) (Sheet 2 of 2)

Michigan **Detroit MSA** Change **Employment** Change **Employment** 2004 2014 2004 2014 Level Percent Level Percent Service Industries 1.647.240 1.814.290 167.050 10.1 3.497.370 3.873.590 376.220 10.8 Wholesale Trade 92.900 100.500 7.600 8.2 170,600 185,060 14460 8.5 Retail Trade 223,150 231,810 8.660 3.9 513,680 539,340 25660 5.0 5 5.5 Transportation, 8480 82,490 86,640 4,150 153,680 162,160 Warehousing and Utilities Information 36.560 38,050 1.490 4.1 68.560 71.030 2470 3.6 172,080 Finance and Insurance 85.100 88.800 3.700 4.3 161,320 10760 6.7 Real Estate and Rental 30,610 32,570 1,960 6.4 56,110 60,180 4070 7.3 Leasing 362,210 700,550 Professional and 430.630 68,420 18.9 584.700 115850 19.8 **Business Services** Educational and health 381.780 424.720 42.940 11.2 950.610 1.070.320 119.710 12.6 Services 12.2 Leisure and Hospitality 182,010 201,380 19,370 10.6 402,020 451,130 49110 Other Services 74.620 80.680 6.060 8.1 178.000 195.840 17840 10.0 Government 95.810 98,540 2.730 2.8 258,100 265,900 7800 3.0

MSA COMPOSITION: Lapeer, Macomb, Monroe, Oakland, St. Clair, and Wayne Counties

Source: Reference 2.5-81 and Reference 2.5-82

Table 2.5-27 Toledo MSA Industry Employment Projections Report (2004-2014) (Sheet 1 of 2)

Industry	2004 Annual Employment	2014 Projected Employment	Change in Employment 2004-2014	Percent Change 2004-2014
Goods-Producing	71,000	66,770	-4,230	-6.0
Natural Resources and Mining	4,000	3,760	-240	-6.0
Construction	15,150	16,190	1,040	6.9
Manufacturing	51,850	46,820	-5,030	-9.7
Service-Providing	255,640	282,630	26,990	10.6
Trade, Transportation and Utilities	64,360	68,120	3,760	5.8
Wholesale Trade	13,390	14,100	710	5.3
Retail Trade	37,540	40,220	2,680	7.1
Transportation and Warehousing	11,760	12,220	460	3.9
Utilities	1,670	1,580	-90	-5.4
Information	4,560	4,860	300	6.6
Financial Activities	13,050	13,890	840	6.4
Finance and Insurance	8,640	9,110	470	5.4
Real Estate and Rental and Leasing	4,410	4,780	370	8.4
Professional and Business Services	33,950	39,020	5,070	14.9
Professional, Scientific & Technical Services	11,130	12,910	1,780	16.0
Management of Companies and Enterprises	3,250	3,310	60	1.8
Administrative and Waste Services	19,570	22,800	3,230	16.5
Education and Health Services	47,370	55,870	8,500	17.9
Educational Services	4,310	4,460	150	3.5
Health Care & Social Assistance	43,060	51,410	8,350	19.4

Table 2.5-27 Toledo MSA Industry Employment Projections Report (2004-2014) (Sheet 2 of 2)

Industry	2004 Annual Employment	2014 Projected Employment	Change in Employment 2004-2014	Percent Change 2004-2014
Leisure and Hospitality	32,620	36,440	3,820	11.7
Arts, Entertainment & Recreation	4,880	5,550	670	13.7
Accommodation and Food Services	27,740	30,890	3,150	11.4
Other Services	15,150	16,580	1,430	9.4
Government	44,580	47,850	3,270	7.3
Federal Government	2,570	2,510	-60	-2.3
State Government	11,650	12,160	510	4.4
Local Government	30,360	33,180	2,820	9.3
Self-Employed, Private Household and Unpaid Family Workers	19,580	21,720	2,140	10.9

MSA COMPOSITION: Fulton, Lucas, Ottawa and Wood Counties

 Table 2.5-28
 Recent and Projected Major Employment Changes within Monroe County

Employer	City	Job Change	Source	Notice Date	Effective Date	Comment
Splash Universe	Dundee	200	Monroe News	11/9/2006	1/22/2007	25,000 square foot water park, \$25 million investment
Backyard Storage Solutions	Monroe	130	Monroe News	11/6/2006	1/15/2007	Site of vacant Lear Corporation Plant, 1000 Ternes Dr, \$5 million investment, consolidating from Warren and Detroit
Ciena Healthcare of Southfield	Frenchtown	100	Monroe News	11/2/2006	12/1/2007	New 120 bed skilled care facility 1971 N. Monroe Street on 11.2 acres
Ford Motor Company	Monroe	-1200	Monroe News	8/25/2007	12/30/2008	Closing Automotive Component Holdings (ACH), 3200 E. Elm Ave, 48162

Table 2.5-28(A) Regional Union Construction Labor Force and Wage by Major Craft Occupation

Primary Coverage Unions	Location	Area Total Journeymen	Area Total Apprentices	Base Journeyman Wages (\$2008)
Iron Worker #55	Toledo	661	72	28.00
Boiler Makers #85	Toledo	256	144	33.43
Electrician #8	Toledo	1,520	194	34.00
	Michigan			
Operating Eng. #324	(State wide)	4,500	77	32.75
Brick Layer-Allied	SEM*	1,550	138	29.00
Pipefitter/Plumber #671	Monroe	335	21	32.32
Cement Mason #886	SEM*	400	24	28.00
Sheet Metal Worker #33	SEM*	400	50	29.00
Carpenters	SEM*	4,391	338	30.16
Laborers #959SEM*	1,091	63	26.28	
Insulators #45	Toledo	110	57	29.37
Other Union Hall Locations				
Iron Workers #25	Detroit	2,500	200	29.00
Boiler Makers #169	Detroit	444	146	32.89
Electrician #58	Detroit	4,024	275	35.85
Pipefitter/Plumbers #636	Detroit	1,650	140	36.25
Insulators #25	Detroit	195	35	30.77

^{*}SEM- Southeast Michigan

^{**}Detroit Edison personnel collected this information from local union leaders in Sept. 2009

Table 2.5-28(B) Michigan and Ohio Construction Labor Force

	Michigan 2006 (Actual)	Michigan 2016 (Projected)	Ohio 2006 (Actual)	Ohio 2016 (Projected)
Iron Workers	1,770	1,850	3,590	3,800
Boilermakers	520	580	590	670
Electricians/Instrument Fitters	24,000	30,190	30,400	
Operating Engineers	9,090	9,680	12,080	12,950
Pipefitters	15,060	15,760	18,120	19,110
Cement Masons	4,140	4,940	6,610	7,340
Sheetmetal Workers	4,960	5,190	5,770	5,750
Carpenters	31,710	33,710	41,220	44,930
Laborers	27,240	29,330	32,330	35,270
Insulators	960	1,040	1,720	1,830
Millwrights	5,500	5,520	5,410	4,550
Painters	8,580	9,090	12,620	13,970
Teamsters/Truckers	87,510	96,620	116,930	126,530

Sources: Reference 2.5-136 and Reference 2.5-137

Table 2.5-28(C) Michigan and Ohio Nuclear Operations Labor Force and Wages

Occupation	Michigan 2006 Actual	Michigan 2016 Projected	Michigan Average Hourly Wage 2008	Ohio 2006 Actual	Ohio 2016 Projected	Ohio Average Hourly Wage 2008
General and Operations Managers	36,460	35,450	\$47.98	56,770	54,430	\$49.06
Accountants and Auditors	34,290	38,230	\$30.79	49,080	54,050	\$29.55
Computer Software Engineers Applications and Systems Software	19,420	24,400	\$38.63	23,770	31,760	\$39.76
Network and Computer System Administrators	7,850	9,270	\$30.96	12,020	14,510	\$31.18
Chemical Engineers	1,050	1,160	\$38.92	1,530	1,570	\$41.15
Civil Engineers	6,190	6,870	\$33.58	5990	6460	\$34.20
Electrical Engineers	6,370	6,790	\$37.04	4,440	4,500	\$34.93
Mechanical Engineers	24,730	25,970	\$38.13	11,350	10,630	\$33.25
Nuclear Technicians	90	90	\$35.27	400	400	\$28.04
Security Guards	25,360	27,600	\$12.21	31,390	33,680	\$11.99
Office & Administration Support Occupations	699,660	723,590	\$15.71	917,670	943,850	\$15.11
Nuclear Power Reactor Operators	NA	NA	\$33.31	150	160	\$31.24
Power Distributors and Dispatches	490	470	\$32.19	160	140	\$26.27
Power Plant Operators	1,640	1,680	\$27.13	1,260	1,220	\$28.22
Stationary Engineers and Boiler Operators	1,310	1,320	\$26.20	2,080	1,970	\$24.07

Sources: Reference 2.5-136 and Reference 2.5-137

Table 2.5-29 Monroe County Direct and Overlapping Property Rates (2001-2005) (Rate per \$1,000 of Taxable Value)

Tax I	Levy Y	ear
-------	--------	-----

		16	ax Levy 16	aı	
	2001	2002	2003	2004	2005
County Direct Rates	4.84	4.83	4.79	4.81	4.80
Jail Bond	0.16	0.16	0.10	0.11	0.11
Senior Citizen	0.49	0.49	0.48	0.49	0.50
Total Direct Rate	5.49	5.49	5.39	5.40	5.41
Overlapping Rates					
Cities:					
Luna Pier	13.12	12.76	10.07	11.11	11.80
Milan	18.96	19.21	18.83	18.82	18.71
Monroe	15.32	15.33	15.34	15.46	15.80
Petersburg	23.94	21.38	21.57	20.34	20.71
Township (average)	2.64	2.87	2.91	2.91	2.72
School Districts (average)	27.51	27.41	25.99	26.97	26.80
Intermediate School Districts (average)	4.38	4.72	4.69	4.92	4.89
Community College	2.20	2.19	2.18	2.19	2.18
Library	0.82	0.82	0.81	1.00	1.00

Table 2.5-30 Monroe County Assessed and Estimated True Cash Value of Taxable Property (2001-2005)

Tax Year	Residential Property	Agricultural Property	Commercial Property	Industrial Property	Developmental Property
2001	\$3,066,123,121	\$293,630,302	\$519,720,689	\$1,163,041,197	\$11,622,138
2002	\$3,343,306,250	\$316,306,273	\$588,621,309	\$1,127,474,795	\$12,978,813
2003	\$3,591,071,882	\$342,155,453	\$638,975,155	\$1,113,076,146	\$16,428,886
2004	\$3,868,050,728	\$373,425,880	\$695,883,009	\$1,081,071,159	\$24,187,555
2005	\$4,171,394,039	\$437,947,734	\$731,115,107	\$1,042,462,771	\$45,988,525

Tax Year	Personal Property	Total Assessed Value	Total Direct Tax Rate	Estimated True Cash Value
2001	\$471,793,096	\$5,525,930,543	5.4843	\$11,112,871,803
2002	\$488,638,679	\$5,877,326,118	5.4768	\$11,823,516,893
2003	\$464,976,294	\$6,166,683,816	5.3773	\$12,412,251,677
2004	\$475,914,907	\$6,518,532,638	5.4046	\$13,110,642,494
2005	\$489,137,589	\$6,918,045,765	5.4052	\$13,926,131,767

Note:

Residential, commercial and industrial values are calculated without tax-exempt values.

 Table 2.5-31
 Monroe County's Largest Property Tax Payers

2006 Tax Levy

1997 Tax Levy

Taxpayer	Taxable Assessed Value	Rank	Percent of County Total	Taxable Assessed Value	Rank	Percent of County Total
Detroit Edison	\$822,719,335	1	12.62	\$1,178,001,644	1	31.36
Automotive Components Holding (formerly Visteon)	\$104,799,157	2	1.61	\$100,559,120	2	2.68
Consumers Power Co.	\$75,254,259	3	1.15	\$73,019,791	3	1.94
Macsteel Monroe (formerly North Star)	\$29,832,080	4	0.46	\$24,721,540	4	0.66
Goodwill Co. (Meijer)	\$23,780,814	5	0.36	\$17,705,690	8	0.47
Holam Inc. (Holcim)	\$23,088,046	6	0.35	\$23,470,696	5	0.62
International Transmission Co.	\$22,524,233	7	0.35	-	-	-
Cabela's	\$18,305,544	8	0.28	-	-	-
Frenchtown Square	\$18,253,393	9	0.28	\$14,910,450	9	0.40
Aquila (formerly Michigan Gas Utilities)	\$17,129,162	10	0.26	-	-	-
Utilicorp				\$19,239,648	6	0.51
TWB/Worthington Steel				\$18,532,700	7	0.49
Tenneco				\$11,118,300	10	0.30
Totals	\$1,155,686,023		17.73	\$1,481,279,579		39.44

Table 2.5-32 Charter County of Wayne Principal Property Taxpayers (Fiscal Year 2007)

Firm	Total Assessment (\$)	Percentage of State Equalized Value		
Ford Motor Company	1,560,809,660	2.42		
DTE Energy	1,009,871,003	1.57		
Daimler Chrysler Corp.	425,214,864	0.66		
General Motors Corp.	298,624,472	0.46		
United States Steel	213,766,632	0.33		
MGM Grand Detroit LLC	164,692,964	0.26		
Marathon Oil/ Ashland Petroleum LLC	157,376,388	0.24		
Auto Alliance Int'l Inc.	136,153,300	0.21		
Severstal Steel Company	114,684,000	0.18		
ATT Mobility LLC (f/n/a Cingular)	88,934,491	0.14		
Total	4,170,127,774	6.48		
Total State Equalized Value (S.E.V.)	64,401,640,723			

Table 2.5-33 Lucas County Top Ten Private Sector Principal Tax Payers, December 31, 2006 (Amount's in 000's)

Firm	2006 Assessed Real Estate Values (\$)	2006 Assessed Personal Property Values (\$)	2006 Assessed Property Values (\$)	2006 Percent Firms Assessed Value to Total 2006 Assessed Property Value
Sunoco Inc. R&M.	4,467	58,128	62,595	0.60
Westfield Shopping Town	53,092	226	53,318	0.55
General Motors Hydra-Matic	8,684	42,553	51,237	0.53
BP America	3,455	41,800	45,255	0.46
Daimler Chrysler	22,329	20,758	43,087	0.45
D-Serf Co.	31,935	2800	34,735	0.36
the Andersons	12,704	13,148	25,852	0.27
Johns Manville	3,628	16,876	20,504	0.21
Meijer Stores	14,006	5,959	19,965	0.20
AERC	19,097		19,097	0.20
Totals	173,397	202,248	375,645	3.83

Table 2.5-34 Frenchtown Township Total Revenue and Property Tax Comparison

Year	Total Township Revenue (\$)	Property Tax Revenue (\$) (Real & Personal)	Percentage of Revenue Represented by Property Tax
1989	2,502,529	1,063,216	42
1990	3,350,400	1,882,777	56
1991	4,924,871	3,452,922	70
1992	4,993,449	3,433,995	69
1993	3,062,207	1,196,911	39
1994	2,839,926	1,089,096	38
1995	3,867,160	1,854,690	48
1996	4,157,927	1,993,122	48
1997	5,284,861	2,717,749	51
1998	5,599,801	2,786,677	50
1999	5,393,789	2,806,568	52
2000	5,008,096	2,903,052	58
2001	5,142,750	2,822,404	55

Table 2.5-35 Taxable Value of Property in Frenchtown Township(in thousands of dollars)(Sheet 1 of 2)

		1988	1989	1990	1991	1992	1993	1994	1995
Industrial	Dollar total	704,294	810,408	828,039	833,739	841,360	836,232	764,600	754,412
	Percent of Total	67	77	78	79	80	79	72	71
Agricultural	Dollar total	11,610	11,456	12,202	13,427	13,364	13,269	12,620	12,364
	Percent of Total	1	1	1	1	1	1	1	1
Commercial	Dollar total	48,252	69,881	82,261	96,867	96,192	100,480	102,967	104,479
	Percent of Total	5	7	8	9	9	9	10	10
Residential	Dollar total	103,324	109,992	123,971	143,329	146,672	170,925	185,992	197,071
	Percent of Total	10	10	12	14	14	16	18	19
Developmental	Dollar total	547,000	640,650	698,900	762,550	561,100	590,287	661,200	813,338
	Percent of Total	-	-	-	-	-	-	-	-
Utility	Dollar total	189,246	69,446	102,554	82,259	91,483	100,835	73,067	96,222
	Percent of Total	18	7	10	8	9	10	7	9
Total Ad valorem		1,057,272	1,071,824	1,149,727	1,170,383	1,189,633	1,222,330	1,139,907	1,165,360

Table 2.5-35 Taxable Value of Property in Frenchtown Township (in thousands of dollars) (Sheet 2 of 2)

		1996	1997	1998	1999	2000	2001	2002
Industrial	Dollar total	775,929	784,316	779,260	810,131	795,857	727,976	659,469
	Percent of Total	73	74	74	77	75	69	62
Agricultural	Dollar total	12,411	12,644	12,720	12,357	11,224	11,390	11,719
	Percent of Total	1	1	1	1	1	1	1
Commercial	Dollar total	101,481	104,367	112,199	116,489	123,456	137,704	149,677
	Percent of Total	10	10	11	11	12	13	14
Residential	Dollar total	211,334	221,295	238,454	257,494	279,994	304,702	327,777
	Percent of Total	20	21	23	24	26	29	31
Developmental	Dollar total	704,706	878,225	0	0	0	0	0
	Percent of Total	-	-	-	-	-	-	-
Utility	Dollar total	81,338	87,772	74,682	75,802	54,947	69,832	72,132
	Percent of Total	8	8	7	7	5	7	7
Total Advalorem		1,183,197	1,211,272	1,217,315	1,272,274	1,265,479	1,251,603	1,220,774

Notes:

^{1.} Values in the Developmental Category include property ready for development but for which no clear category had been established. This category was dropped by the assessor's office in 1998. After that time such property was assigned to other use categories.

^{2.} Utility Values Represent personal property tax only—real property value included in industrial table.

^{3.} Properties eligible for Tax abatement under act 198 I.F.T (Industrial Facilities Tax), and Act 342 (Commercial Facilities Tax) have been included at 50% of actual taxable value to accurately reflect their tax generation.

Table 2.5-36 Per Capita Michigan State Taxes and U.S. Rank (2004)

		Per C	apita		Per \$1,000 Personal Income			
	Michigan		Ohio		Michigan		Ohio)
Tax	Value (\$)	Rank	Value(\$)	Rank	Value (\$)	Rank	Value (\$)	Rank
Total Taxes	3,313	25	3419	21	103.28	21	109.73	10
Property Taxes	1,186	16	981	26	39.96	15	31.48	24
General Sales Taxes	781	27	809	23	24.36	29	25.95	23
Selective Sales Taxes	314	39	267	47	9.78	41	8.58	48
Individual Income Taxes	630	32	1064	8	19.63	36	34.15	5
Corporate Income Taxes	182	9	93	22	5.68	6	2.97	21
Motor Fuel Taxes	107	43	135	23	3.34	42	4.34	21
Tobacco Product Taxes	99	2	49	22	3.08	2	1.57	22

Table 2.5-37 Michigan General Property Tax Collection (2004 and 2005)

2004 Levy **2005 Levy Jurisdiction** Amount (\$) **Percent of Total Percent of Total** Amount (\$) School 5,440,921,510 52.47 5,710,027,883 52.36 City 2,178,716,784 21.01 2,294,324,115 21.04 County 1,918,051,074 18.50 2,017,064,502 18.5 Township 743,252,490 7.17 793,380,177 7.27 0.85 Village 88,174,916 91,050,743 0.83 **Total Levy** 10,369,116,774 100.00 10,905,847,420 100.00

Table 2.5-38 Treasury Administered Taxes and Fee Collected on a Cash Basis(In Thousands of Dollars)

Type of Revenue	10/1/01 to 9/30/02	10/1/02 to 9/30/03	10/1/03 to 9/30/04	10/1/04 to 9/30/05	10/1/05 to 9/30/06
Net Individual Income Tax	6,260,348	5,845,697	5,912,261	6,038,578	6,242,883
Industrial/Commercial Facilities Tax	149,889	156,406	154,267	141,384	136,783
Sales Tax	6,492,547	6,408,508	6,457,613	6,609,944	6,589,230
State Education Tax	1,578,743	1,776,174	1,542,252	1,794,026	1,900,206
State Housing Development Service Fee	7,911	8,409	9,092	7,060	9,001
Environmental Protection Regulatory Fee (e)	60,929	58,459	58,422	59,167	55,784
Use Tax	1,315,629	1,236,133	1,317,494	1,396,395	1,391,289
Utility Property Tax	140,841	133,276	114,702	99,535	91,660
Total of all Revenues	20,617,594	20,413,332	20,389,235	21,267,440	21,530,516

Table 2.5-39 Regional Housing Information (2000) (Sheet 1 of 2)

		Occupied Housing		Vacar	Vacant Housing		
County	Total Housing Units	Total Occupied Units / Dwellings	Owner Occupied Units / Dwellings	Renter Occupied Units / Dwellings	Total Vacant Units	Seasonal, Recreational, Occasional Use	
Monroe County, MI	56,471	53,772	43,536	10,236	2,699	364	
Wayne County, MI	826,145	768,440	511,837	256,603	57,705	2,448	
Jackson County, MI	62,906	58,168	44,503	13,665	4,738	1,887	
Lenawee County, MI	39,769	35,930	28,102	7,828	3,839	1,911	
Livingston County, MI	58,919	55,384	48,757	6,627	3,535	1,553	
Macomb County, MI	320,276	309,203	243,964	65,239	11,073	1,122	
Oakland County, MI	492,006	471,115	352,125	118,990	20,891	3,778	
St. Clair County, MI	67,107	62,072	49,419	12,653	5,035	1,921	
Washtenaw County, MI	131,069	125,327	74,830	50,497	5,742	1,114	
Erie County, OH	35,909	31,727	22,847	8,880	4,182	2,172	
Fulton County, OH	16,232	15,480	12,392	3,088	752	83	
Henry County, OH	11,622	10,935	8,806	2,129	687	62	
Lucas County, OH	196,259	182,847	119,492	63,355	13,412	613	
Ottawa County, OH	25,532	16,474	13,285	3,189	9,058	7,836	
Sandusky County, OH	25,253	23,717	17,852	5,865	1,536	282	
Seneca County, OH	23,692	22,292	16,751	5,541	1,400	87	
Wood County, OH	47,468	45,172	31,953	13,219	2,296	206	
Essex, Ontario	NA	141,300	103,125	38,170	NA	NA	
Chatham-Kent, Ontario	NA	42,085	30,370	11700	NA	NA	
Lambton, Ontario	NA	50,165	37,775	12,255	NA	NA	
Total Region	2,436,635	2,288,055	1,640,451	647,604	148,580	27,439	
State							
Michigan	4,234,279	3,785,661	2,793,124	992,537	448,618	233,922	
Ohio	4,783,051	4,445,773	3,072,522	1,373,251	337,278	47,239	
Canadian Units in Region/Province		233,550	171,270	62,125			

Table 2.5-39 Regional Housing Information (2000) (Sheet 2 of 2)

		Occupied Housing			Vacai	nt Housing
County	Total Housing Units	Total Occupied Units / Dwellings	Owner Occupied Units / Dwellings	Renter Occupied Units / Dwellings	Total Vacant Units	Seasonal, Recreational, Occasional Use
Ontario, Canada	NA	4,219,415	2,862,300	1,351,365	NA	NA

Source: Reference 2.5-65, Reference 2.5-75, Reference 2.5-76, and Reference 2.5-77

Table 2.5-40 Regional Occupied Housing Stability Characteristics (2000)*

Year Moved In	Units	Percent
1999 - 2000	340,899	17.37
1995 - 1998	545,843	27.82
1990 - 1994	313,243	15.96
1980 – 1989	311,690	15.88
1970 – 1979	215,220	10.97
1969 or earlier	235,326	11.99
Occupied Housing Units	1,962,221	

^{*} Methodology: CBG estimating approach (see Subsection 2.5.1)

Table 2.5-41 Change in Monroe, Wayne, and Lucas County Housing Characteristics (2000 to 2006)

	Monroe County 2000	Monroe County 2006	Percent Change	Wayne County 2000	Wayne County 2006	Percent Change	Lucas County 2000	Lucas County 2006	Percent Change
Total Housing Units	56,471	63,061	12	826,145	842,440	2	196,259	202,849	3
Occupied	53,772	58,376	9	768,440	718,160	-7	182,847	179,911	-2
Owner	43,536	47,420	9	511,837	492,485	-4	108,339	117,528	8
Renter	10,236	10,956	7	256,603	225,675	-12	63,152	62,383	-1
Vacant	2,699	4,685	74	57,705	124,280	115	13,412	22,938	71
Monthly Owner Costs (Median Dollars)									
Mortgaged	1,012	1,368	35	942	1,359	44	900	1,215	35
Non-Mortgaged	291	430	48	308	465	51	294	459	56
Renter Costs (Median Dollars)	549	695	27	530	719	36	484	594	23

Source: Reference 2.5-86 through Reference 2.5-93

Table 2.5-42 Adequacy of Structures in Regional Areas (2000)

	Occupied	Lacking Co	•	Lacking Co Kitchen Fa		No Telep Servi		Greater t Occupant p	
	Housing Units	Housing Units	%	Housing Units	%	Housing Units	%	Housing Units	%
Michigan	3,785,661	16,971	0.45	17,844	0.47	99,747	2.63	113,944	3.01
Ohio	4,445,773	19,407	0.44	23,805	0.54	97,917	2.20	73,499	1.65
Monroe County, MI	53,772	170	0.32	161	0.30	1,116	2.08	1,001	1.86
Wayne County, MI	768,440	5404	0.70	5,509	0.72	32,158	4.18	38,522	5.01
Jackson County, MI	58,168	193	0.33	291	0.50	1,684	2.90	1,214	2.09
Lenawee County, MI	35,930	146	0.41	131	0.36	909	2.53	672	1.87
Livingston County, MI	55,384	129	0.23	150	0.27	645	1.16	832	1.50
Macomb County, MI	309,203	753	0.24	711	0.23	4,166	1.35	7,585	2.45
Oakland County, MI	471,115	1356	0.29	1,614	0.34	5,949	1.26	11,886	2.52
St. Clair County, MI	62,072	165	0.27	244	0.39	1,527	2.46	1,035	1.67
Washtenaw County, MI	125,327	483	0.39	545	0.43	1,617	1.29	3,956	3.16
Erie County, OH	31,727	120	0.38	65	0.20	469	1.48	372	1.17
Fulton County, OH	15,480	57	0.37	42	0.27	255	1.65	219	1.41
Henry County, OH	10,935	34	0.31	28	0.26	311	2.84	169	1.55
Lucas County, OH	182,847	688	0.38	712	0.39	3,722	2.04	3,392	1.86
Ottawa County, OH	16,474	58	0.35	35	0.21	285	1.73	222	1.35
Sandusky County, OH	23,717	31	0.13	184	0.78	370	1.56	355	1.50
Seneca County, OH	22,292	113	0.51	210	0.94	606	2.72	297	1.33
Wood County, OH	45,172	90	0.20	217	0.48	554	1.23	616	1.36
Total	2,288,055	9,990	0.44	10,849	0.47	56,343	2.46	72,345	3.16

Table 2.5-42-A Housing Information for the Fermi 3 Region Counties (Sheet 1 of 4)

MICHIGAN REGION COUNTIES	Monroe	Wayne	Oakland	Livingston	Macomb
	2007	2007	2007	2007	2007
Total housing units	63,421	839,201	524,762	72,458	352,987
Occupied units	57,333	706,198	480,262	67,027	327,470
Vacant units	6,088	133,003	44,500	5,431	25,517
Owner occupied units	46,343	483,232	367,412	57,418	260,960
Renter occupied units	10,899	222,966	112,850	9,609	66,510
Year moved in, percent					
2005 or later	25.3	24.5	25	23	23.6
2000-2004	24.8	22.5	25.2	28.7	26.8
1990-1999	25	22.4	25.4	28.5	25.3
1980-1989	9.7	11.6	12	9	10.4
1970-1979	7.7	9.6	7.1	7.8	6.8
1969 or earlier	7.5	9.4	5.3	3	7.1
Monthly Owner Costs (median)					
Mortgaged	\$1,455	\$1,369	\$1,750	\$1,716	\$1,448
Non-mortgaged	\$430	\$466	\$573	\$495	\$464
Renter costs	\$678	\$719	\$829	\$860	\$702
Percent w/o complete plumbing	0.2	0.5	0.2	0.1	0.2
Percent w/o complete kitchen	0.2	0.5	0.3	0.0	0.3
Percent w/o telephone service	10.3	7.3	4.1	4.1	6.4
Percent with > 1 occupant / room	0.7	2.2	1.4	0.6	1.1

Table 2.5-42-A Housing Information for the Fermi 3 Region Counties (Sheet 2 of 4)

MICHIGAN REGION COUNTIES	Washtenaw	Jackson	Lenawee	St. Clair
	2007	2007	2007	2007
Total housing units	147,047	67,964	42,932	73,260
Occupied units	133,075	60,965	38,000	65,343
Vacant units	13,972	6,999	4,932	7,917
Owner occupied units	87,094	44,960	32,146	50,652
Renter occupied units	45,981	16,005	5,854	14,691
Year moved in, percent				
2005 or later	35.6	26.6	21.6	24.9
2000-2004	26.4	21.9	24.1	27.4
1990-1999	21.3	25	24.5	22.2
1980-1989	7.7	11.7	13.3	12.2
1970-1979	4.8	6.5	7.4	8.0
1969 or earlier	4.2	8.3	9.2	5.3
Monthly Owner Costs (median)				
Mortgaged	\$1,817	\$1,217	\$1,217	\$1,309
Non-mortgaged	\$579	\$370	\$387	\$433
Renter costs	\$827	\$664	\$610	\$657
Percent w/o complete plumbing	0.4	0.6	0.3	0.0
Percent w/o complete kitchen	0.5	0.5	1.1	0.4
Percent w/o telephone service	7.2	4.9	7.1	9.4
Percent with > 1 occupant / room	1.4	1.2	0.7	1.5

Table 2.5-42-A Housing Information for the Fermi 3 Region Counties (Sheet 3 of 4)

OHIO REGION COUNTIES	Wood	Lucas	Fulton	Ottawa
	2007	2007	2005-2007	2005-2007
Total housing units	51,950	203,251	17,162	26,897
Occupied units	48,917	178,773	15,841	18,125
Vacant units	3,033	24,478	1,321	8,772
Owner occupied units	34,143	119,621	12,938	14,001
Renter occupied units	14,774	59,152	2,903	4,124
Year moved in				
2005 or later	31	28.7	16.1	14.8
2000 to 2004	24.2	24	27.1	30.1
1990-1999	21	21.3	26.3	23.3
1980-1989	10.8	11.9	11.8	13.9
1970-1979	6.5	7.0	9.3	9.7
1969 or earlier	6.7	7.2	9.5	8.3
Monthly Owner Costs (median)				
Mortgaged	\$1,340	\$1,225	\$1,220	\$1,259
Non-mortgaged	\$429	\$452	\$411	\$410
Renter costs	\$616	\$610	\$615	\$662
	****	****	****	***-
Percent w/o complete plumbing	0.2	0.2	0.0	0.3
Percent w/o complete kitchen	0.5	0.6	0.1	0.3
Percent w/o telephone service	7.3	4.6	4.3	6.2
Percent with > 1 occupant / room	1.2	0.9	1.8	0.1

Table 2.5-42-A Housing Information for the Fermi 3 Region Counties (Sheet 4 of 4)

OHIO REGION COUNTIES	Henry	Sandusky	Seneca	Erie
	2005-2007	2005-2007	2005-2007	2005-2007
Total housing units	12,031	26,070	24,354	37,334
Occupied units	11,172	23,915	22,311	31,874
Vacant units	859	2,155	2,043	5,460
Owner occupied units	9,209	17,819	17,141	23,385
Renter occupied units	1,963	6,096	5,170	8,489
Year moved in, percent				
2005 or later	15.4	14.2	14.7	16
2000 to 2004	26.4	30.5	23	28.2
1990-1999	22.3	24.4	25.6	25.1
1980-1989	13.9	12.6	14.3	11.3
1970-1979	10.2	8.6	10.8	9.2
1969 or earlier	11.8	9.6	11.6	10.1
Monthly Owner Costs (median)				
Mortgaged	\$1,049	\$1,069	\$974	\$1,252
Non-mortgaged	\$390	\$377	\$332	\$423
Renter costs	\$618	\$525	\$505	\$626
Percent w/o complete plumbing	0.2	0.1	0.4	0.1
Percent w/o complete kitchen	0.5	0.8	0.5	0.2
Percent w/o telephone service	3.8	3.5	4.8	4.5
Percent with > 1 occupant / room	1.0	1.2	0.9	1.0

Sources: U.S. Census Bureau American FactFinder, Selected Housing Characteristics: 2007, Data Set: 2007 American Community Survey 1-Year Estimates, and Selected Housing Characteristics: 2005-2007, Data Set 2005-2007 American Community Survey 3-Year Estimates

Table 2.5-42-B Forecast of Occupied Housing Units (also Number of Households) by County, Southeast Michigan, 1990-2035

	Histo	Historical			Forecast Period			Forecast Period		
County	1990	2000	2010	2020	2030	2035	Avg. Annual Growth Rate, Forecast Period			
Livingston	38,887	55,382	71,662	75,478	80,870	82,789	0.58%			
Macomb	264,991	309,203	345,922	359,554	380,124	390,916	0.49%			
Monroe	46,508	53,772	60,772	63,307	67,709	69,388	0.53%			
Oakland	410,448	471,115	503,230	521,504	555,775	573,433	0.52%			
St. Clair	52,882	62,072	67,702	71,536	76,787	78,485	0.59%			
Washtenaw	104,527	125,232	140,386	144,705	151,819	157,411	0.46%			
Wayne	780,535	768,440	740,284	717,116	738,524	747,632	0.04%			
Region	1,698,818	1,845,218	1,929,959	1,953,201	2,051,607	2,100,055	0.34%			

Source: 2035 Forecast for Southeast Michigan, April 2008, SEMCOG, Table 2. Household Change by County, Southeast Michigan, 1990-2035, p. 14

Table 2.5-42-C Mobile Home Parks in Monroe County, 2006 (Sheet 1 of 2)

Name	2001	2004	2006
Americana Mobile Home Park	122	122	122
Bennett Mobile Home Park	28	28	28
Carleton Mobile Home Park	228	228	228
Hometown Country Heritage Mobile Home Park	213	213	213
Dundee Meadows Mobile Home Park	80	80	80
Elizabeth Woods Mobile Home Park	369	369	369
Erie Mobile Home Park	20	20	20
Flat Rock Village Mobile Home Park	332	332	332
Frenchtown Villa Mobile Home Park	692	692	692
Hidden Creek Mobile Home Park	351	351	351
Holiday South Mobile Home Park	152	152	152
Inverness Mobile Home Park	518	518	518
Kimberly Estates Mobile Home Park	388	387	388
Meadowbrook Estates Mobile Home Park	455	453	455
Mill Race Shores Mobile Home Park	97	97	97
Monroe Gardens Mobile Home Park	29	29	29
Newport Farms Mobile Home Park	513	513	513
North Towne Meadows Mobile Home Park	386	386	386
Oakridge Estates Mobile Home Park	620	621	620
Oakwood Mobile Home Park	67	65	65
Pleasantville Mobile Home Park	152	152	152

Fermi 3 Combined License Application

Table 2.5-42-C Mobile Home Parks in Monroe County, 2006 (Sheet 2 of 2)

Name	2001	2004	2006
Raisin Ridge Mobile Home Park	262	307	319
Shamrock Village Mobile Home Park	76	76	76
South Huron River Mobile Home Park	48	48	48
Sunny South Villa Mobile Home Park	68	68	68
The Orchards Mobile Home Park	200	393	394
Tiny Village Mobile Home Park	22	22	22
Willow Green Mobile Home Park	434	429	434
Yorkshire Manor Mobile Home Park	280	280	280
Total	7,209	7,431	7,451

Source: 2006, Annual Building Activities Report, Monroe County Planning Department, Table 6.2 Authorized Manufactured Housing Communities, 2001-2006, p. 44

Table 2.5-42-D Mobile Home Parks and Sites in Southeast Michigan, 2000-2006

Area	No. of Manufactured Housing Parks		No. of Sites in Manufactured Housing Parks		Percent Change	
	2000	2006	2000	2006	2000-2006	
Livingston County	22	23	3,273	4,363	33.3	
Macomb County	42	43	15,020	15,709	4.6	
Monroe County	29	29	6,568	7,451	13.4	
Oakland County	64	63	18,536	18,395	-0.8	
St. Clair County	32	32	5,829	5,989	2.7	
Washtenaw County	25	27	5,683	6,779	19.3	
Wayne County	67	68	15,077	15,835	5.0	
Southeast Michigan	281	285	69,986	74,521	6.5	

SEMCOG, the Southeast Michigan Council of Governments, *Manufactured Housing Parks and Sites in Southeast Michigan, 2000-2006*, December 2006, page 3.

Table 2.5-42-E Twenty-Year History of Building Permit Activity in Southeast Michigan

Year	Total New Units	Units Demolished	Net Total Units
1989	21,567	6,980	14,587
1990	17,648	5,831	11,817
1991	14,838	4,910	9,928
1992	16,707	4,420	12,287
1993	17,289	4,219	13,070
1994	21,027	3,518	17,509
1995	20,976	7,182	13,794
1996	23,441	9,556	13,885
1997	22,112	5,988	16,124
1998	25,888	5,606	20,282
1999	22,951	6,224	16,727
2000	21,236	5,692	15,544
2001	19,620	6,009	13,611
2002	21,359	3,705	17,654
2003	23,273	2,579	20,694
2004	25,151	4,058	21,093
2005	18,400	3,434	14,966
2006	10,158	2,781	7,377
2007	5,235	2,573	2,662
2008	3,074	4,154	-1,080

SEMCOG, the Southeast Michigan Council of Governments, *Residential Construction in Southeast Michigan, 2008*, April 2009, Table 5. 20-Year History of Building Permit Activity in Southeast Michigan, page 4

Table 2.5-42-F Accomodations within 50 miles of Monroe (Sheet 1 of 16)

Establishment	City	Miles from Monroe City	Establishment Type
Lotus Bed & Breakfast, The	Monroe	0	Bed and Breakfast
Camp Lord Willing Management RV Park & Campground	Monroe	0	Campgrounds
Harbortown RV Park	Monroe	0	Campgrounds
Monroe County Fairgrounds	Monroe	0	Campgrounds
Wm. C. Sterling State Park	Monroe	0	Campgrounds
America's Best Value Inn & Suites	Monroe	0	Hotel/Motel
Baymont Inn & Suites - Monroe	Monroe	0	Hotel/Motel
Best Western Prestige Inn - Monroe	Monroe	0	Hotel/Motel
Comfort Inn of Monroe	Monroe	0	Hotel/Motel
Hampton Inn - Monroe	Monroe	0	Hotel/Motel
Holiday Inn Express Hotel & Suites - Monroe	Monroe	0	Hotel/Motel
Hotel Sterling	Monroe	0	Hotel/Motel
Knights Inn - Monroe	Monroe	0	Hotel/Motel
Motel 7 - Monroe	Monroe	0	Hotel/Motel
Sunset Motel	Monroe	0	Hotel/Motel
Travel Inn - Monroe	Monroe	0	Hotel/Motel
sland House Resorts at Lake Erie, Luna Pier	Luna Pier	6	Cabins and Cottages
Bedford Inn	Erie	8	Hotel/Motel
The Vine Camp & Lodge	Temperance	11	Cabins/ Campgrounds
Wilderness Campground	Dundee	13	Cabins/ Campgrounds
Country Inns & Suites-Dundee	Dundee	13	Hotel/Motel
Days Inn & Suites	Dundee	13	Hotel/Motel
Holiday Inn Express & Suites/Splash Universe Water Park Resorts	Dundee	13	Hotel/Motel
Quality Inn - Dundee	Dundee	13	Hotel/Motel

Table 2.5-42-F Accomodations within 50 miles of Monroe (Sheet 2 of 16)

Establishment	City	Miles from Monroe City	Establishment Type
Monroe County KOA Kampground	Petersburg	15	Cabins/Campgrounds
Pirolli Park Campground	Petersburg	15	Campgrounds
Totem Pole Park	Petersburg	15	Campgrounds
Hampton Inn & Suites	Toledo (OH)	16	Hotel/Motel
Fairfield Inn & Suites - Toledo/North by Marriott	Toledo (OH)	17	Hotel/Motel
Covered Wagon Camp Resort	Ottawa Lake	18	Cabins/ Campgrounds
Comfort Inn - North	Toledo (OH)	18	Hotel/Motel
CC Campground	Milan	19	Campgrounds
Nayne County Fairgrounds	Belleville	19	Campgrounds
Comfort Inn - Belleville	Belleville	19	Hotel/Motel
lampton Inn - Belleville	Belleville	19	Hotel/Motel
Holiday Inn Express Hotel and Suites - Belleville	Belleville	19	Hotel/Motel
Sleep Inn - Flat Rock	Flat Rock	19	Hotel/Motel
Sleep Inn - Milan	Milan	19	Hotel/Motel
Star Motel	Milan	19	Hotel/Motel
Super 8 - Belleville	Belleville	19	Hotel/Motel
The Pet Resort, Inc.	Belleville	19	Hotel/Motel
The Casey-Pomeroy House	Toledo (OH)	21	Bed and Breakfast
Best Western Woodhaven Inn	Woodhaven	22	Hotel/Motel
Holiday Inn Express Hotel and Suites - Woodhaven	Woodhaven	22	Hotel/Motel
Crowne Plaza Toledo	Toledo (OH)	22	Hotel/Motel
Park Inn Toledo	Toledo (OH)	22	Hotel/Motel
Americas Best Value Inn & Suites-Detroit Airport	Romulus	23	Hotel/Motel
Baymont Inn & Suites - Romulus	Romulus	23	Hotel/Motel

Table 2.5-42-F Accomodations within 50 miles of Monroe (Sheet 3 of 16)

Establishment	City	Miles from	Establishment Tyne
	City	Monroe City	Establishment Type
Best Western Gateway International	Romulus	23	Hotel/Motel
Clarion Hotel - Detroit Metro Airport	Romulus	23	Hotel/Motel
Comfort Inn - Metro Detroit Airport	Romulus	23	Hotel/Motel
Courtyard by Marriott - Detroit Metro Airport	Romulus	23	Hotel/Motel
Crowne Plaza Hotel - Detroit Metro Airport	Romulus	23	Hotel/Motel
Days Inn - Detroit Metro Airport	Romulus	23	Hotel/Motel
Detroit Metro Airport Hilton Suites	Romulus	23	Hotel/Motel
Detroit Metro Airport Marriott	Romulus	23	Hotel/Motel
Fairfield Inn & Suites Detroit Metro Airport Romulus	Romulus	23	Hotel/Motel
Four Points by Sheraton Detroit Metro Airport	Romulus	23	Hotel/Motel
Hilton Garden Inn - Romulus	Romulus	23	Hotel/Motel
Howard Johnson Metro Airport	Romulus	23	Hotel/Motel
LaQuinta Inn - Romulus	Romulus	23	Hotel/Motel
Lexington Hotel - Metro Airport	Romulus	23	Hotel/Motel
Metro InnDetroit Metro Airport	Romulus	23	Hotel/Motel
Metropolitan Hotel - Detroit airport	Romulus	23	Hotel/Motel
Quality Inn & Suites	Romulus	23	Hotel/Motel
Ramada Inn - Metro Airport	Romulus	23	Hotel/Motel
Rodeway Inn	Romulus	23	Hotel/Motel
Super 8 - Romulus	Romulus	23	Hotel/Motel
Comfort Inn East	Oregon (OH)	23	Hotel/Motel
Holiday Inn Express/Oregon	Oregon (OH)	23	Hotel/Motel
Sleep Inn & Suites	Oregon (OH)	23	Hotel/Motel
B&B Railroad Depot Bed & Breakfast	Oregon (OH)	23	Bed and Breakfast

Table 2.5-42-F Accomodations within 50 miles of Monroe (Sheet 4 of 16)

Establishment	City	Miles from Monroe City	Establishment Type
Maumee Bay State Park	Oregon (OH)	23	Campground
Parish House Inn	Ypsilanti	24	Bed and Breakfast
The Queen's Residence	Ypsilanti	24	Bed and Breakfast
Detroit Greenfield RV Park	Ypsilanti	24	Campgrounds
Guyton Homestead	Ypsilanti	24	Condos and Rentals
Parish House Inn	Ypsilanti	24	Historic Inns
The Queen's Residence	Ypsilanti	24	Historic Inns
Ann Arbor Marriott Ypsilanti at Eagle Crest Resort	Ypsilanti	24	Hotel/Motel
renton Motor Inn	Trenton	24	Hotel/Motel
Mansion View Bed & Breakfast	Toledo (OH)	24	Bed and Breakfast
Comfort Inn Westgate	Toledo (OH)	25	Hotel/Motel
Ramada Hotel & Conference Center	Toledo (OH)	25	Hotel/Motel
Red Roof Inn - Toledo Westgate	Toledo (OH)	25	Hotel/Motel
Ambassador Motel	Taylor	26	Hotel/Motel
Comfort Inn & Suites of Taylor	Taylor	26	Hotel/Motel
Ramada Inn Downriver	Taylor	26	Hotel/Motel
Red Roof Inn - Taylor	Taylor	26	Hotel/Motel
Super 8 - Taylor	Taylor	26	Hotel/Motel
Bishop Brighton Bed and Breakfast	Wyandotte	27	Bed and Breakfast
Bishop Brighton Bed and Breakfast	Wyandotte	27	Historic Inns
Comfort Inn & Suites - Maumee	Maumee (OH)	27	Hotel/Motel
Days Inn Toledo-South	Toledo (OH)	27	Hotel/Motel
Grosse Ile Pilot House	Grosse Ile	28	Historic Inns
Almar Motel of Southgate	Southgate	28	Hotel/Motel

Table 2.5-42-F Accomodations within 50 miles of Monroe (Sheet 5 of 16)

Establishment	City	Miles from Monroe City	Establishment Type
Comfort Suites - Southgate	Southgate	28	Hotel/Motel
Days Inn - Canton	Canton	28	Hotel/Motel
Fairfield Inn - Canton	Canton	28	Hotel/Motel
Grosse Ile Pilot House	Grosse Ile	28	Hotel/Motel
Hampton Inn & Suites-Detroit/Canton	Canton	28	Hotel/Motel
Holiday Inn Express Hotel and Suites - Canton	Canton	28	Hotel/Motel
Holiday Inn Southgate - Detroit South	Southgate	28	Hotel/Motel
Hollywood Motel	Southgate	28	Hotel/Motel
a Quinta Inn - Canton	Canton	28	Hotel/Motel
Maplelawn Motel	Canton Township	28	Hotel/Motel
Notel 6 - Southgate	Southgate	28	Hotel/Motel
Super 8 - Canton	Canton	28	Hotel/Motel
Villow Acres	Canton	28	Hotel/Motel
Baymont Inn & Suites - Toledo/Northwood	Northwood (OH)	28	Hotel/Motel
Residence Inn By Marriott - Toledo/Maumee	Maumee (OH)	28	Hotel/Motel
Blissfield Bed and Breakfast	Blissfield	29	Bed and Breakfast
liram D. Ellis Inn	Blissfield	29	Bed and Breakfast
Blissfield Bed and Breakfast	Blissfield	29	Historic Inns
Hiram D. Ellis Inn	Blissfield	29	Historic Inns
Avon-Bungalow Motel	Inkster	29	Hotel/Motel
Vhite House Inn Motel	Inkster	29	Hotel/Motel
lilton Toledo	Toledo (OH)	29	Hotel/Motel
he Homestead Bed and Breakfast	Saline	30	Bed and Breakfast
The Homestead Bed and Breakfast	Saline	30	Historic Inns

Table 2.5-42-F Accomodations within 50 miles of Monroe (Sheet 6 of 16)

Establishment	City	Miles from Monroe City	Establishment Type
Allen Park Motor Lodge	Allen Park	30	Hotel/Motel
Best Western Greenfield Inn - Allen Park	Allen Park	30	Hotel/Motel
Holiday Inn Express and Suites at Greenfield Village	Allen Park	30	Hotel/Motel
Paradise Motel	Westland	30	Hotel/Motel
Heights Motel	Dearborn Heights	31	Hotel/Motel
Sleep Inn & Suites - Lincoln Park	Lincoln Park	31	Hotel/Motel
Maumee Bay Resort & Conference Center	Maumee (OH)	31	Hotel/Motel
932 Penniman, A Bed and Breakfast	Plymouth	32	Bed and Breakfast
Ann Arbor Bed & Breakfast	Ann Arbor	32	Bed and Breakfast
Apple and Pear Street Bed & Breakfast	Ann Arbor	32	Bed and Breakfast
Burnt Toast Inn	Ann Arbor	32	Bed and Breakfast
Cadgwith Too Bed and Breakfast	Ann Arbor	32	Bed and Breakfast
Claire's Guesthouse	Ann Arbor	32	Bed and Breakfast
Davies House in Georgetown	Ann Arbor	32	Bed and Breakfast
First Street Garden Inn	Ann Arbor	32	Bed and Breakfast
Steller House B and B	Ann Arbor	32	Bed and Breakfast
Гhe Eighth Street Trekkers' Lodge	Ann Arbor	32	Bed and Breakfast
The Library Bed & Breakfast	Ann Arbor	32	Bed and Breakfast
/itosha Guest Haus	Ann Arbor	32	Bed and Breakfast
Bellanina Guest House	Ann Arbor	32	Condos and Rentals
Clinton Inn	Clinton	32	Historic Inns
First Street Garden Inn	Ann Arbor	32	Historic Inns
Steller House B and B	Ann Arbor	32	Historic Inns
The Dahlmann Campus Inn	Ann Arbor	32	Historic Inns

Table 2.5-42-F Accomodations within 50 miles of Monroe (Sheet 7 of 16)

	0 "	Miles from	
Establishment	City	Monroe City	Establishment Type
Vitosha Guest Haus	Ann Arbor	32	Historic Inns
A Victory Inn & Suites	Ann Arbor	32	Hotel/Motel
Bell Tower Hotel	Ann Arbor	32	Hotel/Motel
Best Western Executive Plaza - Ann Arbor	Ann Arbor	32	Hotel/Motel
Candlewood Suites - Ann Arbor	Ann Arbor	32	Hotel/Motel
Comfort Inn Plymouth Clocktower	Plymouth	32	Hotel/Motel
Comfort Inn & Suites	Ann Arbor	32	Hotel/Motel
Comfort Inn and Suites - Ann Arbor	Ann Arbor	32	Hotel/Motel
Courtyard by Marriott - Ann Arbor	Ann Arbor	32	Hotel/Motel
Days Inn - Ann Arbor	Ann Arbor	32	Hotel/Motel
Embassy Hotel	Ann Arbor	32	Hotel/Motel
Extended Stay America	Ann Arbor	32	Hotel/Motel
Extended Stay Detroit/Ann Arbor	Ann Arbor	32	Hotel/Motel
Fairfield Inn by Marriott Ann Arbor	Ann Arbor	32	Hotel/Motel
Four Points by Sheraton Ann Arbor	Ann Arbor	32	Hotel/Motel
Hampton Inn North - Ann Arbor	Ann Arbor	32	Hotel/Motel
Hampton Inn South - Ann Arbor	Ann Arbor	32	Hotel/Motel
Hawthorn Suites - Ann Arbor	Ann Arbor	32	Hotel/Motel
Hilton Garden Inn Plymouth	Plymouth	32	Hotel/Motel
Holiday Inn & Suites Ann Arbor-Boardwalk	Ann Arbor	32	Hotel/Motel
Holiday Inn Express Hotels & Suites - Ann Arbor	Ann Arbor	32	Hotel/Motel
Holiday Inn near the University of Michigan	Ann Arbor	32	Hotel/Motel
Kensington Court Hotel	Ann Arbor	32	Hotel/Motel
Lamp Post Inn	Ann Arbor	32	Hotel/Motel

Table 2.5-42-F Accomodations within 50 miles of Monroe (Sheet 8 of 16)

Fatablishmant	Oit.	Miles from	Fatablish was t Town
Establishment	City	Monroe City	Establishment Type
Microtel Inn & Suites - Ann Arbor	Ann Arbor	32	Hotel/Motel
Motel 6 - Ann Arbor	Ann Arbor	32	Hotel/Motel
Quality Inn & Suites-Ann Arbor	Ann Arbor	32	Hotel/Motel
Red Roof Inn - Ann Arbor - University North	Ann Arbor	32	Hotel/Motel
Red Roof Inn - Plymouth	Plymouth	32	Hotel/Motel
Red Roof Inn- U of M - South - Ann Arbor	Ann Arbor	32	Hotel/Motel
Residence Inn By Marriott - Ann Arbor	Ann Arbor	32	Hotel/Motel
The Dahlmann Campus Inn	Ann Arbor	32	Hotel/Motel
The Inn at Michigan League	Ann Arbor	32	Hotel/Motel
The Inn at St. John's	Plymouth	32	Hotel/Motel
Weber's Inn	Ann Arbor	32	Hotel/Motel
Country Inn & Suites- South	Rossford (OH)	32	Hotel/Motel
Hampton Inn & Suites - Toledo Perrysburg	Rossford (OH)	32	Hotel/Motel
Dearborn Bed & Breakfast	Dearborn	33	Bed and Breakfast
The Dearborn Inn, A Marriott Hotel	Dearborn	33	Historic Inns
A Victory Inn	Dearborn	33	Hotel/Motel
Americas Best Value Inn - Detroit/Dearborn	Dearborn	33	Hotel/Motel
Courtyard by Marriott - Dearborn	Dearborn	33	Hotel/Motel
Hampton Inn - Dearborn	Dearborn	33	Hotel/Motel
Hyatt Regency Dearborn	Dearborn	33	Hotel/Motel
Metro Inn - Dearborn	Dearborn	33	Hotel/Motel
Red Roof Inn - Dearborn	Dearborn	33	Hotel/Motel
The Dearborn Inn, A Marriott Hotel	Dearborn	33	Hotel/Motel
The Ritz-Carlton, Dearborn	Dearborn	33	Hotel/Motel

Table 2.5-42-F Accomodations within 50 miles of Monroe (Sheet 9 of 16)

Establishment	City	Miles from Monroe City	Establishment Type
TownePlace Suites - Dearborn			
	Dearborn	33	Hotel/Motel
Village Inn of Dearborn	Dearborn	33	Hotel/Motel
Comfort Suites - Toledo/Perrysburg	Perrysburg (OH)	33	Hotel/Motel
Country Inn & Suites - Toledo/Maumee	Maumee (OH)	33	Hotel/Motel
Hilton Garden Inn - Toledo/Perrysburg	Perrysburg (OH)	33	Hotel/Motel
Holiday Inn Express	Perrysburg (OH)	33	Hotel/Motel
Holiday Inn French Quarter	Perrysburg (OH)	33	Hotel/Motel
Perrysburg Inn	Perrysburg (OH)	33	Hotel/Motel
Red Roof Inn - Maumee	Maumee (OH)	33	Hotel/Motel
Guesthouse Bed & Breakfast	Perrysburg (OH)	33	Bed and Breakfast
Stony Ridge KOA Kampground / East	Perrysburg (OH)	33	Campground
The Chicago Street Suite	Tecumseh	34	Bed and Breakfast
Rentalbug Vacation Rentals	Tecumseh	34	Cabins and Cottages
ndian Creek Camp & Conference Center	Tecumseh	34	Campgrounds
Best Western Laurel Park Suites - Livonia	Livonia	34	Hotel/Motel
Comfort Inn - Livonia	Livonia	34	Hotel/Motel
Courtyard by Marriott - Detroit/Livonia	Livonia	34	Hotel/Motel
Days Inn - Livonia	Livonia	34	Hotel/Motel
Detroit Marriott Livonia	Livonia	34	Hotel/Motel
Embassy Suites - Livonia	Livonia	34	Hotel/Motel
Fairfield Inn - Livonia	Livonia	34	Hotel/Motel
Hyatt Place Detroit/Livonia	Livonia	34	Hotel/Motel
Quality Inn and Suites - Livonia	Livonia	34	Hotel/Motel
Radisson Detroit-Livonia Hotel and Conference Center	Livonia	34	Hotel/Motel

Table 2.5-42-F Accomodations within 50 miles of Monroe (Sheet 10 of 16)

Establishment	City	Miles from Monroe City	Establishment Type
Residence Inn Detroit - Livonia	Livonia	34	Hotel/Motel
Royal Motor Inn	Livonia	34	Hotel/Motel
Super 8 - Livonia	Livonia	34	Hotel/Motel
Tecumseh Inn and Suites	Tecumseh	34	Hotel/Motel
TownePlace Suites by Marriott	Livonia	34	Hotel/Motel
Courtyard By Marriott - Holland	Holland (OH)	34	Hotel/Motel
Hawthorn Suites-Toledo/Holland	Holland (OH)	34	Hotel/Motel
Knights Inn - Toledo West	Maumee (OH)	34	Hotel/Motel
Quality Inn - Holland/Toledo Airport	Holland (OH)	34	Hotel/Motel
Red Roof Inn - Holland	Holland (OH)	34	Hotel/Motel
Extended Stay America	Holland (OH)	35	Hotel/Motel
Fairfield Inn - Toledo/Maumee	Maumee (OH)	35	Hotel/Motel
Fraser Inn, The	Northville	36	Bed and Breakfast
Fraser Inn, The	Northville	36	Historic Inns
Dorchester Motel	Redford	36	Hotel/Motel
Hampton Inn - Northville	Northville	36	Hotel/Motel
Holiday Inn Express - Northville	Northville	36	Hotel/Motel
Traveler's Motor Inn	Redford	36	Hotel/Motel
StudioPLUS - Maumee	Maumee (OH)	36	Hotel/Motel
Super 8 Motel	Maumee (OH)	36	Hotel/Motel
Econo Lodge - Toledo/Maumee	Maumee (OH)	37	Hotel/Motel
Hampton Inn - Toledo/Maumee	Maumee (OH)	37	Hotel/Motel
Comfort Inn- Southwest Toledo/Maumee	Maumee (OH)	38	Hotel/Motel
Days Inn - Maumee/Toledo	Maumee (OH)	38	Hotel/Motel

Table 2.5-42-F Accomodations within 50 miles of Monroe (Sheet 11 of 16)

Establishment	City	Miles from Monroe City	Establishment Type
	City		Establishment Type
Holiday Inn/ Toledo-Maumee	Maumee (OH)	38	Hotel/Motel
Motel 6	Toledo (OH)	38	Hotel/Motel
Staybridge Suites - Maumee/Toledo	Maumee (OH)	38	Hotel/Motel
Oakwood Corporate Housing	Novi	39	Condos and Rentals
Country Inn & Suites - Novi	Novi	39	Hotel/Motel
Country Meadow Motel	South Lyon	39	Hotel/Motel
Courtyard by Marriott-Novi	Novi	39	Hotel/Motel
Crown Plaza - Novi	Novi	39	Hotel/Motel
Doubletree Hotel - Detroit/Novi	Novi	39	Hotel/Motel
Fairlane Motel	Novi	39	Hotel/Motel
Hotel Baronette	Novi	39	Hotel/Motel
Residence Inn Novi	Novi	39	Hotel/Motel
Sheraton Detroit Novi	Novi	39	Hotel/Motel
Staybridge Suites-Detroit/Novi	Novi	39	Hotel/Motel
Towne Place Suites - Novi	Novi	39	Hotel/Motel
Days Inn - Swanton/Toledo Airport	Swanton (OH)	39	Hotel/Motel
Homewood Suites Hotel	Maumee (OH)	40	Hotel/Motel
Briar Oaks Inn B & B	Adrian	41	Bed and Breakfast
Dobson House Bed & Breakfast	Detroit	41	Bed and Breakfast
Inn on Ferry Street	Detroit	41	Bed and Breakfast
Murray Hill Motel	Detroit	41	Bed and Breakfast
The Inn at 97 Winder	Detroit	41	Bed and Breakfast
The Woodbridge STAR	Detroit	41	Bed and Breakfast
Camp Sequoia	Adrian	41	Cabins and Cottages

Table 2.5-42-F Accomodations within 50 miles of Monroe (Sheet 12 of 16)

Establishment	City	Miles from Monroe City	Establishment Type
Camp Sequoia	Adrian	41	Campgrounds
Lake Hudson Recreation Area	Adrian	41	Campgrounds
Lenawee County Fair & Event Grounds	Adrian	41	Campgrounds
Downtown Living	Detroit	41	Condos and Rentals
Over the Rainbow	Whitmore Lake	41	Condos and Rentals
nn on Ferry Street	Detroit	41	Historic Inns
Omni Detroit Hotel River Place	Detroit	41	Historic Inns
Γhe Inn at 97 Winder	Detroit	41	Historic Inns
The Westin Book Cadillac Detroit	Detroit	41	Historic Inns
The Woodbridge STAR	Detroit	41	Historic Inns
A Victory Inn & Suites	Detroit	41	Hotel/Motel
Atheneum Suite Hotel and Conference Center	Detroit	41	Hotel/Motel
Best Western of Whitmore Lake	Whitmore Lake	41	Hotel/Motel
Carlton Lodge	Adrian	41	Hotel/Motel
Comfort Inn - Downtown Detroit	Detroit	41	Hotel/Motel
Corktown Inn	Detroit	41	Hotel/Motel
Courtyard by Marriott - Detroit Downtown	Detroit	41	Hotel/Motel
Detroit Marriott at the Renaissance Center	Detroit	41	Hotel/Motel
OoubleTree Dearborn	Detroit	41	Hotel/Motel
Doubletree Guest Suites Fort Shelby/Detroit Downtown	Detroit	41	Hotel/Motel
Hilltop Motel	Detroit	41	Hotel/Motel
Hilton Garden Inn - Detroit Downtown	Detroit	41	Hotel/Motel
Holiday Inn Express - Adrian	Adrian	41	Hotel/Motel
Holiday Inn Express Hotel and Suites - Downtown Detroit	Detroit	41	Hotel/Motel

Table 2.5-42-F Accomodations within 50 miles of Monroe (Sheet 13 of 16)

Establishment	City	Miles from Monroe City	Establishment Type
Hotel St. Regis	Detroit	41	Hotel/Motel
MGM Grand Detroit	Detroit	41	Hotel/Motel
Milner Hotel	Detroit	41	Hotel/Motel
Motel 6 - Adrian	Adrian	41	Hotel/Motel
MotorCity Casino Hotel	Detroit	41	Hotel/Motel
Murray Hill Motel	Detroit	41	Hotel/Motel
Omni Detroit Hotel River Place	Detroit	41	Hotel/Motel
Residence Inn By Marriott - Detroit Dearborn	Detroit	41	Hotel/Motel
Stay Inn - Downtown Detroit	Detroit	41	Hotel/Motel
Super 8 - Adrian	Adrian	41	Hotel/Motel
The Leland	Detroit	41	Hotel/Motel
The Shorecrest Motor Inn	Detroit	41	Hotel/Motel
The Westin Book Cadillac Detroit	Detroit	41	Hotel/Motel
Westin Detroit Metro Airport	Detroit	41	Hotel/Motel
Gotta-Scrap Inn	Manchester	42	Bed and Breakfast
Camp Wathana Lodge & Camp Rentals	Southfield	42	Cabins and Cottages
Evans Lake Resort	Tipton	42	Cabins and Cottages
Hideaway Cove	Tipton	42	Cabins and Cottages
Camp Wathana Lodge & Camp Rentals	Southfield	42	Campgrounds
Haas Lake Park	New Hudson	42	Campgrounds
Ja Do Campground	Tipton	42	Campgrounds
Gotta-Scrap Inn	Manchester	42	Historic Inns
Best Western Southfield Inn	Southfield	42	Hotel/Motel
Candlewood Suites	Farmington Hills	42	Hotel/Motel

Table 2.5-42-F Accomodations within 50 miles of Monroe (Sheet 14 of 16)

Establishment	City	Miles from Monroe City	Establishment Type
			Establishment Type
Candlewood Suites - Detroit/Southfield	Southfield	42	Hotel/Motel
Comfort Inn - Farmington Hills	Farmington Hills	42	Hotel/Motel
Comfort Suites - Southfield	Southfield	42	Hotel/Motel
Courtyard by Marriott - Southfield	Southfield	42	Hotel/Motel
Courtyard by Marriott- Farmington Hills	Farmington Hills	42	Hotel/Motel
Days Inn - Southfield	Southfield	42	Hotel/Motel
Detroit Marriott Southfield	Southfield	42	Hotel/Motel
Embassy Suites Hotel Detroit - Southfield	Southfield	42	Hotel/Motel
Fairfield Inn - Farmington Hills	Farmington Hills	42	Hotel/Motel
Hampton Inn - Southfield	Southfield	42	Hotel/Motel
Hawthorne Suites - Southfield	Southfield	42	Hotel/Motel
Hilton Inn Southfield	Southfield	42	Hotel/Motel
Holiday Inn Hotel & Suites - Farmington Hills / Novi	Farmington Hills	42	Hotel/Motel
Holiday Inn Southfield	Southfield	42	Hotel/Motel
Homestead Village - Southfield	Southfield	42	Hotel/Motel
Knights Inn - Detroit/Farmington Hills	Farmington Hills	42	Hotel/Motel
Marvins Garden Inn	Southfield	42	Hotel/Motel
Plaza Hotel Southfield	Southfield	42	Hotel/Motel
Red Roof Inn - Farmington Hills	Farmington Hills	42	Hotel/Motel
SpringHill Suites - Southfield	Southfield	42	Hotel/Motel
Westin Southfield Detroit	Southfield	42	Hotel/Motel
Baymont Inn & Suites - Toledo/Maumee	Maumee (OH)	42	Hotel/Motel
Comfort Suites Detroit/ Novi- Wixom	Wixom	43	Hotel/Motel
Embassy Motel	Oak Park	43	Hotel/Motel

Table 2.5-42-F Accomodations within 50 miles of Monroe (Sheet 15 of 16)

Establishment	City	Miles from Monroe City	Establishment Type
Rentalbug Vacation Rentals	Ferndale	45	Bed and Breakfast
Rentalbug Vacation Rentals	Ferndale	45	Cabins and Cottages
Rentalbug Vacation Rentals	Ferndale	45	Condos and Rentals
Rentalbug Vacation Rentals	Ferndale	45	Historic Inns
acasa Park Hotel	Hazel Park	46	Hotel/Motel
Grand Commerce Inn Bed & Breakfast	Commerce Township	47	Bed and Breakfast
Ailford Guesthouse Bed and Breakfast	Milford	47	Bed and Breakfast
he Wren's Nest Bed & Breakfast	West Bloomfield	47	Bed and Breakfast
Proud Lake Recreation Area	Commerce Township	47	Cabins and Cottages
Camp Dearborn	Milford	47	Campgrounds
Proud Lake Recreation Area	Commerce Township	47	Campgrounds
he Wren's Nest Bed & Breakfast	West Bloomfield	47	Historic Inns
lampton Inn - Detroit/Novi	Commerce Township	47	Hotel/Motel
ravelodge - Royal Oak	Royal Oak	47	Hotel/Motel
Canterbury Chateau	Brighton	48	Bed and Breakfast
Chelsea House Victorian Inn	Chelsea	48	Bed and Breakfast
Lyndon Oaks	Chelsea	48	Bed and Breakfast
Vaterloo Gardens Bed & Breakfast	Chelsea	48	Bed and Breakfast
sland Lake Resort Motel	Brighton	48	Cabins and Cottages
Vaterloo Recreation Area	Chelsea	48	Cabins and Cottages
Huron-Clinton Metropolitan Authority	Brighton	48	Campgrounds
Vaterloo Recreation Area	Chelsea	48	Campgrounds
Barclay Inn - Birmingham	Birmingham	48	Hotel/Motel
Comfort Inn - Chelsea	Chelsea	48	Hotel/Motel

Table 2.5-42-F Accomodations within 50 miles of Monroe (Sheet 16 of 16)

	Miles from			
Establishment	City	Monroe City	Establishment Type	
Courtyard by Marriott - Brighton	Brighton	48	Hotel/Motel	
Holiday Inn Express - Birmingham	Birmingham	48	Hotel/Motel	
Holiday Inn Express - Chelsea	Chelsea	48	Hotel/Motel	
Holiday Inn Express Hotel & Suites - Brighton	Brighton	48	Hotel/Motel	
Homewood Suites by Hilton - Brighton	Brighton	48	Hotel/Motel	
Island Lake Resort Motel	Brighton	48	Hotel/Motel	
The Townsend Hotel	Birmingham	48	Hotel/Motel	
Best Western Troy- Madison Inn	Madison Heights	49	Hotel/Motel	
Econo Lodge - Madison Heights	Madison Heights	49	Hotel/Motel	
Fairfield Inn - Madison Heights	Madison Heights	49	Hotel/Motel	
Hampton Inn - Madison Heights	Madison Heights	49	Hotel/Motel	
Knights Inn - Madison Heights	Madison Heights	49	Hotel/Motel	
Radisson Kingsley Inn- Bloomfield Hills	Bloomfield Hills	49	Hotel/Motel	
Red Roof Inn - Madison Heights	Madison Heights	49	Hotel/Motel	
Residence Inn By Marriott - Troy/Madison Heights	Madison Heights	49	Hotel/Motel	
Super 8 - Clawson	Clawson	49	Hotel/Motel	

Notes:

- 1. All cities are located in Michigan unless otherwise psecified.
- 2. Reference 1-Pure Michigan, Michigan's Official Travel and Tourism Site, "Places to Stay" available online at http://www.michigan.org/Places-to-Stay/Default.aspx. Accessed on November 18, 2009.
- 3. Reference 2-Destination Toledo Convention and Visitors Bureau, "Accommodations," available online at http://www.dotoledo.org/gtcvb/members/display.asp?id=accommodations. Accessed on November 18, 2009.

Table 2.5-43 Data for Monroe County School Districts and Charter Schools (2005-2006 School Year)

	Number of		(Student/ Teach	er
City	Schools	Students	Teachers	Ratio	Туре
Carleton	6	3,151	158.5	19.9	Regular School District
Temperance	7	5,368	297.5	18.0	Regular School District
Dundee	4	1,704	90.1	18.9	Regular School District
lda	3	1,740	98.5	17.7	Regular School District
Monroe	6	2,408	123.1	19.6	Regular School District
Erie	4	1,466	98.6	14.9	Regular School District
Monroe	4	989	95	10.4	Regional District
Monroe	13	6,987	359.9	19.4	Regular School District
Lambertsville	1	166	10.4	16.0	Other Education Agency
Petersburg	3	825	46	17.9	Regular School District
Monroe	1	381	14	27.2	Other Education Agency
Ottawa Lake	3	778	43.5	17.9	Regular School District
Monroe County	55	25,963	1,435.1	18.1	NA
	Carleton Temperance Dundee Ida Monroe Erie Monroe Monroe Lambertsville Petersburg Monroe Ottawa Lake	CitySchoolsCarleton6Temperance7Dundee4Ida3Monroe6Erie4Monroe4Monroe13Lambertsville1Petersburg3Monroe1Ottawa Lake3	City Schools Students Carleton 6 3,151 Temperance 7 5,368 Dundee 4 1,704 Ida 3 1,740 Monroe 6 2,408 Erie 4 1,466 Monroe 4 989 Monroe 13 6,987 Lambertsville 1 166 Petersburg 3 825 Monroe 1 381 Ottawa Lake 3 778	City Schools Students Teachers Carleton 6 3,151 158.5 Temperance 7 5,368 297.5 Dundee 4 1,704 90.1 Ida 3 1,740 98.5 Monroe 6 2,408 123.1 Erie 4 1,466 98.6 Monroe 4 989 95 Monroe 13 6,987 359.9 Lambertsville 1 166 10.4 Petersburg 3 825 46 Monroe 1 381 14 Ottawa Lake 3 778 43.5	City Schools Students Teachers Ratio Carleton 6 3,151 158.5 19.9 Temperance 7 5,368 297.5 18.0 Dundee 4 1,704 90.1 18.9 Ida 3 1,740 98.5 17.7 Monroe 6 2,408 123.1 19.6 Erie 4 1,466 98.6 14.9 Monroe 4 989 95 10.4 Monroe 13 6,987 359.9 19.4 Lambertsville 1 166 10.4 16.0 Petersburg 3 825 46 17.9 Monroe 1 381 14 27.2 Ottawa Lake 3 778 43.5 17.9

Table 2.5-44 Wayne County School District Information (2005-2006 School Year) (Sheet 1 of 4)

District Name	Number of Students	Number of Schools
Detroit City School District	133,255	235
Plymouth-Canton Community Schools	18,579	26
Dearborn City School District	18,158	36
Livonia Public Schools	18,108	34
Wayne-Westland Community School District	13,946	26
Taylor School District	10,709	20
Grosse Pointe Public Schools	8,919	16
Northville Public Schools	6,978	12
Van Buren Public Schools	6,303	12
Southgate Community School District	5,753	12
Lincoln Park Public Schools	5,425	13
Woodhaven-Brownstown School District	5,398	9
Garden City School District	5,346	9
Wyandotte City School District	5,156	11
Redford Union School District	4,405	10
Romulus Community Schools	4,354	11
Allen Park Public Schools	3,699	6
Gibraltar School District	3,582	8
Highland Park City Schools	3,508	6
South Redford School District	3,423	7
Crestwood School District	3,418	5
Hamtramck Public Schools	3,309	7
Trenton Public Schools	3,112	6
Dearborn Heights School District #7	2,871	6
Melvindale-North Allen Park Schools	2,774	4
Riverview Community School District	2,612	5
Westwood Community Schools	2,498	6
Huron School District	2,388	5
Detroit Academy Of Arts And Sciences	2,380	3

Table 2.5-44 Wayne County School District Information (2005-2006 School Year) (Sheet 2 of 4)

District Name	Number of Students	Number of Schools
Grosse Ile Township Schools	2,017	4
River Rouge School District	1,993	4
Flat Rock Community Schools	1,875	5
School District Of The City Of Inkster	1,568	4
Cesar Chavez Academy	1,372	3
Summit Academy North	1,309	3
Old Redford Academy	1,251	3
Star International Academy	1,218	1
City Of Harper Woods Schools	1,216	3
Ecorse Public School District	1,170	4
Michigan Technical Academy	1,160	4
YMCA Service Learning Academy	1,119	1
Chandler Park Academy	1,110	3
University Preparatory Academy	1,098	3
Cherry Hill School Of Performing Arts	1,069	1
Edison Public School Academy	1,052	1
Plymouth Educational Center	919	1
Advanced Technology Academy	869	1
Marvin L. Winans Academy Of Performing Arts	866	1
Allen Academy	827	1
Woodward Academy	773	1
Academy For Business And Technology	712	2
Voyageur Academy	707	2
Canton Charter Academy	687	1
Warrendale Charter Academy	683	1
Detroit Merit Charter Academy	680	1
Metro Charter Academy	653	1
Detroit Community High School	649	2
Creative Montessori Academy	621	1

Table 2.5-44 Wayne County School District Information (2005-2006 School Year) (Sheet 3 of 4)

George Washington Carver Academy 617 1 Riverside Academy 588 2 West Village Academy 571 1 Keystone Academy 567 1 Detroit Enterprise Academy 554 1 Colin Powell Academy 536 1 Detroit Premier Academy 520 1 Dearborn Academy 488 1 Hope Of Detroit Academy 482 2 Henry Ford Academy 478 1 Dove Academy Of Detroit 467 1 Hope Academy 457 1 Joy Preparatory Academy 456 2 Weston Technical Academy 456 1 Nataki Talibah Schoolhouse Of Detroit 418 1 George Crockett Academy 417 2 Life Skills Center Of Metropolitan Detroit 408 1 Thomas-Gist Academy 402 2 Hamtramck Academy 391 1 Trillium Academy 372 1 Business Entrepreneurship, Science,	District Name	Number of Students	Number of Schools
West Village Academy 571 1 Keystone Academy 567 1 Detroit Enterprise Academy 554 1 Colin Powell Academy 536 1 Detroit Premier Academy 520 1 Dearborn Academy 488 1 Hope Of Detroit Academy 488 1 Hope Of Detroit Academy 478 1 Dove Academy Of Detroit 467 1 Hope Academy 457 1 Joy Preparatory Academy 456 2 Weston Technical Academy 456 1 Nataki Talibah Schoolhouse Of Detroit 418 1 George Crockett Academy 417 2 Life Skills Center Of Metropolitan Detroit 408 1 Thomas-Gist Academy 402 2 Hamtramck Academy 391 1 Trillium Academy 373 1 Summit Academy 371 1 David Ellis Academy 369 1 Blanch Kelso Bruce Academy 369	George Washington Carver Academy	617	1
Keystone Academy 567 1 Detroit Enterprise Academy 554 1 Colin Powell Academy 536 1 Detroit Premier Academy 520 1 Dearborn Academy 488 1 Hope Of Detroit Academy 482 2 Henry Ford Academy 478 1 Dove Academy Of Detroit 467 1 Hope Academy 457 1 Joy Preparatory Academy 456 2 Weston Technical Academy 456 1 Nataki Talibah Schoolhouse Of Detroit 418 1 George Crockett Academy 417 2 Life Skills Center Of Metropolitan Detroit 408 1 Thomas-Gist Academy 402 2 Hamtramck Academy 391 1 Trillium Academy 373 1 Summit Academy 372 1 Business Entrepreneurship, Science, Tech. Academy 369 1 Blanche Kelso Bruce Academy 366 8 Pierre Toussain	Riverside Academy	588	2
Detroit Enterprise Academy 554 1 Colin Powell Academy 536 1 Detroit Premier Academy 520 1 Dearborn Academy 488 1 Hope Of Detroit Academy 482 2 Henry Ford Academy 478 1 Dove Academy Of Detroit 467 1 Hope Academy 457 1 Joy Preparatory Academy 456 2 Weston Technical Academy 456 1 Nataki Talibah Schoolhouse Of Detroit 418 1 George Crockett Academy 417 2 Life Skills Center Of Metropolitan Detroit 408 1 Thomas-Gist Academy 402 2 Hamtramck Academy 391 1 Trillium Academy 373 1 Summit Academy 372 1 Business Entrepreneurship, Science, Tech. Academy 371 1 David Ellis Academy 366 8 Pierre Toussaint Academy 366 8 Universal Acade	West Village Academy	571	1
Colin Powell Academy 536 1 Detroit Premier Academy 520 1 Dearborn Academy 488 1 Hope Of Detroit Academy 482 2 Henry Ford Academy 478 1 Dove Academy Of Detroit 467 1 Hope Academy 457 1 Joy Preparatory Academy 456 2 Weston Technical Academy 456 1 Nataki Talibah Schoolhouse Of Detroit 418 1 George Crockett Academy 417 2 Life Skills Center Of Metropolitan Detroit 408 1 Thomas-Gist Academy 402 2 Hamtramck Academy 391 1 Trillium Academy 372 1 Business Entrepreneurship, Science, Tech. Academy 371 1 David Ellis Academy 369 1 Blanche Kelso Bruce Academy 366 8 Pierre Toussaint Academy 347 1 Universal Academy 347 1 Academy Of	Keystone Academy	567	1
Detroit Premier Academy 520 1 Dearborn Academy 488 1 Hope Of Detroit Academy 482 2 Henry Ford Academy 478 1 Dove Academy Of Detroit 467 1 Hope Academy 457 1 Joy Preparatory Academy 456 2 Weston Technical Academy 456 1 Nataki Talibah Schoolhouse Of Detroit 418 1 George Crockett Academy 417 2 Life Skills Center Of Metropolitan Detroit 408 1 Thomas-Gist Academy 402 2 Hamtramck Academy 391 1 Trillium Academy 373 1 Summit Academy 372 1 Business Entrepreneurship, Science, Tech. Academy 371 1 David Ellis Academy 369 1 Blanche Kelso Bruce Academy 369 1 Blanche Kelso Bruce Academy 347 1 Universal Academy 347 1 Academy Of Det	Detroit Enterprise Academy	554	1
Dearborn Academy 488 1 Hope Of Detroit Academy 482 2 Henry Ford Academy 478 1 Dove Academy Of Detroit 467 1 Hope Academy 457 1 Joy Preparatory Academy 456 2 Weston Technical Academy 456 1 Nataki Talibah Schoolhouse Of Detroit 418 1 George Crockett Academy 417 2 Life Skills Center Of Metropolitan Detroit 408 1 Thomas-Gist Academy 402 2 Hamtramck Academy 391 1 Trillium Academy 373 1 Summit Academy 372 1 Business Entrepreneurship, Science, Tech. Academy 371 1 David Ellis Academy 369 1 Blanche Kelso Bruce Academy 366 8 Pierre Toussaint Academy 347 1 Universal Academy 347 1 Academy Of Detroit-West 346 2 Bridge Academy <td>Colin Powell Academy</td> <td>536</td> <td>1</td>	Colin Powell Academy	536	1
Hope Of Detroit Academy	Detroit Premier Academy	520	1
Henry Ford Academy	Dearborn Academy	488	1
Dove Academy Of Detroit 467 1 Hope Academy 457 1 Joy Preparatory Academy 456 2 Weston Technical Academy 456 1 Nataki Talibah Schoolhouse Of Detroit 418 1 George Crockett Academy 417 2 Life Skills Center Of Metropolitan Detroit 408 1 Thomas-Gist Academy 402 2 Hamtramck Academy 391 1 Trillium Academy 373 1 Summit Academy 372 1 Business Entrepreneurship, Science, Tech. Academy 371 1 David Ellis Academy 369 1 Blanche Kelso Bruce Academy 369 1 Blanche Kelso Bruce Academy 359 1 Universal Academy 347 1 Academy Of Detroit-West 346 2 Bridge Academy 330 1	Hope Of Detroit Academy	482	2
Hope Academy 457 1 Joy Preparatory Academy 456 2 Weston Technical Academy 456 1 Nataki Talibah Schoolhouse Of Detroit 418 1 George Crockett Academy 417 2 Life Skills Center Of Metropolitan Detroit 408 1 Thomas-Gist Academy 402 2 Hamtramck Academy 391 1 Trillium Academy 373 1 Summit Academy 372 1 Business Entrepreneurship, Science, Tech. Academy 371 1 David Ellis Academy 369 1 Blanche Kelso Bruce Academy 366 8 Pierre Toussaint Academy 359 1 Universal Academy 347 1 Academy Of Detroit-West 346 2 Bridge Academy 330 1	Henry Ford Academy	478	1
Joy Preparatory Academy 456 2 Weston Technical Academy 456 1 Nataki Talibah Schoolhouse Of Detroit 418 1 George Crockett Academy 417 2 Life Skills Center Of Metropolitan Detroit 408 1 Thomas-Gist Academy 402 2 Hamtramck Academy 391 1 Trillium Academy 373 1 Summit Academy 372 1 Business Entrepreneurship, Science, Tech. Academy 371 1 David Ellis Academy 369 1 Blanche Kelso Bruce Academy 366 8 Pierre Toussaint Academy 347 1 Universal Academy 347 1 Academy Of Detroit-West 346 2 Bridge Academy 330 1	Dove Academy Of Detroit	467	1
Weston Technical Academy 456 1 Nataki Talibah Schoolhouse Of Detroit 418 1 George Crockett Academy 417 2 Life Skills Center Of Metropolitan Detroit 408 1 Thomas-Gist Academy 402 2 Hamtramck Academy 391 1 Trillium Academy 373 1 Summit Academy 372 1 Business Entrepreneurship, Science, Tech. Academy 371 1 David Ellis Academy 369 1 Blanche Kelso Bruce Academy 366 8 Pierre Toussaint Academy 359 1 Universal Academy 347 1 Academy Of Detroit-West 346 2 Bridge Academy 330 1	Hope Academy	457	1
Nataki Talibah Schoolhouse Of Detroit 418 1 George Crockett Academy 417 2 Life Skills Center Of Metropolitan Detroit 408 1 Thomas-Gist Academy 402 2 Hamtramck Academy 391 1 Trillium Academy 373 1 Summit Academy 372 1 Business Entrepreneurship, Science, Tech. Academy 371 1 David Ellis Academy 369 1 Blanche Kelso Bruce Academy 366 8 Pierre Toussaint Academy 359 1 Universal Academy 347 1 Academy Of Detroit-West 346 2 Bridge Academy 330 1	Joy Preparatory Academy	456	2
George Crockett Academy 417 2 Life Skills Center Of Metropolitan Detroit 408 1 Thomas-Gist Academy 402 2 Hamtramck Academy 391 1 Trillium Academy 373 1 Summit Academy 372 1 Business Entrepreneurship, Science, Tech. Academy 371 1 David Ellis Academy 369 1 Blanche Kelso Bruce Academy 366 8 Pierre Toussaint Academy 359 1 Universal Academy 347 1 Academy Of Detroit-West 346 2 Bridge Academy 330 1	Weston Technical Academy	456	1
Life Skills Center Of Metropolitan Detroit 408 1 Thomas-Gist Academy 402 2 Hamtramck Academy 391 1 Trillium Academy 373 1 Summit Academy 372 1 Business Entrepreneurship, Science, Tech. Academy 371 1 David Ellis Academy 369 1 Blanche Kelso Bruce Academy 366 8 Pierre Toussaint Academy 359 1 Universal Academy 347 1 Academy Of Detroit-West 346 2 Bridge Academy 330 1	Nataki Talibah Schoolhouse Of Detroit	418	1
Thomas-Gist Academy 402 2 Hamtramck Academy 391 1 Trillium Academy 373 1 Summit Academy 372 1 Business Entrepreneurship, Science, Tech. Academy 371 1 David Ellis Academy 369 1 Blanche Kelso Bruce Academy 366 8 Pierre Toussaint Academy 359 1 Universal Academy 347 1 Academy Of Detroit-West 346 2 Bridge Academy 330 1	George Crockett Academy	417	2
Hamtramck Academy 391 1 Trillium Academy 373 1 Summit Academy 372 1 Business Entrepreneurship, Science, Tech. Academy 371 1 David Ellis Academy 369 1 Blanche Kelso Bruce Academy 366 8 Pierre Toussaint Academy 359 1 Universal Academy 347 1 Academy Of Detroit-West 346 2 Bridge Academy 330 1	Life Skills Center Of Metropolitan Detroit	408	1
Trillium Academy 373 1 Summit Academy 372 1 Business Entrepreneurship, Science, Tech. Academy 371 1 David Ellis Academy 369 1 Blanche Kelso Bruce Academy 366 8 Pierre Toussaint Academy 359 1 Universal Academy 347 1 Academy Of Detroit-West 346 2 Bridge Academy 330 1	Thomas-Gist Academy	402	2
Summit Academy3721Business Entrepreneurship, Science, Tech. Academy3711David Ellis Academy3691Blanche Kelso Bruce Academy3668Pierre Toussaint Academy3591Universal Academy3471Academy Of Detroit-West3462Bridge Academy3301	Hamtramck Academy	391	1
Business Entrepreneurship, Science, Tech. Academy 371 1 David Ellis Academy 369 1 Blanche Kelso Bruce Academy 366 8 Pierre Toussaint Academy 359 1 Universal Academy 347 1 Academy Of Detroit-West 346 2 Bridge Academy 330 1	Trillium Academy	373	1
David Ellis Academy 369 1 Blanche Kelso Bruce Academy 366 8 Pierre Toussaint Academy 359 1 Universal Academy 347 1 Academy Of Detroit-West 346 2 Bridge Academy 330 1	Summit Academy	372	1
Blanche Kelso Bruce Academy 366 8 Pierre Toussaint Academy 359 1 Universal Academy 347 1 Academy Of Detroit-West 346 2 Bridge Academy 330 1	Business Entrepreneurship, Science, Tech. Academy	371	1
Pierre Toussaint Academy 359 1 Universal Academy 347 1 Academy Of Detroit-West 346 2 Bridge Academy 330 1	David Ellis Academy	369	1
Universal Academy 347 1 Academy Of Detroit-West 346 2 Bridge Academy 330 1	Blanche Kelso Bruce Academy	366	8
Academy Of Detroit-West 346 2 Bridge Academy 330 1	Pierre Toussaint Academy	359	1
Bridge Academy 330 1	Universal Academy	347	1
	Academy Of Detroit-West	346	2
Marilyn F. Lundy Academy 314 1	Bridge Academy	330	1
	Marilyn F. Lundy Academy	314	1

Table 2.5-44 Wayne County School District Information (2005-2006 School Year) (Sheet 4 of 4)

District Name	Number of Students	Number of Schools
Academy Of Westland	313	1
Ross Hill Academy	311	2
Timbuktu Academy Of Science And Technology	303	1
Aisha Shule/Web Dubois Prep. School	302	1
Charlotte Forten Academy	281	1
Northpointe Academy	273	1
Commonwealth Community Devel. Academy	268	1
Gaudior Academy	261	1
M.L. King Jr. Education Center	258	1
Detroit School Of Industrial Arts	256	1
Frontier International Academy	240	1
Academy Of Inkster	239	1
Heart Academy	230	1
Hanley International Academy	206	1
American Montessori Academy	190	1
Dr. Charles Drew Academy	182	1
Center For Literacy And Creativity	161	1
Universal Learning Academy	158	1
Michigan Health Academy	148	1
Benjamin Carson Academy	147	1
Casa Richard Academy	144	1
Covenant House Life Skills Center East	111	1
Discovery Arts And Technology Psa	98	1
Covenant House Life Skills Center West	77	1
Wayne Resa	57	3
Covenant House Life Skills Center Central	0	1
Totals	359,643	700

Table 2.5-45 Lucas County School District Information (2005-2006 School Year) (Sheet 1 of 2)

District Name	Number of Students	Number of Schools
Toledo City	30,423	58
Sylvania City	7,713	12
Washington Local	6,926	12
Anthony Wayne Local	4,249	6
Oregon City	3,929	7
Springfield Local	3,898	6
Maumee City	2,895	6
Ohio Virtual Academy	2,890	1
Alternative Education Academy	2,556	1
Ottawa Hills Local	996	2
Phoenix Academy Community School	594	1
Winterfield Venture Academy	531	1
Bennett Venture Academy	417	1
Toledo Academy Of Learning	413	1
Toledo School For The Arts	389	1
Alliance Academy Of Toledo	361	1
Academy Of Business & Tech	337	1
Lake Erie Academy	303	1
Horizon Science Academy Toledo	287	1
George A. Phillips Academy	270	1
Life Skills Center Of Toledo	265	1
Englewood Peace Academy	229	1
Glass City Academy	218	1
Paul Laurence Dunbar Academy	201	1
Aurora Academy	195	1
Wildwood Environmental Academy	181	1
Imani Learning Academy	172	1
Horizon Science Academy-Springfield	151	1
Toledo Accelerated Academy	150	1

Table 2.5-45 Lucas County School District Information (2005-2006 School Year) (Sheet 2 of 2)

District Name	Number of Students	Number of Schools
Brigadoon Academy Community School	145	1
Performing Arts School Of Toledo	123	1
Summit Academy Toledo	117	1
Polly Fox Academy Community School	114	1
Eagle Academy	112	1
Meadows Choice Community	104	1
Victory Academy Of Toledo	98	1
Summit Academy Secondary School - Toledo	73	1
M.O.D.E.L. Community School	70	1
The Autism Academy Of Learning	51	1
Lucas	N/A	5
Total	s 73,146	140

Note:

"N/A" means the data are not available or not applicable

Table 2.5-46 Revenues and Expenditures by School District in Monroe County (2004 – 2005) (Sheet 1 of 6)

		Amount (\$)	Amount/Student	Percent
Airport	Total Revenue:	27,420,000	8,342	
Community School District	Revenue by Source			
	Federal:	876,000	267	3
	Local:	6,653,000	2,024	24
	State:	19,891,000	6,051	73
	Total Expenditures:	27,235,000	8,286	
	Total Current Expenditures:	25,266,000	7,687	
	Instructional Expenditures:	15,427,000	4,693	61
	Student and Staff Support:	1,780,000	542	7
	Administration:	2,870,000	873	11
	Operations, Food Service, other:	5,189,000	1,579	21
	Total Capital Outlay:	1,072,000	326	
	Construction:	454,000	138	
Bedford Public	Total Revenue:	45,247,000	8,311	
Schools	Revenue by Source	985,000	181	2
	Federal:	10,142,000	1,863	22
	Local:	34,120,000	6,267	75
	State:			
	Total Expenditures:	44,551,000	8,184	
	Total Current Expenditures:	41,270,000	7,581	
	Instructional Expenditures:	25,575,000	4,698	62
	Student and Staff Support:	3,402,000	625	8
	Administration:	4,486,000	824	11
	Operations, Food Service, other:	7,807,000	1,434	19
	Total Capital Outlay:	1,220,000	224	
	Construction:	0	0	

Table 2.5-46 Revenues and Expenditures by School District in Monroe County (2004 – 2005) (Sheet 2 of 6)

		Amount (\$)	Amount/Student	Percent
Dundee	Total Revenue:	15,727,000	9,311	
Community Schools	Revenue by Source			
	Federal:	319,000	189	2
	Local:	6,493,000	3,844	41
	State:	8,915,000	5,278	57
	Total Expenditures:	15,536,000	9,198	
	Total Current Expenditures:	13,345,000	7,901	
	Instructional Expenditures:	7,793,000	4,614	58
	Student and Staff Support:	782,000	463	6
	Administration:	1,822,000	1,079	14
	Operations, Food Service, other:	2,948,000	1,745	22
	Total Capital Outlay:	761,000	451	
	Construction:	619,000	366	
Ida Public	Total Revenue:	14,618,000	8,445	
School District	Revenue by Source			
	Federal:	219,000	127	1
	Local:	2,903,000	1,677	20
	State:	11,496,000	6,641	79
	Total Expenditures:	14,930,000	8,625	
	Total Current Expenditures:	13,906,000	8,034	
	Instructional Expenditures:	8,426,000	4,868	61
	Student and Staff Support:	1,301,000	752	9
	Administration:	1,485,000	858	11
	Operations, Food Service, other:	2,694,000	1,556	19
	Total Capital Outlay:	906,000	523	
	Construction:	272,000	157	

Table 2.5-46 Revenues and Expenditures by School District in Monroe County (2004 – 2005) (Sheet 3 of 6)

Total Revenue by Source Federal:			Amount (\$)	Amount/Student	Percent
Revenue by Source Federal:		Total Revenue:	23,450,000	9,192	
Local:	Schools	Revenue by Source			
State: 8,623,000 3,380 37		Federal:	448,000	176	2
Total Expenditures: 24,184,000 9,480 Total Current Expenditures: 23,967,000 9,395 Instructional Expenditures: 14,608,000 5,726 61 Student and Staff Support: 1,476,000 579 6 Administration: 2,897,000 1,136 12 Operations, Food Service, other: 4,986,000 1,955 21 Total Capital Outlay: 38,000 15 Construction: 0 0 0 O O O O O O O O		Local:	14,379,000	5,637	61
Total Current Expenditures: 23,967,000 9,395 Instructional Expenditures: 14,608,000 5,726 61 Student and Staff Support: 1,476,000 579 6 Administration: 2,897,000 1,136 12 Operations, Food Service, other: 4,986,000 1,955 21 Total Capital Outlay: 38,000 15 Construction: 0 0 0 Mason Consolidated Schools		State:	8,623,000	3,380	37
Instructional Expenditures: 14,608,000 5,726 61		Total Expenditures:	24,184,000	9,480	
Student and Staff Support: 1,476,000 579 6		Total Current Expenditures:	23,967,000	9,395	
Administration: 2,897,000 1,136 12 Operations, Food Service, other: 4,986,000 1,955 21 Total Capital Outlay: 38,000 15 Construction: 0 0 Revenue: 13,731,000 9,203 Revenue by Source Federal: 439,000 294 3 Local: 4,856,000 3,255 35 State: 8,436,000 5,654 61 Total Expenditures: 14,933,000 10,009 Total Current Expenditures: 12,586,000 8,436 Instructional Expenditures: 6,712,000 4,499 53 Student and Staff Support: 1,101,000 738 9 Administration: 2,144,000 1,437 17 Operations, Food Service, other: 2,629,000 1,762 21 Total Capital Outlay: 1,325,000 888		Instructional Expenditures:	14,608,000	5,726	61
Operations, Food Service, other: 4,986,000 1,955 21		Student and Staff Support:	1,476,000	579	6
Total Capital Outlay: 38,000 15		Administration:	2,897,000	1,136	12
Mason Consolidated Schools Total Revenue: 13,731,000 9,203 Federal: 439,000 294 3 Local: 4,856,000 3,255 35 State: 8,436,000 5,654 61 Total Expenditures: 14,933,000 10,009 Total Current Expenditures: 12,586,000 8,436 Instructional Expenditures: 6,712,000 4,499 53 Student and Staff Support: 1,101,000 738 9 Administration: 2,144,000 1,437 17 Operations, Food Service, other: 2,629,000 1,762 21 Total Capital Outlay: 1,325,000 888		Operations, Food Service, other:	4,986,000	1,955	21
Mason Consolidated Schools Total Revenue: 13,731,000 9,203 Revenue by Source Federal: 439,000 294 3 Local: 4,856,000 3,255 35 State: 8,436,000 5,654 61 Total Expenditures: 14,933,000 10,009 Total Current Expenditures: 12,586,000 8,436 Instructional Expenditures: 6,712,000 4,499 53 Student and Staff Support: 1,101,000 738 9 Administration: 2,144,000 1,437 17 Operations, Food Service, other: 2,629,000 1,762 21 Total Capital Outlay: 1,325,000 888		Total Capital Outlay:	38,000	15	
Consolidated Schools Revenue by Source Federal: 439,000 294 3 Local: 4,856,000 3,255 35 State: 8,436,000 5,654 61 Total Expenditures: 14,933,000 10,009 Total Current Expenditures: 12,586,000 8,436 Instructional Expenditures: 6,712,000 4,499 53 Student and Staff Support: 1,101,000 738 9 Administration: 2,144,000 1,437 17 Operations, Food Service, other: 2,629,000 1,762 21 Total Capital Outlay: 1,325,000 888		Construction:	0	0	
Revenue by Source Federal:		Total Revenue:	13,731,000	9,203	
Federal: 439,000 294 3 Local: 4,856,000 3,255 35 State: 8,436,000 5,654 61 Total Expenditures: 14,933,000 10,009 Total Current Expenditures: 12,586,000 8,436 Instructional Expenditures: 6,712,000 4,499 53 Student and Staff Support: 1,101,000 738 9 Administration: 2,144,000 1,437 17 Operations, Food Service, other: 2,629,000 1,762 21 Total Capital Outlay: 1,325,000 888		Revenue by Source			
State: 8,436,000 5,654 61 Total Expenditures: 14,933,000 10,009 Total Current Expenditures: 12,586,000 8,436 Instructional Expenditures: 6,712,000 4,499 53 Student and Staff Support: 1,101,000 738 9 Administration: 2,144,000 1,437 17 Operations, Food Service, other: 2,629,000 1,762 21 Total Capital Outlay: 1,325,000 888		Federal:	439,000	294	3
Total Expenditures: 14,933,000 10,009 Total Current Expenditures: 12,586,000 8,436 Instructional Expenditures: 6,712,000 4,499 53 Student and Staff Support: 1,101,000 738 9 Administration: 2,144,000 1,437 17 Operations, Food Service, other: 2,629,000 1,762 21 Total Capital Outlay: 1,325,000 888		Local:	4,856,000	3,255	35
Total Current Expenditures: 12,586,000 8,436 Instructional Expenditures: 6,712,000 4,499 53 Student and Staff Support: 1,101,000 738 9 Administration: 2,144,000 1,437 17 Operations, Food Service, other: 2,629,000 1,762 21 Total Capital Outlay: 1,325,000 888		State:	8,436,000	5,654	61
Instructional Expenditures: 6,712,000 4,499 53 Student and Staff Support: 1,101,000 738 9 Administration: 2,144,000 1,437 17 Operations, Food Service, other: 2,629,000 1,762 21 Total Capital Outlay: 1,325,000 888		Total Expenditures:	14,933,000	10,009	
Student and Staff Support: 1,101,000 738 9 Administration: 2,144,000 1,437 17 Operations, Food Service, other: 2,629,000 1,762 21 Total Capital Outlay: 1,325,000 888		Total Current Expenditures:	12,586,000	8,436	
Administration: 2,144,000 1,437 17 Operations, Food Service, other: 2,629,000 1,762 21 Total Capital Outlay: 1,325,000 888		Instructional Expenditures:	6,712,000	4,499	53
Operations, Food Service, other: 2,629,000 1,762 21 Total Capital Outlay: 1,325,000 888		Student and Staff Support:	1,101,000	738	9
Total Capital Outlay: 1,325,000 888		Administration:	2,144,000	1,437	17
		Operations, Food Service, other:	2,629,000	1,762	21
Construction: 48,000 32		Total Capital Outlay:	1,325,000	888	
		Construction:	48,000	32	

Table 2.5-46 Revenues and Expenditures by School District in Monroe County (2004 – 2005) (Sheet 4 of 6)

Monroe ISD Total Revenue: Revenue by Source Federal: Local: State: Total Expenditures: Total Current Expenditures: Instructional Expenditures: Student and Staff Administration:	6,232,000 26,139,000	0	15
Federal: Local: State: Total Expenditures: Total Current Expenditures: Instructional Expenditures:	6,232,000 26,139,000		15
Local: State: Total Expenditures: Total Current Expenditures: Instructional Expenditures	26,139,000		15
State: Total Expenditures: Total Current Expenditures Instructional Expenditures			
Total Expenditures: Total Current Expenditures: Instructional Expenditures:		0	61
Total Current Expe Instructional Expe Student and Staff	10,379,000	0	24
Instructional Expe	42,088,000	0	
Student and Staff	enditures: 28,674,000	0	
	nditures: 11,368,000	0	40
Administration:	Support: 12,363,000	0	43
·	2,682,000	0	9
Operations, Food	Service, other: 2,261,000	0	8
Total Capital Outla	ay: 615,000	0	
Construction:	205,000	0	
Monroe Public Total Revenue:	60,436,000	8,560	
Schools Revenue by Sour	ce		
Federal:	2,885,000	409	5
Local:	23,406,000	3,315	39
State:	34,145,000	4,836	56
Total Expenditures:	58,872,000	8,339	
Total Current Exp	enditures: 54,405,000	7,706	
Instructional Expe	nditures: 30,681,000	4,346	56
Student and Staff	Support: 5,140,000	728	9
Administration:	6,551,000	928	12
Operations, Food	Service, other: 12,033,000	1,704	22
Total Capital Outla	ay: 1,959,000	·	
Construction:	1,959,000	277	

Table 2.5-46 Revenues and Expenditures by School District in Monroe County (2004 – 2005) (Sheet 5 of 6)

		Amount (\$)	Amount/Student	Percent
New Bedford	Total Revenue:	1,160,000	7,945	
Academy	Revenue by Source			
	Federal:	26,000	178	2
	Local:	59,000	404	5
	State:	1,075,000	7,363	93
	Total Expenditures:	986,000	6,753	
	Total Current Expenditures:	834,000	5,712	
	Instructional Expenditures:	422,000	2,890	51
	Student and Staff Support:	14,000	96	2
	Administration:	279,000	1,911	33
	Operations, Food Service, other:	119,000	815	14
	Total Capital Outlay:	11,000	75	
	Construction:	0	0	
Summerfield	Total Revenue:	6,516,000	7,739	
School District	Revenue by Source			
	Federal:	160,000	190	2
	Local:	998,000	1,185	15
	State:	5,358,000	6,363	82
	Total Expenditures:	6,662,000	7,912	
	Total Current Expenditures:	6,364,000	7,558	
	Instructional Expenditures:	3,706,000	4,401	58
	Student and Staff Support:	583,000	692	9
	Administration:	827,000	982	13
	Operations, Food Service, other:	1,248,000	1,482	20
	Total Capital Outlay:	214,000	254	
	Construction:	5,000	6	

Table 2.5-46 Revenues and Expenditures by School District in Monroe County (2004 – 2005) (Sheet 6 of 6)

		Amount (\$)	Amount/Student	Percent
Triumph	Total Revenue:	2,788,000	11,333	
Academy	Revenue by Source			
	Federal:	320,000	1,301	11
	Local:	666,000	2,707	24
	State:	1,802,000	7,325	65
	Total Expenditures:	2,754,000	11,195	
	Total Current Expenditures:	2,754,000	11,195	
	Instructional Expenditures:	926,000	3,764	34
	Student and Staff Support:	150,000	610	5
	Administration:	646,000	2,626	23
	Operations, Food Service, other:	1,032,000	4,195	37
	Total Capital Outlay:	0	0	
	Construction:	0	0	
Whiteford	Total Revenue:	6,422,000	8,276	
Agricultural Schools	Revenue by Source			
	Federal:	81,000	104	1
	Local:	1,937,000	2,496	30
	State:	4,404,000	5,675	69
	Total Expenditures:	6,599,000	8,504	
	Total Current Expenditures:	5,999,000	7,731	
	Instructional Expenditures:	3,740,000	4,820	62
	Student and Staff Support:	344,000	443	6
	Administration:	796,000	1,026	13
	Operations, Food Service, other:	1,119,000	1,442	19
	Total Capital Outlay:	132,000	170	
	Construction:	29,000	37	

Table 2.5-47 Expenditures for Public Elementary and Secondary School Districts (2004 – 2005)

Median Expenditures Per Pupil

State and	Current \$	rent \$ Expenditures		Other Programs	linto no ot o n
independent charter school districts	Total	Instruction Related	Outlays (\$)	and Payments to State and Local Governments (\$)	Interest on Long-Term Debt (\$)
United States	9,392	5,326	398	19	136
Michigan	9,103	5,225	273	67	351
Ohio	8,687	4,948	338	113	126

 Table 2.5-48
 Monroe County Recreational Facilities (Sheet 1 of 12)

Park Type	Name	Location	Facilities	Acres
County Parks	Heck Park	Monroe City	Vietnam Veterans Memorial and Museum, playground, pavilion, sled hill, trails, basketball, exercise court	15
	Nike Park	Frenchtown Twp.	picnic area, soccer fields, playground, model aircraft area, dog training area	80
	Vienna Park	Bedford Twp.	ball diamonds, soccer fields, natural area, picnic area, shelters, playground, disk golf course	57
	Waterloo Park	Monroe Twp.	walking path, fishing pier, river access, canoe landing, exercise court, picnic shelter	9
	West County Park	Dundee Twp.	natural habitat, river access, benches, shelters	60
	Total			221
_	Sterling State Park	Monroe/Frenchtown Twp.	Lake Erie beach, boat launch, campground, play ground, nature trails	1,300
	Petersburg State Game Area	Summerfield Twp. hunting	hunting	935
	Pointe. Mouillee State Game Area	Berlin Twp (also Wayne Co.)	hunting, fishing, shooting range, boat ramp	3,466
	Erie State Game Area	Erie Twp.	hunting, boat launch	1,519
	I-75 Rest Area	Monroe Twp.	rest rooms, picnic area, tourist information	25
	U.S23 Rest Area	Summerfield Twp.	rest rooms, picnic area, tourist information	28
	I-275 Rest Area	Ash Twp.	rest rooms, picnic area, tourist information	35
	Bolles Harbor Access Site	Monroe Twp.	boat launch, fishing, restrooms, parking	77
	Otter Creek Access Site	LaSalle Twp.	Lake Erie access, fishing pier, restrooms	26
	Swan Creek Access Site	Berlin Twp.	boat ramp, fishing, restrooms	2
	Total			7,413

 Table 2.5-48
 Monroe County Recreational Facilities (Sheet 2 of 12)

Park Type	Name	Location	Facilities	Acres
City & Township	Ash Twp. Unity Park	Ash	proposed - ball diamonds, trail, water recreation	27.3
Parks	Carr Park	Bedford	picnic shelter, playground, ball diamond, tennis, basketball	5.3
	Lewis Anstead Park	Bedford	undeveloped	56.0
	Parmelee Park	Bedford	nature trails, basketball, playground, picnic sites, lighted ball diamonds, tennis courts	8.8
	Samaria Park	Bedford	playground, community center building, picnic sites, trails, ball diamonds	13.2
	White Park	Bedford	playground, picnic sites, ball diamonds, exercise trail, basketball, tennis	28.1
	Ash-Carleton Park	Carleton	ball diamonds, playground, trails, picnic sites, tennis, natural area, basketball	23.1
	Rod Park	Dundee Twp.	ball diamonds, natural area	19.1
	Dundee Soccer Fields	Dundee Village	soccer fields	7.8
	Ford Park	Dundee Village	river access, picnic sites	2.9
	Triangle Park	Dundee Village	gazebo, benches	0.2
	Wolverine Park	Dundee Village	playground, basketball, tennis, horseshoes, boat ramp, fishing, picnicking, community bldg	4.0
	South Erie Park	Erie	playground, ball diamonds, picnic sites	18.1
	Frenchtown Kiwanis Park	Frenchtown	ball diamonds, playground, picnic sites, natural area	14.8
	Frenchtown Twp. Hall Park	Frenchtown	ball diamonds, playground, picnic sites, tennis courts, walking trail, sledding hill, rec. building	12.2
	Frenchtown Park #3	Frenchtown	under development - softball, soccer, playground	16.0
	Ida Twp. Park	lda	playground, horseshoes, pathway, picnic area	10.8
	Luna Pier beach & pier	Luna Pier	fishing pier, picnic sites, Lake Erie beach	6.4
	Water Tower Park	Luna Pier	playground, ball diamond, tennis, basketball, picnic area	12.4
	Maybee Community Park	Maybee	ball diamonds, playground	10.9
	Wilson Park	Milan City	ball diamonds, trails, picnic sites, playground	24.0
	Hellenberg Park	Monroe City	ball diamonds, river access, natural area	13.0
	Loranger Square	Monroe City	picnic tables, historic site, gazebo, fountain	1.0

 Table 2.5-48
 Monroe County Recreational Facilities (Sheet 3 of 12)

Park Type	Name	Location	Facilities	Acres
City & Township Parks (continued)	Munson Park	Monroe City	ball diamonds, playground, soccer fields, picnic sites, sledding hill, tennis courts	240
	Navarre Field	Monroe City	ball diamonds, tennis courts, playground	8.5
	River Walk	Monroe City	riverside walking path	0.9
	Roessler Field	Monroe City	ball diamonds, river access	11.1
	St. Mary's Park	Monroe City	playground, amphitheater, picnic sites, tennis, basketball	3.4
	Veteran's Park	Monroe City	playground, river access, picnic areas	7.8
	Monroe Charter Twp. Community Park	Monroe Twp.	proposed/under development - ball diamonds, nature trail, basketball, volleyball, tennis, playground	37.0
	Perry Park	Petersburg	playground	0.4
	Fernstrom Park	Petersburg	river access, picnic sites	8.2
	Raisinville Twp.	Raisinville	undeveloped, river access, natural area	17.9
Ŧ	Dodge Bros. Park	S. Rockwood	natural area, river access	25.8
	HCMA Property	S. Rockwood	natural area, river access	34.5
	LaBo Park	S. Rockwood	fishing access, picnic sites	0.4
	Village Park	S. Rockwood	ball diamonds, ice skating	10.2
	Whiteford Park	Whiteford	proposed/under development - ball diamonds, trails, soccer, fossil dig	80.0
	Total			821.5
Neighborhood and	Bicentennial Park	Bedford	gazebo, foot bridge	1.0
Subdivision Parks	Bridgeway	Bedford	none	2.6
	Canterbury Forest	Bedford	none	0.9
	Colonial (Cranbrook)	Bedford	playground, picnic tables	0.9
	Colonial (Middlebury)	Bedford	none	1.3
	Colonial (Ridgedale)	Bedford	none	1.2
	Colonial (Wellsley)	Bedford	none	1.2
	Cottonwood	Bedford	none	0.3
	Crosscreeks (Indian Creek)	Bedford	none	14.6

 Table 2.5-48
 Monroe County Recreational Facilities (Sheet 4 of 12)

Park Type	Name	Location	Facilities	Acres
Neighborhood and Subdivision Parks	Crosscreeks (Ryan Common Area)	Bedford	none	1.7
(continued)	Green Hills Community	Bedford	pool, clubhouse, tennis	13.4
	Hooverdale - Windingbrook	Bedford	none	8.7
	Inverness	Bedford	playground	0.7
	Jamie Park (Kimberly Oaks)	Bedford	none	4.8
	Lambert Estates	Bedford	none	1.2
	Miller Park	Bedford	play area	1.6
	Mohawk Trails	Bedford	playground, basketball	0.3
	Shenandoah Hills	Bedford	none	0.5
	Silas and Julia Smith Park	Bedford	picnic sites, basketball, playgrounds	2.1
	Tanglewood	Bedford	none	0.8
N Va	Woodstream Acres	Bedford	none	0.8
	Northtowne Meadows	Bedford	playground, tennis court	1.6
	Valleybrook Park	Bedford	none	2.8
	Wildhaven	Bedford	none	3.2
	Carleton MHP	Carleton Village	playground	0.2
	Yorkshire Manor MHP	Carleton Village	playground	0.4
	Waterworks Park (Jaycees)	Dundee Village	playground	0.3
	Maplewood Park	Erie Twp.	playground, ball diamond, basketball, picnic area	4.1
	Morin Point Park	Erie Twp.	playground	1.6
	Bay Crest Assn.	Frenchtown	beach access	4.0
	Brest Bay Grove	Frenchtown	beach, playground, picnic	5.5
	Detroit Beach Assn.	Frenchtown	beach	2.3
	Detroit Beach Assn.	Frenchtown	playground	4.2
	Detroit Beach Assn.	Frenchtown	playground, basketball	5.4
	Detroit Beach Assn.	Frenchtown	playground, picnic shelter	7.3
	Erie Shores Assn.	Frenchtown	beach access, picnic grounds	0.7
	Erie Shores Assn.	Frenchtown	playground, picnic, basketball, ball diamond	2.1

 Table 2.5-48
 Monroe County Recreational Facilities (Sheet 5 of 12)

Park Type	Name	Location	Facilities	Acres
Neighborhood and	Frenchtown Villa	Frenchtown	pool, clubhouse	0.4
Subdivision Parks	Frenchtown Villa	Frenchtown	playground	0.6
(Continued)	Grand Beach Assn.	Frenchtown	playground, tennis, basketball, ball diamond, picnic	4.7
	Indian Trails Assn.	Frenchtown	ball diamond	0.6
	Indian Trails Assn.	Frenchtown	play equipment, tennis court, basketball	1.0
	Indian Trails Assn.	Frenchtown	beach access, club house	1.0
	Indian Trails Assn.	Frenchtown	playground, basketball	1.5
	Kimberly Estates	Frenchtown	pool, tennis, clubhouse	1.5
	Pleasantville	Frenchtown	basketball	5.1
	Pte. Aux Peaux Farms Assn	Frenchtown	beach access	3.2
	Pte. Aux Peaux Farms Assn	Frenchtown	play equipment, shelter, basketball, ball diamond	2.7
	Stony Pt. Beach Assn.	Frenchtown	none	0.5
	Stony Pt. Beach Assn.	Frenchtown	beach access	1.0
_	Stony Pt. Beach Assn.	Frenchtown	playground, basketball	3.2
	Stony Pt. Peninsula Assn.	Frenchtown	play area, swings	5.0
	Woodland Beach Assn.	Frenchtown	playground, ball diamond	2.9
	Woodland Beach Assn.	Frenchtown	ball diamond	3.1
	Woodland Beach Assn.	Frenchtown	playground, beach	10.5
	Luna Pier Park	Luna Pier	playground	0.6
	Seventh Street Park	Luna Pier	playground, ball diamond	0.9
	Arbor/Lorain Park	Monroe City	playground	0.1
	Cairns Field	Monroe City	playground, ball diamond	4.2
	Calgary Park	Monroe City	playground, pavilion	2.0
	Cranbrook Park	Monroe City	picnic area, natural area	7.2
	Depot Square	Monroe City	none	0.1
	Hoffman Park	Monroe City	playground, picnic area	5.2
	James / Hendricks Park	Monroe City	none	2.3
	Lavender Park	Monroe City	tennis, playground, picnic	1.3
	Memorial Park	Monroe City	benches, cemetery	0.7

 Table 2.5-48
 Monroe County Recreational Facilities (Sheet 6 of 12)

Park Type	Name	Location	Facilities	Acres
Neighborhood and	Mill Race Park	Monroe City	river access	11
Subdivision Parks	Oak Forest Park	Monroe City	natural area	8.2
(continued)	Orchard Center	Monroe City	playground, basketball	2.6
	Plum Creek Park	Monroe City	playground. basketball, picnic area	2.0
	Rauch Park	Monroe City	playground	3.4
	Soldier & Sailors Park	Monroe City	playground, benches, shuffleboard, horseshoes	5.2
	St. Antoine's Park	Monroe City	historic site, benches	0.3
	Winston Park	Monroe City	playground, benches	0.3
	Evergreen Acres	Monroe Twp.	none	0.9
	Avalon Beach Assn. Park	Monroe Twp.	beach access, basketball	1.0
	Bolles Harbor Assn. Park	Monroe Twp.	playground, basketball, tennis, ball diamond	8.0
	Parkside	Monroe Twp.	river access	4.7
	Ravenwood	Monroe Twp.	playground, shelter	2.0
	S. Monroe Townsite	Monroe Twp.	playground, ball diamond, basketball, tennis	4.6
	Total			233.6

 Table 2.5-48
 Monroe County Recreational Facilities (Sheet 7 of 12)

Site	Location	Owner	Facilities	Acres
Pointe. Mouillee Access Site	Berlin	State of Michigan	boat launch	1.0
Swan Creek Access Site	Berlin	State of Michigan	boat launch, restrooms	1.3
Wolverine Park	Dundee Village	Village of Dundee	boat launch	4.0
Game Area	Erie	State of Michigan	boat launch	2.9
Sterling State Park	Frenchtown	State of Michigan	boat launch, docks	1,300
Luna Pier boat launch	Luna Pier	City of Luna Pier	boat launch	9.0
Public Access Site	Luna Pier	Consumers Power	fishing access	1.5
Hellenburg Park	Monroe	City of Monroe	boat launch	2.0
Bolles Harbor	Monroe Twp.	State of Michigan	boat launch, restrooms	77.1
Hoffman Mem. Pier Monroe Twp.		Monroe Twp.	fishing pier	0.4
Waterloo Park	Monroe Twp.	Monroe County	fishing pier, canoe landing	11.3
	Total			1410.5

 Table 2.5-48
 Monroe County Recreational Facilities (Sheet 8 of 12)

Monroe County Campgrounds

Campground	Location	Modern Sites	Primitive Sites	Acres
Wilderness Retreat	Dundee Twp.	50	0	50.5
Camp Lord Willing	Frenchtown	30	36	28.2
Sterling State Park (public)	Frenchtown	256	0	1,300
KC Campground	London	50	50	20.6
Harbortown RV Resort	Monroe Twp.	250	0	30.5
Monroe Co. KOA	Summerfield	249	0	41.9
Pirolli Park	Summerfield	100	50	68.7
Totem Pole Park	Summerfield	121	0	34.6
Covered Wagon Campground	Whiteford	100	13	18.7
	Total	1206	149	1593.7

 Table 2.5-48
 Monroe County Recreational Facilities (Sheet 9 of 12)

Monroe County Marinas

Marina	Location	Boat Slips
Lake Pointe Marina	Berlin	68
Swan Boat Club	Berlin	127
Swan Yacht Basin	Berlin	29
Andrew's Boat Dock	Erie	145
Blair's Marina	Erie	80
Burlen's Dock	Erie	35
Erie Bay Harbor Marina	Erie	227
Folden Marina	Erie	22
Halfway Marina	Erie	39
John Fisher's Marina	Erie	32
JoJo's Marina	Erie	57
Lands End Marina	Erie	32
Lost Peninsula Marina	Erie	300
River Café & Marina	Erie	6
State Line Marina	Erie	141
T & L Marine	Erie	10
Tom's Boat Dock	Erie	39
Estral Beach Island Marina	Estral Beach	69
Brest Bay Marina	Frenchtown	358
Detroit Beach Boat Club	Frenchtown	94
Lighthouse Harbor Marina	LaSalle	177
North Cape Yacht Club	LaSalle	150
Otter Creek Marina	LaSalle	75
Toledo Beach Marina	LaSalle	555

Table 2.5-48 Monroe County Recreational Facilities (Sheet 10 of 12)

Monroe County Marinas

Marina	Location	Boat Slips
Luna Pier Harbour Club	Luna Pier	392
Roe's Riverside Bait & Tackle	Monroe City	14
Riverfront Marina	Monroe City	155
Mooner's Marina	Monroe City	34
Charlie's Boat & Bait	Monroe Twp.	50
Clarks Landing	Monroe Twp.	24
Erie Party Shoppe & Docks	Monroe Twp.	70
Harbor Marine	Monroe Twp.	20
Monroe Boat Club	Monroe Twp.	88
Monroe Marina	Monroe Twp.	42
OPM Club	Monroe Twp.	28
Trout's Yacht Basin	Monroe Twp.	94
LaPlaisance Creek Marina	Monroe Twp.	68
	Total	3,946

 Table 2.5-48
 Monroe County Recreational Facilities (Sheet 11 of 12)

Shooting Ranges and Sportsmen's Club

Range/Club	Township
Southern Mich. Sportsmen's Club	Bedford Twp.
Dundee Sportsman's Club	Dundee Twp.
Mudjaw Bowman Lodge	Erie Twp.
Carleton Sportsmen's Club	Exeter Twp.
Century Gun Club	Exeter Twp.
East Rockwood Sportsman's Club	Exeter Twp.
Brest Bay Sportsman's Club	Frenchtown Twp.
London Sportsmen Rod & Gun Club	London Twp.
Maybee Sportsmen's Club	London Twp.
Sexy Pheasant Hunting Preserve	Milan Twp.
Monroe Rod & Gun Club	Monroe Twp.
Monroe Rifle & Pistol Club	Raisinville Twp.
Canvasback Gun Club	Raisinville Twp.
Ottawa Lake Sportsman's Club	Whiteford Twp.

 Table 2.5-48
 Monroe County Recreational Facilities (Sheet 12 of 12)

Miscellaneous Recreational Facilities

Facility	Location	Description	Acres
Flat Rock Speedway	Ash Twp.	race track	32
VFW Post 4093	Ash Twp.	ball diamonds, picnic shelter	8
Brookwood Swim Club	Bedford Twp.	private swim club	5
Douglas Meadows Stables	Bedford Twp.	private stables	21
Forestview Lanes	Bedford Twp.	bowling, volleyball	9
Howard's Riding Academy	Bedford Twp.	private stables	11
Hunter's Run Riding Stables	Bedford Twp.	private stables	50
Lambertville Civic Club	Bedford Twp.	sports fields, clubhouse	8
Soda Park	Bedford Twp.	ball diamonds	20
Windsong Stables	Bedford Twp.	private stables	17
Fireman's Park	Berlin Twp.	picnic area, shelter	7
	Total		188

Table 2.5-49 List of Recreation and Lodging Facilities within a 10-mi Radius (Sheet 1 of 3)

County	Туре	Township	Facility Name	Compass Direction from Fermi	Distance (miles) From Fermi	Period of Operation
Monroe	Golf Course	Ash	Carleton Glen Golf Club	NW	9.75	Summer
Monroe	Race Track	Ash	Flat Rock Speedway	NNW	8.5	Summer
Monroe	Park	Berlin	Berlin Twp. Park	NNW	4.12	Summer
Monroe	Golf Course	Berlin	Lilac Golf Course	NNW	3.23	Summer
Monroe	Park	Berlin	Pointe Mouille State Game Area	NE	5.5	Yr. Round
Monroe	Marina Aquatic	Berlin	Swan Yacht Basin	NNW	1.39	Summer
Monroe	Golf Course	Berlin	Wesburn Golf Course	N	7.51	Summer
Monroe	Marina/ Aquatic	Frenchtown	Brest Bay Marina	SW	2.42	Yr. Round
Monroe	Camp Grounds	Frenchtown	Camp Lord Willing	W	7.09	Yr. Round
Monroe	Park	Frenchtown	Heck Park	WSW	6.2	Summer
Monroe	Park	Frenchtown	Munson Park	WSW	9.49	Summer
Monroe	Historic Site	Frenchtown	Navarre-Anderson Trading Post	WSW	10.6	Yr. Round
Monroe	Park	Frenchtown	Nike Park	WNW	6.5	Summer
Monroe	Golf Course	Frenchtown	Old Town Golf and Sportland	W	5.98	Summer
Monroe	Golf Course	Frenchtown	Raisin River Golf Club	WSW	5.66	Summer
Monroe	Golf Course	Frenchtown	Sandy Creek Golf Course	W	8.7	Summer
Monroe	Park	Frenchtown	Sterling State Park	SW	5.18	Summer
Monroe	Park	Monroe	Hellenburg Park	WSW	7.26	Summer
Monroe	Golf Course	Monroe	Monroe Golf and Country Club	WSW	6.36	Summer
Monroe	Marina/ Aquatic	Monroe	Riverfront Marina	WSW	7.1	Summer
Monroe	Park	Monroe	Veteran's Park	WSW	8.6	Summer
Monroe	Marina/ Aquatic	Monroe Twp.	Bolles Harbor	SW	9.1	Summer

Table 2.5-49 List of Recreation and Lodging Facilities within a 10-mi Radius (Sheet 2 of 3)

County	Туре	Township	Facility Name	Compass Direction from Fermi	Distance (miles) From Fermi	Period of Operation
Monroe	Marina/ Aquatic	Monroe Twp.	Erie Party Shoppe & Docks	SW	9.24	Yr. Round
Monroe	Lodging	Monroe Twp.	Harbortown RV Resort	SW	8.73	Summer
Monroe	Marina/ Aquatic	Monroe Twp.	Harbor Marine	SW	9.14	Summer
Monroe	Golf Course	Monroe Twp.	Links at Lake Erie	SW	8.91	Summer
Monroe	Marina/ Aquatic	Monroe Twp.	Miller Boat Livery	SW	9.24	Summer
Monroe	Fairgrounds	Monroe Twp.	Monroe County Fairgrounds	WSW	10.65	Yr. Round
Monroe	CampGrounds	Monroe Twp.	Sunny South Villa	WSW	9.87	Summer
Monroe	Marina/ Aquatic	Monroe Twp.	Trout's Yacht Basin	SW	10.16	Summer
Monroe	Park	Monroe Twp.	Waterloo Park	WSW	9.1	Summer
Wayne	Park	Brownstown	Lake Erie Metropark	NNE	7.87	Yr. Round
Wayne	Marina/ Aquatic	Gibraltar	Humbug Marina Inc.	NNE	9.79	Summer
Wayne	Marina/ Aquatic	Gibraltar	Island Marina	NNE	9.3	Summer
Wayne	Park	Rockwood	Mercure Park	N	7.56	Summer
Monroe	Lodging	Frenchtown	Cross Country Inn	WSW	5.53	Yr. Round
Monroe	Lodging	Frenchtown	Hampton Inn	WSW	5.65	Yr. Round
Monroe	Lodging	Frenchtown	Hometown Inn	WSW	5.53	Yr. Round
Monroe	Lodging	Frenchtown	Travel Inn	WSW	5.69	Yr. Round
Monroe	Lodging	Monroe	Knights Inn	WSW	6	Yr. Round
Monroe	Lodging	Monroe	Holiday Inn Express Hotel & Suites	WSW	6.14	Yr. Round
Monroe	Lodging	Monroe	Sunset Motel	WSW	8.25	Yr. Round
Monroe	Lodging	Monroe Twp.	Amerihost Inn	SW	8.87	Yr. Round
Monroe	Lodging	Monroe Twp.	Comfort Inn	SW	9.33	Yr. Round

Table 2.5-49 List of Recreation and Lodging Facilities within a 10-mi Radius (Sheet 3 of 3)

County	Туре	Township	Facility Name	Compass Direction from Fermi	Distance (miles) From Fermi	Period of Operation
Monroe	Lodging	Monroe Twp.	Hollywood Motel	WSW	9.19	Yr. Round
Monroe	Lodging	Monroe Twp.	I-75 Rest Area	SW	10.21	Yr. Round
Monroe	Lodging	Monroe Twp.	Motel Seven	WSW	9.52	Yr. Round
Wayne	Lodging	Flat Rock	Seaway Motel	N	10.12	Yr. Round
Wayne	Lodging	Flat Rock	Sleep Inn	N	9.06	Yr. Round

Table 2.5-50 Township Zoning Reviews By Requested District (2004)

Township	Total Cases	Agriculture	Rural Estate	Single Family	Multi-Family	Mobile Home	РВО	Commercial	Freeway Service	PUD	Text
Ash	7		2	2				2	1		
Bedford	10			5	1	1	1			1	2
Berlin	8			5						1	2
Dundee	3							1			2
Erie	2										2
Exeter	2										2
Frenchtown	14			3		1		6			4
Ida	4										4
LaSalle	2										2
London	2	2									
Milan	4	1									3
Monroe	3			2							1
Raisinville	3	2									1
Summerfield	1							1			
Whiteford	3			1				1			1
Total*	68	5	2	18	1	2	1	11	1	2	26

Note: Discrepancies in some totals are due to multiple-district rezoning requests

Table 2.5-51 Land Use and Change for Frenchtown Township, Monroe County, and Wayne County (2000)

	F	renchtov	vn Township			Monro	e County			Wayne	County	
Land Use / Land Cover (in acres)	Acreage	%	Change 1990-2000	%	Acreage	%	Change 1990-2000	%	Acreage	%	Change 1990-2000	%
Residential	5,373	19.3	993	22.7	53,028	14.8	9,778	22.6	159,966	40.5	7,307	4.8
Single-Family	5,239	18.8	950	22.2	52,564	14.6	9,675	22.6	149,807	38.0	6,769	4.7
Multiple-Family	134	0.5	42	46.1	463	0.1	102	28.3	10,160	2.6	538	5.6
Non-Residential	3,752	13.5	594	18.8	20,500	5.7	3,714	22.1	109,873	27.8	8,471	8.4
Commercial and Office	639	2.3	95	17.5	3,049	0.8	735	31.8	23,547	6.0	1,811	8.3
Industrial	413	1.5	312	308.4	3,012	8.0	878	41.1	26,168	6.6	2,728	11.6
Institutional	389	1.4	32	9.1	1,915	0.5	200	11.6	17,100	4.3	845	5.2
Transportation, Communication, and Utility	1,250	4.5	-17	-1.3	6,991	1.9	446	6.8	24,004	6.1	1,583	7.1
Cultural, Outdoor Recreation, and Cemetery	1,059	3.8	171	19.2	5,533	1.5	1,455	35.7	19,054	4.8	1,504	8.6
Under Development	178	0.6	150	544.3	910	0.3	741	438.3	5,338	1.4	3,775	241.4
Active Agriculture	14,111	50.8	-1,838	-11.5	223,332	62.2	-17,029	-7.1	25,844	6.5	-20,338	-44.0
Grassland and Shrub	957	3.4	111	13.1	12,322	3.4	2,385	24.0	27,499	7.0	-4,155	-13.1
Woodland and Wetland	2,618	9.4	118	4.7	39,442	11.0	-175	-0.4	49,701	12.6	1,325	2.7
Extractive and Barren	0	0.0	0	-	2,435	0.7	1,032	73.5	2,208	0.6	488	28.4
Water	808	2.9	-128	-13.7	7,338	2.0	-445	-5.7	4,152	1.1	339	8.9
Total Acres	27,797	100.0	0	0.0	359,308	100.0	0	0.0	394,651	100.0	0	0.0

Source: Reference 2.5-100 and Reference 2.5-101

Table 2.5-52 Frenchtown Township Water System Pumpage (1995-2001)

Year	Average Day Demand (Millions of Gallons per Day)	Percent Increase	Maximum Day Demand (Million of Gallons per Day)
1995	1.53	-	3.03
1996	1.63	6.5	3.03
1997	1.66	1.8	2.47
1998	1.91	15.1	3.88
1999	2.07	8.4	3.49
2000	1.97	-4.8	3.38
2001	2.10	6.6	3.73

 Table 2.5-53
 Monroe County Fire Departments (Sheet 1 of 2)

	Туре	Run By	Fire Stations	Career Firefighters	Volunteer Firefighters	Paid per Call Firefighters	Non-Firefighting Employees	Non-Firefighting Volunteers
Ash Township Volunteer Fire Department	Volunteer	Local	2	0	40	0	0	0
Bedford Fire Department #2	Volunteer	Local	1	0	30	0	0	0
Berlin Township Fire Department #2	Volunteer	Local	1	0	0	23	0	0
Dundee Township Fire Department	Volunteer	Local	1	0	28	0	0	0
Erie Township Fire Department	Volunteer	Local	1	0	22	0	0	0
Estral Beach Fire Department	Volunteer	Local	1	0	0	15	0	0
Exeter Fire Department	Volunteer	Local	1	0	26	0	0	0
Frenchtown Township Fire Department	Mostly Career	Local	4	22	0	17	1	0
LaSalle Township Volunteer Fire Department	Volunteer	Local	1	0	0	0	0	0
London - Maybee – Raisinville	Volunteer	Local	1	0	21	0	0	0
Milan Area Fire Department	Volunteer	Local	1	0	0	36	1	0
Monroe City Fire Department	Career	Local	3	41	0	0	0	0
Monroe Township Volunteer Fire Department	Volunteer	Local	1	0	0	27	1	0
Morin Point Fire Department	Volunteer	Local	1	0	29	0	0	3
Ottawa Lake Volunteer Fire Department	Volunteer	Local	1	0	22	0	0	0
Summerfield Township Volunteer Fire Department	Volunteer	Local	1	0	0	26	0	0

Fermi 3 Combined License Application 2-607

 Table 2.5-53
 Monroe County Fire Departments (Sheet 2 of 2)

	Туре	Run By	Fire Stations	Career Firefighters	Volunteer Firefighters	Paid per Call Firefighters	Non-Firefighting Employees	Non-Firefighting Volunteers
Whiteford Township Volunteer Fire Department	Volunteer	Local	0	0	22	0	0	0
Total	I		22	63	240	144	3	3

Table 2.5-54 Primary Regional Hospitals and Health Care Facilities (Sheet 1 of 2)

Wayne County Area (Excluding Detroit)

Facility's Name	Address	Phone Number
Annapolis Hospital	33155 Annapolis Rd, Wayne	734-467-4000
Bon Secours Hospital	468 Cadieux Rd, Grosse Pointe	313-343-1501
Garden City Osteopathic Hospital	6245 N. Inkster Rd, Garden City	734-421-3300
Heritage Hospital	10000 Telegraph Rd, Taylor	313-295-5000
Oakwood Hospital	18101 Oakwood Blvd, Dearborn	313-593-7000
Redford Community Hospital	25210 Grand River Ave, Redford	313-531-6200
Seaway Hospital	5450 Fort St, Trenton	313-671-3800
Vencor Hospital-Detroit	26400 W. Outer Dr, Lincoln Park	313-386-2000
Annapolis Westland Center	2345 Merriman Rd, Westland	734-467-2300
Cottage Hospital	159 Kercheval Ave, Grosse Pointe Farms	313-884-8600
Henry Ford Wyandotte Hospital	2333 Biddle Ave, Wyandotte	313-284-2400
Oakwood Downriver Medical Center	25750 W. Outer Dr, Lincoln Park	313-383-6000
Oakwood Springwells Health Center	10151 Michigan Ave, Dearborn	313-436-2400
St. Mary Hospital	35475 Five Mile Rd, Livonia	734-464-4800
VA Medical Center	3415 Southfield Rd, Allen Park	313-562-6000
	Detroit	
Children's Hospital of Michigan	3901 Beaubien St, Detroit	313-745-0073
Detroit Receiving Hospital	4201 St. Antoine, Detroit	313-745-3000
Grace Hospital	6071 W. Outer Dr, Detroit	313-966-3300
Harper Hospital	3990 John Rd, Detroit	313-745-9375
Hutzel Hospital	4707 St. Antoine, Detroit	313-745-7171
Rehabilitation Institute	261 Mack, Detroit	313-745-9700
Detroit Riverview Hospital	7733 E. Jefferson Ave, Detroit	313-499-3000
Henry Ford Health System	600 Fisher Building, Detroit	313-876-8700
Henry Ford Health System	1 Ford Place, Detroit	313-874-5005
Henry Ford Hospital	2799 W. Grand Blvd, Detroit	313-876-2600
Holy Cross Hospital	4777 E. Outer Dr, Detroit	313-369-9100

Table 2.5-54 Primary Regional Hospitals and Health Care Facilities (Sheet 2 of 2)

Wayne County Area (Excluding Detroit)

Facility's Name	Address	Phone Number				
Mercy Hospital	5555 Conner, Detroit	313-579-4210				
Michigan Health Center	2700 Martin Luther King Dr, Detroit	313-361-8000				
St. John Hospital & Medical Center	22101 Moross Rd, Detroit	313-343-7310				
Michigan Health Care Corp	7430 Second Ave, Detroit	313-874-9110				
Mount Carmel Mercy Hospital	6071 W. Outer Dr, Detroit	313-927-7000				
Saratoga Community Hospital	15000 Gratiot, Detroit	313-245-1200				
Toledo						
St. Vincent Mercy Medical Center	2213 Cherry St, Toledo	419-251-3232				
Mercy Children's Hospital	2222 Cherry St, Toledo	419- 251-8000				
St. Anne Mercy Hospital	3404 W. Sylvania Ave, Toledo	419- 407-2663				
St. Charles Mercy Hospital	2600 Navarre Ave, Toledo	419- 696-7200				
The Toledo Hospital	2142 N. Cove Blvd, Toledo	419- 291-4000				
Toledo Children's Hospital	2142 N. Cove Blvd, Toledo	419- 291-5437				
Flower Hospital	5200 Harroun Rd, Toledo	419- 824-1444				
Bay Park Community Hospital	2801 Bay Park Dr, Toledo	419- 690-7900				
Saint Luke's Hospital	5901 Monclova Rd, Toledo	419- 893-5911				
Medical University of Ohio	3000 Arlington Ave, Toledo	419- 383-4000				
Hospice of Northwest Ohio	30000 E. River Rd, Toledo	419- 661-4001				
Hospice of Northwest Ohio	800 S. Detroit Ave, Toledo	419- 661-4001				

Source: Reference 2.5-103 and Reference 2.5-104

Table 2.5-55 Frenchtown Township and Monroe County Commuter and Resident Destination Table (2000) (Sheet 1 of 2)

Frenchtown Township

Monroe County

		r				
		Workers	Percent		Workers	Percent
Origin of Workers	Frenchtown Township	1,838	24.8	Monroe County	35,202	72.5
Employed in Frenchtown	Monroe	1,520	20.5	Lucas County, OH	4,456	9.2
Township and Monroe County	Monroe Township	779	10.5	Wayne County	4,111	8.5
wom de County	La Salle Township	301 4.1 Washtenaw County	1,085	2.2		
	Raisinville Township	261	3.5	Lenawee County	1,074	2.2
	Lucas County, OH	257	3.5	Oakland County	565	1.2
	Bedford Township	244	3.3	Wood County, OH	384	0.8
	Ash Township or Carleton	193	2.6	Macomb County	235	0.5
	Berlin Township (Monroe), Estral Beach, or South Rockwood	181	2.4	Fulton County, OH	122	0.3
	Exeter Township or Maybee	143	1.9	Jackson County	115	0.2
	Elsewhere	1,696	22.9	Elsewhere	1,177	2.4
	Total	7,413	100.0	Total	48,526	100.0

Table 2.5-55 Frenchtown Township and Monroe County Commuter and Resident Destination Table (2000) (Sheet 2 of 2)

Frenchtown Township

Monroe County

Where Residents of Frenchtown Township and Monroe County Work

	Workers	Percent		Workers	Percent
Monroe	2,276	23.9	Monroe County	35,202	51.1
Frenchtown Township	1,838	19.3	Lucas County, OH	12,654	18.4
Monroe Township	635	6.7	Wayne County	12,161	17.7
Detroit	381	4.0	Washtenaw County	4,587	6.7
Ash Township or Carleton	329	3.5	Oakland County	1,256	1.8
Romulus	286	3.0	Lenawee County	817	1.2
Dearborn	261	2.7	Wood County, OH	778	1.1
Berlin Township (Monroe), Estral Beach, or South Rockwood	241	2.5	Macomb County	369	0.5
Lucas County, OH	240	2.5	Livingston County	132	0.2
Trenton	215	2.3	Fulton County, OH	87	0.1
Elsewhere	2,816	29.6	Elsewhere	792	1.2
Total	9,518	100.0	Total	68,835	100.0

Source: Reference 2.5-48 and Reference 2.5-49

Table 2.5-56 Transportation Profile for Frenchtown Township & Monroe County (2000)

Frenchtown Township

Monroe County

Transportation to Work	Census 1990	Percent	Census 2000	Percent	Percent Change 1990-2000	Census 1990	Percent	Census 2000	Percent	Percent Change 1990-2000
Drove Alone	6,843	87.0%	8,381	87.9%	1.0%	50,793	85.4%	60,671	88.1%	2.8%
Carpooled or Vanpooled	771	9.8%	826	8.7%	-1.1%	5,780	9.7%	5,627	8.2%	-1.5%
Public Transportation	31	0.4%	45	0.5%	0.1%	187	0.3%	285	0.4%	0.1%
Walked	92	1.2%	110	1.2%	-0.0%	1,149	1.9%	704	1.0%	-0.9%
Other Means	44	0.6%	47	0.5%	-0.1%	381	0.6%	289	0.4%	-0.2%
Worked at Home	88	1.1%	121	1.3%	0.2%	1,202	2.0%	1,259	1.8%	-0.2%
Total	7,869	100.0%	9,530	100.0%	0.0%	59,492	100.0%	68,835	100.0%	0.0%

Source: Reference 2.5-48 and Reference 2.5-49

Table 2.5-57 Michigan Department of Transportation Scheduled Projects in Monroe County (2008-2012)

Route	Location	Type of Work	2008	2009	2010	2011	2012
I-275	I-275 SB over Telegraph Road (US-24)	Overlay-Deep	Con				
I-275	I-275 NB over Telegraph Road (US-24)	Overlay-Deep	Con				
I-275 SB	I-275 SB (RAMP) over I-75	Overlay-Deep			Con		
I-75	South Huron river Drive over I-75	Bridge Replacement	Con				
I-75	Sterns Road over I-75	Bridge Replacement		Con			
I-75	I-75 NB over Plum Creek	Overlay-Deep			Con		
I-75	I-75 SB over Plum Creek	Overlay-Deep			Con		
I-75	I-75 over Industrial Tracks	Overlay-Deep			Con		
I-75	I-75 over Conrail Industrial tracks	Overlay-Deep			Con		
I-75	LaPlaisance Road over I-75	Overlay-Shallow			Con		
I-75	I-75 over Huron River	Bridge Replacement	Con				
US-24	US-24 over Little Sandy Creek	Culvert Replacement			Con		

Con-Construction (refers to actual building phase of project)

 Table 2.5-58
 Proposed Transportation Projects within Monroe County (Sheet 1 of 2)

Project Name	Project Limits	Proposed Work	Legal Jurisdiction	First year of Project
Beaches and Tripper	Frenchtown Twp	Operate new bus service	LETC	2008
New Bedford dial-a-ride	Bedford Twp	Operate new service	LETC	2008
I-75	under South River Drive	Replace bridge	MDOT	2008
I-275	2 bridge locations in Monroe County	Deep overlay	MDOT	2008
I-275	under Newport Rd	Bridge deck patching	MDOT	2008
I-75	over Huron River	Replace bridge	MDOT	2008
Seventh Street W	Union to Monroe	Curb replacement and resurfacing	Monroe	2008
Cooper Street	from 7th to Front St	Reconstruct	Monroe	2008
N Custer	at Custer Drive	Signalize intersection	Monroe	2008
E Front St	from Conant to I-75	Resurface	Monroe	2008
Sterns Road	Lewis Avenue to U.S. 24	Rehabilitate roadway	Monroe CRC	2008
Lakeside	From Strausburg to Minx	Rubblizing and resurfacing	Monroe CRC	2008
Various Roads	Countywide	Rehabilitate roadway	Monroe CRC	2008
Various Rural Roads	Countywide	Rehabilitate roadway	Monroe CRC	2008
Various Roads	Countywide	Rehabilitate roadway	Monroe CRC	2008
Lewis Avenue	from 1,100' N of Sterns to Ann Arbor Railroad track	Resurface road	Monroe CRC	2008
Wilcox Rd	at S Branch of Nacon Drain	Rehabilitate bridge	Monroe CRC	2008
Petersburg Rd	over Raisin River	Rehabilitate bridge	Monroe CRC	2008
Brewer Rd	at Swamp Raisin Ck	Rehabilitate bridge	Monroe CRC	2008
Newport Rd	Joanne to Swan Creek Rd	Add center left-turn lane	Monroe CRC	2008
US-24	over Sandy Creek	Replace bridge	MDOT	2009

Fermi 3 Combined License Application

 Table 2.5-58
 Proposed Transportation Projects within Monroe County (Sheet 2 of 2)

Project Name	Project Limits	Proposed Work	Legal Jurisdiction	First year of Project
I-75	Sterns Road over I-75	Bridge Replacement	MDOT	2009
E Third St	from Front to Monroe	Rehabilitate roadway	Monroe	2009
Custer Dr	from N Custer to W Elm	Rehabilitate roadway	Monroe	2009
Bedford Urban Preservation	Various locations	Rehabilitate roadway	Monroe CRC	2009
Finzel Rd	at Stoney Creek Overflow	Rehabilitate bridge	Monroe CRC	2009
I-75	5 Bridges along I-75	Rehabilitate bridges	MDOT	2010
I-275 SB	over I-75	Rehabilitate roadway	MDOT	2010
W Seventh St	from Telegraph to Union	Rehabilitate roadway	Monroe	2010
Scott St	from Sixth to Front	Rehabilitate roadway	Monroe	2010
E First St	from Winchester to Conant	Rehabilitate roadway	Monroe	2010
N Custer	at Custer	Install signal	Monroe	2010
N Custer	at de Lafayette	Install signal	Monroe	2010
Sumpter Rd	from Oakville Waltz to Colf	Pavement patching	Monroe CRC	2010
US-24	from Stewart Road to Mall	Rehabilitate roadway	MDOT	2011
E Elm	from Monroe to N Dixie	Rehabilitate roadway	Monroe	2011
N Dixie	from Elm to Spaulding	Rehabilitate roadway	Monroe	2011
Oakville Waltz Preservation	Various lengths	Rehabilitate road	Monroe CRC	2011

Table 2.5-59 Minor Airports

Name	Location	Aircraft Based on Site	Distance from Fermi Site (Miles)	Direction from Fermi Site
Newport Woods Airport	Newport, Michigan	5	3	NW
Mills Field	Erie, Michigan	3	3	N
Carls Airport	South Rockwood, Michigan	-	6	NNW
Wickenheiser Airport	Carleton, Michigan	3	7	NW
Custer Airport	Monroe, Michigan	39	9	W
Gross Ile Municipal Airport	Detroit/Gross Ile, MI	88	11	NNE
Erie Aerodrome	Erie, Michigan	4	18	SW
Toledo Suburban Airport	Lambertville, Michigan	34	25	SW
Gradolph Field Airport	Petersburg, Michigan	2	25	W

Source: Reference 2.5-106 through Reference 2.5-114

Table 2.5-60 Regional Ports

	Company	Berths	Depth (feet)	Length (feet)
Port of		1	18	1,000
Monroe	·	1	21	1,500
Port of	DSC Ltd.	1	26.5 (Seaway Depth)	900
Detroit	Detroit marine Terminals	-	27 (Seaway depth)	2,100
	Nicholson Terminal and Dock Company	-	27 (Seaway depth)	3,400
	Michigan Marine Terminal: Rouge River	1	Seaway depth	650
	Hickman Williams and Company	1		
	Motor City Intermodal Distributio	1	28 (Seaway depth)	500
Port of	The Andersons, Kuhlman Drive facility	1	28	1,000
Toledo	ADM Grain Company	2	28	800
	The Andersons, Edwin Drive Facility	1	28	1,030
	CSX Transportation/Toledo Docks	4	27	1,000 to 1,500
	Midwest Terminals of Toledo International	7	28	4,100
	Kuhlman Corporation	1	28	600 +

Table 2.5-60 Regional Ports

	Company	Berths	Depth (feet)	Length (feet)
Port of	Canadian Salt Company	T dock	26	730
Windsor	Windsor grain Terminal: ADM-Agri Industries	1	29	1,300
	Modern Limited	1 plus 1 wharf	Full Seaway Depth	2,400
	Canadian Maritime Ltd.	Drive on/off truck ferry ramps	-	-
	Southwestern Sales West Location	1	Full Seaway Depth	1,400
	Sterling	1	27	1,000
	Marine Fuels	-	27	1,000
	Canada Building Materials	-	Full Seaway Depth	736
	LaFrage Construction Materials	-	Full Seaway Depth	1,100
	Dieppe Dock	-	-	1,200
	Ford Motor Company Dock	-	-	1,800
	Southwestern Sales East Location	-	Full Seaway Depth	700
	Essroc Italcementi Group and the Dunn Group	-	26	1,000

Source: Reference 2.5-115 through Reference 2.5-118

Table 2.5-61 Monroe County Tourist Attractions

Name/address	Brief Description
Eby Log Cabin Monroe County Fairgrounds Monroe, MI 48161	A wood log cabin constructed by Alsace emigrants John and Elizabeth Eby and family, in 1859.
Farmer Charlie's Maze Adventures & Haunted Hayride 6421 N. Stony Creek Rd Monroe, MI 48161	A fall attraction that offers food, maze exploration, hayrides, and a pumpkin patch.
Holtz Christmas Tree Plantation 9381 Day Road Monroe, MI 48162	A winter attraction offering patrons the chance to cut their own Christmas Tree.
Martha Barker Country Store Museum 3815 N. Custer Road Monroe, MI 48162	A replica of a common country store circa 1918. The exhibits are authentic, with artifacts donated by local families and businesses.
Monroe County Historical Museum & The George A. Custer Exhibits 126 S. Monroe Street Monroe, MI 48161	The museum houses a large collection of 18th & 19th century artifacts relating to Southeast Michigan.
Monroe County Labor History Museum 41 W. Front St. Downtown Monroe , MI 48161	The Museum illustrates the importance of Monroe County to the American labor movement.
Monroe County Vietnam Veterans Historical Museum North Dixie Highway Norman Heck Park Monroe, MI 48162	The historical museum is staffed by actual Vietnam Veterans that tell their story.
Monroe Multi-Sports Complex 333 N. Dixie Hwy. I-75 Exit 15 Monroe, MI 48162	The facility offers public skating & drop-in hockey.
Navarre-Anderson Trading Post 3775 North Custer Road Monroe, MI 48162	The Trading Post complex is set up to represent a French pioneer homestead along the River Raisin.
Fermi 3 Combined License Application	2-620 Revision 2 February 2011

 Table 2.5-61
 Monroe County Tourist Attractions

Name/address	Brief Description			
Old Town Golf and Sportland 6724 N. Monroe Street Monroe, MI 48162	Consists of a par 3 golf course, driving range, batting cages, miniature golf, and putting green.			
River Raisin Battlefield Visitor Center 1403 East Elm Avenue Monroe, MI 48162	Contains displays, and full-size British & American soldiers, as well as a fiber-optic map presentation on the Battle of the River Raisin.			

Table 2.5-62 Archaeological Sites Located Within Two Miles of Fermi 3

Number	Name	Period	NRHP Status
20MR207	Holmquist M-33	Prehistoric	Unevaluated
20MR702	Fermi II	Prehistoric	Unevaluated
20MR703	Gustafson	Archaic period	Unevaluated
20MR746	Webb	Nineteenth Century	Unevaluated

Table 2.5-63 NRHP-Listed and NRHP-Eligible Above-ground Resources within 10 Miles of Fermi 3

Name	City or Township/County	Date Listed on the NRHP or Determined Eligible for Listing on the NRHP
Custer, George Armstrong Equestrian Monument	Monroe/Monroe	12/9/1994 (L) ¹
Detroit River Light Station	Rockwood vicinity/Monroe	8/4/1983 (L)
East Elm – North Macomb Street Historic District	Monroe/Monroe	5/6/1982 (L)
Gibraltar Road Bridge	Gibraltar/Wayne	09/29/1995 (E) ²
Horse Island Drive Bridge	Gibraltar/Wayne	1992 (E)
Horse Island Drive Bridge	Gibraltar/Wayne	07/01/1992 (E)
Horse Island Drive Bridge	Gibraltar/Wayne	07/01/1992 (E)
I-75 Bridge	Monroe/Monroe	04/12/2004 (E)
Jefferson Avenue Bridge	Brownstown Twp/Wayne	2/10/2000 (L)
Loranger, Edward, House	Monroe vicinity/Monroe	5/31/1984 (L)
McClelland, Governor Robert House	Monroe/Monroe	9/3/1971 (L)
Monroe Armory	Monroe/Monroe	11/07/2002 (E)
Navarre-Anderson Trading Post	Monroe/Monroe	7/31/1972 (L)
Nims, Rudolph House	Monroe/Monroe	10/18/1972 (L)
Old Village Historic District	Monroe/Monroe	5/6/1982 (L)
St. Mary's Academy Historic District	Monroe/Monroe	1981 (E)
Saint Mary's Church Complex	Monroe/Monroe	5/6/1982 (L)
Sawyer House	Monroe/Monroe	11/23/1977 (L)
South Pointe Drive Bridge	Grosse Ile/Wayne	3/15/2000 (L)
Weis Manufacturing Company	Monroe/Monroe	10/26/1981 (L)
	Frenchtown Twp/Monroe	11/09/1995 (E)
	Frenchtown Twp/Monroe	11/18/1998 (E)

- 1. L Listed on the NRHP
- 2. E Determined Eligible for listing on the NRHP

Table 2.5-64 Previously Recorded Archaeological Sites within 1.5 Miles of the Proposed Project Area (Sheet 1 of 3)

Name/Number	Period	NRHP Status
20WA367	Prehistoric	Not Eligible
20WA368	Late Nineteenth Century, Early Twentieth Century	Not Eligible
20WA369	Mid-Twentieth Century	Not Eligible
20WA210	Prehistoric	Not Eligible
20WA207	Prehistoric	Not Eligible
20WA208	Prehistoric	Not Eligible
20WA209	Early Archaic	Not Eligible
20WA192	Middle Woodland	Unevaluated
20WA193	Prehistoric	Unevaluated
20WA194	Early Archaic, Late Archaic	Unevaluated
20WA206	Late Woodland	Not Eligible
20WA211	Nineteenth Century	Not Eligible
20WA41	Prehistoric	Unevaluated
David Brooks House	Nineteenth Century	Unevaluated
D.E. Morey's House	Nineteenth Century	Unevaluated
20WN172	Woodland	Unevaluated
20WN173	Prehistoric	Unevaluated
20WN128	Prehistoric	Unevaluated
20WN129	Prehistoric	Unevaluated
A. Anderson's House	Nineteenth Century	Unevaluated
St. John's House	Nineteenth Century	Unevaluated
20WN928 [‡]	Prehistoric	Not Eligible
20WN929	Prehistoric	Not Eligible
20WN930	Prehistoric	Not Eligible
20WN927 [‡]	Woodland	Not Eligible
20WN961	Late Woodland	Not Eligible
20WN972 [‡]	Late Woodland	Not Eligible
20WN973 [‡]	Prehistoric	Not Eligible

Table 2.5-64 Previously Recorded Archaeological Sites within 1.5 Miles of the Proposed Project Area (Sheet 2 of 3)

Name/Number	Period	NRHP Status
20WN974	Prehistoric	Not Eligible
20WN975	Prehistoric	Not Eligible
20WN976 [‡]	Late Woodland	Not Eligible
20WN1034	Prehistoric	Not Eligible
20WN1035	Prehistoric	Not Eligible
20WN1036	Nineteenth Century, Twentieth Century	Not Eligible
20WN1037	Nineteenth Century, Twentieth Century	Unevaluated
20WN1038	Nineteenth Century, Twentieth Century	Not Eligible
20WN1039	Nineteenth Century, Twentieth Century	Not Eligible
20WN1040	Nineteenth Century, Twentieth Century	Not Eligible
20WN1041	Nineteenth Century, Twentieth Century	Not Eligible
20WN1042	Nineteenth Century, Twentieth Century	Not Eligible
20WN1043 [‡]	Nineteenth Century, Twentieth Century	Not Eligible
20WN130	Woodland	Unevaluated
20WN931	Twentieth Century	Not Eligible
20WN932	Prehistoric	Not Eligible
20WN933	Prehistoric	Not Eligible
20WN934	Late Woodland	Not Eligible
20WN935	Prehistoric	Not Eligible
20WN936	Nineteenth Century	Not Eligible
20WN937	Late Woodland	Not Eligible
20WN938	Prehistoric	Not Eligible
20WN939	Prehistoric	Not Eligible
20WN940	Prehistoric	Not Eligible
20WN941	Prehistoric	Not Eligible
20WN942	Prehistoric	Not Eligible
20WN943	Prehistoric	Not Eligible
20WN944	Prehistoric, Historic	Not Eligible
20WN946	Prehistoric	Not Eligible

Table 2.5-64 Previously Recorded Archaeological Sites within 1.5 Miles of the Proposed Project Area (Sheet 3 of 3)

Name/Number	Period	NRHP Status
20WN947	Prehistoric	Not Eligible
20WN948	Prehistoric	Not Eligible
20WN949	Late Archaic, Late Woodland	Not Eligible
20WN950	Prehistoric	Not Eligible
20WN951	Prehistoric	Not Eligible
20WN952	Prehistoric	Not Eligible
20WN953	Prehistoric	Not Eligible
20WN954	Prehistoric	Not Eligible
20WN955	Prehistoric	Not Eligible
20WN956	Prehistoric	Not Eligible
20WN957	Prehistoric	Not Eligible
20WN958	Late Archaic	Not Eligible
20WN959	Prehistoric	Not Eligible
20WN960	Prehistoric	Not Eligible
Butler's House	Nineteenth Century	Unevaluated
Richards House	Nineteenth Century	Unevaluated
20WN246	Prehistoric	Unevaluated
20WN247	Prehistoric	Unevaluated
20MR190	Prehistoric	Unevaluated
20MR497	Prehistoric	Unevaluated

 $^{^{\}ddagger}$ Site crossed by the Sumpter-Post Road junction to Milan substation transmission line route

Table 2.5-65 Minority and Low-Income Community Block Group (CBG) Populations within the 50-mi Region

County	Total CBGs	Minority CBGs	Percent Minority	Low-Income CBGs	Percent Low-Income
Jackson County, MI	7	0	0.00	0	0.00
Lenawee County, MI	72	4	5.56	1	1.39
Livingston County, MI	64	1	1.56	0	0.00
Macomb County, MI	539	10	1.86	5	0.93
Monroe County, MI	126	1	0.79	1	0.79
Oakland County, MI	720	129	17.92	20	2.78
Washtenaw County, MI	260	47	18.08	33	12.69
Wayne County, MI	2125	1124	52.89	428	20.14
Erie County, OH	48	7	14.58	3	6.25
Fulton County, OH	18	0	0.00	0	0.00
Henry County, OH	3	0	0.00	0	0.00
Lucas County, OH	433	113	26.10	71	16.40
Ottawa County, OH	39	0	0.00	0	0.00
Sandusky County, OH	57	2	3.51	1	1.75
Seneca County, OH	8	0	0.00	0	0.00
Wood County, OH	77	0	0.00	9	11.69
Michigan CBGs ¹	3913	1316	33.63	488	12.47
Ohio CBGS ²	683	122	17.86	84	12.30
Total	4596	1438	31.29	572	12.45

- 1. The CBG count is only for the part of Michigan that lies within the 50-mile radius of Fermi 3.
- 2. The CBG count is only for the part of Ohio that lies within the 50-mile radius of Fermi 3.

Table 2.5-66 Michigan and Ohio Population, by Race (2000)

	Total Population	White	Black or African American	American Indian and Alaska Native	Asian	Native Hawaiian and other Pacific Is.	Hispanic or Latino (of any race)	Some Other Race/Two or More Races	Percent Minority
Michigan	9,938,444	7,806,691	1,412,742	58,479	176,510	2692	323,877	157,453	21.45
Ohio	11,353,140	9,538,111	1,301,307	24,486	132,633	2749	217,123	136,731	15.99

Table 2.5-67 Low-Income Populations in Michigan and Ohio

Poverty Status in 1999

	Total Population	Families	Individuals	Percent of Individuals in Poverty	Percent of Families in Poverty
Michigan	9,938,444	192,376	1,021,605	10.5	7.4
Ohio	11,353,140	235,026	1,170,698	10.6	7.8

Table 2.5-68 Regional Migrant Labor Statistics

	Farms with Hired Labor	Migrant Labor on Farms with Hired Labor	Percentage of Farms with Migrant Labor		
Michigan Counties					
Monroe	268	35	13.1		
Wayne	52	5	9.6		
Jackson	185	18	9.7		
Lenawee	232	7	3.0		
Livingston	180	0	0.0		
Macomb	118	27	22.9		
Oakland	170	4	2.4		
St. Clair	253	13	5.1		
Washtenaw	246	5	2.0		
Michigan	12,279	1412	11.5		
Ohio Counties					
Lucas	136	24	17.7		
Erie	75	10	13.3		
Fulton	211	7	3.3		
Henry	123	10	8.1		
Ottawa	95	18	19.0		
Sandusky	207	12	5.8		
Seneca	127	5	3.9		
Wood	240	9	3.8		
Ohio	16,585	518	3.1		

Source: Reference 2.5-126 and Reference 2.5-127

Table 2.5-69 Summary of Fermi Ambient Sound Level Survey Results (Sheet 1 of 2)

Ambient Sound Levels Approximate Latitude / Longitude L_{dn} Distance to (24-hour)¹ **Noise Sources Observed** Receptor **Location Description** Fermi 2 Lowest L₉₀ / Time 41°56'48.552"N / 83°15'33.696"W Distant highway traffic, dogs barking, local traffic, 34 dBA / 0:00 hour NML-1 In ROW across from residence at 1.05 mi 54 dBA (see Figure 2.5-34) Fermi plant faintly audible 6108 Pointe aux Peaux Road 41°58'4.116"N / 83°16'5.340"W Fermi site fenceline at intersection Birds, distant highway traffic, train, brief distant 32 dBA / 0:00 hour NML-2 of Fisher Street and Langton Road; 0.50 mi 62 dBA gunfire from Fermi firing range, Fermi cooling (see Figure 2.5-34) towers faintly audible approx. 180 m southeast of residence on Langton Road 41°58'55.416"N / 83°16'1.956"W Train, birds, distant highway traffic, brief distant 32 dBA / 1:00 hour gunfire from Fermi firing range, Fermi plant faintly NML-3 In ROW across from residence at 1.06 mi 63 dBA (see Figure 2.5-34) audible during nighttime measurements 5735 Trombley Road 41°57'1.800"N / 83°16'52.428"W Not Distant highway traffic, birds, wind chimes, train, NML-4 On Brest Road west of residences 1.43 mi 40 dBA / 0:30 Fermi plant faintly audible measured on Sycamore Road 41°57'33.732"N / 83°16'51.780"W Distant highway traffic, coyotes, dogs, birds, On Toll Road east of Fermi site: Not NML-5 1.16 mi 39 dBA / 18:25 approx. 140 m southwest of measured Fermi plant not audible during survey residence 41°58'9.516"N / 83°16'47.604"W Transmission line noise Not Distant highway traffic, faint transmission line 42 dBA / 1:05² NML-6 1.10 mi measurement on Leroux Road. noise, Fermi plant not audible measured approx. 100 m northeast of intersection with Enrico Fermi Drive

Table 2.5-69 Summary of Fermi Ambient Sound Level Survey Results (Sheet 2 of 2)

			Ambient Sound	d Levels	
Receptor	Latitude / Longitude Location Description	Approximate Distance to Fermi 2	Lowest L ₉₀ / Time	L _{dn} (24-hour) ¹	Noise Sources Observed
NML-7	41°58'45.840"N / 83°15'18.468"W Outside the Swan Boat Club on Brancheau Road north of Fermi site	0.72 mi	37 dBA / 17:06	Not measured	Transformer hum (from boat club unit), dogs, distant highway traffic, brief gunfire from Fermi firing range, wind noise from overhead transmission lines, flag pole rattle, Fermi 2 cooling towers audible during survey

- 1. Based on hourly measurements from approximately 3:00 a.m. on November 27, 2007 until 3:00 a.m. on November 28, 2007.
- 2. Nighttime measurement only at this location.

Table 2.5-70 Fermi 2 Property Tax History

	Plant	Nuclear Fuel	Total
Year	Property Taxes	Property Taxes	Property Taxes
2007	17,806,833	1,251,114	19,057,947
2006	18,742,125	1,271,056	20,013,181
2005	20,961,668	1,889,733	22,851,401
2004	23,112,014	1,499,404	24,611,418
2003	25,093,888	1,109,558	26,203,446
2002	27,864,577	1,641,822	29,506,399
5 Year Total	133,581,105	8,662,687	142,243,792

Table 2.5-71 Frenchtown Charter Township 2007 Millage Composition

County		School Districts	Homestead	Non- Homestead
Summer Allocated	4.7952	Monroe Schools		
Winter Allocated	0.0000	State Education (Summer)	6.0000	6.0000
Jail Bond		Operating		18.0000
Senior Citizen	0.5000	Building & Site	0.9985	0.9985
Total County:	5.2952	Total Monroe Schools:	6.9985	24.9985
Monroe I.S.D.		Airport Schools		
Tech. Enhancement	0.9866	State Education (Summer)	6.0000	6.0000
Allocated	0.2897	Operating		18.0000
Voled Operating	3.4778	Building & Site	1.8282	1.8282
Total I.S.D:	4.7541	Total Airport Schools:	7.8262	25.8282
Monroe County Community	College	Jefferson Schools		
Allocated	1.2108	State Education (Summer)	6.0000	6.0000
Operating	0.9686	Operating		18.0000
Total MCCC:	2.1794	Total Jefferson Schools:	6.0000	24.0000
Frenchtown Township				
Operating	2.7166			
Water Debt	1.5000	Resort Authority		2.8154
Lake Erie Transit	0.4733			
Fire Department	2.0000			
Total FT Township:	6.6699			
Monroe County Library	1.0000			
Total without school or Resort	19.9186			

Table 2.5-72 Average Direct and Indirect Taxes and Capital Expenditures for Fermi 2 (2002-2007)

O&M Expenditures	2002-2007 Averages (\$)(4)	Estimated Direct Sales Tax (\$)(4)	Estimated Indirect Sales Tax (\$)(4)
Detroit Edison Labor	62,092	0	2,235 (1)
Contract Labor	33,267	0	1,198 (1)
Material & Equipment	10,496	315 (2)	0
Dues & Assessments	8,188	\$0	0
Outage Levelization	6,004	90 (2)(3)	108 (1)(3)
Other Direct Resources	2,229	0	0
Accounting	-53	0	0
Employee Benefits	43,006	0	0
Total O&M	165,228		
Capital Expenditures			
Total Capital	49,950	749 (2)(3)	899 (1)(3)
Totals		1,154	4440

- 1. Assumes 60% of labor costs are subject to Michigan/Ohio sales taxes.
- 2. Assumes 50% of material & equipment are subject to Michigan/Ohio sales taxes.
- 3. Assumes costs are 50% labor costs and 50% material & equipment costs.
- 4. Thousands of dollars.

Figure 2.5-1 United States and Canadian Counties Wholly or Partly within a 50-mi Radius of Fermi 3 (latitude: 41° 57' 39" N, longitude: 83° 15' 43" W)

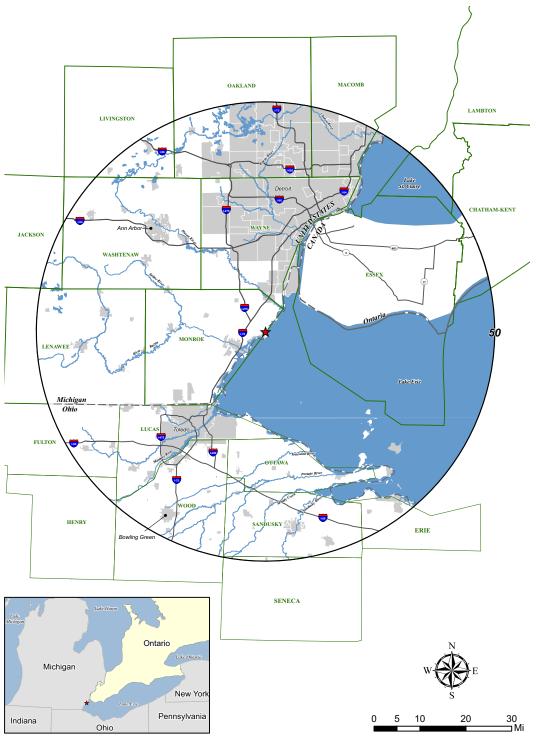
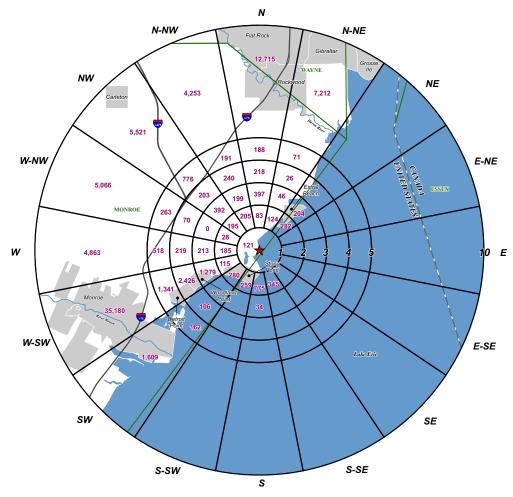



Figure 2.5-2 Resident Population Distribution by Segment, 0 to 10 Miles (Segmented Concentric Circles) From Fermi 3 (2000)

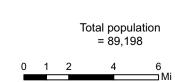
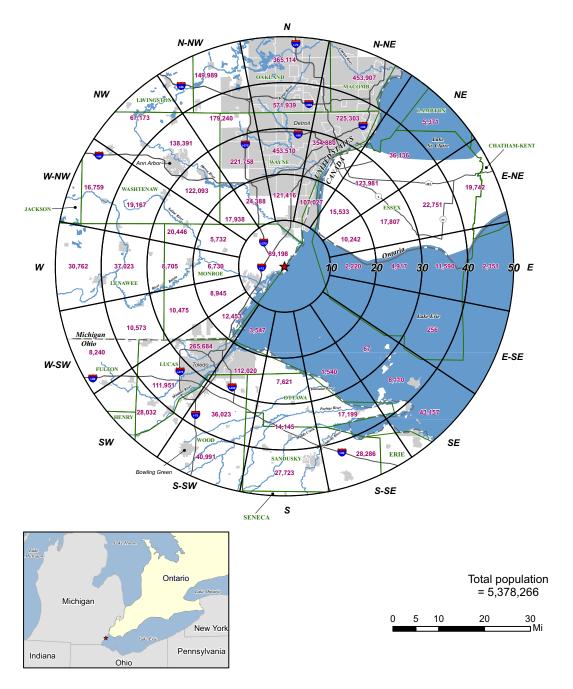



Figure 2.5-3 Resident Population Distribution by Segment, 0 to 50 Miles (Segmented Concentric Circles) From Fermi 3 (2000)

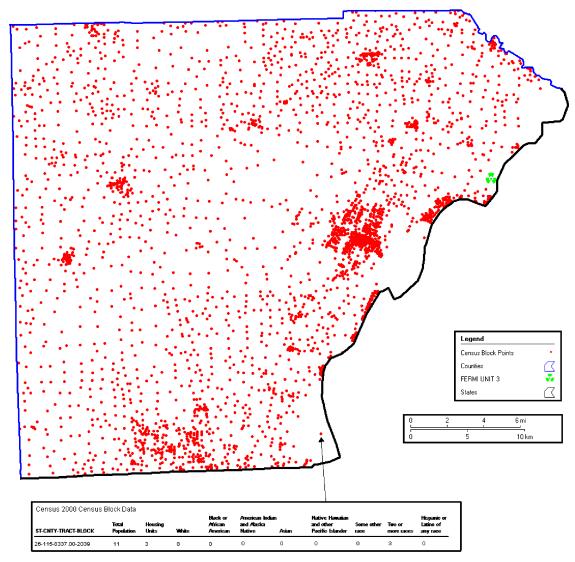
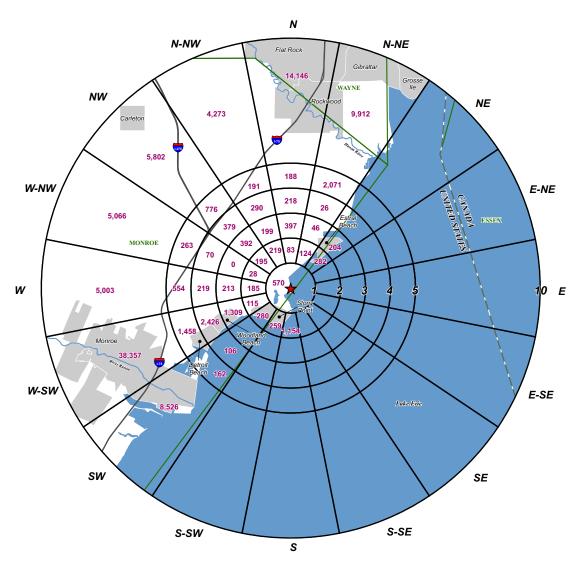



Figure 2.5-4 Census Block Points within Monroe County, MI

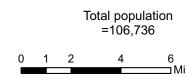

Legend Census Block Points FERMI UNIT 3 Sectional

Figure 2.5-5 Census Block Points within Each Segment

Figure 2.5-6 Resident and Transient Population Distribution by Segment, 0 to 10 Miles (Segmented Concentric Circles) From Fermi 3 (2000)

N-NW N-NE OAKLAND 446,579 масомв NW NE LIVINGST 589,430 148,411 CHATHAM-KENT WAYNE E-NE W-NW 26,576 ASHTENAW 129,325 JACKSON 27,245 23,564 23,120 Ontaria 4,676 20 5,092 30 12,004 W 30,483 10 2,299 40 ^{2,435} 50 E LENAWEE 7,699 12,189 Michigan E-SE W-SW FULTON 9,884 8,116 OTTAWA 16,677 37,284 **HENRY** SW SE SANDUSKY Bowling Green 27,293 S-SW S-SE S SENECA Total population = 5,578,931

Figure 2.5-7 Resident and Transient Population Distribution by Segment, 0 to 50 Miles (Segmented Concentric Circles) From Fermi 3 (2000)

Pennsylvania

Michigan

Ohio

Indiana

30

5

10

20

Figure 2.5-8 Example: Sectional Population Growth Rate Calculation

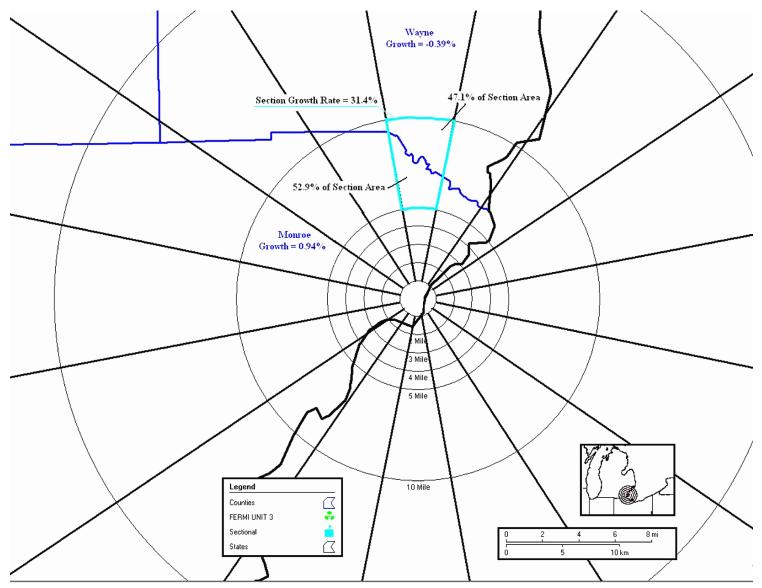


Figure 2.5-9 Regional Census Block Groups (CGBs) within 50-Mile Radius of Fermi 3

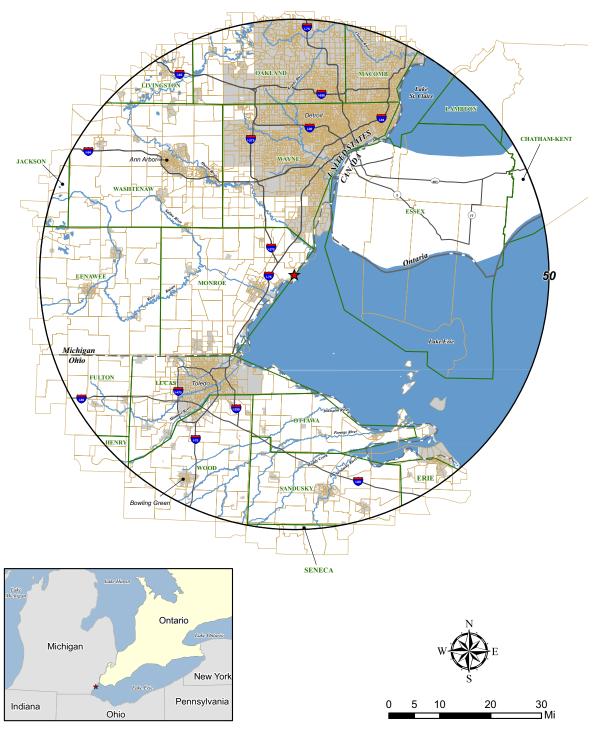


Figure 2.5-10 Census Block Groups (CBGs) within 10-Mile Radius of Fermi 3

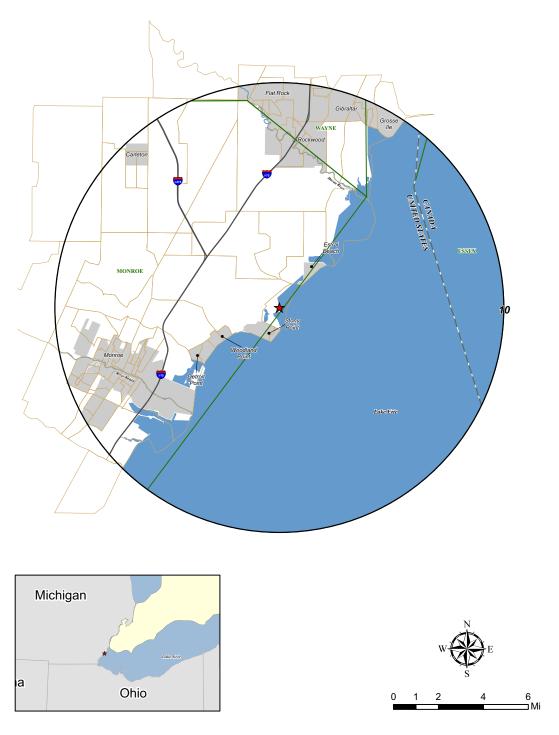
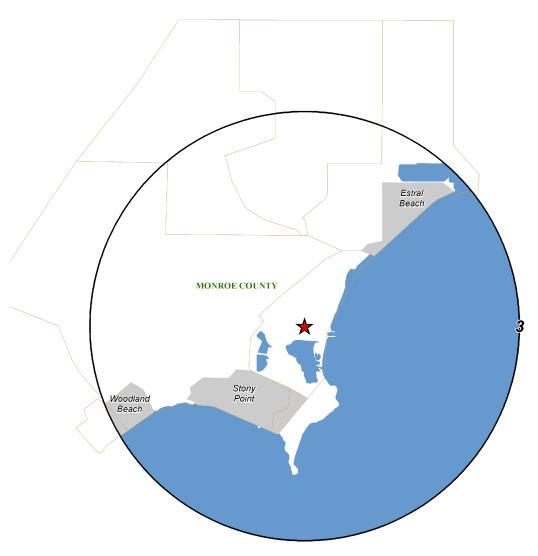



Figure 2.5-11 Census Block Groups (CBGs) within 3-Mile Radius of Fermi 3 (the LPZ area)

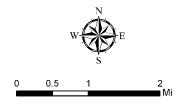


Figure 2.5-12 Detroit CSA

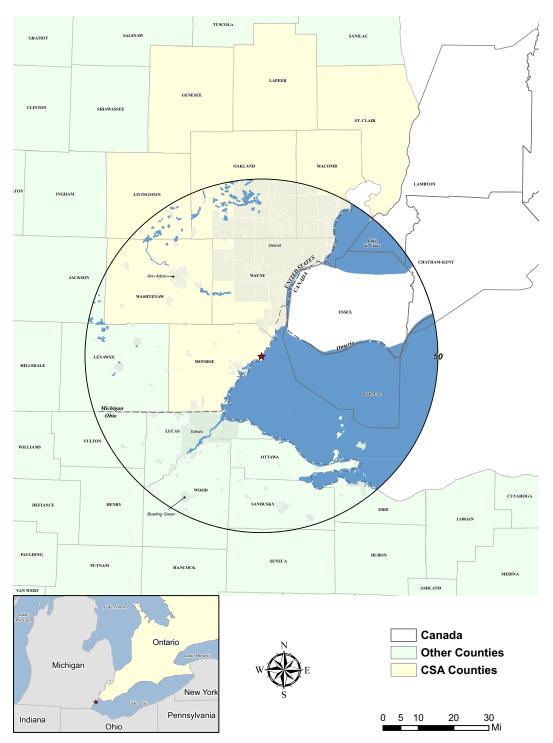


Figure 2.5-13 Toledo MSA

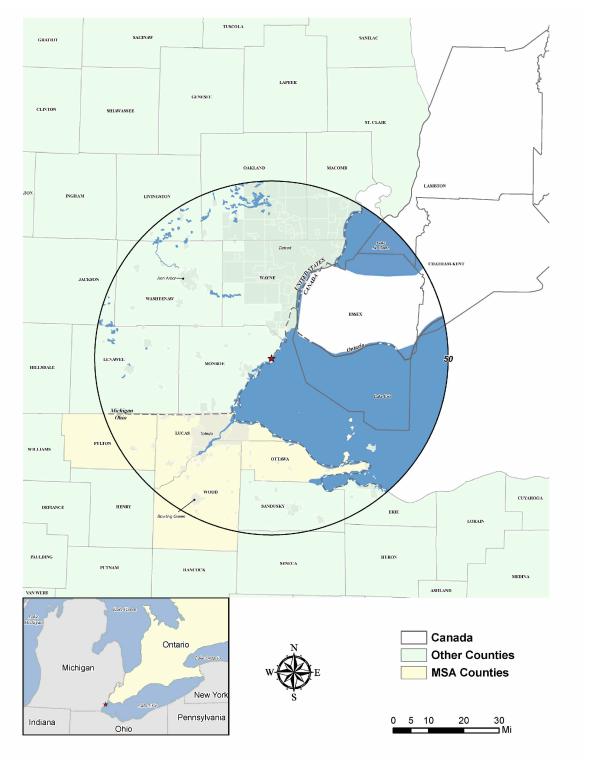


Figure 2.5-14 Small Population Centers

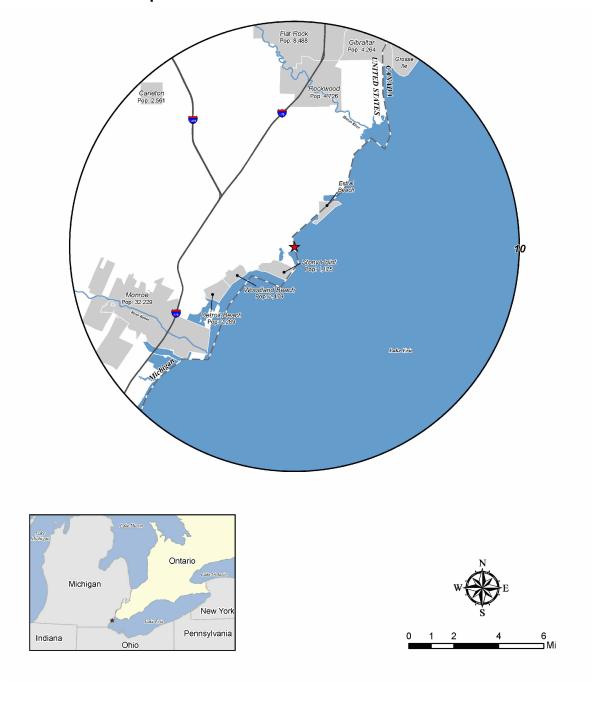
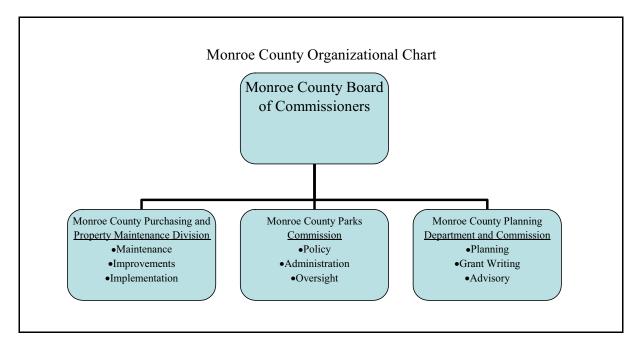



Figure 2.5-15 Monroe County Organization Chart

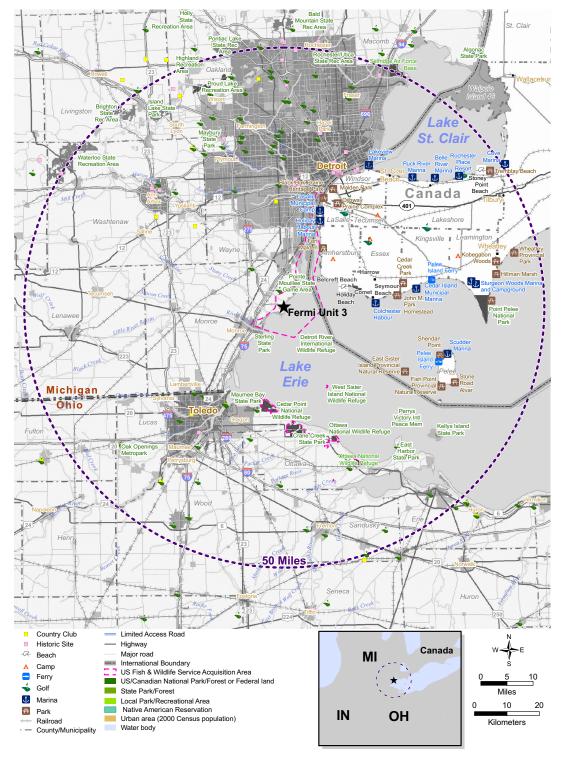


Figure 2.5-16 Natural, Public, and Recreation Areas within the 50-mi Region

Figure 2.5-17 Frenchtown Existing Land Use

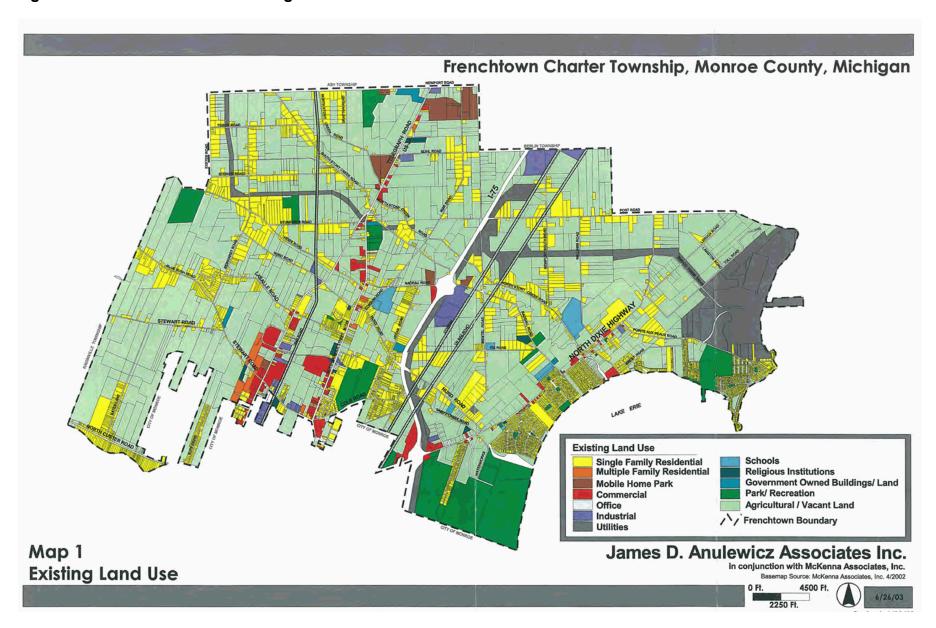


Figure 2.5-18 Frenchtown Future Land Use

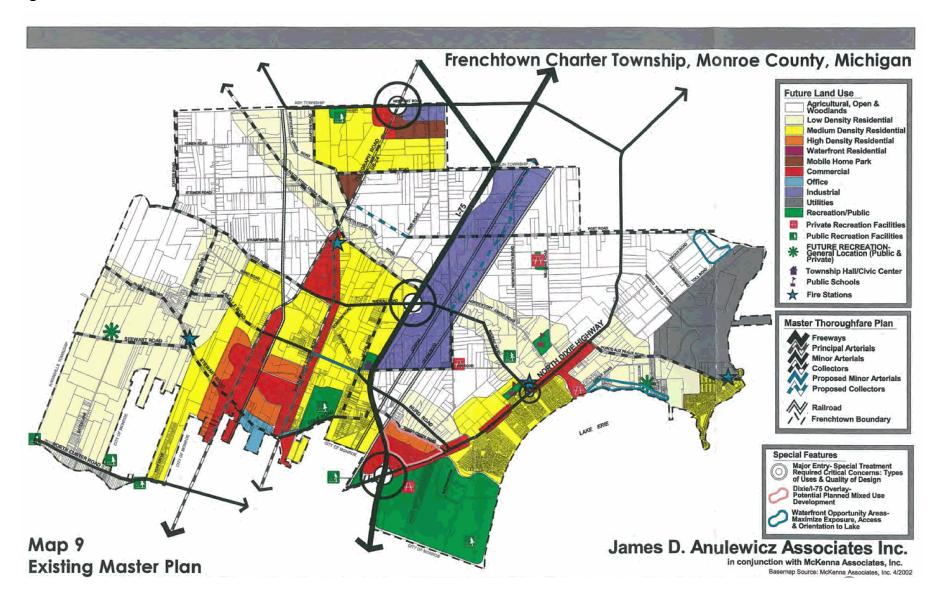


Figure 2.5-19 Frenchtown Water Service Areas

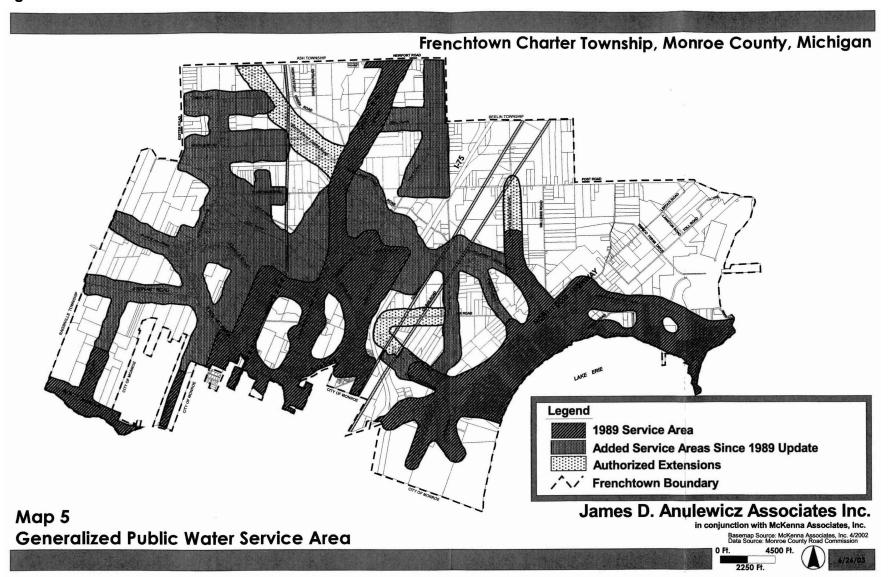


Figure 2.5-20 Frenchtown Sewer Service Areas

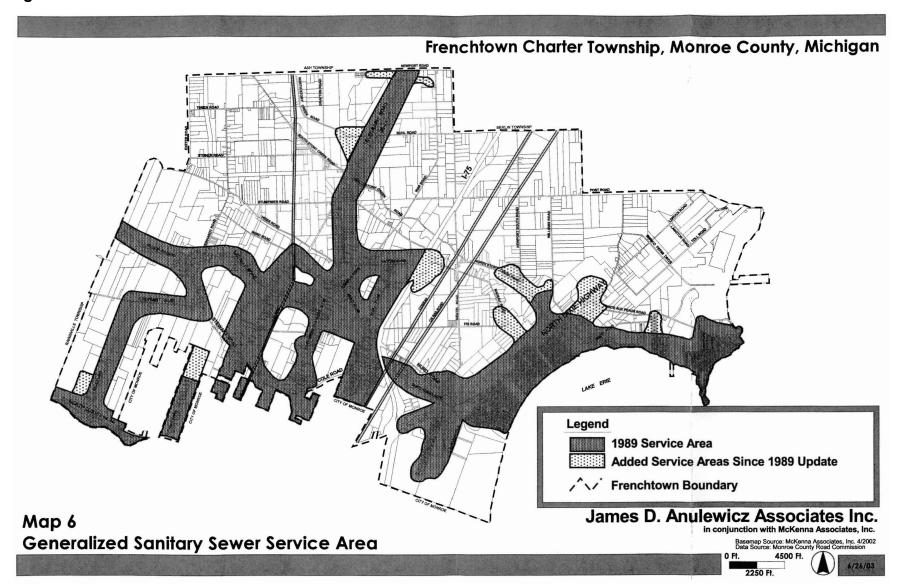
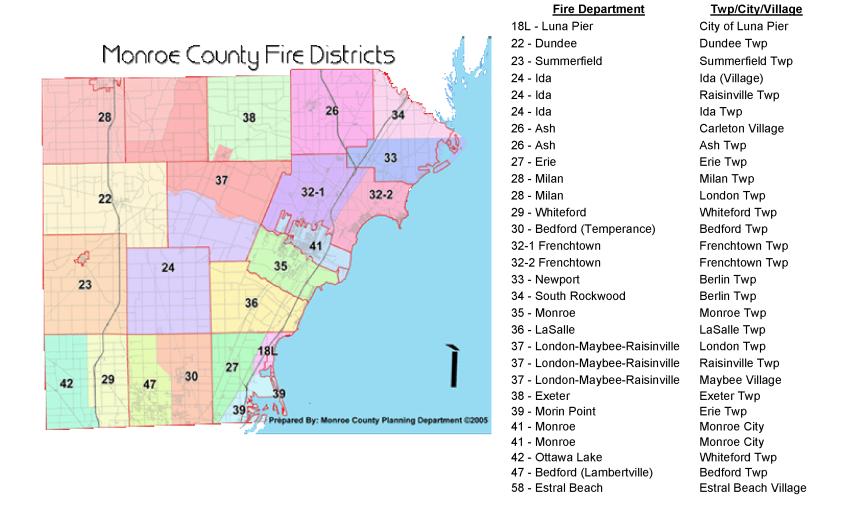



Figure 2.5-21 Monroe County Fire Districts

Source: Reference 2.5-44

Figure 2.5-22 Frenchtown Fire Department Locations

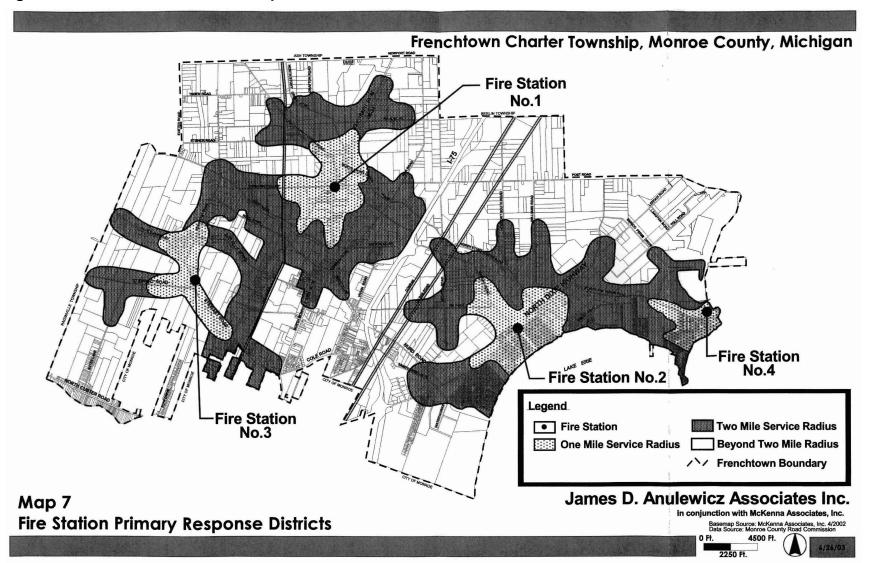


Figure 2.5-23 Frenchtown Road Network

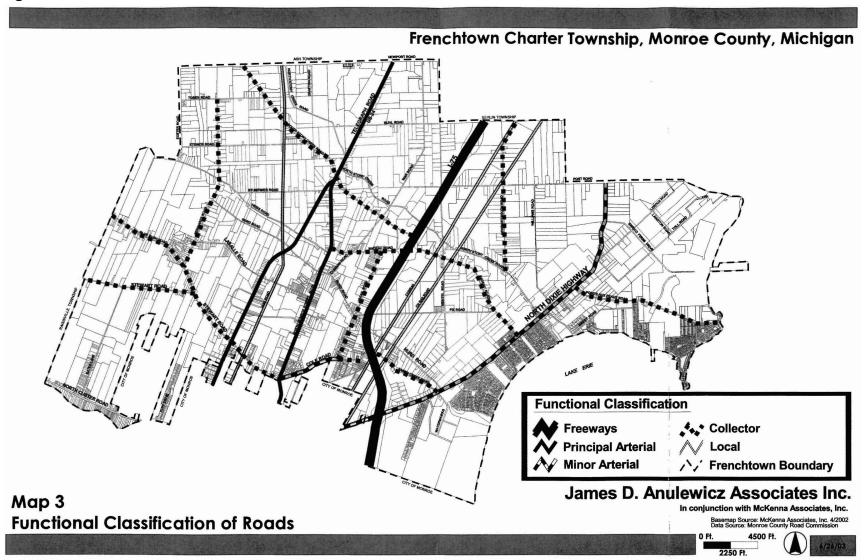
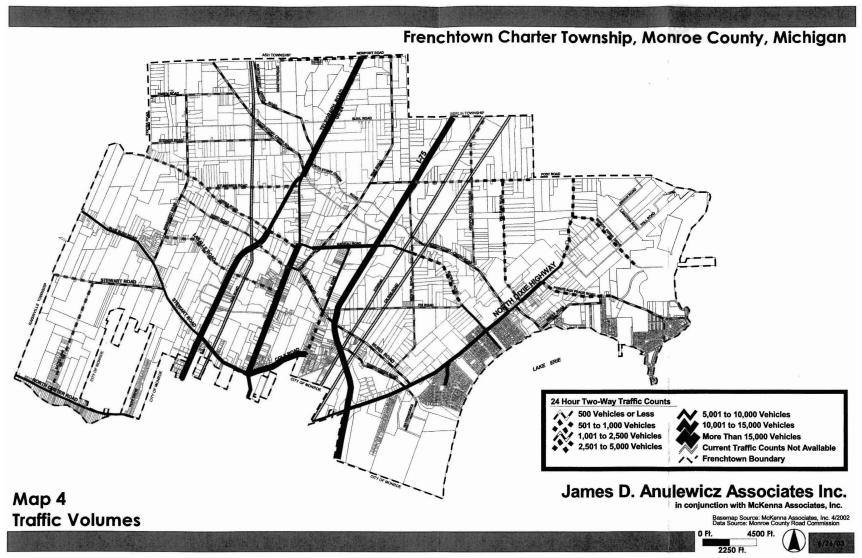



Figure 2.5-24 Traffic Volumes Frenchtown Master Township

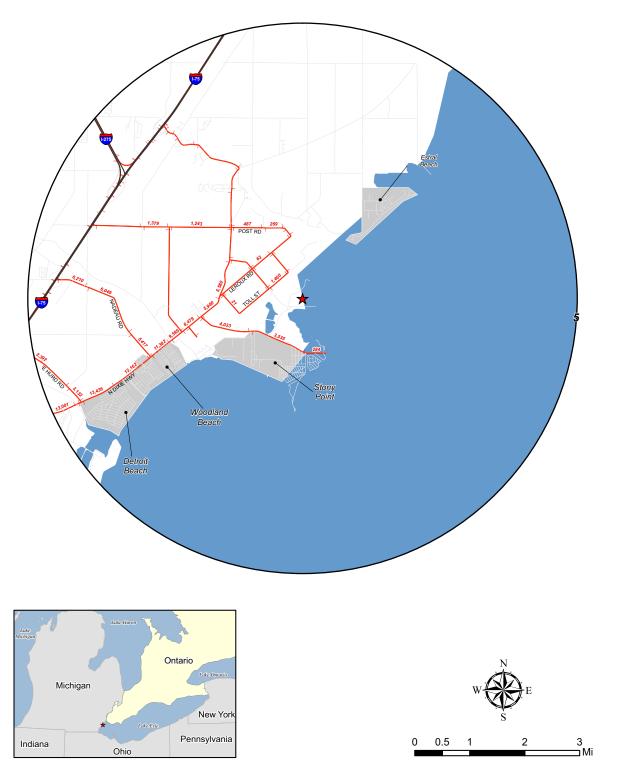


Figure 2.5-25 Traffic Counts within a 5-Mile Radius of the Fermi Site

Figure 2.5-26 Fermi to Milan Transmission Line Cultural Resources Preliminary Survey

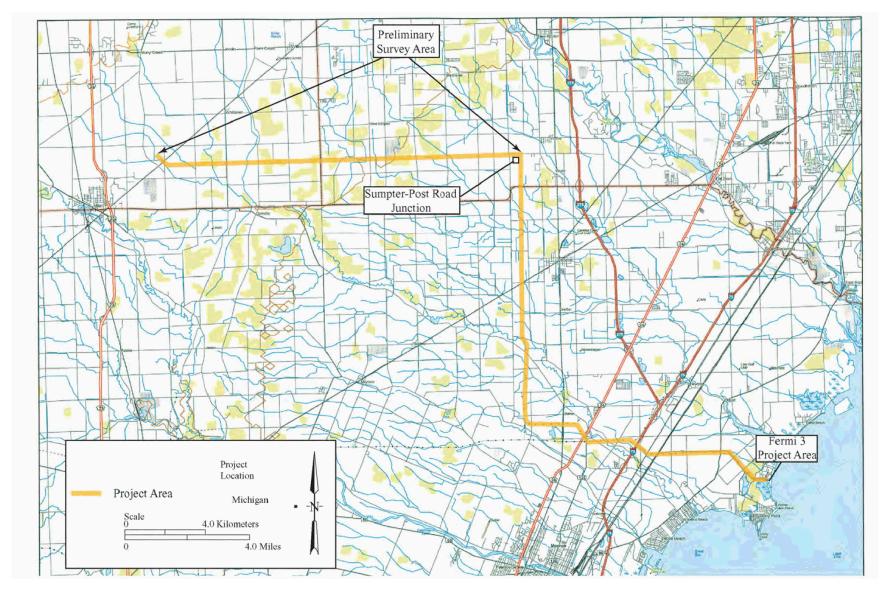
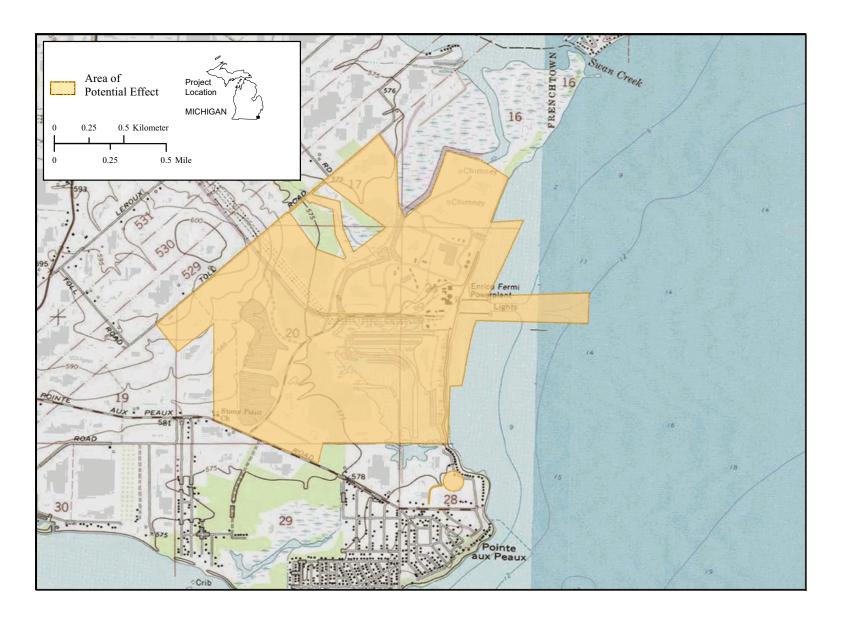



Figure 2.5-27 Fermi 3 Project Archaeological Area of Potential Effect

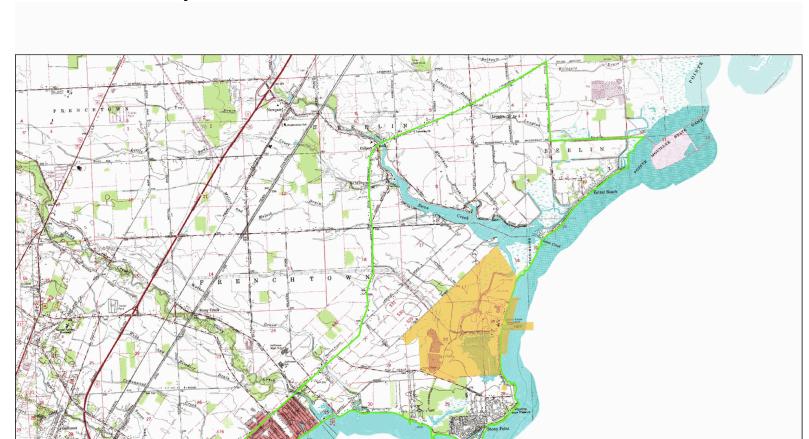


Figure 2.5-28 Fermi 3 Project Above-Ground Cultural Resources Area of Potential Effect

Above-Ground Resources
Area of Potential Effect

Project Area

MACOMB OAKLAND LAMBTON LIVINGSTON CHATHAM-KENT JACKSON HENRY SENECA Michigan New York Pennsylvania 30 ⊐Mi Indiana Ohio

Figure 2.5-29 Minority Counties in the Fermi 3 Region

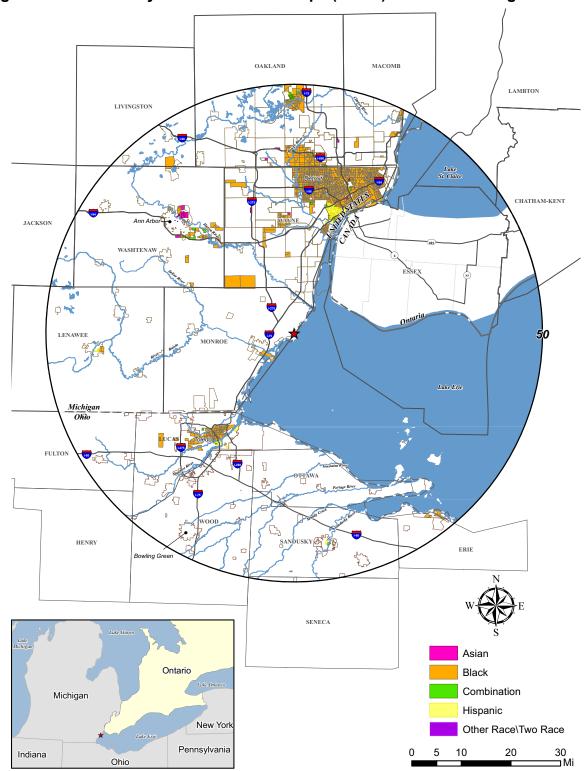


Figure 2.5-30 Minority Census Block Groups (CBGs) in the Fermi Region

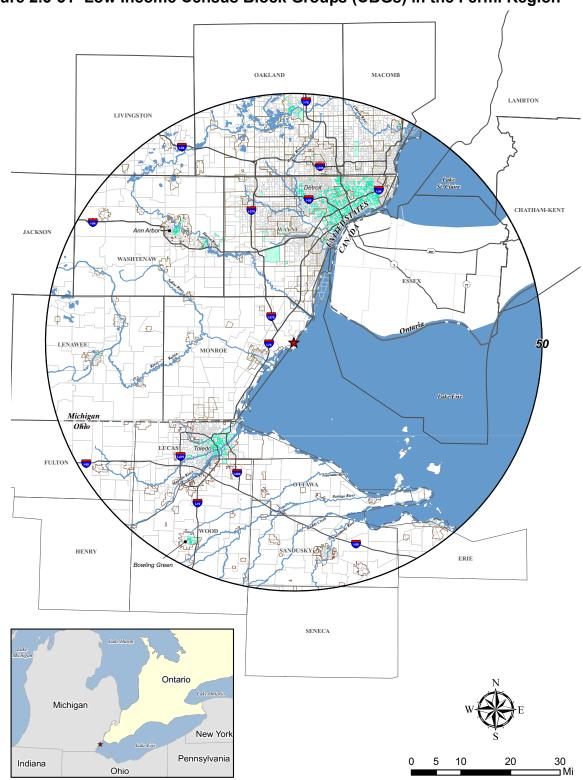
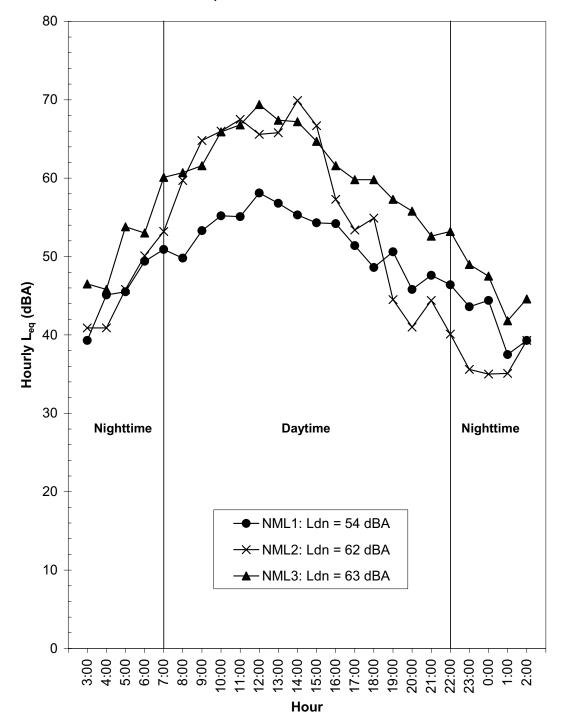



Figure 2.5-31 Low Income Census Block Groups (CBGs) in the Fermi Region

NML-5 Fermi Property Boundary

Figure 2.5-32 Fermi Noise Monitoring Locations (NMLs)

Figure 2.5-33 Hourly Equivalent Continuous Sound Levels (L_{eq}) for NMLs 1-3, November 27-28, 2007

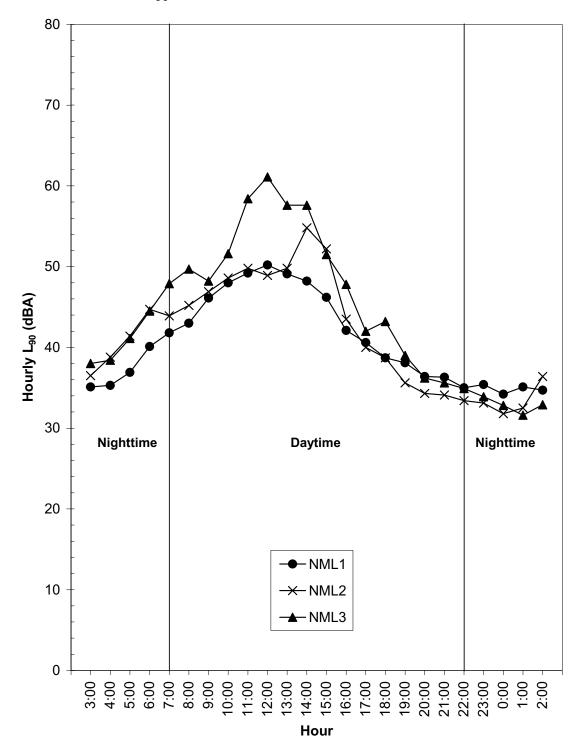


Figure 2.5-34 Hourly L₉₀ Sound Levels for NMLs 1-3, November 27-28, 2007

2.6 Geology

This section presents the geology and geologic environmental impacts for Fermi 3. A description of the physiography, geology, seismology, and tectonics for Fermi 3 is presented in FSAR Section 2.5. FSAR Section 2.5 provides a level of detail appropriate for the proposed ESBWR design.

The impacts of the site geology on the plant are covered in FSAR Section 2.5. Descriptions of the geologic structures, tectonics, and seismic hazards are in FSAR Subsection 2.5.1.1.4, FSAR Subsection 2.5.1.2.4, FSAR Subsection 2.5.2, and FSAR Subsection 2.5.3. Descriptions of the non-seismic geologic hazards are in FSAR Subsection 2.5.1.1.5 and FSAR Subsection 2.5.1.2.5. A description of the engineering geology is in FSAR Subsection 2.5.1.2.6, and the potential effects of human activity are in FSAR Subsection 2.5.1.2.6.7. Identification of the sampling pattern and the justification for its selection, the sampling method, pre-analysis treatment, and analytic techniques are presented in FSAR Subsection 2.5.4.2.2.2. The geologic environmental impact, which is defined as the impact of the construction and operation of the plant on the geology, is summarized in Subsection 2.6.5.

2.6.1 **Topography**

Fermi 3 is located in the Eastern Lake section of the Central Lowlands physiographic province. A description of the physiography, geomorphology, and topography of the Fermi 3 200-mi radius site region is in FSAR Subsection 2.5.1.1.1. The 25-mi radius site vicinity, 5-mi radius site area, and 0.6 mi radius site location is described in FSAR Subsection 2.5.1.2.1.

2.6.2 Stratigraphy

The stratigraphy below Fermi 3 includes Precambrian igneous and metamorphic rocks, Cambrian through Silurian sedimentary rocks, and Quaternary glacial and lacustrine sediments. A description of the stratigraphy of the Fermi 3 site region is in FSAR Subsection 2.5.1.1.3 and site vicinity is described in FSAR Subsection 2.5.1.1.2.3.

2.6.3 Soil and Rock Types

A variety of sedimentary rocks, sediments, and soils were encountered during the Fermi 3 subsurface investigation. Material descriptions and geotechnical properties of the soil and rock units are covered in FSAR Subsection 2.5.4.

2.6.4 Tectonics and Seismology

Fermi 3 is located in the stable continental region of the North American Craton, which is characterized by low earthquake activity and low stresses. Descriptions of the tectonics and seismology of the site region and site vicinity can be found in FSAR Subsection 2.5.1.1.4, FSAR Subsection 2.5.1.2.4, FSAR Subsection 2.5.1.2.6.6, FSAR Subsection 2.5.2, and FSAR Subsection 2.5.3.

2.6.5 **Geologic Environmental Impact**

Based on the Fermi 3 geologic conditions described in FSAR Subsection 2.5.1, adverse impacts on the geology are not anticipated as a result of the construction or operation of Fermi 3. Items considered in evaluating if Fermi 3 could cause adverse impacts include the following:

- Grouting will be used to control groundwater flow into the excavation for Fermi 3. Grouting
 will increase the strength of the fractured dolomite bedrock providing a positive effect on the
 geologic environment.
- If blasting is required, vibrations will be controlled so as to not affect the existing Fermi 2 plant. No off-site effects of blasting are anticipated.
- The excavation for Fermi 3 will remove the glacial till, which acts as an upper confining layer
 for the bedrock aquifer. The excavation will be backfilled with granular fill, which will result in
 a hydraulic connection between the groundwater in the fill overlying the glacial till and the
 groundwater in the bedrock. Similar hydraulic connections currently exist at the following
 locations on the Fermi site:
 - At Fermi 2, excavation extended into the bedrock and granular fill was used as backfill. Therefore, the backfill approach for Fermi 2 and Fermi 3 is similar.
 - At the Quarry Lakes located southwest of Fermi 3 the overburden was removed, and the bedrock was excavated for use as borrow for Fermi 2.

These existing hydraulic connections have not created any known adverse impacts to the geologic environment. Under current conditions at Fermi 3, the hydraulic gradient is downward from the groundwater in the fill to the groundwater in the bedrock (FSAR Subsection 2.4.12). The hydraulic connection may locally lower the groundwater level of the groundwater in the fill in the vicinity of Fermi 3.

- The absence of capable faults (FSAR Subsection 2.5.1 and FSAR Subsection 2.5.3) eliminates the possibility for a surface rupture as a result of construction or operation of the proposed facility.
- Surface rebound/settlement during construction of the facility that might affect the drainage of surface water will be limited to the excavation, the Fermi 3 footprint, and immediate surroundings.
- No natural slopes exist in the proximity of Fermi 3 that could be adversely affected by the foundation excavation, loading resulting from construction, and infiltration of precipitation resulting from the excavation or surface modifications.
- Disposal of excavated material might be required either onsite or offsite. Generally
 accepted methods will be employed to control erosion of this material at the disposal site.
 Potential methods include silt fences, seeding, and drainage control. Soil surfaces exposed
 during construction will be protected to mitigate their erosion and control surface runoff.

 Vertical groundwater cut-offs, with technologies such as slurry walls, grout curtains, or freeze walls, will be used to control groundwater migration into the excavation; thus, reducing drawdown of groundwater adjacent to the excavation.

2.6.6 References

None.

2.7 Meteorology and Air Quality

This section describes the general climate of the Fermi site and the surrounding regional meteorological and air quality conditions. This section also documents the range of meteorological conditions that would likely exist during the construction and operation of Fermi 3. Data presented includes a climatological summary of normal and extreme values of several meteorological parameters recorded by National Weather Service (NWS) meteorological instruments located in Detroit (Detroit Metropolitan Airport) and Flint, Michigan, Toledo, Ohio and the Fermi onsite meteorological station. Supplemental meteorological data from four NWS Cooperative Observation Program (COOP) stations with data sets dating back 30 years or more were also added to the analysis of the region surrounding the Fermi site. Air quality data obtained from the Michigan Department of Environmental Quality (MDEQ) monitors was also used to discuss the regional air quality surrounding Fermi 3. The regional climate and air quality conditions that surround the Fermi site are described in Subsection 2.7.1 and Subsection 2.7.2, respectively. Details regarding severe weather conditions that are observed in the Fermi region are provided in Subsection 2.7.3, while the description of the local meteorology and topographic description for the Fermi site is located in Subsection 2.7.4 and Subsection 2.7.5, respectively. Short- and long-term diffusion estimates of radiation, as they relate to dose concentrations to the public and surrounding area are presented in Subsection 2.7.6.

2.7.1 General Regional Climate

The following climatology for Fermi 3 uses data from the NWS first-order stations at Detroit Metropolitan Airport, Toledo, and Flint, as well as four NWS COOP stations located within fifty miles of the Fermi site. The above stations have long return periods of meteorological parameters that provide the regional climatology representative of the Fermi region. The meteorological data obtained for this climatology were collected and processed by the National Oceanic and Atmospheric Administration's (NOAA) Midwestern Regional Climate Center (MRCC) and National Climatic Data Center (NCDC).

Table 2.7-1 contains the distances and directions of the meteorological observing stations relative to the Fermi site as shown in Figure 2.7-1. Detroit Metropolitan Airport is the closest first-order station to the site with a long-term history of recording hourly wind speed and direction, temperature, precipitation, atmospheric moisture content (i.e., dew-point temperature, relative humidity, and wet-bulb temperature), barometric pressure, and the occurrence of weather phenomenon such as thunderstorms and fog (Reference 2.7-1). Flint and Toledo are additional NWS first-order stations with long-term climatological periods of record (Reference 2.7-2 and Reference 2.7-3). Table 2.7-2 through Table 2.7-4 display the various meteorological parameters in the annual Local Climatological Data Summaries (LCD) for Detroit Metropolitan Airport, Flint, and Toledo, respectively. The four COOP meteorological stations used in this climatology have complete or nearly complete data sets that extend back 30 years or greater (Reference 2.7-4 through Reference 2.7-7).

2.7.1.1 General Climate

The Fermi site is located along the western Lake Erie shoreline and south of the Detroit metropolitan area. The general climate of the Fermi site and the surrounding region can be described as humid continental, experiencing both warm and humid summers and severe winters. Lake Erie largely influences the overall temperature, wind, and precipitation characteristics of the site and surrounding region. The higher thermal capaCity of the lake moderates the daily temperature extremes that are found further inland, especially during the spring, summer, and fall seasons. Annually, the region experiences approximately six days below 0°F and only 12 days above 90°F (Reference 2.7-1). The temperature contrast of the coastal boundary also produces lake and land breezes that are most prominent during the summer in the Fermi region. During the late spring and summer seasons, the lake breezes generally form by afternoon and bring cooler air from above the lake to locations along the shoreline, effectively lowering the daily maximum temperature. During the late summer and fall, land breezes continue the moderation effect by bringing cooler air located further inland to the shoreline areas. At night during the spring, summer, and fall, the lake, with its greater heat capacity, moderates low temperatures along the shoreline. During late December, ice typically forms over the lake and decreases its influence on the coastal areas (Reference 2.7-8). The ice cover during most years thaws by the middle of March, which prolongs cooler temperatures through parts of the spring season for the Fermi region.

The meteorological conditions in the Fermi region are also influenced by the high frequency of surface low pressure systems and cloudiness during the late fall and winter, as well as early spring (Reference 2.7-9). During the later half of spring and summer, the mean track of surface low pressure systems shifts north of the region and the Fermi region experiences an increase in sunshine and warmer monthly temperatures.

Overall precipitation amounts vary slightly from month to month throughout the year (Reference 2.7-1). During the winter, the mean track of surface low pressure systems is positioned over or just south of the Fermi region and increases the frequency of precipitation (Reference 2.7-9). Surface low pressure systems come from the west, northwest and southwest during the winter and bring the possibility of rain, freezing rain, sleet, and snow. Heavy snows are possible throughout the winter and can result in significant accumulations. During the summer, the mean track of surface low pressure systems shifts north of the region, however monthly rainfall values are higher than any other season. The number of days per month with thunderstorms is approximately 6 days during June, July, and August, which is higher than any other months (Reference 2.7-1). Thunderstorms during the summer bring the potential of heavy rainfall and severe weather.

2.7.1.2 Normal, Mean, and Extreme Climatological Conditions

This section discusses 30-year normals, as well as long-term means and historical extremes for temperature, water vapor, precipitation, and wind that characterize the meteorological conditions in the region surrounding the Fermi site.

Table 2.7-2 contains long-term normals, means and extremes for Detroit Metropolitan Airport in Detroit, located approximately 17 miles north-northwest of the Fermi site. Table 2.7-3 and

Table 2.7-4 exhibit long-term meteorological information for Flint and Toledo. Flint and Toledo are located 74 miles to the north-northwest and 38 miles southwest of the Fermi site, respectively.

The purpose of this section is to demonstrate that the long-term data reported at the three NWS first-order meteorological stations, as well as the four COOP stations are representative of the short- and long-term climate characteristics of the region surrounding the Fermi site. Subsection 2.7.1.2.1 through Subsection 2.7.1.2.4 provide more detailed discussions of specific meteorological parameters of interest.

2.7.1.2.1 Wind Conditions

Based upon 39 years of wind data at Detroit Metropolitan Airport, the annual prevailing wind direction is 240 degrees or southwest (Reference 2.7-1). Monthly prevailing winds in Detroit are generally southwest during all months except during the spring when they are northwest. At Flint and Toledo the annual prevailing wind direction is also southwest (Reference 2.7-2 and Reference 2.7-3), but both stations have different monthly variations when compared to Detroit. Monthly winds for Toledo, like Detroit, are southwest during all but the spring season when they become east-northeast. Monthly wind directions for Flint are also southwest during the majority of the year, however winds become westerly during February and March, east-northeasterly during April, and more southerly during May. The differences in the late winter and spring prevailing wind directions between Detroit and the Flint and Toledo stations can be attributed to the transition of the mean track of surface low pressure systems to the north. During this transition the path of surface low pressure systems greatly varies, and wind patterns across the region can be different. The variation in the path of the surface low pressure systems, as well as the general weakening of the jet stream, can explain the complexity of wind directions at the three first-order stations during the late winter and spring months.

During the most recent 23-year period, the annual mean wind speed for Detroit Metropolitan Airport is 9.9 mph (Reference 2.7-1). In comparison, Flint and Toledo have slightly lower annual mean wind speeds, 9.3 and 9.1 mph, respectively (Reference 2.7-2 and Reference 2.7-3). Seasonally, the highest seasonal mean wind for all three stations is during the winter and spring months as shown in Table 2.7-2 through Table 2.7-4. The lowest seasonal mean wind speed occurs during the summer months for Detroit (8.4 mph), Flint (7.7 mph), and Toledo (7.2 mph). The highest monthly mean wind speed for Detroit occurs in January with a value of 11.6 mph. Flint and Toledo also have their highest monthly mean wind speed during January; however, their values are slightly lower (10.8 mph). During January the mean track of surface low pressure systems is positioned over the Fermi region, which increases the frequency of surface low pressure systems, and therefore wind speeds. The lowest monthly mean wind speed for the three first-order stations is during August when the mean track of surface low pressure systems migrates well north of the region. The overall variation of monthly wind speeds is consistent for the three first-order stations, and therefore these values represent values characteristic of locations in the Fermi region.

Extreme winds for design basis purposes are discussed in Subsection 2.7.3.2. Wind data summaries for the Fermi onsite meteorological station are discussed in Subsection 2.7.4.2 and Subsection 2.7.4.3.

2.7.1.2.2 **Temperature**

Table 2.7-5 presents normal annual temperatures for the three NWS first-order and four COOP stations in the Fermi region during the period 1971-2000. The daily normal temperature for the stations are generally uniform with only minor differences apparent between the two COOP stations closer to the shoreline of Lake Erie and the other stations located further inland or stationed near metropolitan cities. The slight difference in the daily normal temperatures across the Fermi region can be explained by looking at the daily maximum and minimum temperatures. Stations that are closer to the shoreline, specifically Monroe and Windsor, have a slightly higher minimum temperature due to the heat content of Lake Erie. While the other NWS first-order and COOP stations are also influenced by the effects of Lake Erie, Monroe and Windsor are closer to the shoreline and further from metropolitan areas, as a result have slightly higher mean daily minimum temperatures and lower daily maximum temperatures. The observation stations at Detroit Metropolitan Airport are also influenced by the heat island effect that is created by large metropolitan areas. The heat island effect likely explains how the daily minimum temperature for Detroit Metropolitan Airport is warmer than the Monroe and Windsor stations.

During the summer months of June, July, and August, mean daily maximum and minimum temperatures at Detroit Metropolitan Airport average 81°F and 60°F, respectively (Reference 2.7-1). In comparison, at Flint and Toledo summer mean daily maximum temperatures are 80°F and 82°F, respectively, while mean daily minimum temperatures are 56°F and 59°F, respectively (Reference 2.7-2 and Reference 2.7-3). Table 2.7-6 contains climatological extreme maximum and minimum temperatures for the NWS first-order and COOP stations (Reference 2.7-2, Reference 2.7-3, Reference 2.7-5, Reference 2.7-10 through Reference 2.7-14). The highest daily maximum temperature recorded at Detroit Metropolitan Airport was 104°F in June of 1988; however, a temperature of 105°F was recorded in July of 1934 at the nearby Detroit City Airport (Reference 2.7-1 and Reference 2.7-11). The highest temperature recorded at Toledo and Flint is 105°F and 101°F, respectively, occurring in July of 1936 and 1995, respectively (Reference 2.7-2 and Reference 2.7-13). The highest temperature recorded at the NWS COOP sites is 108°F, occurring at the Adrian 2 NNE observation station during July of 1934 (Reference 2.7-10).

During the winter months, the variation of the mean daily minimum temperature is higher between the stations, while the mean daily maximum temperature remains nearly uniform across the region. Mean daily maximum temperatures during the winter at Detroit Metropolitan Airport and Toledo are 34°F, while Flint, which is further north, averages a temperature of 30°F (Reference 2.7-1, Reference 2.7-2, and Reference 2.7-3). The mean daily minimum temperatures for Detroit Metropolitan Airport and Toledo are 20°F and 19°F, respectively. Flint, which is further inland and influenced less by the Great Lakes, has a mean daily minimum temperature of 16°F during the winter season. The major track of surface low pressure systems during wintertime is over the Fermi region, which allows frequent episodes of arctic air (Reference 2.7-9). During a normal winter, there are 45.6 days where the maximum temperature fails to rise above freezing (Reference 2.7-1). However, the Canadian air masses that usher in arctic air to the Fermi region pass over Lake Michigan, which adds heat and moisture to the air mass. The lake effect produced by the Great Lakes produces an excess of cloudiness during the winter and a moderation of the extreme arctic temperatures. Table 2.7-6 summarizes the extreme minimum temperatures recorded at the NWS

first-order and COOP station around the Fermi region. The coldest temperature recorded was -26°F at the Adrian 2 NNE station during January of 1892 (Reference 2.7-10). The extreme low values of minimum temperature confirm that the region is exposed to arctic air masses. Furthermore, the stations that are closest to the Lake Erie shoreline have slightly warmer values than those stations further inland, indicating the effect of Lake Erie on extreme temperatures in the Fermi region.

2.7.1.2.3 Atmospheric Moisture

Atmospheric moisture in the region surrounding the Fermi site is influenced by Lake Erie and the other surrounding Great Lakes. The content of moisture in the atmosphere is measured through several parameters (relative humidity, dew-point temperature, and wet-bulb temperature) and can be evaluated by looking at the long-term history of the daily, monthly and annual means for the stations in the Fermi region.

Relative Humidity

As shown in Table 2.7-2 through Table 2.7-4, mean annual relative humidity values at Detroit, Flint and Toledo average 71-73 percent (Reference 2.7-1, Reference 2.7-2, and Reference 2.7-3). Nighttime relative humidity is highest in the late summer and early fall and lowest during the spring months. Daytime humidity readings are highest during the late fall and winter seasons. Daily relative humidity values are typically highest around 0700 EST, while lowest relative humidity values occur during early and mid afternoon.

Wet-Bulb Temperature

The mean annual wet-bulb temperature at Detroit Metropolitan Airport is 45.0°F based upon 23 years of record (Reference 2.7-1). July has the highest mean monthly wet-bulb temperature with a value of 65.9°F. The lowest monthly mean wet-bulb temperature is 23.7°F, which occurs in January. Toledo and Flint have mean annual wet-bulb temperatures of 45.5°F and 43.6°F, maximum mean monthly wet-bulbs of 66.5°F and 64.6°F, and minimum mean monthly wet-bulbs of 24.2°F and 22.1°F, respectively (Reference 2.7-2 and Reference 2.7-3). Detroit and Toledo have slightly higher mean annual wet-bulb temperatures than Flint due to their closer proximity to Lake Erie. While Flint is surrounded by the Great Lakes and is approximately 43 miles from Saginaw Bay, it is located further inland than the other first-order stations and can experience lower minimum temperatures.

Dew-point Temperature

Table 2.7-2 provides mean monthly and annual dew-point temperatures for Detroit Metropolitan Airport, indicating a mean annual dew-point of 40.3°F. In comparison, Table 2.7-3 and Table 2.7-4 show that the mean annual dew-point temperature for Flint and Toledo are 39.4°F and 41.1°F, respectively. While the differences in mean annual dew-point are small between the stations, it is apparent that stations that are further south and closer to Lake Erie have slightly higher moisture content. Mean dew-point temperatures for every month at Detroit Metropolitan Airport are lower than the mean dew-point for Toledo, but are higher than the values for Flint. According to Table 2.7-2, Table 2.7-3 and Table 2.7-4 the maximum mean monthly dew-point temperature occurs

in July for all first-order stations. The minimum mean monthly dew-point temperature occurs in January, when the mean monthly temperature is the lowest. During the late winter and spring, the difference in mean monthly dew-point between the first-order stations is greatest, while the differences are smallest during the fall and early winter seasons. It is apparent that the content of atmospheric moisture can be directly correlated to the latitude of the station and, to a smaller extent, the distance from Lake Erie in the region of the Fermi site.

2.7.1.2.4 Precipitation

Annual Precipitation

Annual precipitation in the region ranges from just under 30 inches in northeastern Michigan to near 40 inches for the remainder of the state (Reference 2.7-16). Table 2.7-5 presents normal annual rainfall totals for the four COOP and three first-order stations surrounding the Fermi site. Overall, annual rainfall is uniform across the region with the Windsor, Ann Arbor and Adrian stations having the highest annual amounts. The consistent annual rainfall totals for the stations within 50 miles of the Fermi site demonstrates the regional nature of precipitation events.

Monthly Precipitation

Table 2.7-2 displays normal monthly precipitation amounts at Detroit Metropolitan Airport, showing precipitation is fairly consistent throughout the year. Normal monthly precipitation amounts for Flint and Toledo are displayed in Table 2.7-3 and Table 2.7-4 and confirm the uniform nature of precipitation year round. The highest monthly precipitation for Detroit (3.55 inches) and Toledo (3.80 inches) occurs during June, while it is during September for Flint (3.76 inches). The lowest monthly precipitation occurs in February for the three first-order stations when monthly amounts between 1.35 and 1.88 inches are common.

Maximum 24-hour and Monthly Precipitation

Table 2.7-6 displays the maximum 24-hour precipitation amounts recorded for the NWS first-order and COOP stations in the region of the Fermi site. Excessive amounts of precipitation have fallen at all of the observation stations in a 24-hour period. The highest amount of precipitation in a 24-hour period is 6.04 inches, occurring at Flint during September of 1950. For all meteorological stations the 24-hour precipitation amounts occurred between the months of May through September. Table 2.7-6 also contains the maximum monthly precipitation amounts for the meteorological stations surrounding the Fermi site. All maximum amounts of precipitation for the NWS stations occurred between the months of June through August. The highest extreme monthly rainfall occurred at Flint during August of 1975 when 11.04 inches was reported. Earlier it was mentioned that the mean track of surface low pressure systems during the summer months retreats well north of southeast Michigan. While the frequency of surface low pressure systems decreases during the summer season, the intensity of precipitation from thunderstorms contributes to the higher precipitation amounts during the summer months in the Fermi region.

Snow and Ice

Surface low pressure systems during the wintertime can bring a combination of rain, freezing rain, sleet and snow. During a typical year frozen precipitation is possible starting in October and ending in May. Table 2.7-5 presents normal annual snowfall amounts for the meteorological stations surrounding the Fermi site. Normal annual snowfall distributions for the three first-order stations indicate that annual snowfall increases for stations located farther north.

The threat of heavy snowfall is present throughout the wintertime for the Fermi region. Maximum 24-hour snowfall amounts are listed in Table 2.7-6 for each meteorological station. The highest snowfall amount in a 24-hour period is 24.5 inches, occurring near the Detroit City Airport in April 1886. For all meteorological stations listed in Table 2.7-6, the maximum 24-hour snowfall amounts occurred between the months of November through April. Maximum 2- and 3-day snow fall totals were also obtained for the Fermi region from the NCDC United States Snow Climatology online database. The highest 2- and 3-day snowfall reported from the database is 56.6 cm (22.3 inches) occurring at Flint (Reference 2.7-15) The Snow Climatology online database does not include snow records that would capture the maximum 24-hour snowfall that occurred in 1886. Since the maximum 2- and 3-day snowfall, obtained from Snow Climatology online database, is less than the maximum 24-hour snowfall, it is appropriate that the maximum 24-hour snowfall also be the maximum 2- and 3-day snowfall for the Fermi site. The maximum monthly snowfall is 148.6 cm (58.5 inches) which occurred at Ann Arbor during February 1923 (Reference 2.7-10). The remainder of meteorological stations in Table 2.7-6 have maximum monthly snowfall amounts that range between 29.0 and 38.4 inches. While there is much variability among the maximum 24-hour and monthly snowfall amounts, the region surrounding the Fermi site can experience significant snowfalls anytime during the winter season.

2.7.2 Regional Air Quality

2.7.2.1 Background Air Quality

The Fermi site is located in the northeastern tip of Monroe County and along the western shoreline of Lake Erie. Air quality at the Fermi site is heavily influenced by the Detroit Metropolitan area and surrounding emission sources. The MDEQ evaluates the air quality in the Detroit Metropolitan area with a network of monitors mostly located in Wayne County, north of the Fermi site. The MDEQ routinely monitors the U.S. Environmental Protection Agency (USEPA) criteria pollutants of NO₂, SO₂, CO, PM_{2.5}, PM₁₀, and Ozone. While Monroe County is a member of the Metropolitan Interstate Toledo Air Quality Control Region (AQCR), it is also included in the Detroit-Ann Arbor air quality designation area. The Detroit-Ann Arbor air quality designation area is currently classified as a PM2.5 non-attainment area for violations of the 1997 annual standard and the 2006 24-hour standard (Reference 2.7-17). The county is also currently classified as a maintenance area for the 8-hour ozone standard after being reclassified to attainment on June 29,2009 by the EPA (Reference 2.7-17). Monroe County is in attainment for all other criteria pollutants (Reference 2.7-17). The USEPA as of March 12, 2008 strengthened the definition of ozone non-attainment areas as those that record 8-hour average ozone levels of 0.075 parts per million (ppm) or higher (Reference 2.7-18). For PM_{2.5} the USEPA considers areas in violation of the annual standard when

the 3-year average of the weighted annual mean PM2.5 concentration is equal to or exceeds 15 $\mu g/m^3$ and in violation of the 2006 24-hour standard when the 3-year average of the 98th percentile of the 24-hour concentration is equal to or exceeds 35 $\mu g/m^3$.

Maximum concentrations for the 24-hour $PM_{2.5}$ and 8-hour ozone pollutants were obtained from monitors in Monroe and Wayne County. The highest annual $PM_{2.5}$ concentration reported between 1999 and 2006 is 20.1 μ g/m³, occurring at the Dearborn monitor located west of downtown Detroit and the highest 24-hour $PM_{2.5}$ concentration over this same period is 58 μ g/m³ (98th percentile) occurring at the Allen Park monitor located southwest of downtown Detroit in Wayne County (Reference 2.7-19). Between 2003 and 2007, the highest 8-hour ozone concentration recorded was 104 ppb (0.104 ppm), measured at the East Seven Mile monitor located in northeastern Wayne County (Reference 2.7-20). The next closest non-attainment area for a USEPA criteria pollutant is Lorain County, Ohio which is part of the Cleveland Metropolitan air shed (also non-attainment for ozone and $PM_{2.5}$), located approximately 60 miles east-southeast of the Fermi site (Reference 2.7-17). There are no Class I Areas that are located within 186 miles of the Fermi site (Reference 2.7-21). Given the minor nature of air emissions associated with operations of Fermi 3 (discussed below), this distance is sufficiently far as to not warrant a concern.

2.7.2.2 Projected Air Quality

Worker vehicles and various types of construction activities and equipment will lead to releases of the non-attainment and maintenance area pollutants and their precursors (i.e., $PM_{2.5}$, NO_X , SO_2 , or VOC). Since Monroe County is considered a maintenance area for the 8-hour ozone standard and a non-attainment area for $PM_{2.5}$, the Fermi 3 project-related emissions are compared to conformity applicability thresholds provided in 40 CFR 51, Subpart W. Estimated emissions of $PM_{2.5}$, NO_X , SO_2 , and VOC during the construction phase of the project are not expected to exceed the conformity applicability thresholds provided in 40 CFR 51, Subpart W indicating that a conformity determination for the construction phase is not required.

Air emissions of criteria pollutants during operation of Fermi 3 will be minor given the nature of a nuclear facility and its lack of significant gaseous exhausts of effluents to the air. Sources of air emissions for Fermi 3 include two standby diesel generators, two ancellary diesel generators, an auxiliary boiler, and two diesel fire pumps, as well as a natural draft cooling tower (NDCT) and two 4-cell mechanical draft cooling towers (MDCT). The combustion sources mentioned above will be designed for efficiency and operated with good combustion practices on a limited basis throughout the year (often only for testing). Given their small magnitude of size and infrequent operation, these emissions will not only have little effect on the nearby ozone maintenance and $PM_{2.5}$ non-attainment areas, but will have minimal impact on the local and regional air quality as well. Estimated emissions during the operational phase of the project are not expected to exceed the conformity applicability thresholds provided in 40 CFR 51, Subpart W indicating that a conformity determination for the operational phase is not required. The air emissions from the listed equipment are regulated by the MDEQ.

The Fermi 3 cooling towers will not be a source of the typical combustion-related criteria pollutants or other toxic emissions. They will, however, emit small amounts of particulate matter as drift. The

towers will be equipped with drift eliminators designed to limit drift to 0.001 percent or less of total water flow. Additionally, the primary normal heat sink (NHS) for Fermi 3 is a NDCT. The height of the tower will allow for good dispersion of the drift and not allow localized concentrations of particulate matter to be realized. The minor nature of the effects of the new cooling towers on visibility and air quality, including potential for increases in ambient temperature and moisture, icing, fogging, and salt deposition, are discussed in further detail in Subsection 5.3.3.1. In addition, Subsection 4.4.1 will discuss the emissions expected during Fermi 3 construction activities, while Subsection 5.8.1 will discuss the emissions expected during operation of Fermi 3, including the estimated work force vehicular emissions.

2.7.2.3 **Air Stagnation**

The main components of air stagnation are light winds and weak vertical mixing. Light winds can also be associated with weak or poor horizontal mixing of the atmosphere which has the general effect of leading to restrictive horizontal and vertical dispersion and thus air stagnation (Reference 2.7-22). Along with wind speed, wind direction plays a key roll in horizontal mixing as winds with non-persistent directions can also lead to poor dispersion, especially under light wind speeds when the air may re-circulate. Finally, temperature inversions are also associated with little to no vertical mixing of the atmosphere and, therefore, air stagnation. Analyses of inversions are discussed in Subsection 2.7.2.5 while the persistence of wind speeds and directions are covered in Subsection 2.7.4.3.

Air stagnation episodes typically occur when high pressure systems (anti-cyclones) have a strong influence on the regional weather for four days or more. These systems often lead to generally light winds and little vertical mixing due to a general sinking of the air in their vicinity. The region surrounding the Fermi site can expect approximately 10 days per year of air stagnation, or two episodes per year (Reference 2.7-22). The mean duration of each air stagnation episode typically is three to four days.

Air stagnation conditions primarily occur during the second half of the summer and early fall seasons that runs from July through September. This is a result of the migration of the mean track of surface low pressure systems to areas well north of the Fermi site, which creates weaker pressure and temperature gradients, and therefore weaker wind circulations during this period. Wang & Angell confirm that air stagnation episodes in the region surrounding the Fermi site begin to occur in June and July (Reference 2.7-22). The number of air stagnation episodes reaches a maximum during August before decreasing in magnitude during September and October. During the fall season the mean track of surface low pressure systems moves south and positions itself over southeastern Michigan and increases the frequency of surface low pressure systems and monthly wind speeds, therefore decreasing the possibility of air stagnation (Reference 2.7-9).

2.7.2.4 Mean Monthly Mixing Heights

The mixing height (or depth) is the height above the surface in which air can freely mix vertically without the help of additional atmospheric forcing mechanisms. George C. Holzworth presented monthly mixing heights for the continental United States based on upper-air data from the period 1960-1964 (Reference 2.7-23). Seasonal morning and afternoon mixing heights for the region

surrounding the Fermi site were interpolated from Holzworth's analysis. In general, morning mixing heights are lowest in the summer and fall seasons and highest in the winter season. Afternoon mixing heights are the highest in the summer and lowest in the winter.

The mean annual and monthly mixing heights for White Lake, Michigan, located 52 miles north-northwest of the Fermi site, were calculated using daily morning and afternoon mixing height data obtained from the NCDC (Reference 2.7-24). The NCDC calculated the mixing heights from data recorded during the morning and afternoon release of weather balloons at the White Lake National Weather Service office that measures the vertical temperature and wind information of the atmosphere. Surface wind data from Detroit Metropolitan Airport were used by the NCDC in conjunction with the weather balloon data to create daily mixing heights for the region. The calculated mean monthly and annual mixing heights for White Lake during 2003-2007 are presented in Table 2.7-7. The values shown in the table follow the same trends found by Holzworth (Reference 2.7-23).

2.7.2.5 Inversions

The frequency and persistence of temperature inversions may also indicate periods where air stagnation is highest. Frequency and persistence of inversions were calculated annually and monthly utilizing the difference in temperature (ΔT) between the 10- and 60-meter levels obtained from the Fermi onsite meteorological tower data during the period 2003 through 2007. The presence of an inversion was defined as anytime $\Delta T > 0$ for the hour. A summary of the frequency and persistence of inversion conditions is presented in Table 2.7-8 which shows for 42,800 hours analyzed during the 5-year period an inversion was present a total of 13,098 hours, equivalent of 30.6 percent of the total hours. Many of the inversions were short-lived as 48.5 percent of all inversions that occurred lasted six hours or less. Almost all the inversions lasted less then 24 hours with only 1.3 percent of all the inversions lasting longer then 24 hours. In the five years of data used, the longest inversion lasted 76 hours. Table 2.7-9 through Table 2.7-20 present the persistence of inversions tallied for each month. These tables show that the inversions are more common during March through October, however, are most prominent during the summer months of June, July, and August. This corresponds well with the findings by Wang & Angell that the number of days with air stagnation is highest during July through September (Reference 2.7-22). The increase in the number of inversions and air stagnation is a result of the jet stream retreating to the north of the Fermi site during the summer months, which in return creates the warmest temperatures and lowest wind speeds (Reference 2.7-9).

2.7.3 Severe Weather Phenomena

2.7.3.1 Thunderstorms and Lightning

Table 2.7-2 indicates that Detroit Metropolitan Airport averages nearly 33 days per year where thunder is at least heard (Reference 2.7-1). The highest seasonal rate of occurrence for thunderstorms is during the summertime (June-August) when around 54 percent of all thunderstorm days occur. July specifically has the highest occurrence of thunderstorms with on average 6.3 days reported. The mean number of thunderstorm days per month is lowest during the late fall and winter seasons, reaching a minimum of 0.2 days per month in January.

The frequency of lightning strikes to earth can be estimated using a method from the Electric Power Research Institute (EPRI). The method is presented by the U.S. Department of Agriculture Rural Utilities Service in a publication titled *Summary of Items of Engineering Interest*. The formula assumes a relationship between the number of thunderstorm days per year (T) and the number of lightning strikes to hit earth per square mile (N) (Reference 2.7-25):

N = 0.31T

Using the above formula and the previously given average of 33 days of thunderstorms per year, the average number of lightning strikes is then calculated as 10 strikes per square mile per year or nearly four strikes per square kilometer per year for the Fermi region. This calculation compared well with the 1996-2000 flash density map created by Vaisala which indicates that the Fermi site is located in the region that averages around 1-4 strikes per square kilometer per year (Reference 2.7-26).

For a more detailed look at the average number of strikes to occur near the reactor (i.e., within a 1,000 foot radius or 0.113 mi²), the following ratio was applied:

10 strikes/mi² per year x 0.113 mi² = 1.13 strikes/year

that may strike near Fermi 3 (within 1,000 feet).

2.7.3.2 Extreme Winds and High Wind Events

Extreme Winds

Wind loading on plant structures is estimated using a 3-second wind gust at 10-meters above ground level to create a basic wind speed for regions across the United States. The American Society of Civil Engineers (ASCE) and Structural Engineering Institute (SEI) classify the Fermi region into Exposure Category C (Reference 2.7-27). From the Engineering Weather Data, Version 1.0 CD-ROM, the maximum basic wind speed with a 50 year recurrence interval is 90 mph for Detroit City Airport (Reference 2.7-28). Applying a 50-year to 100-year wind multiplier of 1.07 supplied by the ASCE and SEI in Table C6-7 of SEI/ASCE 7-05 the maximum basic wind speed for the Fermi site increases to 96.3 mph (Reference 2.7-27).

Local and regional records of maximum wind speeds occurring from thunderstorms and other high wind events present values higher than the above maximum basic wind speed. According to the NCDC on-line storm database the highest wind speed recorded for Monroe County is 95.5 mph on May 21, 2004 (Reference 2.7-29). Using the same NCDC on-line storm database, the highest wind speed recorded in the surrounding counties is 103.6 mph, occurring in Wayne and Lucas Counties on July 22, 1960 and July 4, 1969, respectively. For comparison, a maximum 2-minute wind speed of 61 mph along with a corresponding 78 mph 5-second wind gust was recorded at Detroit Metropolitan Airport in May of 2004 (Reference 2.7-1). Wind data records from the LCD for Detroit Metropolitan Airport span back only 11 years. The observed wind speeds from the NCDC database indicate that thunderstorms can produce wind speeds in excess of 100 mph at the Fermi site.

High Wind Events

This section provides the frequency of occurrence of winds greater than 50 knots, in accordance with the Nuclear Regulatory Commission (NRC) Regulatory Guide 4.2. Storm reports that include wind speeds of 50 knots or greater occur with many types of weather phenomenon such as thunderstorms and tornadoes. Wind reports for thunderstorms and tornadoes were obtained from the NCDC on-line storm database for the following five-county area surrounding the Fermi site: Lenawee, Monroe, Washtenaw, Wayne and the Ohio County of Lucas. While not all five counties may have been actively reporting high wind events in the early years of the time period, the 1955-1959 period featured 1.6 high wind events per year. The subsequent 10-year periods of 1960-1969, 1970-1979, and 1980-1989 averaged 2.9, 2.4, and 4.2 high wind events per year respectively. An analysis of the high wind events on a decade by decade basis over the five-county area does not show a significant statistical trend over the first four decades. In fact, the variability in the average number of high wind events per decade over the first four decades may be explained by natural variability as they each reported similar numbers of high wind events.

Furthermore, some of the reported high wind events likely occurred simultaneously in several of the five counties. High wind events can be caused by individual thunderstorms that have a cellular structure or by thunderstorms that have become linear along a squall line or cold front. A line of thunderstorms can cause wind damage along an elongated path, while the wind damage caused by cellular type thunderstorms is typically isolated in nature.

Between January 1, 1955 and December 31, 2007 there have been 816 reports of wind events that were 50 knots or greater in the five-county area (Reference 2.7-29). The highest wind speed reported was 90 knots (103.6 mph) in Wayne and Lucas Counties on July 22, 1960 and July 4, 1969. Many of the reports for high winds contained in the NCDC on-line storm database do not specify wind speeds and therefore may underestimate the count of wind events 50 knots or greater in the region of the Fermi site.

Between January 1, 1950 and December 31, 2007, 110 tornadoes were reported in the five-county area (Reference 2.7-29). All tornadoes are categorized as F0 or stronger on the Enhanced Fujita (EF) scale, thereby containing wind speeds greater than 50 knots (Reference 2.7-30). Additional discussion of tornadoes in the region surrounding the Fermi site is given in Subsection 2.7.3.3.

2.7.3.3 Tornadoes and Waterspouts

Waterspouts

Waterspouts are considered to be the counterpart of tornadoes, but over large bodies of water. Waterspouts are also much smaller than an average tornado and contain wind speeds that are typically less than 50 mph. Conditions favorable for waterspout formation are when a cool air mass passes over the warm waters of Lake Erie. The resulting instability can support the formation of waterspouts, most frequently during the late summer and fall season. A search for reported waterspouts in the NCDC online storm database resulted in eight occurrences off the shoreline of Lucas and Monroe counties since 1993 (Reference 2.7-29). The closest occurrence to the Fermi site was a report of several waterspouts off the shoreline of Stony Point in Monroe County on the

morning of July 26, 1998 (Reference 2.7-31). Therefore, waterspouts can occur near and at the Fermi site, but are not considered to be of frequent occurrence.

Tornadoes

"Design-Basis Tornado (DBT) and Tornado Missiles for Nuclear Power Plants" (Regulatory Guide 1.76) published in March 2007, was used to determine the design parameters that should be considered in the event that the most severe tornado strikes the Fermi site. In addition, DBT wind speeds for the Fermi site, utilizing information from the "Tornado Climatology of the United States" (NUREG/CR-4461 Rev. 2) published in February of 2007 are presented here. NUREG/CR-4461 Rev. 2 is an update to Rev. 1 that recalculated the tornado climatology using the EF scale for the time period of 1950 through August 2003. The relationship of the damage intensity to the tornado maximum wind speed in the new EF scale is as follows (Reference 2.7-30):

EF0	65-85 mph
EF1	86-110 mph
EF2	111-135 mph
EF3	136-165 mph
EF4	166-200 mph
EF5	201+ mph

The EF scale uses the fastest 3-second wind speeds as opposed to the fastest quarter mile wind speeds used in the original Fujita Scale. The result of this new methodology is lower DBT maximum wind speeds as shown in Table 1 of Regulatory Guide 1.76. NUREG/CR-4461 Rev. 2 also introduces a term to account for the finite dimensions of structures as well as the variation of wind speed along and across the tornado footprint. The seven DBT values deemed critical by Regulatory Guide 1.76 when designing nuclear facilities are as follows:

- Tornado Strike Probability
- Maximum Wind Speed
- Translational Speed
- Maximum Rotational Speed
- Radius of Maximum Rotational Speed
- Pressure Drop
- Rate of Pressure Drop

Tornado Strike Probability

NUREG/CR-4461 Rev. 2 divides the United States into 2-degree latitude/longitude boxes containing the number of tornado events reported from 1950 through August 2003. Figure 5-7 of NUREG/CR-4461 Rev. 2 shows that the Fermi site is located near the center of the 2-degree box bound between the 82 degree and 84 degree West longitudes and the 41 degree and 43 degree North latitudes. Adjacent 2-degree boxes to the west and southwest contain significantly higher numbers of tornado events. However, the 2-degree box that contains the Fermi site includes Lake

Saint Clair and western parts of Lake Erie, which may explain the decreased number of tornado events. In order to calculate the strike probability specifically for the Fermi site, a 2-degree latitude/longitude box centered on the location of the Fermi site was chosen to mirror the 2-degree box presented in NUREG/CR-4461 Rev. 2. A 2-degree box centered on the Fermi 3 reactor provides a conservative basis for calculating the probability of a tornado striking the Fermi site. Guidelines for calculating strike probability are presented in NUREG/CR-4461 Rev 2. Following the NUREG/CR-4461 Rev. 2 methodology, the strike probability for a point structure in any given year is given by:

$$P_p = A_t / NA_r$$

Where:

P_p= Tornado strike probability for a point structure per year, regardless of wind speed

A_t= Total area impacted by tornadoes within a region of interest in N years

N = Number of years of tornado record

 A_r = Area of the region of interest

The 2-degree latitude/longitude box is based on the centerline of the Fermi 3 reactor vessel. The 2-degree box encompasses 13 counties in Michigan, 17 counties in Ohio, and three counties in the Canadian Province of Ontario that are either fully or partially inside the box. The number of tornadoes occurring in the 2-degree box was obtained from the NCDC on-line storm database and Environment Canada database for the 54-year period of January 1, 1950 through December 31, 2003. As shown below, the number of tornadoes for each EF scale class is displayed. On average 9.83 tornadoes per year occurred in the 2-degree box based on the 531 tornadoes that were reported during the 54-year period (Reference 2.7-29 and Reference 2.7-32). The total area impacted by tornadoes in the 2 degree box, shown below, can be found by multiplying the number of tornadoes in each EF scale class by the expected values for tornado segment statistics in the central United States found in Table 2-10 of NUREG/CR-4461 Rev. 2.

	F0	F1	F2	F3	F4	F5	Total
Number of Tornadoes	172	193	120	26	19	1	531
Expected Value of Tornado Area (mi ²) ^(a)	0.0341	0.3374	1.1784	3.0857	4.7263	6.0152	
Total Tornado Area (mi ²)=A _t	587	65.12	141.41	80.23	89.80	6.02	388.43

a) From Table 2-10, NUREG/CR-4461, Rev. 2

The total area of the 2-degree box is calculated by summing the areas of Michigan, Ohio, and Canadian counties inside the 2-degree box. County areas provided from the U.S. Census Bureau and Canada's National Statistical Agency estimates a total area of 18,583.87 mi² (Reference 2.7-33 and Reference 2.7-34). Using a total tornado area of 388.43 mi² (A_t), a 2-degree box area of

18,583.87 mi² (A_r), and a time period of 54 years (N), the calculated strike probability (P_p) for the Fermi site becomes 3.87 X 10⁻⁴ or a recurrence interval of once every 2584 years.

In comparison, Table 5-1 in NUREG/CR-4461 Rev. 2 shows the calculated probability of a tornado striking any point in the central United States as 3.58 X 10⁻⁴ or a recurrence interval of once every 2793 years. The results demonstrate that the statistics for the 2-degree boxes centered on the Fermi site provide a more accurate estimate of the probability of a tornado striking the Fermi site rather than utilizing the generalized value for the central United States.

Regulatory Guide 1.76 defines DBT characteristics for nuclear power plants that have a tornado strike probability greater than 1.0 X10⁻⁷. The calculated Fermi site tornado strike probability of 3.87 X10⁻⁴ exceeds the above probability threshold which requires the Fermi 3 to meet the design requirements of Regulatory Guide 1.76. Table 1 from Regulatory Guide 1.76 presents the remaining six DBT characteristics for new reactors located in the United States whose tornado strike probabilities exceed the 1.0 X 10⁻⁷ threshold. According to Table 1, since the Fermi site is located in Region I, the DBT characteristics are as follows:

DBT Characteristics	Fermi site (a)		
Maximum wind speed (mph)	230		
Translational speed (mph)	46		
Maximum rotational speed (mph)	184		
Radius of maximum rotational speed (ft)	150		
Pressure drop (psi)	1.2		
Rate of pressure drop (psi/sec)	0.5		

a) From Table 1 of Regulatory Guide 1.76

2.7.3.4 **Hail**

A study authored by Joseph T. Schaefer estimates that the 1 x 1 degree box surrounding the Fermi site averages 16.5 reports of severe hail (hail diameter \geq 0.75 inches) per year (Reference 2.7-35). Schaefer's study examined hail reports from the period 1955-2002. In order to include the most recent five years, hail reports were obtained from the NCDC on line storm database for the Michigan Counties of Lenawee, Monroe, Washtenaw, Wayne, and the Ohio County of Lucas. The five-county area surrounding the Fermi site reported 576 severe hail events over a 53-year period of January 1, 1955 through December 31, 2007 producing an average of 10.9 occurrences of severe hail per year, which is somewhat lower than the findings by Schaefer (Reference 2.7-29). However, the total area of the five-counties is less than that of the 1 x 1 degree box used by Schaefer, and thereby explains the difference among the two estimates.

Out of the 576 severe hail reports, 87 were reported as large hail (hail diameter ≥ 1.75 inches) (Reference 2.7-29). The largest hail report was 4.00 inches, occurring in Wayne County on November 13, 1955 and Monroe County on March 27, 1991. Figure 2.7-2 shows the distribution of severe hail events for each month. The majority of hail events in the five-county area occur during the months of May, June, and July. During the 53 year period there were no reports of hail during the winter months of December and January. Figure 2.7-3 provides the distribution of hail events across each of the five counties. The counties surrounding Monroe County and the location of

Fermi 3 contain higher occurrences of severe hail events. While not all five counties may have been actively reporting severe hail events between 1955 and 1959, there was an average of 2.0 severe hail events reported per year in the five-county area during this period. By comparison between 1960 and 1979, a period when all five counties were included in the reporting of severe hail events, an average of 1.9 severe hail events per year were reported over the same five-county area for the period between 1960 and 1969 and an average of 2.2 severe hail events per year were reported over the same five-county area for the period between 1970 and 1979. The overall frequency of hail reports has steadily increased during the last few decades. It is reasonable to assume the increase may be explained by the improved technology of Doppler radars, cell phones, and the increased public awareness of reporting hail events (Reference 2.7-35).

2.7.3.5 **Ice Storms**

Freezing rain is defined as an accretion of ice resulting from liquid precipitation striking a frozen surface (e.g., tree branches or power lines) and freezing. Typically the liquid droplets are supercooled droplets falling through an air layer of sub-freezing temperatures, during their descent to the ground. The weight of the ice accretion on surface objects can become sufficient to cause damage to trees and power lines, as well as slow down or even halt transportation on ice covered roads and bridges. The surface air temperature during most freezing rain events typically ranges between 25°F and 32°F (Reference 2.7-36). Ice pellets are also a common occurrence at the Fermi site during wintertime storms. Ice pellets are created when a snowflake melts during its descent to the ground, but then refreezes as it falls through a sub-freezing air layer near the surface.

Frequency of Occurrence

Cortinas et al. analyzed freezing rain and ice pellets events for the Fermi region during the period 1976-1990 (Reference 2.7-37). In particular, freezing rain and ice pellet events are most common from December to March, although a few events have occurred in November and April. The Fermi site averages approximately 4-5 days per year when an observation of freezing rain has occurred, while ice pellets are reported four days per year.

Ice storm reports were obtained from the NCDC on-line storm database in order to estimate the frequency of occurrence and duration of freezing rain events at the Fermi site. A total of 24 freezing rain events were reported in the five-county area surrounding the Fermi site during the period 1993-2007 (Reference 2.7-29). Table 2.7-21 displays the dates of the freezing rain events and the reported accumulations. In some cases amounts of freezing rain amounted to only a trace or were not available from the storm data records. From the data the frequency of freezing rain events during the 15-year period is 1.6 events per year (24 events/15 years). The highest ice accumulation displayed in Table 2.7-21 occurred during March 13, 1997 when a major ice storm struck southeastern Michigan and deposited ice accumulations of 1.5-2.5 inches from Detroit to Ann Arbor and south to the Ohio-Michigan state line. A general search for ice storms in the five-county area prior to 1993 resulted in an ice storm producing a higher amount. During January 26-27, 1967 a storm produced freezing rain and sleet that lasted nearly 24 hours and ice accumulations of up to 3 inches across northwestern Ohio and parts of southern Michigan

(Reference 2.7-38). The Fermi site and surrounding region is characterized by frequent ice storms that have the potential of producing significant ice accumulations during the winter and early spring.

2.7.3.6 **Drought**

Monthly values of precipitation are nearly consistent throughout the year in the region surrounding the Fermi site; however, droughts do happen from time to time. A good way to analyze periods where droughts may have occurred is to analyze the extreme dry stretches over a period of time. In order to find the extreme dry periods, hourly precipitation data was analyzed for Detroit Metropolitan Airport during the period 1961-2007. During a stretch from June 17 through July 13, 1963 (644 hours or 26.8 days), the Detroit Metropolitan Airport recorded no measurable precipitation (Reference 2.7-39 through Reference 2.7-41). This was the longest dry stretch that occurred during the 1961-2007 time period. A useful tool that assesses the severity of drought conditions is the Palmer Drought Index (PDI) (Reference 2.7-42). According to an analysis performed by the NCDC, 10 extreme droughts (PDI values of less than -4.0) have occurred in Michigan between 1900 and February 2008 (Reference 2.7-43). One of the episodes of extreme drought corresponds with the longest dry stretch observed at Detroit Metropolitan Airport during June of 1963. Overall the frequency of extreme droughts has decreased since 1940.

2.7.4 Local Meteorology

Measurements from the Fermi onsite meteorological tower, located approximately one-quarter mile from the Fermi 3 reactor building, will be used in this section to characterize the local meteorology conditions at the Fermi site. The onsite meteorological tower (the details of which are contained in Section 6.4) collects wind speed, wind direction, dew-point temperature, precipitation, and the ambient temperature at the 10-meter and 60-meter levels. The meteorological monitoring system uses the vertical temperature difference (ΔT) between the 10- and 60-meter levels to compute the atmospheric stability. The hourly averages of wind speed and direction, as well as the estimated atmospheric stability collected from the onsite tower are archived in a digital format that meets the format described in Appendix A of Regulatory Guide 1.23. Hourly data from the most recent five years (2003 through 2007) was obtained in order to perform the analysis of the local meteorology of the Fermi site. Data recovery rates for all meteorological parameters collected at the Fermi onsite meteorological station are greater than 94 percent. Wet-bulb temperature, relative humidity, and the occurrence of fog and visibility are not collected at the Fermi onsite meteorological station; however, data from the nearby Detroit Metropolitan Airport has been used to supplement Fermi site data. Extreme values of temperature, rainfall, and snowfall have also been obtained for several COOP stations within a 50-mile radius of the Fermi site since those parameters are better representative from a regional perspective.

2.7.4.1 Normal, Mean, and Extreme Values

Regional normal, mean, and extreme values of temperature, wind, moisture and precipitation were discussed in Subsection 2.7.1.1. In order to demonstrate that the long-term data reported at the NWS first-order meteorological stations are representative of the Fermi site, this section provides a more comprehensive analysis of these parameters in comparison with the conditions at the Fermi site.

2.7.4.1.1 Temperature

Table 2.7-22 presents mean monthly and annual temperature for the 10- and 60-meter levels at the Fermi site, as well as the 10-meter temperature at Detroit Metropolitan Airport. In order to show the comparison of temperature at Detroit Metropolitan Airport and the Fermi site, temperature data is analyzed for a 5-year period during 2003 through 2007. From Table 2.7-22, it is apparent that while mean annual temperatures are comparable, the mean monthly values can be considerably different at the Fermi site. The reason they are different can be explained by comparing the locations of the two stations. The Fermi site is located along the shoreline of Lake Erie and experiences moderating effects resulting from the onshore and offshore lake breezes, the higher heat capaCity of the lake, and the wintertime lake ice cover. During the wintertime, Lake Erie generally becomes ice covered by the middle of December (Reference 2.7-8). During this period, the ice over Lake Erie shuts off the moderating effects of the water's higher heat content. As a result, the air over the lake fluctuates in temperature as land does and mean monthly temperatures for December, January, and February between the two stations are nearly identical. During the spring, the lake ice melts by the middle of March, but the water temperatures remain cold (Reference 2.7-8). This results in cooler temperatures at the Fermi site when compared to the farther inland Detroit Metropolitan Airport. As the lake water warms up during the summertime, the lake produces a moderating effect on temperatures due to its higher heat capacity, and temperature differences along the shoreline produce onshore and offshore lake breezes. As a result, monthly temperatures remain slightly cooler at the Fermi site in comparison with the Detroit Metropolitan Airport. Lake temperatures remain warm through the fall season and the heat capacity effect helps keep monthly temperatures warmer at the Fermi site. The mean monthly and annual temperatures for the Fermi site are slightly different than those for Detroit Metropolitan Airport due to the effects of being on the Lake Erie shoreline. However, these effects are small when comparing the overall closeness of the mean annual temperatures for the Fermi site and Detroit Metropolitan Airport. Therefore, the mean annual temperatures of the Detroit Metropolitan Airport are characteristic of the temperature conditions for the Fermi site for longer climatological periods.

Long-term climatological values of temperature for Detroit Metropolitan Airport are presented in Subsection 2.7.1.2.2 and summarized in Table 2.7-2 and Table 2.7-5. As shown in Table 2.7-2, the mean daily temperature for the 48-year period is 49.2°F. Mean daily maximum temperatures are highest in July (83.3°F) and lowest in January (31.0°F). Mean daily minimum temperatures are highest in July (62.1°F) and lowest in January (16.9°F). To illustrate the extreme maximum and minimum values of temperature which are characteristic of the Fermi site, hourly temperature data was analyzed for the first-order and COOP stations. Table 2.7-6 presents extreme values of temperature in the region surrounding the Fermi site. The table shows that temperatures have risen as high as 108°F and dropped as low as -26°F in the region surrounding the Fermi site. In general, the Fermi site is vulnerable to both extreme heat in the summer and arctic cold temperatures during the winter months.

2.7.4.1.2 Atmospheric Moisture

Subsection 2.7.1.2.3 discussed the long-term monthly and annual characteristics of dew-point, relative humidity, and wet-bulb temperature in the Fermi region. It also was discovered that the

magnitude of atmospheric moisture content for stations in the Fermi region is directly related to the latitude of the station and, to a smaller extent, the distance from the Lake Erie shoreline. This relationship indicates that moisture parameters at Detroit Metropolitan Airport, only 17 miles north-northwest from the Fermi site, are representative of the conditions at the Fermi site.

Atmospheric moisture content at the Fermi site is influenced by Lake Erie and the other Great Lakes. Table 2.7-2 provides annual and monthly values of relative humidity and wet-bulb temperature for Detroit Metropolitan Airport. The values in Table 2.7-2 can be used to describe the long-term characteristics of relative humidity and wet-bulb temperature at the Fermi site.

Table 2.7-23 contains annual and monthly summaries of dew-point temperature calculated from data obtained from the Fermi onsite meteorological tower for the time period 2003-2007. During the 5-year period the mean annual dew-point temperature for the Fermi site is 37.6°F. As would be expected, the mean monthly dew-point temperature values are highest during July and August (58.1°F) and lowest in February (15.7°F). Extreme values of dew-point temperature are also displayed in Table 2.7-23. The highest dew-point temperature measured at the Fermi site is 74.7°F corresponding with the summer season, while the lowest dew-point temperature of -21.8°F occurred during the winter season. The last column in Table 2.7-23 shows that mean monthly diurnal variations in dew-point vary the least during the summer and early fall when mean dew-point temperatures are the highest.

2.7.4.1.3 **Precipitation**

The Fermi onsite meteorological station measures rainfall and the liquid equivalent of snowfall on a daily basis. During the process of analyzing the Fermi site precipitation data, it was discovered that the precipitation sensor malfunctioned several times during the 2003-2007 period, resulting in much higher annual precipitation amounts than observed at surrounding observation stations. For this reason, precipitation records for Detroit Metropolitan Airport will be used in this section to describe the precipitation characteristics of the Fermi site. Detroit Metropolitan Airport is the nearest first-order station that has a long period-of-record for reporting precipitation. Normal annual and monthly rainfall values were discussed in Subsection 2.7.1.2.4 and summarized in Table 2.7-2 and Table 2.7-5. These tables indicate that the Fermi region is annually characterized as having consistent precipitation amounts during the year and routine wintertime snowfall. These values are reasonably uniform over the region as to indicate that these stations are representative of precipitation averages that would be observed at the site.

Maximum 24-Hour and Monthly Precipitation

Maximum 24-hour and monthly precipitation totals for the region are discussed in Subsection 2.7.1.2.4 and summarized in Table 2.7-6 for the NWS first-order and COOP stations presented in the Fermi region. The highest 24-hour precipitation amount is 6.04 inches, occurring during September 1950 at Flint (Reference 2.7-2). The highest monthly precipitation was also observed at Flint with an amount of 11.04 inches during August 1975. The maximum precipitation values are reasonably uniform across the area given that precipitation can be highly influenced by individual thunderstorms which can be local in nature hitting one station and not another. It is

therefore considered that the precipitation data are representative of precipitation extremes that might be observed at the site.

Total Hours of Precipitation and 1-Hour Precipitation Rate Distribution

Hourly precipitation data for Detroit Metropolitan Airport was obtained from the NCDC for the most recent 5-year time period (2003-2007) to identify the precipitation intensity frequencies in the region surrounding the Fermi site (Reference 2.7-44). Detroit Metropolitan Airport is the closest NWS first-order station that has reliable precipitation records and as discussed above is representative of the precipitation trends at the Fermi site. Table 2.7-24 presents the distribution of hourly precipitation amounts in various intensity categories for each month during the 2003-2007 timeframe. Precipitation was recorded approximately 15.95 percent of the time during the 5-year period. January has the highest occurrence of hourly precipitation while September has the lowest. This corresponds with the location of the mean track of surface low pressure systems, which is over the southeast Michigan during the winter and well north of the region during the summer and early fall seasons. Additionally, as expected, precipitation is most frequent in lighter intensity categories with the majority of hourly precipitation having accumulations less than 0.10 inches.

Precipitation Wind Roses

Monthly and annual precipitation roses for Detroit Metropolitan Airport were created to correlate hourly precipitation with wind direction for the Fermi region during the 2003-2007 timeframe and are presented in Figure 2.7-4 through Figure 2.7-16. A randomization scheme using EPA's computer program PCRAMMET was applied to the hourly wind direction data used to create the precipitation roses to eliminate the typical concentration toward the four cardinal directions (i.e., N, E, S, and W). As shown in Figure 2.7-4, annually, the majority of hourly precipitation events, regardless of intensity, occur when winds are from the east and east-northeast with secondary maximum occurring equally from the north and south directions. As can be seen in both Table 2.7-24 and Figure 2.7-4, a significant amount of the hourly precipitation events were less than 0.10 inches. In addition, it appears from the annual precipitation rose that winds from the southwest and south-southwest yield the highest percentage of hourly rainfall events with intensities greater than 0.50 inches.

Snowfall

Mean annual snowfall, as well as 24-hour snowfall and maximum monthly values were discussed in Subsection 2.7.1.2.4. Table 2.7-5 and Table 2.7-6 present climatological normal and extreme values of snowfall, respectively, for the first-order and COOP stations in the region of the Fermi site. As indicated in these tables, annual amounts of snow vary greatly amongst the stations, and the region is characterized by heavy snow events. The highest 24-hour snowfall is 24.5 inches at the Detroit City Airport located north-northeast of the Fermi site, occurring during April 1886 (Reference 2.7-11). The highest 2- and 3-day and maximum monthly snowfall is 22.7 inches and 58.5 inches, respectively, which occurred at Flint and Ann Arbor, respectively (Reference 2.7-10 and Reference 2.5-16).

2.7.4.1.4 Fog and Heavy Fog

Fog

Fog is reported at NWS first-order stations when the horizontal visibility is less than or equal to 6 miles and the difference between the temperature and dew-point is 5°F or less. Detroit Metropolitan Airport is the nearest NWS station that routinely observes visibility and fog. Detroit Metropolitan Airport is located 17 miles north-northwest of the Fermi site and has a similar elevation and relative proximity to Lake Erie. Table 2.7-25 displays the mean annual, mean monthly, and frequency of hours that reported fog during the period 1961-1995 (Reference 2.7-39 and Reference 2.7-40). On an annual basis, fog occurs 12.7 percent of the hours during a calendar year (1112 hours). The highest monthly averages occur during November and December when 14.8 percent (107 hours) and 17.4 percent (130 hours) of total monthly hours, respectively, report fog. Fog is least frequent during June and July when fog only occurs 65 and 69 hours per month, respectively.

Heavy Fog

Mean annual and monthly values of hours with heavy fog, as well as frequency of hours of heavy fog are presented in Table 2.7-25. Heavy fog is defined as a horizontal visibility less than or equal to 0.25 miles. Annually, Detroit Metropolitan Airport averages 60.2 hours per year where heavy fog is reported. Heavy fog most frequently occurs December through March when 8 to 11 hours per month report heavy fog. During April through July, heavy fog is least likely to occur since only 1 to 2 hours each month report heavy fog.

2.7.4.2 Wind Direction and Wind Speeds

Wind direction and speed are two of the main components that define the dispersion characteristics of a site. Wind speed and direction can be classified on macro, synoptic, meso, or micro spatial scales. Macro and synoptic scales typically cover areas of 40 to 4,000 mi² (100 to 10,000 km²). The influences on these two scales include features such as oceans and other large bodies of water, continents, and mountain ranges.

Meso and micro scale features better represent the general wind characteristics of the Fermi site and surrounding region. Meso-scale features typically cover areas of 0.4 to 40 mi² (1 to 100 km²) and are influenced by such things as local vegetation and river valleys. Micro-scale features are spatially 0.4 mi² (1 km²) or less and include the proximity of the Fermi onsite meteorological tower to the Fermi 3 cooling tower, Lake Erie, and general site specific land use characteristics of the immediate location.

The influence of these smaller scale features may be seen by evaluating local wind data both at the Fermi site and the nearby Detroit Metropolitan Airport. Table 2.7-26 presents the mean monthly and annual wind speeds at the Fermi site and Detroit Metropolitan Airport. The mean annual wind speed for the 10- and 60-meter level at the Fermi site is 6.57 mph and 12.74 mph, respectively. The mean annual wind speed at Detroit Metropolitan Airport is 8.75 mph at the 10-meter level (Reference 2.7-41). The difference in the wind speeds between Detroit Metropolitan Airport and the 10-meter level at the Fermi site can be explained by the macro and micro-scale features such as

the land use characteristics of the site. Detroit Metropolitan Airport lies in a suburban area of Detroit that is relatively flat and provides a broad sample of prevailing wind direction and speed of the region. The Fermi site is located along the western shoreline of Lake Erie and is influenced by onshore and offshore lake breezes, which can have the effect of altering the wind speed and direction at the Fermi site when compared to stations further inland. Furthermore, the meteorological tower is located east of a grove of trees that is located less than ten times the obstruction height recommended in Regulatory Guide 1.23. The potential impact of the trees, for upwind sectors (i.e., west-southwest clockwise to north-northwest sectors), is to reduce the indicated wind speed at the 10 meter elevation, especially when the frequency of winds from upwind sectors is the highest. This occurs during late fall, winter, and early spring months when the jet stream is located over southeastern Michigan, which coincides with the largest difference of wind speeds at the 10 meter elevation between the Fermi site and Detroit Metropolitan Airport. Wind speeds at the 60-meter level are considerably higher than wind speeds at the 10-meter level for the Fermi site and Detroit Metropolitan Airport. This can be attributed to the higher exposure height of the instrument which measures wind speeds that are less reduced by the frictional effect of the earth's surface.

Wind Roses-Detroit Metropolitan Airport

Figure 2.7-17 through Figure 2.7-29 contain the 10-meter annual and monthly wind roses presenting the distribution of wind speed at 22.5 degree intervals for Detroit Metropolitan Airport during the 5-year period of 2003-2007 (Reference 2.7-41). A randomization scheme using EPA's computer program PCRAMMET was applied to the hourly wind direction data used to create the precipitation roses to eliminate the typical concentration toward the four cardinal directions (i.e., N, E, S, and W).

The annual wind rose plot in Figure 2.7-17 shows that winds at Detroit Metropolitan Airport predominantly blow from southwesterly directions. According to the annual 2006 LCD, the prevailing wind direction for Detroit Metropolitan Airport is from 240 degrees (west-southwesterly) (Reference 2.7-1). Monthly wind roses for Detroit Metropolitan Airport are presented in Figure 2.7-18 to Figure 2.7-29. The transition is apparent from dominant northwesterly and northerly winds during the spring months to southwesterly wind directions during the summer through fall months as the Bermuda High develops over the southeast United States and the mean track of surface low pressure systems shifts north of the Fermi region. During May through September, the number of calm hours increase and the wind directions often become light and variable, corresponding with the months having the highest number of air stagnation episodes (Reference 2.7-22). Detroit Metropolitan Airport considers calm hours as those with wind speeds less than three knots. As the mean track of surface low pressure systems begins to move south and closer to southeastern Michigan during late the fall and winter, northwesterly and westerly wind directions become more frequent.

Wind Roses-Fermi 10-meter Level

Annual and monthly wind roses for the 10-meter level at the Fermi site are depicted in Figure 2.7-30 through Figure 2.7-42. These figures show wind speeds and directions at 22.5 degree intervals by direction at the Fermi site for the 2003 through 2007 time period.

Figure 2.7-30 indicates that annually winds are southwesterly most often, occurring approximately 10 percent of the time. Winds with a northwesterly component are the second most common direction for the 10-meter level at the Fermi site. Apparent is the increase of easterly and southeasterly winds annually at the Fermi site when compared to Detroit Metropolitan Airport at the same level. During the spring, summer, and early fall, onshore lake breezes occur frequently at the Fermi site. The breezes form as air temperatures over land heat up faster than the air above the waters of Lake Erie. By afternoon a sharp temperature difference forms along the shoreline and a wind circulation develops that produces easterly through southeasterly winds at the Fermi site. Onshore lake breezes can also increase wind speeds along the shoreline, while inland stations are experiencing lighter winds. Also noticeable on the annual wind rose for the Fermi 10-meter level are the high occurrence of winds less than four knots. The wind roses for the Fermi site consider calm hours as those with wind speeds less than 1 knot, partially explaining the large drop in percentage when compared to annual calm hours at Detroit Metropolitan Airport. Furthermore, the meteorological tower is located east of a grove of trees that is located less than ten times the obstruction height recommended in Regulatory Guide 1.23. The potential impact of the trees, for upwind sectors (i.e., westsouthwest clockwise to north-northwest sectors), is to reduce the indicated wind speed at the 10 meter elevation. Figure 2.7-31 through Figure 2.7-42 present the monthly wind roses for the 10-meter level at the Fermi site. In general, the dominant wind patterns for each month at the Fermi site are very similar to those for the Detroit Metropolitan Airport. However, the tables for March through October at the Fermi site 10-meter level show the increase in easterly through southeasterly wind directions that are a result of onshore lake breezes.

Wind Roses-Fermi 60-meter Level

Figure 2.7-43 presents the annual wind rose at the 60-meter level for the Fermi site. Apparent is the similarity of the Fermi site 60-meter annual wind rose for the Detroit Metropolitan Airport 10-meter level. East through southeast winds remain higher at the Fermi site in comparison to Detroit Metropolitan Airport due to the occurrence of the onshore lake breeze. The wind speeds, as expected, are somewhat higher at all directions as compared to the lower 10-meter tower since the higher level can capture wind speeds that are less affected by the frictional effects of the earth's surface. Monthly wind roses for the 60-meter level are represented by Figure 2.7-44 through Figure 2.7-55. As expected, wind speeds become somewhat lighter during from May to September, as the Bermuda High over the southeast United States influences the region. During the late spring and summer months, the onshore lake breezes produce the easterly through southeasterly winds. As the normal daytime temperatures begin to become cooler during September and October, the waters of Lake Erie remain relatively warm, creating a strong temperature gradient along the coastline. As explained earlier, a wind circulation develops; however, since the air above Lake Erie is warmer, winds blow from the land towards the water. The monthly wind roses for September and October indicate the presence of the offshore winds with a

higher frequency of west and west-northwest winds. By mid-December the temperatures of the lake reach freezing temperatures and ice forms, ending the possibility of offshore winds. The minor differences of the wind direction and speed due to the land and lake breezes shown in the 10- and 60-meter wind roses and the similarity of the dominant wind directions across the region indicate that the wind conditions described in this section accurately depict the diffusion conditions for the Fermi site.

2.7.4.3 Wind Persistence

Persistence of wind direction is a measurement of the duration of the transport of air from a specific direction to locations downwind. It reflects the possible amount of time that radioactive contamination or any other type of pollution may travel in the same or a similar direction. The dilution potential of the pollutant as it moves downstream of its source is directly proportional to wind speed. Higher wind speeds lead to increased dilution while lower wind speeds create less dilution.

Table 2.7-27 through Table 2.7-50 show the persistence of wind direction and speed at both the 10-meter and 60-meter tower levels, respectively, for 22.5 degree (single) and 67.5 degree (three adjoining) wind sector widths for various wind speeds at the Fermi site during the 5-year period of 2003 through 2007. The longest recorded single sector persistence was from the north and southwest (31 hours) for the 10-meter level and from the west-southwest direction (36 hours) for the 60-meter level. For three adjoining sectors, the 10-meter level and 60-meter level recorded the longest persistence from the west-southwest (158 hours). Tables containing summaries of wind persistence for all wind speeds and at both the 10- and 60-meter levels indicate that winds are most likely to be persistent from the southwest direction for single sector widths and from the west-southwest for three adjoining sector widths. In addition, the final row in the tables displays the average persistent hours for each wind direction and provides a method for determining which direction winds are most likely to persist longer. For the 10-meter level, the wind is most likely to persist longer from the south-southwest and southwest directions for single and three adjoining sector widths, respectively. A persistent wind is most likely to last longer at the 60-meter level for west-southwest and southwest wind directions for single sector and three adjoining sector widths, respectively.

Table 2.7-51 through Table 2.7-62 present the persistence of wind direction and speed at the 10-meter level for the single sector and three adjoining sectors for various wind speeds at Detroit Metropolitan Airport during the 2003 through 2007 time period (Reference 2.7-41). At the 10-meter level (the only level at Detroit Metropolitan Airport), the longest persistent wind blew from the north-northwest and lasted 24 hours for a single sector. For three adjoining sectors the longest persistent wind lasted 67 hours from the southwest. Table 2.7-51 and Table 2.7-57 present wind persistence summaries for all wind speeds for the single sector and three adjoining sector widths, respectively. The most likely direction for a wind to be persistent for both single and three adjoining sector widths is south. Wind is most likely to persist longer when blowing from the north and north-northeast for single and three adjoining sector widths, respectively. Previously in Subsection 2.7.4.2 the noticeable increase of east through southeast winds at the Fermi site was discussed and attributed to the onshore lake breeze that develops during the spring and summer

seasons. The wind persistence summaries indicate that for those directions the Fermi site experiences a higher percentage of persistent wind occurrences than the Detroit Metropolitan Airport. Furthermore, when winds are persistent from the east through southeast directions they continue for longer hours at the Fermi site.

2.7.4.4 Atmospheric Stability

Atmospheric diffusion, independent of the effects of wind speed, is proportional to the stability of the atmosphere and has a large impact on potential vertical and horizontal dispersion of radioactive contamination or any other type of pollutant in the ambient air. Atmospheric stability can generally be classified as unstable, neutral, and stable. During stable conditions, diffusion is at its lowest levels while under unstable conditions diffusion is at its highest levels. Pasquill-Gifford developed seven categories measuring atmospheric stability that are accepted and used by the NRC. The various categories can be determined by the difference in temperature (ΔT) between two temperature measurement levels normalized to 100 meters. As defined in Regulatory Guide 1.23, the following categories of atmospheric stability reflect the ΔT in degrees Celsius per 100 meters.

Extremely Unstable	ΔT/ΔZ ≤ -1.9
Moderately Unstable	-1.9 < ΔT/ΔZ ≤ -1.7
Slightly Unstable	$-1.7 < \Delta T/\Delta Z \le -1.5$
Neutral Stability	$-1.5 < \Delta T/\Delta Z \le -0.5$
Slightly Stable	$-0.5 < \Delta T/\Delta Z \le +1.5$
Moderately Stable	$+1.5 < \Delta T/\Delta Z \le +4.0$
Extremely Stable	$+4.0 < \Delta T/\Delta Z$
	Slightly Unstable Neutral Stability Slightly Stable Moderately Stable

Table 2.7-63 presents mean annual and monthly wind speeds for the 60-meter level at the Fermi site for each of the Pasquill-Gifford stability categories. Annually the mean wind speeds are highest when the stability at the Fermi site is neutral, while mean wind speeds are the lowest under extremely stable conditions, characteristic of high pressure systems. Table 2.7-63 also contains the annual and monthly distribution of stability categories. The Fermi site experienced neutral and slightly stable conditions approximately 56 percent of the total number of hours during the 5-year period. Unstable conditions (Classes A, B, and C combined) occurred approximately 30 percent of the total hours.

Table 2.7-64 through Table 2.7-79 present the annual Joint Frequency Distributions (JFD) of wind speed and direction by stability category at the 10- and 60-meter levels of the Fermi onsite meteorological tower for the 2003 through 2007 time period. It is noticeable from the JFD for the 10-meter level that for stable conditions (Classes E, F, and G) the observations with wind speeds less than 4 mph occur most frequently, implying that stable conditions generally are associated with light winds. Tables for the 60-meter level suggest that for stable conditions wind speeds are most frequently 8-13 mph, which can be explained by the fact that the 60-meter level wind speeds are less affected by the friction of the earth's surface. For unstable conditions (Classes A, B, and C), there is more variance in the wind speeds categories at both the 10- and 60-meter levels, inferring that unstable conditions are associated with many wind speeds. Therefore, the stability summaries for the 10- and 60-meter levels indicate the air dispersion conditions that can be expected at the Fermi site during accidental and routine radiation releases for different stability scenarios.

2.7.5 Topographical Description and Potential Modifications

The impacts resulting from modification of the local topography during construction of Fermi 3 on the local meteorological characteristics are expected to be minor. These impacts will be limited to the construction of a natural draft cooling tower (NDCT) and 4-cell mechanical draft cooling tower (MDCT), as well as the reactor building and other plant structures. This section will discuss the regional topography and the estimated extent of the impacts of the construction of a new facility on the meteorological parameters at the Fermi site.

Regional Topography

The Fermi site is located in the northeastern part of Monroe County and along the western shoreline of Lake Erie. Figure 2.7-56 and Figure 2.7-57 show topographic features within five and 50 miles, respectively, of the Fermi site. The terrain in the region of the Fermi site is mainly flat plains that gently slope to higher elevation west and northwest of the Fermi site. Approximately 30 miles west and northwest of the Fermi site are the Irish Hills which contain elevations as high as 1146 feet above mean sea level. The Fermi site is relatively flat and has a general elevation of approximately 583 feet. Figure 2.7-58 shows the terrain elevation profiles for each of the sixteen 22.5 degree compass directions to a distance of five miles from the site. The waters of Lake Erie are approximately 1526 feet east of the Fermi 3 reactor building. Figure 2.7-58 presents similar terrain profiles out to 50 miles from the Fermi site.

Estimated Impacts of Facility Construction

Construction activities for Fermi 3 are not expected to impact the local climate of the site significantly. Fermi 3 will be located southwest of the Fermi 2 reactor building. Fermi 3 will be located in the southwest portion of the Fermi site that is already cleared of trees and may only require minor additional grading. Any influence of the grading on the micro-scale climate will be minimal during construction and will be limited to the Fermi 3 site and the immediate surrounding area. This will lead to minimal change in the overall topography around the Fermi site, and thus will not represent a significant alteration to the flat and gently sloping topographic character of the area and region around the site. Additionally, construction of new roads to accommodate the construction traffic for the new facility and the addition of buildings, parking areas and other structures should have little to no effect on the local meteorology of the site.

2.7.6 Atmospheric Dispersion Factors

This section discusses the determination of atmospheric dispersion factors at various locations. The section discusses the models used, various inputs, and the results.

2.7.6.1 Short-Term (Accident) Diffusion Estimates

Basis

To evaluate potential health effects of design basis accidents at Fermi 3, a hypothetical accident is postulated to predict upper-limit concentrations and doses that might occur in the event of a containment release to the atmosphere. To evaluate the effects of design basis accidents, Section 7.1 of NUREG-1555, Environmental Standard Review Plan, Standard Review Plans for

Environmental Reviews for Nuclear Power Plants, October 1999 (NUREG-1555), specifically requires the applicant to account for the 50-percentile X/Q values at appropriate distances from the release points of effluents to the atmosphere. Site-specific meteorological data covering the 6-year period of record from 2002 through 2007 was used to quantitatively evaluate such a hypothetical accident at the site. Onsite data provides representative measurements of local dispersion conditions appropriate to the Fermi site and a 6-year period of record is considered to be reasonably representative of long-term conditions. The meteorological tower is located east of a grove of trees that is located less than ten times the obstruction height recommended in Regulatory Guide 1.23. The impact of the trees, for upwind sectors, is to reduce the indicated wind speed at the 10 meter elevation. For determination of the atmospheric dispersion factors used in the analysis of off-site design basis accident (PAVAN) using the lower indicated wind speed provides conservative results.

According to 10 CFR 100, it is necessary to consider the doses for various time periods immediately following the onset of a postulated containment release at the Exclusion Area Boundary (EAB) and for the duration of exposure for the Low Population Zone (LPZ). Meteorological data has been used to determine various postulated accident conditions as specified in NRC Regulatory Guide 1.145, "Atmospheric Dispersion Models for Potential Accident Consequence Assessments at Nuclear Power Plants." Compared to a stack release, a ground-level release usually results in higher ground-level concentrations at downwind receptors because of less dilution from shorter traveling distances. Since the ground-level release scenario provides a bounding case, stack releases are not considered.

The PAVAN computer program as described in NUREG/CR-2858 (Reference 2.7-45), is used to estimate downwind ground-level air concentrations (X/Q) at the EAB and LPZ for potential accidental releases of radioactive material to the atmosphere. The X/Q values are estimated for various time periods ranging up to 30 days. This assessment is required by 10 CFR 100.

The EAB for Fermi 3, shown in Figure 2.1-3 and Figure 2.1-4, is a circle centered at the Reactor Building with a radius of 2928 feet (892 m). The LPZ for Fermi 3 is a 3-mile (4828-m) radius circle centered at the Reactor Building. For the purposes of determining X/Q values and subsequent radiation dose analyses, an effective EAB and LPZ are determined. These are referred to as the Dose Calculation EAB and the Dose Calculation LPZ. A circle is drawn from the center of the Reactor Building that encompasses the postulated design basis accident release locations. The Dose calculation EAB and LPZ are defined as the distance between this circle and the EAB. The Dose Calculation EAB is completely within the actual plant EAB; thus, the X/Q values are higher.

The PAVAN program implements the guidance provided in Regulatory Guide 1.145. Mainly, the program computes X/Q values at the EAB and LPZ for each combination of wind speed and atmospheric stability class for each of 16 downwind direction sectors (i.e., north, north-northeast, northeast, etc.). The X/Q values calculated for each direction sector are then ranked in descending order, and an associated cumulative frequency distribution is derived based on the frequency distribution of wind speeds and stabilities for the complementary upwind direction sector.

The calculated X/Q values are also ranked independently of wind direction into a cumulative frequency distribution for the entire site. The PAVAN program then selects the X/Qs that are equaled or exceeded 5 percent of the total time.

The PAVAN program conservatively has been configured to calculate offsite X/Q values assuming no credit for building wake effects.

The PAVAN program input data and assumptions are presented below:

- Meteorological data: 6-year (2002-2007) composite onsite joint frequency distributions of wind speed, wind direction, and atmospheric stability.
- Type of release: Ground-level
- Wind sensor height: 10 meters
- Vertical temperature difference: between 10 m to 60 m
- Number of wind speed categories: 14
- Release height: 10 meters (default height)
- Distances from release point to Dose Calculation EAB for all downwind sectors: 740 meters
- Distances from release point to Dose Calculation LPZ for all downwind sectors: 4670 meters

PAVAN Modeling Results

Based on the upper envelope of the ordered 5-percent overall site limit X/Q values as calculated by the PAVAN model, the 50-percentile overall site (i.e., non-direction specific) X/Qs at the Dose Calculation EAB and LPZ are estimated to be $5.675E-05 \text{ sec/m}^3$ and $4.026E-06 \text{ sec/m}^3$, respectively. This model predicted X/Q values represent a 0- to 2-hour time interval. The LPZ X/Q values for intermediate time periods (i.e., 8 hours, 16 hours, 72 hours, and 624 hours) were determined by logarithmic interpolation between the 50-percential 0- to 2-hour X/Q value at the Dose Calculation LPZ and the corresponding annual average X/Qs. These results, along with the 50-percentile, 0- to 2-hour and the annual average X/Qs values, are summarized below:

Location	0-2 hours X/Q (sec/m ³)	0-8 hours X/Q (sec/m ³)	8-24 hours X/Q (sec/m ³)	1-4 days X/Q (sec/m ³)	4-30 days X/Q (sec/m ³)	Annual Average X/Q (sec/m ³)
Dose Calculation EAB	5.675E-05					4.09E-05
Dose Calculation LPZ	4.026E-06	3.057E-06	2.664E-06	1.977E-06	1.287E-06	7.62E-07

2.7.6.2 Long-Term (Routine) Diffusion Estimates

Basis

The NRC-sponsored XOQDOQ computer program, as described in NUREG/CR-2919 (Reference 2.7-47), is used to estimate X/Q values due to routine releases of gaseous effluents to the atmosphere. The XOQDOQ program has the primary function of calculating annual average X/Q values and annual average relative deposition (D/Q) values at receptors of interest (e.g., at the site boundary and at the nearest residence, vegetable garden, etc.). The X/Q and D/Q values due to intermittent releases, which occur during routine operation, may also be evaluated using the XOQDOQ program.

The XOQDOQ program implements the assumptions outlined in Regulatory Guide 1.111. The program assumes that the material released to the atmosphere follows a Gaussian distribution around the plume centerline. In estimating concentrations for longer time periods, the Gaussian distribution is assumed to be evenly distributed within a given directional sector. A straight-line trajectory is assumed between the release point and all receptors.

The XOQDOQ program input data and assumptions are presented below:

- Meteorological data: 6-year (2002-2007) and 5-year (1985-1989) composite onsite joint frequency distributions of wind speed, wind direction, and atmospheric stability. The meteorological tower is located east of a grove of trees that is located less than ten times the obstruction height recommended in Regulatory Guide 1.23. The impact of the trees, for upwind sectors, is to reduce the indicated wind speed at the 10 meter elevation. For determination of the atmospheric dispersion factors used in the analysis of offsite routine releases the XOQDOQ program was run for both the 2002-2007 and 1985-1989 met data and both sets of results are reported.
- Type of release: Ground-level (Radwaste Building stack); mixed-mode (Reactor Building/Fuel Building and Turbine Building stacks)
- Wind sensor height: 10 meters
- Vertical temperature difference: between 10 m to 60 m
- Number of wind speed categories: 14
- Release height: 10 meters (default height) for ground-level release; 52.77 m for Reactor Building/Fuel Building stack (mixed-mode); 71.30 m for Turbine Building stack (mixed-mode)
- Building area: 350 m² for ground-level release, conservatively set to zero to neglect the building wake credit for the mixed-mode releases
- Adjacent building height: N/A for ground-level release; 48.20 m for Reactor Building/Fuel
 Building stack (mixed-mode); 52.0 m for Turbine Building stack (mixed-mode)
- Average Vent Velocity: N/A for ground-level release; 17.78 m/s for Reactor Building/Fuel Building stack (mixed-mode); 17.78 m/s for Turbine Building stack (mixed-mode)

- Inside Vent Diameter: N/A for ground-level release; 2.40 m for Reactor Building/Fuel Building stack (mixed-mode); 1.95 m for Turbine Building stack (mixed-mode)
- Distances from release point to site boundary, nearest residence, nearest garden, nearest sheep, nearest goat, nearest meat cow, and nearest milk cow for all downwind sectors
- Dry deposition is considered for all releases
- Continuous release is assumed
- · Site and regional topography are included

As discussed in Regulatory Guide 1.111, Section C.3.c, for long term averages, dose calculations considering dry deposition only are not usually changed significantly by consideration of wet deposition. The effects of wet deposition would be considered for sites that have a well-defined rainy season corresponding to the grazing season. Based on examination of the meteorological data, the precipitation at the Fermi site is spread through-out the year, thus dry deposition is appropriate.

The distances from the release point to the site boundary, nearest residence, garden, sheep, goat, meat cow, and milk cow receptors in each downwind sector are presented in Table 2.7-80 through Table 2.7-86.

XOQDOQ Modeling Results

Table 2.7-87 through Table 2.7-95 and Table 2.7-120 through Table 2.7-140 and Tables Table 2.7-108 through Table 2.7-119 summarize the maximum relative concentration and relative deposition (i.e., X/Q and D/Q) values predicted by the XOQDOQ program for the site boundary and the identified receptors in the Fermi 3 area due to routine releases of gaseous effluents assuming a ground-level release from the Radwaste Building stack and mixed-mode releases from the Reactor Building/Fuel Building stack and the Turbine Building stack. Distances to the receptors are shown in Tables 2.7-80 through 2.7-86 and are determined from a circle that encompasses the possible release locations. The listed X/Q values reflect several plume depletion scenarios that account for radioactive decay (i.e., no decay, and the default half-life decay periods of 2.26 and 8 days). In Table 2.7-87 through Table 2.7-95 and Table 2.7-108 through Table 2.7-119, X/Q and D/Q values are presented for those sectors identified in Table 2.7-80 through Table 2.7-86. Tables Table 2.7-120 through Table 2.7-140 provide corresponding results based on the 1985-1989 met data.

Table 2.7-96 through Table 2.7-107 summarize annual average X/Q values (no decay and undepleted; 2.26 day decayed and undepleted; 8 day decayed and depleted) and D/Q values for the XOQDOQ program's 22 standard radial distances between 0.25 and 50 miles and for the program's 10 distance-segment boundaries between 0.5 and 50 miles downwind along each of the 16 standard direction radials (i.e., separated by 22.5°) based on the 2002-2007 met data. Table 2.7-141 through Table 2.7-152 provide similar results based on the 1985-1989 met data.

Fermi 3 is located on the shore of Lake Erie and a portion of the effluent could be transported across Lake Erie prior to reaching populations. Trajectories over extensive water surfaces could

result in larger atmospheric diffusion rates (i.e., decreased dispersion) when compared to over land trajectories due to differences in surface roughness and static stability (Reference 2.7-48). To account for this decreased dispersion, the stability classifications for the met data for the upwind sectors were adjusted to the next higher stability classification. For example, for upwind sectors, the hours in stability class A were moved to stability class B and so forth. The annual average X/Q results are based on the Joint Frequency Distributions based on these stability adjustments.

2.7.7 References

- 2.7-1 National Climatic Data Center (NCDC), "2006 Local Climatological Data Annual Summary with Comparative Data for Detroit Metropolitan Airport," January 2007.
- 2.7-2 National Climatic Data Center (NCDC), "2006 Local Climatological Data Annual Summary with Comparative Data for Flint, Michigan," January 2007.
- 2.7-3 National Climatic Data Center (NCDC), "2006 Local Climatological Data Annual Summary with Comparative Data for Toledo, Ohio," January 2007.
- 2.7-4 National Climatic Data Center (NCDC), "Climatography of the United States No. 20 for Monroe, Michigan 1971-2000," February 2004.
- 2.7-5 Environment Canada, "Canadian Climate Normals 1971-2000 for Windsor, Ontario," (25 February 2004), http://www.climate.weatheroffice.ec.gc.ca/climate_normals/results_e.html?Province=ALL &StationName=windsor&SearchType=BeginsWith&LocateBy=Province&Proximity=25&ProximityFrom=City&StationNumber=&IDType=MSC&CityName=&ParkName=&LatitudeDegrees=&LatitudeMinutes=&LongitudeDegrees=&LongitudeMinutes=&NormalsClass=A&SelNormals=&StnId=4716&, accessed 2 July 2008.
- 2.7-6 National Climatic Data Center (NCDC), "Climatography of the United States No. 20 for Ann Arbor (University of Michigan), Michigan 1971-2000," February 2004.
- 2.7-7 National Climatic Data Center (NCDC), "Climatography of the United States No. 20 for Adrian (2 NNE), Michigan 1971-2000," February 2004.
- 2.7-8 Assel, R.A., "Lake Erie Ice Cover Climatology-Basin Averaged Ice Cover: Winters 1898-2002," NOAA Technical Memorandum GLERL-128, Great Lakes Environmental Research Laboratory, Ann Arbor, Michigan, May 2004.
- 2.7-9 Climate Prediction Center (CPC), "Storm Track Climatology," (2002), http://www.cpc.noaa.gov/products/precip/CWlink/stormtracks/strack_NH.shtml, accessed 3 April 2008.
- 2.7-10 National Climatic Data Center (NCDC), "DS 3200-Surface Summary of the Day for Monroe, Ann Arbor (University of Michigan), and Adrian (2 NNE)-1880-2007," February 2008.

- 2.7-11 National Climatic Data Center (NCDC), "1981 Local Climatological Data Annual Summary with Comparative Data for Detroit City Airport," January 1982.
- 2.7-12 National Climatic Data Center (NCDC), "1967 Local Climatological Data Annual Summary with Comparative Data for Willow Run Airport," January 1968.
- 2.7-13 National Climatic Data Center (NCDC), "1954 Local Climatological Data Annual Summary with Comparative Data for Toledo, Ohio," January 1955.
- 2.7-14 National Climatic Data Center (NCDC), "Climatography of the United States No. 20 for Grosse Pointe Farms, Michigan 1971-2000," February 2004.
- 2.7-15 National Climatic Data Center (NCDC) Storm Data, "Michigan and Ohio, Record 1-Day, 2-Day and 3-Day Snowfall," (2007), http://www.ncdc.noaa.gov/ussc, accessed 3 April 2008.
- 2.7-16 National Climatic Data Center (NCDC), "Online Climate Atlas of the United States," (2005), http://gis.ncdc.noaa.gov/website/ims-climatls/index.html, accessed 3 April 2008.
- 2.7-17 U.S. Environmental Protection Agency (USEPA), "US EPA Green Book," (2008), http://www.epa.gov/air/oaqps/greenbk/, accessed 4 January 2010.
- 2.7-18 U.S. Environmental Protection Agency (USEPA), "National Ambient Air Quality Standards," (28 March 2008), http://www.epa.gov/air/criteria.html, accessed 1 April 2008.
- 2.7-19 Michigan Department of Environmental (MDEQ), "Michigan's 2005 Annual Air Quality Report," (August 2006), http://www.michigan.gov/deq/0,1607,7-135-3310_4195-79055--,00.html, accessed 3 April 2008.
- 2.7-20 Michigan Department of Environmental (MDEQ), "Summary of the Highest 8-hr Ozone Values for [2003-2007]," (2008), http://www.deq.state.mi.us/documents/deq-aqd-mm-ozone-8hrhighestprevious.pdf, accessed 3 April 2008.
- 2.7-21 National Park Service (NPS), "Class I Receptors, National Park Service Database," (2007), http://www2.nature.nps.gov/air/Maps/Receptors/index.cfm/, accessed 3 April 2008.
- 2.7-22 Wang, J.X.L., and J.K. Angell, "Air Stagnation Climatology for the United States (1948-1998)," NOAA/Air Resources Laboratory ATLAS No. 1, (April 1999), http://www.arl.noaa.gov/pubs/online/atlas.pdf, accessed 3 April 2008.
- 2.7-23 Holzworth, G.C., "Mixing Heights, Wind Speeds, and Potential for Urban Air Pollution Throughout the Contiguous United States," U.S. Environmental Protection Agency, Publication No. AP-101, January 1972.

- 2.7-24 National Climatic Data Center (NCDC), "Mixing height data for White Lake, Michigan, January 2003 through December 2007."
- 2.7-25 United States Department of Agriculture (USGA), "Rural Utilities Service," Summary of Items of Engineering Interest, (August 1998), http://www.usda.gov/rus/electric/engineering/en-in-98.pdf, accessed 3 April 2008.
- 2.7-26 National Weather Service (NWS), "5-year Flash Density Map-U.S.," (2001), http://www.lightningsafety.noaa.gov/lightning_map.htm, accessed 3 April 2008.
- 2.7-27 American Society of Civil Engineers (ASCE) and Structural Engineering Institute (SEI), "Minimum Design Loads for Buildings and other Structures," SEI/ASCE 7-05, Revision of ASCE 7-02, pages 25-26 and 323-356, 2006.
- 2.7-28 National Climatic Data Center (NCDC), "Summary for Detroit Metropolitan Airport," Engineering Weather Data, 2000 Interactive Edition, Version 1.0, [CD-ROM], 2001.
- 2.7-29 National Climatic Data Center (NCDC), "NCDC On-Line Storm Events Database," (March 2007), http://www4.ncdc.noaa.gov/cgi-win/wwcgi.dll?wwEvent~Storms, accessed 1 August 2008.
- 2.7-30 Texas Tech University, "Enhanced Fujita Scale (EF-Scale)," Wind Science and Engineering Center, (October 2006), http://www.wind.ttu.edu/EFscale.pdf, accessed 3 April 2008.
- 2.7-31 National Climatic Data Center (NCDC), "Storm Data and Unusual Weather Phenomena during July 1998," Volume 40, No. 7, p. 107, United States Department of Commerce National Environmental Satellite Data, and Information Service, August 1998.
- 2.7-32 Environment Canada, "Atmospheric Hazards Web Site for Ontario," (1 October 2005), http://ontario.hazards.ca/spreadsheets/Tornado-locationandstrength2003.xls, accessed 16 March 2008.
- 2.7-33 U.S. Census Bureau, "State and County QuickFacts," (2006), http://quickfacts.census.gov/qfd/, accessed 3 April 2008.
- 2.7-34 Statistics Canada, "2001 Community Profiles for Chatham-Kent, Essex, and Lambton, Ontario," (2001), http://www12.statcan.ca/english/profil01/CP01/Index.cfm?Lang=E, accessed 17 March 2008.
- 2.7-35 Schaefer, J.T., J.J. Levit, S.J. Weiss, and D.W. McCarthy, "The Frequency of Large Hail over the Contiguous United States," Storm Prediction Center, (2003), http://www.spc.noaa.gov/publications/schaefer/hailfreq.pdf, accessed 3 April 2008.
- 2.7-36 Bennett, I., "Glaze: Its Meteorology and Climatology, Geographic Distribution, and Economic Effects," Head-Quartermaster Research and Engineering Command, U.S.

- Army, Quartermaster Research and Engineering Center, Environmental Protection Research Division, Natic, Massachusetts, March 1959.
- 2.7-37 Cortinas, Jr., J., B. Bernstein, C. Robbins, and J.W. Strapp, "An Analysis of Freezing Rain, Freezing Drizzle, and Ice Pellets across the United States and Canada: 1976-90," Weather and Forecasting, Volume 19 Issue 2, pp. 377-390, April 2004.
- 2.7-38 Environmental Science Services Administration, "Storm Data and Unusual Weather Phenomena during January 1967," Volume 9, No. 1, United States Department of Commerce Environmental Data Service, February 1967.
- 2.7-39 National Climatic Data Center (NCDC), "Solar and Meteorological Surface Observational Network; 1961-1990 CD-ROM," Hourly Data for Detroit Metropolitan Airport, Version 1.0, September 1993.
- 2.7-40 National Climatic Data Center (NCDC), "Hourly United States Weather Observations 1991-1995," CD-ROM, Hourly Data for Detroit Metropolitan Airport, September 1997.
- 2.7-41 National Climatic Data Center (NCDC), "Integrated Surface Hourly Data," purchased Online through NCDC, 2003-2007.
- 2.7-42 Palmer, W.C., "Meteorological Drought," U.S. Weather Bureau, Research Paper No. 45, 1965.
- 2.7-43 National Climatic Data Center (NCDC), "Michigan Palmer Drought Index, January 1900 to February 2008," (2008), http://www.ncdc.noaa.gov/img/climate/research/prelim/drought/Reg020Dv00_palm06_pg. gif, accessed 4 April 2008.
- 2.7-44 National Climatic Data Center (NCDC), "DS 3240-Hourly Precipitation Data," purchased Online through NCDC, 1996-2007.
- 2.7-45 U.S. Nuclear Regulatory Commission, "PAVAN: An Atmospheric Dispersion Program for Evaluating Design Basis Accidental Releases of Radioactive Materials from Nuclear Power Stations," NUREG/CR-2858, PNL-4413, November 1982.
- 2.7-46 GE-Hitachi Nuclear Energy, "ESBWR Design Control Document Tier 2," Revision 6, August 2009.
- 2.7-47 U.S. Nuclear Regulatory Commission, "XOQDOQ: Computer Program for the Meteorological Evaluation of Routine Effluent Releases at Nuclear Power Stations," NUREG/CR-2919, PNL-4380, September 1982.
- 2.7-48 NRPB-W2, Atmospheric Dispersion Modeling Liaison Committee, Annual Report 1999/2000, Review of Dispersion Over Bodies of Water, Published February 2001.

Table 2.7-1 National Weather Service First-Order and Cooperative Observing Stations Surrounding the Fermi Site

Station ¹	State	County	Approximate Distance from Fermi Site (miles) (2)	Relative Direction to Fermi Site	Elevation (feet)
Monroe	MI	Monroe	8	WSW	590
Detroit (Detroit Metropolitan Airport)	MI	Wayne	17	NNW	631
Windsor	ON	Essex	27	NNE	622
Ann Arbor (University of Michigan)	MI	Washtenaw	33	NW	900
Toledo	ОН	Lucas	38	SW	674
Adrian 2 NNE	MI	Lenawee	39	W	760
Flint	MI	Genesee	74	NNW	770

Notes:

- 1. Numeric and letter designators following a station name (Adrian 2 NNE) indicate the station's distance in miles and direction relative to the place name.
- 2. The Corpscon 6.0.1 conversion program was used to convert Lat/Long (NAD 83) to UTM (NAD 83) for each site location. Distances above are from the current Fermi Site facility to the listed location.

Sources: Reference 2.7-1 through Reference 2.7-7

Table 2.7-2 Local Climatological Data Summary for Detroit, Michigan (Sheet 1 of 4)

NORMAL, MEANS, and EXTREMES

DETROIT (KDTW)

	LATITUDE: 42° 12'N	LONGITUDE: -83° 20'W					ION (FT) BARO:					ME ZON ERN (U			WBA	N: 94847
	ELEM	ENT	POR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	YEAR
	NORMAL DAILY M	AXIMUM	30	31.1	34.4	45.2	57.8	70.2	79.0	83.4	81.4	73.7	61.2	47.8	35.9	58.4
	MEAN DAILY MAX	MUM	48	31.0	34.3	44.5	58.2	69.7	78.9	83.3	81.3	74.1	61.6	48.2	35.7	58.4
	HIGHEST DAILY M	AXIMUM	48	62	70	81	89	93	104	102	100	98	91	77	69	104
	YEAR OF OCCUR	RENCE		1995	1999	1998	1977	1988	1988	1988	1988	1976	1963	1968	1998	JUN 1988
	MEAN OF EXTREM	IE MAXS.	48	50.1	52.9	68.9	79.5	85.9	91.8	93.7	91.7	88.6	79.8	67.5	54.9	75.4
	NORMAL DAILY M	NIMUM	30	17.8	20.0	28.5	38.4	49.4	58.9	63.6	62.2	54.1	42.5	33.5	23.4	41.0
,	MEAN DAILY MINII	MUM	48	16.9	19.0	27.1	37.7	47.9	57.3	62.1	60.8	53.3	41.8	32.8	22.6	39.9
L.	LOWEST DAILY M	NIMUM	48	-21	-15	-4	10	25	36	41	38	29	17	9	-10	-21
J. B.	YEAR OF OCCUR	RENCE		1984	1985	2003	1982	1966	1972	1965	1982	1974	1974	1969	1983	JAN 1984
EMPERATURE	MEAN OF EXTREM	1E MINS.	48	-2.5	0.6	9.8	23.5	34.3	44.2	50.5	49.2	37.9	27.3	18.1	3.2	24.7
PE	NORMAL DRY BUL	.B	30	24.5	27.2	36.9	48.1	59.8	69.0	73.5	71.8	63.9	51.9	40.7	29.6	49.7
∑	MEAN DRY BULB		48	24.0	26.7	35.9	47.9	58.8	68.3	72.7	71.1	63.7	51.7	40.5	29.3	49.2
•	MEAN WET BULB		23	23.7	25.7	32.3	42.6	52.7	61.7	65.9	65.0	58.1	47.0	37.5	28.0	45.0
	MEAN DEW POINT	• 	23	19.2	20.8	26.4	36.0	47.0	57.0	61.8	61.5	54.1	42.5	32.9	23.9	40.3
	NORMAL NO. DAY	S WITH:														
	MAXIMUM >= 90		30	0.0	0.0	0.0	0.0	0.5	2.8	5.0	2.9	0.8	0.0	0.0	0.0	12.0
	MAXIMUM <= 32		30	16.7	12.9	4.1	0.2	0.0	0.0	0.0	0.0	0.0	0.0	1.4	10.3	45.6
	MINIMUM <= 32		30	28.5	24.7	21.7	8.7	0.5	0.0	0.0	0.0	0.1	4.0	15.8	25.8	129.8
	MINIMUM <= 0		30	3.1	2.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.2	6.4
H/C	NORMAL HEATING	DEG. DAYS	30	1270	1074	886	527	219	41	5	12	121	426	742	1099	6422
Ĭ	NORMAL COOLING	G DEG. DAYS	30	0	0	0	6	42	145	254	208	75	6	0	0	736

Table 2.7-2 Local Climatological Data Summary for Detroit, Michigan (Sheet 2 of 4)

NORMAL, MEANS, and EXTREMES

DETROIT (KDTW)

	LATITUDE: 42° 12'N	LONGITUDE: -83° 20'W				LEVAT	ION (FT): BARO:					ME ZON ERN (U			WBA	N: 94847
	ELEM	ENT	POR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	YEAR
	NORMAL (PERCEN	IT)	30	76	73	69	65	65	67	69	72	73	72	74	77	71
	HOUR 01 LST		30	79	78	75	73	75	79	81	84	84	80	79	80	79
A.	HOUR 07 LST		30	81	80	79	77	77	79	83	86	87	84	82	81	81
	HOUR 13 LST		30	70	65	60	53	53	55	55	57	57	58	65	70	60
	HOUR 19 LST		30	74	71	65	57	56	58	59	63	66	67	72	76	65
S	PERCENT POSSIB	LE SUNSHINE	31	40	46	52	53	60	65	68	67	61	51	35	31	52
	MEAN NO. DAYS W	/ITH:														
W/0	HEAVY FOG (VISB	Y <= 1/4 MI)	43	2.3	2.3	2.0	0.9	8.0	0.5	0.5	1.0	1.5	1.6	1.4	2.9	17.7
	THUNDERSTORMS	3	48	0.2	0.4	1.5	3.0	4.0	6.1	6.3	5.4	3.9	1.2	0.7	0.3	33.0
	MEAN:															
40	SUNRISE-SUNSET	(OKTAS)														
IESS	MIDNIGHT-MIDNIG	HT (OKTAS)														
CLOUDNE	MEAN NO. DAYS W	/ITH:														
CLO	CLEAR															
J	PARTY CLOUDY															
	CLOUDY															
A.	MEAN STATION PR	RESSURE (IN)	23		29.38	29.32	29.26	29.26	29.26	29.28	29.33	29.34	29.35	29.33	29.35	29.32
<u> </u>	MEAN SEA-LEVEL	PRES. (IN)	23		30.11	30.04	29.98	29.97	29.97	29.98	30.03	30.05	30.06	30.06	30.08	30.03

Table 2.7-2 Local Climatological Data Summary for Detroit, Michigan (Sheet 3 of 4)

NORMAL, MEANS, and EXTREMES

DETROIT (KDTW)

	LATITUDE: 42° 12'N	LONGITUDE: -83° 20'W				ELEVAT ID: 631	ION (FT) BARO:					ME ZON ERN (U			WBA	N: 94847
	ELEN	IENT	POR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	YEAR
	MEAN SPEED (MF	PH)	23	11.6	10.9	11.0	10.8	9.8	8.9	8.4	7.8	8.3	9.6	11.0	11.0	9.9
	PREVAIL DIR (TEN	NS OF DEGS)	39	24	24	30	30	30	24	23	23	24	24	24	24	24
	MAXIMUM 2-MINU	ITE:														
	SPEED (MPH)		11	44	51	46	47	61	45	53	44	35	47	47	49	61
DS	DIR. (TENS OF DI	EGS)		22	22	23	22	22	30	28	24	27	22	27	29	22
WINDS	YEAR OF OCCUR	RRENCE		1996	1997	2004	2001	2004	2005	1998	2003	2001	2004	2003	1998	MAY 2004
	MAXIMUM 5-SECO	OND														
	SPEED (MPH)		11	53	60	59	57	78	55	67	53	45	56	58	60	78
	DIR. (TENS OF DI	EGS)		24	24	24	24	22	31	28	23	28	24	25	31	22
	YEAR OF OCCUR	RRENCE		1996	2001	2004	1997	2004	2005	1998	2003	1997	2004	1998	1998	MAY 2004
	NORMAL (IN)		30	1.91	1.88	2.52	3.05	3.05	3.55	3.16	3.10	3.27	2.23	2.66	2.51	32.89
	MAXIMUM MONTH	HLY (IN)	48	3.92	5.02	4.48	5.40	8.46	7.04	6.02	7.83	7.52	6.76	5.68	6.00	8.46
	YEAR OF OCCUR	RRENCE		1993	1990	1973	1961	2004	1987	1969	1975	1986	2001	1982	1965	MAY 2004
<u>N</u>	MINIMUM MONTH	LY (IN)	48	0.27	0.15	0.74	0.69	0.87	0.97	0.59	0.43	0.43	0.13	0.79	0.46	0.13
PRECIPITATION	YEAR OF OCCUR	RRENCE		1961	1969	2005	2004	1988	1988	1974	1996	1960	2005	1976	1960	OCT 2005
CIP	MAXIMUM IN 24 H	OURS (IN)	48	1.72	2.41	1.82	3.58	2.87	2.84	4.34	3.21	4.08	2.57	2.30	3.71	4.34
PRE	YEAR OF OCCUR	RRENCE		1967	1998	1997	2000	1968	1983	1998	1964	2000	1985	2005	1965	JUL 1998
	NORMAL NO. DAY	/S WITH:														
	PRECIPITATION :	>= 0.01	30	13.4	11.3	12.7	12.6	11.6	10.1	9.6	9.5	9.9	9.8	12.3	13.9	136.7
	PRECIPITATION :	>= 1.00	30	0.1	0.2	0.2	0.4	0.6	0.9	0.8	0.7	0.6	0.3	0.3	0.2	5.3

Table 2.7-2 Local Climatological Data Summary for Detroit, Michigan (Sheet 4 of 4)

NORMAL, MEANS, and EXTREMES

DETROIT (KDTW)

	LATITUDE: 42° 12'N	LONGITUDE: -83° 20'W				ELEVAT ID: 631	ION (FT) BARO:					ME ZON TERN (U			WBAI	N: 94847
	ELEN	/IENT	POR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	YEAR
	NORMAL (IN)		30	11.9	9.3	7.0	1.7	0.*	0.0	0.0	0.0	0.0	0.3	2.7	11.1	44.0
	MAXIMUM MONTH	HLY (IN)	47	29.6	20.8	16.1	9.0	0.1	Т	0.0	0.0	Т	2.9	11.8	34.9	34.9
	YEAR OF OCCUR	RENCE		1978	1986	1965	1982	2005	2006			1994	1980	1966	1974	DEC 1974
_	MAXIMUM IN 24 H	OURS (IN)	47	12.2	10.3	9.2	7.4	0.1	Т	0.0	0.0	Т	2.9	5.6	19.2	19.2
FAL	YEAR OF OCCUR	RENCE		2005	1965	1973	1982	2005	2006			1994	1980	1977	1974	DEC 1974
NON	MAXIMUM SNOW	DEPTH (IN)	46	24	18	9	6	0	0	0	0	0	1	6	19	24
ัง	YEAR OF OCCUR	RENCE		1999	1982	1982	1982						1980	1966	1974	JAN 1999
	NORMAL NO. DAY	'S WITH:														
	SNOWFALL >= 1.	0	30	3.6	2.9	2.1	0.5	0.0	0.0	0.0	0.0	0.0	0.1	0.9	3.5	13.6

Table 2.7-3 Local Climatological Data Summary for Flint, Michigan (Sheet 1 of 4)

NORMAL, MEANS, and EXTREMES

FLINT (KFNT)

	LATITUDE: LONGITUDE: 42° 58'N -83° 44'W					ION (FT): BARO:					E ZONE			WBAN	: 14826
	ELEMENT	POR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	YEAR
	NORMAL DAILY MAXIMUM	30	29.2	32.3	43.1	56.2	69.0	77.7	82.0	79.5	71.9	59.7	46.3	34.2	56.8
	MEAN DAILY MAXIMUM	114	29.1	29.7	41.9	55.5	68.4	76.9	81.5	80.4	71.0	60.7	45.2	32.3	56.1
	HIGHEST DAILY MAXIMUM	50	61	68	80	87	93	101	101	98	94	89	76	70	101
	YEAR OF OCCURRENCE		1997	1999	2000	2004	1988	1988	1995	2001	2002	2002	1978	2001	JUL 1995
	MEAN OF EXTREME MAXS.	114	48.4	50.6	66.1	77.9	84.1	90.4	92.1	90.9	86.7	78.7	66.3	53.9	73.8
	NORMAL DAILY MINIMUM	30	13.3	15.3	24.3	34.6	45.2	54.6	59.1	57.4	49.4	38.6	29.8	19.1	36.7
	MEAN DAILY MINIMUM	114	15.2	14.0	24.2	34.6	45.3	54.0	57.6	57.0	49.6	40.1	29.8	19.8	36.8
ት	LOWEST DAILY MINIMUM	50	-25	-22	-12	6	22	33	40	37	26	19	6	-13	-25
URE	YEAR OF OCCURRENCE		1976	1967	1978	1982	1966	1998	2001	1982	1991	1974	1976	2000	JAN 1976
Α	MEAN OF EXTREME MINS.	114	-6.0	-4.0	4.9	21.1	31.1	40.3	46.4	44.4	34.2	25.1	15.2	0.1	21.1
1PER.	NORMAL DRY BULB	30	21.3	23.8	33.7	45.4	57.1	66.2	70.6	68.5	60.7	49.2	38.1	26.7	46.8
TEM	MEAN DRY BULB	114	22.2	21.9	33.0	45.1	56.9	65.5	69.5	68.7	60.3	50.4	37.6	26.1	46.4
	MEAN WET BULB	23	22.1	23.9	30.7	41.3	51.5	60.6	64.6	63.7	56.6	45.8	36.1	26.8	43.6
	MEAN DEW POINT	23	18.4	19.6	25.5	35.1	46.0	56.3	60.8	60.6	53.1	41.8	32.2	23.4	39.4
	NORMAL NO. DAYS WITH:														
	MAXIMUM >= 90	30	0.0	0.0	0.0	0.0	0.3	1.7.	3.2	1.5	0.6	0.0	0.0	0.0	7.3
	MAXIMUM <= 32	30	18.5	14.4	5.3	0.4	0.0	0.0	0.0	0.0	0.0	0.0	2.2	12.0	52.8
	MINIMUM <= 32	30	29.0	25.3	23.0	11.1	1.6	0.0	0.0	0.0	0.4	5.8	17.1	27.2	140.5
	MINIMUM <= 0	30	4.6	3.6	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.8	10.5
ပ	NORMAL HEATING DEG. DAYS	30	1341	1147	957	577	267	66	13	28	168	478	791	1172	7005
H/C	NORMAL COOLING DEG. DAYS	30	0	0	1	5	33	110	199	151	52	4	0	0	555

Table 2.7-3 Local Climatological Data Summary for Flint, Michigan (Sheet 2 of 4)

NORMAL, MEANS, and EXTREMES

FLINT (KFNT)

	LATITUDE: 42° 58'N	LONGITUDE: -83° 44'W				LEVATI D: 770	ON (FT): BARO:					E ZONE RN (UT			WBAN:	: 14826
	ELEN	MENT	POR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	YEAR
	NORMAL (PERCE	NT)	30	77	75	71	66	66	69	71	75	76	74	76	79	73
	HOUR 01 LST		30	81	79	77	75	76	80	84	87	87	82	81	82	81
표	HOUR 07 LST		30	82	81	81	79	78	81	85	90	90	85	83	83	83
_	HOUR 13 LST		30	72	69	62	55	54	56	55	59	59	60	68	74	62
	HOUR 19 LST		30	76	72	66	59	56	58	59	65	69	71	75	79	67
S	PERCENT POSSII	BLE SUNSHINE														
	MEAN NO. DAYS	WITH:														
W/0	HEAVY FOG (VISI	BY <= 1/4 MI)	43	1.6	1.6	2.3	0.8	1.2	0.8	1.1	1.6	2.0	1.8	1.1	2.2	18.1
	THUNDERSTORM	IS	58	0.2	0.2	1.2	2.9	4.2	5.8	6.4	5.7	3.6	1.5	0.8	0.3	32.8
	MEAN:															
40	SUNRISE-SUNSE	T (OKTAS)							6.4							
ESS	MIDNIGHT-MIDNI	GHT (OKTAS)							7.2							
OUDNES	MEAN NO. DAYS	WITH:														
ار ا	CLEAR				2.0	3.0		3.0	6.0							
S	PARTY CLOUDY		1	2.0	3.0	5.0		9.0	2.0							
	CLOUDY		1	4.0	6.0	9.0		6.0	13.0							
~	MEAN STATION P	RESSURE (IN)	23	29.21	29.23	29.21	29.15	29.15	29.15	29.18	29.22	29.23	29.23	29.21	29.22	29.20
4	MEAN SEA-LEVEL	PRES. (IN)	23	30.06	30.08	30.05	29.98	29.97	29.97	29.99	30.03	30.05	30.06	30.05	30.07	30.03

Table 2.7-3 Local Climatological Data Summary for Flint, Michigan (Sheet 3 of 4)

NORMAL, MEANS, and EXTREMES
FLINT (KFNT)

	LATITUDE: LONGITU 42° 58'N -83° 44"				ELEVAT ID: 770	ION (FT): BARO:					E ZONE	-		WBAN	: 14826
	ELEMENT	POR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	YEAR
	MEAN SPEED (MPH)	23	10.8	10.4	10.6	10.4	9.5	8.2	7.6	7.2	7.9	9.1	10.2	10.1	9.3
	PREVAIL DIR (TENS OF DEGS)	35	24	28	28	08	19	21	24	21	20	21	24	24	24
	MAXIMUM 2-MINUTE:														
	SPEED (MPH)	11	37	41	40	41	40	36	40	35	38	41	41	38	41
SO	DIR. (TENS OF DEGS)		25	30	25	30	26	28	33	24	30	31	28	27	31
WINDS	YEAR OF OCCURRENCE		1996	2006	2002	2002	2004	2000	1998	2003	2005	2006	2003	2003	OCT 2006
	MAXIMUM 5-SECOND														
	SPEED (MPH)	11	52	53	51	52	49	46	51	46	48	53	55	49	55
	DIR. (TENS OF DEGS)		18	32	27	26	27	29	25	27	29	31	22	27	22
	YEAR OF OCCURRENCE		1996	2006	2002	2003	2000	2000	2003	1996	2005	2006	1998	2003	NOV 1998
	NORMAL (IN)	30	1.57	1.35	2.22	3.13	2.74	3.07	3.17	3.43	3.76	234	2.65	2.18	31.61
	MAXIMUM MONTHLY (IN)	65	4.02	5.28	4.33	5.90	8.19	6.52	9.35	11.04	10.86	6.59	5.66	4.66	11.04
	YEAR OF OCCURRENCE		2006	1954	1948	1947	2004	1994	1992	1975	1986	2001	2003	1971	AUG 1975
N O	MINIMUM MONTHLY (IN)	65	0.07	0.17	0.25	0.62	0.34	0.63	0.73	0.45	0.29	0.33	0.66	0.44	0.07
FATION	YEAR OF OCCURRENCE		1945	1969	1958	1942	1988	1988	1978	1969	2002	1944	1980	1969	JAN 1945
RECIPIT	MAXIMUM IN 24 HOURS (IN)	65	1.81	2.85	2.33	2.89	2.25	3.55	3.72	4.45	6.04	3.19	2.30	1.77	6.04
PRE	YEAR OF OCCURRENCE		1967	1954	1948	1976	1974	1943	1957	1968	1950	1981	1995	1971	SEP 1950
_	NORMAL NO. DAYS WITH:														
	PRECIPITATION >= 0.01	30	13.8	10.9	12.2	12.9	10.7	10.5	9.7	10.1	10.5	10.1	12.6	13.8	137.8
	PRECIPITATION >= 1.00	30	0.1	0.1	0.3	0.5	0.4	0.6	0.8	0.5	1.0	0.3	0.4	0.2	5.2

Table 2.7-3 Local Climatological Data Summary for Flint, Michigan (Sheet 4 of 4)

NORMAL, MEANS, and EXTREMES

FLINT (KFNT)

	LATITUDE: 42° 58'N	LONGITUDE: -83° 44'W				ELEVAT ID: 770	ION (FT): BARO:					EZONE	· -		WBAN	: 14826
	ELE	MENT	POR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	YEAR
	NORMAL (IN)		30	13.2	9.4	7.7	2.6	0.*	0.0	0.0	0.0	0.0	0.3	3.5	11.6	48.3
	MAXIMUM MONT	HLY (IN)	65	28.5	20.8	19.4	17.3	0.6	Т	Т	Т	Т	4.4	16.2	35.3	35.3
	YEAR OF OCCUP	RRENCE		1976	1990	1965	1975	1961	2006	1992	1998	1975	1989	1951	2000	DEC 2000
	MAXIMUM IN 24 H	HOURS (IN)	65	19.8	11.3	12.6	16.7	0.5	Т	Т	Т	Т	3.5	13.4	10.8	19.8
FALI	YEAR OF OCCU	RRENCE		1967	1965	1973	1975	1961	1992	1992	1998	1975	1989	1951	2000	JAN 1967
Mo	MAXIMUM SNOW	DEPTH (IN)	57	23	23	13	17	0	0	0	0	0	2	8	20	23
S	YEAR OF OCCU	RRENCE		1967	1967	1973	1975						1997	1975	2000	FEB 1967
	NORMAL NO. DA	YS WITH:														
	SNOWFALL >= 1	.0	30	4.0	3.1	2.5	0.5	0.0	0.0	0.0	0.0	0.0	0.1	1.2	3.9	15.3

Table 2.7-4 Local Climatological Data Summary for Toledo, Ohio (Sheet 1 of 4)

NORMAL, MEANS, and EXTREMES

TOLEDO (KTOL)

		IGITUDE: 3° 48'W			ELEVAT ND: 674	٠,					ME ZON ERN (U			WBA	N: 94830
	ELEMENT	PC	R JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	YEAR
	NORMAL DAILY MAXIMUI	М 3	0 31.4	35.1	46.5	58.9	70.7	79.5	83.4	81.0	74.0	62.1	48.3	36.0	58.9
	MEAN DAILY MAXIMUM	5	2 31.1	34.8	45.4	59.4	70.6	79.8	83.9	81.9	74.9	62.8	48.7	36.0	59.1
	HIGHEST DAILY MAXIMU	M 5	1 65	71	81	88	95	104	104	99	98	91	80	70	104
	YEAR OF OCCURRENCE		1995	2000	1998	2002	1962	1988	1995	1993	1978	1963	2003	2001	JUL 1995
	MEAN OF EXTREME MAX	(S. 5	2 51.4	55.9	70.4	80.9	87.2	92.8	94.3	91.8	89.4	80.7	68.6	56.9	76.7
	NORMAL DAILY MINIMUN	1 3	0 16.4	18.9	27.9	37.7	48.6	58.2	62.6	60.7	52.9	41.6	32.6	23.3	40.0
	MEAN DAILY MINIMUM	5	2 16.4	18.9	27.0	37.5	47.4	56.7	61.3	59.6	51.9	40.8	32.0	21.8	39.3
۴	LOWEST DAILY MINIMUM	1 5	1 -20	-14	-6	8	25	32	40	34	26	15	2	-19	-20
ATURE	YEAR OF OCCURRENCE		1984	1982	1984	1982	2005	1972	1988	1982	1974	1976	1958	1989	JAN 1984
₹	MEAN OF EXTREME MIN	S. 5	2 -4.4	-0.7	9.0	21.6	32.4	42.7	48.9	46.8	35.5	25.1	16.1	1.1	22.8
IPER,	NORMAL DRY BULB	3	0 23.9	27.0	37.2	48.3	59.6	68.8	73.0	70.8	63.5	51.8	40.5	29.2	49.5
TEM	MEAN DRY BULB	5	23.8	26.9	36.3	48.4	59.0	68.4	72.6	70.7	63.4	51.8	40.3	28.9	49.2
	MEAN WET BULB	2	3 24.2	26.4	33.2	43.4	53.4	62.2	66.5	65.3	58.1	47.3	37.9	28.1	45.5
	MEAN DEW POINT	2	3 20.1	22.1	27.6	37.0	48.0	57.8	62.6	62.2	54.4	42.9	33.6	24.6	41.1
	NORMAL NO. DAYS WITH	1 :													
	MAXIMUM >= 90	3	0.0	0.0	0.0	0.0	0.9	3.4	5.9	3.2	1.2	0.0	0.0	0.0	14.6
	MAXIMUM <= 32	3	0 16.7	12.6	4.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	1.7	10.6	45.8
	MINIMUM <= 32	3	0 28.5	24.6	21.5	9.6	1.0	*	0.0	0.0	0.4	6.1	16.8	26.0	134.5
	MINIMUM <= 0	3	0 4.3	3.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.4	8.9
ပ	NORMAL HEATING DEG.	DAYS 3	0 1281	1079	878	517	224	45	6	18	129	431	745	1107	6460
H/C	NORMAL COOLING DEG.	DAYS 3	0 0	0	1	7	42	148	248	190	73	6	0	0	715

Table 2.7-4 Local Climatological Data Summary for Toledo, Ohio (Sheet 2 of 4)

NORMAL, MEANS, and EXTREMES

TOLEDO (KTOL)

	LATITUDE: 41° 35'N	LONGITUDE: -83° 48'W				ELEVAT ND: 674						ME ZON ERN (U			WBA	N: 94830
	ELEN	MENT	POR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	YEAR
	NORMAL (PERCE	NT)	30	77	75	70	66	67	69	71	76	76	74	76	79	73
	HOUR 01 LST		30	80	79	77	75	79	83	85	89	88	83	80	82	82
표	HOUR 07 LST		30	81	81	81	79	80	82	86	91	92	87	83	83	84
_	HOUR 13 LST		30	71	67	60	53	53	55	56	59	58	58	66	73	61
	HOUR 19 LST		30	76	72	65	58	57	59	61	68	71	71	74	78	68
S	PERCENT POSSI	BLE SUNSHINE	40	41	46	50	52	60	64	65	63	61	54	37	33	52
	MEAN NO. DAYS	WITH:														
W/0	HEAVY FOG (VISI	BY <= 1/4 MI)	43	1.8	1.6	1.8	0.7	0.7	1.0	0.8	1.6	1.7	1.8	1.4	2.3	17.2
>	THUNDERSTORM	1S	52	0.2	0.5	1.6	3.3	4.5	6.1	6.2	5.2	3.0	1.1	0.8	0.2	32.7
	MEAN:															
	SUNRISE-SUNSE	T (OKTAS)														
ESS	MIDNIGHT-MIDNI	GHT (OKTAS)														
CLOUDNE	MEAN NO. DAYS	WITH:														
בס	CLEAR					2.0		2.0								
O	PARTY CLOUDY					1.0										
	CLOUDY		1	1.0	1.0	2.0										
~	MEAN STATION F	PRESSURE (IN)	23	29.32	29.32	29.29	29.23	29.24	29.24	29.26	29.30	29.32	29.32	29.32	29.33	29.29
PR	MEAN SEA-LEVEL	PRES. (IN)	23	30.09	30.10	30.05	29.98	29.98	29.97	29.99	30.03	30.05	30.07	30.07	30.10	30.04

Table 2.7-4 Local Climatological Data Summary for Toledo, Ohio (Sheet 3 of 4)

NORMAL, MEANS, and EXTREMES

TOLEDO (KTOL)

	LATITUDE: 41° 35'N	LONGITUDE: -83° 48'W				ELEVATI ND: 674	٠,					ME ZON ERN (U			WBA	AN: 94830
	ELEME	NT	POR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	YEAR
	MEAN SPEED (MPH))	23	10.8	10.3	10.6	10.6	9.2	7.9	7.2	6.6	7.2	8.5	10.1	10.0	9.1
	PREVAIL DIR (TENS	OF DEGS)	32	25	25	07	07	24	24	24	25	25	24	25	25	25
	MAXIMUM 2-MINUTE	<u>:</u>														
	SPEED (MPH)		11	43	46	46	48	46	44	40	43	38	45	51	48	51
SO	DIR. (TENS OF DEG	iS)		24	26	24	25	25	28	26	26	24	24	21	30	21
WINDS	YEAR OF OCCURRE	ENCE		1996	2001	2002	1997	2000	2005	2003	1998	2001	1996	2005	1998	NOV 2005
	MAXIMUM 5-SECON	D														
	SPEED (MPH)		11	56	56	69	61	68	53	52	54	47	59	66	56	69
	DIR. (TENS OF DEG	iS)		25	26	23	27	27	28	29	26	23	25	24	31	23
	YEAR OF OCCURRE	ENCE		1996	2001	2002	2003	1999	2005	2005	1998	2001	1996	1998	1998	MAR 2002
	NORMAL (IN)		30	1.93	1.88	2.62	3.24	3.14	3.80	2.80	3.19	2.84	2.35	2.78	2.64	33.21
	MAXIMUM MONTHLY	Y (IN)	51	4.61	5.39	5.70	6.10	6.80	8.48	9.19	8.47	8.10	6.26	6.86	6.81	9.19
	YEAR OF OCCURRE	ENCE		1965	1990	1985	1977	2000	1981	2006	1965	1972	2001	1982	1967	JUL 2006
N O	MINIMUM MONTHLY	(IN)	51	0.27	0.27	0.58	0.88	0.96	0.27	0.34	0.40	0.58	0.27	0.55	0.54	0.27
RECIPITATION	YEAR OF OCCURRE	ENCE		1961	1969	1958	1962	1964	1988	1995	1976	1963	2005	1976	1958	OCT 2005
CIPI	MAXIMUM IN 24 HOL	JRS (IN)	51	1.78	2.59	2.60	3.43	2.34	3.21	4.39	2.42	3.97	3.21	3.17	3.53	4.39
PRE	YEAR OF OCCURRE	ENCE		1959	1990	1985	1977	1991	1978	1969	1972	1972	1988	1982	1967	JUL 1969
_	NORMAL NO. DAYS	WITH:														
	PRECIPITATION >=	0.01	30	13.6	10.6	12.5	12.7	11.9	10.6	9.4	9.6	9.9	9.9	12.0	13.6	136.3
	PRECIPITATION >=	1.00	30	0.1	0.2	0.2	0.3	0.6	0.7	0.6	0.6	0.6	0.3	0.4	0.3	4.9

Table 2.7-4 Local Climatological Data Summary for Toledo, Ohio (Sheet 4 of 4)

NORMAL, MEANS, and EXTREMES

TOLEDO (KTOL)

	LATITUDE: 41° 35'N	LONGITUDE: -83° 48'W				ELEVAT ND: 674						ME ZON TERN (U			WBA	N: 94830
	ELEME	NT	POR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	YEAR
	NORMAL (IN)		30	10.8	8.5	5.6	1.3	0.1	0.0	0.0	0.0	0.0	0.2	2.6	8.3	37.4
	MAXIMUM MONTHLY	′ (IN)	45	30.8	16.6	17.7	12.0	1.3	Т	Т	Т	Т	2.0	17.9	24.2	30.8
	YEAR OF OCCURRE	ENCE		1978	1994	1993	1957	1989	1995	1992	1994	1993	1989	1966	1977	JAN 1978
	MAXIMUM IN 24 HOL	JRS (IN)	45	12.0	7.7	9.7	9.8	1.3	Т	Т	Т	Т	1.8	8.3	13.9	13.9
FALI	YEAR OF OCCURRE	ENCE		2005	1981	1993	1957	1989	1995	1992	1994	1993	1989	1966	1974	DEC 1974
OWF	MAXIMUM SNOW DE	PTH (IN)	43	17	19	8	10	1	0	0	0	0	1	8	16	19
S	YEAR OF OCCURRE	ENCE		1978	1978	2002	1957	1989					1989	1966	1977	FEB 1978
	NORMAL NO. DAYS	WITH:														
	SNOWFALL >= 1.0		30	3.3	2.8	1.7	0.4	0.0	0.0	0.0	0.0	0.0	0.1	1.0	2.5	11.8

Table 2.7-5 Climatological Normals for National Weather Service First-Order and Cooperative Observation Stations in the Region Surrounding the Fermi Site

	Normal Annual Temperatures (°F)			Normal Annua	l Precipitation
Station	Daily Maximum	Daily Minimum	Daily Normal	Precipitation (inches)	Snowfall (inches)
Monroe	57.4 ^(A)	40.4 ^(A)	49.0 ^(A)	33.4 ^(A)	25.3 ^(A)
Detroit (Detroit Metropolitan Airport)	58.4 ^(B)	41.0 ^(B)	49.7 ^(B)	32.9 ^(B)	44.0 ^(B)
Windsor, ON	57.2 ^(C)	40.8 ^(C)	48.9 ^(C)	36.2 ^(C)	49.8 ^(C)
Ann Arbor (Univ. of Michigan)	58.1 ^(D)	39.9 ^(D)	49.0 ^(D)	35.4 ^(D)	52.1 ^(D)
Toledo, OH	58.9 ^(E)	40.0 ^(E)	49.5 ^(E)	33.2 ^(E)	37.4 ^(E)
Adrian 2 NNE	59.1 ^(F)	37.3 ^(F)	48.3 ^(F)	35.2 ^(F)	29.2 ^(F)
Flint	56.8 ^(G)	36.7 ^(G)	46.8 ^(G)	31.6 ^(G)	48.3 ^(G)

Source B: Reference 2.7-1

Source C: Reference 2.7-5

Source D: Reference 2.7-6

Source E: Reference 2.7-3

Source F: Reference 2.7-7

Table 2.7-6 Climatological Extremes for National Weather Service First-Order and Cooperative Observation Stations Surrounding the Fermi Site

Parameter	Monroe	Detroit ¹	Windsor, ON	Ann Arbor (Univ. of Michigan)	Toledo, OH	Adrian 2 NNE	Flint
Maximum Temperature	106 ^(A)	105 ^(B)	104 ^(D)	105 ^(A)	104 ^(E)	108 ^(A)	101 ^(G)
Minimum Temperature	-21 ^(A)	-24 ^(B)	-20 ^(D)	-23 ^(A)	-20 ^(F)	-26 ^(A)	-25 ^(G)
Max 24-hr Precipitation (inches) ²	4.22 ^(A)	4.78 ^(C)	3.72 ^(D)	4.54 ^(A)	4.39 ^(E)	4.74 ^(A)	6.04 ^(G)
Max Monthly Precipitation (inches)	9.03 ^(A)	8.76 ^(B)	N/A	10.78 ^(A)	9.19 ^(F)	11.17 ^(A)	11.04 ^(G)
Max 24-hr Snowfall (inches)	20.0 ^(A)	24.5 ^(B)	14.5 ^(D)	20.0 ^(A)	13.9 ^(E)	15.0 ^(A)	19.8 ^(G)
Max Monthly Snowfall (inches)	29.0 ^(A)	38.4 ^(B)	N/A	58.5 ^(A)	30.8 ^(F)	34.5 ^(A)	35.3 ^(G)

Notes:

- 1. Extreme values for Detroit were observed in the vicinity of the meteorological stations at Detroit City Airport and Willow Run Airport.
- 2. (H) The highest reported 24-hour precipitation amount for COOP stations was reported at Grosse Pointe Farms in July 1976 with a value of 5.13 inches.

Source A: Reference 2.7-10

Source B: Reference 2.7-11

Source C: Reference 2.7-12

Source D: Reference 2.7-5

Source E: Reference 2.7-3

Source F: Reference 2.7-13

Source G: Reference 2.7-2

Source H: Reference 2.7-14

Table 2.7-7 Mean Monthly and Annual Mixing Heights (Meters) at White Lake, Michigan (2003 - 2007)

Month	Morning	Afternoon
January	887	796
February	833	913
March	834	1176
April	694	1482
May	670	1561
June	588	1748
July	663	1739
August	662	1530
September	542	1376
October	805	1248
November	809	943
December	853	718
Annual	737	1274
	<u> </u>	

Table 2.7-8 Annual Temperature Inversion Frequency and Persistence at the Fermi Site (2003 - 2007)^{1, 2, 3}

Annual

	Ailiuai	
Duration (Hours)	Number of Observations	Probability of Occurrence (%)
1	222	13.3
2	159	9.5
3	137	8.2
4	101	6.0
5	103	6.1
6	90	5.4
7	66	3.9
8	65	3.9
9	75	4.5
10	89	5.3
11	101	6.0
12	114	6.8
13	91	5.4
14	73	4.4
15	50	3.0
16	35	2.1
17	18	1.1
18	14	0.8
19	10	0.6
20	5	0.3
21	3	0.2
22	5	0.3
23	2	0.1
24	5	0.3
25+	21	1.3

Notes:

- 1. The longest inversion lasted 76 hours.
- 2. An inversion was present a total of 13,098 hours of a possible 42,800 hours during the 5-year period.
- 3. Probability of occurrence represents that, if an inversions occurs, the probability of its duration will be equal to the number of hours specified.

Table 2.7-9 Monthly Temperature Inversion Frequency and Persistence at the Fermi Site (2003 - 2007)^{1, 2}

January

		—
Duration (Hours)	Number of Observations	Probability of Occurrence (%)
1	10	10.1
2	6	6.1
3	11	11.1
4	4	4.0
5	11	11.1
6	7	7.1
7	6	6.1
8	3	3.0
9	4	4.0
10	6	6.1
11	2	2.0
12	2	2.0
13	3	3.0
14	0	0.0
15	5	5.1
16	2	2.0
17	0	0.0
18	1	1.0
19	1	1.0
20	1	1.0
21	0	0.0
22	0	0.0
23	0	0.0
24	2	2.0
25+	6	6.1

Notes:

- 1. The longest inversion lasted 74 hours.
- 2. Probability of occurrence represents that, if an inversions occurs, the probability of its duration will be equal to the number of hours specified.

Table 2.7-10 Monthly Temperature Inversion Frequency and Persistence at the Fermi Site (2003 - 2007)^{1, 2}

February

i obiadi j		
Duration (Hours)	Number of Observations	Probability of Occurrence (%)
1	13	13.5
2	9	9.4
3	8	8.3
4	7	7.3
5	5	5.2
6	7	7.3
7	6	6.3
8	4	4.2
9	5	5.2
10	6	6.3
11	4	4.2
12	4	4.2
13	2	2.1
14	3	3.1
15	4	4.2
16	1	1.0
17	2	2.1
18	1	1.0
19	1	1.0
20	0	0.0
21	0	0.0
22	0	0.0
23	0	0.0
24	0	0.0
25+	2	2.1

- 1. The longest inversion lasted 76 hours.
- 2. Probability of occurrence represents that, if an inversions occurs, the probability of its duration will be equal to the number of hours specified.

Table 2.7-11 Monthly Temperature Inversion Frequency and Persistence at the Fermi Site (2003 - 2007)^{1, 2}

March

Duration (Hours)	Number of Observations	Probability of Occurrence (%)
1	23	15.2
2	14	9.3
3	14	9.3
4	7	4.6
5	5	3.3
6	12	7.9
7	8	5.3
8	5	3.3
9	5	3.3
10	3	2.0
11	6	4.0
12	3	2.0
13	7	4.6
14	9	6.0
15	5	3.3
16	5	3.3
17	2	1.3
18	3	2.0
19	2	1.3
20	1	0.7
21	0	0.0
22	1	0.7
23	2	1.3
24	1	0.7
25+	4	2.6

- 1. The longest inversion lasted 51 hours.
- 2. Probability of occurrence represents that, if an inversions occurs, the probability of its duration will be equal to the number of hours specified.

Table 2.7-12 Monthly Temperature Inversion Frequency and Persistence at the Fermi Site (2003 - 2007)^{1, 2}

April

April		
Duration (Hours)	Number of Observations	Probability of Occurrence (%)
1	13	9.9
2	17	13.0
3	12	9.2
4	8	6.1
5	8	6.1
6	6	4.6
7	4	3.1
8	5	3.8
9	1	0.8
10	6	4.6
11	5	3.8
12	13	9.9
13	7	5.3
14	3	2.3
15	0	0.0
16	2	1.5
17	1	0.8
18	2	1.5
19	2	1.5
20	3	2.3
21	1	0.8
22	1	0.8
23	0	0.0
24	1	0.8
25+	5	3.8

- 1. The longest inversion lasted 67 hours.
- 2. Probability of occurrence represents that, if an inversions occurs, the probability of its duration will be equal to the number of hours specified.

Table 2.7-13 Monthly Temperature Inversion Frequency and Persistence at the Fermi Site (2003 - 2007)^{1, 2}

way		
Duration (Hours)	Number of Observations	Probability of Occurrence (%)
1	27	17.5
2	15	9.7
3	8	5.2
4	13	8.4
5	10	6.5
6	9	5.8
7	9	5.8
8	10	6.5
9	6	3.9
10	9	5.8
11	11	7.1
12	15	9.7
13	7	4.5
14	1	0.6
15	1	0.6
16	1	0.6
17	1	0.6
18	0	0.0
19	0	0.0
20	0	0.0
21	0	0.0
22	0	0.0
23	0	0.0
24	1	0.6
25+	0	0.0

- 1. The longest inversion lasted 24 hours.
- 2. Probability of occurrence represents that, if an inversions occurs, the probability of its duration will be equal to the number of hours specified.

Table 2.7-14 Monthly Temperature Inversion Frequency and Persistence at the Fermi Site (2003 - 2007)^{1, 2}

June

040		
Duration (Hours)	Number of Observations	Probability of Occurrence (%)
1	21	12.2
2	21	12.2
3	14	8.1
4	10	5.8
5	9	5.2
6	9	5.2
7	10	5.8
8	8	4.7
9	8	4.7
10	14	8.1
11	24	14.0
12	13	7.6
13	4	2.3
14	4	2.3
15	1	0.6
16	1	0.6
17	1	0.6
18	0	0.0
19	0	0.0
20	0	0.0
21	0	0.0
22	0	0.0
23	0	0.0
24	0	0.0
25+	0	0.0

- 1. The longest inversion lasted 17 hours.
- 2. Probability of occurrence represents that, if an inversions occurs, the probability of its duration will be equal to the number of hours specified.

Table 2.7-15 Monthly Temperature Inversion Frequency and Persistence at the Fermi Site (2003 - 2007)^{1, 2}

July

July		
Duration (Hours)	Number of Observations	Probability of Occurrence (%)
1	26	15.1
2	16	9.3
3	16	9.3
4	7	4.1
5	20	11.6
6	11	6.4
7	2	1.2
8	5	2.9
9	10	5.8
10	15	8.7
11	17	9.9
12	19	11.0
13	8	4.7
14	0	0.0
15	0	0.0
16	0	0.0
17	0	0.0
18	0	0.0
19	0	0.0
20	0	0.0
21	0	0.0
22	0	0.0
23	0	0.0
24	0	0.0
25+	0	0.0

- 1. The longest inversion lasted 13 hours.
- 2. Probability of occurrence represents that, if an inversions occurs, the probability of its duration will be equal to the number of hours specified.

Table 2.7-16 Monthly Temperature Inversion Frequency and Persistence at the Fermi Site (2003 - 2007)^{1, 2}

August

August		
Duration (Hours)	Number of Observations	Probability of Occurrence (%)
1	31	17.2
2	16	8.9
3	14	7.8
4	12	6.7
5	6	3.3
6	7	3.9
7	3	1.7
8	6	3.3
9	9	5.0
10	9	5.0
11	19	10.6
12	18	10.0
13	23	12.8
14	7	3.9
15	0	0.0
16	0	0.0
17	0	0.0
18	0	0.0
19	0	0.0
20	0	0.0
21	0	0.0
22	0	0.0
23	0	0.0
24	0	0.0
25+	0	0.0

- 1. The longest inversion lasted 14 hours.
- 2. Probability of occurrence represents that, if an inversions occurs, the probability of its duration will be equal to the number of hours specified.

Table 2.7-17 Monthly Temperature Inversion Frequency and Persistence at the Fermi Site (2003 - 2007)^{1, 2}

September

Duration (Hours)	Number of Observations	Probability of Occurrence (%)
1	8	5.6
2	9	6.3
3	9	6.3
4	7	4.9
5	10	7.0
6	8	5.6
7	2	1.4
8	5	3.5
9	7	4.9
10	5	3.5
11	5	3.5
12	17	11.9
13	18	12.6
14	25	17.5
15	7	4.9
16	1	0.7
17	0	0.0
18	0	0.0
19	0	0.0
20	0	0.0
21	0	0.0
22	0	0.0
23	0	0.0
24	0	0.0
25+	0	0.0

- 1. The longest inversion lasted 16 hours.
- 2. Probability of occurrence represents that, if an inversions occurs, the probability of its duration will be equal to the number of hours specified.

Table 2.7-18 Monthly Temperature Inversion Frequency and Persistence at the Fermi Site (2003 - 2007)^{1, 2}

October

Duration (Hours)	Number of Observations	Probability of Occurrence (%)
1	19	12.3
2	14	9.0
3	11	7.1
4	12	7.7
5	5	3.2
6	5	3.2
7	8	5.2
8	6	3.9
9	8	5.2
10	4	2.6
11	5	3.2
12	3	1.9
13	8	5.2
14	14	9.0
15	18	11.6
16	9	5.8
17	2	1.3
18	2	1.3
19	1	0.6
20	0	0.0
21	0	0.0
22	1	0.6
23	0	0.0
24	0	0.0
25+	0	0.0

- 1. The longest inversion lasted 22 hours.
- 2. Probability of occurrence represents that, if an inversions occurs, the probability of its duration will be equal to the number of hours specified.

Table 2.7-19 Monthly Temperature Inversion Frequency and Persistence at the Fermi Site (2003 - 2007)^{1, 2}

November

November		
Duration (Hours)	Number of Observations	Probability of Occurrence (%)
1	19	16.0
2	8	6.7
3	6	5.0
4	9	7.6
5	11	9.2
6	3	2.5
7	3	2.5
8	6	5.0
9	10	8.4
10	7	5.9
11	3	2.5
12	5	4.2
13	1	0.8
14	3	2.5
15	5	4.2
16	6	5.0
17	5	4.2
18	3	2.5
19	2	1.7
20	0	0.0
21	2	1.7
22	0	0.0
23	0	0.0
24	0	0.0
25+	1	0.8

- 1. The longest inversion lasted 48 hours.
- 2. Probability of occurrence represents that, if an inversions occurs, the probability of its duration will be equal to the number of hours specified.

Table 2.7-20 Monthly Temperature Inversion Frequency and Persistence at the Fermi Site (2003 - 2007)^{1, 2}

December

December		
Duration (Hours)	Number of Observations	Probability of Occurrence (%)
1	12	11.7
2	14	13.6
3	14	13.6
4	5	4.9
5	3	2.9
6	6	5.8
7	5	4.9
8	2	1.9
9	2	1.9
10	5	4.9
11	0	0.0
12	2	1.9
13	3	2.9
14	4	3.9
15	4	3.9
16	7	6.8
17	4	3.9
18	2	1.9
19	1	1.0
20	0	0.0
21	0	0.0
22	2	1.9
23	0	0.0
24	0	0.0
25+	3	2.9

- 1. The longest inversion lasted 47 hours.
- 2. Probability of occurrence represents that, if an inversions occurs, the probability of its duration will be equal to the number of hours specified.

Table 2.7-21 Freezing Rain Events in the Five-County Area Surrounding the Fermi Site (1993-2007)

Date	Reported Accumulation (in) ⁽²⁾
1/21/1993	0.40
3/4/1993(1)	
1/27/1994	0.25
2/27/1995	0.25
3/6/1995	0.25
4/10/1995	Trace
12/13/1995	0.25
3/13/1997	1.5-2.5
1/13/1998 ⁽¹⁾	
1/2/1999 ⁽¹⁾	
3/11/2000	Trace
12/11/2000	0.25
12/13/2000	Trace
1/29/2001	0.20
2/24/2001	0.25
1/30/2002	0.50
3/24/2002	Trace
3/26/2002	0.50
1/4/2004	Trace
1/26/2004	0.13
1/5/2005	0.75
1/14/2007	0.50
2/25/2007	0.50
3/1/2007	0.20

Notes:

- 1. Ice accumulations were not available for selected dates from the NCDC Storm Database.
- 2. 3 inches of ice accumulation occurred during the ice freezing rain event of January 26-27, 1967 across northern Ohio.

Source: Reference 2.7-29 and Reference 2.7-38

Table 2.7-22 Monthly and Annual Temperature Data for Detroit Metropolitan Airport and Fermi Site (2003 - 2007) (°F) (Sheet 1 of 2)

Period		Upper Level – 60-Meter Fermi Site	Lower Level – 10-Meter Fermi Site	Single Level–10 m Detroit Metropolitan Airport
	Mean	25.7	26.2	27.4
January	Maximum	57.8	55.6	57.9
	Minimum	-0.6	-3.8	-5.1
	Mean	25.2	25.8	26.1
February	Maximum	53.5	53.3	57.2
	Minimum	-4.1	-3.5	-4.0
	Mean	35.8	35.9	37.1
March	Maximum	76.9	78.5	81.0
	Minimum	-2.9	-2.9	-2.9
	Mean	48.2	48.4	49.3
April	Maximum	86.9	85.5	86.0
	Minimum	19.8	20.5	21.0
	Mean	57.9	58.4	59.2
May	Maximum	85.0	88.0	91.4
	Minimum	34.3	33.6	32.0
	Mean	68.7	69.2	69.7
June	Maximum	91.8	94.2	95.0
	Minimum	44.5	42.3	39.9
	Mean	72.4	72.9	73.5
July	Maximum	91.9	94.3	95.0
	Minimum	52.3	52.2	50.0
	Mean	71.8	72.2	72.3
August	Maximum	92.0	93.7	96.8
	Minimum	51.9	51.7	52.0
	Mean	65.4	65.6	65.2
September	Maximum	83.7	85.8	90.0
	Minimum	41.9	39.1	39.0

Table 2.7-22 Monthly and Annual Temperature Data for Detroit Metropolitan Airport and Fermi Site (2003 - 2007) (°F) (Sheet 2 of 2)

Period		Upper Level – 60-Meter Fermi Site	Lower Level – 10-Meter Fermi Site	Single Level–10 m Detroit Metropolitan Airport
	Mean	53.8	53.9	53.5
October	Maximum	85.7	87.4	89.6
	Minimum	31.8	32.0	31.5
	Mean	42.3	42.6	42.3
November	Maximum	72.4	72.1	75.0
	Minimum	12.4	13.5	12.2
	Mean	30.6	31.0	31.2
December	Maximum	56.8	57.5	59.0
	Minimum	-2.0	-2.4	-2.9
	Mean	50.0	50.3	50.2
Annual	Maximum	92.0	94.3	96.8
	Minimum	-4.1	-3.8	-5.1

Source: Reference 2.7-41

I

Table 2.7-23 Monthly and Annual Dew-point Temperature (°F) Summaries for the Fermi Site (2003 - 2007)

		Measured Extre	•	Mean Dew-point
	Mean Dew-point	Maximum	Minimum	Diurnal Range
January	16.6	50.2	-14.7	11.3
February	15.7	45.4	-14.5	10.8
March	24.5	57.2	-14.8	10.7
April	33.3	56.1	8.9	9.7
May	45.1	69.0	18.0	10.2
June	54.7	71.1	35.8	9.0
July	58.1	72.4	38.8	8.1
August	58.1	74.7	36.7	7.7
September	51.3	68.1	30.0	8.7
October	40.6	66.0	19.9	9.3
November	31.7	58.8	-6.4	10.5
December	21.7	50.2	-21.8	9.4
Annual	37.6	74.7	-21.8	9.6

Table 2.7-24 Hours with Precipitation and Hourly Precipitation Rate Distribution for Detroit Metropolitan Airport (2003-2007)

Month	Trace	0.01-0.09 in	0.10-0.24 in	0.25-0.49 in	0.50-0.99 in	≥1.00 in	Hours with Precipitation	Number of Observations
January	684	287	21	1	0	0	993	3720
February	524	199	11	0	1	0	735	3384
March	463	213	28	1	1	0	706	3720
April	339	176	26	1	0	0	542	3600
May	295	230	45	15	4	0	589	3720
June	176	131	17	6	5	1	336	3600
July	162	142	33	10	4	0	351	3720
August	182	140	27	17	7	0	373	3720
September	145	138	27	5	0	0	315	3600
October	241	210	23	1	0	0	475	3720
November	332	279	41	3	1	0	656	3600
December	576	315	25	3	0	0	919	3720
Annual	4119	2460	324	63	23	1	6990	43824
Percent of Total Hours	9.40%	5.61%	0.74%	0.14%	0.05%	0.002%	15.95%	

Source: Reference 2.7-44

Table 2.7-25 Mean Monthly and Annual Summaries (Hours) of Fog and Heavy Fog for Detroit, Michigan (1961-1995)

Mean Number of Hours and Frequency of Hours

		1	,					
Month	Fo	og	Heav	y Fog				
January	99.4	13.4%	7.9	1.1%				
February	93.9	13.9%	8.6	1.3%				
March	107.4	14.4%	9.0	1.2%				
April	73.6	10.2%	2.3	0.3%				
May	73.2	9.8%	1.6	0.2%				
June	64.9	9.0%	1.6	0.2%				
July	69.1	9.3%	1.3	0.2%				
August	96.7	13.0%	3.2	0.4%				
September	97.7	13.6%	3.9	0.5%				
October	99.8	13.4%	4.9	0.7%				
November	106.8	14.8%	5.1	0.7%				
December	129.6	17.4%	10.8	1.5%				
Annual	1112.0	12.7%	60.2	0.7%				

Source: Reference 2.7-39 and Reference 2.7-40

Table 2.7-26 Monthly and Annual Mean Wind Speeds (mph) for Detroit Metropolitan Airport and Fermi Site (2003 - 2007)

Period	Upper Level - 60 m Fermi Site	Lower Level – 10 m Fermi Site	Single Level – 10 m Detroit Metropolitan Airport
January	14.33	7.45	10.30
February	13.61	7.23	9.83
March	14.13	7.47	9.66
April	14.65	8.21	10.25
May	12.36	6.72	8.19
June	10.85	5.70	7.50
July	10.29	5.12	7.56
August	10.10	5.01	6.83
September	11.38	5.68	7.02
October	13.03	6.06	8.49
November	13.86	7.02	9.36
December	14.37	7.28	10.12
Annual	12.74	6.57	8.75

Source: Reference 2.7-41

Table 2.7-27 Wind Direction Persistence Summaries - Fermi Site 10-Meter Level

Number of Occurrences for Winds Blowing from the Same 22.5° Direction 2003-2007 All Wind Speeds

URS	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	PERSISTE WINDS
2	222	181	160	180	189	209	203	227	247	292	320	328	309	322	287	225	44.37%
3	100	70	74	91	74	100	117	111	125	160	175	166	134	149	133	104	21.42%
4	50	46	47	47	49	69	65	51	49	106	99	91	81	79	85	52	12.13%
5	30	22	19	24	24	47	41	35	46	58	64	49	27	63	34	40	7.09%
6	8	13	26	12	12	31	30	13	20	38	30	41	20	39	27	16	4.28%
7	8	10	14	7	10	20	23	11	18	32	30	30	17	23	15	15	3.22%
8	8	6	10	7	17	11	10	10	4	34	21	15	7	12	10	11	2.20%
9	6	4	5	5	8	5	5	5	6	17	18	7	4	5	7	16	1.40%
10	5	2	5	3	4	1	4	1	2	14	17	8	3	5	1	7	0.93%
11	0	0	4	4	3	6	1	2	2	17	5	1	5	7	2	5	0.73%
12	3	0	3	1	3	4	2	0	1	8	12	3	0	4	2	1	0.73%
	2	0	0	0	3	6	2	0	0			4	2	2	0	2	
13		-	-		4	6				2	2	-					0.32%
14	0	0	1	0	1	1	0	0	2	3	2	2	2	2	0	3	0.22%
15	1	0	2	2	1	0	0	0	1	6	6	0	2	1	1	1	0.27%
16	0	1	0	0	3	1	0	0	0	4	0	2	2	1	0	0	0.16%
17	0	0	1	0	1	1	0	0	0	4	2	1	1	0	0	2	0.15%
18	0	0	1	0	0	0	0	0	0	2	1	1	1	0	0	1	0.08%
19	1	0	1	1	0	0	0	0	0	0	4	1	0	1	0	0	0.10%
20	1	0	0	2	2	0	0	0	0	1	2	3	0	0	1	0	0.14%
21	0	0	0	0	0	0	0	0	0	3	0	0	0	1	1	0	0.06%
22	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0.01%
23	0	0	0	0	0	0	0	0	0	0	2	0	0	0	1	0	0.03%
24	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0.01%
25	1	0	0	0	0	0	0	0	0	2	1	2	0	0	0	0	0.07%
26	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0.02%
27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
29	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
30	0	0	0	0	0	0	0	0	0	2	1	0	0	0	0	0	0.03%
31	1	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0.03%
32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
34	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
35	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
36	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
37	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
38	Ō	Ö	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	0.00%
39	Ö	Ö	Ö	Ō	Ō	Ō	Ō	Ö	Ö	Ö	Ö	Ö	Ō	Ō	Ö	Ö	0.00%
40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
41	Ö	Ö	Ō	Ō	Ō	Ō	Ō	Ö	Ö	Ö	Ö	Ö	Ō	Ō	Ō	Ö	0.00%
42	Ö	Ö	Ŏ	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	ő	ő	Ö	0.00%
43	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	0.00%
44	0	Ô	Ô	Ö	0	Ô	Ö	0	0	0	0	0	Ö	Ô	Ö	0	0.00%
45	Ö	ő	ő	ő	Ö	ő	Ö	Ö	Ö	Ö	Ö	Ö	Ö	ő	ŏ	Ö	0.00%
46	Ö	ő	Ö	Ö	0	0	0	0	Ö	Ö	0	0	0	0	ő	Ö	0.00%
47	Ö	ő	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	ő	0	ő	Ö	0.00%
48	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
							-								_	-	3.5070
SISTENT ECTION	5.10%	4.04%	4.24%	4.39%	4.61%	5.82%	5.72%	5.30%	5.95%	9.17%	9.30%	8.59%	7.02%	8.14%	6.90%	5.70%	
: RSISTENT JRS	3.49	3.19	3.84	3.47	3.85	3.78	3.56	3.17	3.30	4.49	4.27	3.72	3.32	3.57	3.34	3.74	

Table 2.7-28 Wind Direction Persistence Summaries - Fermi Site 10-Meter Level

Number of Occurrences for Winds Blowing from the Same 22.5° Direction 2003-2007

0-5 MPH

																	76 OI PERSISTENT
HOURS	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	WINDS
2																	
2	93	87 31	27	20 7	35 7	62 11	49	84	98	114 40	169	230	212	217	198 77	144	62.74% 21.60%
3	28 9	3 I 7	8	0	•		19 3	16 1	26	40 14	63	92	73	94		41 17	
4	-	•	3	•	2	8	-	-	14		21	41	29	39	29		8.09%
5	5	4 1	0	0	0	0	4 1	3 0	4 3	5 4	15 5	16 10	5 2	31 11	13 3	8	3.92% 1.43%
0	2	0	-	•	0	2	0	-	-		5 2	9	2		-	<u> </u>	
7	2	0	0	0	0	0	0	0	1 0	3	0	3	1	8	4	5	1.26% 0.38%
8 9	1		•	0	0	-		0 0	-	0			1	3	0	1	
•	0	0	0	0	0	0	0	-	0	-	2 0	0	0	2	0	0	0.14%
10	1	0 0	0	0	0	0	0	0	•	0		0	0	· ·	0	-	0.10%
11	0 0		•	0	0	1	0	0	0	0 0	0	0	0	3	0	0	0.14%
12	0	0	0	0	0	0	0	-	0	0	-	1	-	0	0	0	0.03%
13	1	0	0	0	0	0	0	0	0	0	0 0		0	0	0	1	0.10%
14	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
15	0	-	•	0	0	0	-	0	0	•	-	-	0	0	0	0	0.00%
16	•	0	0	0	0	0	0	•	0	0	0	0	-	· ·	0	•	0.00%
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
18	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.03%
19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
20	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0.03%
21	0	0	0	0	0	0	0	0	0	0	0	0	•	Ü	•	0	0.00%
22	•	0	0	0	0	0	0	0	0	•	•	0	0	0	0	•	0.00%
23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
24	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
25	0	-	0	0	0	0	0	0	0	0	0	-	0	· ·	0	0	0.00%
26 27	0 0	0 0	0	0	0	0	0 0	0 0	0	0 0	0 0	0	0	0	0	0	0.00%
	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0.00% 0.00%
28	-	-	•	•	0	•	0	•	0	-			0	· ·	0	-	
29	0 0	0 0	0	0	0	0	0 0	0 0	0	0 0	0 0	0	0	0	0	0	0.00%
30	0		0	0	0	0		0	0	0	-		0	0	0	-	0.00%
31	0	0 0	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0	0	0.00%
32	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0.00%
33 34	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0.00%
	•	-	0	0	0	0		0	•	-	0	-	0	0	0	•	0.00%
35 36	0 0	0 0	0	0	0	0	0 0	0	0	0 0	0	0	0	0	0	0	0.00%
36 37	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
37 38	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00% 0.00%
38 39	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
39 40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
40 41	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
42	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
42 43	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
43 44	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
44 45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
45 46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
46 47	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
47	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
% of	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	0.0076
PERSISTENT DIRECTION	4.84%	4.44%	1.33%	0.96%	1.54%	2.90%	2.59%	3.55%	4.98%	6.18%	9.45%	13.75%	11.05%	13.92%	11.09%	7.44%	

Table 2.7-29 Wind Direction Persistence Summaries - Fermi Site 10-Meter Level

Number of Occurrences for Winds Blowing from the Same 22.5° Direction 2003-2007 5-10 MPH

HOURS	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	% of PERSISTENT WINDS
2	92	86	103	132	120	168	167	171	159	208	215	149	102	113	120	121	47.07%
3	49	39	58	64	45	73	71	73	68	113	102	70	61	60	51	50	22.14%
4	20	14	38	26	28	35	57	36	35	67	44	41	39	31	32	32	12.16%
5	20	9	17	16	9	30	31	19	24	44	19	24	19	27	15	26	7.38%
6	6	2	18	5	5	14	23	9	9	16	14	16	8	12	14	13	3.89%
/	6	2	6	0	3 5	10 7	12	9	11	27	11	12	5	6	3	6	2.73%
8 9	4	0 0	8	2	5 0	3	3 5	4 1	0 2	21 6	8 6	6 3	4 3	5	6 4	6 3	1.88%
10	1	0	3	1	2	ა 0	5	1	1	4	5	3	2	3	4	3 2	0.91% 0.66%
10	0	0	ა 3	1	0	0	1	0	1	3	5 4	3 2	1	0	0	0	0.86%
11	0	0	2	0	0	3	2	0	0	2	0	1	1	2	1	0	0.36%
13	0	0	0	0	1	ა 3	1	0	0	1	0	2	2	0	0	0	0.30%
13	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0.21%
15	0	0	0	0	0	0	0	0	1	1	0	1	0	0	0	0	0.04%
16	1	0	0	0	0	0	0	0	'n	1	0	1	0	0	0	0	0.06%
17	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0.06%
18	0	0	0	0	0	0	0	0	0	0	0	Ó	0	0	0	0	0.00%
19	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0.00%
20	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0.04%
21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.02%
22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0.00%
24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	'n	0	0.02%
25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
29	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
30	0	0	0	0	Ô	0	Ö	o 0	0	0	0	0	0	Ô	0	0	0.00%
31	0	Ö	0	Ô	Ô	0	ő	ő	ő	ő	Ö	Ö	Ö	Ô	0	Ö	0.00%
32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
33	0	0	0	0	0	0	0	0	0	0	0	0	0	Ô	0	0	0.00%
34	0	0	0	Ô	Ô	0	ő	ő	ñ	Ö	0	0	Ö	ñ	0	Ö	0.00%
35	0	0	0	Ô	ñ	0	ő	ñ	Ö	Ö	0	0	ů.	ñ	0	Ô	0.00%
36	0	0	0	0	0	0	Ö	ő	0	0	0	0	0	0	0	Ö	0.00%
37	0	0	0	Ô	Ô	0	Ö	ő	Ö	Ö	Ö	0	Ö	Ö	0	Ö	0.00%
38	0	0	0	Ô	Ô	0	Ö	ő	Ö	Ö	0	0	Ö	Ö	0	Ö	0.00%
39	ő	ő	ő	ő	ŏ	Ö	ŏ	ŏ	ŏ	ŏ	ő	ő	ŏ	ŏ	ő	ŏ	0.00%
40	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	0.00%
41	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	0.00%
42	Ö	ő	Ö	Ö	Ö	Ö	ő	Ö	ő	Ö	ő	Ö	ő	Ö	ő	Ö	0.00%
43	0	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ö	Ō	0	Ō	Ō	Ō	Ō	0.00%
44	0	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ö	Ō	0	Ō	Ō	Ō	Ō	0.00%
45	Ō	Ō	Ō	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ō	Ō	Ö	Ö	Ō	Ö	0.00%
46	0	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ö	Ō	0	Ō	Ō	Ō	Ō	0.00%
47	0	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ö	Ō	0	Ō	Ō	Ō	Ō	0.00%
48	Ō	Ō	Ō	Ö	Ö	Ō	Ö	Ö	Ö	Ö	Ō	0	Ö	Ö	Ō	Ö	0.00%
% of PERSISTENT DIRECTION	4.23%	3.24%	5.50%	5.24%	4.61%	7.36%	7.91%	6.83%	6.58%	10.93%	9.07%	7.06%	5.22%	5.50%	5.24%	5.48%	

Table 2.7-30 Wind Direction Persistence Summaries - Fermi Site 10-Meter Level

Number of Occurrences for Winds Blowing from the Same 22.5° Direction 2003-2007 10-15 MPH

																	PERSISTENT
HOURS	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	WINDS
2																	
2	27 11	24 9	25 7	43	55	38	14 8	21 5	24 11	66 40	75	28 8	14 8	22 8	14 7	16 12	43.32% 21.83%
3			, 5	19 7	36	24 17					42		-		6	6	
4	11 6	10 3	6	/	12		2 2	2 3	8 1	20	19	5	3 3	11 5	5	6	12.33% 8.48%
5	2	3	-	4	11	2	3	-	•	21	13 8	8 1	-	5	5	2	
6	_	-	4	2	3	5	-	1	0	11	-		1	4	1	_	4.37%
/	0	3	1	2	6	2	0	0	1	7	8 7	0	1	0	1	1	2.83%
8	1	0	0	4	1	0	0	0	1	2	,	2	3	1	0	2	2.05%
9	0	1	0	3	2	0	0	0	1	4	4	0	0	2	0	0	1.46%
10	2	0	0	1	0	0	0	0	0	4	1	1	2	1	0	0	1.03%
11	0	0	1	0	1	0	0	0	0	3	2	0	0	1	0	0	0.68%
12	1	0	0	0	1	1	0	0	1	0	0	0	1	0	1	0	0.51%
13	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0.17%
14	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0.26%
15	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0.17%
16	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0.17%
17	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0.17%
18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
19	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0.17%
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
29	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
34	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
35	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
36	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
37	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
38	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
39	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
41	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
42	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
43	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
44	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
45	Ö	Ö	Ö	Ō	Ö	Ö	Ō	Ö	Ö	Ō	Ō	Ō	Ō	Ö	Ō	Ö	0.00%
46	Ö	Ō	Ö	Ō	Ö	Ö	Ō	Ö	Ō	Ō	Ō	Ō	Ō	Ö	Ō	Ö	0.00%
47	Ö	Ō	Ö	Ō	Ö	Ö	Ō	Ö	Ō	Ō	Ō	Ō	Ō	Ö	Ō	Ö	0.00%
48	Ö	Ö	Ö	Ō	Ö	Ö	Ō	Ö	Ö	Ō	Ō	Ō	Ō	Ö	Ō	Ö	0.00%
% of PERSISTENT DIRECTION	5.31%	4.54%	4.37%	7.45%	11.04%	7.62%	2.48%	2.74%	4.20%	15.33%	15.67%	4.54%	3.08%	4.71%	3.08%	3.85%	

Table 2.7-31 Wind Direction Persistence Summaries - Fermi Site 10-Meter Level

Number of Occurrences for Winds Blowing from the Same 22.5° Direction 2003-2007 15-20 MPH

HOURS	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	wsw	W	WNW	NW	NNW	% of PERSISTENT WINDS
2	4	3	1	9	17	3	0	3	1	11	15	2	2	1	1	3	49.03%
3	3	0	0	2	10	1	0	0	0	7	10	1	0	1	1	2	24.52%
1	1	2	0	1	6	1	1	0	0	'n	6	Ó	0	'n	'n	1	12.26%
4 5	2	2	0	0	1	1	0	0	0	0	3	0	0	0	0	0	5.81%
6	0	0	0	0	1	0	0	0	0	1	6	0	0	0	0	0	5.16%
7	0	1	0	0	Ó	0	0	0	0	1	1	0	0	0	0	0	1.94%
ν ο	0	1	0	0	0	0	0	0	0	'n	0	0	0	0	0	0	0.65%
9	0	ó	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
12	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0.65%
13	0	0	0	'n	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
18	0	0	0	0	0	0	Ö	0	0	0	0	0	0	0	0	0	0.00%
19	0	0	0	o o	0	Ö	Ö	Ö	Ö	Õ	0	ő	Ö	Ô	Ö	Ö	0.00%
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
21	0	0	0	n o	0	0	Ö	0	0	0	0	ő	0	Ô	0	0	0.00%
22	0	0	0	o o	0	Ô	ő	Ô	Ö	Õ	0	ő	ñ	Ô	Ô	0	0.00%
23	0	Ö	0	o o	0	Ö	ő	Ö	ő	ő	0	ő	Ö	Ô	Ô	Ö	0.00%
24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
25	0	0	0	o o	0	Ö	Ö	Ö	ñ	ñ	0	ő	ñ	Ô	Ô	Ö	0.00%
26	0	0	0	o o	0	Ô	ő	Ö	Ö	Õ	0	ő	ñ	Ô	Ô	Ö	0.00%
27	0	Ö	Ö	ő	Ô	ő	ő	ő	ő	ő	Õ	ŏ	ő	Ô	Õ	Ö	0.00%
28	Ö	Ö	0	Ô	0	0	Ö	0	Ô	Ô	Ö	Ö	Ô	Ô	Ô	Ö	0.00%
29	0	Ô	0	Ô	0	0	Ô	Ô	ñ	ñ	Ô	0	ñ	Ô	Ô	0	0.00%
30	Ö	Ö	Ô	Ô	Ô	Ô	ő	Ô	Õ	Õ	Õ	Ö	ñ	Ô	Ô	Ö	0.00%
31	0	Ô	0	Ô	0	0	Ö	0	Ô	Ô	Ô	0	Ô	Ô	Ô	0	0.00%
32	0	Ô	0	Ô	0	0	Ö	0	ñ	Ô	Ô	0	ñ	Ô	Ô	0	0.00%
33	Ō	Ö	Ō	Ö	Ō	Ö	Ö	Ö	Ō	Ō	Ō	Ö	Ō	Ö	Ö	Ö	0.00%
34	0	0	0	0	0	0	Ō	Ō	0	0	0	Ö	0	0	0	0	0.00%
35	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
36	Ō	Ō	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ō	Ō	Ö	Ö	Ö	Ö	Ö	0.00%
37	0	Ō	Ō	Ō	Ö	Ō	Ō	Ö	Ō	Ō	Ō	Ö	Ō	Ō	Ö	Ō	0.00%
38	0	Ō	Ō	Ō	Ö	Ō	Ō	Ö	Ō	Ō	Ō	Ö	Ō	Ō	Ö	Ō	0.00%
39	Ō	Ō	Ō	Ō	Ö	Ō	Ō	Ō	Ō	Ō	Ō	Ö	Ō	Ō	Ö	Ö	0.00%
40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
41	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
42	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
43	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
44	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
47	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
48	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
% of PERSISTENT DIRECTION	6.45%	5.81%	0.65%	8.39%	22.58%	3.87%	0.65%	1.94%	0.65%	12.90%	26.45%	1.94%	1.29%	1.29%	1.29%	3.87%	

Table 2.7-32 Wind Direction Persistence Summaries - Fermi Site 10-Meter Level

Number of Occurrences for Winds Blowing from the Same 22.5° Direction 2003-2007 >20 MPH

																	PERSISTENT
HOURS	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	WINDS
2	0	0	0	1	2	0	0	0	0	0	3	0	0	0	0	0	60.00%
3	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	20.00%
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
5	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	10.00%
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
9	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	10.00%
10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
18	Ö	Ö	Ö	Ö	Ö	Ō	Ō	Ō	Ö	Ö	Ö	Ō	Ö	Ö	Ō	Ö	0.00%
19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
20	0	Ō	Ō	0	0	0	Ō	0	0	0	0	0	0	0	0	0	0.00%
21	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Õ	Õ	Ö	Ö	Õ	Ö	Ö	Õ	Ö	0.00%
22	Ô	0	Ô	0	0	0	Ō	Ô	Ô	0	0	0	0	0	0	Ô	0.00%
23	Ô	0	Õ	0	0	0	Ö	ñ	ñ	0	0	0	0	0	0	Ô	0.00%
24	ő	Ö	ő	Ô	0	Ö	Ö	ő	ñ	Ö	Ö	Ö	0	Ô	Õ	ő	0.00%
25	Ö	0	Ô	Ô	0	0	0	Õ	ñ	0	0	0	0	0	0	Ö	0.00%
26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
29	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
33 34	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
	•	-	0	0	0	•		•	0	-	•	-	0	0	0	•	
35	0	0 0	0	0	0	0 0	0 0	0	0	0 0	0	0 0	0	0	0	0	0.00% 0.00%
36 37	0	-	0	0	0	0		0	0	0	0		0	0	0	0	
37	-	0	•	•	•	-	0	0	•	0	-	0	•	U	•	-	0.00%
38	0	0	0	0	0	0	0	•	0	•	0	0	0	U	0	0	0.00%
39	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
41	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
42	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
43	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
44	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
47	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
48	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
% of PERSISTENT DIRECTION	0.00%	0.00%	0.00%	10.00%	30.00%	0.00%	0.00%	0.00%	0.00%	0.00%	60.00%	0.00%	0.00%	0.00%	0.00%	0.00%	

Table 2.7-33 Wind Direction Persistence Summaries - Fermi Site 10-Meter Level

Number of Occurrences for Winds Blowing from the Same 67.5° Direction 2003-2007 All Wind Speeds

																	% of PERSISTENT
HOURS	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	WINDS
2	125	98	83	118	102	97	84	114	145	151	139	182	187	152	140	130	20.83%
3	89	57	65	81	83	79	81	93	105	107	101	110	113	119	87	88	14.84%
4	55	39	44	51	39	52	84	77	69	73	78	91	95	96	84	70	11.16%
5	46	35	30	35	31	53	56	58	47	53	58	61	62	66	51	49	8.05%
6	31	33	32	20	24	37	43	65	44	47	47	57	47	50	39	36	6.63%
7	27	18	23	26	19	43	31	34	40	39	41	27	35	41	38	30	5.21%
8	22 18	25 15	20	25 9	21	20 20	38 34	31	26 13	29 26	28 32	28 32	29	46 31	35 24	24 19	4.55%
9		17	11 11		15		34 22	29 17			32 21	32 28	34 19	19	24 21	21	3.68%
10 11	13 18	9	11	11 9	15 10	24 13	22 23	17	21 26	26 20	21	28 26	22	26	14	21 8	3.11% 2.82%
12	11	10	17	9	14	20	23 18	18	26 18	21	16	10	16	20	21	9	2.62% 2.54%
13	4	6	7	6	8	16	13	15	16	19	9	19	15	14	13	16	1.99%
14	6	9	3	7	12	14	16	10	15	12	7	14	9	16	12	7	1.72%
15	9	7	9	5	4	15	11	4	6	9	27	13	11	10	10	7	1.60%
16	4	6	7	10	6	9	11	3	8	11	10	4	10	10	7	16	1.34%
17	1	5	4	3	6	10	7	5	8	11	14	8	5	7	9	5	1.10%
18	2	5	3	3	5	5	1	1	11	16	8	5	13	6	10	4	1.00%
19	2	3	5	3	1	6	4	2	10	8	7	4	8	4	4	5	0.77%
20	4	5	4	6	2	2	2	6	2	8	5	3	6	6	3	7	0.72%
21	4	4	4	1	2	1	1	Ō	3	8	2	8	7	3	4	8	0.61%
22	3	0	0	5	7	1	0	1	5	8	2	4	0	5	3	3	0.48%
23	5	2	0	1	3	0	1	1	2	8	5	6	1	3	5	1	0.45%
24	0	2	5	3	1	1	1	1	3	5	9	2	1	1	4	1	0.41%
25	0	1	2	3	3	1	3	0	1	7	4	5	1	1	4	2	0.39%
26	0	1	0	2	1	3	0	0	4	7	8	3	2	2	3	3	0.40%
27	1	0	1	1	2	1	1	0	3	5	7	5	6	1	3	5	0.43%
28	1	2	0	1	4	0	0	0	1	3	5	3	5	1	4	2	0.33%
29	0	1	0	2	0	0	0	0	0	3	6	4	4	3	2	5	0.31%
30	1	1	3	0	0	1	1	0	2	4	1	5	0	3	4	0	0.26%
31	0	0	0	1	0	2	1	0	1	1	6	1	0	2	1	1	0.17%
32	1	0	0	0	0	2	0	0	1	2	4	4	2	1	1	1	0.19%
33	0	0	2 3	1	2	0	0	0	0	2	7	2 1	0 0	2	2	0	0.20%
34	0	1	0	0 1	0	1	0	0 0	2 1	1 0	4 1	0	0	2 1	2 2	0	0.16% 0.09%
35 36	0	0	1	2	0	1	0	0	0	3	1	3	2	2	0	0	0.09% 0.15%
37	0	0	0	0	1	Ö	1	0	0	2	0	4	1	3	1	0	0.13%
38	0	1	2	1	1	1	1	0	1	0	0	0	Ó	0	0	0	0.08%
39	0	Ó	0	2	2	Ó	ó	0	Ó	0	3	2	0	0	2	0	0.11%
40	0	Ö	1	1	1	0	0	0	0	1	3	0	2	1	0	0	0.10%
41	0	2	Ö	1	Ö	Ö	Ö	0	Ö	ò	2	0	1	0	ő	0	0.06%
42	ő	ō	ő	ò	1	ŏ	ŏ	ŏ	ŏ	1	2	1	i	ŏ	1	ŏ	0.07%
43	Ō	Ō	Ō	0	0	0	Ō	Ō	Ō	1	2	0	0	0	0	0	0.03%
44	0	0	1	0	0	0	0	0	0	0	1	1	1	0	0	0	0.04%
45	1	0	0	0	0	0	0	0	0	0	2	2	1	2	0	0	0.08%
46	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0.02%
47	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0.02%
48+	2	1	3	3	3	0	0	0	2	10	13	9	5	2	1	0	0.55%
% of PERSISTENT DIRECTION	5.16%	4.28%	4.27%	4.77%	4.61%	5.62%	6.00%	6.13%	6.74%	7.82%	7.83%	8.12%	7.93%	7.96%	6.83%	5.93%	
AVE PERSISTENT HOURS	6.34	7.20	7.91	7.31	7.80	7.38	6.94	5.96	7.23	8.98	9.82	8.19	7.30	7.33	7.74	7.05	

THE LONGEST PERSISTENT WIND WAS FROM THE WEST BY SOUTHWEST AND LASTED 158 HOURS

Table 2.7-34 Wind Direction Persistence Summaries - Fermi Site 10-Meter Level

Number of Occurrences for Winds Blowing from the Same 67.5° Direction 2003-2007
0-5 MPH

																	PERSISTENT
HOURS	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	WINDS
2																	
2	105	119 48	55	36 17	49 21	73	75 25	99 41	131	145 67	179 95	206 119	197 126	172 131	184 96	151 88	39.48% 20.82%
3	53 35	46 27	32	5	3	28 15	25		55	38	95 59	88				00 47	13.07%
4	35 19		18 8	3	3 4	9	26	23	40	36 17	59 47		76	83 54	71 59		8.39%
5 6	12	23 14	3	0	3	9 5	6 7	14 8	12 11	17	28	60 26	49 44	38	29	36 24	5.37%
7	12	6	ა 0	0	ა 3	-	3	o 2			26 16	23	22		29 25	13	
,	6		2	2	ა 3	0	-	2	9 1	10 7	10	23 24		26 32	25 18	4	3.42% 2.66%
9	0	4 0	0	0	3	3	4	1	2	3	12	19	14 17	32 25	13	6	2.08%
10	4	2	0	0	0	ა 0	3	1	2	3	1 <u>2</u> 7	5	7		10	4	
	2	0	1	2	0	0	0	0	1	3 1	4	5 12	6	12 16	7	2	1.22% 1.10%
11 12	2	0	0	0	0	0	0	0	1	3	4	6	10	8	10	1	0.90%
	0	0	0	0	0	0	0	0	0	0	4	5	7	0 7		0	0.46%
13	2	0	0	0	0	0	1	0	0	0	1		4	,	3 2		
14	0	0	0	0	0	0	0	0	0	0	2	4	3	2	2	0	0.32%
15	-	1	•	0	0	1	-	•	0	•	0	1	-	3	0	<u> </u>	0.24%
16	0	0	0	· ·	0	0	0	0	0	0	0	2	2	1	1	1	0.14%
17	0	0	0	0	U	0	0	0	0	0	1	0	1	1	1	0	0.08%
18	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0.06%
19	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0.04%
20	0	0	0	1	0	1	0	0	0	0	0	0	0	3	0	0	0.10%
21	0	0	0	0	•	0	0	0	0	0	0	0	2	0	0	0	0.04%
22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0.02%
23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
29	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
34	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
35	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
36	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
37	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
38	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
39	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
41	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
42	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
43	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
44	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
47	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
48	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
% of PERSISTENT DIRECTION	5.05%	4.88%	2.40%	1.34%	1.76%	2.74%	3.02%	3.80%	5.29%	6.21%	9.31%	11.99%	11.77%	12.27%	10.61%	7.57%	

Table 2.7-35 Wind Direction Persistence Summaries - Fermi Site 10-Meter Level

Number of Occurrences for Winds Blowing from the Same 67.5° Direction 2003-2007 5-10 MPH

HOURS	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	% of PERSISTENT WINDS
2	80	64	78	116	103	120	102	119	103	152	127	89	67	65	62	88	25.45%
3	61	47	54	65	89	70	96	76	82	95	88	59	62	53	44	61	18.27%
4	35	24	47	38	48	53	84	58	64	72	74	61	43	51	37	46	13.84%
5	22	12	32	26	23	56	46	55	41	54	54	37	36	42	28	30	9.85%
6	19	22	19	32	27	25	34	44	27	34	36	27	20	24	25	20	7.21%
7	12	9	26	21	17	23	28	26	24	37	34	19	28	27	21	21	6.18%
8	12	9	14	10	13	17	26	24	11	30	20	16	13	18	16	18	4.43%
9	5	6	8	5	11	7	25	9	19	17	19	17	17	8	14	10	3.27%
10	3	6	7	7	5	16	9	6	4	14	20	11	5	6	13	7	2.30%
11	5	5	10	5	4	7	16	11	5	17	11	14	7	6	9	8	2.32%
12	3	3	8	5	5	8	9	2	8	11	6	8	1	7	4	6	1.56%
13	3	0	4	6	1	6	5	6	8	9	5	5	5	2	3	3	1.18%
14	0	2	4	3	2	6	3	0	7	5	5	5	0	0	3	3	0.80%
15	Ö	1	3	2	0	6	3	Ō	2	2	4	3	1	2	1	Ö	0.50%
16	1	1	3	2	0	2	4	1	2	4	4	3	2	2	2	1	0.56%
17	0	1	2	1	3	4	1	1	3	3	2	1	4	3	2	0	0.51%
18	Ö	1	1	2	2	3	Ó	1	3	3	3	1	1	2	0	1	0.40%
19	0	0	1	1	0	0	1	0	2	3	1	0	2	0	0	1	0.20%
20	0	0	1	0	0	1	0	2	0	Ō	2	3	0	0	1	0	0.17%
21	1	Ō	2	Ö	Ö	0	Ō	0	3	Ö	1	1	1	1	1	1	0.20%
22	0	0	1	1	0	0	0	0	1	3	1	0	2	0	0	0	0.15%
23	0	0	1	0	0	0	0	0	1	0	0	1	1	0	1	0	0.08%
24	0	0	0	0	0	0	2	0	0	0	0	1	0	0	0	0	0.05%
25	0	0	1	0	0	1	1	0	1	0	1	1	0	0	0	1	0.12%
26	0	0	0	0	0	0	0	0	1	0	0	2	2	1	0	0	0.10%
27	0	0	0	0	0	0	0	0	0	2	1	0	1	0	0	0	0.07%
28	0	0	0	0	0	0	0	0	0	1	0	1	0	0	1	0	0.05%
29	0	1	0	0	0	1	0	0	0	0	0	0	0	1	1	0	0.07%
30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
31	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0.02%
32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
33	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0.02%
34	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0.03%
35	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
36	0	0	0	0	1	0	1	0	0	0	0	0	1	0	0	0	0.05%
37	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
38	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
39	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
41	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0.02%
42	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
43	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
44	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
47	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
48	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
% of PERSISTENT DIRECTION	4.34%	3.55%	5.42%	5.77%	5.87%	7.16%	8.22%	7.31%	7.01%	9.42%	8.62%	6.45%	5.34%	5.32%	4.79%	5.40%	

Table 2.7-36 Wind Direction Persistence Summaries - Fermi Site 10-Meter Level

Number of Occurrences for Winds Blowing from the Same 67.5° Direction 2003-2007 10-15 MPH

HOURS	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	wsw	W	WNW	NW	NNW	% of PERSISTENT WINDS
2	19	14	16	26	38	39	20	21	10	51	48	22	14	18	12	17	27.92%
3	19	12	13	26 17	36 31	39 26	6	8	17	45	43	16	9	12	8	12	20.96%
3	8	7		12	27	20	5	3	16	20	28	8	6	8	7	6	13.49%
4	o 5	8	5 6	9	27 17	10	3	ა 5	5	29	20 17	o 7	8	o 5	, 5	7	10.59%
5 6	5 5	0 7	1	3	9	9	3 1	3	5 5	29 12	17	6	2	5 6	3	2	6.60%
7	2	2	0	3 4	10	6	2	1	4	10	12	3	4	1	3	3	4.64%
0	2	1	1	9	2	0	1	'n	2	5	7	4	1	2	1	2	2.90%
9	0	2	2	1	3	2	0	0	1	5 6	10	3	1	4	1	1	2.68%
10	4	1	0	1	2	3	0	0	1	7	4	1	4	2	Ó	0	2.18%
11	4	1	0	1	2	0	0	0	1	4	0	2	2	0	0	0	1.23%
12	1	3	3	3	2	0	0	0	2	2	5	0	1	2	1	0	1.81%
13	1	2	3	2	2	0	0	0	0	2	0	0	2	0	'n	1	1.09%
14	1	2	3	4	2	0	0	0	0	3	2	0	0	1	1	0	1.16%
15	0	0	1	2	1	1	0	0	0	0	1	1	0	Ó	0	0	0.51%
16	1	1	Ö	0	1	Ó	0	0	1	3	0	Ö	0	0	0	0	0.51%
17	1	Ó	2	2	0	1	0	0	1	1	1	1	0	0	1	0	0.80%
18	Ó	0	0	0	0	Ó	0	0	Ó	ó	Ó	Ó	1	1	'n	0	0.15%
19	0	0	1	0	0	0	0	0	0	0	0	0	Ó	Ó	0	0	0.07%
20	0	0	Ó	2	0	0	0	0	0	0	0	0	0	0	0	0	0.15%
21	0	0	1	0	0	0	1	0	0	1	2	0	0	0	0	0	0.36%
22	0	0	Ó	0	0	0	Ö	0	0	Ö	0	0	1	0	0	0	0.07%
23	0	0	0	0	0	0	0	0	0	0	0	0	Ó	0	0	0	0.00%
24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
25	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0.07%
26	0	0	0	0	0	0	0	0	0	Ö	0	0	0	0	0	0	0.00%
27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
28	Ö	ő	0	Ô	0	0	ő	Õ	Ö	Õ	ő	ő	0	0	0	ő	0.00%
29	0	ő	0	Ô	0	ñ	Ö	ñ	ů.	ñ	Ö	Ö	0	0	0	Ö	0.00%
30	Ö	ŏ	0	Ô	Ô	ñ	ŏ	ñ	ő	ő	ő	ŏ	0	0	Ô	ő	0.00%
31	0	ő	0	Ô	0	0	ő	Õ	Ö	Õ	Ö	Ö	0	0	0	Ö	0.00%
32	0	ő	0	Ô	0	0	Ö	Õ	ů.	ñ	Ö	Ö	0	0	0	Ö	0.00%
33	Ö	ŏ	Ö	Ô	Ô	ő	ő	ő	ñ	ñ	ő	ő	0	0	Ô	ŏ	0.00%
34	0	Ô	0	0	0	ñ	Ö	ñ	ñ	Ô	0	0	Ô	0	Ô	Ô	0.00%
35	0	Ô	0	0	0	Ô	Ö	Ô	ñ	Ö	0	0	Ô	0	Ô	0	0.00%
36	0	0	0	0	0	0	ő	0	0	0	0	0	0	0	0	0	0.00%
37	0	ő	0	Ô	0	0	Ö	Õ	Ö	Õ	Ö	Ö	0	0	0	Ö	0.00%
38	0	ő	0	Ô	0	0	ő	Õ	Ö	Õ	Ö	Ö	0	0	0	Ö	0.00%
39	ő	ŏ	ő	ő	Ö	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ő	ő	ő	ŏ	0.00%
40	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	0.00%
41	0	Ô	0	0	0	Ô	Ô	Ô	Ô	Ô	Ö	0	0	0	Ô	0	0.00%
42	ő	ŏ	ő	ő	Ö	ŏ	ŏ	ŏ	ŏ	ŏ	ĭ	ŏ	ő	ő	ő	ŏ	0.07%
43	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	0	Ö	Ö	Ö	Ö	Ö	0.00%
44	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	0.00%
45	Ö	ő	Ö	Ö	Ö	ő	ő	ő	ő	ő	Ö	Ö	Ö	Ö	ő	Ö	0.00%
46	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ö	Ō	Ō	Ō	Ō	Ō	0.00%
47	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	0.00%
48	Ö	ő	Ö	Ö	Ö	ő	ő	ő	ő	ő	Ö	Ö	Ö	Ö	ő	Ö	0.00%
% of PERSISTENT DIRECTION	4.71%	4.57%	4.21%	7.11%	10.80%	8.48%	2.83%	2.97%	4.79%	14.65%	14.36%	5.37%	3.84%	4.50%	3.12%	3.70%	

Table 2.7-37 Wind Direction Persistence Summaries - Fermi Site 10-Meter Level

Number of Occurrences for Winds Blowing from the Same 67.5° Direction 2003-2007 15-20 MPH

HOURS	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	wsw	W	WNW	NW	NNW	% of PERSISTENT WINDS
2			1	7	17	7	0	2	2	10	12	2	2				40.21%
	4	3 0	0			3		1	0	10 5	12	2		3	1	3	40.21% 22.75%
3	2	0	0	2 1	12	3	0 1	-	0	5 6		0	1 0	1 0	0	2	
4	1	ŭ	0	•	6 2	0	•	0	-	6	8 3	0	•	0	0	2 0	13.76% 9.52%
5	3 0	4 1	0	3 0	2	0	0 0	0	0 0	1	-	0	0 0	0	0	0	
7	0	2	0	0	0	0	0	0	0	3	6	0	0	0	0	0	5.82% 3.70%
,	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	1.06%
9	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1.06%
9 10	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0.53%
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.53%
11 12	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	1.06%
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
28	Ö	0	0	0	0	0	0	0	0	0	0	Ö	0	0	0	0	0.00%
29	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
30	0	0	0	n o	0	0	ő	0	0	0	0	Ö	0	0	0	Ö	0.00%
31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
32	0	ő	0	ñ	0	Ö	ő	Ö	ů.	Õ	0	ő	ñ	0	0	Ö	0.00%
33	Ö	ŏ	Ö	ñ	Ô	ő	ŏ	ő	ñ	ñ	Õ	ŏ	ő	0	Ô	ŏ	0.00%
34	0	Ô	0	Ô	0	Ô	Ö	Ô	ñ	Ô	Ô	Ö	ñ	Ô	Ô	Ô	0.00%
35	0	Ô	0	Ô	0	0	Ö	0	ñ	Ö	Ô	0	ñ	Ô	Ô	0	0.00%
36	0	0	0	0	0	0	ő	0	0	0	0	0	0	0	0	0	0.00%
37	0	ő	0	Ô	0	Ö	ő	Ö	Ö	Õ	0	ő	Ö	0	0	Ö	0.00%
38	0	ő	0	Ô	0	Ö	ő	Ö	Ö	Õ	0	ő	Ö	0	0	Ö	0.00%
39	ő	ŏ	ő	ŏ	ő	ŏ	ŏ	ŏ	ŏ	ŏ	ő	ŏ	ŏ	ő	ő	ŏ	0.00%
40	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	0.00%
41	Ö	Ō	Ö	Ö	Ö	Ö	Ō	Ö	Ō	0	Ō	Ö	Ō	0	Ō	Ō	0.00%
42	Ö	ő	Ö	Ö	Ö	Ö	ő	Ö	ő	ő	ő	Ö	ő	Ö	ő	Ö	0.00%
43	Ō	Ō	Ō	Ō	Ö	Ō	Ō	Ö	Ō	Ō	Ō	Ö	Ō	0	Ō	Ō	0.00%
44	Ō	Ō	Ō	Ō	Ö	Ō	Ō	Ö	Ō	Ō	Ō	Ö	Ō	0	Ō	Ō	0.00%
45	Ö	Ö	Ō	Ō	Ö	Ō	Ō	Ö	Ō	Ō	Ō	Ö	Ō	0	Ō	Ō	0.00%
46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
47	Ō	Ō	Ō	Ō	Ö	Ō	Ō	Ö	Ō	Ō	Ō	Ö	Ō	0	Ō	Ō	0.00%
48	Ö	Ö	Ō	Ō	Ö	Ō	Ō	Ö	Ō	Ō	Ō	Ö	Ō	0	Ō	Ō	0.00%
% of PERSISTENT DIRECTION	5.29%	5.82%	1.06%	8.47%	21.16%	6.35%	0.53%	1.59%	1.06%	14.29%	23.28%	2.65%	1.59%	2.12%	1.06%	3.70%	

Table 2.7-38 Wind Direction Persistence Summaries - Fermi Site 10-Meter Level

Number of Occurrences for Winds Blowing from the Same 67.5° Direction 2003-2007 >20 MPH

PERSISTENT DIRECTION	0.00%	0.00%	0.00%	7.69%	23.08%	0.00%	0.00%	0.00%	0.00%	15.38%	46.15%	0.00%	7.69%	0.00%	0.00%	0.00%	
48 % of	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
47	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
44	0	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	0	0.00%
43	Ö	ő	Ö	Ö	Ö	Ö	Ö	ő	Ö	Ö	Ö	ő	Ö	Ö	Ö	Ö	0.00%
42	0	0	0	ő	0	0	0	0	0	0	0	0	0	Ö	0	0	0.00%
41	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
38 39	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0.00% 0.00%
37	0	0 0	0	0	0	0	0	0	0	0 0	0	0 0	0	0	0	0	0.00%
36	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
35	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
34	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
30	Ö	ő	Õ	Ö	Ö	Ö	Ö	ŏ	ő	Ö	ő	ŏ	ő	Ö	Ö	Ö	0.00%
29	ő	Ö	Ö	ő	Ö	Ö	Ö	ő	Ö	Ö	Ö	ő	Ö	ő	Ö	ő	0.00%
28	ő	Ö	Ö	Ö	Ö	Ö	Ö	ő	Ö	Ö	Ö	ő	Ö	Ö	Ö	ő	0.00%
27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
2 4 25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
23 24	0	0 0	0	0	0	0	0	0	0	0 0	0	0 0	0	0	0	0	0.00% 0.00%
22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
15	ŏ	ŏ	ő	ŏ	ŏ	ő	ő	ŏ	ő	ő	ŏ	ŏ	ő	ŏ	ő	ŏ	0.00%
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
9 10	0	0	0	0	1 0	0	0	0	0	0	0	0	0	0	0	0	7.69% 0.00%
8 9	0	0 0	0	0	0	0 0	0 0	0 0	0	0 0	0 0	0 0	0	0	0	0 0	0.00%
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
6	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	7.69%
5	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	7.69%
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
3	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	15.38%
2	0	0	0	1	2	0	0	0	0	1	3	0	1	0	0	0	61.54%
HOURS	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	WINDS
																	PERSISTENT

Table 2.7-39 Wind Direction Persistence Summaries - Fermi Site 60-Meter Level

Number of Occurrences for Winds Blowing from the Same 22.5° Direction 2003-2007 All Wind Speeds

HOLDIS N NNE NNE ENE E ES SE SSE S SSW SW WSW WSW WW NNW																		% of PERSISTENT
3 66 80 99 97 101 105 116 117 130 113 173 173 165 135 96 21.77% 4 8 32 32 30 50 40 40 50	HOURS	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	WINDS
4 37 39 59 63 40 50 49 59 71 121 87 88 106 93 60 55 12.22% 5 20 28 35 35 22 32 44 39 50 35 33 50 44 6 66 60 51 63 51 45 45 83 34 45 83 45	2	145	146	179	199	193	199	202	213	234	263	304	279	291	297	226	195	40.38%
5 29 28 36 32 32 44 39 33 50 64 69 66 51 83 51 48 8.33% 6 6 6 12 20 27 24 34 34 28 12 19 40 48 47 33 39 22 42 25 4.80% 7 10 1 17 23 17 18 18 25 20 12 19 26 33 22 32 32 42 25 4.80% 8 11 17 23 17 18 18 15 5 4 6 6 19 11 13 9 10 10 10 13 3.77% 10 1 1 3 8 3 7 7 4 4 3 3 6 2 1 18 12 15 5 10 10 6 3 1.18% 110 1 1 3 8 3 3 7 4 4 3 3 6 2 1 18 12 15 5 10 10 6 3 1.18% 111 1 3 0 5 4 2 7 1 3 3 1 1 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1	3																	
6 6 12 20 22 24 33 4 26 12 19 40 46 42 33 39 24 25 488% 8 11 7 10 16 20 17 18 25 20 12 19 21 30 27 35 27 32 21 16 3.79% 8 11 7 10 15 20 17 18 25 20 12 19 21 30 27 35 27 22 16 3.79% 8 11 7 7 13 17 17 18 16 14 7 7 4 9 20 20 20 23 18 18 18 16 10 13 2.75% 9 10 1 1 3 3 8 7 7 4 4 3 6 6 2 16 11 2 15 5 5 10 6 8 3 17 18 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•																	
7 10 16 20 17 18 25 20 12 19 21 30 27 35 27 22 16 3.79% 8 11 7 7 13 10 18 14 7 4 4 9 26 26 26 20 19 19 10 10 18 3 1.55% 9 10 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																		
8																		
9 4 3 7 7 7 4 115 5 4 6 6 19 11 133 9 10 10 8 1.53% 1.53% 1.65%																		
10 1 3 8 3 7 4 3 6 2 16 12 15 5 10 6 6 3 1.18% 111 1 1 0 5 5 4 2 1 1 3 3 3 1 1 2 3 7 2 1 1 1 1 1 1 9 5 5 5 5 3 2 2 3 3 3 6 0.65% 112 3 3 1 2 3 7 2 1 1 1 1 1 1 9 5 5 5 5 2 3 3 3 6 0.65% 113 3 2 1 0 1 2 3 7 2 1 1 1 1 1 1 9 5 5 5 5 2 3 3 3 6 0.65% 114 1 1 1 0 0 0 0 4 1 1 1 1 0 0 0 0 0 0																		
111 1 0 5 5 4 2 1 3 3 3 1 8 8 13 8 5 3 2 0.76% 112 3 3 3 1 8 8 8 13 3 8 5 3 3 2 0.76% 113 1 1 1 1 1 9 5 5 5 5 2 3 3 3 6 0.61% 113 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		•	-	•	-	-			•					-				
12 3 1 2 3 7 2 1 1 1 1 1 9 5 5 5 2 3 3 3 6 0.61% 133 2 0 1 1 2 4 1 1 0 0 1 0 1 0 2 1 1 6 5 5 6 1 1 2 0.33%, 144 1 1 0 0 2 1 1 1 1 3 2 2 0 1 1 3 3 3 2 2 1 1 4 1 1 2 0.31%, 15 0 0 0 2 1 1 1 0 0 0 0 0 0 1 1 3 3 3 2 2 1 1 4 1 1 2 0.31%, 16 0 0 0 2 1 1 1 0 0 0 0 0 0 1 1 3 3 3 2 2 1 1 2 2 1 1 2 0.31%, 17 0 0 0 0 2 1 1 0 0 0 0 0 0 0 1 1 3 3 3 3 2 2 1 1 2 2 1 1 2 0.33%, 18 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 3 1 0 0 0 0			-			•	•		-									
13			0				•		-									
14			0			,	_	•	•		-			_	-			
15		_				4	•		•			•		-	-	•		
16						1			-					•				
17 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0		•	•		•	0	•	-	-		-	-	_	-				
18 0 0 1 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0						1		-				_				•		
19 0 0 0 2 1 2 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1				-		ó			-				_					
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		•	•	2		-		-	-	-	Ö	-	5	•	•			
21 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0									-	0		'n			-		-	
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						3			-		Ö			Ö	-			
23	22	0	0	0	0	0	0	0	0	0	1	2	1	0	0	0	0	
24 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	0	0		0	0	0	0	0	0		0	0	1	0	0	
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0.02%
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0.02%
28	26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
29		0		0		0		0	0	0	0	0	•		0			0.00%
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		•		-		0		-	•			-	•		•			
31 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0		•	•	•		•		•	-	-	-		•	•	•		•	
32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		•	-	-		0		-	•			-	•		-			
33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		•	-	-		1	-		•			-	•	-	-		-	
34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		•				•		•	-				•					
35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		•		-		•	•	-	•			-	•		-			
36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		•	-	-		•			-			-		-	-		-	
37		•		-		•		-			-	-	•		-			
38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		•				•			•									
39		-	-	-		-							-	-	-			
40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		•		•		•			•			•	•		•		•	
41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		•	-	-		0	-	-	-			-	0	-	-		•	
42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				-		•			-				-		-			
43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		•		•		•		•	•	•		•	· ·		•	•	•	
44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		•	-	-		•		•	-			-	•	-	-	-	-	
45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-				•	-		-				-				-	
46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		ō		Ō	Ō	Ō	Ō	ō	Ō		Ō	Ō	Ō		Ō	ō	Ō	
47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	0	0		0		0	0			0	0	0	0		0	
% of PERSISTENT 3.58% 3.79% 5.22% 5.24% 5.20% 5.66% 5.36% 5.27% 6.17% 8.38% 8.93% 8.85% 8.39% 8.16% 6.39% 5.40% DIRECTION AVE PERSISTENT 3.51 3.39 4.06 3.66 4.06 3.86 3.47 3.27 3.41 4.29 4.03 4.45 3.87 3.95 3.77 3.86	47			0					0	0					0			0.00%
PERSISTENT 3.58% 3.79% 5.22% 5.24% 5.20% 5.66% 5.36% 5.27% 6.17% 8.38% 8.93% 8.85% 8.39% 8.16% 6.39% 5.40% DIRECTION AVE PERSISTENT 3.51 3.39 4.06 3.66 4.06 3.86 3.47 3.27 3.41 4.29 4.03 4.45 3.87 3.95 3.77 3.86		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
DIRECTION AVE PERSISTENT 3.51 3.39 4.06 3.66 4.06 3.86 3.47 3.27 3.41 4.29 4.03 4.45 3.87 3.95 3.77 3.86		3 58%	3 79%	5 22%	5 24%	5 20%	5 66%	5.36%	5 27%	6 17%	8 38%	8 93%	8 85%	8 39%	8 16%	6.39%	5.40%	
PERSISTENT 3.51 3.39 4.06 3.66 4.06 3.86 3.47 3.27 3.41 4.29 4.03 4.45 3.87 3.95 3.77 3.86	DIRECTION	0.00 /0	J.1 J /0	J.22 /0	J.24 /0	3.20 /0	3.00 /8	3.3078	J.21 /0	0.1770	0.00 /0	0.5570	0.00 /0	0.00 /0	0.1070	0.00/0	J.40 /0	
	AVE	0.54	0.00	4.00		4.00	0.00	0.47	0.07	0.44	4.00	4.00	4.45	0.07	0.05		0.00	
		3.51	3.39	4.06	3.66	4.06	3.86	3.47	3.27	3.41	4.29	4.03	4.45	3.87	3.95	3.77	3.86	

THE LONGEST PERSISTENT WIND WAS FROM THE WEST BY SOUTHWEST AND LASTED 41 HOURS

Table 2.7-40 Wind Direction Persistence Summaries - Fermi Site 60-Meter Level

Number of Occurrences for Winds Blowing from the Same 22.5° Direction 2003-2007

0-5 MPH

																	PERSISTENT
HOURS	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	WINDS
2	10	22	20	13	12	15	10	18	16	10	15	12	5	21	5	16	81.48%
3	2	1	3	3	2	3	1	6	2	1	1	1	Ö	1	4	3	12.59%
4	0	0	1	0	1	0	0	0	0	1	0	0	0	1	0	1	1.85%
5	1	0	2	0	0	0	0	0	1	1	0	0	0	1	0	0	2.22%
6	0	0	1	1	0	1	0	0	0	0	0	0	0	0	0	0	1.11%
7	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0.37%
8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
10	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0.37%
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
29	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
32	0	0 0	0	0	0	0	0	0 0	0	0 0	0	0	0 0	0	0	0 0	0.00%
33	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0.00%
34	•	-	•	0	0	•	-	•	0	0	-	0	0	0	0	-	0.00%
35 36	0	0 0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0	0 0	0.00% 0.00%
36 37	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
38	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
39	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
41	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
42	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
43	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
44	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
46	0	0	Ô	0	Ô	0	0	Õ	Ö	Õ	0	0	0	Ô	Ö	0	0.00%
47	0	Ö	Ô	0	Ô	0	Ö	Õ	ő	ő	0	Ö	0	Ô	Ö	0	0.00%
48	Ö	Ö	Ö	Ö	Ö	Ö	ő	ő	ő	ő	Ö	Ö	Ö	Ö	Ö	ő	0.00%
% of PERSISTENT DIRECTION	4.81%	8.52%	10.37%	6.67%	5.56%	7.04%	4.07%	8.89%	7.04%	4.81%	5.93%	4.81%	1.85%	8.89%	3.33%	7.41%	

Table 2.7-41 Wind Direction Persistence Summaries - Fermi Site 60-Meter Level

Number of Occurrences for Winds Blowing from the Same 22.5° Direction 2003-2007 5-10 MPH

___ % of

																	PERSISTENT
HOURS	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	WINDS
2	61	54	110	89	87	104	135	118	108	105	97	83	107	102	94	106	62.42%
3	13	24	52	31	21	39	48	55	50	27	30	29	40	36	27	39	22.45%
4	5	9	20	14	4	21	18	22	21	17	12	10	6	18	11	9	8.68%
5	4	6	11	8	5	11	13	12	5	3	4	2	5	0	5	6	4.00%
6	1	0	5	1	0	2	8	3	1	2	1	2	0	0	1	2	1.16%
7	0	0	0	0	0	4	2	1	1	2	1	0	1	0	2	1	0.60%
8	0	0	2	0	0	0	0	0	0	0	0	0	0	1	0	0	0.12%
9	1	0	0	1	0	1	0	0	0	1	0	1	0	1	1	1	0.32%
10	0	1	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0.12%
11	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0.08%
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
13	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0.04%
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
18 19	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0.00%
20	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0.00% 0.00%
20 21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
26	0	0	0	0	0	0	0	0	n	0	0	0	0	0	0	0	0.00%
27	0	0	0	0	n	0	0	0	0	0	0	0	0	0	0	0	0.00%
28	Ö	0	Ô	0	ů.	0	0	0	ñ	0	0	Ö	0	Ô	ů.	Ö	0.00%
29	ő	Ö	Ô	0	ů.	0	Ö	n o	ñ	0	0	Ö	0	Ô	ů.	Ö	0.00%
30	Õ	Ö	Ö	Ö	Õ	0	Õ	Õ	Õ	Õ	Ö	Ö	Ö	Ö	Õ	Ö	0.00%
31	0	0	Ö	0	0	0	Ō	0	0	0	0	0	0	Ō	0	0	0.00%
32	0	Ō	Ö	0	0	0	Ō	0	0	0	0	Ö	0	Ō	0	0	0.00%
33	Ö	Ō	Ö	Ō	Ö	Ö	Ō	Ō	Ö	Ō	Ö	Ö	Ö	Ö	Ö	Ö	0.00%
34	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
35	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
36	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
37	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
38	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
39	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
41	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
42	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
43	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
44	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
47	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
48	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
% of PERSISTENT DIRECTION	3.40%	3.76%	8.00%	5.76%	4.68%	7.28%	9.00%	8.48%	7.48%	6.28%	5.80%	5.12%	6.36%	6.32%	5.64%	6.60%	

Table 2.7-42 Wind Direction Persistence Summaries - Fermi Site 60-Meter Level

Number of Occurrences for Winds Blowing from the Same 22.5° Direction 2003-2007 10-15 MPH

HOURS	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	wsw	W	WNW	NW	NNW	PERSISTENT WINDS
2	75	58	93	92	95	99	98	77	104	159	172	185	160	180	142	117	52.02%
3	33	32	40	34	36	41	30	32	35	69	92	104	82	67	66	61	23.31%
4	18	9	22	21	13	14	22	12	19	37	32	52	45	34	34	22	11.08%
5	6	7	15	13	7	6	6	9	10	20	28	20	20	31	18	24	6.55%
6	2	1	10	7	2	8	6	3	11	11	8	14	13	7	5	5	3.08%
7	2	2	3	1	2	7	3	2	0	7	4	9	5	3	6	5	1.66%
8	2	2	6	2	1	1	1	1	0	7	4	5	1	5	3	6	1.28%
9	0	0	1	0	0	0	0	0	1	1	2	1	2	1	2	0	0.30%
10	0	0	0	1	0	0	0	1	0	1	3	1	2	0	1	1	0.30%
11	0	0	1	0	0	0	0	0	0	0	1	2	1	1	0	0	0.16%
12	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0.08%
13	0	0	1	0	0	0	0	0	0	1	0	0	0	1	0	0	0.08%
14	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0.03%
15	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0.05%
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
28	0	0	0	0	•	0	0	0	0	0	•	0	0	0	0	0	0.00%
29 30	0 0	0	0	0	0 0	0	0	0 0	0 0	0	0	0	0	0 0	0	0	0.00% 0.00%
31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
34	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
35	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
36	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
37	0	0	0	Ö	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
38	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
39	0	0	0	0	0	0	0	0	0	0	0	0	0	Ö	0	0	0.00%
40	0	0	Ô	Ô	0	0	0	0	0	0	Ô	0	0	Ö	0	0	0.00%
41	0	Ö	Ô	Ô	0	0	0	0	0	0	Ô	0	0	Ö	0	0	0.00%
42	Ö	ő	ő	ŏ	Ö	Ö	Ö	ő	ő	ő	ŏ	ő	ő	ő	ő	Ö	0.00%
43	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	0.00%
44	Ō	Ō	Ö	Ō	Ō	0	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ö	Ō	0	0.00%
45	Ō	Ō	Ö	Ō	Ō	Ō	Ō	Ō	Ō	Ö	Ō	Ō	Ō	Ö	Ö	0	0.00%
46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
47	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
48	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
% of PERSISTENT DIRECTION	3.77%	3.03%	5.24%	4.67%	4.26%	4.80%	4.53%	3.74%	4.91%	8.54%	9.44%	10.78%	9.06%	9.03%	7.59%	6.60%	

Table 2.7-43 Wind Direction Persistence Summaries - Fermi Site 60-Meter Level

Number of Occurrences for Winds Blowing from the Same 22.5° Direction 2003-2007 15-20 MPH

HOURS	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	wsw	W	WNW	NW	NNW	% of PERSISTENT WINDS
2	33	30	31	44	67	55	36	31	45	117	116	96	81	70	61	32	49.68%
3	33 11	30 18	17	18	26	26	36 15	31 17	45 29	53	53	96 63	44	70 39	24	3∠ 5	24.08%
J /	5	7	10	15	14	14	5	2	9	29	18	30	22	15	10	8	11.20%
4	5	6	8	15	9	9	5 4	2	9 7	29 18	16	22	9	18	5	4	7.31%
5 6	1	1	2	0	3	4	4	2	4	5	5	8	9 11	3	5 5	4	3.10%
7	2	0	3	2	3	2	0	0	1	6	6	8	1	2	2	4	2.05%
0	4	1	1	1	0	4	0	1	0	4	1	3	1	2	1	1	1.00%
9	0	0	0	0	0	0	0	'n	0	2	1	1	3	3	0	2	0.63%
10	0	0	1	0	3	0	0	0	0	2	0	2	1	0	0	0	0.63%
11	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0.47 %
12	0	0	0	0	0	0	0	0	0	'n	0	0	1	0	0	0	0.11%
13	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0.05%
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.05%
15	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0.00%
16	0	0	0	0	0	0	0	0	0	0	0	2	1	0	0	0	0.11%
17	0	0	0	0	0	0	0	0	0	0	0	0	Ó	0	0	0	0.00%
18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
27	0	0	0	0	0	0	0	0	ő	0	0	0	0	0	0	0	0.00%
28	Ö	ő	0	Ô	Ô	0	ő	Õ	Ö	Õ	ő	ő	0	0	0	ő	0.00%
29	0	ő	0	Ô	Ô	0	Ö	n o	ů.	n o	Ö	Ö	0	0	0	Ö	0.00%
30	Ö	ŏ	0	Ô	Õ	0	ŏ	ñ	ő	ő	ő	ŏ	Ô	0	Ô	ŏ	0.00%
31	0	ő	0	Ô	Ô	0	ő	Õ	Ö	Õ	Ö	Ö	0	0	0	Ö	0.00%
32	0	ő	0	Ô	Ô	0	Ö	Õ	ů.	n o	Ö	Ö	0	0	0	Ö	0.00%
33	Ö	ŏ	Ö	Ô	Õ	Ö	ő	ő	ñ	ñ	ő	ő	Ö	0	Ô	ŏ	0.00%
34	0	Ô	0	0	Ô	0	Ö	ñ	ñ	Ô	0	0	Ô	0	Ô	Ô	0.00%
35	0	Ô	0	0	Ô	0	Ö	Ô	ñ	Ö	0	0	Ô	0	Ô	0	0.00%
36	0	0	0	0	0	0	ő	0	0	0	ő	0	0	0	0	0	0.00%
37	0	ő	0	Ô	Ô	0	Ö	Õ	Ö	Õ	Ö	Ö	0	0	0	Ö	0.00%
38	0	ő	0	Ô	Ô	0	ő	Õ	Ö	Õ	Ö	Ö	0	0	0	Ö	0.00%
39	ő	ŏ	ő	ő	ŏ	Ö	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ő	ő	ő	ŏ	0.00%
40	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	0.00%
41	0	Ô	0	0	0	0	Ô	Ô	Ô	Ô	Ö	0	Ô	0	Ô	0	0.00%
42	Ö	ő	Ö	Ö	Ö	Ö	ő	ő	ő	ő	Ö	Ö	Ö	Ö	ő	Ö	0.00%
43	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ö	Ō	Ō	Ō	Ō	Ō	0.00%
44	Ö	Ō	Ö	Ö	Ö	Ö	Ō	0	Ō	0	Ö	Ō	Ō	Ö	Ō	Ō	0.00%
45	Ö	ő	Ö	Ö	Ö	Ö	ő	ő	ő	ő	Ö	Ö	Ö	Ö	ő	Ö	0.00%
46	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	0.00%
47	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	0.00%
48	Ö	Ö	Ō	Ō	Ö	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	0.00%
% of PERSISTENT DIRECTION	2.84%	3.31%	3.84%	4.26%	6.57%	5.84%	3.21%	2.89%	4.99%	12.46%	11.41%	12.51%	9.20%	7.99%	5.68%	3.00%	

Table 2.7-44 Wind Direction Persistence Summaries - Fermi Site 60-Meter Level

Number of Occurrences for Winds Blowing from the Same 22.5° Direction 2003-2007 >20 MPH

																	PERSISTENT
HOURS	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	WINDS
2	7	7	9	14	37	20	9	9	16	47	48	36	34	33	14	10	49.86%
3	5	3	1	9	14	10	3	3	8	27	17	26	13	23	8	5	24.93%
4	2	2	2	2	9	1	3	0	6	12	11	5	10	3	6	5	11.25%
5	2	1	0	5	6	1	0	0	1	3	7	7	5	4	3	0	6.41%
6	1	ó	Ö	Ö	3	1	Õ	Õ	Ó	3	5	2	1	Ó	2	1	2.71%
7	0	0	0	1	0	1	0	0	0	2	1	2	0	0	0	1	1.14%
8	0	0	0	1	1	0	0	0	0	3	2	2	0	3	1	1	1.99%
9	Ö	ő	Ö	o O	o O	Ö	ő	Õ	Õ	Ö	1	1	Ö	Õ	o O	0	0.28%
10	0	0	0	Ö	0	0	0	0	0	0	2	0	0	1	1	0	0.57%
11	0	0	1	Ô	0	0	0	0	0	0	0	2	0	n	0	0	0.43%
12	Ö	ő	Ó	Ö	Ö	Ö	Õ	Õ	Õ	Ö	Ö	ō	Ö	Õ	Ö	Ö	0.00%
13	0	0	0	Ô	0	0	0	0	0	0	0	0	0	Ô	0	0	0.00%
14	0	Ô	0	0	0	0	Ô	Ô	1	0	1	Ô	Ô	Ô	0	Ô	0.28%
15	Ö	ő	Ö	Ô	Ô	Ö	Õ	Õ	'n	Ö	o O	1	Ö	ñ	Ô	Ö	0.14%
16	0	Ô	0	0	0	0	Ô	0	Ô	0	0	0	Ô	Ô	0	0	0.00%
17	0	Ô	0	0	0	0	Ô	Ô	ñ	0	0	Ô	Ô	ñ	0	0	0.00%
18	Ö	ő	0	Ô	Ö	Ö	ő	0	ñ	Ö	Ö	ő	Ö	ñ	Ö	ő	0.00%
19	0	Ô	0	0	0	0	Ô	0	Ô	0	0	Ô	Ô	Ô	0	0	0.00%
20	0	Ô	0	Ô	0	0	Ô	Ô	ñ	0	0	Ô	Ô	ñ	0	0	0.00%
21	Ö	ő	0	Ô	Ö	Ö	ŏ	0	ñ	Ö	Ö	ő	Ö	ñ	Ö	ő	0.00%
22	0	Ô	0	0	0	0	Ô	0	Ô	0	0	Ô	Ô	Ô	0	0	0.00%
23	0	ő	0	Ô	0	0	Ö	0	ů.	0	0	Õ	0	ñ	0	Ö	0.00%
24	Ö	ő	0	Ô	Ö	Ö	ő	0	ñ	Ö	Ö	ő	Ö	ñ	Ö	ő	0.00%
25	0	Ô	0	Ô	0	0	Ô	Ô	ñ	0	0	Ô	Ô	ñ	0	0	0.00%
26	0	ő	0	Ô	0	0	Ö	0	ů.	0	0	Õ	0	ñ	0	Ô	0.00%
27	Ö	ő	0	Ô	Ö	Ö	ő	0	ñ	Ö	Ö	ő	Ô	ñ	Ö	ő	0.00%
28	0	Ô	0	0	0	0	Ô	Ô	ñ	0	0	Ô	Ô	Ô	0	0	0.00%
29	0	Ô	0	0	0	0	Ô	Ô	ñ	0	0	Ô	Ô	Ô	0	0	0.00%
30	Ö	ő	Ö	Ô	Ô	Ö	Õ	Õ	ñ	Ö	Ö	ő	Ö	ñ	Ô	Ö	0.00%
31	0	Ô	0	0	0	0	Ô	Ô	ñ	0	0	Ô	Ô	Ô	0	0	0.00%
32	0	Ô	0	Ô	0	0	Ô	Ô	ñ	0	0	Ô	Ô	ñ	0	0	0.00%
33	Ö	ő	Ö	Ô	Ô	Ö	ő	Õ	ñ	Ö	Ö	ő	Ö	ñ	Ö	Ö	0.00%
34	0	Ô	0	0	0	0	Ô	Ô	ñ	0	0	Ô	Ô	Ô	0	0	0.00%
35	0	Ô	0	0	0	0	Ô	Ô	ñ	0	0	Ô	Ô	Ô	0	0	0.00%
36	ő	ŏ	Ö	ŏ	Ö	Ö	ŏ	ő	ŏ	ő	Ö	ŏ	ő	ŏ	Ö	ŏ	0.00%
37	0	Ô	0	0	0	0	Ô	Ô	Ô	0	0	Ô	Ô	Ō	0	0	0.00%
38	0	Ô	0	0	0	0	Ô	Ô	Ô	0	0	Ô	Ô	Ô	0	0	0.00%
39	Ö	ő	Ö	Ö	Ö	Ö	ő	Ö	ŏ	Ö	Ö	ő	Ö	Ŏ	Ö	Ö	0.00%
40	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	0.00%
41	Ö	Ö	Ö	Ō	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ō	Ö	Ö	0.00%
42	Ö	ő	Ö	Ō	Ö	Ö	ő	Ö	ő	Ö	Ö	ő	Ö	Ō	Ö	Ö	0.00%
43	Ö	Ō	Ö	0	Ö	Ö	Ō	0	Ō	Ö	Ö	0	Ō	0	Ö	Ō	0.00%
44	Ö	Ō	Ö	Ö	Ö	Ö	Ō	0	Ō	Ö	Ö	0	Ō	Ō	Ö	Ō	0.00%
45	Ö	ő	Ö	Ö	Ö	Ö	ő	Ö	ő	Ö	Ö	ő	Ö	Ö	Ö	Ö	0.00%
46	Ö	Ō	Ö	Ö	Ö	Ö	Ō	0	Ō	Ö	Ö	0	Ō	Ō	Ö	Ō	0.00%
47	Ö	Ō	Ö	Ö	Ö	Ö	Ō	0	Ō	Ö	Ö	0	Ō	Ō	Ö	Ō	0.00%
48	Ö	Ō	Ō	Ö	Ö	Ō	Ō	Ō	Ō	Ō	Ö	Ō	Ō	Ō	Ö	Ō	0.00%
% of PERSISTENT DIRECTION	2.42%	1.85%	1.85%	4.56%	9.97%	4.84%	2.14%	1.71%	4.56%	13.82%	13.53%	11.97%	8.97%	9.54%	4.99%	3.28%	

Table 2.7-45 Wind Direction Persistence Summaries - Fermi Site 60-Meter Level

Number of Occurrences for Winds Blowing from the Same 67.5° Direction 2003-2007 All Wind Speeds

HOURS	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	% of PERSISTENT WINDS
2	87	85	76	96	104	114	99	108	103	134	99	114	127	102	74	97	17.75%
3	59	54	59	83	73	75	86	89	94	90	77	106	82	68	73	70	13.58%
4	34	24	31	64	45	45	61	80	83	72	71	70	65	62	58	52	10.06%
5	39	39	40	43	33	43	47	57	59	67	59	60	50	65	40	38	8.54%
6	33	23	39	27	18	27	34	48	44	62	45	41	42	40	45	34	6.60%
7	24	25	23	26	27	30	26	33	37	37	43	40	41	29	38	30	5.58%
8	13	17	19	24	18	28	26	24	30	34	34	35	29	31	35	16	4.53%
9	13	16	24	14	25	34	24	32	21	22	22	23	26	28	25	19	4.04%
10	11	14	12	13	12	23	25	19	18	28	28	31	14	17	23	14	3.31%
11	21	12	20	18	17	10	18	16	21	19	20	17	25	18	15	9	3.03%
12	14	8	11	7	8	19	11	21	15	25	18	21	15	22	18	3	2.59%
13	10	6	13	12	13	11	11	11	19	16	12	26	17	16	11	15	2.40%
14	3	13	10	5	15	12	21	12	12	14	12	19	17	13	7	12	2.16%
15	4	4	3	6	8	7	13	9	8	11	16	11	9	13	11	12	1.59%
16	0	6	10	8	4	13	9	6	9	11	11	11	6	9	5	12	1.43%
17	3	9	5	9	8	10	5	6	5	12	6	10	12	14	11	3	1.40%
18	5	6	8	4	3	6	5	4	12	10	10	10	15	9	10	6	1.35%
19	0	5	3	8	3	4	3	2	9	7	6	4	8	9	6	11	0.97%
20	1	3	4	7	3	2	6	2	3	3	7	8	10	7	5	7	0.86%
21	1	3	2	1	6	2	3	2	3	8	8	9	10	1	4	5	0.75%
22	1	3	3	3	10	2	0	2	4	6	10	6	3	8	5	1	0.73%
23	0	2	0	2	4	1	1	2	5	11	4	6	7	3	4	5	0.63%
24	2	1	4	1	4	2	2	1	5	5	8	3	1	5	3	1	0.53%
25	0	0	2	2	1	1	1	1	2	3	6	3	9	2	4	3	0.44%
26	3	1	2	2	2	1	0	2	5	6	4	8	4	5	7	3	0.60%
27	0	1	2	1	3	1	0	1	0	1	6	5	7	4	7	3	0.46%
28	0	1	2	1	3	4	3	1	1	4	2	5	6	3	3	1	0.44%
29	0	2	3	2	2	1	0	0	1	1	2	2	1	4	2	2	0.27%
30	2	1	2	0	1	1	0	0	0	0	3	5	4	2	4	1	0.29%
31	1	0	1	3	3	0	0	1	0	2	5	2	3	3	2	1	0.30%
32	1	1	2	1	1	1	0	0	2	2	6	1	7	5	1	0	0.34%
33	0	0	0	1	1	1	0	0	1	3	3	4	2	6	2	0	0.26%
34	0	1	1	0	0	0	0	0	2	3	6	3	1	2	1	0	0.22%
35	0	0	0	0	0	1	0	0	1	1	0	0	1	2	0	0	0.07%
36	Ö	Ō	1	1	1	0	Ō	Ö	1	Ö	2	2	1	2	3	Ĭ	0.16%
37	0	0	0	1	0	2	0	0	1	1	0	3	2	2	0	0	0.13%
38	0	0	1	1	2	2	0	0	1	2	2	0	0	0	Ō	1	0.13%
39	Ö	Ō	Ö	3	0	0	Ō	Ö	Ö	1	2	3	1	2	1	1	0.15%
40	1	1	1	Ō	1	2	Ō	0	Ō	0	2	3	1	1	Ó	0	0.14%
41	o O	1	1	2	0	0	Ö	Ö	Ö	1	2	Ö	Ö	1	Ö	Ö	0.09%
42	ŏ	ò	ó	ō	1	ő	ő	ő	ő	ó	1	ő	3	ó	ŏ	ĭ	0.07%
43	0	Ö	1	1	1	0	Ô	0	Ö	Ö	1	4	Ö	0	Ô	0	0.09%
44	Ö	0	Ö	Ö	Ö	1	0	0	1	1	i	0	0	0	ő	Ö	0.04%
45	ŏ	ő	Ö	1	ŏ	Ö	ő	ő	ó	ó	i	3	1	Ö	ĭ	ő	0.08%
46	Ö	Ö	1	Ö	Ö	Ö	Ö	Ö	Ö	Ö	o O	Ö	Ö	3	Ö	Ö	0.04%
47	0	Ô	Ö	1	1	0	Ô	0	Ö	1	0	0	1	0	Ö	Ö	0.04%
48+	3	2	5	4	3	ő	1	ő	1	7	15	12	11	3	2	ŏ	0.76%
% of PERSISTENT DIRECTION	4.27%	4.28%	4.90%	5.58%	5.35%	5.91%	5.93%	6.49%	7.01%	8.16%	7.65%	8.21%	7.64%	7.03%	6.21%	5.37%	
AVE PERSISTENT HOURS	6.80	7.76	8.82	8.08	8.53	7.64	6.92	6.45	7.66	8.64	10.41	9.81	9.77	9.53	8.99	7.83	

THE LONGEST PERSISTENT WIND WAS FROM THE WEST BY SOUTHWEST AND LASTED 158 HOURS

Table 2.7-46 Wind Direction Persistence Summaries - Fermi Site 60-Meter Level

Number of Occurrences for Winds Blowing from the Same 67.5° Direction 2003-2007
0-5 MPH

																	PERSISTENT
HOURS	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	WINDS
2	20	26	25	23	20	23	18	28	24	14	21	25	20	25	15	25	65.31%
3	7	12	12	5	3	6	6	7	9	5	7	4	4	5	10	10	20.78%
4	2	2	2	0	2	0	6	3	1	1	2	1	0	2	1	4	5.38%
5	1	2	3	2	0	1	1	1	1	2	2	1	2	3	2	0	4.45%
6	0	0	2	3	0	2	2	1	0	1	0	0	0	0	1	0	2.23%
7	0	0	2	1	1	1	0	0	0	0	0	0	0	0	1	0	1.11%
8	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0.19%
9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
10	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0.37%
11	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.19%
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
29	0	0 0	0	0	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0	0	0 0	0.00%
30 31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
32 33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00% 0.00%
34	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
35	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
36	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
37	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
38	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
39	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
40	0	0	0	0	0	0	Ö	Õ	Ö	Õ	0	0	0	Ö	Ô	0	0.00%
41	0	0	0	Õ	0	0	0	Õ	Ö	Õ	0	0	0	Õ	Ô	0	0.00%
42	Ö	ő	Ö	Ō	Ö	Ö	ő	ő	ő	ő	Ö	Ö	Ö	Ō	Ö	ő	0.00%
43	Ō	Ō	Ō	0	Ō	0	Ō	Ō	Ō	Ō	Ō	0	Ō	0	Ō	Ō	0.00%
44	Ō	Ō	Ō	Ō	Ō	0	Ō	Ō	Ō	Ō	Ō	0	Ō	Ö	Ō	Ō	0.00%
45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
47	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
48	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
% of PERSISTENT DIRECTION	5.57%	8.16%	8.72%	6.31%	4.82%	6.12%	6.12%	7.42%	6.49%	4.27%	5.94%	5.75%	4.82%	6.68%	5.57%	7.24%	

% of

Table 2.7-47 Wind Direction Persistence Summaries - Fermi Site 60-Meter Level

Number of Occurrences for Winds Blowing from the Same 67.5° Direction 2003-2007 5-10 MPH

HOURS	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	% of PERSISTENT WINDS
2	61	89	94	101	98	111	112	123	99	136	99	107	127	107	110	101	43.84%
3	37	69 45	94 72	51	96 51	53	80	65	99 77	55	68	49	55	57	49	65	43.64% 24.31%
3	19	23	32	30	21	41	31	49	54	29	23	29	23	23	33	23	12.64%
4	9	23 13	32 30		23	21	21	23	18	29 19	23 18	29	23 14	23 14	33 18	23 14	7.69%
5 6	9	8	30 15	16 6	23 5	12	29	23 20	4	19 5	10	23 10	5	11	7	9	7.69% 4.27%
7	0	1	6	6	2	12	10	10	10	5 5	4	3	7	9	5	6	2.51%
0	1	4	5	6	3	3	7	7	5	2	4	2	4	4	3	3	1.65%
9	2	1	3	2	0	5	5	4	1	1	1	2	2	1	3	2	0.92%
10	1	Ó	1	6	1	3	4	6	1	2	0	0	2	3	2	2	0.89%
11	0	1	3	0	1	2	3	0	1	0	0	1	1	1	4	3	0.47%
12	0	1	2	0	0	2	5 5	2	2	0	0	Ó	2	Ó	0	0	0.47%
13	0	0	0	0	0	4	1	0	1	0	0	0	0	2	1	0	0.42%
14	0	0	1	0	0	0	1	1	0	0	0	0	0	0	Ó	0	0.08%
15	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0.03%
16	0	0	0	0	0	0	0	0	0	1	0	1	Ó	0	0	0	0.05%
17	0	0	0	0	0	0	0	0	0	'n	0	0	0	0	0	0	0.00%
18	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0.05%
19	0	Ó	Ö	0	0	0	0	0	Ö	0	0	0	0	0	0	0	0.00%
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
21	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0.03%
22	0	0	Ö	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
27	0	0	0	0	0	0	0	0	ő	0	0	0	0	0	0	0	0.00%
28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
29	0	0	Ô	0	Ô	0	0	0	ñ	ñ	0	0	0	0	0	Ö	0.00%
30	Ö	ő	Ô	0	Õ	0	ő	0	ő	ő	Õ	ő	Ô	0	Ô	ő	0.00%
31	0	0	Ô	0	Ô	0	Ö	0	Ö	Õ	0	0	0	0	0	Ö	0.00%
32	0	0	Ô	0	Ô	0	0	0	ñ	ñ	0	0	0	0	0	Ö	0.00%
33	Ö	ő	ő	0	Õ	Ö	Ö	0	ñ	ñ	Õ	Ö	Ö	0	Ô	ŏ	0.00%
34	Ô	Ô	Ô	0	Ô	0	Ö	Ô	ñ	Ô	Ô	0	Ô	0	Ô	Ô	0.00%
35	Ö	Ô	0	0	Ô	0	Ö	Ô	ñ	Ö	Ô	0	Ô	0	Ô	0	0.00%
36	Ö	Ö	ő	0	Õ	Ö	ő	0	ő	ő	ő	Ö	Ö	0	Õ	ő	0.00%
37	0	0	Ô	0	Ô	0	0	0	Ö	Õ	0	0	0	0	0	Ö	0.00%
38	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	0.00%
39	ő	ő	ő	ő	ŏ	Ö	ő	ő	ŏ	ŏ	ő	ő	ő	ő	ő	ŏ	0.00%
40	Ō	Ō	Ö	0	Ō	Ō	Ō	Ō	Ō	Ō	Ō	0	Ō	Ō	Ō	Ō	0.00%
41	Ō	Ō	Ö	Ö	Ö	Ö	Ō	Ō	Ō	0	Ō	Ō	Ō	Ö	Ō	Ō	0.00%
42	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	ő	ő	ő	Ö	ő	Ö	ő	Ö	0.00%
43	Ō	Ō	Ö	0	Ō	Ō	Ō	Ō	Ō	Ō	Ō	0	Ō	Ō	Ō	Ō	0.00%
44	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
45	Ō	Ō	Ö	0	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	0.00%
46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
47	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
48	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
% of PERSISTENT DIRECTION	3.59%	4.89%	6.94%	5.86%	5.37%	6.96%	8.09%	8.11%	7.17%	6.67%	5.94%	5.94%	6.36%	6.07%	6.07%	5.97%	

Table 2.7-48 Wind Direction Persistence Summaries - Fermi Site 60-Meter Level

Number of Occurrences for Winds Blowing from the Same 67.5° Direction 2003-2007 10-15 MPH

% of

																	76 OI PERSISTENT
HOURS	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	WINDS
2													147				
2	44 34	51 33	80	92	90 54	91 70	79	78	99 44	146 81	150 92	154	87	140 73	112 67	99	35.80% 21.50%
3			50	48			44	48		47		115				52	
4	22	22	31	34	29	24	33	25	45		63	67	56	63	41	33	13.76%
5	17 10	15 6	22 14	22	11 8	15 10	19 11	20	17 17	32 25	42 22	45 25	43	52 28	40 32	33 16	9.64% 5.92%
0	5	-		8	-			11					30				
7	5 7	5 2	14	5	5 3	7 5	6	5 5	7 7	10	13	26	19	18	19 10	11	3.79% 3.08%
8 9	3	7	6 2	6 3	-	-	6 1	5 1	2	15 9	15 2	17 10	10 9	16 7	9	12 9	3.08% 1.71%
•	0	0	4	-	2	3	2	2		6	2 18	9			4		1.71% 1.82%
10		0	-	3	1	2			5	ნ 5	3		11 7	11		6	
11	2	1	5 0	2	2	1	0 1	2	1	3	3	2		6	2	0	0.89%
12	0		-	0	•	3		1	3	-	1	3 1	4	-	_	5	0.63%
13	1	0	2	1	0	0	0	0	0	3	3	1	2 0	3	3	2	0.46%
14	1	0	0	1	0	0	0	0	1	1 0	0		0	0	1	2	0.17%
15	0	0	0	· ·	1	0	0	0	0	0	3	2	1	· ·	0	0	0.15%
16	0	0	0	0	0	0	0	0	1	1	2	0	1	0	1	0	0.13%
17	0	0	1	1	0	0	0	0	2	0	1	2	0	1	1	0	0.20%
18	0	1	0	0	0	0	0	0	0	0	0	2	0	0	1	0	0.09%
19	0	0	1	0	0	0	0	0	0	0	1	0	1	0	1	0	0.09%
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0.02%
21	0	0	1	0	0	0	0	0	1	1	0	0	0	0	0	0	0.07%
22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
24	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	2	0.07%
25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
29	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
31	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0.02%
32	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0.02%
33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
34	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
35	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
36	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
37	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
38	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
39	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
41	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
42	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
43	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
44	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
47	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
48	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
% of PERSISTENT DIRECTION	3.16%	3.12%	5.05%	4.90%	4.46%	5.01%	4.38%	4.29%	5.46%	8.34%	9.38%	10.44%	9.27%	9.10%	7.52%	6.11%	

Table 2.7-49 Wind Direction Persistence Summaries - Fermi Site 60-Meter Level

Number of Occurrences for Winds Blowing from the Same 67.5° Direction 2003-2007 15-20 MPH

% of

																	76 OI PERSISTENT
HOURS	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	WINDS
2	23	27	37	34	69	53	31	31	51	106	100	96	80	67		33	39.16%
2	23 15	16	20	32	30	28	21	22	26	62	53	96 57	50	42	53 27	33 9	22.42%
3	15 7	6	10	16	22	20	13	6	18	36	33	40	27	24	18	14	13.67%
4	3	o 7		5	22 14	14	7	4		26	26	40 19			9	9	8.75%
5	3	9	9 4	5 4	6	14 7	2	4	12 6	26 16	13	16	16 11	19 10	9 7	9 6	5.45%
0	3	2	3	6	-	, 5	_	0		11	11	12		2		0	
,	3	3	-	0	4 2	2	0 1	2	5	11 5	7		10 6	2	6	2	3.52%
8 9	1	0	2	0	_	2	•	0	1	5 1		6	6 4	4	3		2.11%
•	5	-	-	0	2	1	0	-	4	•	2	3	4	3	1	2	1.23%
10	1	0	2	· ·	4	0	1	0	2	5	3	5	4	2	0	0	1.27%
11	0	1	0	0	0	1	0	0	1	3	1	4	0	2	1	0	0.62%
12	1	0	0	0	0	0	0	1	1		3	1	2	1	0	0	0.48%
13	0	0	0	0	0	0	0	0	1	0	3	1	0	0	0	0	0.22%
14	0	0	1	0	1	0	0	0	0	1	1	2	1	0	0	0	0.31%
15	0	0	0	1	0	0	0	0	0	1	1	3	0	0	0	1	0.31%
16	1	0	0	0	0	0	0	0	0	1	0	1	2	0	0	0	0.22%
17	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	0.13%
18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
20	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0.09%
21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
22	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0.04%
23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
29	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
34	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
35	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
36	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
37	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
38	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
39	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
41	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
42	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
43	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
44	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
45	Ö	Ō	Ö	Ö	Ö	Ö	Ö	Ō	Ö	Ö	Ö	Ō	Ö	Ö	Ö	Ö	0.00%
46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
47	Ō	Ō	Ö	Ö	Ö	Ö	Ō	0	Ö	Ö	Ō	0	Ö	Ö	Ö	Ō	0.00%
48	Ö	Ö	Ö	Ö	Ö	Ö	Ö	ő	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	0.00%
% of PERSISTENT	2.77%	3.16%	3.87%	4.35%	6.77%	5.80%	3.34%	3.08%	5.63%	12.13%	11.30%	11.82%	9.41%	7.74%	5.49%	3.34%	
DIRECTION																	

Table 2.7-50 Wind Direction Persistence Summaries - Fermi Site 60-Meter Level

Number of Occurrences for Winds Blowing from the Same 67.5° Direction 2003-2007 >20 MPH

HOURS	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	% of PERSISTENT WINDS
2	5	8	8	15	34	20	7	10	21	48	43	34	36	33	18	8	41.28%
3	5	3	2	9	17	16	3	3	8	32	28	29	25	27	8	5	26.10%
4	2	2	2	4	17	4	6	1	3	15	13	10	15	4	7	4	12.93%
-	3	1	0	5	8	2	0	2	3	6	16	6	5	5	3	3	8.07%
5	3	1	1	2	3	4	0	0	4	5	4	7	3	0	2	3	4.15%
7	1	0	Ó	4	2	0	0	1	1	1	3	4	0	1	1	2	2.14%
,	0	0	0	1	1	0	1	'n	1	4	2	3	0	1	2	2	2.14%
9	0	0	0	0	0	0	0	0	0	0	2	2	1	0	0	0	0.59%
9 10	0	0	0	0	0	0	0	0	1	1	2	0	0	0	1	0	0.59%
	-	0	0	•	0	•		-	0	1	_	2	•	0	0	-	0.71%
11	0		1	0	0	0	0	0	-	1	0	0	0 1	0	0	0	
12	0	0	0	0	0	0	0	0	0 1		0	0		0	0	1	0.47%
13	•	0	0	· ·	0	1	0	0		0	1	•	0	0	0	0	0.36%
14	0	0	0	0	0	0	0	0	1 0	0	0	0	0	1	0	0	0.24%
15	0	0	0	0	0	0	0	0	•	•	0	1	0	0	0	0	0.12%
16	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0.12%
17	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0.12%
18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
29	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
34	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
35	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
36	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
37	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
38	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
39	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
41	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
42	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
43	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
44	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
47	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
48	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
% of PERSISTENT DIRECTION	2.02%	1.78%	1.66%	4.39%	9.73%	5.22%	2.02%	2.02%	5.22%	13.64%	13.64%	11.63%	10.20%	8.78%	4.98%	3.08%	

Table 2.7-51 Wind Direction Persistence Summaries - Detroit Metropolitan Airport 10 Meter Level

Number of Occurrences for Winds Blowing from the Same 22.5° Direction 2003-2007 All Wind Speeds $^{\rm (A)}$

					_												% of PERSISTENT
HOURS 2	N 275	NNE	NE 160	ENE	E 254	ESE	SE	SSE	S 372	SSW	SW	WSW	W 331	WNW	NW 241	NNW	WINDS
	275 146	210	169	162 75		105	155 44	190		360	353	329	179	352	117	235	51.26% 22.53%
3	81	111 61	55 23	75 20	93 56	26 13	29	93 48	206 107	138 66	154 89	139 61	179	129 74	31	94 32	22.53% 11.25%
5	30	39	23	18	37	5	10	18	59	34	31	52	43	19	21	27	5.81%
6	26	16	6	8	27	0	6	4	27	26	24	15	35	19	10	5	3.18%
7	15	12	5	4	15	0	1	1	25	14	19	9	12	14	8	4	1.98%
8	9	7	2	2	10	0	Ö	2	4	13	7	7	14	11	2	1	1.14%
9	13	6	1	0	4	0	0	0	8	10	14	5	5	2	0	4	0.90%
10	4	1	3	1	1	2	2	0	0	3	3	2	9	0	1	4	0.45%
11	5	2	Ö	1	1	2	0	Ö	6	2	3	1	5	1	2	Ó	0.39%
12	6	2	1	0	0	0	0	0	5	0	5	4	4	3	0	0	0.38%
13	1	0	1	0	3	0	0	0	1	3	1	1	3	0	1	0	0.19%
14	2	4	1	0	2	0	0	0	2	0	0	0	2	0	0	0	0.16%
15	2	0	0	0	2	0	0	0	1	0	1	0	1	0	0	2	0.11%
16	0	0	0	0	2	0	0	0	2	0	0	1	0	0	2	0	0.09%
17	1	2	0	0	1	0	0	0	3	0	0	0	0	0	0	0	0.09%
18	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.03%
19	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.03%
20	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.01%
21	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.03%
22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
24	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.01%
25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0.00%
29 30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00% 0.00%
31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
33	0	Ö	0	Ö	Ö	0	0	0	0	Ö	Ö	0	0	Ö	0	Ö	0.00%
34	0	0	0	0	0	0	0	0	0	Ö	0	0	0	Ö	0	Ö	0.00%
35	Ö	ő	Ö	Ö	ő	Ö	Ö	ő	Ö	ő	ő	Ö	Ö	Ö	Ö	ő	0.00%
36	Ö	Ö	Ö	Ö	0	0	0	0	0	Ö	Ö	0	0	Ö	0	Ö	0.00%
37	0	0	0	0	Ö	0	0	Ō	0	0	Ō	0	0	0	0	Ō	0.00%
38	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ō	Ö	0.00%
39	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
41	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
42	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
43	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
44	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
47	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
48	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
% of																	
PERSISTENT DIRECTION	7.79%	5.95%	3.61%	3.64%	6.36%	1.92%	3.09%	4.46%	10.37%	8.38%	8.82%	7.84%	9.39%	7.81%	5.46%	5.11%	
DIIVECTION	1.13/0	3.3370	3.0170	3.04 /0	0.3076	1.32/0	3.09/0	4.4070	10.57 /0	0.5070	0.02 /0	7.04/0	3.3370	7.0170	J.40 /0	J. 1170	
AVE																	
PERSISTENT																	
HOURS	3.67	3.52	3.00	2.86	3.44	2.66	2.72	2.78	3.37	3.15	3.25	3.10	3.42	2.96	2.92	2.91	

^{*} THE LONGEST PERSISTENT WIND WAS FROM THE SOUTH BY SOUTHWEST AND LASTED 24 HOURS (A) Hourly wind speeds of 3 knots or less (3.45) are reported as calm hours.

Table 2.7-52 Wind Direction Persistence Summaries - Detroit Metropolitan Airport 10 Meter Level

Number of Occurrences for Winds Blowing from the Same 22.5° Direction 2003-2007 0-5 MPH $^{\rm (A)}$

																	% of PERSISTENT
HOURS	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	WINDS
2	51	45	24	36	87	22	25	39	104	33	3	10	33	31	19	26	78.82%
3	24	16	2	7	13	4	2	3	29	4	2	0	5	3	3	2	15.95%
4	0	2	0	1	7	0	3	1	7	2	0	Ö	0	1	Õ	2	3.49%
5	ő	3	ő	i	2	Ö	ő	Ö	2	1	ő	1	ő	ò	ŏ	ō	1.34%
6	Ô	Ö	Ö	0	1	Ö	0	Ö	2	0	0	0	0	Ö	Ö	Ö	0.40%
7	Ô	Ö	Ö	Ô	0	Ö	Ô	ñ	0	Ô	0	Ö	0	Ö	Ö	Ö	0.00%
8	Õ	Ö	Ö	Ö	Ö	Ö	Ö	ő	Ö	Ö	Ö	Ö	Ö	Õ	ő	Ö	0.00%
9	0	Ō	0	0	0	0	Ö	0	0	0	0	Ō	0	0	Ō	0	0.00%
10	0	Ö	Ö	0	0	Ö	Ö	Ö	Ö	0	Ö	Ö	0	Ō	Ō	Ō	0.00%
11	Ö	Ö	Ö	Ō	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	0.00%
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
29	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
34	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
35	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
36	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
37	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
38	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
39	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
41	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
42	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
43	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
44	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
47	0 0	0	0	0 0	0	0 0	0	0	0 0	0 0	0	0	0	0 0	0 0	0 0	0.00% 0.00%
48 % of	U	0	U	U	U	U	0	0	U	U	U	U	U	U	U	U	0.00%
PERSISTENT DIRECTION	10.05%	8.85%	3.49%	6.03%	14.75%	3.49%	4.02%	5.76%	19.30%	5.36%	0.67%	1.47%	5.09%	4.69%	2.95%	4.02%	

 $^{^{(\}mbox{\scriptsize A})}$ Hourly wind speeds of 3 knots or less (3.45) are reported as calm hours.

Table 2.7-53 Wind Direction Persistence Summaries - Detroit Metropolitan Airport 10 Meter Level

Number of Occurrences for Winds Blowing from the Same 22.5° Direction 2003-2007 5-10 MPH

																	% of PERSISTENT
HOURS	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	WINDS
2	175	138	87	75	179	46	78	118	230	153	83	103	160	139	99	121	66.27%
3	74	42	31	25	53	9	22	31	77	46	26	24	65	35	30	25	20.54%
4	19	27	4	6	23	3	11	16	34	21	4	12	16	11	3	6	7.21%
5	9	8	4	3	17	5	3	2	10	5	3	5	11	3	0	4	3.07%
6	7	6	2	2	4	0	2	1	8	3	0	2	2	3	2	0	1.47%
7	4	6	1	0	3	Ô	0	0	1	1	0	0	0	0	0	Ö	0.53%
8	2	1	ó	1	2	ő	Õ	ő	i	ó	Ö	ő	Ö	1	ő	ŏ	0.27%
9	1	1	Ö	'n	0	0	Ô	Ö	5	Ô	Ô	1	Ö	Ö	Ö	Ö	0.27%
10	0	1	Ö	0	Ô	Ö	Ô	Ö	Ö	Ô	0	o O	Ö	Ö	Ö	Ö	0.03%
11	2	1	Ö	Ö	1	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	3	Ö	Ö	0.23%
12	0	Ó	Ö	0	0	Ö	Ō	Ö	Ö	0	Ö	Ö	0	Ō	Ō	Ō	0.00%
13	0	Ō	Ö	0	0	Ö	Ō	Ö	Ö	1	Ö	Ö	0	Ō	Ō	Ō	0.03%
14	Ö	Ö	Ö	Ö	Ō	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ō	Ö	0.00%
15	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0.03%
16	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.03%
17	Ö	Ó	Ö	Ö	Ō	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ō	Ö	0.00%
18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
29	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
34	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
35	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
36	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
37	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
38	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
39	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
41	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
42	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
43	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
44	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
47	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
48	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
% of PERSISTENT DIRECTION	9.79%	7.75%	4.31%	3.74%	9.45%	2.10%	3.87%	5.61%	12.22%	7.68%	3.87%	4.91%	8.48%	6.51%	4.48%	5.21%	

Table 2.7-54 Wind Direction Persistence Summaries - Detroit Metropolitan Airport 10 Meter Level

Number of Occurrences for Winds Blowing from the Same 22.5° Direction 2003-2007 10-15 MPH

HOURS	N	NNE	NE	ENE	E	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	% of PERSISTENT WINDS
2	88	56	48	43	33	8	26	47	121	127	174	137	134	132	103	80	60.99%
3	29	27	19	15	23	4	6	11	52	45	60	36	55	42	24	24	21.21%
4	20	13	2	7	7	4	2	8	20	30	21	20	26	11	9	11	9.48%
5	8	8	5	6	10	o O	2	Ö	6	8	15	14	6	5	8	7	4.85%
6	4	1	1	0	2	Ö	0	Ö	5	7	7	2	7	1	2	1	1.80%
7	0	4	2	ñ	0	2	Ô	0	1	0	1	1	1	2	0	Ö	0.63%
8	1	Ó	2	Ö	Ö	0	Ö	Ö	1	1	1	2	2	0	Ö	Ö	0.45%
9	2	2	1	0	0	Ö	Ō	Ö	0	2	0	0	0	Ö	Ö	0	0.31%
10	1	0	Ó	0	0	Ō	Ō	Ö	Ö	0	Ö	Ö	0	Ö	Ō	0	0.04%
11	0	Ö	ő	Õ	1	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	0.04%
12	2	Ö	Ō	0	0	Ō	Ō	Ö	Ö	0	Ö	Ö	0	Ö	Ö	0	0.09%
13	0	Ö	Ö	Ô	Ô	Ö	Ô	Ö	Ö	0	Ö	Ö	0	Ö	Ö	Ö	0.00%
14	Ö	Ö	ő	Õ	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	0.00%
15	2	0	Ō	0	0	Ō	Ō	Ö	Ö	0	0	0	0	Ö	Ö	0	0.09%
16	0	Ö	ő	0	0	Ö	Ô	Ö	Ö	0	Ö	Ö	0	Ö	Ö	Ö	0.00%
17	Ö	Ö	ő	Õ	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	0.00%
18	0	0	ő	0	0	Ô	Ô	Ö	Ö	0	Ö	0	0	Ö	Ö	Ö	0.00%
19	Ö	0	Ö	Ô	Ô	0	Ô	Ô	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	0.00%
20	Ö	Ö	ő	Õ	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	0.00%
21	0	0	Ö	Ô	0	0	Ô	Ô	Ö	0	0	0	0	0	Ö	Ö	0.00%
22	0	Ö	Ö	ñ	0	Ö	Ô	Ô	Ö	0	Ö	Ö	0	Ö	Ö	Ö	0.00%
23	Ö	ő	ŏ	ő	0	ő	ő	ő	ő	ő	Ö	ő	Ö	Ö	Ö	ő	0.00%
24	0	0	Ö	ñ	0	0	Ô	Ô	Ö	0	Ö	Ö	0	Ö	Ö	0	0.00%
25	0	Ö	Ö	Ô	0	Ö	Ô	Ô	Ö	0	Ö	Ö	0	Ö	Ö	Ö	0.00%
26	Õ	Ö	ŏ	ñ	0	ő	Õ	ő	ő	ő	Ö	Ö	Ö	Ö	Ö	ő	0.00%
27	0	0	Ö	ñ	0	0	Ô	Ô	Ö	0	0	0	0	Ö	Ö	Ö	0.00%
28	0	Ö	ő	0	0	Ô	Ô	Ö	Ö	0	0	0	0	Ö	Ö	Ö	0.00%
29	Ö	ő	ŏ	ñ	0	ő	ő	ő	ő	ő	Ö	ő	Ö	Ö	Ö	ő	0.00%
30	0	Ö	Ö	ñ	0	Ö	Ô	Ô	Ö	0	0	Ö	0	Ö	Ö	Ö	0.00%
31	0	0	ő	0	0	Ô	Ô	Ö	Ö	0	0	0	0	0	Ö	Ö	0.00%
32	Ö	ő	ŏ	ñ	0	ő	Õ	ő	ő	ő	Ö	ő	Ö	Ö	Ö	ő	0.00%
33	0	Ö	ő	n o	0	Ô	Ô	ő	Ö	0	Ö	Ö	0	Ö	Ö	Ö	0.00%
34	0	0	ő	0	0	Ô	Ô	Ö	Ö	0	0	Ö	0	Ö	Ö	0	0.00%
35	0	0	ő	0	0	Ö	0	0	Ö	0	0	0	0	0	Ö	0	0.00%
36	0	0	ő	n o	0	Ô	Ô	Ö	Ö	0	0	0	0	Ö	Ö	Ö	0.00%
37	0	0	ő	n o	0	Ô	Ô	Õ	0	0	0	0	0	Ö	Ö	Ö	0.00%
38	Ö	0	ő	0	0	Ö	0	Ö	Ö	Ö	0	0	Ö	0	Ö	0	0.00%
39	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
41	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
42	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
43	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
43	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
47	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
48	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
% of	0					0	0							U			0.0070
PERSISTENT DIRECTION	7.06%	4.99%	3.60%	3.19%	3.42%	0.81%	1.62%	2.97%	9.26%	9.89%	12.54%	9.53%	10.38%	8.67%	6.56%	5.53%	

Table 2.7-55 Wind Direction Persistence Summaries - Detroit Metropolitan Airport 10 Meter Level

Number of Occurrences for Winds Blowing from the Same 22.5° Direction 2003-2007 15-20 MPH

HOURS	N	NNE	NE	ENE	E	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	% of PERSISTENT WINDS
2	16	18	2	6	3	0	5	3	24	41	82	55	65	44	29	20	65.97%
3	12	5	1	Ö	0	Ö	Ö	Ö	11	3	25	13	31	7	5	7	19.17%
4	7	1	1	0	Ö	Ö	0	Ö	4	9	17	9	3	, O	5	1	9.11%
5	1	ò	Ö	0	ő	Ö	Ö	ő	2	2	8	5	4	1	1	4	4.47%
6	0	Ö	Ö	0	ñ	Ö	Ö	Ö	2	0	Ö	2	1	Ö	o O	0	0.80%
7	0	Ö	Ö	Ô	ñ	0	Ô	0	0	0	1	1	0	Ö	Ö	Ö	0.32%
8	0	Ö	Ŏ	Ö	Õ	Ö	Ö	Ö	Ö	Ö	1	ò	Ö	Ö	Ö	Ö	0.16%
9	Ö	0	Ö	0	0	0	0	Ō	Ö	Ö	Ó	Ö	Ö	Ö	Ö	0	0.00%
10	0	Ö	Ō	0	0	Ö	0	Ō	Ö	0	Ö	Ö	0	0	Ō	0	0.00%
11	0	Ö	Ŏ	Ö	Õ	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	0.00%
12	0	Ö	Ö	0	0	0	0	Ō	Ö	0	Ö	Ö	0	Ö	Ö	0	0.00%
13	0	Ö	Ö	Ô	ñ	Ö	Ô	Ö	Ö	0	Ö	Ö	0	Ö	Ö	Ö	0.00%
14	0	Ö	Ŏ	Ö	Õ	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	0.00%
15	0	0	Ö	0	0	0	0	Ō	Ö	0	Ö	Ö	0	Ö	Ö	0	0.00%
16	0	Ö	Ö	0	ñ	Ö	Ö	0	Ö	0	Ö	Ö	0	Ö	Ö	Ö	0.00%
17	0	Ö	Ŏ	Ö	Õ	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	0.00%
18	0	0	Ö	0	0	0	0	Ō	Ö	0	Ö	0	0	Ö	Ö	0	0.00%
19	Ö	0	Ö	0	Ô	0	Ö	0	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	0.00%
20	0	Ö	Ŏ	Ö	Õ	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	0.00%
21	0	0	Ö	0	ñ	0	Ö	0	Ö	0	0	0	0	0	Ö	Ö	0.00%
22	0	Ö	Ö	Ô	ñ	Ö	Ô	0	Ö	0	Ö	Ö	0	Ö	Ö	Ö	0.00%
23	0	ő	ŏ	0	ñ	Ö	Ö	ő	ő	Ö	ŏ	ő	Ö	Ö	ő	ő	0.00%
24	0	0	Ö	Ô	ñ	0	Ö	Ô	Ö	0	Ö	Ö	0	Ö	Ö	0	0.00%
25	0	Ö	Ö	0	Ô	Ö	Ö	0	Ö	0	Ö	Ö	0	Ö	Ö	Ö	0.00%
26	0	Ö	ŏ	0	ñ	Ö	0	ő	ő	Ö	ő	Ö	0	Ö	ő	ő	0.00%
27	0	0	Ö	Ô	ñ	0	Ô	Ô	Ö	0	0	0	0	Ö	Ö	Ö	0.00%
28	0	Ö	ő	0	Ö	0	0	Ô	Ö	0	Ô	Ö	0	Ö	Ö	Ö	0.00%
29	0	ő	ŏ	0	ñ	Ö	Ö	ő	ő	Ö	ŏ	ő	Ö	Ö	ő	ő	0.00%
30	0	Ö	Ö	Ô	ñ	Ö	Ô	Ô	Ö	0	Ö	Ö	0	Ö	Ö	Ö	0.00%
31	0	0	ő	0	n o	0	0	Ô	Ö	0	Ô	0	0	0	Ö	Ö	0.00%
32	0	ő	ŏ	0	ñ	Ö	0	ő	ő	Ö	ŏ	ő	Ö	Ö	ő	ő	0.00%
33	0	Ö	ő	0	n o	0	0	Ö	Ö	0	ő	Ö	0	Ö	Ö	Ö	0.00%
34	0	0	ő	0	Ö	0	0	Ô	Ö	0	ő	Ö	0	Ö	Ö	0	0.00%
35	0	Ö	ő	0	0	Ö	0	0	Ö	0	0	0	0	0	Ö	0	0.00%
36	0	0	Ö	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
37	0	0	Ö	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
38	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
39	0	0	Ö	0	0	Ö	0	0	0	0	0	0	0	0	0	0	0.00%
40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
41	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
42	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
43	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
44	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
47	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
48	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
% of			0	- 0							0	U		U		- 0	0.0070
PERSISTENT DIRECTION	5.75%	3.83%	0.64%	0.96%	0.48%	0.00%	0.80%	0.48%	6.87%	8.79%	21.41%	13.58%	16.61%	8.31%	6.39%	5.11%	

Table 2.7-56 Wind Direction Persistence Summaries - Detroit Metropolitan Airport 10 Meter Level

Number of Occurrences for Winds Blowing from the Same 22.5° Direction 2003-2007 >20 MPH

HOURS	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	PERSISTENT WINDS
2	6	2	0	0	0	0	0	0	4	10	25	9	26	9	9	7	69.48%
3	1	0	Ö	ő	0	ő	ő	Ö	6	1	10	9	3	2	3	0	22.73%
4	0	ñ	0	Ö	0	ő	Ô	Ô	Ö	3	4	2	1	0	ő	0	6.49%
5	0	ŏ	ő	ő	Ô	ŏ	ő	ő	ő	ő	i	ō	ó	Ö	ŏ	0	0.65%
6	0	Ô	Ö	0	0	Ö	Ô	0	Ö	Ö	0	Ö	0	Ö	Ö	0	0.00%
7	0	Ô	Ö	0	0	0	Ô	0	Ö	Ö	1	Ö	0	Ö	Ö	0	0.65%
8	Ô	ő	Ö	Ö	Ô	Ö	Ö	Ö	Ö	ő	o O	Ö	Ö	Ö	Ö	Ö	0.00%
9	0	Ö	Ō	0	0	0	Ō	0	Ō	Ö	Ö	Ö	0	0	Ö	0	0.00%
10	0	Ō	0	0	0	0	Ō	0	0	Ö	Ö	0	0	Ö	Ö	0	0.00%
11	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	0.00%
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
13	0	Ō	Ō	0	0	0	Ō	0	Ō	Ö	Ö	Ö	0	Ö	Ö	0	0.00%
14	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	0.00%
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
17	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	0.00%
18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
29	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
34	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
35	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
36	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
37	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
38	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
39	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
41	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
42	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
43	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
44	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
47	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
48	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
% of				·								·					
PERSISTENT DIRECTION	4.55%	1.30%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	6.49%	9.09%	26.62%	12.99%	19.48%	7.14%	7.79%	4.55%	

Source: Reference 2.7-41

% of

Table 2.7-57 Wind Direction Persistence Summaries - Detroit Metropolitan Airport 10 Meter Level

Number of Occurrences for Winds Blowing from the Same 67.5° Direction 2003-2007 All Wind Speeds (A)

																	% of PERSISTENT
HOURS	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	WINDS
2	156	107	110	86	166	107	160	164	240	175	133	161	204	136	145	126	24.23%
3	99	75	79	104	103	44	78	91	197	128	125	119	111	94	106	78	16.63%
4	61	43	41	49	43	41	54	89	125	84	58	75	96	66	65	49	10.59%
5	42	40	44	45	50	26	33	66	90	51	57	81	77	62	60	41	8.82%
6	49	19	28	31	25	18	35	57	54	48	46	59	58	54	24	38	6.56%
7	32	24	22	24	15	16	13	30	64	38	44	46	37	51	47	27	5.40%
8	33	22	14	13	30	16	12	40	40	36	40	35	36	46	29	21	4.72%
9	27	13	16	14	16	12	8	21	38	26	38	25	30	22	22	25	3.60%
10	29	13	14	12	7	9	8	13	19	26	24	31	23	33	23	18	3.08%
11	14	16	7	6	14	4	8	10	26	24	18	12	24	19	15	5	2.26%
12	7	13	11	6	8	1	5	12	17	17	9	15	22	13	13	23	1.96%
13	12	3	11	7	8	1	3	12	11	16	20	5	20	6	19	3	1.60%
14	12	22	4	1	3	4	0	3	7	13	6	16	16	12	4	4	1.29%
15	6	10	4	2	3	6	2	6	14	7	13	11	16	6	6	6	1.20%
16	8	8	2	7	7	4	3	4	9	7	12	10	15	10	5	3	1.16%
17	2	4	4	3	3	1	0	2	11	7	3	5	12	9	1	5	0.73%
18	9	14	5	1	4	0	1	2	5	12	14	4	6	5	5	8	0.97%
19	6	2	2	5	3	1	2	2	4	10	3	3	5	8	1	1	0.59%
20	5	8	3	4	3	0	0	3	5	4	3	8	8	9	1	2	0.67%
21	3	4	1	0	3	0	0	3	4	10	8	4	0	2	1	2	0.46%
22	3	2	1	1	2	0	0	1	2	2	2	3	2	1	3	6	0.32%
23	4	2	1	4	2	0	0	2	0	4	6	1	3	2	4	2	0.38%
24	2	1	3	2	4	1	0	0	3	5	4	5	0	1	2	3	0.37%
25	0 3	3	0 2	3	1	0	0	0	1 0	3	4	3 3	3	2	2	3 2	0.29%
26 27	•	0 5	0	0	1	0	0	0	0	2 0	2	-	0	2	0	1	0.18% 0.11%
	0 6	5 4	1	0	0	0	0	0	1	1	4	0 3	2	4	0	1	
28 29	1	4	0	3	0	0	0	0	3	2	5	0	1	2	2	0	0.28% 0.20%
30	1	0	0	1	0	0	0	0	1	2	2	0	2	2	0	0	0.20%
31	0	0	0	1	1	0	0	0	Ó	2	2	1	1	2	1	0	0.11%
32	0	0	1	'n	1	0	0	0	1	0	0	Ó	3	0	Ó	0	0.06%
33	0	4	Ö	0	0	0	0	0	Ö	2	0	4	0	2	0	2	0.14%
34	3	3	1	n o	1	Ö	0	ñ	0	1	Ô	1	0	1	0	1	0.12%
35	Ö	2	2	ő	Ö	ő	Ö	1	ő	i	4	ò	Ö	Ö	1	Ö	0.11%
36	0	1	0	0	0	Ö	0	1	2	2	0	Ö	Ō	1	0	1	0.08%
37	1	1	1	0	1	Ö	0	0	0	2	0	3	Ō	0	2	0	0.11%
38	Ö	Ó	Ó	Ō	Ö	Ö	Ö	Ō	Ö	2	Ö	2	1	i i	0	Ĭ	0.07%
39	0	1	0	0	0	0	0	0	0	1	0	3	0	0	0	1	0.06%
40	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0.02%
41	0	0	0	1	0	0	0	0	0	0	1	0	2	0	0	0	0.04%
42	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0.02%
43	0	0	0	1	0	0	0	0	0	0	0	2	0	0	0	0	0.03%
44	0	0	0	0	0	2	0	0	0	0	0	0	1	0	0	0	0.03%
45	0	2	0	0	0	0	0	0	0	1	2	0	0	0	0	0	0.05%
46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
47	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
48	2	2	0	0	0	0	0	0	0	3	4	0	1	3	1	0	0.16%
% of PERSISTENT																	
DIRECTION	6.50%	5.04%	4.44%	4.48%	5.39%	3.21%	4.33%	6.47%	10.14%	7.93%	7.31%	7.74%	8.55%	7.04%	6.23%	5.19%	
AVE																	
PERSISTENT	6.06	0.20	6.00	6.20	E 70	F 20	4.05	F 44	F 70	7 44	7 77	6.07	6.75	7.00	6.00	6.74	
HOURS	6.86	8.38	6.22	6.32	5.72	5.20	4.25	5.44	5.73	7.41	7.77	6.97	6.75	7.29	6.20	6.71	

^{*} THE LONGEST PERSISTENT WIND WAS FROM THE SOUTHWEST AND LASTED 67 HOURS

⁽A)Hourly wind speeds of 3 knots or less (3.45) are reported as calm hours. Source: Reference 2.7-41

Table 2.7-58 Wind Direction Persistence Summaries - Detroit Metropolitan Airport 10 Meter Level

Number of Occurrences for Winds Blowing from the Same 67.5° Direction 2003-2007 0-5 MPH $^{\rm (A)}$

																	% of PERSISTENT
HOURS	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	WINDS
2	84	64	42	58	122	50	53	83	147	60	14	22	49	59	41	47	63.05%
3	34	32	23	33	43	15	19	22	61	22	4	6	15	17	14	18	23.95%
4	15	8	3	6	15	6	7	9	26	7	1	2	11	3	1	9	8.17%
5	5	2	2	6	6	2	2	5	4	3	0	2	1	3	0	0	2.72%
6	0	3	3	2	2	3	2	0	2	1	0	0	1	1	0	1	1.33%
7	1	1	1	2	2	1	0	0	0	1	0	0	0	0	0	0	0.57%
8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0.13%
9	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0.06%
10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
15	Ō	Ō	Ö	Ō	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	0.00%
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
17	0	Ō	0	0	0	0	Ö	0	Ö	0	Ō	Ö	0	Ō	Ō	0	0.00%
18	Ö	Õ	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	0.00%
19	0	0	0	0	Ô	0	Ö	0	0	0	Ō	0	0	Ō	0	0	0.00%
20	Ô	Ô	Ö	Ô	0	0	Ô	0	Ö	0	Ô	Ô	0	0	Ö	0	0.00%
21	Ô	ñ	Ö	Õ	Ô	Ô	Ô	Ô	Ö	Ô	Ô	Ö	Ô	Ö	Ö	Ö	0.00%
22	Ô	Ô	Ö	Ô	0	0	Ô	0	Ö	0	Ô	Ö	0	Ö	Ö	0	0.00%
23	0	0	0	0	Ô	0	Ô	Ô	0	0	Ô	Ô	0	0	0	0	0.00%
24	Ö	0	Ö	0	Ô	Ö	ő	ő	Ö	Ö	ő	ő	0	0	Ö	Ö	0.00%
25	0	0	0	0	Ô	0	Ô	Ô	Ö	0	Õ	Ö	0	Ö	0	0	0.00%
26	0	0	Ö	0	Ô	0	Ô	Ô	0	0	Ô	Ö	0	0	Ö	0	0.00%
27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
29	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
34	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
35	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
36	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
37	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
38	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
39	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
41	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
42	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	
43	0	0	0	•	Ū	0	•	•	0	•	0	0	0			0	0.00%
44	•	•	•	0	0	•	0	0	0	0	•	0	•	0	0	0	0.00%
45	0	0	0	0	ŭ	0	0	0	0	0	0	-	0	0	0	-	0.00%
46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
47	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
48	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
% of PERSISTENT DIRECTION	8.81%	6.97%	4.69%	6.78%	12.04%	4.88%	5.26%	7.54%	15.27%	5.96%	1.20%	2.03%	4.88%	5.26%	3.55%	4.88%	

 $^{^{\}rm (A)} \! Hourly$ wind speeds of 3 knots or less (3.45) are reported as calm hours. Source: Reference 2.7-41

Table 2.7-59 Wind Direction Persistence Summaries - Detroit Metropolitan Airport 10 Meter Level

Number of Occurrences for Winds Blowing from the Same 67.5° Direction 2003-2007 5-10 MPH

																	PERSISTENT
HOURS	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	WINDS
2	161	127	116	98	164	75	126	148	263	168	128	150	207	155	122	133	45.77%
3	100	73	52	53	88	24	48	95	130	94	60	80	86	90	58	52	23.13%
4	42	59	22	28	34	26	27	45	64	52	28	37	45	52	34	46	12.53%
5	28	22	11	16	28	15	15	27	32	25	11	25	30	31	18	15	6.82%
6	27	15	7	13	5	7	11	15	27	23	14	12	28	19	10	8	4.71%
7	16	16	10	9	9	4	3	8	17	8	6	3	11	4	12	10	2.85%
8	4	10	8	7	5	2	2	6	6	8	2	3	2	6	3	4	1.52%
9	2	5	2	3	1	3	2	4	6	4	1	0	2	3	0	1	0.76%
10	4	9	1	0	6	0	0	1	4	0	Ó	1	2	3	0	2	0.65%
10	4	2	3	0	2	0	0	0	5	1	1	1	0	3	0	0	0.43%
12	3	2	4	0	2	2	0	0	3	1	Ó	Ó	0	0	1	0	0.35%
13	0	0	0	1	3	0	0	0	0	1	0	0	1	0	0	0	0.33%
14	0	1	0	0	3	0	2	0	0	0	0	0	0	0	0	1	0.12%
15	0	0	0	0	2	0	0	0		2	0	0	0	1		0	0.10%
	0	1		0	0	0	0	0	0	0	0	0	0	0	0	0	0.10%
16	1	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	
17	1	-	-	0	•	0	0	0	-	0	-	-	0			0	0.02%
18	0	0	0	1	0	•	•	•	0	1	0	0	•	0	0	-	0.04%
19 20	0	0	0 0	0	0	0 0	0	0 0	0	0 0	0	0	0	0	0	0	0.00% 0.00%
	-	-		0	•	-	0	-	-	-			-				
21	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.04%
22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
29	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
34	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
35	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
36	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
37	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
38	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
39	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
41	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
42	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
43	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
44	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
47	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
48	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
% of																	
PERSISTENT	7.68%	6.73%	4.61%	4.50%	6.84%	3.09%	4.61%	6.82%	10.89%	7.59%	4.91%	6.10%	8.09%	7.17%	5.04%	5.32%	
DIRECTION	7.00%	0.7370	4.0170	4.5070	0.0470	3.0970	4.0170	0.0270	10.0970	1.0970	4.9170	0.1070	0.0970	1.1170	5.0470	J.JZ 70	

Source: Reference 2.7-41

% of

Table 2.7-60 Wind Direction Persistence Summaries - Detroit Metropolitan Airport 10 Meter Level

Number of Occurrences for Winds Blowing from the Same 67.5° Direction 2003-2007 10-15 MPH

HOURS N NNE NE ENE E ESE SE SE S SSW SW WSW W WNW NW	
2 109 69 58 35 38 12 29 67 115 147 139 154 152 130 123 93 40.825 3 51 32 38 28 33 4 6 28 86 84 91 81 73 79 63 53 23.055 4 28 30 11 17 13 3 8 20 35 51 70 49 59 52 39 25 14.165 5 13 21 9 14 16 5 6 3 16 27 39 33 25 30 29 22 8.55% 6 16 12 4 8 6 1 4 3 14 21 22 16 16 10 14 7 4.83% 7 8 6 4 3 2 0	
3 51 32 38 28 33 4 6 28 86 84 91 81 73 79 63 53 23.05; 4 28 30 11 17 13 3 8 20 35 51 70 49 59 52 39 25 14.16; 5 13 21 9 14 16 5 6 3 16 27 39 33 25 30 29 22 8.55; 6 16 12 4 8 6 1 4 3 14 21 22 16 16 10 14 7 4.83; 7 8 6 6 4 3 5 0 0 0 0 3 10 9 15 14 17 9 6 5 5 3.08; 8 4 3 5 0 0 0 0 0 2 5 15 15 10 11 9 6 3 0 2.03; 9 6 2 1 0 0 0 0 0 1 2 5 15 10 11 9 6 3 0 2.03; 9 6 2 1 0 0 0 0 0 0 2 5 15 10 11 9 6 3 0 2.03; 10 2 2 2 0 2 0 2 0 0 2 0 0 2 0 0 2 0 0 2 2 1 1 5 0 1 2 0 0.58; 11 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
4 28 30 11 17 13 3 8 20 35 51 70 49 59 52 39 25 14.16 5 13 21 9 14 16 5 6 3 16 27 39 33 25 30 29 22 28.55% 6 16 12 4 8 6 1 4 3 14 21 22 16 16 10 14 7 4.83% 7 8 6 4 3 2 0 0 3 10 9 15 14 17 9 6 5 3.08% 8 4 3 5 0 0 0 0 2 5 15 10 11 9 6 3 0 2.03% 9 6 2 1 1 0 0 0 0 1 2 9 11 0 2 4 1 3 1.17%	
5 13 21 9 14 16 5 6 3 16 27 39 33 25 30 29 22 8.55% 6 16 12 4 8 6 1 4 3 14 21 22 16 16 10 14 7 4.83% 7 8 6 4 3 2 0 0 3 10 9 15 14 17 9 6 5 3.08% 8 4 3 5 0 0 0 0 2 5 15 10 11 9 6 3 0 2.03% 9 6 2 1 0 0 0 0 1 2 9 11 0 2 4 1 3 1.17% 10 2 2 0 2 0 0 2 2 1 5 0 1 2 4 1 3 1.17% 10	
6 16 12 4 8 6 1 4 3 14 21 22 16 16 10 14 7 4.83% 7 8 6 4 3 2 0 0 0 3 10 9 15 14 17 9 6 5 3.08% 8 4 3 5 0 0 0 0 0 2 5 15 10 11 9 6 3 0 2.03% 9 6 2 1 0 0 0 0 0 1 2 9 11 0 0 2 4 1 3 1.17% 10 2 2 2 0 2 0 2 0 2 0 0 2 0 0 2 2 1 1 5 0 1 2 1 3 1 1 3 1.17% 11 0 0 0 3 0 0 0 0 0 0 0 2 2 2 1 1 5 0 1 1 2 0 0.58% 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
7 8 6 6 4 3 2 0 0 0 3 10 9 15 14 17 9 6 5 3.08% 8 4 3 5 0 0 0 0 2 5 15 10 11 9 6 3 0 2.03% 9 6 2 1 0 0 0 0 0 1 2 5 15 10 11 9 6 3 0 2.03% 10 10 2 2 1 0 0 2 0 0 0 0 1 2 9 11 0 0 2 4 1 3 1.17% 10 2 2 2 0 2 0 2 0 0 2 0 0 2 2 1 5 5 0 1 5 0 1 2 0 0.58% 11 0 0 0 3 0 3 0 3 0 0 0 0 2 2 1 1 5 0 1 2 0 0.58% 11 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
8 4 3 5 0 0 0 0 2 5 15 10 11 9 6 3 0 2.03% 9 6 2 1 0 0 0 0 1 2 9 11 0 2 4 1 3 1.17% 10 2 2 0 2 0 2 0 1 5 0 1 2 0 0.56% 11 0 0 3 0 3 0 0 0 2 0 4 2 1 3 1 1 1 0 0 0.56% 12 2 0 2 0	
9 6 2 1 0 0 0 0 1 2 9 11 0 2 4 1 3 1.17% 10 2 2 0 2 0 2 0 2 0 0 2 0 1 2 0 0 2 1 5 0 1 2 0 0.56% 11 0 0 3 0 3 0 0 0 0 2 0 4 2 1 3 1 1 0 0.56% 12 2 0 2 0 0 0 0 0 0 1 2 3 1 1 1 0 0 0 0.36% 13 0 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.17%	
10 2 2 0 2 0 2 0 0 2 2 1 5 0 1 2 0 0.58% 11 0 0 3 0 3 0 0 0 2 0 4 2 1 3 1 1 1 1 0.56% 12 2 0 2 0 0 0 0 0 0 0 0 0 0 0 13 0 4 0 1 0	
11 0 0 3 0 3 0 0 0 2 0 4 2 1 3 1 1 0.56% 12 2 0 2 0 0 0 0 0 1 2 3 1 1 1 0 0 0.36% 13 0 4 0 1 0	
12 2 0 2 0 0 0 0 0 1 2 3 1 1 1 0 0 0.36% 13 0 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0.17%	
13 0 4 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0.17%	
14 0 0 1 0 0 0 0 0 0 0 0 4 1 0 1 0 0.19%	
15 2 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0.14%	
16 0 2 0 2 0 0 0 0 0 0 3 0 1 0 0 0.22%	
17 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0.06%	
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
$egin{array}{cccccccccccccccccccccccccccccccccccc$	
47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
PERSISTENT	
DIRECTION 6.72% 5.08% 3.83% 3.05% 3.08% 0.75% 1.47% 3.53% 8.00% 10.19% 11.36% 10.27% 9.91% 9.03% 7.83% 5.89%	

Table 2.7-61 Wind Direction Persistence Summaries - Detroit Metropolitan Airport 10 Meter Level

Number of Occurrences for Winds Blowing from the Same 67.5° Direction 2003-2007 15-20 MPH

																	% of
					_				_								PERSISTENT
HOURS	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	WINDS
2	18	22	6	4	4	0	4	3	26	58	79	68	69	47	33	27	49.32%
3	16	9	0	2	0	1	0	1	10	18	53	29	42	26	29	8	25.71%
4	5	1	3	0	0	0	1	1	10	15	26	14	20	10	8	3	12.33%
5	5	2	0	0	0	0	0	1	4	4	13	7	5	7	1	4	5.58%
6	2	0	1	1	0	0	0	2	2	3	2	8	10	2	1	4	4.00%
7	0	0	0	0	0	0	0	0	0	0	6	3	0	2	2	2	1.58%
8	0	0	0	0	0	0	0	0	0	0	3	1	3	0	1	0	0.84%
9	0	0	0	0	0	0	0	0	0	0	3	1	0	0	0	0	0.42%
10	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0.11%
11	•	0	0	•	•	0	•	0	0		•	0	•	0	0	0	0.11%
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
14	0	0	0	•	•	0	0	0	0	0	0	0	0	0	0	0	0.00%
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
17	0	0	0	0	0	0	0	•	0	0	0	0 0	0	0	0 0	0 0	0.00%
18	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0.00%
19 20	0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0 0	0 0	0	0.00% 0.00%
	0	0	0	0	-	0	0	0		0	0	0	0	0	0	0	
21 22	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0.00% 0.00%
23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
2 4 25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
29	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
30	0	0	0	0	0	Ö	0	0	Ö	0	0	0	0	0	0	0	0.00%
31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
33	0	0	0	0	0	Ö	0	0	Ö	0	0	0	0	0	0	0	0.00%
34	0	0	Ö	n o	0	Ö	0	Ô	ő	0	Ö	Ö	0	Ö	ő	ő	0.00%
35	0	0	Ö	0	0	0	0	0	Ö	0	0	0	0	0	0	Ö	0.00%
36	0	Ö	Ö	n o	0	0	0	Ô	ő	0	0	Ö	0	Ö	Ö	Ö	0.00%
37	0	Ö	Ö	n o	0	Ö	0	Ö	ő	0	Ö	Ö	0	Ö	Ö	ő	0.00%
38	Ö	ő	ő	ñ	Ô	ő	0	ő	ŏ	Ö	Ö	ő	Ö	ő	ő	ő	0.00%
39	0	Ö	Ö	ñ	Ô	Ö	0	Ö	Ö	0	Ö	Ö	0	Ö	Ö	Ö	0.00%
40	0	Ö	Ö	ñ	Ô	Ö	0	Ô	Ö	0	Ô	Ö	Ô	Ö	Ö	0	0.00%
41	Ö	Õ	Ö	Õ	Õ	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Õ	Ö	Ö	Ö	0.00%
42	0	0	Ö	0	0	0	0	Ō	Ö	0	0	0	0	Ō	Ō	0	0.00%
43	0	Ō	Ö	0	0	Ö	0	Ō	Ö	0	0	Ö	0	Ō	Ō	0	0.00%
44	Ö	Õ	Ö	Õ	Õ	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Õ	Ö	Ö	Ö	0.00%
45	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	0.00%
46	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	0.00%
47	Ö	Ö	Ö	Ö	ő	Ö	Ö	Ö	Ö	Ö	Ö	Ö	ő	Ö	Ö	Ö	0.00%
48	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	0.00%
% of	-	-	-			-	-	-	-	-	-	-		-	-		
PERSISTENT																	
DIRECTION	4.85%	3.58%	1.05%	0.74%	0.42%	0.11%	0.53%	0.84%	5.48%	10.43%	19.49%	13.91%	15.70%	9.91%	7.90%	5.06%	

Table 2.7-62 Wind Direction Persistence Summaries - Detroit Metropolitan Airport 10 Meter Level

Number of Occurrences for Winds Blowing from the Same 67.5° Direction 2003-2007 >20 MPH

HOURS	N	NNE	NE	ENE	E	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	% of PERSISTENT WINDS
2	5	4	0	0	0	0	0	0	4	9	29	24	30	13	14	10	62.01%
3	3	0	ő	Ö	0	ő	Ö	Ö	8	3	12	9	9	6	5	1	24.45%
4	0	Ö	ő	0	0	ő	Ô	Ö	1	4	6	4	3	Ö	Ö	Ö	7.86%
5	0	Ö	ŏ	0	Ö	ő	ő	ő	ó	3	3	1	0	Ö	2	ő	3.93%
6	0	Ö	Ö	0	Ô	Ö	0	Ö	Ö	1	Ö	Ö	1	Ö	0	Ö	0.87%
7	0	0	ő	0	0	Ô	Ô	Ô	Ö	Ö	1	0	Ö	Ö	Ö	Ö	0.44%
8	0	Ö	ŏ	0	Ö	ő	ő	ő	Ö	Ö	Ö	Ö	Ö	Ö	ő	ő	0.00%
9	Ö	0	Ö	0	0	0	0	0	Ö	Ö	0	Ö	Ö	Ö	Ö	Ö	0.00%
10	0	Ö	Ö	Ô	Ô	0	0	0	Ö	0	Ö	1	0	Ö	Ö	0	0.44%
11	0	Ö	ŏ	0	0	ő	ő	ő	Ö	Ö	ő	ó	Ö	0	ő	ő	0.00%
12	0	Ö	Ö	Ô	Ô	Ô	Ô	Ô	Ö	0	Ö	Ö	0	Ö	Ö	Ö	0.00%
13	0	Ö	ő	0	0	Ô	Ô	Ö	Ö	0	Ö	Ö	0	Ö	Ö	Ö	0.00%
14	0	ő	ŏ	0	0	ő	ő	Õ	Ö	Ö	ő	ő	Ö	Ö	ő	ő	0.00%
15	0	0	ő	0	0	Ô	Ô	Ô	Ö	0	Ô	Ö	0	Ö	Ö	Ö	0.00%
16	0	0	0	0	0	0	0	0	0	0	Ö	0	0	0	0	0	0.00%
17	0	0	Ö	0	0	0	0	0	0	0	0	0	0	0	Ö	0	0.00%
18	0	0	ő	0	0	Ô	Ô	Ô	Ö	0	Ö	0	0	Ö	Ö	Ö	0.00%
19	Ö	0	ő	0	0	Ô	Ô	Ô	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	0.00%
20	0	Ö	ŏ	0	0	ŏ	Ô	Õ	Ö	Ö	ő	ő	0	Ö	ő	ő	0.00%
21	0	0	ő	0	0	Ô	Ô	Ô	Ö	0	Ô	0	0	0	Ö	Ö	0.00%
22	0	Ö	ő	0	0	Ô	Ô	Ô	Ö	0	Ö	Ö	0	Ö	Ö	Ö	0.00%
23	0	0	Ö	0	0	0	0	Ö	0	0	Ö	0	0	0	Ö	0	0.00%
24	0	Ö	ő	0	0	Ô	Ô	Ô	Ö	0	Ö	Ö	0	Ö	Ö	0	0.00%
25	0	Ö	ő	0	0	ő	Ô	Ô	Ö	0	Ö	Ö	0	Ö	Ö	Ö	0.00%
26	0	0	Ö	0	0	0	0	0	0	0	0	0	0	0	Ö	0	0.00%
27	0	0	ő	0	0	Ô	Ô	Ô	Ö	0	Ô	0	0	Ö	Ö	Ö	0.00%
28	0	0	Ö	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
29	0	0	Ö	0	0	0	0	0	0	0	Ö	0	0	0	Ö	0	0.00%
30	0	Ö	ő	0	0	ő	Ô	Ô	Ö	0	Ô	Ö	0	Ö	Ö	Ö	0.00%
31	0	0	Ö	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
32	0	0	Ö	0	0	0	0	Ö	0	0	Ö	0	0	0	Ö	0	0.00%
33	0	0	Ö	0	0	0	0	Ö	0	0	Ö	0	0	0	0	0	0.00%
34	0	0	Ö	0	0	0	0	0	0	0	Ö	0	0	0	0	0	0.00%
35	0	0	ő	0	0	Ö	0	0	Ö	0	0	0	0	0	Ö	0	0.00%
36	0	0	ő	0	0	Ô	Ô	Ô	Ö	0	Ô	0	0	Ö	Ö	Ö	0.00%
37	0	0	Ö	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
38	0	0	Ö	0	0	Ö	0	Ö	0	Ö	Ö	0	0	Ö	Ö	Ö	0.00%
39	0	0	Ö	0	0	0	0	0	0	0	Ö	0	0	0	0	0	0.00%
40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
41	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
42	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
43	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
44	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
47	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
48	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
% of			0	- 0		- 0	0			- 0	0			U		- 0	0.0070
PERSISTENT DIRECTION	3.49%	1.75%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	5.68%	8.73%	22.27%	17.03%	18.78%	8.30%	9.17%	4.80%	

Table 2.7-63 Monthly and Annual Vertical Stability Class and Mean 60-Meter Wind Speed Distributions for Fermi Site (2003 - 2007) (Sheet 1 of 2)

			Vertica	Stability (Categories		
Period	Α	В	С	D	E	F	G
January							
Wind Speed (mph)	13.49	14.28	14.39	15.21	13.28	13.22	11.75
Frequency (%)	10.09	5.38	6.33	46.28	23.88	6.14	1.89
February							
Wind Speed (mph)	13.13	14.44	14.61	14.80	12.45	10.84	10.37
Frequency (%)	17.13	5.53	5.36	41.95	21.09	6.27	2.66
March							
Wind Speed (mph)	12.43	13.10	13.20	15.49	13.47	14.48	14.66
Frequency (%)	16.99	5.33	3.71	34.09	23.73	10.15	6.01
April							
Wind Speed (mph)	14.56	14.92	16.39	16.56	14.50	13.17	12.61
Frequency (%)	20.91	4.86	4.89	25.74	26.11	11.62	5.87
Мау							
Wind Speed (mph)	12.41	12.53	12.62	13.65	11.65	10.88	9.90
Frequency (%)	23.10	6.53	6.26	28.65	22.12	8.71	4.65
June							
Wind Speed (mph)	9.98	10.80	11.16	11.99	11.36	10.28	8.43
Frequency (%)	26.93	5.88	4.43	23.17	24.87	10.03	4.71
July							
Wind Speed (mph)	10.03	10.43	10.80	12.04	10.34	8.59	8.05
Frequency (%)	31.05	5.46	4.18	19.94	23.01	9.89	6.47
August							
Wind Speed (mph)	9.56	9.57	9.60	11.12	10.75	9.37	8.91
Frequency (%)	26.83	5.69	4.69	18.82	25.07	12.64	6.26
September							
Wind Speed (mph)	10.06	11.90	11.75	13.21	12.29	10.37	8.37
Frequency (%)	25.25	4.61	3.78	21.19	26.83	10.50	7.83
October							
Wind Speed (mph)	11.69	12.81	14.65	14.55	13.03	12.70	9.93
Frequency (%)	17.20	4.45	3.47	28.38	28.52	11.46	6.53
November							
Wind Speed (mph)	13.13	14.69	15.81	14.86	12.89	12.17	12.10

4.68

42.16

25.70

Frequency (%)

10.76

4.06

3.32

9.31

I

Table 2.7-63 Monthly and Annual Vertical Stability Class and Mean 60-Meter Wind Speed Distributions for Fermi Site (2003 - 2007) (Sheet 2 of 2)

Vertical Stability Categories

Period	Α	В	С	D	E	F	G
December							
Wind Speed (mph)	12.45	14.39	16.21	15.12	13.69	12.86	12.80
Frequency (%)	8.90	5.05	5.56	48.55	22.26	8.12	1.56
Annual							
Wind Speed (mph)	11.48	12.70	13.49	14.37	12.47	11.51	10.32
Frequency (%)	19.63	5.25	4.78	31.54	24.41	9.57	4.82

Table 2.7-64 Annual JFD of Wind Direction, Wind Speed, and Stability Class

All Pasquill Stability Classes

							Wind Sp	eed (Mil	es/Hour)							
Direction	<1.0	1.0-1.12	1.121 -1.68	1.681 -2.24	2.241 -2.80	2.801 -3.36	3.361 -4.47	4.471 -6.71	6.711 -8.95	8.951 -11.18	11.181 -13.42	13.421 -17.9	17.91 -22.37	22.371 -26.84	>26.84	Total
N	6	3	32	60	115	128	309	549	350	250	133	82	5	0	0	2022
NNE	3	5	16	47	76	106	313	474	243	183	104	67	18	0	0	1655
NE	6	3	10	29	40	51	148	609	601	288	110	28	2	0	0	1925
ENE	4	1	8	15	21	35	94	415	525	407	159	122	12	0	0	1818
E	8	3	10	14	16	21	118	419	487	383	273	220	37	7	0	2016
ESE	3	2	12	17	25	55	198	751	695	390	161	98	3	0	0	2410
SE	10	2	4	30	21	53	201	898	739	241	52	24	3	0	0	2278
SSE	7	3	19	33	49	54	207	728	596	199	53	11	3	0	0	1962
S	4	3	29	68	93	94	282	779	601	259	88	32	0	0	0	2332
SSW	8	9	50	78	127	114	346	1089	1122	753	341	223	9	0	0	4269
SW	12	14	78	120	179	226	523	950	837	632	426	289	59	3	0	4348
WSW	19	15	108	216	324	339	627	944	687	318	96	46	2	0	0	3741
W	22	15	178	290	273	212	454	734	490	243	95	26	3	1	0	3036
WNW	10	3	43	106	163	155	434	808	436	216	96	47	0	0	0	2517
NW	15	9	91	207	253	272	516	710	455	206	69	29	0	0	0	2832
NNW	10	21	183	335	415	361	480	750	479	236	126	59	1	1	0	3457
TOTAL	147	111	871	1665	2190	2276	5250	11607	9343	5204	2382	1403	157	12	0	42618

Notes:

Data from 10 meter level Data from 2003-2007

Table 2.7-65 Annual JFD of Wind Direction, Wind Speed, and Stability Class

Class A Pasquill Stability Class

							Wind Sp	eed (Mil	es/Hour)							
Direction	<1.0	1.0-1.12	1.121 -1.68	1.681 -2.24	2.241 -2.80	2.801 -3.36	3.361 -4.47	4.471 -6.71	6.711 -8.95	8.951 -11.18	11.181 -13.42	13.421 -17.9	17.91 -22.37	22.371 -26.84	>26.84	Total
N	0	0	1	0	3	6	18	56	69	45	5	10	0	0	0	213
NNE	0	0	0	0	3	4	25	61	38	31	9	10	0	0	0	181
NE	0	0	0	1	5	8	28	100	115	46	13	6	0	0	0	322
ENE	0	0	1	1	4	5	21	107	129	78	27	20	0	0	0	393
E	1	0	1	0	2	2	27	113	130	118	81	51	2	2	0	530
ESE	0	0	0	2	3	6	35	275	260	137	53	19	0	0	0	790
SE	5	0	0	0	0	5	39	376	349	73	5	0	0	0	0	852
SSE	1	0	0	2	5	6	40	251	275	61	8	1	0	0	0	650
S	0	0	0	1	5	3	44	226	181	36	7	2	0	0	0	505
SSW	1	0	1	0	4	4	54	214	294	157	53	16	4	0	0	802
SW	0	1	1	0	3	5	41	126	144	103	52	19	1	0	0	496
WSW	1	0	0	3	8	13	51	148	178	80	17	1	0	0	0	500
W	3	0	1	9	3	15	62	173	143	77	23	6	0	0	0	515
WNW	0	0	0	2	1	11	31	143	127	74	28	13	0	0	0	430
NW	0	1	1	1	8	19	66	199	171	70	22	10	0	0	0	568
NNW	0	0	3	4	10	20	67	216	197	70	26	14	0	0	0	627
TOTAL	12	2	10	26	67	132	649	2784	2800	1256	429	198	7	2	0	8374

Notes:

Data from 10 meter level Data from 2003-2007

Table 2.7-66 Annual JFD of Wind Direction, Wind Speed, and Stability Class

Class B Pasquill Stability Class

-							Wind Sp	eed (Mil	es/Hour)							
Direction	<1.0	1.0-1.12	1.121 -1.68	1.681 -2.24	2.241 -2.80	2.801 -3.36	3.361 -4.47	4.471 -6.71	6.711 -8.95	8.951 -11.18	11.181 -13.42	13.421 -17.9	17.91 -22.37	22.371 -26.84	>26.84	Total
N	0	0	0	1	6	6	14	41	27	10	8	8	0	0	0	121
NNE	0	0	0	0	1	5	14	22	17	14	6	5	0	0	0	84
NE	0	0	0	1	0	0	9	27	14	10	3	1	0	0	0	65
ENE	0	0	0	0	1	4	9	16	24	18	11	7	0	0	0	90
E	0	0	0	0	0	1	5	16	24	26	16	9	0	0	0	97
ESE	0	0	0	0	2	2	9	38	25	17	6	8	0	0	0	107
SE	0	0	0	1	0	3	23	69	40	8	3	2	0	0	0	149
SSE	1	0	0	2	3	2	8	46	23	4	1	1	0	0	0	91
S	0	0	1	1	2	2	17	40	21	9	3	0	0	0	0	96
SSW	0	0	1	0	1	4	10	44	78	37	31	17	0	0	0	223
SW	0	0	1	1	1	5	16	50	54	42	42	29	8	1	0	250
WSW	0	0	0	1	3	7	19	48	77	17	12	4	0	0	0	188
W	0	0	0	2	7	4	22	77	49	23	6	1	0	0	0	191
WNW	0	0	0	1	2	5	21	55	40	22	7	3	0	0	0	156
NW	0	0	1	3	3	10	19	47	39	19	7	4	0	0	0	152
NNW	0	1	0	5	3	9	22	63	38	13	11	7	0	0	0	172
TOTAL	1	1	4	19	35	69	237	699	590	289	173	106	8	1	0	2232

Notes:

Data from 10 meter level Data from 2003-2007

Table 2.7-67 Annual JFD of Wind Direction, Wind Speed, and Stability Class

Class C Pasquill Stability Class

							Wind Sp	eed (Mil	es/Hour)							
Direction	<1.0	1.0-1.12	1.121 -1.68	1.681 -2.24	2.241 -2.80	2.801 -3.36	3.361 -4.47	4.471 -6.71	6.711 -8.95	8.951 -11.18	11.181 -13.42	13.421 -17.9	17.91 -22.37	22.371 -26.84	>26.84	Total
N	0	0	0	0	3	6	16	44	21	12	9	8	0	0	0	119
NNE	0	0	0	1	0	2	14	32	14	14	17	1	0	0	0	95
NE	0	0	0	2	3	3	6	25	27	18	6	1	0	0	0	91
ENE	0	0	2	2	0	1	3	9	24	35	14	9	3	0	0	102
E	0	0	0	1	1	1	2	18	13	18	9	13	2	0	0	78
ESE	0	0	0	0	0	2	9	33	23	19	8	4	0	0	0	98
SE	0	0	0	0	1	2	9	37	24	9	3	1	0	0	0	86
SSE	0	0	0	0	1	1	10	28	20	3	6	1	0	0	0	70
S	0	0	0	2	4	5	9	32	20	15	3	1	0	0	0	91
SSW	0	0	1	3	3	3	13	41	50	34	20	13	0	0	0	181
SW	0	0	0	2	2	11	20	48	56	44	21	43	10	1	0	258
WSW	0	0	0	2	2	7	22	52	44	28	15	10	0	0	0	182
W	0	0	1	3	8	7	29	49	35	15	16	2	0	0	0	165
WNW	0	0	2	3	4	5	12	55	31	8	6	4	0	0	0	130
NW	0	0	0	4	5	9	17	44	25	10	11	5	0	0	0	130
NNW	0	0	3	2	7	10	25	50	21	16	14	6	0	0	0	154
TOTAL	0	0	9	27	44	75	216	597	448	298	178	122	15	1	0	2030

Notes:

Data from 10 meter level Data from 2003-2007

Table 2.7-68 Annual JFD of Wind Direction, Wind Speed, and Stability Class

Class D Pasquill Stability Class

							Wind Sp	eed (Mil	es/Hour)							
Direction	<1.0	1.0-1.12	1.121 -1.68	1.681 -2.24	2.241 -2.80	2.801 -3.36	3.361 -4.47	4.471 -6.71	6.711 -8.95	8.951 -11.18	11.181 -13.42	13.421 -17.9	17.91 -22.37	22.371 -26.84	>26.84	Total
N	1	1	9	11	18	34	63	137	138	149	96	48	4	0	0	709
NNE	0	0	2	11	23	32	91	173	118	100	69	47	18	0	0	684
NE	0	0	2	9	6	13	56	256	357	194	78	20	2	0	0	993
ENE	0	0	2	3	8	6	28	141	231	216	97	82	5	0	0	819
E	1	0	2	1	5	3	29	96	181	146	121	101	23	2	0	711
ESE	0	1	1	3	6	15	42	151	186	142	55	47	1	0	0	650
SE	1	1	0	9	6	10	32	163	141	62	20	14	3	0	0	462
SSE	0	0	1	2	6	13	38	102	88	45	18	4	2	0	0	319
S	1	0	2	10	7	17	47	142	132	87	28	13	0	0	0	486
SSW	1	1	4	13	12	7	50	196	241	217	138	112	2	0	0	994
SW	0	1	10	12	18	29	97	356	441	361	278	178	37	1	0	1819
WSW	1	2	9	22	36	61	200	456	339	170	48	25	0	0	0	1369
W	4	2	17	23	42	45	165	278	209	116	46	14	1	0	0	962
WNW	0	0	5	15	28	39	114	279	187	91	47	24	0	0	0	829
NW	0	0	8	19	31	34	123	261	166	78	24	7	0	0	0	751
NNW	1	2	15	30	42	57	107	265	166	109	67	28	0	0	0	889
TOTAL	11	11	89	193	294	415	1282	3452	3321	2283	1230	764	98	3	0	13446

Notes:

Data from 10 meter level Data from 2003-2007

Table 2.7-69 Annual JFD of Wind Direction, Wind Speed, and Stability Class

Class E Pasquill Stability Class

							Wind Sp	eed (Mil	les/Hour)	,						
Direction	<1.0	1.0-1.12	1.121 -1.68	1.681 -2.24	2.241 -2.80	2.801 -3.36	3.361 -4.47	4.471 -6.71	6.711 -8.95	8.951 -11.18	11.181 -13.42	13.421 -17.9	17.91 -22.37	22.371 -26.84	>26.84	Total
N	3	0	9	20	36	40	87	160	80	28	14	8	1	0	0	486
NNE	1	2	5	20	28	39	130	146	47	22	3	4	0	0	0	447
NE	4	1	2	10	16	17	40	188	83	20	10	0	0	0	0	391
ENE	3	0	2	6	3	10	25	130	103	53	8	4	4	0	0	351
E	5	2	4	8	5	6	37	132	108	59	38	36	8	3	0	451
ESE	1	1	4	5	4	20	54	176	157	54	36	16	2	0	0	530
SE	2	1	2	8	7	18	46	153	130	59	9	5	0	0	0	440
SSE	2	1	8	10	17	15	62	179	112	64	12	0	1	0	0	483
S	1	1	13	24	34	33	110	254	197	82	31	11	0	0	0	791
SSW	3	5	11	31	38	34	129	421	357	258	87	56	2	0	0	1432
SW	5	5	21	37	77	95	234	327	123	71	31	19	3	0	0	1048
WSW	7	1	39	65	136	133	245	232	42	17	1	0	0	0	0	918
W	9	6	38	69	103	73	133	148	45	11	4	2	1	0	0	642
WNW	4	0	10	28	35	44	150	206	47	15	8	3	0	0	0	550
NW	6	3	15	60	80	101	218	141	48	27	5	3	0	0	0	707
NNW	2	3	31	72	125	103	161	137	53	23	7	4	1	1	0	723
TOTAL	58	32	214	473	744	781	1861	3130	1732	863	304	171	23	4	0	10390

Notes:

Data from 10 meter level Data from 2003-2007

Table 2.7-70 Annual JFD of Wind Direction, Wind Speed, and Stability Class

Class F Pasquill Stability Class

							Wind Sp	eed (Mil	es/Hour)							
Direction	<1.0	1.0-1.12	1.121 -1.68	1.681 -2.24	2.241 -2.80	2.801 -3.36	3.361 -4.47	4.471 -6.71	6.711 -8.95	8.951 -11.18	11.181 -13.42	13.421 -17.9	17.91 -22.37	22.371 -26.84	>26.84	Total
N	2	2	10	15	36	24	83	93	12	5	1	0	0	0	0	283
NNE	1	3	6	12	14	19	35	30	9	2	0	0	0	0	0	131
NE	1	2	2	6	8	7	9	11	5	0	0	0	0	0	0	51
ENE	1	1	1	3	5	7	6	9	13	7	2	0	0	0	0	55
Е	1	1	3	3	2	6	11	33	21	9	7	9	1	0	0	107
ESE	2	0	2	5	6	7	30	50	28	13	2	3	0	0	0	148
SE	1	0	2	8	2	5	29	61	32	17	7	1	0	0	0	165
SSE	2	1	5	16	15	12	36	90	52	13	7	3	0	0	0	252
S	2	1	8	21	34	32	46	66	43	26	15	5	0	0	0	299
SSW	2	2	27	26	48	46	67	142	88	42	9	9	1	0	0	509
SW	5	6	26	52	62	63	98	30	15	4	1	1	0	0	0	363
WSW	6	6	22	79	100	83	68	6	6	2	2	6	2	0	0	388
W	3	4	54	89	71	46	35	7	9	1	0	1	1	1	0	322
WNW	5	3	17	29	52	32	66	51	4	6	0	0	0	0	0	265
NW	3	3	27	63	64	63	61	16	6	2	0	0	0	0	0	308
NNW	6	8	64	92	99	83	71	16	3	5	1	0	0	0	0	448
TOTAL	43	43	276	519	618	535	751	711	346	154	54	38	5	1	0	4094

Notes:

Data from 10 meter level Data from 2003-2007

Table 2.7-71 Annual JFD of Wind Direction, Wind Speed, and Stability Class

Class G Pasquill Stability Class

							Wind Sp	eed (Mil	es/Hour)							
Direction	<1.0	1.0-1.12	1.121 -1.68	1.681 -2.24	2.241 -2.80	2.801 -3.36	3.361 -4.47	4.471 -6.71	6.711 -8.95	8.951 -11.18	11.181 -13.42	13.421 -17.9	17.91 -22.37	22.371 -26.84	>26.84	Total
N	0	0	3	13	13	12	28	18	3	1	0	0	0	0	0	91
NNE	1	0	3	3	7	5	4	10	0	0	0	0	0	0	0	33
NE	1	0	4	0	2	3	0	2	0	0	0	0	0	0	0	12
ENE	0	0	0	0	0	2	2	3	1	0	0	0	0	0	0	8
E	0	0	0	1	1	2	7	11	10	7	1	1	1	0	0	42
ESE	0	0	5	2	4	3	19	28	16	8	1	1	0	0	0	87
SE	1	0	0	4	5	10	23	39	23	13	5	1	0	0	0	124
SSE	1	1	5	1	2	5	13	32	26	9	1	1	0	0	0	97
S	0	1	5	9	7	2	9	19	7	4	1	0	0	0	0	64
SSW	1	1	5	5	21	16	23	31	14	8	3	0	0	0	0	128
SW	2	1	19	16	16	18	17	13	4	7	1	0	0	0	0	114
WSW	4	6	38	44	39	35	22	2	1	4	1	0	0	0	0	196
W	3	3	67	95	39	22	8	2	0	0	0	0	0	0	0	239
WNW	1	0	9	28	41	19	40	19	0	0	0	0	0	0	0	157
NW	6	2	39	57	62	36	12	2	0	0	0	0	0	0	0	216
NNW	1	7	67	130	129	79	27	3	1	0	0	0	0	0	0	444
TOTAL	22	22	269	408	388	269	254	234	106	61	14	4	1	0	0	2052

Notes:

Data from 10 meter level

Data from 2003-2007

Table 2.7-72 Annual JFD of Wind Direction, Wind Speed, and Stability Class

All Pasquill Stability Classes

							Wind Sp	eed (Mil	es/Hour)							
Direction	<1.0	1.0-1.12	1.121 -1.68	1.681 -2.24	2.241 -2.80	2.801 -3.36	3.361 -4.47	4.471 -6.71	6.711 -8.95	8.951 -11.18	11.181 -13.42	13.421 -17.9	17.91 -22.37	22.371 -26.84	>26.84	Total
N	0	1	2	7	12	25	79	196	203	268	281	317	111	34	5	1541
NNE	0	0	2	8	11	23	77	217	255	247	230	324	122	34	19	1569
NE	0	0	1	14	15	21	80	273	420	462	408	449	155	9	3	2310
ENE	3	0	2	4	17	17	58	205	329	389	392	469	200	72	15	2172
E	3	0	4	6	11	10	56	180	298	288	317	543	369	166	86	2337
ESE	6	3	3	3	13	12	60	281	433	364	312	541	228	76	30	2365
SE	6	3	0	6	9	15	53	298	493	403	310	340	96	34	19	2085
SSE	8	1	2	9	14	17	72	283	482	382	289	302	103	22	10	1996
S	2	0	2	5	16	18	51	279	393	464	355	509	206	83	26	2409
SSW	1	0	1	5	9	20	57	222	386	573	606	1042	576	209	59	3766
SW	2	1	2	5	11	18	50	205	350	529	667	1058	581	267	124	3870
WSW	3	2	5	8	20	22	50	187	326	591	776	1297	550	211	123	4171
W	3	1	2	8	21	21	45	182	380	580	690	956	450	159	92	3590
WNW	2	0	4	5	19	23	88	226	343	445	497	455	144	52	10	2313
NW	1	0	4	5	21	27	48	203	312	526	574	569	266	100	44	2700
NNW	1	1	3	11	20	29	80	187	334	535	671	917	369	181	135	3474
TOTAL	41	13	39	109	239	318	1004	3624	5737	7046	7375	10088	4526	1709	800	42668

Notes:

Data from 60 meter level Data from 2003-2007

Table 2.7-73 Annual JFD of Wind Direction, Wind Speed, and Stability Class

Class A Pasquill Stability Class

							Wind Sp	eed (Mil	es/Hour)							
Direction	<1.0	1.0-1.12	1.121 -1.68	1.681 -2.24	2.241 -2.80	2.801 -3.36	3.361 -4.47	4.471 -6.71	6.711 -8.95	8.951 -11.18	11.181 -13.42	13.421 -17.9	17.91 -22.37	22.371 -26.84	>26.84	Total
N	0	0	0	0	0	3	7	33	25	33	24	24	1	7	0	157
NNE	0	0	0	0	1	2	8	27	28	28	22	31	10	7	0	164
NE	0	0	1	2	2	2	11	46	61	61	84	60	18	1	0	349
ENE	1	0	0	1	3	5	16	47	94	79	65	72	26	10	0	419
Е	0	0	1	0	0	2	10	67	122	85	102	107	99	25	4	624
ESE	1	0	1	1	2	2	14	131	228	148	91	116	30	7	0	772
SE	2	0	0	0	1	3	16	127	260	154	70	20	3	0	0	656
SSE	2	0	0	2	0	2	16	104	232	156	65	16	5	0	0	600
S	0	0	1	1	2	5	6	90	177	173	64	47	10	0	0	576
SSW	0	0	0	1	0	3	12	68	125	167	135	171	45	7	1	735
SW	0	0	0	0	1	3	9	51	56	80	82	108	30	14	5	439
WSW	1	0	1	1	3	2	3	35	52	71	86	188	71	27	3	544
W	0	0	1	0	2	2	6	45	86	102	92	166	118	38	16	674
WNW	0	0	0	1	2	3	6	36	49	63	62	47	26	4	2	301
NW	0	0	1	0	2	3	9	38	83	102	112	123	73	22	14	582
NNW	0	0	0	1	2	2	11	49	91	121	113	205	118	40	26	779
TOTAL	7	0	7	11	23	44	160	994	1769	1623	1269	1501	683	209	71	8371

Notes:

Data from 60 meter level Data from 2003-2007

Table 2.7-74 Annual JFD of Wind Sirection, Wind Speed, and Stability Class

Class B Pasquill Stability Class

							Wind Sp	eed (Mil	es/Hour))						
Direction	<1.0	1.0-1.12	1.121 -1.68	1.681 -2.24	2.241 -2.80	2.801 -3.36	3.361 -4.47	4.471 -6.71	6.711 -8.95	8.951 -11.18	11.181 -13.42	13.421 -17.9	17.91 -22.37	22.371 -26.84	>26.84	Total
N	0	0	0	0	0	2	9	17	11	10	10	8	4	3	0	74
NNE	0	0	0	0	1	1	2	15	10	6	12	16	7	0	0	70
NE	0	0	0	0	0	1	5	3	16	18	10	14	5	1	0	73
ENE	0	0	0	0	1	2	4	10	9	13	11	20	10	5	0	85
Е	0	0	0	1	0	0	5	11	16	11	13	27	19	7	0	110
ESE	1	0	0	0	0	0	7	18	14	16	16	19	13	4	1	109
SE	0	0	0	0	2	1	4	24	26	16	17	8	2	1	0	101
SSE	0	0	0	1	1	2	6	21	33	16	13	5	1	0	0	99
S	0	0	0	1	2	0	3	16	27	28	8	18	5	0	0	108
SSW	0	0	0	1	0	0	5	25	23	25	36	49	29	7	1	201
SW	0	0	0	0	0	0	5	13	24	22	37	48	37	17	12	215
WSW	0	0	0	1	1	2	1	12	18	30	26	74	34	17	16	232
W	0	0	0	0	3	0	3	7	30	41	33	70	43	9	9	248
WNW	0	0	1	0	1	1	5	20	33	29	18	27	10	4	0	149
NW	0	0	1	0	1	4	4	10	19	35	26	33	31	8	3	175
NNW	0	0	0	0	2	4	8	8	21	28	30	45	23	14	10	193
TOTAL	1	0	2	5	15	20	76	230	330	344	316	481	273	97	52	2242

Notes:

Data from 60 meter level Data from 2003-2007

Table 2.7-75 Annual JFD of Wind Direction, Wind Speed, and Stability Class

Class C Pasquill Stability Class

							Wind Sp	eed (Mil	es/Hour)							
Direction	<1.0	1.0-1.12	1.121 -1.68	1.681 -2.24	2.241 -2.80	2.801 -3.36	3.361 -4.47	4.471 -6.71	6.711 -8.95	8.951 -11.18	11.181 -13.42	13.421 -17.9	17.91 -22.37	22.371 -26.84	>26.84	Total
N	0	0	0	0	2	1	6	18	13	14	14	12	10	5	1	96
NNE	0	0	0	1	0	1	5	9	13	17	3	22	8	1	0	80
NE	0	0	0	1	0	0	2	12	12	20	15	24	9	0	0	95
ENE	0	0	0	1	1	0	4	5	9	13	21	40	12	7	2	115
Е	0	0	0	0	0	2	2	6	9	9	7	22	15	8	5	85
ESE	0	0	0	0	0	1	2	10	17	8	10	25	11	2	0	86
SE	0	0	0	0	0	0	1	18	16	13	11	11	3	0	0	73
SSE	0	0	0	1	0	1	5	16	18	12	8	10	7	1	0	79
S	0	0	0	0	0	1	4	18	17	13	16	18	5	0	0	92
SSW	0	0	0	0	1	1	4	5	17	32	24	38	25	7	1	155
SW	0	0	0	0	2	2	3	19	14	20	28	42	26	18	25	199
WSW	0	0	1	0	0	0	3	10	23	22	30	67	41	21	25	243
W	0	0	1	1	1	3	2	12	22	26	27	52	34	12	13	206
WNW	0	0	0	0	2	1	7	10	22	27	23	25	9	3	0	129
NW	0	0	0	0	2	2	2	14	14	24	16	22	19	4	9	128
NNW	0	0	0	0	2	3	3	10	17	24	28	38	25	15	18	183
TOTAL	0	0	2	5	13	19	55	192	253	294	281	468	259	104	99	2044

Notes:

Data from 60 meter level Data from 2003-2007

Table 2.7-76 Annual JFD of Wind Direction, Wind Speed, and Stability Class

Class D Pasquill Stability Class

							Wind Sp	eed (Mil	es/Hour)							
Direction	<1.0	1.0-1.12	1.121 -1.68	1.681 -2.24	2.241 -2.80	2.801 -3.36	3.361 -4.47	4.471 -6.71	6.711 -8.95	8.951 -11.18	11.181 -13.42	13.421 -17.9	17.91 -22.37	22.371 -26.84	>26.84	Total
N	0	1	0	3	4	5	21	54	64	60	76	142	78	16	3	527
NNE	0	0	1	3	3	8	22	77	96	84	78	150	91	25	19	657
NE	0	0	0	3	4	5	12	71	98	200	209	298	110	7	2	1019
ENE	1	0	1	0	1	1	6	43	74	131	191	269	124	47	12	901
Е	2	0	3	1	0	4	14	31	48	75	95	220	158	85	45	781
ESE	3	1	1	0	2	1	17	37	77	105	99	187	75	30	6	641
SE	1	1	0	0	2	2	8	43	62	85	84	94	23	3	3	411
SSE	0	0	0	0	3	5	13	46	61	55	55	58	16	2	1	315
S	1	0	0	1	2	3	12	42	48	64	82	126	51	19	1	452
SSW	0	0	0	1	3	6	5	33	53	104	141	254	164	70	19	853
SW	1	0	0	1	2	3	9	22	74	117	180	455	352	162	67	1445
WSW	0	1	1	3	10	8	9	41	110	209	268	576	351	132	78	1797
W	1	1	0	0	8	6	9	38	87	163	190	321	197	88	42	1151
WNW	0	0	0	2	4	2	23	46	95	144	160	191	82	37	7	793
NW	0	0	1	1	5	6	12	41	68	129	151	193	105	41	14	767
NNW	1	0	2	6	4	9	19	39	72	104	162	267	139	81	72	977
TOTAL	11	5	10	25	57	74	211	704	1187	1829	2221	3801	2116	845	391	13487

Notes:

Data from 60 meter level Data from 2003-2007

Table 2.7-77 Annual JFD of Wind Direction, Wind Speed, and Stability Class

Class E Pasquill Stability Class

							Wind Sp	eed (Mil	es/Hour)							
Direction	<1.0	1.0-1.12	1.121 -1.68	1.681 -2.24	2.241 -2.80	2.801 -3.36	3.361 -4.47	4.471 -6.71	6.711 -8.95	8.951 -11.18	11.181 -13.42	13.421 -17.9	17.91 -22.37	22.371 -26.84	>26.84	Total
N	0	0	1	1	2	9	20	38	46	96	84	91	16	3	1	408
NNE	0	0	0	1	3	5	18	48	74	80	64	80	4	1	0	378
NE	0	0	0	4	3	3	19	78	145	121	72	41	13	0	1	500
ENE	1	0	1	0	4	4	13	48	71	119	92	59	25	3	1	441
Е	0	0	0	2	4	1	9	34	79	89	83	136	66	34	20	557
ESE	1	1	0	0	1	4	9	36	75	73	80	137	58	18	11	504
SE	2	1	0	2	1	2	13	43	91	101	98	125	25	8	2	514
SSE	4	1	1	2	8	5	14	60	84	82	99	112	28	5	1	506
S	1	0	1	0	3	1	11	56	64	115	116	204	74	40	12	698
SSW	0	0	0	1	3	6	11	28	75	155	202	398	221	79	23	1202
SW	1	1	1	0	1	6	13	46	86	165	228	299	107	50	15	1019
WSW	0	0	0	2	4	5	12	41	76	170	258	315	41	11	0	935
W	0	0	0	3	3	3	11	35	95	153	213	233	52	10	4	815
WNW	0	0	1	1	6	7	21	54	79	111	146	109	17	4	1	557
NW	0	0	0	2	5	5	12	42	70	142	160	126	38	23	4	629
NNW	0	1	0	1	5	3	17	44	73	142	150	221	60	28	8	753
TOTAL	10	5	6	22	56	69	223	731	1283	1914	2145	2686	845	317	104	10416

Notes:

Data from 60 meter level Data from 2003-2007

Table 2.7-78 Annual JFD of Wind Direction, Wind Speed, and Stability Class

Class F Pasquill Stability Class

							Wind Sp	eed (Mil	les/Hour))						
Direction	<1.0	1.0-1.12	1.121 -1.68	1.681 -2.24	2.241 -2.80	2.801 -3.36	3.361 -4.47	4.471 -6.71	6.711 -8.95	8.951 -11.18	11.181 -13.42	13.421 -17.9	17.91 -22.37	22.371 -26.84	>26.84	Total
N	0	0	0	3	3	2	10	16	26	39	50	30	1	0	0	180
NNE	0	0	0	1	2	2	6	25	21	24	38	18	1	0	0	138
NE	0	0	0	3	1	2	16	41	68	32	14	11	0	0	0	188
ENE	0	0	0	1	1	4	9	36	53	24	9	8	3	0	0	148
E	1	0	0	2	4	0	10	17	17	14	14	22	9	5	9	124
ESE	0	0	0	1	2	4	7	30	19	11	13	45	25	6	8	171
SE	0	1	0	4	2	4	7	27	34	23	15	56	23	10	3	209
SSE	0	0	1	2	0	2	8	24	47	51	39	65	25	11	4	279
S	0	0	0	1	5	6	6	34	40	55	45	65	41	19	10	327
SSW	1	0	0	1	1	1	4	29	56	65	47	102	79	31	14	431
SW	0	0	0	1	1	2	4	28	65	98	79	75	19	1	0	373
WSW	1	1	2	1	2	2	10	23	29	55	77	66	5	1	0	275
W	1	0	0	2	4	4	6	19	30	59	84	89	6	2	8	314
WNW	2	0	2	0	3	4	10	36	42	40	60	44	0	0	0	243
NW	1	0	1	2	3	2	4	36	33	54	75	52	0	2	0	265
NNW	0	0	1	1	3	2	12	20	41	80	132	111	4	3	1	411
TOTAL	7	2	7	26	37	43	129	441	621	724	791	859	241	91	57	4076

Notes:

Data from 60 meter level Data from 2003-2007

Table 2.7-79 Annual JFD of Wind Direction, Wind Speed, and Stability Class

Class G Pasquill Stability Class

•			•			•	Wind Sp	eed (Mil	es/Hour)			•	•		•	
Direction	<1.0	1.0-1.12	1.121 -1.68	1.681 -2.24	2.241 -2.80	2.801 -3.36	3.361 -4.47	4.471 -6.71	6.711 -8.95	8.951 -11.18	11.181 -13.42	13.421 -17.9	17.91 -22.37	22.371 -26.84	>26.84	Total
N	0	0	1	0	1	3	6	20	18	16	23	10	1	0	0	99
NNE	0	0	1	2	1	4	16	16	13	8	13	7	1	0	0	82
NE	0	0	0	1	5	8	15	22	20	10	4	1	0	0	0	86
ENE	0	0	0	1	6	1	6	16	19	10	3	1	0	0	0	63
Е	0	0	0	0	3	1	6	14	7	5	3	9	3	2	3	56
ESE	0	1	1	1	6	0	4	19	3	3	3	12	16	9	4	82
SE	1	0	0	0	1	3	4	16	4	11	15	26	17	12	11	121
SSE	2	0	0	1	2	0	10	12	7	10	10	36	21	3	4	118
S	0	0	0	1	2	2	9	23	20	16	24	31	20	5	3	156
SSW	0	0	1	0	1	3	16	34	37	25	21	30	13	8	0	189
SW	0	0	1	3	4	2	7	26	31	27	33	31	10	5	0	180
WSW	1	0	0	0	0	3	12	25	18	34	31	11	7	2	1	145
W	1	0	0	2	0	3	8	26	30	36	51	25	0	0	0	182
WNW	0	0	0	1	1	5	16	24	23	31	28	12	0	0	0	141
NW	0	0	0	0	3	5	5	22	25	40	34	20	0	0	0	154
NNW	0	0	0	2	2	6	10	17	19	36	56	30	0	0	0	178
TOTAL	5	1	5	15	38	49	150	332	294	318	352	292	109	46	26	2032

Notes:

Data from 60 meter level Data from 2003-2007

Table 2.7-80 Distances to Site Boundary

Sector	Distance to Site Boundary (meters)
N	909
NNE	1381
NE	1904
ENE	N/A
E	N/A
ESE	N/A
SE	N/A
SSE	981
S	981
SSW	1006
SW	1297
WSW	1131
W	793
WNW	769
NW	769
NNW	769

Note: There are no site boundary distances listed for the ENE, E, ESE, and SE sectors since they are directly towards Lake Erie.

Table 2.7-81 Distances to Nearest Residence

Saatar	Distance to Nearest Residence
Sector	(meters)
NNE	1959
NE	2032
SSE	1328
SSW	1292
SW	1456
WSW	1671
W	1421
NW	957
NNW	1770

Note: Sectors are included with noted residences from Fermi site annual land use survey.

Table 2.7-82 Distances to Nearest Vegetable Garden

Sector	Distance to Nearest Vegetable Garden (meters)
N	3566
NNE	3327
NE	3452
S	1917
WSW	3295
W	2272
NW	960
NNW	1607

Note: Sectors are included with noted vegetable gardens from Fermi site annual land use survey.

Table 2.7-83 Distances to Nearest Sheep

Sector	Distance to Nearest Sheep (meters)
NNE	7088
NNW	7023

Note: Sectors are included with noted sheep from Fermi site annual land use survey.

Table 2.7-84 Distances to Nearest Goat

Sector	Distance to Nearest Goat (meters)
WNW	3554
NNW	4811

Note: Sectors are included with noted goats from Fermi site annual land use survey.

Table 2.7-85 Distances to Nearest Meat Cow

Sector	Distance to Nearest Meat Cow (meters)
NNE	7089
NNW	4754

Note: Sectors are included with noted meat cows from Fermi site annual land use survey.

Table 2.7-86 Distances to Nearest Milk Cow

Sector	Distance to Nearest Milk Cow (meters)
WNW	3363
NW	5719

Note: Sectors are included with noted milk cows from Fermi site annual land use survey.

Table 2.7-87 Site Boundary X/Q and D/Q Factors for Ground-Level Release (Based on 2002-2007 met data)

	No Decay, Undepleted X/Q	2.26 Day Decay, Undepleted X/Q	8.0 Day Decay, Depleted X/Q	D/Q
Sector	(sec/m ³)	(sec/m ³)	(sec/m³)	(m ⁻²)
N	9.6E-06	9.5E-06	8.7E-06	3.5E-08
NNE	6.8E-06	6.8E-06	6.0E-06	2.9E-08
NE	3.5E-06	3.4E-06	3.0E-06	1.3E-08
SSE	1.1E-05	1.1E-05	1.0E-05	3.3E-08
S	8.2E-06	8.2E-06	7.4E-06	2.6E-08
SSW	5.8E-06	5.8E-06	5.2E-06	2.1E-08
SW	2.7E-06	2.7E-06	2.4E-06	1.5E-08
WSW	2.6E-06	2.6E-06	2.3E-06	1.9E-08
W	5.5E-06	5.5E-06	5.1E-06	3.7E-08
WNW	8.1E-06	8.1E-06	7.4E-06	4.6E-08
NW	7.9E-06	7.9E-06	7.2E-06	4.4E-08
NNW	9.2E-06	9.2E-06	8.4E-06	3.9E-08

Note: There are no values listed for the ENE, E, ESE and SE sectors because these sectors are directly towards Lake Erie.

Table 2.7-88 Site Boundary X/Q and D/Q Factors for Mixed-Mode Release from the Reactor Building/Fuel Building Stack (Based on 2002-2007 met data)

Sector	No Decay, Undepleted X/Q (sec/m ³)	2.26 Day Decay, Undepleted X/Q (sec/m ³)	8.0 Day Decay, Depleted X/Q (sec/m ³)	D/Q (m ⁻²)
N	5.3E-07	5.3E-07	4.9E-07	1.0E-08
NNE	6.0E-07	6.0E-07	5.5E-07	1.1E-08
NE	3.3E-07	3.3E-07	3.1E-07	5.8E-09
SSE	3.8E-07	3.8E-07	3.5E-07	9.2E-09
S	3.8E-07	3.8E-07	3.5E-07	7.4E-09
SSW	2.8E-07	2.8E-07	2.6E-07	5.8E-09
SW	2.9E-07	2.9E-07	2.7E-07	6.0E-09
WSW	3.2E-07	3.2E-07	2.9E-07	8.1E-09
W	5.7E-07	5.7E-07	5.3E-07	1.5E-08
WNW	6.6E-07	6.6E-07	6.2E-07	1.7E-08
NW	6.4E-07	6.4E-07	6.1E-07	1.6E-08
NNW	6.0E-07	6.0E-07	5.6E-07	1.3E-08

Note: There are no values listed for the ENE, E, ESE and SE sectors because these sectors are directly towards Lake Erie.

Table 2.7-89 Site Boundary X/Q and D/Q Factors for Mixed-Mode Release from the Turbine Building Stack (Based on 2002-2007 met data)

Sector	No Decay, Undepleted X/Q (sec/m ³)	2.26 Day Decay, Undepleted X/Q (sec/m ³)	8.0 Day Decay, Depleted X/Q (sec/m ³)	D/Q (m ⁻²)
N	6.1E-07	6.1E-07	5.6E-07	9.6E-09
NNE	6.3E-07	6.3E-07	5.7E-07	1.0E-08
NE	2.9E-07	2.9E-07	2.7E-07	4.8E-09
SSE	4.3E-07	4.3E-07	3.9E-07	8.1E-09
S	4.2E-07	4.2E-07	3.9E-07	6.3E-09
SSW	3.0E-07	3.0E-07	2.8E-07	5.1E-09
SW	2.6E-07	2.6E-07	2.3E-07	5.0E-09
WSW	3.0E-07	3.0E-07	2.7E-07	7.0E-09
W	6.2E-07	6.2E-07	5.7E-07	1.4E-08
WNW	7.2E-07	7.2E-07	6.7E-07	1.5E-08
NW	7.1E-07	7.1E-07	6.6E-07	1.5E-08
NNW	6.8E-07	6.8E-07	6.3E-07	1.2E-08

Note: There are no values listed for the ENE, E, ESE and SE sectors because these sectors are directly towards Lake Erie.

Table 2.7-90 Nearest Goat X/Q and D/Q Factors for Ground-Level Release (Based on 2002-2007 met data)

Sector	No Decay, Undepleted X/Q (sec/m ³)	2.26 Day Decay, Undepleted X/Q (sec/m ³)	8.0 Day Decay, Depleted X/Q (sec/m ³)	D/Q (m ⁻²)
WNW	2.7E-07	2.7E-07	2.2E-07	1.5E-09
NNW	1.7E-07	1.7E-07	1.3E-07	6.2E-10

Table 2.7-91 Nearest Goat X/Q and D/Q Factors for Mixed-Mode Release from the Reactor Building/Fuel Building Stack (Based on 2002-2007 met data)

Sector	No Decay, Undepleted X/Q (sec/m ³)	2.26 Day Decay, Undepleted X/Q (sec/m ³)	8.0 Day Decay, Depleted X/Q (sec/m ³)	D/Q (m ⁻²)
WNW	6.6E-08	6.5E-08	6.0E-08	8.4E-10
NNW	3.5E-08	3.5E-08	3.2E-08	3.0E-10

Table 2.7-92 Nearest Goat X/Q and D/Q Factors for Mixed-Mode Release from the Turbine Building Stack (Based on 2002-2007 met data)

	Sector	Distance (miles)	No Decay, Undepleted X/Q (sec/m ³)	2.26 Day Decay, Undepleted X/Q (sec/m ³)	8.0 Day Decay, Depleted X/Q (sec/m ³)	D/Q (m ⁻²)
-	WNW	2.21	5.7E-08	5.7E-08	5.1E-08	7.9E-10
•	NNW	2.99	3.0E-08	3.0E-08	2.7E-08	3.0E-10

Table 2.7-93 Nearest Milk Cow X/Q and D/Q Factors for Ground-Level Release (Based on 2002-2007 met data)

Sector	No Decay, Undepleted X/Q (sec/m ³)	2.26 Day Decay, Undepleted X/Q (sec/m ³)	8.0 Day Decay, Depleted X/Q (sec/m ³)	D/Q (m ⁻²)
WNW	3.1E-07	3.1E-07	2.5E-07	1.7E-09
NW	1.0E-07	1.0E-07	7.9E-08	4.7E-10

Table 2.7-94 Nearest Milk Cow X/Q and D/Q Factors for Mixed-Mode Release from the Reactor Building/Fuel Building Stack (Based on 2002-2007 met data)

Sector	No Decay, Undepleted X/Q (sec/m ³)	2.26 Day Decay, Undepleted X/Q (sec/m ³)	8.0 Day Decay, Depleted X/Q (sec/m ³)	D/Q (m ⁻²)
WNW	7.2E-08	7.2E-08	6.6E-08	9.5E-10
NW	2.8E-08	2.7E-08	2.5E-08	2.8E-10

Table 2.7-95 Nearest Milk Cow X/Q and D/Q Factors for Mixed-Mode Release from the Turbine Building Stack (Based on 2002-2007 met data)

Sector	No Decay, Undepleted X/Q (sec/m ³)	2.26 Day Decay, Undepleted X/Q (sec/m ³)	8.0 Day Decay, Depleted X/Q (sec/m ³)	D/Q (m ⁻²)
WNW	6.2E-08	6.2E-08	5.6E-08	8.9E-10
NW	2.4E-08	2.4E-08	2.1E-08	2.7E-10

Table 2.7-96 Annual Average X/Q Values (No Decay, Undepleted) for Ground Level Release (Based on 2001-2007 met data) (Sheet 1 of 3)

Distance in Miles from the Site													
Sector	0.25	0.5	0.75	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5		
N	4.096E-05	1.188E-05	5.798E-06	2.761E-06	1.040E-06	5.456E-07	3.395E-07	2.341E-07	1.728E-07	1.339E-07	1.076E-07		
NNE	6.801E-05	1.974E-05	9.639E-06	4.591E-06	1.728E-06	9.064E-07	5.639E-07	3.888E-07	2.870E-07	2.224E-07	1.786E-07		
NE	1.148E-04	3.343E-05	1.621E-05	7.747E-06	2.938E-06	1.555E-06	9.749E-07	6.768E-07	5.027E-07	3.917E-07	3.162E-07		
ENE	1.347E-04	3.915E-05	1.893E-05	9.055E-06	3.442E-06	1.825E-06	1.147E-06	7.972E-07	5.930E-07	4.627E-07	3.740E-07		
E	1.255E-04	3.635E-05	1.753E-05	8.383E-06	3.190E-06	1.693E-06	1.065E-06	7.409E-07	5.516E-07	4.307E-07	3.484E-07		
ESE	1.615E-04	4.668E-05	2.245E-05	1.075E-05	4.100E-06	2.182E-06	1.375E-06	9.584E-07	7.146E-07	5.587E-07	4.525E-07		
SE	1.071E-04	3.100E-05	1.495E-05	7.149E-06	2.719E-06	1.443E-06	9.071E-07	6.313E-07	4.699E-07	3.669E-07	2.967E-07		
SSE	7.788E-05	2.259E-05	1.092E-05	5.220E-06	1.982E-06	1.051E-06	6.596E-07	4.585E-07	3.410E-07	2.660E-07	2.149E-07		
S	5.836E-05	1.696E-05	8.205E-06	3.923E-06	1.491E-06	7.900E-07	4.960E-07	3.448E-07	2.564E-07	2.000E-07	1.616E-07		
SSW	4.414E-05	1.288E-05	6.263E-06	2.992E-06	1.133E-06	5.985E-07	3.747E-07	2.598E-07	1.928E-07	1.501E-07	1.210E-07		
SW	2.330E-05	6.709E-06	3.284E-06	1.561E-06	5.814E-07	3.017E-07	1.858E-07	1.270E-07	9.297E-08	7.150E-08	5.705E-08		
WSW	1.680E-05	4.797E-06	2.340E-06	1.110E-06	4.131E-07	2.143E-07	1.319E-07	9.013E-08	6.598E-08	5.075E-08	4.049E-08		
W	1.891E-05	5.406E-06	2.634E-06	1.251E-06	4.682E-07	2.441E-07	1.510E-07	1.036E-07	7.614E-08	5.876E-08	4.703E-08		
WNW	2.642E-05	7.499E-06	3.633E-06	1.725E-06	6.486E-07	3.398E-07	2.111E-07	1.454E-07	1.072E-07	8.298E-08	6.661E-08		
NW	2.587E-05	7.292E-06	3.515E-06	1.668E-06	6.280E-07	3.296E-07	2.051E-07	1.415E-07	1.045E-07	8.100E-08	6.510E-08		
NNW	2.956E-05	8.461E-06	4.103E-06	1.952E-06	7.363E-07	3.872E-07	2.414E-07	1.667E-07	1.233E-07	9.567E-08	7.696E-08		

Table 2.7-96 Annual Average X/Q Values (No Decay, Undepleted) for Ground Level Release (Based on 2001-2007 met data) (Sheet 2 of 3)

	Distance in Miles from the Site													
Sector	5.0	7.5	10	15	20	25	30	35	40	45	50			
N	8.888E-08	4.550E-08	2.948E-08	1.695E-08	1.151E-08	8.550E-09	6.715E-09	5.480E-09	4.599E-09	3.943E-09	3.437E-09			
NNE	1.476E-07	7.553E-08	4.894E-08	2.813E-08	1.911E-08	1.419E-08	1.115E-08	9.099E-09	7.636E-09	6.546E-09	5.706E-09			
NE	2.625E-07	1.369E-07	8.997E-08	5.276E-08	3.634E-08	2.729E-08	2.162E-08	1.778E-08	1.502E-08	1.295E-08	1.135E-08			
ENE	3.107E-07	1.628E-07	1.073E-07	6.319E-08	4.365E-08	3.285E-08	2.609E-08	2.149E-08	1.818E-08	1.569E-08	1.376E-08			
E	2.897E-07	1.522E-07	1.005E-07	5.943E-08	4.116E-08	3.104E-08	2.469E-08	2.037E-08	1.725E-08	1.491E-08	1.309E-08			
ESE	3.766E-07	1.988E-07	1.317E-07	7.817E-08	5.430E-08	4.104E-08	3.271E-08	2.702E-08	2.292E-08	1.983E-08	1.743E-08			
SE	2.467E-07	1.297E-07	8.565E-08	5.062E-08	3.506E-08	2.644E-08	2.103E-08	1.734E-08	1.469E-08	1.270E-08	1.115E-08			
SSE	1.786E-07	9.355E-08	6.166E-08	3.633E-08	2.511E-08	1.890E-08	1.501E-08	1.237E-08	1.047E-08	9.038E-09	7.930E-09			
S	1.342E-07	7.026E-08	4.628E-08	2.724E-08	1.881E-08	1.415E-08	1.124E-08	9.253E-09	7.827E-09	6.756E-09	5.926E-09			
SSW	1.004E-07	5.218E-08	3.420E-08	1.998E-08	1.372E-08	1.028E-08	8.132E-09	6.677E-09	5.633E-09	4.851E-09	4.245E-09			
SW	4.684E-08	2.340E-08	1.488E-08	8.335E-09	5.559E-09	4.071E-09	3.160E-09	2.554E-09	2.126E-09	1.809E-09	1.567E-09			
WSW	3.325E-08	1.663E-08	1.059E-08	5.943E-09	3.971E-09	2.912E-09	2.264E-09	1.832E-09	1.527E-09	1.300E-09	1.127E-09			
W	3.872E-08	1.957E-08	1.257E-08	7.132E-09	4.803E-09	3.544E-09	2.769E-09	2.251E-09	1.882E-09	1.608E-09	1.398E-09			
WNW	5.499E-08	2.810E-08	1.819E-08	1.045E-08	7.101E-09	5.277E-09	4.148E-09	3.387E-09	2.845E-09	2.441E-09	2.129E-09			
NW	5.383E-08	2.768E-08	1.800E-08	1.041E-08	7.111E-09	5.305E-09	4.183E-09	3.426E-09	2.884E-09	2.480E-09	2.167E-09			
NNW	6.366E-08	3.278E-08	2.134E-08	1.235E-08	8.427E-09	6.283E-09	4.952E-09	4.053E-09	3.410E-09	2.930E-09	2.559E-09			

Table 2.7-96 Annual Average X/Q Values (No Decay, Undepleted) for Ground Level Release (Based on 2001-2007 met data) (Sheet 3 of 3)

X/Q (sec/m³) for Each Segment

Segment Boundaries in Miles from the Site													
Sector	0.5-1	1-2	2-3	3-4	4-5	5-10	10-20	20-30	30-40	40-50			
N	5.799E-06	1.203E-06	3.523E-07	1.755E-07	1.085E-07	4.802E-08	1.732E-08	8.606E-09	5.497E-09	3.950E-09			
NNE	9.640E-06	1.999E-06	5.852E-07	2.914E-07	1.801E-07	7.972E-08	2.875E-08	1.429E-08	9.127E-09	6.558E-09			
NE	1.628E-05	3.392E-06	1.010E-06	5.101E-07	3.187E-07	1.440E-07	5.373E-08	2.744E-08	1.783E-08	1.297E-08			
ENE	1.903E-05	3.971E-06	1.188E-06	6.017E-07	3.768E-07	1.710E-07	6.431E-08	3.303E-08	2.154E-08	1.571E-08			
E	1.765E-05	3.679E-06	1.103E-06	5.596E-07	3.510E-07	1.598E-07	6.045E-08	3.120E-08	2.042E-08	1.493E-08			
ESE	2.263E-05	4.725E-06	1.423E-06	7.249E-07	4.559E-07	2.085E-07	7.945E-08	4.124E-08	2.708E-08	1.986E-08			
SE	1.505E-05	3.136E-06	9.397E-07	4.768E-07	2.990E-07	1.361E-07	5.149E-08	2.657E-08	1.739E-08	1.271E-08			
SSE	1.098E-05	2.288E-06	6.834E-07	3.460E-07	2.166E-07	9.827E-08	3.697E-08	1.900E-08	1.240E-08	9.051E-09			
S	8.247E-06	1.720E-06	5.139E-07	2.602E-07	1.628E-07	7.382E-08	2.772E-08	1.423E-08	9.276E-09	6.766E-09			
SSW	6.280E-06	1.308E-06	3.884E-07	1.957E-07	1.220E-07	5.490E-08	2.036E-08	1.034E-08	6.695E-09	4.858E-09			
SW	3.279E-06	6.747E-07	1.932E-07	9.451E-08	5.755E-08	2.482E-08	8.557E-09	4.103E-09	2.564E-09	1.813E-09			
WSW	2.339E-06	4.796E-07	1.372E-07	6.708E-08	4.085E-08	1.764E-08	6.099E-09	2.936E-09	1.839E-09	1.303E-09			
W	2.635E-06	5.426E-07	1.569E-07	7.737E-08	4.743E-08	2.071E-08	7.305E-09	3.570E-09	2.258E-09	1.612E-09			
WNW	3.644E-06	7.507E-07	2.191E-07	1.089E-07	6.716E-08	2.967E-08	1.068E-08	5.312E-09	3.398E-09	2.445E-09			
NW	3.533E-06	7.265E-07	2.128E-07	1.061E-07	6.564E-08	2.919E-08	1.063E-08	5.338E-09	3.436E-09	2.484E-09			
NNW	4.115E-06	8.513E-07	2.504E-07	1.252E-07	7.758E-08	3.456E-08	1.260E-08	6.322E-09	4.065E-09	2.934E-09			

Table 2.7-97 Annual Average X/Q Values (2.26 Day Decay, Undepleted) for Ground Level Release (Based on 2001-2007 met data) (Sheet 1 of 3)

	Distance in Miles from the Site													
Sector	0.25	0.5	0.75	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5			
N	4.091E-05	1.185E-05	5.777E-06	2.748E-06	1.032E-06	5.403E-07	3.354E-07	2.307E-07	1.699E-07	1.313E-07	1.052E-07			
NNE	6.794E-05	1.970E-05	9.608E-06	4.571E-06	1.716E-06	8.985E-07	5.578E-07	3.837E-07	2.826E-07	2.185E-07	1.751E-07			
NE	1.147E-04	3.334E-05	1.615E-05	7.708E-06	2.916E-06	1.539E-06	9.624E-07	6.664E-07	4.937E-07	3.836E-07	3.089E-07			
ENE	1.345E-04	3.902E-05	1.885E-05	8.999E-06	3.410E-06	1.803E-06	1.129E-06	7.824E-07	5.801E-07	4.512E-07	3.635E-07			
E	1.253E-04	3.622E-05	1.744E-05	8.325E-06	3.156E-06	1.669E-06	1.046E-06	7.254E-07	5.381E-07	4.186E-07	3.374E-07			
ESE	1.612E-04	4.652E-05	2.233E-05	1.067E-05	4.057E-06	2.151E-06	1.350E-06	9.382E-07	6.971E-07	5.431E-07	4.383E-07			
SE	1.069E-04	3.090E-05	1.488E-05	7.103E-06	2.693E-06	1.424E-06	8.926E-07	6.191E-07	4.594E-07	3.575E-07	2.882E-07			
SSE	7.777E-05	2.253E-05	1.088E-05	5.192E-06	1.966E-06	1.039E-06	6.507E-07	4.511E-07	3.345E-07	2.602E-07	2.097E-07			
S	5.828E-05	1.692E-05	8.175E-06	3.904E-06	1.480E-06	7.824E-07	4.900E-07	3.398E-07	2.520E-07	1.961E-07	1.581E-07			
SSW	4.409E-05	1.285E-05	6.240E-06	2.977E-06	1.124E-06	5.926E-07	3.701E-07	2.559E-07	1.894E-07	1.471E-07	1.183E-07			
SW	2.328E-05	6.696E-06	3.275E-06	1.555E-06	5.781E-07	2.994E-07	1.841E-07	1.255E-07	9.172E-08	7.040E-08	5.606E-08			
WSW	1.679E-05	4.789E-06	2.335E-06	1.107E-06	4.113E-07	2.130E-07	1.310E-07	8.932E-08	6.529E-08	5.014E-08	3.994E-08			
W	1.890E-05	5.398E-06	2.628E-06	1.247E-06	4.661E-07	2.427E-07	1.499E-07	1.027E-07	7.533E-08	5.805E-08	4.639E-08			
WNW	2.639E-05	7.486E-06	3.623E-06	1.720E-06	6.453E-07	3.375E-07	2.093E-07	1.439E-07	1.059E-07	8.184E-08	6.558E-08			
NW	2.585E-05	7.280E-06	3.507E-06	1.663E-06	6.250E-07	3.275E-07	2.035E-07	1.402E-07	1.034E-07	8.001E-08	6.420E-08			
NNW	2.953E-05	8.443E-06	4.090E-06	1.944E-06	7.316E-07	3.840E-07	2.389E-07	1.646E-07	1.215E-07	9.408E-08	7.552E-08			

Table 2.7-97 Annual Average X/Q Values (2.26 Day Decay, Undepleted) for Ground Level Release (Based on 2001-2007 met data) (Sheet 2 of 3)

Distance in Miles from the Site												
Sector	5.0	7.5	10	15	20	25	30	35	40	45	50	
N	8.674E-08	4.387E-08	2.808E-08	1.576E-08	1.046E-08	7.590E-09	5.828E-09	4.652E-09	3.820E-09	3.205E-09	2.735E-09	
NNE	1.443E-07	7.308E-08	4.683E-08	2.635E-08	1.752E-08	1.274E-08	9.806E-09	7.843E-09	6.453E-09	5.425E-09	4.639E-09	
NE	2.557E-07	1.317E-07	8.540E-08	4.881E-08	3.278E-08	2.400E-08	1.856E-08	1.490E-08	1.229E-08	1.035E-08	8.860E-09	
ENE	3.011E-07	1.553E-07	1.008E-07	5.754E-08	3.856E-08	2.816E-08	2.171E-08	1.737E-08	1.428E-08	1.199E-08	1.023E-08	
E	2.796E-07	1.443E-07	9.366E-08	5.346E-08	3.578E-08	2.608E-08	2.006E-08	1.601E-08	1.313E-08	1.099E-08	9.348E-09	
ESE	3.635E-07	1.885E-07	1.227E-07	7.034E-08	4.722E-08	3.451E-08	2.661E-08	2.128E-08	1.748E-08	1.465E-08	1.248E-08	
SE	2.388E-07	1.235E-07	8.028E-08	4.596E-08	3.085E-08	2.256E-08	1.741E-08	1.394E-08	1.146E-08	9.624E-09	8.211E-09	
SSE	1.738E-07	8.981E-08	5.839E-08	3.349E-08	2.254E-08	1.654E-08	1.280E-08	1.029E-08	8.491E-09	7.154E-09	6.126E-09	
S	1.310E-07	6.773E-08	4.407E-08	2.533E-08	1.709E-08	1.256E-08	9.751E-09	7.854E-09	6.499E-09	5.490E-09	4.714E-09	
SSW	9.788E-08	5.025E-08	3.252E-08	1.854E-08	1.243E-08	9.091E-09	7.026E-09	5.638E-09	4.650E-09	3.916E-09	3.353E-09	
SW	4.594E-08	2.272E-08	1.431E-08	7.857E-09	5.138E-09	3.690E-09	2.810E-09	2.229E-09	1.820E-09	1.521E-09	1.293E-09	
WSW	3.275E-08	1.625E-08	1.027E-08	5.678E-09	3.737E-09	2.700E-09	2.068E-09	1.649E-09	1.354E-09	1.137E-09	9.713E-10	
W	3.814E-08	1.913E-08	1.219E-08	6.815E-09	4.521E-09	3.288E-09	2.532E-09	2.028E-09	1.672E-09	1.409E-09	1.208E-09	
WNW	5.404E-08	2.738E-08	1.757E-08	9.924E-09	6.630E-09	4.846E-09	3.747E-09	3.011E-09	2.489E-09	2.101E-09	1.805E-09	
NW	5.300E-08	2.705E-08	1.746E-08	9.947E-09	6.691E-09	4.918E-09	3.822E-09	3.085E-09	2.560E-09	2.169E-09	1.869E-09	
NNW	6.234E-08	3.177E-08	2.046E-08	1.160E-08	7.763E-09	5.676E-09	4.388E-09	3.524E-09	2.910E-09	2.455E-09	2.106E-09	

Table 2.7-97 Annual Average X/Q Values (2.26 Day Decay, Undepleted) for Ground Level Release (Based on 2001-2007 met data) (Sheet 3 of 3)

X/Q (sec/m³) for Each Segment

	Segment Boundaries in Miles from the Site												
Sector	0.5-1	1-2	2-3	3-4	4-5	5-10	10-20	20-30	30-40	40-50			
N	5.780E-06	1.195E-06	3.481E-07	1.726E-07	1.061E-07	4.638E-08	1.614E-08	7.650E-09	4.671E-09	3.213E-09			
NNE	9.611E-06	1.987E-06	5.790E-07	2.871E-07	1.766E-07	7.725E-08	2.698E-08	1.284E-08	7.875E-09	5.439E-09			
NE	1.622E-05	3.369E-06	9.977E-07	5.011E-07	3.114E-07	1.387E-07	4.982E-08	2.416E-08	1.495E-08	1.037E-08			
ENE	1.895E-05	3.938E-06	1.170E-06	5.888E-07	3.664E-07	1.635E-07	5.871E-08	2.835E-08	1.744E-08	1.201E-08			
E	1.756E-05	3.644E-06	1.084E-06	5.461E-07	3.401E-07	1.519E-07	5.453E-08	2.626E-08	1.607E-08	1.102E-08			
ESE	2.252E-05	4.680E-06	1.399E-06	7.073E-07	4.416E-07	1.981E-07	7.170E-08	3.474E-08	2.135E-08	1.469E-08			
SE	1.498E-05	3.109E-06	9.250E-07	4.662E-07	2.904E-07	1.299E-07	4.687E-08	2.271E-08	1.399E-08	9.646E-09			
SSE	1.094E-05	2.271E-06	6.745E-07	3.395E-07	2.114E-07	9.450E-08	3.416E-08	1.665E-08	1.032E-08	7.169E-09			
S	8.219E-06	1.709E-06	5.079E-07	2.558E-07	1.593E-07	7.128E-08	2.583E-08	1.264E-08	7.880E-09	5.502E-09			
SSW	6.258E-06	1.300E-06	3.838E-07	1.923E-07	1.193E-07	5.295E-08	1.893E-08	9.154E-09	5.658E-09	3.925E-09			
SW	3.270E-06	6.713E-07	1.914E-07	9.325E-08	5.656E-08	2.414E-08	8.082E-09	3.724E-09	2.239E-09	1.525E-09			
WSW	2.335E-06	4.777E-07	1.362E-07	6.639E-08	4.030E-08	1.726E-08	5.836E-09	2.724E-09	1.656E-09	1.140E-09			
W	2.630E-06	5.404E-07	1.557E-07	7.656E-08	4.678E-08	2.027E-08	6.990E-09	3.314E-09	2.036E-09	1.412E-09			
WNW	3.636E-06	7.472E-07	2.173E-07	1.076E-07	6.612E-08	2.894E-08	1.016E-08	4.882E-09	3.022E-09	2.106E-09			
NW	3.526E-06	7.235E-07	2.113E-07	1.050E-07	6.474E-08	2.855E-08	1.017E-08	4.952E-09	3.095E-09	2.174E-09			
NNW	4.103E-06	8.465E-07	2.479E-07	1.234E-07	7.614E-08	3.354E-08	1.186E-08	5.717E-09	3.537E-09	2.461E-09			

Table 2.7-98 Annual Average X/Q Values (8.0 Day Decay, Depleted) for Ground Level Release (Based on 2001-2007 met data) (Sheet 1 of 3)

	Distance in Miles from the Site													
Sector	0.25	0.5	0.75	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5			
N	3.875E-05	1.084E-05	5.162E-06	2.414E-06	8.810E-07	4.505E-07	2.740E-07	1.852E-07	1.342E-07	1.022E-07	8.084E-08			
NNE	6.435E-05	1.802E-05	8.582E-06	4.014E-06	1.464E-06	7.487E-07	4.554E-07	3.077E-07	2.230E-07	1.698E-07	1.343E-07			
NE	1.086E-04	3.050E-05	1.443E-05	6.772E-06	2.490E-06	1.284E-06	7.868E-07	5.352E-07	3.902E-07	2.989E-07	2.375E-07			
ENE	1.275E-04	3.572E-05	1.685E-05	7.912E-06	2.916E-06	1.506E-06	9.246E-07	6.299E-07	4.599E-07	3.526E-07	2.805E-07			
E	1.187E-04	3.316E-05	1.560E-05	7.324E-06	2.701E-06	1.396E-06	8.580E-07	5.850E-07	4.274E-07	3.280E-07	2.610E-07			
ESE	1.528E-04	4.259E-05	1.998E-05	9.390E-06	3.472E-06	1.799E-06	1.108E-06	7.567E-07	5.537E-07	4.255E-07	3.390E-07			
SE	1.013E-04	2.829E-05	1.330E-05	6.246E-06	2.303E-06	1.190E-06	7.314E-07	4.987E-07	3.643E-07	2.796E-07	2.225E-07			
SSE	7.367E-05	2.062E-05	9.720E-06	4.562E-06	1.680E-06	8.673E-07	5.323E-07	3.625E-07	2.646E-07	2.029E-07	1.614E-07			
S	5.521E-05	1.547E-05	7.304E-06	3.429E-06	1.263E-06	6.524E-07	4.004E-07	2.727E-07	1.991E-07	1.527E-07	1.214E-07			
SSW	4.176E-05	1.175E-05	5.575E-06	2.615E-06	9.601E-07	4.942E-07	3.025E-07	2.055E-07	1.497E-07	1.145E-07	9.092E-08			
SW	2.205E-05	6.123E-06	2.924E-06	1.365E-06	4.930E-07	2.493E-07	1.501E-07	1.005E-07	7.226E-08	5.465E-08	4.292E-08			
WSW	1.590E-05	4.378E-06	2.084E-06	9.708E-07	3.504E-07	1.772E-07	1.067E-07	7.141E-08	5.133E-08	3.882E-08	3.050E-08			
W	1.789E-05	4.935E-06	2.346E-06	1.094E-06	3.971E-07	2.018E-07	1.221E-07	8.208E-08	5.923E-08	4.495E-08	3.542E-08			
WNW	2.500E-05	6.845E-06	3.235E-06	1.509E-06	5.500E-07	2.808E-07	1.706E-07	1.151E-07	8.336E-08	6.345E-08	5.014E-08			
NW	2.448E-05	6.656E-06	3.130E-06	1.459E-06	5.326E-07	2.724E-07	1.658E-07	1.121E-07	8.128E-08	6.196E-08	4.903E-08			
NNW	2.797E-05	7.722E-06	3.653E-06	1.707E-06	6.242E-07	3.199E-07	1.949E-07	1.320E-07	9.580E-08	7.309E-08	5.788E-08			

Table 2.7-98 Annual Average X/Q Values (8.0 Day Decay, Depleted) for Ground Level Release (Based on 2001-2007 met data) (Sheet 2 of 3)

Distance in Miles from the Site													
Sector	5.0	7.5	10	15	20	25	30	35	40	45	50		
N	6.579E-08	3.174E-08	1.953E-08	1.032E-08	6.537E-09	4.568E-09	3.396E-09	2.635E-09	2.109E-09	1.729E-09	1.445E-09		
NNE	1.093E-07	5.275E-08	3.246E-08	1.716E-08	1.088E-08	7.608E-09	5.660E-09	4.395E-09	3.521E-09	2.888E-09	2.415E-09		
NE	1.942E-07	9.546E-08	5.955E-08	3.208E-08	2.059E-08	1.454E-08	1.090E-08	8.516E-09	6.857E-09	5.651E-09	4.742E-09		
ENE	2.296E-07	1.132E-07	7.079E-08	3.824E-08	2.459E-08	1.738E-08	1.303E-08	1.018E-08	8.201E-09	6.757E-09	5.669E-09		
E	2.137E-07	1.057E-07	6.619E-08	3.584E-08	2.308E-08	1.633E-08	1.225E-08	9.578E-09	7.715E-09	6.357E-09	5.333E-09		
ESE	2.779E-07	1.380E-07	8.669E-08	4.715E-08	3.045E-08	2.159E-08	1.623E-08	1.271E-08	1.025E-08	8.459E-09	7.104E-09		
SE	1.822E-07	9.014E-08	5.648E-08	3.061E-08	1.973E-08	1.396E-08	1.049E-08	8.206E-09	6.615E-09	5.455E-09	4.580E-09		
SSE	1.321E-07	6.519E-08	4.078E-08	2.207E-08	1.421E-08	1.006E-08	7.555E-09	5.913E-09	4.768E-09	3.935E-09	3.306E-09		
S	9.937E-08	4.902E-08	3.066E-08	1.658E-08	1.068E-08	7.562E-09	5.682E-09	4.449E-09	3.590E-09	2.963E-09	2.491E-09		
SSW	7.428E-08	3.639E-08	2.264E-08	1.216E-08	7.785E-09	5.486E-09	4.106E-09	3.204E-09	2.578E-09	2.123E-09	1.780E-09		
SW	3.472E-08	1.635E-08	9.887E-09	5.095E-09	3.173E-09	2.189E-09	1.610E-09	1.239E-09	9.843E-10	8.019E-10	6.662E-10		
WSW	2.468E-08	1.165E-08	7.053E-09	3.647E-09	2.279E-09	1.577E-09	1.163E-09	8.971E-10	7.147E-10	5.837E-10	4.861E-10		
W	2.874E-08	1.371E-08	8.369E-09	4.378E-09	2.757E-09	1.919E-09	1.423E-09	1.102E-09	8.816E-10	7.224E-10	6.034E-10		
WNW	4.079E-08	1.966E-08	1.210E-08	6.403E-09	4.065E-09	2.848E-09	2.123E-09	1.652E-09	1.326E-09	1.090E-09	9.134E-10		
NW	3.995E-08	1.938E-08	1.199E-08	6.391E-09	4.081E-09	2.872E-09	2.150E-09	1.678E-09	1.351E-09	1.114E-09	9.355E-10		
NNW	4.717E-08	2.290E-08	1.416E-08	7.541E-09	4.805E-09	3.375E-09	2.520E-09	1.963E-09	1.577E-09	1.297E-09	1.087E-09		

Table 2.7-98 Annual Average X/Q Values (8.0 Day Decay, Depleted) for Ground Level Release (Based on 2001-2007 met data) (Sheet 3 of 3)

X/Q (sec/m³) for Each Segment

Segment Boundaries in Miles from the Site											
Sector	0.5-1	1-2	2-3	3-4	4-5	5-10	10-20	20-30	30-40	40-50	
N	5.202E-06	1.030E-06	2.855E-07	1.366E-07	8.161E-08	3.388E-08	1.069E-08	4.624E-09	2.652E-09	1.736E-09	
NNE	8.648E-06	1.713E-06	4.745E-07	2.269E-07	1.356E-07	5.630E-08	1.777E-08	7.702E-09	4.423E-09	2.900E-09	
NE	1.460E-05	2.905E-06	8.187E-07	3.969E-07	2.397E-07	1.014E-07	3.308E-08	1.470E-08	8.565E-09	5.672E-09	
ENE	1.707E-05	3.400E-06	9.618E-07	4.676E-07	2.830E-07	1.202E-07	3.941E-08	1.756E-08	1.024E-08	6.782E-09	
E	1.582E-05	3.148E-06	8.924E-07	4.345E-07	2.633E-07	1.121E-07	3.691E-08	1.650E-08	9.632E-09	6.380E-09	
ESE	2.030E-05	4.044E-06	1.152E-06	5.628E-07	3.420E-07	1.463E-07	4.851E-08	2.181E-08	1.278E-08	8.489E-09	
SE	1.350E-05	2.685E-06	7.607E-07	3.704E-07	2.245E-07	9.564E-08	3.152E-08	1.411E-08	8.252E-09	5.475E-09	
SSE	9.849E-06	1.959E-06	5.537E-07	2.691E-07	1.628E-07	6.920E-08	2.273E-08	1.016E-08	5.946E-09	3.949E-09	
S	7.398E-06	1.473E-06	4.165E-07	2.025E-07	1.225E-07	5.205E-08	1.709E-08	7.642E-09	4.474E-09	2.974E-09	
SSW	5.633E-06	1.121E-06	3.148E-07	1.522E-07	9.175E-08	3.870E-08	1.254E-08	5.547E-09	3.223E-09	2.131E-09	
SW	2.942E-06	5.784E-07	1.567E-07	7.363E-08	4.336E-08	1.756E-08	5.306E-09	2.220E-09	1.248E-09	8.057E-10	
WSW	2.099E-06	4.113E-07	1.114E-07	5.230E-08	3.081E-08	1.250E-08	3.796E-09	1.599E-09	9.037E-10	5.864E-10	
W	2.365E-06	4.652E-07	1.273E-07	6.032E-08	3.577E-08	1.468E-08	4.544E-09	1.944E-09	1.110E-09	7.255E-10	
WNW	3.270E-06	6.435E-07	1.778E-07	8.485E-08	5.062E-08	2.100E-08	6.630E-09	2.883E-09	1.663E-09	1.095E-09	
NW	3.171E-06	6.228E-07	1.727E-07	8.272E-08	4.950E-08	2.067E-08	6.608E-09	2.906E-09	1.688E-09	1.118E-09	
NNW	3.692E-06	7.295E-07	2.031E-07	9.748E-08	5.842E-08	2.441E-08	7.797E-09	3.414E-09	1.975E-09	1.302E-09	

Table 2.7-99 Annual Average D/Q Values for Ground Level Release (Based on 2001-2007 met data) (Sheet 1 of 3)

Relative Deposition per Unit Area (m⁻²) at Fixed Points by Downwind Sectors

Distance in Miles from the Site											
Sector	0.25	0.5	0.75	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5
N	1.265E-07	4.279E-08	2.197E-08	1.045E-08	3.752E-09	1.861E-09	1.096E-09	7.174E-10	5.048E-10	3.741E-10	2.883E-10
NNE	2.385E-07	8.064E-08	4.141E-08	1.969E-08	7.071E-09	3.507E-09	2.065E-09	1.352E-09	9.513E-10	7.050E-10	5.433E-10
NE	2.472E-07	8.360E-08	4.292E-08	2.041E-08	7.330E-09	3.635E-09	2.140E-09	1.402E-09	9.862E-10	7.308E-10	5.632E-10
ENE	2.009E-07	6.795E-08	3.489E-08	1.659E-08	5.958E-09	2.954E-09	1.740E-09	1.139E-09	8.015E-10	5.940E-10	4.578E-10
E	1.646E-07	5.566E-08	2.858E-08	1.359E-08	4.880E-09	2.420E-09	1.425E-09	9.331E-10	6.566E-10	4.866E-10	3.750E-10
ESE	1.879E-07	6.354E-08	3.262E-08	1.551E-08	5.571E-09	2.763E-09	1.627E-09	1.065E-09	7.495E-10	5.555E-10	4.281E-10
SE	1.508E-07	5.099E-08	2.618E-08	1.245E-08	4.471E-09	2.217E-09	1.306E-09	8.549E-10	6.016E-10	4.458E-10	3.435E-10
SSE	1.345E-07	4.549E-08	2.335E-08	1.110E-08	3.988E-09	1.978E-09	1.165E-09	7.626E-10	5.366E-10	3.977E-10	3.064E-10
S	1.077E-07	3.641E-08	1.870E-08	8.888E-09	3.193E-09	1.583E-09	9.323E-10	6.105E-10	4.296E-10	3.183E-10	2.453E-10
SSW	8.994E-08	3.042E-08	1.562E-08	7.424E-09	2.667E-09	1.323E-09	7.787E-10	5.099E-10	3.588E-10	2.659E-10	2.049E-10
SW	1.059E-07	3.580E-08	1.838E-08	8.739E-09	3.139E-09	1.557E-09	9.166E-10	6.002E-10	4.223E-10	3.130E-10	2.412E-10
WSW	9.700E-08	3.280E-08	1.684E-08	8.007E-09	2.876E-09	1.426E-09	8.399E-10	5.499E-10	3.870E-10	2.868E-10	2.210E-10
W	1.075E-07	3.637E-08	1.867E-08	8.877E-09	3.189E-09	1.581E-09	9.311E-10	6.097E-10	4.290E-10	3.179E-10	2.450E-10
WNW	1.274E-07	4.308E-08	2.212E-08	1.052E-08	3.778E-09	1.873E-09	1.103E-09	7.223E-10	5.082E-10	3.767E-10	2.903E-10
NW	1.214E-07	4.105E-08	2.108E-08	1.002E-08	3.599E-09	1.785E-09	1.051E-09	6.882E-10	4.842E-10	3.589E-10	2.765E-10
NNW	1.082E-07	3.660E-08	1.879E-08	8.933E-09	3.209E-09	1.591E-09	9.370E-10	6.135E-10	4.317E-10	3.199E-10	2.466E-10

Table 2.7-99 Annual Average D/Q Values for Ground Level Release (Based on 2001-2007 met data) (Sheet 2 of 3)

Relative Deposition per Unit Area (m⁻²) at Fixed Points by Downwind Sectors

Distance in Miles from the Site											
Sector	5.0	7.5	10	15	20	25	30	35	40	45	50
N	2.290E-10	1.017E-10	6.163E-11	3.115E-11	1.886E-11	1.264E-11	9.059E-12	6.802E-12	5.289E-12	4.225E-12	3.448E-12
NNE	4.316E-10	1.917E-10	1.161E-10	5.871E-11	3.553E-11	2.382E-11	1.707E-11	1.282E-11	9.967E-12	7.961E-12	6.498E-12
NE	4.474E-10	1.988E-10	1.204E-10	6.086E-11	3.683E-11	2.470E-11	1.770E-11	1.329E-11	1.033E-11	8.253E-12	6.736E-12
ENE	3.637E-10	1.616E-10	9.786E-11	4.946E-11	2.994E-11	2.007E-11	1.438E-11	1.080E-11	8.397E-12	6.708E-12	5.475E-12
E	2.979E-10	1.323E-10	8.017E-11	4.052E-11	2.452E-11	1.644E-11	1.178E-11	8.847E-12	6.879E-12	5.495E-12	4.485E-12
ESE	3.401E-10	1.511E-10	9.151E-11	4.626E-11	2.800E-11	1.877E-11	1.345E-11	1.010E-11	7.853E-12	6.273E-12	5.120E-12
SE	2.729E-10	1.212E-10	7.344E-11	3.712E-11	2.247E-11	1.506E-11	1.079E-11	8.106E-12	6.302E-12	5.034E-12	4.109E-12
SSE	2.434E-10	1.081E-10	6.551E-11	3.311E-11	2.004E-11	1.344E-11	9.629E-12	7.230E-12	5.622E-12	4.491E-12	3.665E-12
S	1.949E-10	8.658E-11	5.244E-11	2.651E-11	1.604E-11	1.076E-11	7.708E-12	5.788E-12	4.500E-12	3.595E-12	2.934E-12
SSW	1.628E-10	7.232E-11	4.381E-11	2.214E-11	1.340E-11	8.985E-12	6.438E-12	4.835E-12	3.759E-12	3.003E-12	2.451E-12
SW	1.916E-10	8.512E-11	5.156E-11	2.606E-11	1.577E-11	1.058E-11	7.578E-12	5.691E-12	4.425E-12	3.534E-12	2.885E-12
WSW	1.756E-10	7.799E-11	4.724E-11	2.388E-11	1.445E-11	9.690E-12	6.944E-12	5.214E-12	4.054E-12	3.238E-12	2.643E-12
W	1.946E-10	8.647E-11	5.238E-11	2.647E-11	1.602E-11	1.074E-11	7.698E-12	5.781E-12	4.495E-12	3.590E-12	2.930E-12
WNW	2.306E-10	1.024E-10	6.205E-11	3.136E-11	1.898E-11	1.273E-11	9.120E-12	6.848E-12	5.325E-12	4.253E-12	3.472E-12
NW	2.197E-10	9.760E-11	5.912E-11	2.988E-11	1.809E-11	1.213E-11	8.689E-12	6.525E-12	5.073E-12	4.052E-12	3.308E-12
NNW	1.959E-10	8.701E-11	5.271E-11	2.664E-11	1.612E-11	1.081E-11	7.747E-12	5.817E-12	4.523E-12	3.613E-12	2.949E-12

Table 2.7-99 Annual Average D/Q Values for Ground Level Release (Based on 2001-2007 met data) (Sheet 3 of 3)

Relative Deposition per Unit Area (m⁻²) at Fixed Points by Downwind Sectors

Segment Boundaries in Miles from the Site											
Sector	0.5-1	1-2	2-3	3-4	4-5	5-10	10-20	20-30	30-40	40-50	
N	2.148E-08	4.399E-09	1.148E-09	5.158E-10	2.918E-10	1.122E-10	3.246E-11	1.287E-11	6.870E-12	4.252E-12	
NNE	4.047E-08	8.290E-09	2.164E-09	9.720E-10	5.499E-10	2.115E-10	6.117E-11	2.425E-11	1.295E-11	8.014E-12	
NE	4.195E-08	8.594E-09	2.243E-09	1.008E-09	5.700E-10	2.192E-10	6.341E-11	2.513E-11	1.342E-11	8.307E-12	
ENE	3.410E-08	6.985E-09	1.823E-09	8.189E-10	4.633E-10	1.782E-10	5.154E-11	2.043E-11	1.091E-11	6.752E-12	
E	2.793E-08	5.722E-09	1.494E-09	6.708E-10	3.795E-10	1.459E-10	4.222E-11	1.673E-11	8.936E-12	5.531E-12	
ESE	3.189E-08	6.532E-09	1.705E-09	7.658E-10	4.332E-10	1.666E-10	4.820E-11	1.910E-11	1.020E-11	6.314E-12	
SE	2.559E-08	5.242E-09	1.368E-09	6.146E-10	3.477E-10	1.337E-10	3.868E-11	1.533E-11	8.187E-12	5.067E-12	
SSE	2.283E-08	4.676E-09	1.221E-09	5.482E-10	3.101E-10	1.193E-10	3.450E-11	1.367E-11	7.303E-12	4.520E-12	
S	1.827E-08	3.743E-09	9.772E-10	4.389E-10	2.483E-10	9.548E-11	2.762E-11	1.095E-11	5.846E-12	3.618E-12	
SSW	1.526E-08	3.127E-09	8.162E-10	3.666E-10	2.074E-10	7.975E-11	2.307E-11	9.144E-12	4.883E-12	3.022E-12	
SW	1.797E-08	3.680E-09	9.608E-10	4.315E-10	2.441E-10	9.387E-11	2.716E-11	1.076E-11	5.748E-12	3.558E-12	
WSW	1.646E-08	3.372E-09	8.803E-10	3.954E-10	2.237E-10	8.601E-11	2.488E-11	9.862E-12	5.266E-12	3.260E-12	
W	1.825E-08	3.738E-09	9.759E-10	4.383E-10	2.480E-10	9.536E-11	2.759E-11	1.093E-11	5.839E-12	3.614E-12	
WNW	2.162E-08	4.429E-09	1.156E-09	5.193E-10	2.938E-10	1.130E-10	3.268E-11	1.295E-11	6.917E-12	4.281E-12	
NW	2.060E-08	4.220E-09	1.102E-09	4.947E-10	2.799E-10	1.076E-10	3.114E-11	1.234E-11	6.590E-12	4.079E-12	
NNW	1.837E-08	3.762E-09	9.821E-10	4.411E-10	2.495E-10	9.596E-11	2.776E-11	1.100E-11	5.875E-12	3.637E-12	

Table 2.7-100 Annual Average X/Q Values (No Decay, Undepleted) for Mixed-Mode Release from the Reactor Building/Fuel Building Stack (Based on 2001-2007 met data) (Sheet 1 of 3)

				1	Distance in Mi	iles from the S	Site				
Sector	0.25	0.5	0.75	1	1.5	2	2.5	3	3.5	4	4.5
N	1.847E-06	6.419E-07	3.901E-07	2.390E-07	1.300E-07	8.553E-08	6.176E-08	4.731E-08	3.778E-08	3.111E-08	2.641E-08
NNE	3.700E-06	1.308E-06	7.853E-07	4.572E-07	2.338E-07	1.489E-07	1.057E-07	8.007E-08	6.514E-08	5.466E-08	4.612E-08
NE	4.753E-06	1.755E-06	1.028E-06	5.637E-07	2.628E-07	1.612E-07	1.128E-07	8.531E-08	6.785E-08	5.593E-08	4.733E-08
ENE	2.592E-06	1.040E-06	6.226E-07	3.489E-07	1.723E-07	1.114E-07	8.133E-08	6.357E-08	5.192E-08	4.374E-08	3.770E-08
Е	1.792E-06	7.851E-07	4.809E-07	2.708E-07	1.335E-07	8.608E-08	6.270E-08	4.893E-08	3.994E-08	3.364E-08	2.900E-08
ESE	1.930E-06	8.467E-07	5.110E-07	2.833E-07	1.366E-07	8.712E-08	6.322E-08	4.935E-08	4.037E-08	3.412E-08	2.954E-08
SE	1.709E-06	7.440E-07	4.472E-07	2.474E-07	1.190E-07	7.593E-08	5.511E-08	4.300E-08	3.512E-08	2.961E-08	2.556E-08
SSE	2.063E-06	8.025E-07	4.717E-07	2.605E-07	1.251E-07	7.882E-08	5.630E-08	4.323E-08	3.479E-08	2.895E-08	2.470E-08
S	2.096E-06	7.468E-07	4.308E-07	2.364E-07	1.123E-07	6.997E-08	4.951E-08	3.774E-08	3.020E-08	2.502E-08	2.128E-08
SSW	1.650E-06	6.059E-07	3.574E-07	2.007E-07	9.800E-08	6.227E-08	4.466E-08	3.434E-08	2.764E-08	2.298E-08	1.957E-08
SW	1.167E-06	4.527E-07	3.182E-07	2.117E-07	1.177E-07	7.587E-08	5.335E-08	3.984E-08	3.110E-08	2.509E-08	2.078E-08
WSW	1.208E-06	4.555E-07	3.026E-07	1.913E-07	1.001E-07	6.246E-08	4.309E-08	3.178E-08	2.458E-08	1.971E-08	1.643E-08
W	1.618E-06	5.700E-07	3.591E-07	2.192E-07	1.106E-07	6.814E-08	4.679E-08	3.446E-08	2.667E-08	2.141E-08	1.768E-08
WNW	1.899E-06	6.393E-07	3.869E-07	2.372E-07	1.231E-07	7.735E-08	5.386E-08	4.011E-08	3.131E-08	2.532E-08	2.104E-08
NW	1.889E-06	6.269E-07	3.596E-07	2.129E-07	1.094E-07	6.886E-08	4.813E-08	3.599E-08	2.822E-08	2.290E-08	1.919E-08
NNW	1.757E-06	5.793E-07	3.291E-07	1.924E-07	1.002E-07	6.445E-08	4.598E-08	3.497E-08	2.780E-08	2.284E-08	1.947E-08

Table 2.7-100 Annual Average X/Q Values (No Decay, Undepleted) for Mixed-Mode Release from the Reactor Building/Fuel Building Stack (Based on 2001-2007 met data) (Sheet 2 of 3)

				ı	Distance in Mi	iles from the S	Site				
Sector	5	7.5	10	15	20	25	30	35	40	45	50
N	2.285E-08	1.424E-08	1.043E-08	7.007E-09	5.237E-09	4.107E-09	3.296E-09	2.698E-09	2.264E-09	1.941E-09	1.691E-09
NNE	3.972E-08	2.303E-08	1.602E-08	1.002E-08	7.161E-09	5.515E-09	4.455E-09	3.719E-09	3.182E-09	2.774E-09	2.454E-09
NE	4.094E-08	2.508E-08	1.825E-08	1.225E-08	9.247E-09	7.451E-09	6.258E-09	5.408E-09	4.773E-09	4.279E-09	3.884E-09
ENE	3.314E-08	2.158E-08	1.633E-08	1.151E-08	8.984E-09	7.421E-09	6.358E-09	5.588E-09	5.002E-09	4.542E-09	4.169E-09
E	2.553E-08	1.641E-08	1.227E-08	8.460E-09	6.457E-09	5.213E-09	4.366E-09	3.751E-09	3.286E-09	2.921E-09	2.627E-09
ESE	2.612E-08	1.735E-08	1.334E-08	9.618E-09	7.600E-09	6.316E-09	5.423E-09	4.765E-09	4.259E-09	3.857E-09	3.530E-09
SE	2.253E-08	1.480E-08	1.126E-08	7.987E-09	6.248E-09	5.161E-09	4.416E-09	3.874E-09	3.460E-09	3.134E-09	2.871E-09
SSE	2.153E-08	1.419E-08	1.101E-08	8.274E-09	6.887E-09	6.012E-09	5.373E-09	4.855E-09	4.401E-09	3.987E-09	3.599E-09
S	1.847E-08	1.173E-08	8.812E-09	6.256E-09	4.962E-09	4.171E-09	3.632E-09	3.234E-09	2.924E-09	2.669E-09	2.454E-09
SSW	1.701E-08	1.064E-08	7.833E-09	5.315E-09	4.040E-09	3.270E-09	2.756E-09	2.387E-09	2.108E-09	1.890E-09	1.713E-09
SW	1.758E-08	9.725E-09	6.525E-09	3.872E-09	2.670E-09	2.000E-09	1.580E-09	1.295E-09	1.090E-09	9.369E-10	8.183E-10
WSW	1.398E-08	7.668E-09	5.130E-09	3.040E-09	2.097E-09	1.570E-09	1.239E-09	1.014E-09	8.510E-10	7.284E-10	6.330E-10
W	1.493E-08	8.573E-09	5.942E-09	3.703E-09	2.619E-09	1.965E-09	1.537E-09	1.248E-09	1.043E-09	8.912E-10	7.744E-10
WNW	1.787E-08	1.072E-08	7.716E-09	5.098E-09	3.706E-09	2.786E-09	2.190E-09	1.788E-09	1.501E-09	1.288E-09	1.123E-09
NW	1.643E-08	9.815E-09	7.039E-09	4.658E-09	3.470E-09	2.722E-09	2.186E-09	1.793E-09	1.510E-09	1.299E-09	1.135E-09
NNW	1.693E-08	1.073E-08	7.992E-09	5.499E-09	4.109E-09	3.152E-09	2.489E-09	2.038E-09	1.715E-09	1.474E-09	1.288E-09

Table 2.7-100 Annual Average X/Q Values (No Decay, Undepleted) for Mixed-Mode Release from the Reactor Building/Fuel Building Stack (Based on 2001-2007 met data) (Sheet 3 of 3)

X/Q (sec/m³) for Each Segment

Segment Boundaries in Miles from the Site											
Sector	0.5-1	1-2	2-3	3-4	4-5	5-10	10-20	20-30	30-40	40-50	
N	3.789E-07	1.345E-07	6.232E-08	3.796E-08	2.648E-08	1.446E-08	6.980E-09	4.084E-09	2.703E-09	1.944E-09	
NNE	7.557E-07	2.457E-07	1.070E-07	6.541E-08	4.628E-08	2.363E-08	1.008E-08	5.530E-09	3.725E-09	2.777E-09	
NE	9.831E-07	2.845E-07	1.147E-07	6.830E-08	4.751E-08	2.557E-08	1.225E-08	7.453E-09	5.409E-09	4.279E-09	
ENE	5.938E-07	1.845E-07	8.224E-08	5.213E-08	3.780E-08	2.181E-08	1.146E-08	7.413E-09	5.585E-09	4.540E-09	
E	4.551E-07	1.429E-07	6.343E-08	4.011E-08	2.909E-08	1.660E-08	8.417E-09	5.206E-09	3.749E-09	2.920E-09	
ESE	4.844E-07	1.472E-07	6.405E-08	4.055E-08	2.963E-08	1.752E-08	9.548E-09	6.301E-09	4.760E-09	3.855E-09	
SE	4.243E-07	1.284E-07	5.582E-08	3.527E-08	2.564E-08	1.495E-08	7.941E-09	5.153E-09	3.871E-09	3.133E-09	
SSE	4.513E-07	1.346E-07	5.708E-08	3.498E-08	2.479E-08	1.441E-08	8.265E-09	5.990E-09	4.830E-09	3.966E-09	
S	4.146E-07	1.211E-07	5.025E-08	3.038E-08	2.135E-08	1.193E-08	6.249E-09	4.166E-09	3.230E-09	2.665E-09	
SSW	3.430E-07	1.049E-07	4.523E-08	2.778E-08	1.963E-08	1.081E-08	5.308E-09	3.270E-09	2.386E-09	1.889E-09	
SW	3.007E-07	1.200E-07	5.395E-08	3.131E-08	2.088E-08	1.005E-08	3.928E-09	2.011E-09	1.298E-09	9.384E-10	
WSW	2.871E-07	1.036E-07	4.373E-08	2.478E-08	1.649E-08	7.943E-09	3.085E-09	1.578E-09	1.016E-09	7.294E-10	
W	3.438E-07	1.159E-07	4.755E-08	2.690E-08	1.777E-08	8.816E-09	3.719E-09	1.968E-09	1.253E-09	8.930E-10	
WNW	3.764E-07	1.281E-07	5.462E-08	3.154E-08	2.113E-08	1.097E-08	5.061E-09	2.793E-09	1.793E-09	1.290E-09	
NW	3.538E-07	1.144E-07	4.880E-08	2.841E-08	1.927E-08	1.005E-08	4.659E-09	2.707E-09	1.798E-09	1.301E-09	
NNW	3.240E-07	1.048E-07	4.650E-08	2.796E-08	1.952E-08	1.089E-08	5.435E-09	3.142E-09	2.044E-09	1.476E-09	

Table 2.7-101 Annual Average X/Q Values (2.26 Day Decay, Undepleted) for Mixed-Mode Release from the Reactor Building/Fuel Building Stack (Based on 2001-2007 met data) (Sheet 1 of 3)

				1	Distance in Mi	iles from the S	Site				
Sector	0.25	0.5	0.75	1	1.5	2	2.5	3	3.5	4	4.5
N	1.846E-06	6.414E-07	3.896E-07	2.386E-07	1.297E-07	8.525E-08	6.150E-08	4.707E-08	3.755E-08	3.089E-08	2.620E-08
NNE	3.699E-06	1.307E-06	7.844E-07	4.565E-07	2.333E-07	1.485E-07	1.053E-07	7.970E-08	6.479E-08	5.431E-08	4.579E-08
NE	4.751E-06	1.753E-06	1.026E-06	5.628E-07	2.622E-07	1.607E-07	1.124E-07	8.494E-08	6.750E-08	5.559E-08	4.701E-08
ENE	2.591E-06	1.039E-06	6.218E-07	3.483E-07	1.718E-07	1.110E-07	8.097E-08	6.323E-08	5.160E-08	4.342E-08	3.739E-08
E	1.791E-06	7.844E-07	4.803E-07	2.703E-07	1.331E-07	8.576E-08	6.240E-08	4.866E-08	3.967E-08	3.337E-08	2.874E-08
ESE	1.929E-06	8.459E-07	5.103E-07	2.828E-07	1.362E-07	8.680E-08	6.293E-08	4.907E-08	4.010E-08	3.385E-08	2.928E-08
SE	1.709E-06	7.432E-07	4.465E-07	2.470E-07	1.187E-07	7.565E-08	5.486E-08	4.276E-08	3.489E-08	2.939E-08	2.534E-08
SSE	2.062E-06	8.018E-07	4.710E-07	2.600E-07	1.248E-07	7.855E-08	5.606E-08	4.300E-08	3.458E-08	2.875E-08	2.451E-08
S	2.095E-06	7.461E-07	4.302E-07	2.360E-07	1.120E-07	6.973E-08	4.930E-08	3.754E-08	3.002E-08	2.485E-08	2.111E-08
SSW	1.650E-06	6.053E-07	3.569E-07	2.003E-07	9.776E-08	6.206E-08	4.447E-08	3.417E-08	2.748E-08	2.282E-08	1.942E-08
SW	1.166E-06	4.523E-07	3.178E-07	2.113E-07	1.175E-07	7.564E-08	5.315E-08	3.966E-08	3.093E-08	2.493E-08	2.063E-08
WSW	1.208E-06	4.552E-07	3.023E-07	1.910E-07	9.987E-08	6.229E-08	4.294E-08	3.165E-08	2.446E-08	1.960E-08	1.632E-08
W	1.617E-06	5.696E-07	3.588E-07	2.189E-07	1.104E-07	6.796E-08	4.663E-08	3.432E-08	2.655E-08	2.129E-08	1.757E-08
WNW	1.898E-06	6.387E-07	3.864E-07	2.369E-07	1.229E-07	7.712E-08	5.366E-08	3.993E-08	3.115E-08	2.517E-08	2.089E-08
NW	1.888E-06	6.263E-07	3.591E-07	2.126E-07	1.092E-07	6.864E-08	4.795E-08	3.583E-08	2.806E-08	2.276E-08	1.905E-08
NNW	1.757E-06	5.788E-07	3.286E-07	1.921E-07	9.994E-08	6.424E-08	4.579E-08	3.480E-08	2.764E-08	2.268E-08	1.932E-08

Table 2.7-101 Annual Average X/Q Values (2.26 Day Decay, Undepleted) for Mixed-Mode Release from the Reactor Building/Fuel Building Stack (Based on 2001-2007 met data) (Sheet 2 of 3)

					Distance in Mi	iles from the S	Site					
Sector	5	7.5	10	15	20	25	30	35	40	45	50	
N	2.264E-08	1.404E-08	1.023E-08	6.797E-09	5.021E-09	3.891E-09	3.086E-09	2.497E-09	2.073E-09	1.758E-09	1.516E-09	_
NNE	3.940E-08	2.274E-08	1.575E-08	9.752E-09	6.906E-09	5.268E-09	4.214E-09	3.485E-09	2.953E-09	2.550E-09	2.234E-09	_
NE	4.063E-08	2.478E-08	1.796E-08	1.193E-08	8.924E-09	7.118E-09	5.916E-09	5.058E-09	4.416E-09	3.916E-09	3.516E-09	_
ENE	3.283E-08	2.127E-08	1.600E-08	1.115E-08	8.598E-09	7.015E-09	5.935E-09	5.149E-09	4.550E-09	4.078E-09	3.694E-09	_
E	2.527E-08	1.615E-08	1.200E-08	8.171E-09	6.156E-09	4.905E-09	4.054E-09	3.437E-09	2.971E-09	2.606E-09	2.313E-09	_
ESE	2.586E-08	1.707E-08	1.305E-08	9.285E-09	7.241E-09	5.937E-09	5.029E-09	4.359E-09	3.843E-09	3.433E-09	3.099E-09	_
SE	2.232E-08	1.458E-08	1.103E-08	7.731E-09	5.975E-09	4.874E-09	4.118E-09	3.566E-09	3.145E-09	2.812E-09	2.542E-09	_
SSE	2.134E-08	1.400E-08	1.080E-08	8.031E-09	6.607E-09	5.697E-09	5.028E-09	4.485E-09	4.014E-09	3.589E-09	3.198E-09	_
S	1.832E-08	1.157E-08	8.655E-09	6.084E-09	4.777E-09	3.975E-09	3.424E-09	3.017E-09	2.698E-09	2.437E-09	2.215E-09	_ [
SSW	1.686E-08	1.051E-08	7.696E-09	5.171E-09	3.891E-09	3.117E-09	2.599E-09	2.227E-09	1.946E-09	1.725E-09	1.546E-09	_ [
sw	1.744E-08	9.604E-09	6.415E-09	3.771E-09	2.576E-09	1.911E-09	1.495E-09	1.213E-09	1.011E-09	8.604E-10	7.440E-10	_
WSW	1.388E-08	7.584E-09	5.053E-09	2.971E-09	2.033E-09	1.511E-09	1.183E-09	9.598E-10	7.993E-10	6.788E-10	5.852E-10	_ [
W	1.483E-08	8.480E-09	5.854E-09	3.620E-09	2.541E-09	1.892E-09	1.468E-09	1.183E-09	9.817E-10	8.323E-10	7.178E-10	_ [
WNW	1.773E-08	1.059E-08	7.592E-09	4.973E-09	3.583E-09	2.669E-09	2.080E-09	1.685E-09	1.403E-09	1.193E-09	1.032E-09	_
NW	1.630E-08	9.699E-09	6.929E-09	4.549E-09	3.363E-09	2.617E-09	2.086E-09	1.698E-09	1.419E-09	1.211E-09	1.050E-09	_
NNW	1.678E-08	1.058E-08	7.847E-09	5.345E-09	3.954E-09	3.002E-09	2.348E-09	1.904E-09	1.588E-09	1.352E-09	1.170E-09	_ !

Table 2.7-101 Annual Average X/Q Values (2.26 Day Decay, Undepleted) for Mixed-Mode Release from the Reactor Building/Fuel Building Stack (Based on 2001-2007 met data) (Sheet 3 of 3)

X/Q (sec/m³) for Each Segment

				Segme	ent Boundarie	s in Miles fror	m the Site				
Sector	0.5-1	1-2	2-3	3-4	4-5	5-10	10-20	20-30	30-40	40-50	
N	3.784E-07	1.341E-07	6.206E-08	3.773E-08	2.627E-08	1.426E-08	6.770E-09	3.870E-09	2.504E-09	1.762E-09	
NNE	7.549E-07	2.452E-07	1.066E-07	6.506E-08	4.595E-08	2.334E-08	9.820E-09	5.283E-09	3.491E-09	2.552E-09	
NE	9.820E-07	2.839E-07	1.143E-07	6.795E-08	4.719E-08	2.527E-08	1.194E-08	7.118E-09	5.059E-09	3.916E-09	_
ENE	5.930E-07	1.840E-07	8.188E-08	5.181E-08	3.749E-08	2.150E-08	1.109E-08	7.005E-09	5.145E-09	4.075E-09	_
E	4.545E-07	1.426E-07	6.313E-08	3.984E-08	2.883E-08	1.634E-08	8.127E-09	4.898E-09	3.436E-09	2.606E-09	_
ESE	4.838E-07	1.468E-07	6.375E-08	4.028E-08	2.937E-08	1.724E-08	9.213E-09	5.921E-09	4.354E-09	3.431E-09	_
SE	4.238E-07	1.281E-07	5.556E-08	3.504E-08	2.542E-08	1.472E-08	7.683E-09	4.866E-09	3.564E-09	2.811E-09	_
SSE	4.507E-07	1.343E-07	5.683E-08	3.476E-08	2.459E-08	1.421E-08	8.014E-09	5.672E-09	4.461E-09	3.570E-09	_
S	4.141E-07	1.208E-07	5.004E-08	3.020E-08	2.118E-08	1.177E-08	6.075E-09	3.969E-09	3.012E-09	2.432E-09	_
SSW	3.425E-07	1.047E-07	4.504E-08	2.762E-08	1.948E-08	1.067E-08	5.163E-09	3.116E-09	2.226E-09	1.724E-09	
SW	3.004E-07	1.197E-07	5.375E-08	3.114E-08	2.073E-08	9.929E-09	3.828E-09	1.922E-09	1.217E-09	8.620E-10	
WSW	2.868E-07	1.034E-07	4.358E-08	2.466E-08	1.639E-08	7.859E-09	3.017E-09	1.519E-09	9.624E-10	6.798E-10	
W	3.434E-07	1.156E-07	4.740E-08	2.677E-08	1.766E-08	8.723E-09	3.637E-09	1.895E-09	1.188E-09	8.341E-10	_
WNW	3.760E-07	1.279E-07	5.442E-08	3.138E-08	2.099E-08	1.085E-08	4.937E-09	2.677E-09	1.690E-09	1.196E-09	_
NW	3.534E-07	1.141E-07	4.862E-08	2.826E-08	1.913E-08	9.936E-09	4.551E-09	2.604E-09	1.702E-09	1.213E-09	_
NNW	3.236E-07	1.046E-07	4.631E-08	2.780E-08	1.937E-08	1.074E-08	5.283E-09	2.994E-09	1.910E-09	1.354E-09	_

Table 2.7-102 Annual Average X/Q Values (8.0 Day Decay, Depleted) for Mixed-Mode Release from the Reactor Building/Fuel Building Stack (Based on 2001-2007 met data) (Sheet 1 of 3)

				1	Distance in Mi	iles from the S	Site				
Sector	0.25	0.5	0.75	1	1.5	2	2.5	3	3.5	4	4.5
N	1.768E-06	5.978E-07	3.589E-07	2.202E-07	1.203E-07	7.917E-08	5.711E-08	4.367E-08	3.479E-08	2.859E-08	2.423E-08
NNE	3.529E-06	1.213E-06	7.185E-07	4.174E-07	2.134E-07	1.358E-07	9.611E-08	7.266E-08	5.909E-08	4.957E-08	4.174E-08
NE	4.506E-06	1.619E-06	9.319E-07	5.069E-07	2.347E-07	1.436E-07	1.004E-07	7.588E-08	6.031E-08	4.968E-08	4.202E-08
ENE	2.461E-06	9.670E-07	5.702E-07	3.176E-07	1.567E-07	1.016E-07	7.441E-08	5.830E-08	4.770E-08	4.023E-08	3.471E-08
E	1.704E-06	7.351E-07	4.442E-07	2.486E-07	1.224E-07	7.906E-08	5.772E-08	4.514E-08	3.690E-08	3.111E-08	2.685E-08
ESE	1.836E-06	7.937E-07	4.724E-07	2.600E-07	1.249E-07	7.974E-08	5.799E-08	4.536E-08	3.717E-08	3.146E-08	2.727E-08
SE	1.626E-06	6.973E-07	4.132E-07	2.269E-07	1.087E-07	6.945E-08	5.053E-08	3.950E-08	3.232E-08	2.729E-08	2.358E-08
SSE	1.958E-06	7.457E-07	4.316E-07	2.366E-07	1.131E-07	7.130E-08	5.096E-08	3.915E-08	3.152E-08	2.623E-08	2.238E-08
S	1.987E-06	6.891E-07	3.910E-07	2.129E-07	1.005E-07	6.247E-08	4.416E-08	3.364E-08	2.690E-08	2.227E-08	1.892E-08
SSW	1.565E-06	5.595E-07	3.247E-07	1.812E-07	8.830E-08	5.616E-08	4.032E-08	3.103E-08	2.498E-08	2.077E-08	1.768E-08
SW	1.117E-06	4.232E-07	2.971E-07	1.987E-07	1.105E-07	7.085E-08	4.952E-08	3.676E-08	2.852E-08	2.288E-08	1.885E-08
WSW	1.158E-06	4.260E-07	2.818E-07	1.785E-07	9.316E-08	5.780E-08	3.962E-08	2.903E-08	2.231E-08	1.778E-08	1.475E-08
W	1.548E-06	5.309E-07	3.320E-07	2.026E-07	1.018E-07	6.229E-08	4.248E-08	3.109E-08	2.392E-08	1.909E-08	1.567E-08
WNW	1.826E-06	5.991E-07	3.590E-07	2.200E-07	1.139E-07	7.116E-08	4.928E-08	3.649E-08	2.834E-08	2.281E-08	1.886E-08
NW	1.821E-06	5.900E-07	3.340E-07	1.971E-07	1.009E-07	6.319E-08	4.393E-08	3.268E-08	2.549E-08	2.059E-08	1.719E-08
NNW	1.687E-06	5.420E-07	3.033E-07	1.771E-07	9.217E-08	5.921E-08	4.214E-08	3.196E-08	2.534E-08	2.075E-08	1.766E-08

Table 2.7-102 Annual Average X/Q Values (8.0 Day Decay, Depleted) for Mixed-Mode Release from the Reactor Building/Fuel Building Stack (Based on 2001-2007 met data) (Sheet 2 of 3)

				Ī	Distance in M	iles from the S	Site				
Sector	5	7.5	10	15	20	25	30	35	40	45	50
N	2.092E-08	1.299E-08	9.471E-09	6.236E-09	4.388E-09	3.255E-09	2.514E-09	1.991E-09	1.621E-09	1.351E-09	1.147E-09
NNE	3.587E-08	2.060E-08	1.420E-08	8.752E-09	6.184E-09	4.715E-09	3.775E-09	3.124E-09	2.640E-09	2.275E-09	1.986E-09
NE	3.632E-08	2.223E-08	1.615E-08	1.080E-08	8.127E-09	6.530E-09	5.470E-09	4.713E-09	4.126E-09	3.672E-09	3.303E-09
ENE	3.053E-08	1.994E-08	1.509E-08	1.063E-08	8.276E-09	6.820E-09	5.829E-09	5.106E-09	4.533E-09	4.084E-09	3.714E-09
E	2.364E-08	1.521E-08	1.136E-08	7.803E-09	5.926E-09	4.761E-09	3.967E-09	3.391E-09	2.942E-09	2.593E-09	2.310E-09
ESE	2.414E-08	1.607E-08	1.237E-08	8.905E-09	7.018E-09	5.814E-09	4.975E-09	4.355E-09	3.857E-09	3.465E-09	3.141E-09
SE	2.080E-08	1.370E-08	1.042E-08	7.378E-09	5.755E-09	4.739E-09	4.042E-09	3.532E-09	3.127E-09	2.810E-09	2.550E-09
SSE	1.950E-08	1.291E-08	1.004E-08	7.581E-09	6.324E-09	5.474E-09	4.729E-09	4.112E-09	3.595E-09	3.151E-09	2.775E-09
S	1.642E-08	1.044E-08	7.850E-09	5.579E-09	4.429E-09	3.725E-09	3.235E-09	2.845E-09	2.506E-09	2.225E-09	1.989E-09
SSW	1.536E-08	9.620E-09	7.069E-09	4.782E-09	3.623E-09	2.924E-09	2.455E-09	2.115E-09	1.840E-09	1.613E-09	1.426E-09
SW	1.587E-08	8.593E-09	5.667E-09	3.273E-09	2.209E-09	1.625E-09	1.264E-09	1.018E-09	8.400E-10	7.055E-10	6.010E-10
WSW	1.250E-08	6.708E-09	4.408E-09	2.540E-09	1.702E-09	1.228E-09	9.312E-10	7.328E-10	5.934E-10	4.920E-10	4.158E-10
W	1.317E-08	7.447E-09	5.094E-09	3.042E-09	2.026E-09	1.454E-09	1.095E-09	8.596E-10	6.962E-10	5.776E-10	4.883E-10
WNW	1.595E-08	9.470E-09	6.750E-09	4.259E-09	2.918E-09	2.104E-09	1.593E-09	1.258E-09	1.024E-09	8.530E-10	7.240E-10
NW	1.466E-08	8.657E-09	6.151E-09	3.941E-09	2.763E-09	2.054E-09	1.588E-09	1.259E-09	1.028E-09	8.582E-10	7.300E-10
NNW	1.532E-08	9.679E-09	7.182E-09	4.747E-09	3.318E-09	2.434E-09	1.853E-09	1.467E-09	1.197E-09	9.993E-10	8.497E-10

Table 2.7-102 Annual Average X/Q Values (8.0 Day Decay, Depleted) for Mixed-Mode Release from the Reactor Building/Fuel Building Stack (Based on 2001-2007 met data) (Sheet 3 of 3)

X/Q (sec/m³) for Each Segment

Segment Boundaries in Miles from the Site											
Sector	0.5-1	1-2	2-3	3-4	4-5	5-10	10-20	20-30	30-40	40-50	
N	3.504E-07	1.242E-07	5.761E-08	3.497E-08	2.430E-08	1.319E-08	6.134E-09	3.261E-09	2.000E-09	1.355E-09	
NNE	6.946E-07	2.242E-07	9.731E-08	5.934E-08	4.189E-08	2.115E-08	8.822E-09	4.731E-09	3.126E-09	2.276E-09	
NE	8.957E-07	2.547E-07	1.021E-07	6.071E-08	4.218E-08	2.266E-08	1.080E-08	6.532E-09	4.706E-09	3.670E-09	
ENE	5.461E-07	1.680E-07	7.522E-08	4.788E-08	3.480E-08	2.014E-08	1.057E-08	6.812E-09	5.094E-09	4.080E-09	
E	4.219E-07	1.312E-07	5.838E-08	3.705E-08	2.692E-08	1.538E-08	7.760E-09	4.754E-09	3.384E-09	2.592E-09	
ESE	4.494E-07	1.348E-07	5.874E-08	3.733E-08	2.735E-08	1.622E-08	8.836E-09	5.800E-09	4.342E-09	3.461E-09	
SE	3.935E-07	1.175E-07	5.117E-08	3.246E-08	2.365E-08	1.382E-08	7.333E-09	4.731E-09	3.523E-09	2.808E-09	
SSE	4.147E-07	1.220E-07	5.166E-08	3.168E-08	2.246E-08	1.310E-08	7.569E-09	5.403E-09	4.091E-09	3.143E-09	
S	3.781E-07	1.086E-07	4.483E-08	2.706E-08	1.899E-08	1.062E-08	5.573E-09	3.717E-09	2.828E-09	2.221E-09	
SSW	3.131E-07	9.467E-08	4.083E-08	2.510E-08	1.774E-08	9.762E-09	4.775E-09	2.923E-09	2.107E-09	1.611E-09	
SW	2.814E-07	1.125E-07	5.011E-08	2.873E-08	1.894E-08	8.909E-09	3.332E-09	1.636E-09	1.020E-09	7.066E-10	
WSW	2.680E-07	9.642E-08	4.023E-08	2.250E-08	1.481E-08	6.973E-09	2.583E-09	1.236E-09	7.364E-10	4.939E-10	
W	3.186E-07	1.066E-07	4.321E-08	2.413E-08	1.576E-08	7.673E-09	3.047E-09	1.463E-09	8.646E-10	5.796E-10	
WNW	3.506E-07	1.185E-07	5.000E-08	2.856E-08	1.895E-08	9.701E-09	4.217E-09	2.117E-09	1.264E-09	8.558E-10	
NW	3.301E-07	1.055E-07	4.457E-08	2.568E-08	1.726E-08	8.878E-09	3.909E-09	2.057E-09	1.265E-09	8.609E-10	
NNW	3.003E-07	9.639E-08	4.262E-08	2.548E-08	1.771E-08	9.824E-09	4.653E-09	2.437E-09	1.474E-09	1.002E-09	

Table 2.7-103 Annual Average D/Q Values for Mixed-Mode Release from the Reactor Building/Fuel Building Stack (Based on 2001-2007 met data) (Sheet 1 of 3)

Distances in Miles											
Sector	0.25	0.50	0.75	1	1.5	2	2.5	3	3.5	4	4.5
N	2.364E-08	1.178E-08	7.038E-09	3.670E-09	1.420E-09	7.470E-10	4.586E-10	3.104E-10	2.242E-10	1.697E-10	1.331E-10
NNE	5.332E-08	2.515E-08	1.463E-08	7.556E-09	2.945E-09	1.539E-09	9.392E-10	6.324E-10	4.550E-10	3.433E-10	2.685E-10
NE	5.519E-08	2.258E-08	1.225E-08	6.026E-09	2.233E-09	1.138E-09	6.832E-10	4.548E-10	3.246E-10	2.434E-10	1.896E-10
ENE	2.995E-08	1.358E-08	7.554E-09	3.752E-09	1.387E-09	7.122E-10	4.308E-10	2.887E-10	2.072E-10	1.562E-10	1.222E-10
E	2.453E-08	1.184E-08	6.741E-09	3.378E-09	1.245E-09	6.416E-10	3.893E-10	2.615E-10	1.882E-10	1.422E-10	1.115E-10
ESE	2.692E-08	1.302E-08	7.401E-09	3.704E-09	1.363E-09	7.023E-10	4.260E-10	2.862E-10	2.059E-10	1.556E-10	1.220E-10
SE	2.234E-08	1.093E-08	6.220E-09	3.107E-09	1.139E-09	5.857E-10	3.549E-10	2.383E-10	1.714E-10	1.295E-10	1.016E-10
SSE	2.249E-08	1.025E-08	5.700E-09	2.830E-09	1.044E-09	5.368E-10	3.250E-10	2.179E-10	1.565E-10	1.180E-10	9.236E-11
S	1.938E-08	8.156E-09	4.484E-09	2.222E-09	8.237E-10	4.219E-10	2.546E-10	1.701E-10	1.217E-10	9.153E-11	7.141E-11
SSW	1.621E-08	6.780E-09	3.746E-09	1.860E-09	6.893E-10	3.530E-10	2.129E-10	1.423E-10	1.018E-10	7.653E-11	5.970E-11
SW	1.930E-08	1.057E-08	6.902E-09	3.844E-09	1.607E-09	8.673E-10	5.395E-10	3.679E-10	2.668E-10	2.023E-10	1.586E-10
WSW	2.338E-08	1.207E-08	7.420E-09	3.971E-09	1.605E-09	8.498E-10	5.221E-10	3.531E-10	2.547E-10	1.925E-10	1.507E-10
W	3.030E-08	1.463E-08	8.627E-09	4.628E-09	1.832E-09	9.540E-10	5.795E-10	3.888E-10	2.789E-10	2.100E-10	1.640E-10
WNW	3.191E-08	1.623E-08	9.548E-09	5.154E-09	2.009E-09	1.044E-09	6.345E-10	4.261E-10	3.061E-10	2.308E-10	1.805E-10
NW	2.936E-08	1.541E-08	9.074E-09	4.877E-09	1.875E-09	9.712E-10	5.896E-10	3.959E-10	2.844E-10	2.146E-10	1.680E-10
NNW	2.469E-08	1.246E-08	7.217E-09	3.674E-09	1.387E-09	7.224E-10	4.410E-10	2.975E-10	2.146E-10	1.624E-10	1.274E-10

Table 2.7-103 Annual Average D/Q Values for Mixed-Mode Release from the Reactor Building/Fuel Building Stack (Based on 2001-2007 met data) (Sheet 2 of 3)

Distances in Miles											
Sector	5	7.5	10	15	20	25	30	35	40	45	50
N	1.073E-10	5.070E-11	3.196E-11	3.925E-11	2.843E-11	1.732E-11	1.203E-11	9.077E-12	7.072E-12	5.648E-12	4.611E-12
NNE	2.160E-10	9.930E-11	6.062E-11	3.165E-11	2.024E-11	1.455E-11	1.137E-11	9.229E-12	8.176E-12	6.981E-12	6.995E-12
NE	1.520E-10	6.948E-11	4.242E-11	2.232E-11	1.432E-11	1.039E-11	8.218E-12	7.131E-12	6.185E-12	6.383E-12	6.951E-12
ENE	9.834E-11	4.567E-11	2.812E-11	1.510E-11	9.901E-12	7.379E-12	6.003E-12	5.204E-12	4.635E-12	4.323E-12	4.469E-12
E	8.991E-11	4.210E-11	2.601E-11	1.406E-11	9.159E-12	6.919E-12	5.595E-12	4.733E-12	4.136E-12	3.664E-12	3.325E-12
ESE	9.842E-11	4.611E-11	2.850E-11	1.542E-11	1.007E-11	7.645E-12	6.232E-12	5.323E-12	4.699E-12	4.206E-12	3.833E-12
SE	8.197E-11	3.845E-11	2.380E-11	1.291E-11	8.444E-12	6.421E-12	5.171E-12	4.403E-12	3.887E-12	3.475E-12	3.183E-12
SSE	7.438E-11	3.460E-11	2.147E-11	1.163E-11	9.941E-12	2.015E-11	1.913E-11	1.418E-11	1.073E-11	7.424E-12	5.631E-12
S	5.735E-11	2.640E-11	1.617E-11	8.597E-12	5.701E-12	5.069E-12	7.181E-12	9.852E-12	9.158E-12	7.359E-12	5.944E-12
SSW	4.793E-11	2.206E-11	1.351E-11	7.166E-12	4.757E-12	4.190E-12	4.211E-12	4.727E-12	6.495E-12	5.983E-12	5.108E-12
SW	1.277E-10	5.875E-11	3.573E-11	1.821E-11	1.147E-11	8.171E-12	6.310E-12	5.609E-12	5.635E-12	4.878E-12	4.113E-12
WSW	1.239E-10	5.634E-11	3.370E-11	1.868E-11	1.395E-11	1.193E-11	8.926E-12	6.830E-12	5.323E-12	4.255E-12	3.504E-12
W	1.318E-10	6.028E-11	3.950E-11	3.013E-11	1.939E-11	1.321E-11	9.685E-12	7.286E-12	5.670E-12	4.530E-12	3.698E-12
WNW	1.453E-10	6.670E-11	5.189E-11	3.731E-11	2.311E-11	1.601E-11	1.157E-11	8.703E-12	6.771E-12	5.409E-12	4.416E-12
NW	1.353E-10	6.230E-11	4.100E-11	3.548E-11	2.398E-11	1.572E-11	1.102E-11	8.303E-12	6.449E-12	5.155E-12	4.211E-12
NNW	1.056E-10	4.865E-11	3.939E-11	3.506E-11	2.147E-11	1.393E-11	1.005E-11	7.564E-12	5.886E-12	4.701E-12	3.837E-12

Table 2.7-103 Annual Average D/Q Values for Mixed-Mode Release from the Reactor Building/Fuel Building Stack (Based on 2001-2007 met data) (Sheet 3 of 3)

Segment Boundaries in Miles											
Sector	0.5-1	1-2	2-3	3-4	4-5	5-10	10-20	20-30	30-40	40-50	
N	6.596E-09	1.621E-09	4.762E-10	2.281E-10	1.344E-10	5.494E-11	3.282E-11	1.817E-11	9.158E-12	5.686E-12	
NNE	1.382E-08	3.345E-09	9.764E-10	4.631E-10	2.712E-10	1.080E-10	3.302E-11	1.479E-11	9.440E-12	7.340E-12	
NE	1.178E-08	2.589E-09	7.130E-10	3.309E-10	1.916E-10	7.580E-11	2.323E-11	1.057E-11	7.081E-12	6.535E-12	
ENE	7.203E-09	1.613E-09	4.490E-10	2.110E-10	1.234E-10	4.958E-11	1.568E-11	7.501E-12	5.215E-12	4.469E-12	
E	6.379E-09	1.451E-09	4.055E-10	1.916E-10	1.126E-10	4.557E-11	1.454E-11	6.986E-12	4.752E-12	3.678E-12	
ESE	7.006E-09	1.590E-09	4.438E-10	2.097E-10	1.232E-10	4.991E-11	1.595E-11	7.728E-12	5.345E-12	4.214E-12	
SE	5.884E-09	1.330E-09	3.698E-10	1.745E-10	1.026E-10	4.161E-11	1.334E-11	6.461E-12	4.426E-12	3.489E-12	
SSE	5.435E-09	1.216E-09	3.387E-10	1.594E-10	9.330E-11	3.760E-11	1.307E-11	1.702E-11	1.428E-11	7.740E-12	
S	4.295E-09	9.558E-10	2.654E-10	1.241E-10	7.216E-11	2.873E-11	8.994E-12	6.082E-12	8.824E-12	7.368E-12	
SSW	3.582E-09	8.000E-10	2.220E-10	1.037E-10	6.033E-11	2.401E-11	7.506E-12	4.350E-12	5.253E-12	5.811E-12	
SW	6.359E-09	1.775E-09	5.583E-10	2.711E-10	1.601E-10	6.383E-11	1.911E-11	8.305E-12	5.819E-12	4.819E-12	
WSW	6.920E-09	1.795E-09	5.419E-10	2.591E-10	1.532E-10	6.128E-11	1.991E-11	1.127E-11	6.855E-12	4.294E-12	
W	8.185E-09	2.063E-09	6.031E-10	2.841E-10	1.657E-10	6.694E-11	2.744E-11	1.345E-11	7.356E-12	4.560E-12	
WNW	9.080E-09	2.279E-09	6.603E-10	3.117E-10	1.824E-10	7.758E-11	3.424E-11	1.613E-11	8.787E-12	5.445E-12	
NW	8.617E-09	2.140E-09	6.139E-10	2.897E-10	1.697E-10	6.905E-11	3.159E-11	1.604E-11	8.373E-12	5.189E-12	
NNW	6.809E-09	1.600E-09	4.587E-10	2.184E-10	1.297E-10	5.719E-11	2.998E-11	1.438E-11	7.634E-12	4.732E-12	

Table 2.7-104 Annual Average X/Q Values (No Decay, Undepleted) for Mixed-Mode Release from the Turbine Building Stack (Based on 2001-2007 met data) (Sheet 1 of 3)

Distance in Miles from the Site											
Sector	0.25	0.5	0.75	1	1.5	2	2.5	3	3.5	4	4.5
N	2.201E-06	7.406E-07	4.177E-07	2.335E-07	1.153E-07	7.323E-08	5.214E-08	3.971E-08	3.164E-08	2.604E-08	2.209E-08
NNE	4.384E-06	1.491E-06	8.431E-07	4.603E-07	2.169E-07	1.335E-07	9.317E-08	6.999E-08	5.630E-08	4.687E-08	3.947E-08
NE	6.279E-06	2.172E-06	1.227E-06	6.467E-07	2.789E-07	1.622E-07	1.094E-07	8.056E-08	6.285E-08	5.106E-08	4.273E-08
ENE	3.470E-06	1.266E-06	7.259E-07	3.856E-07	1.707E-07	1.026E-07	7.140E-08	5.407E-08	4.321E-08	3.583E-08	3.053E-08
E	2.338E-06	9.151E-07	5.385E-07	2.882E-07	1.281E-07	7.707E-08	5.369E-08	4.068E-08	3.252E-08	2.697E-08	2.299E-08
ESE	2.623E-06	1.018E-06	5.898E-07	3.125E-07	1.366E-07	8.125E-08	5.613E-08	4.230E-08	3.370E-08	2.790E-08	2.376E-08
SE	2.306E-06	8.907E-07	5.144E-07	2.726E-07	1.189E-07	7.060E-08	4.875E-08	3.674E-08	2.928E-08	2.424E-08	2.064E-08
SSE	2.739E-06	9.777E-07	5.517E-07	2.912E-07	1.274E-07	7.564E-08	5.197E-08	3.887E-08	3.071E-08	2.520E-08	2.127E-08
S	2.821E-06	9.464E-07	5.235E-07	2.752E-07	1.197E-07	7.059E-08	4.811E-08	3.571E-08	2.803E-08	2.288E-08	1.923E-08
SSW	2.205E-06	7.580E-07	4.273E-07	2.272E-07	1.003E-07	5.973E-08	4.112E-08	3.079E-08	2.434E-08	1.998E-08	1.686E-08
SW	1.297E-06	4.751E-07	2.927E-07	1.795E-07	9.708E-08	6.307E-08	4.485E-08	3.382E-08	2.659E-08	2.159E-08	1.797E-08
WSW	1.299E-06	4.660E-07	2.781E-07	1.644E-07	8.402E-08	5.278E-08	3.675E-08	2.733E-08	2.128E-08	1.716E-08	1.435E-08
W	1.811E-06	6.138E-07	3.526E-07	2.011E-07	9.778E-08	5.999E-08	4.129E-08	3.052E-08	2.370E-08	1.908E-08	1.579E-08
WNW	2.106E-06	6.937E-07	3.857E-07	2.186E-07	1.080E-07	6.724E-08	4.682E-08	3.493E-08	2.733E-08	2.214E-08	1.843E-08
NW	2.088E-06	6.839E-07	3.671E-07	2.023E-07	9.803E-08	6.078E-08	4.232E-08	3.162E-08	2.479E-08	2.013E-08	1.686E-08
NNW	2.006E-06	6.514E-07	3.496E-07	1.901E-07	9.111E-08	5.674E-08	3.987E-08	3.010E-08	2.383E-08	1.953E-08	1.658E-08

Table 2.7-104 Annual Average X/Q Values (No Decay, Undepleted) for Mixed-Mode Release from the Turbine Building Stack (Based on 2001-2007 met data) (Sheet 2 of 3)

Distance in Miles from the Site											
Sector	5	7.5	10	15	20	25	30	35	40	45	50
N	1.910E-08	1.187E-08	8.698E-09	5.886E-09	4.463E-09	3.575E-09	2.941E-09	2.446E-09	2.058E-09	1.764E-09	1.537E-09
NNE	3.395E-08	1.970E-08	1.373E-08	8.609E-09	6.170E-09	4.760E-09	3.850E-09	3.219E-09	2.757E-09	2.406E-09	2.131E-09
NE	3.663E-08	2.175E-08	1.556E-08	1.024E-08	7.650E-09	6.119E-09	5.114E-09	4.406E-09	3.881E-09	3.476E-09	3.156E-09
ENE	2.661E-08	1.686E-08	1.258E-08	8.741E-09	6.775E-09	5.576E-09	4.771E-09	4.193E-09	3.758E-09	3.419E-09	3.148E-09
E	2.006E-08	1.258E-08	9.287E-09	6.322E-09	4.800E-09	3.866E-09	3.234E-09	2.778E-09	2.434E-09	2.164E-09	1.948E-09
ESE	2.074E-08	1.318E-08	9.878E-09	6.930E-09	5.408E-09	4.465E-09	3.822E-09	3.354E-09	2.998E-09	2.717E-09	2.489E-09
SE	1.801E-08	1.145E-08	8.561E-09	5.968E-09	4.631E-09	3.809E-09	3.253E-09	2.851E-09	2.547E-09	2.310E-09	2.119E-09
SSE	1.838E-08	1.158E-08	8.712E-09	6.301E-09	5.162E-09	4.508E-09	4.077E-09	3.757E-09	3.492E-09	3.252E-09	3.023E-09
S	1.654E-08	1.006E-08	7.361E-09	5.053E-09	3.934E-09	3.277E-09	2.846E-09	2.541E-09	2.311E-09	2.129E-09	1.980E-09
SSW	1.456E-08	8.902E-09	6.482E-09	4.355E-09	3.295E-09	2.662E-09	2.243E-09	1.945E-09	1.723E-09	1.551E-09	1.413E-09
SW	1.527E-08	8.546E-09	5.769E-09	3.444E-09	2.382E-09	1.787E-09	1.413E-09	1.159E-09	9.769E-10	8.403E-10	7.346E-10
WSW	1.226E-08	6.802E-09	4.579E-09	2.732E-09	1.892E-09	1.422E-09	1.126E-09	9.239E-10	7.781E-10	6.684E-10	5.829E-10
W	1.336E-08	7.676E-09	5.319E-09	3.327E-09	2.383E-09	1.821E-09	1.439E-09	1.170E-09	9.776E-10	8.350E-10	7.256E-10
WNW	1.568E-08	9.327E-09	6.666E-09	4.417E-09	3.300E-09	2.561E-09	2.022E-09	1.651E-09	1.386E-09	1.189E-09	1.037E-09
NW	1.443E-08	8.538E-09	6.074E-09	3.992E-09	2.999E-09	2.400E-09	1.979E-09	1.653E-09	1.394E-09	1.199E-09	1.048E-09
NNW	1.438E-08	8.993E-09	6.673E-09	4.634E-09	3.562E-09	2.835E-09	2.275E-09	1.864E-09	1.569E-09	1.349E-09	1.178E-09

Table 2.7-104 Annual Average X/Q Values (No Decay, Undepleted) for Mixed-Mode Release from the Turbine Building Stack (Based on 2001-2007 met data) (Sheet 3 of 3)

X/Q (sec/m³) for Each Segment

Segment Boundaries in Miles from the Site											
Sector	0.5-1	1-2	2-3	3-4	4-5	5-10	10-20	20-30	30-40	40-50	
N	4.076E-07	1.229E-07	5.279E-08	3.181E-08	2.215E-08	1.207E-08	5.879E-09	3.558E-09	2.439E-09	1.767E-09	
NNE	8.168E-07	2.339E-07	9.466E-08	5.662E-08	3.962E-08	2.021E-08	8.663E-09	4.772E-09	3.223E-09	2.408E-09	
NE	1.179E-06	3.088E-07	1.119E-07	6.342E-08	4.294E-08	2.231E-08	1.027E-08	6.126E-09	4.408E-09	3.477E-09	
ENE	6.947E-07	1.882E-07	7.278E-08	4.350E-08	3.065E-08	1.712E-08	8.720E-09	5.574E-09	4.192E-09	3.419E-09	
E	5.110E-07	1.410E-07	5.472E-08	3.274E-08	2.308E-08	1.278E-08	6.304E-09	3.862E-09	2.777E-09	2.164E-09	
ESE	5.617E-07	1.511E-07	5.730E-08	3.395E-08	2.387E-08	1.339E-08	6.909E-09	4.459E-09	3.352E-09	2.716E-09	
SE	4.905E-07	1.316E-07	4.977E-08	2.949E-08	2.073E-08	1.162E-08	5.950E-09	3.806E-09	2.850E-09	2.309E-09	
SSE	5.306E-07	1.408E-07	5.304E-08	3.094E-08	2.137E-08	1.182E-08	6.331E-09	4.510E-09	3.748E-09	3.238E-09	
S	5.071E-07	1.324E-07	4.914E-08	2.826E-08	1.931E-08	1.030E-08	5.068E-09	3.280E-09	2.540E-09	2.128E-09	
SSW	4.119E-07	1.105E-07	4.195E-08	2.452E-08	1.693E-08	9.083E-09	4.357E-09	2.663E-09	1.946E-09	1.551E-09	
SW	2.829E-07	1.003E-07	4.530E-08	2.675E-08	1.804E-08	8.805E-09	3.489E-09	1.796E-09	1.162E-09	8.416E-10	
WSW	2.693E-07	8.799E-08	3.726E-08	2.144E-08	1.441E-08	7.026E-09	2.769E-09	1.429E-09	9.261E-10	6.692E-10	
W	3.433E-07	1.039E-07	4.197E-08	2.388E-08	1.586E-08	7.892E-09	3.350E-09	1.818E-09	1.173E-09	8.367E-10	
WNW	3.799E-07	1.144E-07	4.751E-08	2.752E-08	1.851E-08	9.556E-09	4.420E-09	2.543E-09	1.656E-09	1.191E-09	
NW	3.642E-07	1.046E-07	4.296E-08	2.497E-08	1.693E-08	8.752E-09	4.013E-09	2.391E-09	1.647E-09	1.201E-09	
NNW	3.458E-07	9.784E-08	4.046E-08	2.398E-08	1.664E-08	9.158E-09	4.611E-09	2.805E-09	1.869E-09	1.351E-09	

Table 2.7-105 Annual Average X/Q Values (2.26 Day Decay, Undepleted) for Mixed-Mode Release from the Turbine Building Stack (Based on 2001-2007 met data) (Sheet 1 of 3)

Distance in Miles from the Site											
Sector	0.25	0.5	0.75	1	1.5	2	2.5	3	3.5	4	4.5
N	2.200E-06	7.400E-07	4.172E-07	2.331E-07	1.150E-07	7.299E-08	5.193E-08	3.951E-08	3.145E-08	2.587E-08	2.192E-08
NNE	4.382E-06	1.489E-06	8.420E-07	4.595E-07	2.164E-07	1.331E-07	9.282E-08	6.967E-08	5.600E-08	4.659E-08	3.920E-08
NE	6.277E-06	2.170E-06	1.225E-06	6.457E-07	2.782E-07	1.616E-07	1.089E-07	8.018E-08	6.251E-08	5.075E-08	4.244E-08
ENE	3.468E-06	1.265E-06	7.248E-07	3.848E-07	1.702E-07	1.022E-07	7.106E-08	5.377E-08	4.293E-08	3.557E-08	3.028E-08
E	2.337E-06	9.142E-07	5.377E-07	2.876E-07	1.277E-07	7.677E-08	5.343E-08	4.044E-08	3.230E-08	2.677E-08	2.279E-08
ESE	2.622E-06	1.017E-06	5.890E-07	3.118E-07	1.362E-07	8.093E-08	5.586E-08	4.205E-08	3.347E-08	2.769E-08	2.356E-08
SE	2.305E-06	8.898E-07	5.136E-07	2.720E-07	1.185E-07	7.031E-08	4.851E-08	3.652E-08	2.908E-08	2.406E-08	2.046E-08
SSE	2.737E-06	9.767E-07	5.509E-07	2.906E-07	1.270E-07	7.535E-08	5.173E-08	3.865E-08	3.051E-08	2.502E-08	2.110E-08
S	2.820E-06	9.455E-07	5.228E-07	2.747E-07	1.194E-07	7.033E-08	4.789E-08	3.552E-08	2.786E-08	2.272E-08	1.907E-08
SSW	2.204E-06	7.573E-07	4.267E-07	2.268E-07	1.000E-07	5.952E-08	4.094E-08	3.062E-08	2.419E-08	1.984E-08	1.673E-08
sw	1.296E-06	4.747E-07	2.923E-07	1.792E-07	9.686E-08	6.288E-08	4.468E-08	3.367E-08	2.645E-08	2.146E-08	1.785E-08
WSW	1.298E-06	4.656E-07	2.777E-07	1.641E-07	8.385E-08	5.263E-08	3.663E-08	2.722E-08	2.118E-08	1.706E-08	1.427E-08
W	1.810E-06	6.134E-07	3.522E-07	2.008E-07	9.759E-08	5.983E-08	4.115E-08	3.039E-08	2.358E-08	1.897E-08	1.569E-08
WNW	2.105E-06	6.931E-07	3.853E-07	2.182E-07	1.077E-07	6.704E-08	4.664E-08	3.477E-08	2.718E-08	2.201E-08	1.830E-08
NW	2.087E-06	6.833E-07	3.666E-07	2.019E-07	9.779E-08	6.059E-08	4.215E-08	3.147E-08	2.465E-08	2.001E-08	1.674E-08
NNW	2.005E-06	6.508E-07	3.491E-07	1.898E-07	9.088E-08	5.655E-08	3.970E-08	2.995E-08	2.369E-08	1.940E-08	1.646E-08

Table 2.7-105 Annual Average X/Q Values (2.26 Day Decay, Undepleted) for Mixed-Mode Release from the Turbine Building Stack (Based on 2001-2007 met data) (Sheet 2 of 3)

Distance in Miles from the Site											
Sector	5	7.5	10	15	20	25	30	35	40	45	50
N	1.894E-08	1.172E-08	8.547E-09	5.728E-09	4.299E-09	3.408E-09	2.774E-09	2.283E-09	1.901E-09	1.614E-09	1.393E-09
NNE	3.369E-08	1.947E-08	1.351E-08	8.401E-09	5.969E-09	4.565E-09	3.661E-09	3.034E-09	2.576E-09	2.229E-09	1.957E-09
NE	3.635E-08	2.150E-08	1.532E-08	1.000E-08	7.406E-09	5.873E-09	4.865E-09	4.153E-09	3.624E-09	3.216E-09	2.891E-09
ENE	2.637E-08	1.663E-08	1.235E-08	8.495E-09	6.517E-09	5.307E-09	4.492E-09	3.904E-09	3.461E-09	3.114E-09	2.834E-09
E	1.987E-08	1.240E-08	9.105E-09	6.131E-09	4.605E-09	3.667E-09	3.033E-09	2.576E-09	2.232E-09	1.962E-09	1.746E-09
ESE	2.054E-08	1.298E-08	9.682E-09	6.719E-09	5.184E-09	4.232E-09	3.581E-09	3.106E-09	2.743E-09	2.457E-09	2.225E-09
SE	1.784E-08	1.128E-08	8.398E-09	5.795E-09	4.450E-09	3.621E-09	3.059E-09	2.652E-09	2.343E-09	2.101E-09	1.906E-09
SSE	1.822E-08	1.142E-08	8.557E-09	6.131E-09	4.973E-09	4.298E-09	3.846E-09	3.505E-09	3.221E-09	2.966E-09	2.725E-09
S	1.639E-08	9.931E-09	7.233E-09	4.921E-09	3.797E-09	3.134E-09	2.697E-09	2.385E-09	2.149E-09	1.961E-09	1.806E-09
SSW	1.443E-08	8.789E-09	6.373E-09	4.244E-09	3.183E-09	2.548E-09	2.127E-09	1.828E-09	1.604E-09	1.429E-09	1.289E-09
SW	1.515E-08	8.446E-09	5.678E-09	3.361E-09	2.304E-09	1.714E-09	1.343E-09	1.092E-09	9.120E-10	7.774E-10	6.736E-10
WSW	1.217E-08	6.731E-09	4.514E-09	2.674E-09	1.839E-09	1.372E-09	1.078E-09	8.781E-10	7.342E-10	6.260E-10	5.419E-10
W	1.327E-08	7.596E-09	5.245E-09	3.258E-09	2.316E-09	1.757E-09	1.379E-09	1.113E-09	9.236E-10	7.835E-10	6.760E-10
WNW	1.556E-08	9.221E-09	6.565E-09	4.316E-09	3.198E-09	2.462E-09	1.929E-09	1.563E-09	1.302E-09	1.108E-09	9.590E-10
NW	1.432E-08	8.438E-09	5.980E-09	3.902E-09	2.910E-09	2.312E-09	1.893E-09	1.570E-09	1.315E-09	1.123E-09	9.745E-10
NNW	1.426E-08	8.880E-09	6.560E-09	4.515E-09	3.440E-09	2.713E-09	2.158E-09	1.752E-09	1.462E-09	1.246E-09	1.080E-09

Table 2.7-105 Annual Average X/Q Values (2.26 Day Decay, Undepleted) for Mixed-Mode Release from the Turbine Building Stack (Based on 2001-2007 met data) (Sheet 3 of 3)

X/Q (sec/m³) for Each Segment

Segment Boundaries in Miles from the Site											
Sector	0.5-1	1-2	2-3	3-4	4-5	5-10	10-20	20-30	30-40	40-50	
N	4.071E-07	1.226E-07	5.258E-08	3.163E-08	2.199E-08	1.191E-08	5.719E-09	3.392E-09	2.278E-09	1.617E-09	
NNE	8.159E-07	2.334E-07	9.431E-08	5.632E-08	3.935E-08	1.998E-08	8.456E-09	4.578E-09	3.039E-09	2.231E-09	
NE	1.178E-06	3.081E-07	1.115E-07	6.308E-08	4.264E-08	2.205E-08	1.003E-08	5.879E-09	4.155E-09	3.217E-09	
ENE	6.937E-07	1.877E-07	7.244E-08	4.322E-08	3.040E-08	1.689E-08	8.472E-09	5.304E-09	3.903E-09	3.113E-09	
E	5.102E-07	1.406E-07	5.446E-08	3.252E-08	2.289E-08	1.259E-08	6.114E-09	3.664E-09	2.576E-09	1.962E-09	
ESE	5.609E-07	1.507E-07	5.702E-08	3.372E-08	2.366E-08	1.320E-08	6.695E-09	4.226E-09	3.104E-09	2.456E-09	
SE	4.898E-07	1.312E-07	4.953E-08	2.929E-08	2.055E-08	1.146E-08	5.776E-09	3.617E-09	2.651E-09	2.101E-09	
SSE	5.298E-07	1.404E-07	5.280E-08	3.074E-08	2.119E-08	1.166E-08	6.156E-09	4.297E-09	3.494E-09	2.952E-09	
S	5.064E-07	1.321E-07	4.893E-08	2.809E-08	1.916E-08	1.017E-08	4.935E-09	3.136E-09	2.384E-09	1.959E-09	
SSW	4.113E-07	1.102E-07	4.177E-08	2.437E-08	1.680E-08	8.969E-09	4.246E-09	2.549E-09	1.828E-09	1.429E-09	
SW	2.826E-07	1.001E-07	4.513E-08	2.661E-08	1.792E-08	8.706E-09	3.406E-09	1.723E-09	1.095E-09	7.788E-10	
WSW	2.690E-07	8.782E-08	3.713E-08	2.134E-08	1.432E-08	6.955E-09	2.712E-09	1.379E-09	8.804E-10	6.269E-10	
W	3.430E-07	1.037E-07	4.183E-08	2.377E-08	1.577E-08	7.813E-09	3.281E-09	1.755E-09	1.117E-09	7.852E-10	
WNW	3.794E-07	1.142E-07	4.733E-08	2.738E-08	1.839E-08	9.449E-09	4.319E-09	2.445E-09	1.568E-09	1.110E-09	
NW	3.638E-07	1.044E-07	4.279E-08	2.483E-08	1.681E-08	8.653E-09	3.923E-09	2.304E-09	1.565E-09	1.125E-09	
NNW	3.453E-07	9.760E-08	4.029E-08	2.384E-08	1.651E-08	9.044E-09	4.492E-09	2.685E-09	1.758E-09	1.249E-09	

Table 2.7-106 Annual Average X/Q Values (8.0 Day Decay, Depleted) for Mixed-Mode Release from the Turbine Building Stack (Based on 2001-2007 met data) (Sheet 1 of 3)

	Distance in Miles from the Site											_
Sector	0.25	0.5	0.75	1	1.5	2	2.5	3	3.5	4	4.5	_
N	2.100E-06	6.859E-07	3.794E-07	2.108E-07	1.038E-07	6.583E-08	4.678E-08	3.555E-08	2.824E-08	2.318E-08	1.962E-08	
NNE	4.171E-06	1.376E-06	7.631E-07	4.131E-07	1.934E-07	1.185E-07	8.241E-08	6.168E-08	4.956E-08	4.121E-08	3.460E-08	_
NE	5.946E-06	1.996E-06	1.105E-06	5.742E-07	2.430E-07	1.397E-07	9.347E-08	6.845E-08	5.317E-08	4.303E-08	3.590E-08	_ [
ENE	3.288E-06	1.170E-06	6.586E-07	3.453E-07	1.507E-07	9.000E-08	6.249E-08	4.727E-08	3.776E-08	3.132E-08	2.668E-08	_
E	2.217E-06	8.506E-07	4.923E-07	2.603E-07	1.141E-07	6.828E-08	4.747E-08	3.594E-08	2.872E-08	2.382E-08	2.030E-08	_
ESE	2.488E-06	9.466E-07	5.394E-07	2.821E-07	1.215E-07	7.168E-08	4.934E-08	3.711E-08	2.954E-08	2.445E-08	2.081E-08	_
SE	2.187E-06	8.283E-07	4.703E-07	2.460E-07	1.056E-07	6.221E-08	4.280E-08	3.220E-08	2.564E-08	2.122E-08	1.807E-08	_
SSE	2.595E-06	9.033E-07	5.004E-07	2.606E-07	1.121E-07	6.601E-08	4.513E-08	3.363E-08	2.650E-08	2.170E-08	1.828E-08	_
S	2.672E-06	8.699E-07	4.717E-07	2.446E-07	1.045E-07	6.091E-08	4.119E-08	3.040E-08	2.376E-08	1.932E-08	1.618E-08	_
SSW	2.088E-06	6.971E-07	3.851E-07	2.021E-07	8.778E-08	5.185E-08	3.552E-08	2.651E-08	2.090E-08	1.713E-08	1.443E-08	_
SW	1.238E-06	4.410E-07	2.686E-07	1.653E-07	8.976E-08	5.821E-08	4.122E-08	3.091E-08	2.417E-08	1.951E-08	1.615E-08	_
WSW	1.241E-06	4.331E-07	2.549E-07	1.508E-07	7.707E-08	4.823E-08	3.341E-08	2.469E-08	1.911E-08	1.531E-08	1.275E-08	_
W	1.727E-06	5.682E-07	3.211E-07	1.824E-07	8.826E-08	5.383E-08	3.680E-08	2.702E-08	2.084E-08	1.667E-08	1.372E-08	_
WNW	2.017E-06	6.461E-07	3.527E-07	1.991E-07	9.796E-08	6.072E-08	4.204E-08	3.118E-08	2.426E-08	1.955E-08	1.618E-08	_
NW	2.004E-06	6.395E-07	3.367E-07	1.843E-07	8.878E-08	5.474E-08	3.789E-08	2.815E-08	2.194E-08	1.772E-08	1.477E-08	_
NNW	1.919E-06	6.061E-07	3.185E-07	1.718E-07	8.178E-08	5.071E-08	3.549E-08	2.668E-08	2.104E-08	1.718E-08	1.455E-08	_

Table 2.7-106 Annual Average X/Q Values (8.0 Day Decay, Depleted) for Mixed-Mode Release from the Turbine Building Stack (Based on 2001-2007 met data) (Sheet 2 of 3)

	Distance in Miles from the Site											_
Sector	5	7.5	10	15	20	25	30	35	40	45	50	_
N	1.694E-08	1.048E-08	7.645E-09	5.142E-09	3.843E-09	2.946E-09	2.319E-09	1.867E-09	1.526E-09	1.273E-09	1.082E-09	
NNE	2.968E-08	1.701E-08	1.172E-08	7.221E-09	5.101E-09	3.888E-09	3.112E-09	2.576E-09	2.178E-09	1.879E-09	1.644E-09	
NE	3.069E-08	1.810E-08	1.288E-08	8.413E-09	6.250E-09	4.981E-09	4.151E-09	3.567E-09	3.122E-09	2.781E-09	2.508E-09	_
ENE	2.325E-08	1.477E-08	1.102E-08	7.657E-09	5.928E-09	4.874E-09	4.165E-09	3.655E-09	3.256E-09	2.947E-09	2.694E-09	Ī
E	1.771E-08	1.111E-08	8.190E-09	5.551E-09	4.193E-09	3.360E-09	2.797E-09	2.391E-09	2.084E-09	1.844E-09	1.651E-09	_
ESE	1.816E-08	1.155E-08	8.657E-09	6.066E-09	4.724E-09	3.893E-09	3.324E-09	2.910E-09	2.593E-09	2.343E-09	2.140E-09	_
SE	1.576E-08	1.003E-08	7.502E-09	5.221E-09	4.042E-09	3.317E-09	2.826E-09	2.471E-09	2.198E-09	1.983E-09	1.806E-09	Ī
SSE	1.577E-08	9.948E-09	7.494E-09	5.448E-09	4.493E-09	3.949E-09	3.590E-09	3.296E-09	2.991E-09	2.712E-09	2.454E-09	_
S	1.388E-08	8.403E-09	6.126E-09	4.196E-09	3.269E-09	2.730E-09	2.378E-09	2.128E-09	1.931E-09	1.773E-09	1.632E-09	_
SSW	1.243E-08	7.588E-09	5.510E-09	3.685E-09	2.779E-09	2.240E-09	1.884E-09	1.631E-09	1.435E-09	1.285E-09	1.162E-09	_
SW	1.365E-08	7.475E-09	4.954E-09	2.871E-09	1.938E-09	1.426E-09	1.109E-09	8.945E-10	7.408E-10	6.274E-10	5.398E-10	_
WSW	1.084E-08	5.877E-09	3.881E-09	2.246E-09	1.519E-09	1.119E-09	8.678E-10	6.921E-10	5.650E-10	4.707E-10	3.987E-10	_
W	1.154E-08	6.511E-09	4.445E-09	2.717E-09	1.866E-09	1.360E-09	1.035E-09	8.132E-10	6.589E-10	5.467E-10	4.623E-10	_
WNW	1.370E-08	8.038E-09	5.683E-09	3.692E-09	2.622E-09	1.946E-09	1.481E-09	1.169E-09	9.520E-10	7.934E-10	6.736E-10	_
NW	1.258E-08	7.330E-09	5.149E-09	3.330E-09	2.449E-09	1.878E-09	1.484E-09	1.200E-09	9.822E-10	8.212E-10	6.992E-10	_
NNW	1.258E-08	7.832E-09	5.786E-09	3.990E-09	2.935E-09	2.221E-09	1.719E-09	1.363E-09	1.113E-09	9.296E-10	7.910E-10	_

Table 2.7-106 Annual Average X/Q Values (8.0 Day Decay, Depleted) for Mixed-Mode Release from the Turbine Building Stack (Based on 2001-2007 met data) (Sheet 3 of 3)

X/Q (sec/m³) for Each Segment

	Segment Boundaries in Miles from the Site										
Sector	0.5-1	1-2	2-3	3-4	4-5	5-10	10-20	20-30	30-40	40-50	
N	3.725E-07	1.107E-07	4.737E-08	2.840E-08	1.968E-08	1.065E-08	5.121E-09	2.935E-09	1.866E-09	1.277E-09	
NNE	7.437E-07	2.089E-07	8.376E-08	4.984E-08	3.474E-08	1.748E-08	7.279E-09	3.901E-09	2.578E-09	1.881E-09	I
NE	1.067E-06	2.707E-07	9.578E-08	5.367E-08	3.608E-08	1.858E-08	8.445E-09	4.987E-09	3.564E-09	2.781E-09	I
ENE	6.331E-07	1.670E-07	6.374E-08	3.802E-08	2.679E-08	1.499E-08	7.637E-09	4.872E-09	3.649E-09	2.945E-09	I
E	4.688E-07	1.262E-07	4.841E-08	2.892E-08	2.039E-08	1.128E-08	5.534E-09	3.357E-09	2.390E-09	1.843E-09	I
ESE	5.155E-07	1.350E-07	5.041E-08	2.976E-08	2.091E-08	1.173E-08	6.046E-09	3.887E-09	2.908E-09	2.342E-09	I
SE	4.502E-07	1.175E-07	4.374E-08	2.583E-08	1.815E-08	1.018E-08	5.204E-09	3.314E-09	2.468E-09	1.981E-09	I
SSE	4.833E-07	1.246E-07	4.610E-08	2.671E-08	1.837E-08	1.015E-08	5.478E-09	3.950E-09	3.264E-09	2.699E-09	
S	4.592E-07	1.162E-07	4.213E-08	2.397E-08	1.626E-08	8.608E-09	4.213E-09	2.733E-09	2.124E-09	1.767E-09	I
SSW	3.731E-07	9.722E-08	3.627E-08	2.107E-08	1.449E-08	7.741E-09	3.688E-09	2.241E-09	1.629E-09	1.284E-09	I
SW	2.610E-07	9.252E-08	4.163E-08	2.432E-08	1.622E-08	7.726E-09	2.919E-09	1.436E-09	8.971E-10	6.286E-10	I
WSW	2.482E-07	8.063E-08	3.388E-08	1.926E-08	1.280E-08	6.092E-09	2.286E-09	1.125E-09	6.939E-10	4.719E-10	I
W	3.144E-07	9.387E-08	3.743E-08	2.102E-08	1.379E-08	6.711E-09	2.723E-09	1.365E-09	8.178E-10	5.487E-10	I
WNW	3.496E-07	1.039E-07	4.268E-08	2.444E-08	1.626E-08	8.249E-09	3.659E-09	1.940E-09	1.175E-09	7.960E-10	I
NW	3.362E-07	9.487E-08	3.849E-08	2.211E-08	1.483E-08	7.528E-09	3.343E-09	1.873E-09	1.198E-09	8.237E-10	
NNW	3.172E-07	8.797E-08	3.602E-08	2.118E-08	1.460E-08	7.978E-09	3.920E-09	2.211E-09	1.369E-09	9.325E-10	I

Table 2.7-107 Annual Average D/Q Values for Mixed-Mode Release from the Turbine Building Stack (Based on 2001-2007 met data) (Sheet 1 of 3)

	Distances in Miles										
Sector	0.25	0.50	0.75	1	1.5	2	2.5	3	3.5	4	4.5
N	2.322E-08	1.111E-08	6.853E-09	3.611E-09	1.379E-09	7.339E-10	4.555E-10	3.107E-10	2.257E-10	1.714E-10	1.347E-10
NNE	5.010E-08	2.258E-08	1.354E-08	7.118E-09	2.730E-09	1.457E-09	9.061E-10	6.186E-10	4.530E-10	3.476E-10	2.725E-10
NE	6.121E-08	2.429E-08	1.354E-08	6.723E-09	2.451E-09	1.251E-09	7.538E-10	5.032E-10	3.598E-10	2.703E-10	2.107E-10
ENE	3.019E-08	1.357E-08	7.927E-09	4.002E-09	1.453E-09	7.468E-10	4.525E-10	3.038E-10	2.184E-10	1.649E-10	1.291E-10
E	2.414E-08	1.163E-08	6.950E-09	3.538E-09	1.283E-09	6.618E-10	4.022E-10	2.707E-10	1.951E-10	1.476E-10	1.159E-10
ESE	2.671E-08	1.288E-08	7.696E-09	3.914E-09	1.417E-09	7.300E-10	4.433E-10	2.983E-10	2.149E-10	1.626E-10	1.276E-10
SE	2.176E-08	1.069E-08	6.415E-09	3.260E-09	1.175E-09	6.045E-10	3.666E-10	2.465E-10	1.776E-10	1.344E-10	1.055E-10
SSE	2.277E-08	1.030E-08	6.030E-09	3.044E-09	1.103E-09	5.668E-10	3.433E-10	2.304E-10	1.657E-10	1.251E-10	9.798E-11
S	2.165E-08	8.836E-09	4.987E-09	2.491E-09	9.095E-10	4.660E-10	2.815E-10	1.884E-10	1.350E-10	1.015E-10	7.926E-11
SSW	1.841E-08	7.440E-09	4.173E-09	2.081E-09	7.613E-10	3.901E-10	2.357E-10	1.577E-10	1.129E-10	8.493E-11	6.627E-11
SW	1.715E-08	8.392E-09	5.677E-09	3.243E-09	1.365E-09	7.678E-10	4.932E-10	3.435E-10	2.525E-10	1.930E-10	1.520E-10
WSW	2.025E-08	9.844E-09	6.443E-09	3.517E-09	1.416E-09	7.714E-10	4.853E-10	3.336E-10	2.434E-10	1.852E-10	1.498E-10
W	2.787E-08	1.351E-08	8.102E-09	4.448E-09	1.741E-09	9.184E-10	5.645E-10	3.820E-10	2.758E-10	2.085E-10	1.632E-10
WNW	2.820E-08	1.463E-08	9.352E-09	4.883E-09	1.865E-09	9.836E-10	6.058E-10	4.111E-10	2.976E-10	2.257E-10	1.772E-10
NW	2.596E-08	1.394E-08	8.683E-09	4.622E-09	1.725E-09	9.056E-10	5.569E-10	3.779E-10	2.738E-10	2.080E-10	1.636E-10
NNW	2.224E-08	1.136E-08	7.031E-09	3.653E-09	1.354E-09	7.097E-10	4.361E-10	2.958E-10	2.143E-10	1.627E-10	1.292E-10

Table 2.7-107 Annual Average D/Q Values for Mixed-Mode Release from the Turbine Building Stack (Based on 2001-2007 met data) (Sheet 2 of 3)

					Distanc	es in Miles					
Sector	5	7.5	10	15	20	25	30	35	40	45	50
N	1.086E-10	5.232E-11	3.223E-11	1.741E-11	2.664E-11	2.025E-11	1.314E-11	9.403E-12	7.323E-12	5.855E-12	4.783E-12
NNE	2.194E-10	1.037E-10	6.323E-11	3.323E-11	2.124E-11	1.531E-11	1.184E-11	9.588E-12	7.997E-12	6.846E-12	5.991E-12
NE	1.690E-10	7.830E-11	4.806E-11	2.525E-11	1.598E-11	1.153E-11	9.038E-12	7.483E-12	6.416E-12	5.628E-12	5.068E-12
ENE	1.041E-10	4.895E-11	3.029E-11	1.621E-11	1.040E-11	7.738E-12	6.287E-12	5.387E-12	4.752E-12	4.262E-12	3.922E-12
E	9.359E-11	4.431E-11	2.751E-11	1.482E-11	9.493E-12	7.090E-12	5.515E-12	4.418E-12	3.620E-12	3.018E-12	2.554E-12
ESE	1.031E-10	4.880E-11	3.031E-11	1.633E-11	1.047E-11	7.835E-12	6.117E-12	4.929E-12	4.067E-12	3.416E-12	3.104E-12
SE	8.528E-11	4.047E-11	2.515E-11	1.360E-11	8.742E-12	6.551E-12	5.220E-12	4.369E-12	3.836E-12	3.472E-12	3.186E-12
SSE	7.899E-11	3.719E-11	2.302E-11	1.238E-11	8.078E-12	5.937E-12	7.790E-12	1.267E-11	1.174E-11	9.306E-12	7.244E-12
S	6.367E-11	2.958E-11	1.822E-11	9.658E-12	6.160E-12	4.495E-12	3.559E-12	2.976E-12	3.582E-12	3.866E-12	5.308E-12
SSW	5.320E-11	2.473E-11	1.522E-11	8.024E-12	5.105E-12	3.722E-12	2.944E-12	2.467E-12	2.148E-12	2.029E-12	2.158E-12
SW	1.225E-10	5.866E-11	3.567E-11	1.871E-11	1.177E-11	8.328E-12	6.301E-12	4.985E-12	4.081E-12	3.432E-12	2.980E-12
WSW	1.206E-10	5.709E-11	3.432E-11	1.783E-11	1.131E-11	8.048E-12	7.466E-12	7.044E-12	5.680E-12	4.603E-12	3.747E-12
W	1.313E-10	6.159E-11	3.735E-11	2.432E-11	1.986E-11	1.381E-11	9.800E-12	7.404E-12	5.763E-12	4.604E-12	3.758E-12
WNW	1.430E-10	6.886E-11	4.172E-11	3.502E-11	2.473E-11	1.628E-11	1.173E-11	8.833E-12	6.872E-12	5.490E-12	4.482E-12
NW	1.323E-10	6.351E-11	3.934E-11	2.124E-11	2.325E-11	1.739E-11	1.235E-11	8.593E-12	6.668E-12	5.329E-12	4.354E-12
NNW	1.044E-10	4.982E-11	3.078E-11	2.296E-11	2.358E-11	1.464E-11	1.021E-11	7.713E-12	6.001E-12	4.793E-12	3.913E-12

Table 2.7-107 Annual Average D/Q Values for Mixed-Mode Release from the Turbine Building Stack (Based on 2001-2007 met data) (Sheet 3 of 3)

	Segment Boundaries in Miles									
Sector	0.5-1	1-2	2-3	3-4	4-5	5-10	10-20	20-30	30-40	40-50
N	6.359E-09	1.588E-09	4.718E-10	2.293E-10	1.359E-10	5.591E-11	2.481E-11	1.911E-11	9.679E-12	5.893E-12
NNE	1.270E-08	3.140E-09	9.381E-10	4.601E-10	2.751E-10	1.114E-10	3.457E-11	1.550E-11	9.624E-12	6.870E-12
NE	1.290E-08	2.867E-09	7.862E-10	3.667E-10	2.129E-10	8.502E-11	2.620E-11	1.172E-11	7.521E-12	5.654E-12
ENE	7.437E-09	1.706E-09	4.715E-10	2.224E-10	1.304E-10	5.291E-11	1.676E-11	7.868E-12	5.402E-12	4.281E-12
E	6.473E-09	1.508E-09	4.188E-10	1.986E-10	1.170E-10	4.779E-11	1.527E-11	7.101E-12	4.428E-12	3.024E-12
ESE	7.167E-09	1.667E-09	4.617E-10	2.188E-10	1.289E-10	5.264E-11	1.683E-11	7.851E-12	4.940E-12	3.494E-12
SE	5.963E-09	1.385E-09	3.820E-10	1.808E-10	1.066E-10	4.362E-11	1.401E-11	6.603E-12	4.409E-12	3.474E-12
SSE	5.653E-09	1.296E-09	3.578E-10	1.687E-10	9.898E-11	4.018E-11	1.283E-11	7.249E-12	1.092E-11	9.262E-12
S	4.733E-09	1.064E-09	2.934E-10	1.375E-10	8.009E-11	3.211E-11	1.000E-11	4.564E-12	3.373E-12	4.316E-12
SSW	3.969E-09	8.896E-10	2.457E-10	1.150E-10	6.696E-11	2.683E-11	8.325E-12	3.780E-12	2.482E-12	2.112E-12
SW	5.198E-09	1.517E-09	5.065E-10	2.558E-10	1.532E-10	6.263E-11	1.939E-11	8.435E-12	5.017E-12	3.457E-12
WSW	5.899E-09	1.596E-09	5.009E-10	2.470E-10	1.495E-10	6.109E-11	1.860E-11	8.684E-12	6.645E-12	4.605E-12
W	7.679E-09	1.977E-09	5.859E-10	2.805E-10	1.648E-10	6.631E-11	2.523E-11	1.382E-11	7.464E-12	4.634E-12
WNW	8.539E-09	2.144E-09	6.287E-10	3.026E-10	1.789E-10	7.327E-11	3.193E-11	1.671E-11	8.913E-12	5.526E-12
NW	8.045E-09	2.005E-09	5.783E-10	2.785E-10	1.651E-10	6.805E-11	2.616E-11	1.694E-11	8.933E-12	5.365E-12
NNW	6.492E-09	1.578E-09	4.529E-10	2.179E-10	1.300E-10	5.349E-11	2.497E-11	1.525E-11	7.775E-12	4.825E-12

Table 2.7-108 Nearest Residence X/Q and D/Q Factors for Ground-Level Release (Based on 2002-2007 met data)

Sector	No Decay, Undepleted X/Q (sec/m ³)	2.26 Day Decay, Undepleted X/Q (sec/m ³)	8.0 Day Decay, Depleted X/Q (sec/m ³)	D/Q (m ⁻²)
NNE	2.8E-06	2.8E-06	2.4E-06	1.2E-08
NE	3.0E-06	2.9E-06	2.5E-06	1.1E-08
SSE	6.1E-06	6.1E-06	5.4E-06	1.8E-08
SSW	3.5E-06	3.5E-06	3.1E-06	1.3E-08
SW	2.0E-06	2.0E-06	1.8E-06	1.1E-08
WSW	1.0E-06	1.0E-06	8.8E-07	7.3E-09
W	1.7E-06	1.7E-06	1.5E-06	1.2E-08
NW	5.3E-06	5.3E-06	4.8E-06	3.1E-08
NNW	1.5E-06	1.5E-06	1.3E-06	7.0E-09

Table 2.7-109 Nearest Residence X/Q and D/Q Factors for Mixed-Mode Release from the Reactor Building/Fuel Building Stack (Based on 2002-2007 met data)

Sector	No Decay, Undepleted X/Q (sec/m ³)	2.26 Day Decay, Undepleted X/Q (sec/m ³)	8.0 Day Decay, Depleted X/Q (sec/m ³)	D/Q (m ⁻²)
NNE	3.3E-07	3.3E-07	3.0E-07	4.8E-09
NE	3.0E-07	3.0E-07	2.8E-07	5.0E-09
SSE	2.7E-07	2.7E-07	2.5E-07	5.9E-09
SSW	2.2E-07	2.2E-07	2.0E-07	4.1E-09
SW	2.4E-07	2.4E-07	2.3E-07	4.7E-09
WSW	1.8E-07	1.8E-07	1.7E-07	3.7E-09
W	2.7E-07	2.7E-07	2.5E-07	6.0E-09
NW	4.7E-07	4.7E-07	4.4E-07	1.2E-08
NNW	1.6E-07	1.6E-07	1.5E-07	2.9E-09

Table 2.7-110 Nearest Residence X/Q and D/Q Factors for Mixed-Mode Release from the Turbine Building Stack (Based on 2002-2007 met data)

Sector	No Decay, Undepleted X/Q (sec/m ³)	2.26 Day Decay, Undepleted X/Q (sec/m ³)	8.0 Day Decay, Depleted X/Q (sec/m ³)	D/Q (m ⁻²)
NNE	3.1E-07	3.1E-07	2.8E-07	4.5E-09
NE	2.6E-07	2.6E-07	2.4E-07	4.2E-09
SSE	2.7E-07	2.7E-07	2.5E-07	5.3E-09
SSW	2.2E-07	2.2E-07	2.0E-07	3.7E-09
SW	2.1E-07	2.1E-07	1.9E-07	4.0E-09
WSW	1.5E-07	1.5E-07	1.4E-07	3.2E-09
W	2.5E-07	2.5E-07	2.3E-07	5.9E-09
NW	5.1E-07	5.1E-07	4.7E-07	1.2E-08
NNW	1.6E-07	1.6E-07	1.4E-07	2.9E-09

Table 2.7-111 Nearest Garden X/Q and D/Q Factors for Ground-Level Release (Based on 2002-2007 met data)

Sector	No Decay, Undepleted X/Q (sec/m ³)	2.26 Day Decay, Undepleted X/Q (sec/m ³)	8.0 Day Decay, Depleted X/Q (sec/m ³)	D/Q (m ⁻²)
N	4.4E-07	4.3E-07	3.6E-07	1.5E-09
NNE	8.4E-07	8.4E-07	6.9E-07	3.2E-09
NE	8.9E-07	8.8E-07	7.3E-07	3.1E-09
S	1.8E-06	1.8E-06	1.5E-06	5.7E-09
WSW	2.0E-07	2.0E-07	1.7E-07	1.3E-09
W	5.4E-07	5.4E-07	4.6E-07	3.7E-09
NW	5.3E-06	5.3E-06	4.8E-06	3.1E-08
NNW	2.0E-06	2.0E-06	1.7E-06	9.0E-09

Table 2.7-112 Nearest Garden X/Q and D/Q Factors for Mixed-Mode Release from the Reactor Building/Fuel Building Stack (Based on 2002-2007 met data)

	No Decay, Undepleted X/Q	2.26 Day Decay, Undepleted X/Q	8.0 Day Decay, Depleted X/Q	D/Q
Sector	(sec/m ³)	(sec/m³)	(sec/m³)	(m ⁻²)
N	7.4E-08	7.3E-08	6.8E-08	6.0E-10
NNE	1.4E-07	1.4E-07	1.3E-07	1.4E-09
NE	1.4E-07	1.4E-07	1.3E-07	1.6E-09
S	1.4E-07	1.4E-07	1.3E-07	2.1E-09
WSW	6.0E-08	6.0E-08	5.5E-08	8.1E-10
W	1.2E-07	1.2E-07	1.1E-07	2.1E-09
NW	4.7E-07	4.7E-07	4.4E-07	1.2E-08
NNW	1.9E-07	1.9E-07	1.8E-07	3.7E-09

Table 2.7-113 Nearest Garden X/Q and D/Q Factors for Mixed-Mode Release from the Turbine Building Stack (Based on 2002-2007 met data)

Sector	No Decay, Undepleted X/Q (sec/m ³)	2.26 Day Decay, Undepleted X/Q (sec/m ³)	8.0 Day Decay, Depleted X/Q (sec/m ³)	D/Q (m ⁻²)
N	6.2E-08	6.2E-08	5.6E-08	5.9E-10
NNE	1.3E-07	1.3E-07	1.1E-07	1.4E-09
NE	1.2E-07	1.2E-07	1.1E-07	1.4E-09
S	1.4E-07	1.3E-07	1.2E-07	1.9E-09
WSW	5.1E-08	5.1E-08	4.6E-08	7.3E-10
W	1.1E-07	1.1E-07	9.8E-08	2.0E-09
NW	5.0E-07	5.0E-07	4.7E-07	1.1E-08
NNW	1.9E-07	1.9E-07	1.7E-07	3.7E-09

Table 2.7-114 Nearest Sheep X/Q and D/Q Factors for Ground Level Release (Based on 2002-2007 met data)

Sector	No Decay, Undepleted X/Q (sec/m ³)	2.26 Day Decay, Undepleted X/Q (sec/m ³)	8.0 Day Decay, Depleted X/Q (sec/m ³)	D/Q (m ⁻²)
NNE	1.9E-07	1.8E-07	1.4E-07	5.7E-10
NNW	8.1E-08	8.0E-08	6.1E-08	2.6E-10

Table 2.7-115 Nearest Sheep X/Q and D/Q Factors for Mixed-Mode Release from the Reactor Building/Fuel Building Stack (Based on 2002-2007 met data)

Sector	No Decay, Undepleted X/Q (sec/m ³)	2.26 Day Decay, Undepleted X/Q (sec/m ³)	8.0 Day Decay, Depleted X/Q (sec/m ³)	D/Q (m ⁻²)
NNE	4.8E-08	4.7E-08	4.3E-08	2.8E-10
NNW	2.0E-08	2.0E-08	1.8E-08	1.4E-10

Table 2.7-116 Nearest Sheep X/Q and D/Q Factors for Mixed-Mode Release from the Turbine Building Stack (Based on 2002-2007 met data)

Sector	No Decay, Undepleted X/Q (sec/m ³)	2.26 Day Decay, Undepleted X/Q (sec/m ³)	8.0 Day Decay, Depleted X/Q (sec/m ³)	D/Q (m ⁻²)
NNE	4.1E-08	4.0E-08	3.6E-08	2.8E-10
NNW	1.7E-08	1.7E-08	1.5E-08	1.4E-10

Table 2.7-117 Nearest Meat Cow X/Q and D/Q Factors for Ground Level Release (Based on 2002-2007 met data)

Sector	No Decay, Undepleted X/Q (sec/m ³)	2.26 Day Decay, Undepleted X/Q (sec/m ³)	8.0 Day Decay, Depleted X/Q (sec/m ³)	D/Q (m ⁻²)
NNE	1.9E-07	1.8E-07	1.4E-07	5.7E-10
NNW	1.7E-07	1.7E-07	1.4E-07	6.4E-10

Table 2.7-118 Nearest Meat Cow X/Q and D/Q Factors for Mixed-Mode Release from the Reactor Building/Fuel Building Stack (Based on 2002-2007 met data)

Sector	No Decay, Undepleted X/Q (sec/m ³)	2.26 Day Decay, Undepleted X/Q (sec/m ³)	8.0 Day Decay, Depleted X/Q (sec/m ³)	D/Q (m ⁻²)
NNE	4.8E-08	4.7E-08	4.3E-08	2.8E-10
NNW	3.6E-08	3.6E-08	3.3E-08	3.1E-10

Table 2.7-119 Nearest Meat Cow X/Q and D/Q Factors for Mixed-Mode Release from the Turbine Building Stack (Based on 2002-2007 met data)

Sector	No Decay, Undepleted X/Q (sec/m ³)	2.26 Day Decay, Undepleted X/Q (sec/m ³)	8.0 Day Decay, Depleted X/Q (sec/m ³)	D/Q (m ⁻²)
NNE	4.1E-08	4.0E-08	3.6E-08	2.8E-10
NNW	3.1E-08	3.1E-08	2.7E-08	3.1E-10

Table 2.7-120 Site Boundary X/Q and D/Q Factors for Ground-Level Release (Based on 1985-1989 met data)

Sector	No Decay, Undepleted X/Q (sec/m ³)	2.26 Day Decay, Undepleted X/Q (sec/m ³)	8.0 Day Decay, Depleted X/Q (sec/m ³)	D/Q (m ⁻²)
N	9.50E-06	9.50E-06	8.60E-06	4.00E-08
NNE	6.10E-06	6.00E-06	5.40E-06	2.70E-08
NE	2.60E-06	2.60E-06	2.20E-06	1.20E-08
SSE	1.10E-05	1.10E-05	9.90E-06	3.50E-08
S	7.20E-06	7.20E-06	6.50E-06	2.40E-08
SSW	4.00E-06	4.00E-06	3.60E-06	1.70E-08
sw	2.40E-06	2.30E-06	2.10E-06	1.80E-08
wsw	2.40E-06	2.40E-06	2.10E-06	1.60E-08
W	5.50E-06	5.50E-06	5.00E-06	3.20E-08
WNW	8.90E-06	8.90E-06	8.10E-06	4.40E-08
NW	1.00E-05	1.00E-05	9.50E-06	4.90E-08
NNW	9.60E-06	9.60E-06	8.80E-06	4.00E-08

Table 2.7-121 Site Boundary X/Q and D/Q Factors for Mixed-Mode Release from the Reactor Building/Fuel Building Stack (Based on 1985-1989 met data)

Sector	No Decay, Undepleted X/Q (sec/m ³)	2.26 Day Decay, Undepleted X/Q (sec/m ³)	8.0 Day Decay, Depleted X/Q (sec/m ³)	D/Q (m ⁻²)
N	7.20E-07	7.20E-07	6.60E-07	1.10E-08
NNE	6.70E-07	6.70E-07	6.10E-07	9.80E-09
NE	3.50E-07	3.50E-07	3.20E-07	5.40E-09
SSE	5.20E-07	5.20E-07	4.80E-07	1.00E-08
S	4.20E-07	4.20E-07	3.80E-07	7.00E-09
ssw	2.80E-07	2.80E-07	2.60E-07	5.60E-09
sw	3.80E-07	3.80E-07	3.60E-07	8.40E-09
wsw	3.30E-07	3.30E-07	3.00E-07	6.90E-09
W	5.60E-07	5.60E-07	5.20E-07	1.20E-08
WNW	7.80E-07	7.80E-07	7.30E-07	1.50E-08
NW	8.70E-07	8.70E-07	8.10E-07	1.50E-08
NNW	7.10E-07	7.10E-07	6.60E-07	1.00E-08

Table 2.7-122 Site Boundary X/Q and D/Q Factors for Mixed-Mode Release from the Turbine Building Stack (Based on 1985-1989 met data)

Sector	No Decay, Undepleted X/Q (sec/m ³)	2.26 Day Decay, Undepleted X/Q (sec/m ³)	8.0 Day Decay, Depleted X/Q (sec/m ³)	D/Q (m ⁻²)
N	8.10E-07	8.10E-07	7.40E-07	9.90E-09
NNE	7.20E-07	7.10E-07	6.40E-07	9.20E-09
NE	3.30E-07	3.30E-07	3.00E-07	4.70E-09
SSE	5.80E-07	5.80E-07	5.30E-07	8.50E-09
S	4.80E-07	4.80E-07	4.40E-07	6.00E-09
ssw	2.90E-07	2.90E-07	2.60E-07	4.70E-09
sw	3.40E-07	3.40E-07	3.10E-07	7.50E-09
wsw	3.10E-07	3.10E-07	2.80E-07	5.90E-09
W	6.20E-07	6.20E-07	5.70E-07	1.10E-08
WNW	8.60E-07	8.60E-07	8.00E-07	1.40E-08
NW	9.60E-07	9.60E-07	8.90E-07	1.40E-08
NNW	8.30E-07	8.30E-07	7.60E-07	9.40E-09

Table 2.7-123 Nearest Residence X/Q and D/Q Factors for Ground-Level Release (Based on 1985-1989 met data)

Sector	No Decay, Undepleted X/Q (sec/m ³)	2.26 Day Decay, Undepleted X/Q (sec/m ³)	8.0 Day Decay, Depleted X/Q (sec/m ³)	D/Q (m ⁻²)
NNE	2.50E-06	2.50E-06	2.20E-06	1.10E-08
NE	2.20E-06	2.20E-06	1.90E-06	1.00E-08
SSE	6.00E-06	5.90E-06	5.30E-06	1.90E-08
SSW	2.40E-06	2.40E-06	2.20E-06	1.10E-08
sw	1.70E-06	1.70E-06	1.50E-06	1.30E-08
wsw	9.10E-07	9.10E-07	8.00E-07	6.10E-09
W	1.70E-06	1.70E-06	1.50E-06	1.10E-08
NW	7.00E-06	7.00E-06	6.30E-06	3.40E-08
NNW	1.60E-06	1.60E-06	1.40E-06	7.00E-09

Table 2.7-124 Nearest Residence X/Q and D/Q Factors for Mixed-Mode Release from the Reactor Building/Fuel Building Stack (Based on 1985-1989 met data)

Sector	No Decay, Undepleted X/Q (sec/m ³)	2.26 Day Decay, Undepleted X/Q (sec/m ³)	8.0 Day Decay, Depleted X/Q (sec/m ³)	D/Q (m ⁻²)
NNE	3.60E-07	3.60E-07	3.30E-07	4.50E-09
NE	3.20E-07	3.20E-07	2.90E-07	4.60E-09
SSE	3.60E-07	3.60E-07	3.30E-07	6.50E-09
SSW	2.10E-07	2.10E-07	2.00E-07	3.90E-09
sw	3.20E-07	3.20E-07	3.00E-07	6.60E-09
wsw	1.80E-07	1.80E-07	1.70E-07	3.20E-09
W	2.80E-07	2.80E-07	2.60E-07	4.90E-09
NW	6.80E-07	6.80E-07	6.30E-07	1.20E-08
NNW	2.40E-07	2.40E-07	2.20E-07	2.80E-09

Table 2.7-125 Nearest Residence X/Q and D/Q Factors for Mixed-Mode Release from the Turbine Building Stack (Based on 1985-1989 met data)

Sector	No Decay, Undepleted X/Q (sec/m ³)	2.26 Day Decay, Undepleted X/Q (sec/m ³)	8.0 Day Decay, Depleted X/Q (sec/m ³)	D/Q (m ⁻²)
NNE	3.60E-07	3.60E-07	3.20E-07	4.10E-09
NE	2.90E-07	2.90E-07	2.60E-07	4.10E-09
SSE	3.70E-07	3.70E-07	3.40E-07	5.60E-09
SSW	2.00E-07	2.00E-07	1.90E-07	3.40E-09
sw	2.80E-07	2.80E-07	2.50E-07	5.90E-09
wsw	1.60E-07	1.60E-07	1.40E-07	2.80E-09
w	2.70E-07	2.70E-07	2.40E-07	4.90E-09
NW	7.20E-07	7.20E-07	6.60E-07	1.10E-08
NNW	2.20E-07	2.20E-07	2.00E-07	2.50E-09

Table 2.7-126 Nearest Garden X/Q and D/Q Factors for Ground-Level Release (Based on 1985-1989 met data)

Sector	No Decay, Undepleted X/Q (sec/m ³)	2.26 Day Decay, Undepleted X/Q (sec/m ³)	8.0 Day Decay, Depleted X/Q (sec/m ³)	D/Q (m ⁻²)
N	4.30E-07	4.30E-07	3.50E-07	1.70E-09
NNE	7.50E-07	7.40E-07	6.20E-07	3.00E-09
NE	6.60E-07	6.50E-07	5.40E-07	2.80E-09
S	1.50E-06	1.50E-06	1.30E-06	5.30E-09
wsw	1.80E-07	1.80E-07	1.50E-07	1.10E-09
W	5.40E-07	5.30E-07	4.60E-07	3.20E-09
NW	7.00E-06	7.00E-06	6.30E-06	3.40E-08
NNW	2.10E-06	2.10E-06	1.80E-06	9.00E-09

Table 2.7-127 Nearest Garden X/Q and D/Q Factors for Mixed-Mode Release from the Reactor Building/Fuel Building Stack (Based on 1985-1989 met data)

Sector	No Decay, Undepleted X/Q (sec/m ³)	2.26 Day Decay, Undepleted X/Q (sec/m ³)	8.0 Day Decay, Depleted X/Q (sec/m ³)	D/Q (m ⁻²)
N	9.80E-08	9.80E-08	9.00E-08	7.50E-10
NNE	1.50E-07	1.50E-07	1.40E-07	1.40E-09
NE	1.40E-07	1.40E-07	1.30E-07	1.40E-09
S	1.50E-07	1.50E-07	1.40E-07	2.00E-09
wsw	5.60E-08	5.60E-08	5.10E-08	7.20E-10
W	1.30E-07	1.20E-07	1.20E-07	1.80E-09
NW	6.80E-07	6.80E-07	6.30E-07	1.20E-08
NNW	2.80E-07	2.80E-07	2.60E-07	3.50E-09

Table 2.7-128 Nearest Garden X/Q and D/Q Factors for Mixed-Mode Release from the Turbine Building Stack (Based on 1985-1989 met data)

Sector	No Decay, Undepleted X/Q (sec/m ³)	2.26 Day Decay, Undepleted X/Q (sec/m ³)	8.0 Day Decay, Depleted X/Q (sec/m ³)	D/Q (m ⁻²)
N	8.60E-08	8.60E-08	7.70E-08	7.20E-10
NNE	1.40E-07	1.40E-07	1.20E-07	1.30E-09
NE	1.20E-07	1.20E-07	1.10E-07	1.30E-09
S	1.50E-07	1.50E-07	1.30E-07	1.70E-09
wsw	4.90E-08	4.90E-08	4.40E-08	6.50E-10
W	1.10E-07	1.10E-07	1.00E-07	1.70E-09
NW	7.10E-07	7.10E-07	6.50E-07	1.10E-08
NNW	2.70E-07	2.60E-07	2.40E-07	3.10E-09

Table 2.7-129 Nearest Sheep X/Q and D/Q Factors for Ground Level Release (Based on 1985-1989 met data)

Sector	No Decay, Undepleted X/Q (sec/m ³)	2.26 Day Decay, Undepleted X/Q (sec/m ³)	8.0 Day Decay, Depleted X/Q (sec/m ³)	D/Q (m ⁻²)
NNE	1.60E-07	1.60E-07	1.20E-07	5.30E-10
NNW	8.40E-08	8.20E-08	6.30E-08	2.70E-10

Table 2.7-130 Nearest Sheep X/Q and D/Q Factors for Mixed-Mode Release from the Reactor Building/Fuel Building Stack (Based on 1985-1989 met data)

Sector	No Decay, Undepleted X/Q (sec/m ³)	2.26 Day Decay, Undepleted X/Q (sec/m ³)	8.0 Day Decay, Depleted X/Q (sec/m ³)	D/Q (m ⁻²)
NNE	4.80E-08	4.80E-08	4.30E-08	2.70E-10
NNW	2.60E-08	2.50E-08	2.30E-08	1.50E-10

Table 2.7-131 Nearest Sheep X/Q and D/Q Factors for Mixed-Mode Release from the Turbine Building Stack (Based on 1985-1989 met data)

Sector	No Decay, Undepleted X/Q (sec/m ³)	2.26 Day Decay, Undepleted X/Q (sec/m ³)	8.0 Day Decay, Depleted X/Q (sec/m ³)	D/Q (m ⁻²)
NNE	4.30E-08	4.30E-08	3.80E-08	2.70E-10
NNW	2.30E-08	2.30E-08	2.00E-08	1.50E-10

Table 2.7-132 Nearest Goat X/Q and D/Q Factors for Ground Level Release (Based on 1985-1989 met data)

Sector	No Decay, Undepleted X/Q (sec/m ³)	2.26 Day Decay, Undepleted X/Q (sec/m ³)	8.0 Day Decay, Depleted X/Q (sec/m ³)	D/Q (m ⁻²)
WNW	3.00E-07	3.00E-07	2.40E-07	1.40E-09
NNW	1.70E-07	1.70E-07	1.40E-07	6.20E-10

Table 2.7-133 Nearest Goat X/Q and D/Q Factors for Mixed-Mode Release from the Reactor Building/Fuel Building Stack (Based on 1985-1989 met data)

Sector	No Decay, Undepleted X/Q (sec/m ³)	2.26 Day Decay, Undepleted X/Q (sec/m ³)	8.0 Day Decay, Depleted X/Q (sec/m ³)	D/Q (m ⁻²)
WNW	7.70E-08	7.70E-08	7.00E-08	8.10E-10
NNW	4.70E-08	4.60E-08	4.20E-08	3.30E-10

Table 2.7-134 Nearest Goat X/Q and D/Q Factors for Mixed-Mode Release from the Turbine Building Stack (Based on 1985-1989 met data)

Sector	No Decay, Undepleted X/Q (sec/m ³)	2.26 Day Decay, Undepleted X/Q (sec/m ³)	8.0 Day Decay, Depleted X/Q (sec/m ³)	D/Q (m ⁻²)
WNW	6.90E-08	6.90E-08	6.10E-08	7.70E-10
NNW	4.20E-08	4.20E-08	3.70E-08	3.20E-10

Table 2.7-135 Nearest Meat Cow X/Q and D/Q Factors for Ground Level Release (Based on 1985-1989 met data)

Sector	No Decay, Undepleted X/Q (sec/m ³)	2.26 Day Decay, Undepleted X/Q (sec/m ³)	8.0 Day Decay, Depleted X/Q (sec/m ³)	D/Q (m ⁻²)
NNE	1.60E-07	1.60E-07	1.20E-07	5.30E-10
NNW	1.80E-07	1.80E-07	1.40E-07	6.40E-10

Table 2.7-136 Nearest Meat Cow X/Q and D/Q Factors for Mixed-Mode Release from the Reactor Building/Fuel Building Stack (Based on 1985-1989 met data)

Sector	No Decay, Undepleted X/Q (sec/m ³)	2.26 Day Decay, Undepleted X/Q (sec/m ³)	8.0 Day Decay, Depleted X/Q (sec/m ³)	D/Q (m ⁻²)
NNE	4.80E-08	4.80E-08	4.30E-08	2.70E-10
NNW	4.80E-08	4.70E-08	4.30E-08	3.40E-10

Table 2.7-137 Nearest Meat Cow X/Q and D/Q Factors for Mixed-Mode Release from the Turbine Building Stack (Based on 1985-1989 met data)

Sector	No Decay, Undepleted X/Q (sec/m ³)	2.26 Day Decay, Undepleted X/Q (sec/m ³)	8.0 Day Decay, Depleted X/Q (sec/m ³)	D/Q (m ⁻²)
NNE	4.30E-08	4.30E-08	3.80E-08	2.70E-10
NNW	4.30E-08	4.20E-08	3.80E-08	3.30E-10

Table 2.7-138 Nearest Milk Cow X/Q and D/Q Factors for Ground Level Release (Based on 1985-1989 met data)

Sector	No Decay, Undepleted X/Q (sec/m ³)	2.26 Day Decay, Undepleted X/Q (sec/m ³)	8.0 Day Decay, Depleted X/Q (sec/m ³)	D/Q (m ⁻²)
WNW	3.40E-07	3.30E-07	2.80E-07	1.60E-09
NW	1.30E-07	1.30E-07	1.00E-07	5.20E-10

Table 2.7-139 Nearest Milk Cow X/Q and D/Q Factors for Mixed-Mode Release from the Reactor Building/Fuel Building Stack (Based on 1985-1989 met data)

Sector	No Decay, Undepleted X/Q (sec/m ³)	2.26 Day Decay, Undepleted X/Q (sec/m ³)	8.0 Day Decay, Depleted X/Q (sec/m ³)	D/Q (m ⁻²)
WNW	8.40E-08	8.40E-08	7.70E-08	9.10E-10
NW	3.90E-08	3.90E-08	3.50E-08	3.20E-10

Table 2.7-140 Nearest Milk Cow X/Q and D/Q Factors for Mixed-Mode Release from the Turbine Building Stack (Based on 1985-1989 met data)

Sector	No Decay, Undepleted X/Q (sec/m ³)	2.26 Day Decay, Undepleted X/Q (sec/m ³)	8.0 Day Decay, Depleted X/Q (sec/m ³)	D/Q (m ⁻²)
WNW	7.60E-08	7.50E-08	6.80E-08	8.70E-10
NW	3.50E-08	3.50E-08	3.10E-08	3.10E-10

Table 2.7-141 Annual Average X/Q Values (no Decay, Undepleted) for Ground Level Release (Based on 1985-1989 met data) (Sheet 1 of 3)

						(,						
Distance in Miles from the Site													
Sector	0.25	0.5	0.75	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5		
N	4.021E-05	1.175E-05	5.764E-06	2.745E-06	1.028E-06	5.364E-07	3.321E-07	2.280E-07	1.677E-07	1.295E-07	1.037E-07		
NNE	6.006E-05	1.753E-05	8.587E-06	4.091E-06	1.535E-06	8.031E-07	4.984E-07	3.429E-07	2.527E-07	1.954E-07	1.568E-07		
NE	8.615E-05	2.517E-05	1.225E-05	5.855E-06	2.217E-06	1.171E-06	7.330E-07	5.081E-07	3.768E-07	2.932E-07	2.365E-07		
ENE	9.240E-05	2.698E-05	1.312E-05	6.270E-06	2.378E-06	1.257E-06	7.879E-07	5.466E-07	4.058E-07	3.160E-07	2.550E-07		
E	9.619E-05	2.802E-05	1.359E-05	6.498E-06	2.467E-06	1.306E-06	8.192E-07	5.689E-07	4.227E-07	3.294E-07	2.660E-07		
ESE	9.470E-05	2.751E-05	1.330E-05	6.365E-06	2.420E-06	1.284E-06	8.065E-07	5.609E-07	4.172E-07	3.255E-07	2.631E-07		
SE	7.865E-05	2.288E-05	1.108E-05	5.299E-06	2.014E-06	1.067E-06	6.699E-07	4.656E-07	3.462E-07	2.699E-07	2.181E-07		
SSE	7.415E-05	2.158E-05	1.044E-05	4.999E-06	1.902E-06	1.009E-06	6.339E-07	4.409E-07	3.280E-07	2.559E-07	2.069E-07		
S	5.040E-05	1.469E-05	7.117E-06	3.407E-06	1.297E-06	6.879E-07	4.322E-07	3.006E-07	2.236E-07	1.745E-07	1.410E-07		
SSW	2.980E-05	8.719E-06	4.249E-06	2.030E-06	7.686E-07	4.059E-07	2.540E-07	1.760E-07	1.305E-07	1.016E-07	8.188E-08		
SW	2.008E-05	5.786E-06	2.832E-06	1.344E-06	4.978E-07	2.570E-07	1.576E-07	1.073E-07	7.830E-08	6.005E-08	4.779E-08		
WSW	1.497E-05	4.322E-06	2.112E-06	1.003E-06	3.728E-07	1.932E-07	1.188E-07	8.113E-08	5.936E-08	4.564E-08	3.640E-08		
W	1.858E-05	5.364E-06	2.619E-06	1.245E-06	4.642E-07	2.415E-07	1.491E-07	1.021E-07	7.493E-08	5.776E-08	4.618E-08		
WNW	2.835E-05	8.196E-06	3.995E-06	1.901E-06	7.111E-07	3.711E-07	2.298E-07	1.578E-07	1.161E-07	8.969E-08	7.186E-08		
NW	3.307E-05	9.562E-06	4.656E-06	2.216E-06	8.295E-07	4.331E-07	2.684E-07	1.844E-07	1.357E-07	1.049E-07	8.405E-08		
NNW	3.047E-05	8.888E-06	4.350E-06	2.074E-06	7.779E-07	4.067E-07	2.522E-07	1.734E-07	1.276E-07	9.867E-08	7.909E-08		

Table 2.7-141 Annual Average X/Q Values (no Decay, Undepleted) for Ground Level Release (Based on 1985-1989 met data) (Sheet 2 of 3)

Distance in Miles from the Site												
Sector	5	7.5	10	15.0	20	25.0	30	35.0	40	45.0	50	
N	8.544E-08	4.325E-08	2.779E-08	1.579E-08	1.064E-08	7.853E-09	6.137E-09	4.987E-09	4.170E-09	3.563E-09	3.097E-09	
NNE	1.293E-07	6.584E-08	4.248E-08	2.429E-08	1.644E-08	1.218E-08	9.542E-09	7.773E-09	6.513E-09	5.576E-09	4.854E-09	
NE	1.960E-07	1.017E-07	6.658E-08	3.882E-08	2.663E-08	1.993E-08	1.575E-08	1.292E-08	1.089E-08	9.375E-09	8.200E-09	
ENE	2.115E-07	1.100E-07	7.212E-08	4.216E-08	2.897E-08	2.171E-08	1.718E-08	1.411E-08	1.190E-08	1.025E-08	8.973E-09	
E	2.208E-07	1.152E-07	7.566E-08	4.437E-08	3.056E-08	2.295E-08	1.818E-08	1.495E-08	1.263E-08	1.089E-08	9.542E-09	
ESE	2.186E-07	1.145E-07	7.544E-08	4.443E-08	3.070E-08	2.311E-08	1.835E-08	1.512E-08	1.279E-08	1.104E-08	9.686E-09	
SE	1.811E-07	9.470E-08	6.231E-08	3.663E-08	2.527E-08	1.900E-08	1.507E-08	1.241E-08	1.049E-08	9.051E-09	7.935E-09	
SSE	1.719E-07	8.999E-08	5.928E-08	3.489E-08	2.410E-08	1.813E-08	1.439E-08	1.185E-08	1.003E-08	8.655E-09	7.591E-09	
S	1.172E-07	6.129E-08	4.035E-08	2.373E-08	1.637E-08	1.231E-08	9.763E-09	8.036E-09	6.794E-09	5.862E-09	5.139E-09	
SSW	6.787E-08	3.520E-08	2.302E-08	1.341E-08	9.193E-09	6.877E-09	5.433E-09	4.455E-09	3.755E-09	3.231E-09	2.825E-09	
SW	3.915E-08	1.941E-08	1.228E-08	6.823E-09	4.531E-09	3.307E-09	2.561E-09	2.065E-09	1.715E-09	1.457E-09	1.260E-09	
WSW	2.989E-08	1.493E-08	9.506E-09	5.335E-09	3.569E-09	2.620E-09	2.039E-09	1.651E-09	1.376E-09	1.173E-09	1.017E-09	
W	3.799E-08	1.915E-08	1.227E-08	6.948E-09	4.678E-09	3.451E-09	2.697E-09	2.191E-09	1.832E-09	1.566E-09	1.361E-09	
WNW	5.923E-08	3.006E-08	1.937E-08	1.106E-08	7.487E-09	5.549E-09	4.351E-09	3.547E-09	2.974E-09	2.548E-09	2.220E-09	
NW	6.930E-08	3.522E-08	2.271E-08	1.299E-08	8.807E-09	6.534E-09	5.128E-09	4.184E-09	3.510E-09	3.009E-09	2.622E-09	
NNW	6.520E-08	3.310E-08	2.132E-08	1.216E-08	8.217E-09	6.079E-09	4.760E-09	3.875E-09	3.245E-09	2.777E-09	2.416E-09	

Table 2.7-141 Annual Average X/Q Values (no Decay, Undepleted) for Ground Level Release (Based on 1985-1989 met data) (Sheet 3 of 3)

Segment Boundaries in Miles from the Site													
Sector	.5-1	1-2	2-3	3-4	4-5	5-10	10-20	20-30	30-40	40-50			
N	5.752E-06	1.191E-06	3.449E-07	1.704E-07	1.046E-07	4.575E-08	1.617E-08	7.910E-09	5.004E-09	3.570E-09			
NNE	8.576E-06	1.778E-06	5.175E-07	2.567E-07	1.581E-07	6.957E-08	2.484E-08	1.226E-08	7.799E-09	5.586E-09			
NE	1.228E-05	2.561E-06	7.599E-07	3.825E-07	2.383E-07	1.071E-07	3.957E-08	2.004E-08	1.296E-08	9.390E-09			
ENE	1.315E-05	2.745E-06	8.166E-07	4.118E-07	2.569E-07	1.157E-07	4.295E-08	2.183E-08	1.414E-08	1.027E-08			
E	1.364E-05	2.847E-06	8.489E-07	4.289E-07	2.680E-07	1.211E-07	4.519E-08	2.307E-08	1.499E-08	1.091E-08			
ESE	1.338E-05	2.792E-06	8.355E-07	4.233E-07	2.651E-07	1.203E-07	4.522E-08	2.323E-08	1.515E-08	1.106E-08			
SE	1.113E-05	2.323E-06	6.941E-07	3.513E-07	2.198E-07	9.951E-08	3.729E-08	1.910E-08	1.244E-08	9.064E-09			
SSE	1.050E-05	2.193E-06	6.567E-07	3.328E-07	2.085E-07	9.454E-08	3.551E-08	1.823E-08	1.188E-08	8.668E-09			
S	7.150E-06	1.495E-06	4.478E-07	2.269E-07	1.421E-07	6.440E-08	2.415E-08	1.237E-08	8.057E-09	5.870E-09			
SSW	4.256E-06	8.877E-07	2.633E-07	1.325E-07	8.252E-08	3.704E-08	1.367E-08	6.917E-09	4.468E-09	3.236E-09			
SW	2.827E-06	5.788E-07	1.640E-07	7.963E-08	4.823E-08	2.063E-08	7.016E-09	3.335E-09	2.073E-09	1.460E-09			
WSW	2.110E-06	4.331E-07	1.236E-07	6.035E-08	3.673E-08	1.584E-08	5.477E-09	2.640E-09	1.657E-09	1.175E-09			
W	2.618E-06	5.386E-07	1.549E-07	7.615E-08	4.658E-08	2.028E-08	7.121E-09	3.477E-09	2.199E-09	1.569E-09			
WNW	3.998E-06	8.243E-07	2.387E-07	1.180E-07	7.246E-08	3.179E-08	1.132E-08	5.587E-09	3.559E-09	2.553E-09			
NW	4.662E-06	9.615E-07	2.787E-07	1.379E-07	8.476E-08	3.724E-08	1.329E-08	6.578E-09	4.197E-09	3.014E-09			
NNW	4.347E-06	9.010E-07	2.619E-07	1.297E-07	7.975E-08	3.500E-08	1.244E-08	6.122E-09	3.888E-09	2.782E-09			

Table 2.7-142 Annual Average X/Q Values (2.26 Day Decay, Undepleted) for Ground Level Release (Based on 1985-1989 met data) (Sheet 1 of 3)

Distance in Miles from the Site												
Sector	0.25	0.5	0.75	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	
N	4.017E-05	1.172E-05	5.746E-06	2.734E-06	1.021E-06	5.319E-07	3.286E-07	2.252E-07	1.652E-07	1.273E-07	1.018E-07	
NNE	6.000E-05	1.750E-05	8.564E-06	4.076E-06	1.527E-06	7.974E-07	4.940E-07	3.393E-07	2.495E-07	1.927E-07	1.543E-07	
NE	8.607E-05	2.513E-05	1.222E-05	5.833E-06	2.205E-06	1.163E-06	7.263E-07	5.025E-07	3.721E-07	2.890E-07	2.326E-07	
ENE	9.231E-05	2.692E-05	1.308E-05	6.246E-06	2.364E-06	1.248E-06	7.803E-07	5.403E-07	4.003E-07	3.111E-07	2.505E-07	
E	9.608E-05	2.796E-05	1.354E-05	6.468E-06	2.450E-06	1.294E-06	8.097E-07	5.610E-07	4.158E-07	3.233E-07	2.605E-07	
ESE	9.460E-05	2.745E-05	1.326E-05	6.337E-06	2.405E-06	1.272E-06	7.976E-07	5.535E-07	4.108E-07	3.198E-07	2.579E-07	
SE	7.855E-05	2.282E-05	1.104E-05	5.274E-06	1.999E-06	1.057E-06	6.618E-07	4.589E-07	3.403E-07	2.647E-07	2.134E-07	
SSE	7.407E-05	2.153E-05	1.041E-05	4.976E-06	1.889E-06	9.999E-07	6.268E-07	4.350E-07	3.229E-07	2.513E-07	2.027E-07	
S	5.034E-05	1.465E-05	7.093E-06	3.391E-06	1.288E-06	6.817E-07	4.273E-07	2.965E-07	2.201E-07	1.713E-07	1.382E-07	
SSW	2.977E-05	8.700E-06	4.235E-06	2.021E-06	7.636E-07	4.024E-07	2.512E-07	1.737E-07	1.285E-07	9.979E-08	8.028E-08	
SW	2.006E-05	5.776E-06	2.825E-06	1.340E-06	4.953E-07	2.553E-07	1.563E-07	1.062E-07	7.738E-08	5.924E-08	4.706E-08	
WSW	1.496E-05	4.314E-06	2.107E-06	1.000E-06	3.709E-07	1.918E-07	1.178E-07	8.029E-08	5.864E-08	4.500E-08	3.583E-08	
W	1.856E-05	5.354E-06	2.611E-06	1.240E-06	4.616E-07	2.396E-07	1.477E-07	1.009E-07	7.393E-08	5.687E-08	4.538E-08	
WNW	2.832E-05	8.181E-06	3.983E-06	1.893E-06	7.071E-07	3.683E-07	2.276E-07	1.560E-07	1.146E-07	8.834E-08	7.064E-08	
NW	3.304E-05	9.546E-06	4.644E-06	2.209E-06	8.253E-07	4.302E-07	2.661E-07	1.825E-07	1.341E-07	1.034E-07	8.276E-08	
NNW	3.044E-05	8.871E-06	4.337E-06	2.066E-06	7.733E-07	4.035E-07	2.497E-07	1.713E-07	1.259E-07	9.709E-08	7.767E-08	

Table 2.7-142 Annual Average X/Q Values (2.26 Day Decay, Undepleted) for Ground Level Release (Based on 1985-1989 met data) (Sheet 2 of 3)

	Distance in Miles from the Site													
Sector	5	7.5	10	15.0	20	25.0	30	35.0	40	45.0	50			
N	8.365E-08	4.190E-08	2.664E-08	1.483E-08	9.793E-09	7.088E-09	5.434E-09	4.334E-09	3.558E-09	2.986E-09	2.550E-09			
NNE	1.270E-07	6.410E-08	4.100E-08	2.303E-08	1.532E-08	1.115E-08	8.596E-09	6.886E-09	5.676E-09	4.780E-09	4.095E-09			
NE	1.925E-07	9.899E-08	6.420E-08	3.677E-08	2.478E-08	1.823E-08	1.416E-08	1.142E-08	9.470E-09	8.017E-09	6.899E-09			
ENE	2.074E-07	1.068E-07	6.936E-08	3.977E-08	2.681E-08	1.971E-08	1.531E-08	1.234E-08	1.022E-08	8.646E-09	7.433E-09			
E	2.157E-07	1.112E-07	7.223E-08	4.140E-08	2.789E-08	2.048E-08	1.589E-08	1.279E-08	1.058E-08	8.935E-09	7.671E-09			
ESE	2.138E-07	1.108E-07	7.219E-08	4.161E-08	2.815E-08	2.075E-08	1.614E-08	1.303E-08	1.081E-08	9.147E-09	7.869E-09			
SE	1.768E-07	9.130E-08	5.936E-08	3.407E-08	2.297E-08	1.688E-08	1.309E-08	1.054E-08	8.724E-09	7.369E-09	6.327E-09			
SSE	1.680E-07	8.698E-08	5.665E-08	3.261E-08	2.202E-08	1.621E-08	1.260E-08	1.016E-08	8.411E-09	7.111E-09	6.109E-09			
S	1.145E-07	5.923E-08	3.855E-08	2.217E-08	1.497E-08	1.101E-08	8.557E-09	6.900E-09	5.717E-09	4.836E-09	4.158E-09			
SSW	6.639E-08	3.405E-08	2.203E-08	1.256E-08	8.423E-09	6.168E-09	4.772E-09	3.834E-09	3.166E-09	2.670E-09	2.290E-09			
SW	3.849E-08	1.890E-08	1.185E-08	6.471E-09	4.223E-09	3.029E-09	2.306E-09	1.829E-09	1.494E-09	1.249E-09	1.063E-09			
WSW	2.936E-08	1.454E-08	9.169E-09	5.052E-09	3.318E-09	2.392E-09	1.828E-09	1.455E-09	1.192E-09	9.985E-10	8.514E-10			
W	3.726E-08	1.859E-08	1.179E-08	6.549E-09	4.325E-09	3.132E-09	2.402E-09	1.918E-09	1.576E-09	1.324E-09	1.132E-09			
WNW	5.811E-08	2.922E-08	1.864E-08	1.045E-08	6.947E-09	5.058E-09	3.898E-09	3.124E-09	2.576E-09	2.171E-09	1.861E-09			
NW	6.811E-08	3.432E-08	2.194E-08	1.233E-08	8.220E-09	5.997E-09	4.630E-09	3.717E-09	3.070E-09	2.590E-09	2.223E-09			
NNW	6.390E-08	3.212E-08	2.048E-08	1.145E-08	7.589E-09	5.509E-09	4.234E-09	3.385E-09	2.785E-09	2.342E-09	2.003E-09			

Table 2.7-142 Annual Average X/Q Values (2.26 Day Decay, Undepleted) for Ground Level Release (Based on 1985-1989 met data) (Sheet 3 of 3)

	10 Q (coom) / 10 22511 Cognition												
Segment Boundaries in Miles from the Site													
Sector	.5-1	1-2	2-3	3-4	4-5	5-10	10-20	20-30	30-40	40-50			
N	5.735E-06	1.184E-06	3.414E-07	1.679E-07	1.026E-07	4.440E-08	1.522E-08	7.147E-09	4.352E-09	2.994E-09			
NNE	8.555E-06	1.769E-06	5.130E-07	2.535E-07	1.556E-07	6.782E-08	2.360E-08	1.124E-08	6.914E-09	4.792E-09			
NE	1.225E-05	2.548E-06	7.531E-07	3.777E-07	2.344E-07	1.043E-07	3.754E-08	1.835E-08	1.146E-08	8.033E-09			
ENE	1.312E-05	2.730E-06	8.089E-07	4.063E-07	2.525E-07	1.125E-07	4.058E-08	1.984E-08	1.238E-08	8.664E-09			
E	1.360E-05	2.829E-06	8.394E-07	4.221E-07	2.625E-07	1.171E-07	4.224E-08	2.062E-08	1.283E-08	8.954E-09			
ESE	1.334E-05	2.775E-06	8.266E-07	4.169E-07	2.599E-07	1.165E-07	4.242E-08	2.088E-08	1.307E-08	9.165E-09			
SE	1.110E-05	2.308E-06	6.860E-07	3.454E-07	2.150E-07	9.610E-08	3.476E-08	1.699E-08	1.058E-08	7.385E-09			
SSE	1.047E-05	2.180E-06	6.496E-07	3.276E-07	2.043E-07	9.151E-08	3.325E-08	1.632E-08	1.019E-08	7.125E-09			
S	7.128E-06	1.486E-06	4.428E-07	2.234E-07	1.392E-07	6.232E-08	2.261E-08	1.109E-08	6.923E-09	4.846E-09			
SSW	4.243E-06	8.825E-07	2.605E-07	1.305E-07	8.091E-08	3.589E-08	1.282E-08	6.211E-09	3.848E-09	2.676E-09			
SW	2.821E-06	5.763E-07	1.627E-07	7.870E-08	4.749E-08	2.012E-08	6.667E-09	3.058E-09	1.838E-09	1.253E-09			
WSW	2.106E-06	4.311E-07	1.225E-07	5.963E-08	3.615E-08	1.545E-08	5.196E-09	2.413E-09	1.461E-09	1.001E-09			
W	2.611E-06	5.359E-07	1.535E-07	7.515E-08	4.578E-08	1.972E-08	6.726E-09	3.158E-09	1.926E-09	1.328E-09			
WNW	3.987E-06	8.201E-07	2.365E-07	1.164E-07	7.125E-08	3.094E-08	1.071E-08	5.097E-09	3.136E-09	2.176E-09			
NW	4.651E-06	9.571E-07	2.764E-07	1.362E-07	8.346E-08	3.633E-08	1.264E-08	6.043E-09	3.731E-09	2.597E-09			
NNW	4.335E-06	8.962E-07	2.593E-07	1.279E-07	7.832E-08	3.401E-08	1.174E-08	5.554E-09	3.399E-09	2.348E-09			

Table 2.7-143 Annual Average X/Q Values (8.0 Day Decay, Undepleted) for Ground Level Release (Based on 1985-1989 met data) (Sheet 1 of 3)

Distance in Miles from the Site													
Sector	0.25	0.5	0.75	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5		
N	3.805E-05	1.072E-05	5.132E-06	2.400E-06	8.712E-07	4.431E-07	2.682E-07	1.805E-07	1.303E-07	9.894E-08	7.799E-08		
NNE	5.682E-05	1.600E-05	7.646E-06	3.577E-06	1.302E-06	6.637E-07	4.027E-07	2.716E-07	1.965E-07	1.494E-07	1.180E-07		
NE	8.151E-05	2.298E-05	1.091E-05	5.119E-06	1.880E-06	9.677E-07	5.922E-07	4.023E-07	2.930E-07	2.242E-07	1.780E-07		
ENE	8.742E-05	2.462E-05	1.168E-05	5.482E-06	2.016E-06	1.039E-06	6.364E-07	4.328E-07	3.154E-07	2.415E-07	1.918E-07		
Е	9.100E-05	2.557E-05	1.210E-05	5.681E-06	2.091E-06	1.079E-06	6.614E-07	4.501E-07	3.283E-07	2.515E-07	1.999E-07		
ESE	8.960E-05	2.511E-05	1.185E-05	5.565E-06	2.052E-06	1.060E-06	6.512E-07	4.438E-07	3.241E-07	2.486E-07	1.978E-07		
SE	7.441E-05	2.088E-05	9.863E-06	4.632E-06	1.707E-06	8.812E-07	5.408E-07	3.683E-07	2.688E-07	2.061E-07	1.639E-07		
SSE	7.016E-05	1.969E-05	9.299E-06	4.370E-06	1.612E-06	8.333E-07	5.119E-07	3.489E-07	2.548E-07	1.955E-07	1.555E-07		
S	4.768E-05	1.340E-05	6.336E-06	2.978E-06	1.099E-06	5.682E-07	3.490E-07	2.379E-07	1.737E-07	1.332E-07	1.060E-07		
SSW	2.819E-05	7.957E-06	3.783E-06	1.775E-06	6.516E-07	3.353E-07	2.051E-07	1.393E-07	1.014E-07	7.757E-08	6.156E-08		
SW	1.900E-05	5.281E-06	2.522E-06	1.175E-06	4.222E-07	2.124E-07	1.274E-07	8.498E-08	6.089E-08	4.592E-08	3.597E-08		
WSW	1.417E-05	3.945E-06	1.881E-06	8.775E-07	3.162E-07	1.596E-07	9.602E-08	6.425E-08	4.616E-08	3.490E-08	2.740E-08		
W	1.758E-05	4.896E-06	2.332E-06	1.088E-06	3.936E-07	1.995E-07	1.204E-07	8.084E-08	5.824E-08	4.414E-08	3.474E-08		
WNW	2.682E-05	7.481E-06	3.557E-06	1.662E-06	6.029E-07	3.066E-07	1.856E-07	1.249E-07	9.025E-08	6.856E-08	5.407E-08		
NW	3.129E-05	8.728E-06	4.146E-06	1.938E-06	7.035E-07	3.580E-07	2.169E-07	1.460E-07	1.055E-07	8.019E-08	6.327E-08		
NNW	2.883E-05	8.112E-06	3.873E-06	1.814E-06	6.595E-07	3.360E-07	2.037E-07	1.372E-07	9.920E-08	7.539E-08	5.949E-08		

Table 2.7-143 Annual Average X/Q Values (8.0 Day Decay, Undepleted) for Ground Level Release (Based on 1985-1989 met data) (Sheet 2 of 3)

Aumula Avoidago And (coom)												
Distance in Miles from the Site												
Sector	5	7.5	10	15.0	20	25.0	30	35.0	40	45.0	50	
N	6.330E-08	3.021E-08	1.844E-08	9.640E-09	6.063E-09	4.214E-09	3.120E-09	2.413E-09	1.926E-09	1.575E-09	1.313E-09	
NNE	9.591E-08	4.606E-08	2.825E-08	1.487E-08	9.406E-09	6.567E-09	4.881E-09	3.787E-09	3.032E-09	2.487E-09	2.079E-09	
NE	1.454E-07	7.116E-08	4.427E-08	2.377E-08	1.523E-08	1.074E-08	8.052E-09	6.291E-09	5.068E-09	4.179E-09	3.509E-09	
ENE	1.568E-07	7.691E-08	4.791E-08	2.578E-08	1.654E-08	1.168E-08	8.760E-09	6.849E-09	5.520E-09	4.553E-09	3.825E-09	
E	1.635E-07	8.039E-08	5.016E-08	2.704E-08	1.738E-08	1.228E-08	9.215E-09	7.206E-09	5.809E-09	4.791E-09	4.025E-09	
ESE	1.619E-07	7.996E-08	5.005E-08	2.711E-08	1.748E-08	1.239E-08	9.320E-09	7.305E-09	5.899E-09	4.875E-09	4.102E-09	
SE	1.341E-07	6.606E-08	4.128E-08	2.230E-08	1.435E-08	1.015E-08	7.624E-09	5.966E-09	4.812E-09	3.971E-09	3.337E-09	
SSE	1.273E-07	6.283E-08	3.931E-08	2.128E-08	1.371E-08	9.711E-09	7.300E-09	5.718E-09	4.616E-09	3.812E-09	3.206E-09	
S	8.676E-08	4.279E-08	2.675E-08	1.447E-08	9.312E-09	6.590E-09	4.951E-09	3.876E-09	3.127E-09	2.581E-09	2.170E-09	
SSW	5.027E-08	2.458E-08	1.527E-08	8.182E-09	5.234E-09	3.686E-09	2.757E-09	2.151E-09	1.730E-09	1.424E-09	1.195E-09	
SW	2.904E-08	1.358E-08	8.164E-09	4.178E-09	2.592E-09	1.783E-09	1.308E-09	1.005E-09	7.972E-10	6.486E-10	5.383E-10	
WSW	2.216E-08	1.045E-08	6.320E-09	3.265E-09	2.040E-09	1.411E-09	1.041E-09	8.025E-10	6.390E-10	5.215E-10	4.340E-10	
W	2.816E-08	1.338E-08	8.147E-09	4.246E-09	2.669E-09	1.854E-09	1.373E-09	1.062E-09	8.476E-10	6.935E-10	5.783E-10	
WNW	4.391E-08	2.102E-08	1.287E-08	6.763E-09	4.277E-09	2.987E-09	2.220E-09	1.723E-09	1.380E-09	1.133E-09	9.471E-10	
NW	5.140E-08	2.465E-08	1.511E-08	7.957E-09	5.041E-09	3.525E-09	2.624E-09	2.039E-09	1.635E-09	1.342E-09	1.123E-09	
NNW	4.832E-08	2.314E-08	1.416E-08	7.431E-09	4.688E-09	3.267E-09	2.424E-09	1.878E-09	1.502E-09	1.230E-09	1.027E-09	

Table 2.7-143 Annual Average X/Q Values (8.0 Day Decay, Undepleted) for Ground Level Release (Based on 1985-1989 met data) (Sheet 3 of 3)

	The (Coolin) to Later Cog. Hone												
Segment Boundaries in Miles from the Site													
Sector	.5-1	1-2	2-3	3-4	4-5	5-10	10-20	20-30	30-40	40-50			
N	5.160E-06	1.021E-06	2.798E-07	1.327E-07	7.876E-08	3.233E-08	1.001E-08	4.270E-09	2.429E-09	1.582E-09			
NNE	7.695E-06	1.524E-06	4.198E-07	2.000E-07	1.191E-07	4.922E-08	1.542E-08	6.650E-09	3.812E-09	2.497E-09			
NE	1.102E-05	2.194E-06	6.164E-07	2.980E-07	1.796E-07	7.570E-08	2.453E-08	1.086E-08	6.328E-09	4.194E-09			
ENE	1.180E-05	2.352E-06	6.623E-07	3.208E-07	1.936E-07	8.177E-08	2.659E-08	1.181E-08	6.889E-09	4.570E-09			
E	1.224E-05	2.439E-06	6.881E-07	3.338E-07	2.017E-07	8.542E-08	2.788E-08	1.241E-08	7.248E-09	4.809E-09			
ESE	1.200E-05	2.392E-06	6.774E-07	3.296E-07	1.996E-07	8.488E-08	2.793E-08	1.252E-08	7.345E-09	4.892E-09			
SE	9.986E-06	1.990E-06	5.626E-07	2.733E-07	1.653E-07	7.016E-08	2.299E-08	1.026E-08	6.000E-09	3.985E-09			
SSE	9.417E-06	1.879E-06	5.324E-07	2.591E-07	1.569E-07	6.670E-08	2.192E-08	9.813E-09	5.750E-09	3.826E-09			
S	6.414E-06	1.281E-06	3.630E-07	1.766E-07	1.070E-07	4.543E-08	1.491E-08	6.660E-09	3.898E-09	2.591E-09			
SSW	3.818E-06	7.606E-07	2.135E-07	1.032E-07	6.212E-08	2.615E-08	8.447E-09	3.727E-09	2.164E-09	1.430E-09			
SW	2.537E-06	4.963E-07	1.331E-07	6.207E-08	3.635E-08	1.461E-08	4.359E-09	1.809E-09	1.012E-09	6.518E-10			
WSW	1.894E-06	3.713E-07	1.003E-07	4.704E-08	2.768E-08	1.122E-08	3.400E-09	1.431E-09	8.083E-10	5.239E-10			
W	2.349E-06	4.617E-07	1.257E-07	5.933E-08	3.509E-08	1.434E-08	4.412E-09	1.879E-09	1.069E-09	6.965E-10			
WNW	3.587E-06	7.065E-07	1.936E-07	9.190E-08	5.460E-08	2.248E-08	7.015E-09	3.024E-09	1.735E-09	1.137E-09			
NW	4.183E-06	8.242E-07	2.262E-07	1.074E-07	6.389E-08	2.635E-08	8.250E-09	3.569E-09	2.052E-09	1.348E-09			
NNW	3.900E-06	7.722E-07	2.124E-07	1.010E-07	6.007E-08	2.474E-08	7.707E-09	3.308E-09	1.891E-09	1.236E-09			

Table 2.7-144 Annual Average D/Q Values for Ground Level Release (Based on 1985-1989 met data) (Sheet 1 of 3)

Distance in Miles from the Site												
Sector	0.25	0.5	0.75	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	
N	1.437E-07	4.859E-08	2.495E-08	1.186E-08	4.261E-09	2.113E-09	1.244E-09	8.146E-10	5.732E-10	4.248E-10	3.274E-10	
NNE	2.233E-07	7.550E-08	3.877E-08	1.843E-08	6.620E-09	3.283E-09	1.933E-09	1.266E-09	8.907E-10	6.601E-10	5.087E-10	
NE	2.287E-07	7.732E-08	3.970E-08	1.887E-08	6.779E-09	3.362E-09	1.980E-09	1.296E-09	9.121E-10	6.760E-10	5.209E-10	
ENE	2.089E-07	7.064E-08	3.627E-08	1.724E-08	6.194E-09	3.072E-09	1.809E-09	1.184E-09	8.333E-10	6.175E-10	4.759E-10	
E	1.918E-07	6.487E-08	3.331E-08	1.584E-08	5.688E-09	2.821E-09	1.661E-09	1.088E-09	7.653E-10	5.672E-10	4.371E-10	
ESE	1.839E-07	6.218E-08	3.192E-08	1.518E-08	5.452E-09	2.704E-09	1.592E-09	1.042E-09	7.335E-10	5.436E-10	4.189E-10	
SE	1.554E-07	5.256E-08	2.698E-08	1.283E-08	4.608E-09	2.285E-09	1.346E-09	8.811E-10	6.200E-10	4.595E-10	3.541E-10	
SSE	1.428E-07	4.828E-08	2.479E-08	1.178E-08	4.233E-09	2.099E-09	1.236E-09	8.094E-10	5.695E-10	4.221E-10	3.253E-10	
S	1.002E-07	3.387E-08	1.739E-08	8.267E-09	2.970E-09	1.473E-09	8.672E-10	5.678E-10	3.995E-10	2.961E-10	2.282E-10	
SSW	7.383E-08	2.497E-08	1.282E-08	6.094E-09	2.189E-09	1.086E-09	6.392E-10	4.185E-10	2.945E-10	2.183E-10	1.682E-10	
SW	1.228E-07	4.152E-08	2.132E-08	1.014E-08	3.641E-09	1.806E-09	1.063E-09	6.961E-10	4.898E-10	3.630E-10	2.797E-10	
WSW	8.181E-08	2.766E-08	1.420E-08	6.753E-09	2.426E-09	1.203E-09	7.083E-10	4.638E-10	3.263E-10	2.419E-10	1.864E-10	
W	9.348E-08	3.161E-08	1.623E-08	7.716E-09	2.772E-09	1.375E-09	8.093E-10	5.300E-10	3.729E-10	2.764E-10	2.130E-10	
WNW	1.214E-07	4.106E-08	2.108E-08	1.002E-08	3.601E-09	1.786E-09	1.051E-09	6.884E-10	4.844E-10	3.590E-10	2.767E-10	
NW	1.354E-07	4.578E-08	2.351E-08	1.118E-08	4.014E-09	1.991E-09	1.172E-09	7.675E-10	5.401E-10	4.002E-10	3.084E-10	
NNW	1.087E-07	3.677E-08	1.888E-08	8.975E-09	3.224E-09	1.599E-09	9.414E-10	6.164E-10	4.338E-10	3.215E-10	2.477E-10	

Table 2.7-144 Annual Average D/Q Values for Ground Level Release (Based on 1985-1989 met data) (Sheet 2 of 3)

Distance in Miles from the Site												
Sector	5	7.5	10	15.0	20	25.0	30	35.0	40	45.0	50	
N	2.601E-10	1.155E-10	6.998E-11	3.537E-11	2.141E-11	1.435E-11	1.029E-11	7.724E-12	6.005E-12	4.797E-12	3.916E-12	
NNE	4.041E-10	1.795E-10	1.087E-10	5.496E-11	3.327E-11	2.230E-11	1.598E-11	1.200E-11	9.331E-12	7.454E-12	6.084E-12	
NE	4.138E-10	1.838E-10	1.114E-10	5.629E-11	3.407E-11	2.284E-11	1.637E-11	1.229E-11	9.556E-12	7.633E-12	6.230E-12	
ENE	3.781E-10	1.680E-10	1.017E-10	5.142E-11	3.112E-11	2.087E-11	1.495E-11	1.123E-11	8.730E-12	6.974E-12	5.692E-12	
E	3.472E-10	1.542E-10	9.344E-11	4.723E-11	2.858E-11	1.917E-11	1.373E-11	1.031E-11	8.018E-12	6.405E-12	5.228E-12	
ESE	3.328E-10	1.478E-10	8.955E-11	4.526E-11	2.740E-11	1.837E-11	1.316E-11	9.883E-12	7.684E-12	6.138E-12	5.010E-12	
SE	2.813E-10	1.250E-10	7.570E-11	3.826E-11	2.316E-11	1.553E-11	1.113E-11	8.354E-12	6.495E-12	5.189E-12	4.235E-12	
SSE	2.584E-10	1.148E-10	6.953E-11	3.515E-11	2.127E-11	1.426E-11	1.022E-11	7.674E-12	5.967E-12	4.766E-12	3.890E-12	
S	1.813E-10	8.053E-11	4.878E-11	2.466E-11	1.492E-11	1.001E-11	7.169E-12	5.383E-12	4.186E-12	3.344E-12	2.729E-12	
SSW	1.336E-10	5.936E-11	3.596E-11	1.817E-11	1.100E-11	7.375E-12	5.285E-12	3.968E-12	3.085E-12	2.465E-12	2.012E-12	
SW	2.222E-10	9.873E-11	5.981E-11	3.023E-11	1.830E-11	1.227E-11	8.790E-12	6.600E-12	5.132E-12	4.099E-12	3.346E-12	
WSW	1.481E-10	6.578E-11	3.984E-11	2.014E-11	1.219E-11	8.173E-12	5.856E-12	4.397E-12	3.419E-12	2.731E-12	2.229E-12	
W	1.692E-10	7.516E-11	4.553E-11	2.301E-11	1.393E-11	9.338E-12	6.691E-12	5.025E-12	3.907E-12	3.121E-12	2.547E-12	
WNW	2.198E-10	9.764E-11	5.914E-11	2.989E-11	1.809E-11	1.213E-11	8.693E-12	6.527E-12	5.075E-12	4.054E-12	3.309E-12	
NW	2.450E-10	1.089E-10	6.594E-11	3.333E-11	2.017E-11	1.353E-11	9.691E-12	7.277E-12	5.658E-12	4.520E-12	3.689E-12	
NNW	1.968E-10	8.742E-11	5.296E-11	2.677E-11	1.620E-11	1.086E-11	7.783E-12	5.845E-12	4.544E-12	3.630E-12	2.963E-12	

Table 2.7-144 Annual Average D/Q Values for Ground Level Release (Based on 1985-1989 met data) (Sheet 3 of 3)

Segment Boundaries in Miles from the Site											
Sector	.5-1	1-2	2-3	3-4	4-5	5-10	10-20	20-30	30-40	40-50	
N	2.439E-08	4.995E-09	1.304E-09	5.857E-10	3.313E-10	1.274E-10	3.686E-11	1.461E-11	7.801E-12	4.829E-12	
NNE	3.789E-08	7.761E-09	2.026E-09	9.100E-10	5.148E-10	1.980E-10	5.727E-11	2.270E-11	1.212E-11	7.503E-12	
NE	3.880E-08	7.948E-09	2.075E-09	9.319E-10	5.272E-10	2.027E-10	5.865E-11	2.325E-11	1.241E-11	7.683E-12	
ENE	3.545E-08	7.261E-09	1.896E-09	8.514E-10	4.816E-10	1.852E-10	5.358E-11	2.124E-11	1.134E-11	7.019E-12	
E	3.256E-08	6.669E-09	1.741E-09	7.819E-10	4.423E-10	1.701E-10	4.921E-11	1.950E-11	1.042E-11	6.447E-12	
ESE	3.120E-08	6.391E-09	1.669E-09	7.494E-10	4.239E-10	1.630E-10	4.716E-11	1.869E-11	9.982E-12	6.178E-12	
SE	2.638E-08	5.403E-09	1.410E-09	6.334E-10	3.583E-10	1.378E-10	3.987E-11	1.580E-11	8.438E-12	5.223E-12	
SSE	2.423E-08	4.963E-09	1.296E-09	5.819E-10	3.292E-10	1.266E-10	3.662E-11	1.451E-11	7.751E-12	4.798E-12	
S	1.700E-08	3.482E-09	9.089E-10	4.082E-10	2.309E-10	8.881E-11	2.569E-11	1.018E-11	5.438E-12	3.366E-12	
SSW	1.253E-08	2.566E-09	6.700E-10	3.009E-10	1.702E-10	6.546E-11	1.894E-11	7.506E-12	4.008E-12	2.481E-12	
SW	2.084E-08	4.269E-09	1.114E-09	5.005E-10	2.831E-10	1.089E-10	3.150E-11	1.248E-11	6.666E-12	4.126E-12	
WSW	1.388E-08	2.844E-09	7.424E-10	3.334E-10	1.886E-10	7.254E-11	2.098E-11	8.317E-12	4.441E-12	2.749E-12	
W	1.586E-08	3.250E-09	8.483E-10	3.810E-10	2.155E-10	8.289E-11	2.398E-11	9.504E-12	5.075E-12	3.141E-12	
WNW	2.061E-08	4.221E-09	1.102E-09	4.949E-10	2.800E-10	1.077E-10	3.115E-11	1.235E-11	6.593E-12	4.081E-12	
NW	2.298E-08	4.706E-09	1.229E-09	5.518E-10	3.122E-10	1.200E-10	3.473E-11	1.376E-11	7.350E-12	4.549E-12	
NNW	1.845E-08	3.780E-09	9.867E-10	4.432E-10	2.507E-10	9.641E-11	2.789E-11	1.105E-11	5.903E-12	3.654E-12	

Table 2.7-145 Annual Average X/Q Values (no Decay, Undepleted) for Mixed-Mode Release from the Reactor Building/Fuel Building Stack (Based on 1985-1989 met data) (Sheet 1 of 3)

				Di	stance in Mile	es from the S	ite				
Sector	0.25	0.5	0.75	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5
N	2.181E-06	8.309E-07	5.494E-07	3.436E-07	1.817E-07	1.156E-07	8.120E-08	6.078E-08	4.761E-08	3.857E-08	3.224E-08
NNE	3.826E-06	1.402E-06	8.670E-07	5.074E-07	2.560E-07	1.608E-07	1.125E-07	8.426E-08	6.758E-08	5.596E-08	4.680E-08
NE	5.537E-06	1.893E-06	1.089E-06	5.947E-07	2.742E-07	1.665E-07	1.157E-07	8.693E-08	6.878E-08	5.643E-08	4.757E-08
ENE	4.315E-06	1.509E-06	8.787E-07	4.863E-07	2.308E-07	1.432E-07	1.010E-07	7.676E-08	6.125E-08	5.059E-08	4.287E-08
E	3.637E-06	1.284E-06	7.471E-07	4.131E-07	1.966E-07	1.228E-07	8.720E-08	6.671E-08	5.356E-08	4.450E-08	3.791E-08
ESE	3.687E-06	1.289E-06	7.375E-07	4.022E-07	1.882E-07	1.158E-07	8.131E-08	6.165E-08	4.917E-08	4.065E-08	3.450E-08
SE	3.068E-06	1.082E-06	6.246E-07	3.430E-07	1.617E-07	1.001E-07	7.049E-08	5.357E-08	4.280E-08	3.541E-08	3.007E-08
SSE	3.002E-06	1.038E-06	5.959E-07	3.271E-07	1.549E-07	9.586E-08	6.738E-08	5.104E-08	4.063E-08	3.351E-08	2.838E-08
S	2.535E-06	8.430E-07	4.731E-07	2.552E-07	1.180E-07	7.221E-08	5.049E-08	3.817E-08	3.038E-08	2.506E-08	2.124E-08
SSW	1.685E-06	5.886E-07	3.439E-07	1.908E-07	9.013E-08	5.559E-08	3.897E-08	2.944E-08	2.337E-08	1.921E-08	1.620E-08
SW	1.485E-06	6.187E-07	4.325E-07	2.710E-07	1.370E-07	8.347E-08	5.662E-08	4.123E-08	3.157E-08	2.510E-08	2.055E-08
WSW	1.095E-06	4.500E-07	3.107E-07	1.929E-07	9.623E-08	5.838E-08	3.956E-08	2.881E-08	2.209E-08	1.758E-08	1.456E-08
W	1.419E-06	5.546E-07	3.699E-07	2.275E-07	1.128E-07	6.845E-08	4.646E-08	3.391E-08	2.605E-08	2.078E-08	1.706E-08
WNW	1.957E-06	7.444E-07	4.875E-07	2.986E-07	1.487E-07	9.108E-08	6.237E-08	4.588E-08	3.549E-08	2.849E-08	2.353E-08
NW	2.141E-06	8.304E-07	5.508E-07	3.389E-07	1.696E-07	1.040E-07	7.118E-08	5.235E-08	4.048E-08	3.248E-08	2.693E-08
NNW	1.815E-06	6.758E-07	4.463E-07	2.772E-07	1.432E-07	8.973E-08	6.235E-08	4.635E-08	3.613E-08	2.918E-08	2.444E-08

Table 2.7-145 Annual Average X/Q Values (no Decay, Undepleted) for Mixed-Mode Release from the Reactor Building/Fuel Building Stack (Based on 1985-1989 met data) (Sheet 2 of 3)

							,				
				Di	stance in Mil	es from the S	ite				
Sector	5	7.5	10	15.0	20	25.0	30	35.0	40	45.0	50
N	2.752E-08	1.614E-08	1.135E-08	7.253E-09	5.258E-09	4.042E-09	3.201E-09	2.603E-09	2.175E-09	1.856E-09	1.612E-09
NNE	3.997E-08	2.253E-08	1.539E-08	9.406E-09	6.634E-09	5.060E-09	4.057E-09	3.368E-09	2.868E-09	2.490E-09	2.195E-09
NE	4.097E-08	2.458E-08	1.761E-08	1.152E-08	8.522E-09	6.745E-09	5.575E-09	4.749E-09	4.136E-09	3.663E-09	3.288E-09
ENE	3.709E-08	2.265E-08	1.641E-08	1.091E-08	8.171E-09	6.533E-09	5.448E-09	4.677E-09	4.102E-09	3.657E-09	3.301E-09
E	3.296E-08	2.019E-08	1.461E-08	9.626E-09	7.119E-09	5.613E-09	4.613E-09	3.903E-09	3.374E-09	2.966E-09	2.641E-09
ESE	2.992E-08	1.836E-08	1.338E-08	8.965E-09	6.741E-09	5.398E-09	4.499E-09	3.857E-09	3.376E-09	3.002E-09	2.704E-09
SE	2.608E-08	1.605E-08	1.172E-08	7.876E-09	5.944E-09	4.779E-09	4.002E-09	3.448E-09	3.032E-09	2.710E-09	2.452E-09
SSE	2.454E-08	1.561E-08	1.185E-08	8.679E-09	7.102E-09	6.124E-09	5.421E-09	4.860E-09	4.377E-09	3.943E-09	3.543E-09
S	1.838E-08	1.148E-08	8.534E-09	5.961E-09	4.665E-09	3.879E-09	3.347E-09	2.957E-09	2.655E-09	2.411E-09	2.205E-09
SSW	1.396E-08	8.444E-09	6.082E-09	4.016E-09	2.998E-09	2.394E-09	1.995E-09	1.712E-09	1.501E-09	1.337E-09	1.205E-09
SW	1.722E-08	9.213E-09	6.062E-09	3.516E-09	2.393E-09	1.775E-09	1.392E-09	1.134E-09	9.500E-10	8.129E-10	7.074E-10
WSW	1.233E-08	6.668E-09	4.436E-09	2.628E-09	1.824E-09	1.377E-09	1.096E-09	9.032E-10	7.633E-10	6.569E-10	5.729E-10
W	1.435E-08	8.097E-09	5.579E-09	3.499E-09	2.513E-09	1.908E-09	1.498E-09	1.217E-09	1.017E-09	8.681E-10	7.540E-10
WNW	1.988E-08	1.168E-08	8.323E-09	5.467E-09	3.973E-09	2.987E-09	2.343E-09	1.909E-09	1.600E-09	1.370E-09	1.192E-09
NW	2.285E-08	1.314E-08	9.218E-09	5.953E-09	4.387E-09	3.421E-09	2.736E-09	2.238E-09	1.877E-09	1.607E-09	1.400E-09
NNW	2.091E-08	1.238E-08	8.847E-09	5.815E-09	4.248E-09	3.216E-09	2.520E-09	2.049E-09	1.714E-09	1.465E-09	1.274E-09

Table 2.7-145 Annual Average X/Q Values (no Decay, Undepleted) for Mixed-Mode Release from the Reactor Building/Fuel Building Stack (Based on 1985-1989 met data) (Sheet 3 of 3)

					(000/ / . 0		•			
				Segmen	t Boundaries	in Miles from	n the Site			
Sector	.5-1	1-2	2-3	3-4	4-5	5-10	10-20	20-30	30-40	40-50
N	5.205E-07	1.883E-07	8.222E-08	4.793E-08	3.237E-08	1.654E-08	7.277E-09	4.030E-09	2.611E-09	1.860E-09
NNE	8.261E-07	2.695E-07	1.141E-07	6.792E-08	4.699E-08	2.323E-08	9.504E-09	5.078E-09	3.374E-09	2.493E-09
NE	1.048E-06	2.976E-07	1.177E-07	6.926E-08	4.775E-08	2.513E-08	1.154E-08	6.751E-09	4.752E-09	3.664E-09
ENE	8.444E-07	2.487E-07	1.026E-07	6.162E-08	4.302E-08	2.309E-08	1.092E-08	6.536E-09	4.678E-09	3.657E-09
Е	7.181E-07	2.119E-07	8.849E-08	5.387E-08	3.803E-08	2.055E-08	9.619E-09	5.615E-09	3.904E-09	2.967E-09
ESE	7.112E-07	2.036E-07	8.266E-08	4.949E-08	3.463E-08	1.871E-08	8.957E-09	5.397E-09	3.857E-09	3.003E-09
SE	6.011E-07	1.746E-07	7.161E-08	4.306E-08	3.017E-08	1.635E-08	7.871E-09	4.779E-09	3.448E-09	2.710E-09
SSE	5.747E-07	1.669E-07	6.844E-08	4.089E-08	2.848E-08	1.592E-08	8.684E-09	6.104E-09	4.836E-09	3.924E-09
S	4.585E-07	1.282E-07	5.135E-08	3.058E-08	2.131E-08	1.170E-08	5.957E-09	3.876E-09	2.954E-09	2.407E-09
SSW	3.302E-07	9.716E-08	3.959E-08	2.352E-08	1.626E-08	8.620E-09	4.023E-09	2.395E-09	1.712E-09	1.336E-09
SW	4.021E-07	1.430E-07	5.762E-08	3.187E-08	2.066E-08	9.592E-09	3.582E-09	1.787E-09	1.138E-09	8.144E-10
WSW	2.893E-07	1.009E-07	4.028E-08	2.229E-08	1.463E-08	6.933E-09	2.672E-09	1.383E-09	9.049E-10	6.573E-10
W	3.476E-07	1.186E-07	4.730E-08	2.629E-08	1.716E-08	8.366E-09	3.523E-09	1.905E-09	1.221E-09	8.699E-10
WNW	4.606E-07	1.564E-07	6.343E-08	3.579E-08	2.365E-08	1.201E-08	5.438E-09	2.992E-09	1.915E-09	1.372E-09
NW	5.188E-07	1.781E-07	7.240E-08	4.082E-08	2.706E-08	1.356E-08	5.983E-09	3.405E-09	2.243E-09	1.610E-09
NNW	4.222E-07	1.492E-07	6.325E-08	3.640E-08	2.454E-08	1.270E-08	5.793E-09	3.213E-09	2.056E-09	1.468E-09

Table 2.7-146 Annual Average X/Q Values (2.26 Day Decay, Undepleted) for Mixed-Mode Release from the Reactor Building/Fuel Building Stack (Based on 1985-1989 met data) (Sheet 1 of 3)

				Di	stance in Mile	es from the S	ite				
Sector	0.25	0.5	0.75	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5
N	2.181E-06	8.302E-07	5.488E-07	3.431E-07	1.813E-07	1.153E-07	8.090E-08	6.050E-08	4.735E-08	3.833E-08	3.201E-08
NNE	3.824E-06	1.401E-06	8.660E-07	5.066E-07	2.555E-07	1.603E-07	1.121E-07	8.390E-08	6.724E-08	5.564E-08	4.649E-08
NE	5.535E-06	1.892E-06	1.088E-06	5.939E-07	2.736E-07	1.661E-07	1.153E-07	8.656E-08	6.844E-08	5.611E-08	4.726E-08
ENE	4.313E-06	1.508E-06	8.776E-07	4.855E-07	2.303E-07	1.428E-07	1.006E-07	7.641E-08	6.092E-08	5.028E-08	4.258E-08
E	3.636E-06	1.283E-06	7.461E-07	4.124E-07	1.962E-07	1.224E-07	8.685E-08	6.638E-08	5.326E-08	4.421E-08	3.763E-08
ESE	3.686E-06	1.288E-06	7.366E-07	4.015E-07	1.877E-07	1.155E-07	8.098E-08	6.135E-08	4.889E-08	4.038E-08	3.425E-08
SE	3.066E-06	1.081E-06	6.238E-07	3.425E-07	1.613E-07	9.973E-08	7.020E-08	5.331E-08	4.255E-08	3.518E-08	2.985E-08
SSE	3.000E-06	1.037E-06	5.951E-07	3.266E-07	1.545E-07	9.556E-08	6.711E-08	5.080E-08	4.041E-08	3.330E-08	2.817E-08
S	2.534E-06	8.423E-07	4.726E-07	2.548E-07	1.178E-07	7.199E-08	5.030E-08	3.800E-08	3.022E-08	2.491E-08	2.109E-08
SSW	1.684E-06	5.882E-07	3.435E-07	1.906E-07	8.994E-08	5.543E-08	3.883E-08	2.931E-08	2.325E-08	1.909E-08	1.610E-08
SW	1.484E-06	6.183E-07	4.321E-07	2.707E-07	1.367E-07	8.327E-08	5.645E-08	4.108E-08	3.144E-08	2.498E-08	2.043E-08
WSW	1.094E-06	4.497E-07	3.104E-07	1.927E-07	9.606E-08	5.824E-08	3.944E-08	2.871E-08	2.199E-08	1.749E-08	1.447E-08
W	1.418E-06	5.542E-07	3.695E-07	2.272E-07	1.126E-07	6.828E-08	4.631E-08	3.378E-08	2.593E-08	2.067E-08	1.696E-08
WNW	1.957E-06	7.438E-07	4.870E-07	2.982E-07	1.484E-07	9.083E-08	6.215E-08	4.569E-08	3.531E-08	2.832E-08	2.337E-08
NW	2.140E-06	8.298E-07	5.502E-07	3.385E-07	1.693E-07	1.037E-07	7.094E-08	5.213E-08	4.028E-08	3.230E-08	2.676E-08
NNW	1.814E-06	6.753E-07	4.458E-07	2.768E-07	1.429E-07	8.948E-08	6.213E-08	4.615E-08	3.595E-08	2.901E-08	2.428E-08

Table 2.7-146 Annual Average X/Q Values (2.26 Day Decay, Undepleted) for Mixed-Mode Release from the Reactor Building/Fuel Building Stack (Based on 1985-1989 met data) (Sheet 2 of 3)

	Distance in Miles from the Site										
				Di	stance in Mil	es from the S	ite				
Sector	5	7.5	10	15.0	20	25.0	30	35.0	40	45.0	50
N	2.729E-08	1.593E-08	1.115E-08	7.054E-09	5.061E-09	3.850E-09	3.018E-09	2.430E-09	2.011E-09	1.701E-09	1.463E-09
NNE	3.968E-08	2.228E-08	1.516E-08	9.189E-09	6.428E-09	4.862E-09	3.867E-09	3.183E-09	2.689E-09	2.315E-09	2.025E-09
NE	4.067E-08	2.431E-08	1.735E-08	1.126E-08	8.260E-09	6.485E-09	5.317E-09	4.493E-09	3.882E-09	3.410E-09	3.036E-09
ENE	3.681E-08	2.238E-08	1.616E-08	1.066E-08	7.912E-09	6.273E-09	5.186E-09	4.415E-09	3.839E-09	3.393E-09	3.036E-09
E	3.269E-08	1.993E-08	1.436E-08	9.372E-09	6.867E-09	5.364E-09	4.367E-09	3.660E-09	3.134E-09	2.729E-09	2.408E-09
ESE	2.968E-08	1.813E-08	1.315E-08	8.729E-09	6.503E-09	5.158E-09	4.259E-09	3.617E-09	3.137E-09	2.763E-09	2.466E-09
SE	2.586E-08	1.585E-08	1.151E-08	7.668E-09	5.732E-09	4.564E-09	3.785E-09	3.229E-09	2.812E-09	2.488E-09	2.229E-09
SSE	2.435E-08	1.541E-08	1.166E-08	8.454E-09	6.851E-09	5.847E-09	5.122E-09	4.542E-09	4.047E-09	3.607E-09	3.206E-09
S	1.824E-08	1.134E-08	8.397E-09	5.812E-09	4.507E-09	3.711E-09	3.171E-09	2.774E-09	2.465E-09	2.215E-09	2.005E-09
SSW	1.386E-08	8.347E-09	5.988E-09	3.920E-09	2.899E-09	2.294E-09	1.894E-09	1.610E-09	1.397E-09	1.232E-09	1.099E-09
SW	1.711E-08	9.119E-09	5.977E-09	3.439E-09	2.321E-09	1.708E-09	1.328E-09	1.072E-09	8.904E-10	7.553E-10	6.515E-10
WSW	1.224E-08	6.599E-09	4.373E-09	2.569E-09	1.767E-09	1.323E-09	1.043E-09	8.518E-10	7.131E-10	6.080E-10	5.254E-10
W	1.425E-08	8.014E-09	5.499E-09	3.416E-09	2.428E-09	1.823E-09	1.417E-09	1.140E-09	9.434E-10	7.981E-10	6.869E-10
WNW	1.973E-08	1.154E-08	8.192E-09	5.331E-09	3.836E-09	2.855E-09	2.219E-09	1.792E-09	1.488E-09	1.263E-09	1.090E-09
NW	2.268E-08	1.300E-08	9.080E-09	5.816E-09	4.249E-09	3.283E-09	2.602E-09	2.109E-09	1.754E-09	1.490E-09	1.287E-09
NNW	2.075E-08	1.223E-08	8.698E-09	5.661E-09	4.094E-09	3.068E-09	2.381E-09	1.919E-09	1.590E-09	1.347E-09	1.161E-09

Table 2.7-146 Annual Average X/Q Values (2.26 Day Decay, Undepleted) for Mixed-Mode Release from the Reactor Building/Fuel Building Stack (Based on 1985-1989 met data) (Sheet 3 of 3)

	N 5.199E-07 1.879E-07 8.191E-08 4.767E-08 3.214E-08 1.633E-08 7.079E-09 3.841E-09 2.439E-09 1.705E-09												
				Segmen	t Boundaries	in Miles from	n the Site						
Sector	.5-1	1-2	2-3	3-4	4-5	5-10	10-20	20-30	30-40	40-50			
N	5.199E-07	1.879E-07	8.191E-08	4.767E-08	3.214E-08	1.633E-08	7.079E-09	3.841E-09	2.439E-09	1.705E-09			
NNE	8.253E-07	2.690E-07	1.137E-07	6.758E-08	4.668E-08	2.298E-08	9.289E-09	4.881E-09	3.190E-09	2.318E-09			
NE	1.047E-06	2.970E-07	1.173E-07	6.892E-08	4.744E-08	2.485E-08	1.128E-08	6.492E-09	4.496E-09	3.411E-09			
ENE	8.434E-07	2.481E-07	1.022E-07	6.129E-08	4.272E-08	2.282E-08	1.066E-08	6.275E-09	4.416E-09	3.393E-09			
E	7.172E-07	2.114E-07	8.814E-08	5.356E-08	3.775E-08	2.029E-08	9.367E-09	5.366E-09	3.662E-09	2.731E-09			
ESE	7.103E-07	2.031E-07	8.233E-08	4.921E-08	3.437E-08	1.848E-08	8.721E-09	5.157E-09	3.617E-09	2.764E-09			
SE	6.003E-07	1.742E-07	7.132E-08	4.282E-08	2.995E-08	1.615E-08	7.662E-09	4.564E-09	3.229E-09	2.488E-09			
SSE	5.740E-07	1.666E-07	6.817E-08	4.067E-08	2.827E-08	1.573E-08	8.453E-09	5.825E-09	4.519E-09	3.589E-09			
S	4.579E-07	1.279E-07	5.116E-08	3.042E-08	2.117E-08	1.157E-08	5.806E-09	3.707E-09	2.770E-09	2.212E-09			
SSW	3.299E-07	9.696E-08	3.945E-08	2.340E-08	1.616E-08	8.523E-09	3.926E-09	2.295E-09	1.610E-09	1.232E-09			
SW	4.017E-07	1.427E-07	5.745E-08	3.173E-08	2.055E-08	9.498E-09	3.506E-09	1.719E-09	1.076E-09	7.569E-10			
WSW	2.890E-07	1.007E-07	4.016E-08	2.219E-08	1.454E-08	6.864E-09	2.614E-09	1.329E-09	8.535E-10	6.085E-10			
W	3.473E-07	1.184E-07	4.716E-08	2.617E-08	1.706E-08	8.282E-09	3.440E-09	1.822E-09	1.144E-09	7.999E-10			
WNW	4.602E-07	1.561E-07	6.321E-08	3.561E-08	2.349E-08	1.187E-08	5.302E-09	2.862E-09	1.798E-09	1.266E-09			
NW	5.182E-07	1.777E-07	7.215E-08	4.062E-08	2.689E-08	1.341E-08	5.845E-09	3.268E-09	2.115E-09	1.493E-09			
NNW	4.217E-07	1.489E-07	6.303E-08	3.622E-08	2.437E-08	1.255E-08	5.640E-09	3.067E-09	1.926E-09	1.350E-09			

Table 2.7-147 Annual Average X/Q Values (8.0 Day Decay, Depleted) for Mixed-Mode Release from the Reactor Building/Fuel Building Stack (Based on 1985-1989 met data) (Sheet 1 of 3)

				Di	stance in Mile	es from the S	ite				
Sector	0.25	0.5	0.75	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5
N	2.070E-06	7.678E-07	5.048E-07	3.168E-07	1.677E-07	1.065E-07	7.445E-08	5.548E-08	4.326E-08	3.491E-08	2.907E-08
NNE	3.630E-06	1.294E-06	7.908E-07	4.620E-07	2.328E-07	1.458E-07	1.017E-07	7.584E-08	6.072E-08	5.019E-08	4.183E-08
NE	5.244E-06	1.739E-06	9.819E-07	5.312E-07	2.425E-07	1.465E-07	1.015E-07	7.605E-08	6.005E-08	4.917E-08	4.137E-08
ENE	4.087E-06	1.387E-06	7.940E-07	4.361E-07	2.057E-07	1.274E-07	8.978E-08	6.816E-08	5.433E-08	4.484E-08	3.797E-08
Е	3.447E-06	1.183E-06	6.770E-07	3.716E-07	1.758E-07	1.096E-07	7.779E-08	5.950E-08	4.777E-08	3.967E-08	3.379E-08
ESE	3.495E-06	1.188E-06	6.682E-07	3.614E-07	1.677E-07	1.028E-07	7.203E-08	5.453E-08	4.343E-08	3.586E-08	3.041E-08
SE	2.907E-06	9.967E-07	5.659E-07	3.084E-07	1.444E-07	8.907E-08	6.265E-08	4.757E-08	3.796E-08	3.138E-08	2.663E-08
SSE	2.843E-06	9.541E-07	5.382E-07	2.932E-07	1.379E-07	8.513E-08	5.972E-08	4.517E-08	3.591E-08	2.958E-08	2.502E-08
S	2.400E-06	7.726E-07	4.252E-07	2.271E-07	1.040E-07	6.332E-08	4.415E-08	3.332E-08	2.647E-08	2.181E-08	1.845E-08
SSW	1.596E-06	5.404E-07	3.101E-07	1.709E-07	8.022E-08	4.938E-08	3.457E-08	2.609E-08	2.068E-08	1.698E-08	1.431E-08
SW	1.413E-06	5.763E-07	4.023E-07	2.525E-07	1.270E-07	7.680E-08	5.168E-08	3.733E-08	2.838E-08	2.240E-08	1.821E-08
WSW	1.041E-06	4.188E-07	2.886E-07	1.794E-07	8.895E-08	5.354E-08	3.598E-08	2.600E-08	1.979E-08	1.564E-08	1.288E-08
W	1.349E-06	5.151E-07	3.420E-07	2.103E-07	1.036E-07	6.242E-08	4.203E-08	3.045E-08	2.323E-08	1.841E-08	1.502E-08
WNW	1.861E-06	6.910E-07	4.504E-07	2.758E-07	1.366E-07	8.306E-08	5.647E-08	4.127E-08	3.173E-08	2.532E-08	2.079E-08
NW	2.034E-06	7.713E-07	5.096E-07	3.134E-07	1.559E-07	9.487E-08	6.445E-08	4.706E-08	3.615E-08	2.883E-08	2.379E-08
NNW	1.720E-06	6.237E-07	4.101E-07	2.554E-07	1.317E-07	8.212E-08	5.674E-08	4.193E-08	3.251E-08	2.612E-08	2.179E-08

Table 2.7-147 Annual Average X/Q Values (8.0 Day Decay, Depleted) for Mixed-Mode Release from the Reactor Building/Fuel Building Stack (Based on 1985-1989 met data) (Sheet 2 of 3)

	Distance in Miles from the Site										
				Di	stance in Mil	es from the S	ite				
Sector	5	7.5	10	15.0	20	25.0	30	35.0	40	45.0	50
N	2.472E-08	1.433E-08	9.997E-09	6.219E-09	4.263E-09	3.115E-09	2.377E-09	1.870E-09	1.515E-09	1.257E-09	1.063E-09
NNE	3.562E-08	1.980E-08	1.337E-08	8.024E-09	5.578E-09	4.205E-09	3.337E-09	2.744E-09	2.306E-09	1.979E-09	1.721E-09
NE	3.557E-08	2.126E-08	1.516E-08	9.839E-09	7.232E-09	5.695E-09	4.687E-09	3.976E-09	3.433E-09	3.016E-09	2.679E-09
ENE	3.281E-08	2.001E-08	1.446E-08	9.573E-09	7.140E-09	5.691E-09	4.732E-09	4.051E-09	3.526E-09	3.121E-09	2.794E-09
Е	2.936E-08	1.795E-08	1.295E-08	8.477E-09	6.230E-09	4.883E-09	3.991E-09	3.358E-09	2.874E-09	2.505E-09	2.209E-09
ESE	2.635E-08	1.613E-08	1.172E-08	7.811E-09	5.845E-09	4.659E-09	3.868E-09	3.302E-09	2.865E-09	2.529E-09	2.258E-09
SE	2.308E-08	1.418E-08	1.033E-08	6.912E-09	5.195E-09	4.163E-09	3.475E-09	2.983E-09	2.603E-09	2.310E-09	2.073E-09
SSE	2.161E-08	1.378E-08	1.049E-08	7.730E-09	6.349E-09	5.419E-09	4.638E-09	4.009E-09	3.487E-09	3.047E-09	2.674E-09
S	1.594E-08	9.967E-09	7.411E-09	5.182E-09	4.061E-09	3.379E-09	2.908E-09	2.533E-09	2.216E-09	1.957E-09	1.743E-09
SSW	1.231E-08	7.428E-09	5.334E-09	3.504E-09	2.604E-09	2.072E-09	1.718E-09	1.463E-09	1.261E-09	1.098E-09	9.656E-10
SW	1.517E-08	7.907E-09	5.093E-09	2.856E-09	1.892E-09	1.373E-09	1.055E-09	8.406E-10	6.880E-10	5.748E-10	4.879E-10
WSW	1.085E-08	5.727E-09	3.739E-09	2.150E-09	1.450E-09	1.059E-09	8.133E-10	6.474E-10	5.293E-10	4.420E-10	3.753E-10
W	1.256E-08	6.962E-09	4.728E-09	2.848E-09	1.936E-09	1.409E-09	1.066E-09	8.366E-10	6.771E-10	5.614E-10	4.742E-10
WNW	1.748E-08	1.014E-08	7.153E-09	4.502E-09	3.096E-09	2.232E-09	1.687E-09	1.329E-09	1.079E-09	8.976E-10	7.604E-10
NW	2.008E-08	1.138E-08	7.897E-09	4.949E-09	3.456E-09	2.565E-09	1.978E-09	1.565E-09	1.272E-09	1.059E-09	8.972E-10
NNW	1.857E-08	1.087E-08	7.702E-09	4.877E-09	3.360E-09	2.437E-09	1.840E-09	1.447E-09	1.174E-09	9.753E-10	8.254E-10

Table 2.7-147 Annual Average X/Q Values (8.0 Day Decay, Depleted) for Mixed-Mode Release from the Reactor Building/Fuel Building Stack (Based on 1985-1989 met data) (Sheet 3 of 3)

Segment Boundaries in Miles from the Site										
			Segmen	t Boundaries	in Miles from	the Site				
.5-1	1-2	2-3	3-4	4-5	5-10	10-20	20-30	30-40	40-50	
4.797E-07	1.736E-07	7.539E-08	4.357E-08	2.919E-08	1.471E-08	6.189E-09	3.126E-09	1.880E-09	1.262E-09	
7.564E-07	2.451E-07	1.031E-07	6.103E-08	4.201E-08	2.046E-08	8.125E-09	4.224E-09	2.746E-09	1.980E-09	
9.498E-07	2.640E-07	1.033E-07	6.048E-08	4.153E-08	2.173E-08	9.862E-09	5.702E-09	3.972E-09	3.015E-09	
7.667E-07	2.221E-07	9.117E-08	5.467E-08	3.809E-08	2.039E-08	9.578E-09	5.694E-09	4.045E-09	3.120E-09	
6.537E-07	1.899E-07	7.896E-08	4.803E-08	3.389E-08	1.826E-08	8.472E-09	4.885E-09	3.354E-09	2.505E-09	
6.474E-07	1.819E-07	7.325E-08	4.372E-08	3.052E-08	1.644E-08	7.805E-09	4.659E-09	3.297E-09	2.528E-09	
5.472E-07	1.562E-07	6.366E-08	3.820E-08	2.672E-08	1.444E-08	6.908E-09	4.163E-09	2.979E-09	2.309E-09	
5.217E-07	1.490E-07	6.068E-08	3.615E-08	2.511E-08	1.406E-08	7.731E-09	5.355E-09	3.990E-09	3.039E-09	
4.144E-07	1.133E-07	4.493E-08	2.665E-08	1.852E-08	1.016E-08	5.179E-09	3.372E-09	2.519E-09	1.955E-09	
2.994E-07	8.666E-08	3.513E-08	2.081E-08	1.436E-08	7.582E-09	3.511E-09	2.072E-09	1.459E-09	1.097E-09	
3.744E-07	1.326E-07	5.264E-08	2.866E-08	1.833E-08	8.269E-09	2.925E-09	1.384E-09	8.436E-10	5.762E-10	
2.690E-07	9.331E-08	3.667E-08	1.998E-08	1.294E-08	5.981E-09	2.192E-09	1.065E-09	6.498E-10	4.432E-10	
3.219E-07	1.090E-07	4.284E-08	2.345E-08	1.511E-08	7.213E-09	2.861E-09	1.412E-09	8.414E-10	5.634E-10	
4.263E-07	1.437E-07	5.748E-08	3.201E-08	2.091E-08	1.044E-08	4.466E-09	2.245E-09	1.336E-09	9.007E-10	
4.806E-07	1.638E-07	6.561E-08	3.648E-08	2.391E-08	1.176E-08	4.941E-09	2.568E-09	1.571E-09	1.062E-09	
3.888E-07	1.372E-07	5.758E-08	3.277E-08	2.188E-08	1.117E-08	4.830E-09	2.444E-09	1.456E-09	9.787E-10	
	4.797E-07 7.564E-07 9.498E-07 7.667E-07 6.537E-07 6.474E-07 5.472E-07 4.144E-07 2.994E-07 3.744E-07 2.690E-07 4.263E-07 4.806E-07	4.797E-071.736E-077.564E-072.451E-079.498E-072.640E-077.667E-072.221E-076.537E-071.899E-076.474E-071.819E-075.472E-071.562E-074.144E-071.133E-072.994E-078.666E-083.744E-071.326E-072.690E-079.331E-083.219E-071.090E-074.263E-071.638E-07	4.797E-071.736E-077.539E-087.564E-072.451E-071.031E-079.498E-072.640E-071.033E-077.667E-072.221E-079.117E-086.537E-071.899E-077.896E-086.474E-071.819E-077.325E-085.472E-071.562E-076.366E-084.144E-071.133E-074.493E-082.994E-078.666E-083.513E-083.744E-071.326E-075.264E-082.690E-079.331E-083.667E-083.219E-071.090E-074.284E-084.263E-071.638E-075.748E-084.806E-071.638E-076.561E-08	.5-11-22-33-44.797E-071.736E-077.539E-084.357E-087.564E-072.451E-071.031E-076.103E-089.498E-072.640E-071.033E-076.048E-087.667E-072.221E-079.117E-085.467E-086.537E-071.899E-077.896E-084.803E-086.474E-071.819E-077.325E-084.372E-085.472E-071.562E-076.366E-083.820E-085.217E-071.490E-076.068E-083.615E-084.144E-071.133E-074.493E-082.665E-082.994E-078.666E-083.513E-082.081E-083.744E-071.326E-075.264E-082.866E-082.690E-079.331E-083.667E-081.998E-083.219E-071.090E-074.284E-082.345E-084.263E-071.437E-075.748E-083.201E-084.806E-071.638E-076.561E-083.648E-08	.5-11-22-33-44-54.797E-071.736E-077.539E-084.357E-082.919E-087.564E-072.451E-071.031E-076.103E-084.201E-089.498E-072.640E-071.033E-076.048E-084.153E-087.667E-072.221E-079.117E-085.467E-083.809E-086.537E-071.899E-077.896E-084.803E-083.389E-086.474E-071.819E-077.325E-084.372E-083.052E-085.472E-071.562E-076.366E-083.820E-082.672E-085.217E-071.490E-076.068E-083.615E-082.511E-084.144E-071.133E-074.493E-082.665E-081.852E-082.994E-078.666E-083.513E-082.081E-081.436E-083.744E-071.326E-075.264E-082.866E-081.833E-082.690E-079.331E-083.667E-081.998E-081.294E-083.219E-071.090E-074.284E-082.345E-081.511E-084.263E-071.437E-075.748E-083.201E-082.091E-084.806E-071.638E-076.561E-083.648E-082.391E-08	.5-11-22-33-44-55-104.797E-071.736E-077.539E-084.357E-082.919E-081.471E-087.564E-072.451E-071.031E-076.103E-084.201E-082.046E-089.498E-072.640E-071.033E-076.048E-084.153E-082.173E-087.667E-072.221E-079.117E-085.467E-083.809E-082.039E-086.537E-071.899E-077.896E-084.803E-083.389E-081.826E-086.474E-071.819E-077.325E-084.372E-083.052E-081.644E-085.472E-071.562E-076.366E-083.820E-082.672E-081.444E-085.217E-071.490E-076.068E-083.615E-082.511E-081.406E-084.144E-071.133E-074.493E-082.665E-081.852E-081.016E-082.994E-078.666E-083.513E-082.081E-081.436E-087.582E-093.744E-071.326E-075.264E-082.866E-081.833E-088.269E-092.690E-079.331E-083.667E-081.998E-081.294E-085.981E-093.219E-071.090E-074.284E-082.345E-081.511E-087.213E-094.263E-071.437E-075.748E-083.201E-082.091E-081.044E-084.806E-071.638E-076.561E-083.648E-082.391E-081.176E-08	.5-11-22-33-44-55-1010-204.797E-071.736E-077.539E-084.357E-082.919E-081.471E-086.189E-097.564E-072.451E-071.031E-076.103E-084.201E-082.046E-088.125E-099.498E-072.640E-071.033E-076.048E-084.153E-082.173E-089.862E-097.667E-072.221E-079.117E-085.467E-083.809E-082.039E-089.578E-096.537E-071.899E-077.896E-084.803E-083.389E-081.826E-088.472E-096.474E-071.819E-077.325E-084.372E-083.052E-081.644E-087.805E-095.472E-071.562E-076.366E-083.820E-082.672E-081.444E-086.908E-095.217E-071.490E-076.068E-083.615E-082.511E-081.406E-087.731E-094.144E-071.133E-074.493E-082.665E-081.852E-081.016E-085.179E-092.994E-078.666E-083.513E-082.081E-081.436E-087.582E-092.925E-092.690E-079.331E-083.667E-081.998E-081.294E-085.981E-092.192E-093.219E-071.090E-074.284E-082.345E-081.511E-087.213E-092.861E-094.263E-071.437E-075.748E-083.201E-082.091E-081.044E-084.466E-094.806E-071.638E-076.561E-083.648E-082.391E-081.176E-084.941E-09	.5-11-22-33-44-55-1010-2020-304.797E-071.736E-077.539E-084.357E-082.919E-081.471E-086.189E-093.126E-097.564E-072.451E-071.031E-076.103E-084.201E-082.046E-088.125E-094.224E-099.498E-072.640E-071.033E-076.048E-084.153E-082.173E-089.862E-095.702E-097.667E-072.221E-079.117E-085.467E-083.809E-082.039E-089.578E-095.694E-096.537E-071.899E-077.896E-084.803E-083.389E-081.826E-088.472E-094.885E-096.474E-071.819E-077.325E-084.372E-083.052E-081.644E-087.805E-094.659E-095.472E-071.562E-076.068E-083.615E-082.612E-081.444E-086.908E-094.163E-095.217E-071.490E-076.068E-083.615E-081.852E-081.016E-087.731E-095.355E-094.144E-071.133E-074.493E-082.065E-081.852E-081.016E-085.179E-093.372E-093.744E-071.326E-075.264E-082.866E-081.833E-088.269E-092.925E-091.384E-092.690E-079.331E-083.667E-081.998E-081.294E-085.981E-092.192E-091.065E-094.263E-071.437E-075.748E-083.201E-082.091E-081.044E-084.466E-092.245E-094.263E-071.437E-075.748E-083.201E-082.091E-08 </td <td>.5-11-22-33-44-55-1010-2020-3030-404.797E-071.736E-077.539E-084.357E-082.919E-081.471E-086.189E-093.126E-091.880E-097.564E-072.451E-071.031E-076.103E-084.201E-082.046E-088.125E-094.224E-092.746E-099.498E-072.640E-071.033E-076.048E-084.153E-082.173E-089.862E-095.702E-093.972E-097.667E-072.221E-079.117E-085.467E-083.809E-082.039E-089.578E-095.694E-094.045E-096.537E-071.899E-077.896E-084.803E-083.389E-081.826E-088.472E-094.885E-093.297E-096.474E-071.819E-077.325E-084.372E-083.052E-081.644E-087.805E-094.659E-093.297E-095.472E-071.562E-076.366E-083.820E-082.672E-081.444E-086.908E-094.163E-092.979E-095.217E-071.490E-076.068E-083.615E-082.511E-081.406E-087.731E-095.355E-093.990E-094.144E-071.133E-074.493E-082.665E-081.852E-081.016E-085.179E-093.372E-092.519E-093.744E-071.326E-075.264E-082.866E-081.833E-088.269E-092.925E-091.384E-098.436E-102.690E-079.331E-083.667E-082.345E-081.511E-087.213E-092.861E-091.412E-098.414E-104.263E-071.437E</td>	.5-11-22-33-44-55-1010-2020-3030-404.797E-071.736E-077.539E-084.357E-082.919E-081.471E-086.189E-093.126E-091.880E-097.564E-072.451E-071.031E-076.103E-084.201E-082.046E-088.125E-094.224E-092.746E-099.498E-072.640E-071.033E-076.048E-084.153E-082.173E-089.862E-095.702E-093.972E-097.667E-072.221E-079.117E-085.467E-083.809E-082.039E-089.578E-095.694E-094.045E-096.537E-071.899E-077.896E-084.803E-083.389E-081.826E-088.472E-094.885E-093.297E-096.474E-071.819E-077.325E-084.372E-083.052E-081.644E-087.805E-094.659E-093.297E-095.472E-071.562E-076.366E-083.820E-082.672E-081.444E-086.908E-094.163E-092.979E-095.217E-071.490E-076.068E-083.615E-082.511E-081.406E-087.731E-095.355E-093.990E-094.144E-071.133E-074.493E-082.665E-081.852E-081.016E-085.179E-093.372E-092.519E-093.744E-071.326E-075.264E-082.866E-081.833E-088.269E-092.925E-091.384E-098.436E-102.690E-079.331E-083.667E-082.345E-081.511E-087.213E-092.861E-091.412E-098.414E-104.263E-071.437E	

Table 2.7-148 Annual Average D/Q Values for Mixed-Mode Release from the Reactor Building/Fuel Building Stack (Based on 1985-1989 met data) (Sheet 1 of 3)

				Di	stance in Mile	es from the S	ite				
Sector	0.25	0.5	0.75	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5
N	2.669E-08	1.250E-08	7.768E-09	4.236E-09	1.748E-09	9.373E-10	5.808E-10	3.948E-10	2.855E-10	2.159E-10	1.689E-10
NNE	4.999E-08	2.240E-08	1.322E-08	6.947E-09	2.776E-09	1.460E-09	8.932E-10	6.019E-10	4.329E-10	3.263E-10	2.548E-10
NE	5.748E-08	2.242E-08	1.213E-08	5.990E-09	2.246E-09	1.145E-09	6.876E-10	4.572E-10	3.257E-10	2.439E-10	1.895E-10
ENE	4.317E-08	1.732E-08	9.486E-09	4.725E-09	1.786E-09	9.153E-10	5.514E-10	3.676E-10	2.624E-10	1.968E-10	1.531E-10
E	3.717E-08	1.551E-08	8.514E-09	4.241E-09	1.601E-09	8.225E-10	4.967E-10	3.319E-10	2.374E-10	1.783E-10	1.390E-10
ESE	3.642E-08	1.529E-08	8.365E-09	4.155E-09	1.564E-09	8.025E-10	4.841E-10	3.232E-10	2.311E-10	1.736E-10	1.353E-10
SE	3.065E-08	1.282E-08	7.013E-09	3.489E-09	1.318E-09	6.771E-10	4.089E-10	2.732E-10	1.954E-10	1.468E-10	1.144E-10
SSE	2.763E-08	1.114E-08	6.084E-09	3.023E-09	1.140E-09	5.839E-10	3.517E-10	2.345E-10	1.674E-10	1.255E-10	9.771E-11
S	2.188E-08	8.274E-09	4.447E-09	2.185E-09	8.135E-10	4.128E-10	2.470E-10	1.638E-10	1.164E-10	8.701E-11	6.752E-11
SSW	1.761E-08	6.746E-09	3.618E-09	1.775E-09	6.588E-10	3.350E-10	2.008E-10	1.334E-10	9.501E-11	7.109E-11	5.522E-11
SW	3.097E-08	1.552E-08	9.773E-09	5.325E-09	2.202E-09	1.170E-09	7.187E-10	4.857E-10	3.500E-10	2.642E-10	2.065E-10
WSW	2.014E-08	1.011E-08	6.374E-09	3.467E-09	1.429E-09	7.570E-10	4.643E-10	3.134E-10	2.256E-10	1.702E-10	1.331E-10
W	2.469E-08	1.160E-08	6.975E-09	3.895E-09	1.570E-09	8.213E-10	4.998E-10	3.356E-10	2.408E-10	1.813E-10	1.415E-10
WNW	3.070E-08	1.451E-08	8.634E-09	4.794E-09	1.924E-09	1.006E-09	6.126E-10	4.114E-10	2.953E-10	2.224E-10	1.736E-10
NW	2.965E-08	1.457E-08	8.994E-09	5.157E-09	2.103E-09	1.105E-09	6.742E-10	4.534E-10	3.257E-10	2.454E-10	1.916E-10
NNW	2.115E-08	9.980E-09	6.314E-09	3.473E-09	1.448E-09	7.750E-10	4.790E-10	3.248E-10	2.346E-10	1.772E-10	1.385E-10

Table 2.7-148 Annual Average D/Q Values for Mixed-Mode Release from the Reactor Building/Fuel Building Stack (Based on 1985-1989 met data) (Sheet 2 of 3)

				Di	stance in Mil	es from the S	ite				
Sector	5	7.5	10	15.0	20	25.0	30	35.0	40	45.0	50
N	1.357E-10	6.352E-11	4.010E-11	4.356E-11	2.986E-11	1.816E-11	1.357E-11	1.028E-11	8.012E-12	6.410E-12	5.233E-12
NNE	2.045E-10	9.317E-11	5.640E-11	2.884E-11	1.814E-11	1.283E-11	1.001E-11	8.053E-12	7.489E-12	6.328E-12	6.459E-12
NE	1.516E-10	6.868E-11	4.164E-11	2.157E-11	1.362E-11	9.711E-12	7.568E-12	6.599E-12	5.657E-12	5.805E-12	6.680E-12
ENE	1.226E-10	5.569E-11	3.376E-11	1.753E-11	1.113E-11	8.002E-12	6.312E-12	5.473E-12	4.768E-12	4.790E-12	5.176E-12
E	1.115E-10	5.092E-11	3.098E-11	1.625E-11	1.038E-11	7.565E-12	6.007E-12	5.051E-12	4.419E-12	3.931E-12	3.596E-12
ESE	1.085E-10	4.959E-11	3.019E-11	1.587E-11	1.016E-11	7.413E-12	5.895E-12	4.959E-12	4.342E-12	3.865E-12	3.525E-12
SE	9.179E-11	4.192E-11	2.551E-11	1.339E-11	8.563E-12	6.240E-12	4.931E-12	4.145E-12	3.632E-12	3.236E-12	3.012E-12
SSE	7.827E-11	3.559E-11	2.169E-11	1.173E-11	1.270E-11	2.390E-11	1.990E-11	1.464E-11	1.080E-11	7.381E-12	5.786E-12
S	5.396E-11	2.435E-11	1.475E-11	7.612E-12	5.163E-12	4.527E-12	7.056E-12	9.753E-12	8.461E-12	6.698E-12	5.353E-12
SSW	4.417E-11	2.003E-11	1.218E-11	6.334E-12	4.298E-12	3.942E-12	4.383E-12	4.907E-12	5.502E-12	4.801E-12	3.977E-12
SW	1.659E-10	7.547E-11	4.529E-11	2.292E-11	1.442E-11	1.040E-11	8.230E-12	7.013E-12	6.102E-12	5.171E-12	4.325E-12
WSW	1.085E-10	4.906E-11	2.921E-11	1.642E-11	1.185E-11	9.409E-12	7.045E-12	5.357E-12	4.267E-12	3.488E-12	2.918E-12
W	1.136E-10	5.180E-11	3.578E-11	2.629E-11	1.642E-11	1.135E-11	8.465E-12	6.365E-12	4.954E-12	3.961E-12	3.233E-12
WNW	1.395E-10	6.369E-11	5.202E-11	3.526E-11	2.220E-11	1.527E-11	1.104E-11	8.315E-12	6.471E-12	5.169E-12	4.221E-12
NW	1.539E-10	7.006E-11	4.687E-11	3.841E-11	2.552E-11	1.693E-11	1.209E-11	9.336E-12	7.304E-12	5.850E-12	4.780E-12
NNW	1.143E-10	5.192E-11	4.356E-11	3.328E-11	2.045E-11	1.405E-11	1.014E-11	7.637E-12	5.951E-12	4.760E-12	3.885E-12

Table 2.7-148 Annual Average D/Q Values for Mixed-Mode Release from the Reactor Building/Fuel Building Stack (Based on 1985-1989 met data) (Sheet 3 of 3)

Segment Boundaries in Miles from the Site												
Sector	.5-1	1-2	2-3	3-4	4-5	5-10	10-20	20-30	30-40	40-50		
N	7.250E-09	1.941E-09	6.015E-10	2.902E-10	1.705E-10	6.915E-11	3.670E-11	1.945E-11	1.036E-11	6.449E-12		
NNE	1.247E-08	3.118E-09	9.278E-10	4.406E-10	2.573E-10	1.016E-10	3.021E-11	1.312E-11	8.398E-12	6.720E-12		
NE	1.169E-08	2.589E-09	7.174E-10	3.321E-10	1.916E-10	7.509E-11	2.249E-11	9.896E-12	6.517E-12	6.085E-12		
ENE	9.110E-09	2.052E-09	5.749E-10	2.674E-10	1.547E-10	6.082E-11	1.829E-11	8.160E-12	5.444E-12	4.927E-12		
E	8.170E-09	1.842E-09	5.176E-10	2.419E-10	1.404E-10	5.551E-11	1.692E-11	7.693E-12	5.083E-12	3.952E-12		
ESE	8.032E-09	1.801E-09	5.047E-10	2.355E-10	1.367E-10	5.407E-11	1.651E-11	7.538E-12	4.991E-12	3.880E-12		
SE	6.736E-09	1.515E-09	4.262E-10	1.991E-10	1.156E-10	4.571E-11	1.394E-11	6.336E-12	4.174E-12	3.270E-12		
SSE	5.847E-09	1.311E-09	3.667E-10	1.706E-10	9.876E-11	3.890E-11	1.437E-11	1.931E-11	1.468E-11	7.804E-12		
S	4.292E-09	9.401E-10	2.579E-10	1.187E-10	6.827E-11	2.666E-11	8.110E-12	5.708E-12	8.490E-12	6.722E-12		
SSW	3.494E-09	7.628E-10	2.096E-10	9.688E-11	5.583E-11	2.190E-11	6.728E-12	4.214E-12	4.984E-12	4.703E-12		
SW	9.074E-09	2.437E-09	7.457E-10	3.561E-10	2.086E-10	8.216E-11	2.412E-11	1.061E-11	7.014E-12	5.134E-12		
WSW	5.913E-09	1.583E-09	4.819E-10	2.296E-10	1.350E-10	5.346E-11	1.723E-11	9.115E-12	5.424E-12	3.508E-12		
W	6.635E-09	1.754E-09	5.199E-10	2.452E-10	1.429E-10	5.841E-11	2.401E-11	1.155E-11	6.427E-12	3.986E-12		
WNW	8.233E-09	2.154E-09	6.371E-10	3.007E-10	1.754E-10	7.534E-11	3.318E-11	1.543E-11	8.393E-12	5.204E-12		
NW	8.527E-09	2.338E-09	7.008E-10	3.316E-10	1.936E-10	7.839E-11	3.456E-11	1.729E-11	9.349E-12	5.885E-12		
NNW	5.866E-09	1.599E-09	4.963E-10	2.385E-10	1.410E-10	6.206E-11	2.986E-11	1.419E-11	7.710E-12	4.789E-12		

Table 2.7-149 Annual Average X/Q Values (No Decay, Undepleted) for Mixed-Mode Release from the Turbine Building Stack (Based on 1985-1989 met data) (Sheet 1 of 3)

Annual Average X/Q (sec/m³)

Distance in Miles from the Site												
Sector	0.25	0.5	0.75	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	
N	2.685E-06	9.507E-07	5.689E-07	3.271E-07	1.618E-07	1.014E-07	7.097E-08	5.315E-08	4.169E-08	3.384E-08	2.831E-08	
NNE	4.793E-06	1.652E-06	9.517E-07	5.226E-07	2.445E-07	1.492E-07	1.031E-07	7.675E-08	6.104E-08	5.025E-08	4.197E-08	
NE	7.155E-06	2.341E-06	1.292E-06	6.831E-07	2.952E-07	1.713E-07	1.152E-07	8.451E-08	6.571E-08	5.321E-08	4.441E-08	
ENE	5.722E-06	1.895E-06	1.053E-06	5.581E-07	2.443E-07	1.438E-07	9.777E-08	7.243E-08	5.675E-08	4.624E-08	3.879E-08	
E	4.888E-06	1.623E-06	8.990E-07	4.765E-07	2.088E-07	1.232E-07	8.406E-08	6.249E-08	4.913E-08	4.018E-08	3.382E-08	
ESE	4.934E-06	1.629E-06	8.913E-07	4.674E-07	2.026E-07	1.189E-07	8.059E-08	5.956E-08	4.658E-08	3.792E-08	3.179E-08	
SE	4.034E-06	1.343E-06	7.417E-07	3.911E-07	1.705E-07	1.003E-07	6.817E-08	5.049E-08	3.957E-08	3.226E-08	2.708E-08	
SSE	3.980E-06	1.309E-06	7.195E-07	3.778E-07	1.647E-07	9.712E-08	6.607E-08	4.892E-08	3.829E-08	3.116E-08	2.611E-08	
S	3.320E-06	1.063E-06	5.754E-07	2.999E-07	1.290E-07	7.528E-08	5.086E-08	3.749E-08	2.927E-08	2.379E-08	1.991E-08	
SSW	2.171E-06	7.236E-07	4.060E-07	2.154E-07	9.393E-08	5.500E-08	3.727E-08	2.752E-08	2.150E-08	1.747E-08	1.462E-08	
SW	1.645E-06	6.291E-07	3.935E-07	2.337E-07	1.167E-07	7.188E-08	4.931E-08	3.624E-08	2.795E-08	2.235E-08	1.838E-08	
WSW	1.237E-06	4.642E-07	2.869E-07	1.689E-07	8.304E-08	5.082E-08	3.476E-08	2.552E-08	1.968E-08	1.574E-08	1.307E-08	
W	1.691E-06	6.100E-07	3.685E-07	2.124E-07	1.019E-07	6.171E-08	4.200E-08	3.076E-08	2.369E-08	1.895E-08	1.559E-08	
WNW	2.317E-06	8.164E-07	4.858E-07	2.788E-07	1.337E-07	8.149E-08	5.583E-08	4.114E-08	3.188E-08	2.563E-08	2.119E-08	
NW	2.543E-06	9.051E-07	5.422E-07	3.134E-07	1.515E-07	9.261E-08	6.349E-08	4.678E-08	3.623E-08	2.911E-08	2.414E-08	
NNW	2.247E-06	7.769E-07	4.599E-07	2.644E-07	1.295E-07	8.037E-08	5.577E-08	4.149E-08	3.238E-08	2.618E-08	2.191E-08	

Table 2.7-149 Annual Average X/Q Values (No Decay, Undepleted) for Mixed-Mode Release from the Turbine Building Stack (Based on 1985-1989 met data) (Sheet 2 of 3)

Annual Average X/Q (sec/m³)

	Distance in Miles from the Site												
Sector	5	7.5	10	15.0	20	25.0	30	35.0	40	45.0	50		
N	2.418E-08	1.415E-08	9.930E-09	6.340E-09	4.633E-09	3.619E-09	2.925E-09	2.405E-09	2.012E-09	1.717E-09	1.491E-09		
NNE	3.581E-08	2.020E-08	1.381E-08	8.440E-09	5.952E-09	4.538E-09	3.637E-09	3.018E-09	2.570E-09	2.231E-09	1.967E-09		
NE	3.794E-08	2.216E-08	1.567E-08	1.012E-08	7.432E-09	5.858E-09	4.829E-09	4.107E-09	3.573E-09	3.163E-09	2.839E-09		
ENE	3.329E-08	1.977E-08	1.413E-08	9.259E-09	6.878E-09	5.471E-09	4.547E-09	3.896E-09	3.413E-09	3.041E-09	2.746E-09		
Е	2.913E-08	1.737E-08	1.241E-08	8.090E-09	5.957E-09	4.687E-09	3.848E-09	3.254E-09	2.812E-09	2.472E-09	2.202E-09		
ESE	2.728E-08	1.616E-08	1.154E-08	7.559E-09	5.614E-09	4.461E-09	3.699E-09	3.159E-09	2.757E-09	2.447E-09	2.200E-09		
SE	2.327E-08	1.386E-08	9.941E-09	6.551E-09	4.890E-09	3.904E-09	3.254E-09	2.794E-09	2.452E-09	2.188E-09	1.978E-09		
SSE	2.238E-08	1.355E-08	9.934E-09	6.941E-09	5.552E-09	4.762E-09	4.248E-09	3.870E-09	3.564E-09	3.294E-09	3.043E-09		
S	1.706E-08	1.020E-08	7.383E-09	4.988E-09	3.832E-09	3.154E-09	2.711E-09	2.397E-09	2.162E-09	1.977E-09	1.825E-09		
SSW	1.252E-08	7.394E-09	5.266E-09	3.435E-09	2.548E-09	2.027E-09	1.687E-09	1.447E-09	1.270E-09	1.133E-09	1.025E-09		
SW	1.546E-08	8.361E-09	5.530E-09	3.221E-09	2.196E-09	1.631E-09	1.279E-09	1.043E-09	8.738E-10	7.480E-10	6.513E-10		
WSW	1.109E-08	6.041E-09	4.027E-09	2.384E-09	1.653E-09	1.247E-09	9.934E-10	8.208E-10	6.962E-10	6.020E-10	5.281E-10		
W	1.313E-08	7.383E-09	5.059E-09	3.153E-09	2.282E-09	1.767E-09	1.409E-09	1.148E-09	9.586E-10	8.183E-10	7.107E-10		
WNW	1.792E-08	1.039E-08	7.324E-09	4.794E-09	3.574E-09	2.773E-09	2.188E-09	1.782E-09	1.494E-09	1.279E-09	1.113E-09		
NW	2.047E-08	1.166E-08	8.092E-09	5.169E-09	3.828E-09	3.038E-09	2.492E-09	2.074E-09	1.745E-09	1.495E-09	1.302E-09		
NNW	1.872E-08	1.095E-08	7.744E-09	5.068E-09	3.775E-09	2.952E-09	2.344E-09	1.907E-09	1.596E-09	1.364E-09	1.186E-09		

Table 2.7-149 Annual Average X/Q Values (No Decay, Undepleted) for Mixed-Mode Release from the Turbine Building Stack (Based on 1985-1989 met data) (Sheet 3 of 3)

X/Q (sec/m³) for Each Segment

	114 (000/III) 101 2 40II 00gillolli											
Segment Boundaries in Miles from the Site												
Sector	.5-1	1-2	2-3	3-4	4-5	5-10	10-20	20-30	30-40	40-50		
N	5.463E-07	1.717E-07	7.195E-08	4.198E-08	2.842E-08	1.450E-08	6.379E-09	3.612E-09	2.404E-09	1.721E-09		
NNE	9.165E-07	2.639E-07	1.049E-07	6.142E-08	4.214E-08	2.083E-08	8.527E-09	4.555E-09	3.024E-09	2.234E-09		
NE	1.255E-06	3.263E-07	1.179E-07	6.632E-08	4.462E-08	2.278E-08	1.016E-08	5.866E-09	4.110E-09	3.165E-09		
ENE	1.020E-06	2.693E-07	9.990E-08	5.723E-08	3.896E-08	2.027E-08	9.284E-09	5.476E-09	3.898E-09	3.042E-09		
E	8.722E-07	2.303E-07	8.588E-08	4.954E-08	3.397E-08	1.778E-08	8.103E-09	4.690E-09	3.255E-09	2.473E-09		
ESE	8.667E-07	2.242E-07	8.238E-08	4.699E-08	3.194E-08	1.658E-08	7.579E-09	4.463E-09	3.160E-09	2.448E-09		
SE	7.195E-07	1.883E-07	6.966E-08	3.990E-08	2.720E-08	1.421E-08	6.566E-09	3.907E-09	2.795E-09	2.188E-09		
SSE	6.986E-07	1.820E-07	6.749E-08	3.861E-08	2.623E-08	1.391E-08	6.989E-09	4.767E-09	3.861E-09	3.281E-09		
S	5.613E-07	1.431E-07	5.202E-08	2.953E-08	2.001E-08	1.047E-08	5.006E-09	3.157E-09	2.397E-09	1.975E-09		
SSW	3.919E-07	1.036E-07	3.810E-08	2.169E-08	1.469E-08	7.586E-09	3.448E-09	2.030E-09	1.448E-09	1.134E-09		
SW	3.749E-07	1.228E-07	5.010E-08	2.819E-08	1.847E-08	8.680E-09	3.279E-09	1.641E-09	1.046E-09	7.495E-10		
WSW	2.739E-07	8.781E-08	3.535E-08	1.985E-08	1.313E-08	6.268E-09	2.424E-09	1.254E-09	8.227E-10	6.025E-10		
W	3.528E-07	1.086E-07	4.276E-08	2.390E-08	1.568E-08	7.628E-09	3.189E-09	1.761E-09	1.150E-09	8.200E-10		
WNW	4.673E-07	1.428E-07	5.680E-08	3.215E-08	2.129E-08	1.070E-08	4.814E-09	2.752E-09	1.788E-09	1.281E-09		
NW	5.211E-07	1.613E-07	6.457E-08	3.653E-08	2.425E-08	1.203E-08	5.222E-09	3.030E-09	2.068E-09	1.497E-09		
NNW	4.435E-07	1.377E-07	5.662E-08	3.262E-08	2.199E-08	1.125E-08	5.088E-09	2.928E-09	1.913E-09	1.367E-09		

Table 2.7-150 Annual Average X/Q Values (2.26 Day Decay, Undepleted) for Mixed-Mode Release from the Turbine Building Stack (Based on 1985-1989 met data) (Sheet 1 of 3)

Annual Average X/Q (sec/m³)

Distance in Miles from the Site												
Sector	0.25	0.5	0.75	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	
N	2.684E-06	9.499E-07	5.682E-07	3.265E-07	1.614E-07	1.011E-07	7.071E-08	5.291E-08	4.147E-08	3.364E-08	2.812E-08	
NNE	4.791E-06	1.650E-06	9.507E-07	5.218E-07	2.440E-07	1.488E-07	1.028E-07	7.643E-08	6.074E-08	4.997E-08	4.170E-08	
NE	7.152E-06	2.340E-06	1.291E-06	6.821E-07	2.946E-07	1.708E-07	1.147E-07	8.414E-08	6.537E-08	5.290E-08	4.411E-08	
ENE	5.719E-06	1.894E-06	1.052E-06	5.571E-07	2.436E-07	1.433E-07	9.737E-08	7.208E-08	5.643E-08	4.595E-08	3.851E-08	
E	4.885E-06	1.622E-06	8.978E-07	4.756E-07	2.082E-07	1.228E-07	8.369E-08	6.216E-08	4.883E-08	3.990E-08	3.356E-08	
ESE	4.932E-06	1.627E-06	8.900E-07	4.666E-07	2.021E-07	1.184E-07	8.023E-08	5.924E-08	4.630E-08	3.765E-08	3.154E-08	
SE	4.032E-06	1.342E-06	7.407E-07	3.904E-07	1.701E-07	9.993E-08	6.787E-08	5.023E-08	3.933E-08	3.204E-08	2.687E-08	
SSE	3.978E-06	1.308E-06	7.186E-07	3.772E-07	1.643E-07	9.679E-08	6.580E-08	4.867E-08	3.807E-08	3.096E-08	2.591E-08	
S	3.319E-06	1.062E-06	5.746E-07	2.994E-07	1.287E-07	7.503E-08	5.065E-08	3.731E-08	2.910E-08	2.364E-08	1.977E-08	
SSW	2.171E-06	7.230E-07	4.055E-07	2.151E-07	9.372E-08	5.484E-08	3.713E-08	2.740E-08	2.139E-08	1.737E-08	1.452E-08	
SW	1.644E-06	6.287E-07	3.932E-07	2.334E-07	1.165E-07	7.171E-08	4.916E-08	3.611E-08	2.783E-08	2.224E-08	1.828E-08	
WSW	1.237E-06	4.639E-07	2.866E-07	1.687E-07	8.289E-08	5.070E-08	3.466E-08	2.543E-08	1.960E-08	1.566E-08	1.300E-08	
W	1.690E-06	6.096E-07	3.681E-07	2.122E-07	1.017E-07	6.156E-08	4.187E-08	3.064E-08	2.359E-08	1.885E-08	1.550E-08	
WNW	2.316E-06	8.158E-07	4.852E-07	2.785E-07	1.334E-07	8.127E-08	5.564E-08	4.097E-08	3.172E-08	2.548E-08	2.105E-08	
NW	2.542E-06	9.044E-07	5.416E-07	3.129E-07	1.512E-07	9.235E-08	6.327E-08	4.658E-08	3.605E-08	2.895E-08	2.399E-08	
NNW	2.246E-06	7.764E-07	4.594E-07	2.640E-07	1.292E-07	8.014E-08	5.558E-08	4.132E-08	3.222E-08	2.603E-08	2.177E-08	

Table 2.7-150 Annual Average X/Q Values (2.26 Day Decay, Undepleted) for Mixed-Mode Release from the Turbine Building Stack (Based on 1985-1989 met data) (Sheet 2 of 3)

Annual Average X/Q (sec/m³)

	7 minuti 77014go 154 (000m)											
				Di	stance in Mil	es from the S	ite					
Sector	5	7.5	10	15.0	20	25.0	30	35.0	40	45.0	50	
N	2.400E-08	1.398E-08	9.770E-09	6.182E-09	4.476E-09	3.464E-09	2.774E-09	2.261E-09	1.874E-09	1.586E-09	1.365E-09	
NNE	3.556E-08	1.998E-08	1.361E-08	8.256E-09	5.778E-09	4.372E-09	3.477E-09	2.864E-09	2.420E-09	2.085E-09	1.824E-09	
NE	3.766E-08	2.192E-08	1.544E-08	9.894E-09	7.215E-09	5.644E-09	4.618E-09	3.898E-09	3.366E-09	2.958E-09	2.635E-09	
ENE	3.302E-08	1.954E-08	1.391E-08	9.043E-09	6.664E-09	5.260E-09	4.337E-09	3.687E-09	3.204E-09	2.833E-09	2.538E-09	
E	2.887E-08	1.714E-08	1.220E-08	7.883E-09	5.754E-09	4.487E-09	3.652E-09	3.061E-09	2.622E-09	2.285E-09	2.017E-09	
ESE	2.705E-08	1.595E-08	1.134E-08	7.362E-09	5.420E-09	4.268E-09	3.507E-09	2.969E-09	2.569E-09	2.260E-09	2.015E-09	
SE	2.307E-08	1.369E-08	9.772E-09	6.384E-09	4.723E-09	3.738E-09	3.088E-09	2.628E-09	2.286E-09	2.021E-09	1.811E-09	
SSE	2.220E-08	1.338E-08	9.771E-09	6.771E-09	5.370E-09	4.566E-09	4.035E-09	3.643E-09	3.323E-09	3.042E-09	2.783E-09	
S	1.693E-08	1.008E-08	7.266E-09	4.869E-09	3.709E-09	3.027E-09	2.579E-09	2.261E-09	2.021E-09	1.831E-09	1.675E-09	
SSW	1.242E-08	7.312E-09	5.187E-09	3.358E-09	2.471E-09	1.950E-09	1.609E-09	1.369E-09	1.192E-09	1.054E-09	9.448E-10	
SW	1.536E-08	8.281E-09	5.458E-09	3.157E-09	2.136E-09	1.575E-09	1.226E-09	9.913E-10	8.243E-10	7.001E-10	6.048E-10	
WSW	1.102E-08	5.983E-09	3.974E-09	2.336E-09	1.607E-09	1.203E-09	9.507E-10	7.791E-10	6.554E-10	5.619E-10	4.887E-10	
W	1.305E-08	7.312E-09	4.991E-09	3.086E-09	2.213E-09	1.697E-09	1.340E-09	1.081E-09	8.956E-10	7.582E-10	6.530E-10	
WNW	1.779E-08	1.028E-08	7.216E-09	4.685E-09	3.462E-09	2.662E-09	2.081E-09	1.682E-09	1.398E-09	1.187E-09	1.026E-09	
NW	2.033E-08	1.153E-08	7.977E-09	5.057E-09	3.717E-09	2.927E-09	2.381E-09	1.964E-09	1.639E-09	1.394E-09	1.204E-09	
NNW	1.859E-08	1.083E-08	7.626E-09	4.947E-09	3.652E-09	2.830E-09	2.227E-09	1.797E-09	1.491E-09	1.264E-09	1.090E-09	

Table 2.7-150 Annual Average X/Q Values (2.26 Day Decay, Undepleted) for Mixed-Mode Release from the Turbine Building Stack (Based on 1985-1989 met data) (Sheet 3 of 3)

X/Q (sec/m³) for Each Segment

	Segment Roundaries in Miles from the Site												
Segment Boundaries in Miles from the Site													
Sector	.5-1	1-2	2-3	3-4	4-5	5-10	10-20	20-30	30-40	40-50			
N	5.456E-07	1.713E-07	7.169E-08	4.176E-08	2.823E-08	1.434E-08	6.221E-09	3.458E-09	2.260E-09	1.590E-09			
NNE	9.156E-07	2.634E-07	1.045E-07	6.112E-08	4.188E-08	2.061E-08	8.344E-09	4.389E-09	2.870E-09	2.087E-09			
NE	1.253E-06	3.257E-07	1.174E-07	6.598E-08	4.433E-08	2.254E-08	9.936E-09	5.652E-09	3.901E-09	2.959E-09			
ENE	1.019E-06	2.687E-07	9.949E-08	5.691E-08	3.868E-08	2.003E-08	9.068E-09	5.265E-09	3.689E-09	2.834E-09			
E	8.710E-07	2.297E-07	8.550E-08	4.924E-08	3.370E-08	1.755E-08	7.896E-09	4.491E-09	3.063E-09	2.286E-09			
ESE	8.656E-07	2.237E-07	8.203E-08	4.670E-08	3.169E-08	1.637E-08	7.383E-09	4.271E-09	2.971E-09	2.261E-09			
SE	7.186E-07	1.879E-07	6.936E-08	3.966E-08	2.699E-08	1.403E-08	6.399E-09	3.741E-09	2.629E-09	2.022E-09			
SSE	6.977E-07	1.816E-07	6.721E-08	3.839E-08	2.603E-08	1.374E-08	6.815E-09	4.568E-09	3.633E-09	3.029E-09			
S	5.606E-07	1.428E-07	5.182E-08	2.937E-08	1.986E-08	1.035E-08	4.886E-09	3.030E-09	2.260E-09	1.829E-09			
SSW	3.914E-07	1.034E-07	3.796E-08	2.158E-08	1.459E-08	7.503E-09	3.371E-09	1.953E-09	1.370E-09	1.054E-09			
SW	3.745E-07	1.226E-07	4.995E-08	2.807E-08	1.837E-08	8.600E-09	3.215E-09	1.585E-09	9.947E-10	7.016E-10			
WSW	2.736E-07	8.766E-08	3.524E-08	1.976E-08	1.305E-08	6.210E-09	2.376E-09	1.210E-09	7.810E-10	5.625E-10			
W	3.525E-07	1.084E-07	4.263E-08	2.380E-08	1.559E-08	7.555E-09	3.121E-09	1.692E-09	1.084E-09	7.599E-10			
WNW	4.668E-07	1.425E-07	5.661E-08	3.199E-08	2.116E-08	1.059E-08	4.704E-09	2.643E-09	1.688E-09	1.190E-09			
NW	5.206E-07	1.610E-07	6.435E-08	3.635E-08	2.410E-08	1.191E-08	5.111E-09	2.919E-09	1.960E-09	1.396E-09			
NNW	4.430E-07	1.374E-07	5.643E-08	3.246E-08	2.185E-08	1.113E-08	4.967E-09	2.808E-09	1.803E-09	1.267E-09			

Table 2.7-151 Annual Average X/Q Values (8.0 Day Decay, Depleted) for Mixed-Mode Release from the Turbine Building Stack (Based on 1985-1989 met data) (Sheet 1 of 3)

Annual Average X/Q (sec/m³)

	Distance in Miles from the Site											
Sector	0.25	0.5	0.75	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	
N	2.545E-06	8.741E-07	5.153E-07	2.954E-07	1.459E-07	9.116E-08	6.355E-08	4.737E-08	3.698E-08	2.987E-08	2.488E-08	
NNE	4.543E-06	1.517E-06	8.587E-07	4.677E-07	2.172E-07	1.319E-07	9.069E-08	6.716E-08	5.325E-08	4.371E-08	3.635E-08	
NE	6.773E-06	2.145E-06	1.159E-06	6.039E-07	2.558E-07	1.464E-07	9.744E-08	7.096E-08	5.482E-08	4.415E-08	3.667E-08	
ENE	5.417E-06	1.738E-06	9.455E-07	4.942E-07	2.125E-07	1.237E-07	8.353E-08	6.153E-08	4.799E-08	3.895E-08	3.256E-08	
E	4.628E-06	1.490E-06	8.088E-07	4.230E-07	1.822E-07	1.063E-07	7.202E-08	5.325E-08	4.170E-08	3.398E-08	2.852E-08	
ESE	4.672E-06	1.495E-06	8.019E-07	4.149E-07	1.765E-07	1.023E-07	6.873E-08	5.045E-08	3.924E-08	3.179E-08	2.654E-08	
SE	3.819E-06	1.233E-06	6.674E-07	3.473E-07	1.487E-07	8.648E-08	5.832E-08	4.294E-08	3.348E-08	2.719E-08	2.274E-08	
SSE	3.768E-06	1.200E-06	6.458E-07	3.345E-07	1.433E-07	8.353E-08	5.637E-08	4.148E-08	3.230E-08	2.617E-08	2.184E-08	
S	3.143E-06	9.727E-07	5.148E-07	2.644E-07	1.114E-07	6.410E-08	4.287E-08	3.136E-08	2.433E-08	1.967E-08	1.639E-08	
SSW	2.056E-06	6.629E-07	3.640E-07	1.905E-07	8.155E-08	4.723E-08	3.176E-08	2.332E-08	1.814E-08	1.468E-08	1.224E-08	
SW	1.562E-06	5.816E-07	3.601E-07	2.140E-07	1.066E-07	6.535E-08	4.453E-08	3.249E-08	2.488E-08	1.976E-08	1.613E-08	
WSW	1.174E-06	4.288E-07	2.623E-07	1.544E-07	7.567E-08	4.604E-08	3.127E-08	2.279E-08	1.745E-08	1.386E-08	1.144E-08	
W	1.605E-06	5.627E-07	3.354E-07	1.928E-07	9.195E-08	5.529E-08	3.735E-08	2.714E-08	2.075E-08	1.648E-08	1.346E-08	
WNW	2.199E-06	7.530E-07	4.421E-07	2.531E-07	1.207E-07	7.303E-08	4.968E-08	3.635E-08	2.797E-08	2.233E-08	1.835E-08	
NW	2.412E-06	8.351E-07	4.942E-07	2.849E-07	1.370E-07	8.314E-08	5.657E-08	4.137E-08	3.181E-08	2.538E-08	2.091E-08	
NNW	2.128E-06	7.133E-07	4.163E-07	2.389E-07	1.167E-07	7.206E-08	4.972E-08	3.675E-08	2.851E-08	2.291E-08	1.907E-08	

Table 2.7-151 Annual Average X/Q Values (8.0 Day Decay, Depleted) for Mixed-Mode Release from the Turbine Building Stack (Based on 1985-1989 met data) (Sheet 2 of 3)

Annual Average X/Q (sec/m³)

	Distance in Miles from the Office												
				Di	stance in Mil	es from the S	ite						
Sector	5	7.5	10	15.0	20	25.0	30	35.0	40	45.0	50		
N	2.116E-08	1.222E-08	8.483E-09	5.337E-09	3.819E-09	2.863E-09	2.222E-09	1.770E-09	1.437E-09	1.194E-09	1.010E-09		
NNE	3.089E-08	1.712E-08	1.152E-08	6.874E-09	4.756E-09	3.570E-09	2.824E-09	2.315E-09	1.943E-09	1.666E-09	1.450E-09		
NE	3.120E-08	1.801E-08	1.261E-08	8.026E-09	5.837E-09	4.565E-09	3.740E-09	3.163E-09	2.728E-09	2.398E-09	2.134E-09		
ENE	2.786E-08	1.642E-08	1.166E-08	7.567E-09	5.583E-09	4.419E-09	3.659E-09	3.124E-09	2.718E-09	2.408E-09	2.160E-09		
E	2.450E-08	1.450E-08	1.029E-08	6.628E-09	4.832E-09	3.769E-09	3.070E-09	2.578E-09	2.212E-09	1.932E-09	1.709E-09		
ESE	2.270E-08	1.330E-08	9.413E-09	6.088E-09	4.479E-09	3.531E-09	2.909E-09	2.471E-09	2.144E-09	1.893E-09	1.693E-09		
SE	1.948E-08	1.151E-08	8.196E-09	5.348E-09	3.963E-09	3.147E-09	2.612E-09	2.234E-09	1.948E-09	1.728E-09	1.551E-09		
SSE	1.865E-08	1.123E-08	8.215E-09	5.754E-09	4.636E-09	4.010E-09	3.601E-09	3.268E-09	2.944E-09	2.655E-09	2.392E-09		
S	1.398E-08	8.290E-09	5.965E-09	4.011E-09	3.080E-09	2.540E-09	2.189E-09	1.941E-09	1.747E-09	1.592E-09	1.455E-09		
SSW	1.045E-08	6.126E-09	4.334E-09	2.802E-09	2.066E-09	1.636E-09	1.357E-09	1.162E-09	1.013E-09	8.986E-10	8.064E-10		
SW	1.348E-08	7.098E-09	4.588E-09	2.576E-09	1.705E-09	1.235E-09	9.488E-10	7.577E-10	6.223E-10	5.230E-10	4.469E-10		
WSW	9.647E-09	5.118E-09	3.338E-09	1.912E-09	1.292E-09	9.563E-10	7.468E-10	6.026E-10	4.974E-10	4.187E-10	3.577E-10		
W	1.127E-08	6.199E-09	4.175E-09	2.539E-09	1.769E-09	1.312E-09	1.010E-09	7.956E-10	6.441E-10	5.341E-10	4.513E-10		
WNW	1.542E-08	8.792E-09	6.119E-09	3.925E-09	2.793E-09	2.076E-09	1.579E-09	1.244E-09	1.010E-09	8.404E-10	7.120E-10		
NW	1.763E-08	9.840E-09	6.728E-09	4.223E-09	3.064E-09	2.342E-09	1.848E-09	1.490E-09	1.217E-09	1.014E-09	8.605E-10		
NNW	1.622E-08	9.339E-09	6.532E-09	4.212E-09	3.017E-09	2.255E-09	1.727E-09	1.360E-09	1.104E-09	9.171E-10	7.765E-10		

Table 2.7-151 Annual Average X/Q Values (8.0 Day Decay, Depleted) for Mixed-Mode Release from the Turbine Building Stack (Based on 1985-1989 met data) (Sheet 3 of 3)

X/Q (sec/m³) for Each Segment

Segment Boundaries in Miles from the Site													
Sector	.5-1	1-2	2-3	3-4	4-5	5-10	10-20	20-30	30-40	40-50			
N	4.973E-07	1.548E-07	6.444E-08	3.724E-08	2.498E-08	1.255E-08	5.361E-09	2.861E-09	1.772E-09	1.198E-09			
NNE	8.313E-07	2.350E-07	9.226E-08	5.359E-08	3.651E-08	1.769E-08	6.965E-09	3.588E-09	2.319E-09	1.668E-09			
NE	1.131E-06	2.845E-07	9.990E-08	5.537E-08	3.686E-08	1.854E-08	8.071E-09	4.574E-09	3.162E-09	2.398E-09			
ENE	9.210E-07	2.357E-07	8.545E-08	4.841E-08	3.271E-08	1.685E-08	7.595E-09	4.425E-09	3.122E-09	2.408E-09			
E	7.888E-07	2.020E-07	7.367E-08	4.206E-08	2.865E-08	1.485E-08	6.643E-09	3.773E-09	2.579E-09	1.932E-09			
ESE	7.840E-07	1.965E-07	7.037E-08	3.960E-08	2.667E-08	1.366E-08	6.112E-09	3.535E-09	2.472E-09	1.893E-09			
SE	6.509E-07	1.652E-07	5.967E-08	3.379E-08	2.285E-08	1.181E-08	5.365E-09	3.151E-09	2.233E-09	1.728E-09			
SSE	6.306E-07	1.592E-07	5.766E-08	3.258E-08	2.194E-08	1.154E-08	5.804E-09	4.013E-09	3.240E-09	2.643E-09			
S	5.053E-07	1.244E-07	4.393E-08	2.456E-08	1.647E-08	8.522E-09	4.032E-09	2.544E-09	1.938E-09	1.587E-09			
SSW	3.533E-07	9.051E-08	3.251E-08	1.830E-08	1.230E-08	6.289E-09	2.815E-09	1.639E-09	1.161E-09	8.982E-10			
SW	3.444E-07	1.121E-07	4.526E-08	2.510E-08	1.622E-08	7.400E-09	2.636E-09	1.246E-09	7.607E-10	5.242E-10			
WSW	2.513E-07	7.999E-08	3.182E-08	1.760E-08	1.149E-08	5.334E-09	1.954E-09	9.621E-10	6.037E-10	4.194E-10			
W	3.225E-07	9.806E-08	3.805E-08	2.095E-08	1.354E-08	6.425E-09	2.560E-09	1.313E-09	7.991E-10	5.360E-10			
WNW	4.272E-07	1.289E-07	5.057E-08	2.821E-08	1.844E-08	9.077E-09	3.910E-09	2.069E-09	1.251E-09	8.432E-10			
NW	4.769E-07	1.459E-07	5.758E-08	3.209E-08	2.102E-08	1.019E-08	4.265E-09	2.337E-09	1.489E-09	1.018E-09			
NNW	4.035E-07	1.240E-07	5.049E-08	2.873E-08	1.915E-08	9.620E-09	4.196E-09	2.247E-09	1.367E-09	9.203E-10			

Table 2.7-152 Annual Average D/Q Values for Mixed-Mode Release from the Turbine Building Stack (Based on 1985-1989 met data) (Sheet 1 of 3)

Distance in Miles from the Site												
Sector	0.25	0.5	0.75	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	
N	2.765E-08	1.153E-08	7.216E-09	3.951E-09	1.625E-09	8.936E-10	5.656E-10	3.900E-10	2.846E-10	2.164E-10	1.697E-10	
NNE	5.129E-08	2.093E-08	1.227E-08	6.502E-09	2.568E-09	1.388E-09	8.697E-10	5.958E-10	4.371E-10	3.353E-10	2.624E-10	
NE	6.475E-08	2.432E-08	1.330E-08	6.599E-09	2.436E-09	1.249E-09	7.543E-10	5.040E-10	3.602E-10	2.702E-10	2.103E-10	
ENE	4.778E-08	1.835E-08	1.017E-08	5.090E-09	1.892E-09	9.768E-10	5.931E-10	3.978E-10	2.851E-10	2.144E-10	1.670E-10	
E	3.941E-08	1.587E-08	8.962E-09	4.513E-09	1.672E-09	8.643E-10	5.256E-10	3.531E-10	2.536E-10	1.910E-10	1.491E-10	
ESE	3.832E-08	1.556E-08	8.798E-09	4.425E-09	1.634E-09	8.431E-10	5.120E-10	3.438E-10	2.468E-10	1.859E-10	1.452E-10	
SE	3.211E-08	1.300E-08	7.355E-09	3.706E-09	1.372E-09	7.094E-10	4.314E-10	2.899E-10	2.082E-10	1.569E-10	1.225E-10	
SSE	3.073E-08	1.188E-08	6.595E-09	3.298E-09	1.222E-09	6.298E-10	3.820E-10	2.561E-10	1.835E-10	1.380E-10	1.075E-10	
S	2.532E-08	9.258E-09	4.993E-09	2.456E-09	9.030E-10	4.602E-10	2.768E-10	1.843E-10	1.313E-10	9.831E-11	7.635E-11	
SSW	2.053E-08	7.652E-09	4.146E-09	2.039E-09	7.477E-10	3.803E-10	2.283E-10	1.519E-10	1.082E-10	8.103E-11	6.296E-11	
SW	2.861E-08	1.292E-08	8.666E-09	4.786E-09	1.980E-09	1.079E-09	6.775E-10	4.647E-10	3.381E-10	2.567E-10	2.013E-10	
WSW	1.856E-08	8.272E-09	5.513E-09	3.041E-09	1.256E-09	6.867E-10	4.324E-10	2.971E-10	2.165E-10	1.645E-10	1.335E-10	
W	2.451E-08	1.109E-08	6.617E-09	3.708E-09	1.482E-09	7.895E-10	4.882E-10	3.315E-10	2.397E-10	1.812E-10	1.418E-10	
WNW	2.936E-08	1.354E-08	8.467E-09	4.474E-09	1.784E-09	9.530E-10	5.909E-10	4.021E-10	2.911E-10	2.204E-10	1.725E-10	
NW	2.813E-08	1.310E-08	8.119E-09	4.721E-09	1.914E-09	1.030E-09	6.416E-10	4.378E-10	3.176E-10	2.407E-10	1.886E-10	
NNW	2.201E-08	8.907E-09	5.592E-09	3.098E-09	1.294E-09	7.174E-10	4.563E-10	3.155E-10	2.306E-10	1.754E-10	1.416E-10	

Table 2.7-152 Annual Average D/Q Values for Mixed-Mode Release from the Turbine Building Stack (Based on 1985-1989 met data) (Sheet 2 of 3)

Distance in Miles from the Site												
Sector	5	7.5	10	15.0	20	25.0	30	35.0	40	45.0	50	
N	1.364E-10	6.574E-11	3.996E-11	2.105E-11	2.895E-11	2.092E-11	1.361E-11	1.056E-11	8.277E-12	6.632E-12	5.417E-12	
NNE	2.107E-10	9.883E-11	5.986E-11	3.098E-11	1.950E-11	1.378E-11	1.050E-11	8.413E-12	6.976E-12	5.945E-12	5.189E-12	
NE	1.683E-10	7.727E-11	4.722E-11	2.456E-11	1.539E-11	1.090E-11	8.410E-12	6.876E-12	5.845E-12	5.089E-12	4.558E-12	
ENE	1.339E-10	6.177E-11	3.780E-11	1.972E-11	1.240E-11	8.871E-12	6.932E-12	5.752E-12	4.958E-12	4.373E-12	3.970E-12	
E	1.197E-10	5.551E-11	3.412E-11	1.794E-11	1.127E-11	8.109E-12	6.156E-12	4.855E-12	3.938E-12	3.263E-12	2.755E-12	
ESE	1.166E-10	5.409E-11	3.330E-11	1.752E-11	1.103E-11	7.967E-12	6.093E-12	4.858E-12	3.998E-12	3.425E-12	3.212E-12	
SE	9.837E-11	4.570E-11	2.807E-11	1.479E-11	9.318E-12	6.704E-12	5.267E-12	4.368E-12	3.782E-12	3.359E-12	3.062E-12	
SSE	8.619E-11	3.991E-11	2.449E-11	1.278E-11	8.090E-12	5.787E-12	9.466E-12	1.413E-11	1.202E-11	9.480E-12	7.206E-12	
S	6.103E-11	2.786E-11	1.703E-11	8.808E-12	5.503E-12	3.905E-12	3.037E-12	2.521E-12	3.209E-12	3.650E-12	5.129E-12	
SSW	5.036E-11	2.303E-11	1.408E-11	7.300E-12	4.574E-12	3.248E-12	2.514E-12	2.067E-12	1.774E-12	1.705E-12	1.993E-12	
SW	1.619E-10	7.624E-11	4.581E-11	2.359E-11	1.475E-11	1.031E-11	7.719E-12	6.045E-12	4.906E-12	4.128E-12	3.646E-12	
WSW	1.073E-10	5.018E-11	2.988E-11	1.523E-11	9.519E-12	6.752E-12	6.160E-12	5.460E-12	4.419E-12	3.579E-12	2.971E-12	
W	1.139E-10	5.332E-11	3.228E-11	2.195E-11	1.703E-11	1.165E-11	8.529E-12	6.465E-12	5.032E-12	4.023E-12	3.284E-12	
WNW	1.387E-10	6.622E-11	3.962E-11	3.293E-11	2.289E-11	1.552E-11	1.118E-11	8.433E-12	6.563E-12	5.243E-12	4.281E-12	
NW	1.517E-10	7.161E-11	4.338E-11	2.266E-11	2.469E-11	1.806E-11	1.301E-11	9.672E-12	7.554E-12	6.050E-12	4.943E-12	
NNW	1.137E-10	5.372E-11	3.236E-11	2.460E-11	2.173E-11	1.439E-11	1.030E-11	7.814E-12	6.088E-12	4.869E-12	3.976E-12	

Table 2.7-152 Annual Average D/Q Values for Mixed-Mode Release from the Turbine Building Stack (Based on 1985-1989 met data) (Sheet 3 of 3)

Segment Boundaries in Miles from the Site										
Sector	.5-1	1-2	2-3	3-4	4-5	5-10	10-20	20-30	30-40	40-50
N	6.723E-09	1.817E-09	5.828E-10	2.887E-10	1.712E-10	6.998E-11	2.876E-11	2.014E-11	1.056E-11	6.669E-12
NNE	1.163E-08	2.918E-09	8.983E-10	4.437E-10	2.648E-10	1.064E-10	3.229E-11	1.399E-11	8.461E-12	5.970E-12
NE	1.277E-08	2.834E-09	7.861E-10	3.670E-10	2.125E-10	8.414E-11	2.552E-11	1.110E-11	6.922E-12	5.116E-12
ENE	9.728E-09	2.196E-09	6.173E-10	2.904E-10	1.688E-10	6.714E-11	2.049E-11	9.037E-12	5.787E-12	4.397E-12
E	8.520E-09	1.944E-09	5.469E-10	2.582E-10	1.507E-10	6.028E-11	1.857E-11	8.171E-12	4.878E-12	3.275E-12
ESE	8.356E-09	1.902E-09	5.330E-10	2.513E-10	1.466E-10	5.874E-11	1.814E-11	8.034E-12	4.883E-12	3.516E-12
SE	6.987E-09	1.596E-09	4.489E-10	2.120E-10	1.237E-10	4.957E-11	1.531E-11	6.827E-12	4.402E-12	3.374E-12
SSE	6.304E-09	1.420E-09	3.977E-10	1.869E-10	1.086E-10	4.334E-11	1.330E-11	7.873E-12	1.199E-11	9.390E-12
S	4.813E-09	1.051E-09	2.887E-10	1.339E-10	7.718E-11	3.042E-11	9.166E-12	3.984E-12	2.931E-12	4.067E-12
SSW	3.989E-09	8.713E-10	2.383E-10	1.103E-10	6.365E-11	2.512E-11	7.594E-12	3.308E-12	2.083E-12	1.832E-12
SW	7.887E-09	2.203E-09	6.995E-10	3.433E-10	2.031E-10	8.175E-11	2.460E-11	1.046E-11	6.089E-12	4.180E-12
WSW	5.027E-09	1.400E-09	4.461E-10	2.197E-10	1.329E-10	5.384E-11	1.595E-11	7.253E-12	5.264E-12	3.603E-12
W	6.317E-09	1.669E-09	5.059E-10	2.437E-10	1.432E-10	5.744E-11	2.206E-11	1.184E-11	6.509E-12	4.048E-12
WNW	7.819E-09	2.012E-09	6.119E-10	2.959E-10	1.742E-10	7.050E-11	2.995E-11	1.575E-11	8.504E-12	5.278E-12
NW	7.716E-09	2.145E-09	6.637E-10	3.227E-10	1.904E-10	7.686E-11	2.817E-11	1.781E-11	9.820E-12	6.086E-12
NNW	5.220E-09	1.439E-09	4.696E-10	2.338E-10	1.413E-10	5.755E-11	2.505E-11	1.471E-11	7.867E-12	4.899E-12

Fiint Bishop Airport Clair Macomb Livingston ngham Ann Arbor University of Michigan Windsor A Detroit Metro Airport Ontario Monroe Adrian 2 NNE Monroe Lake Erie Michigan Ohio Toledo Express Airport Wood. Sandusky Henry 50 Miles **LEGEND** A Observing Site → Raliroad Interstates and Highways State Park or Forest Major Road Local Park or Recreational Area County Urban area (2000 Census population) state Boundary
International Boundary Less than 10k people 8.5 10k to 25k people Water Body PA OH

Figure 2.7-1 Climatological Observing Stations near the Fermi Site

Figure 2.7-2 Total Reports of Severe Hail for the Five-County Area (1955-2007)

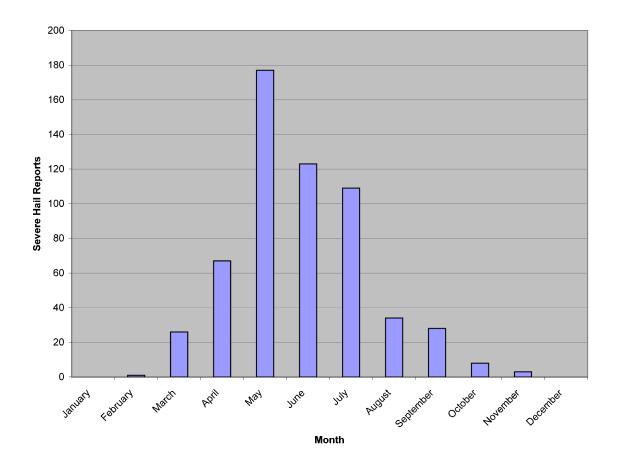


Figure 2.7-3 Total Hail Reports for the Five-County Area (1955-2007)

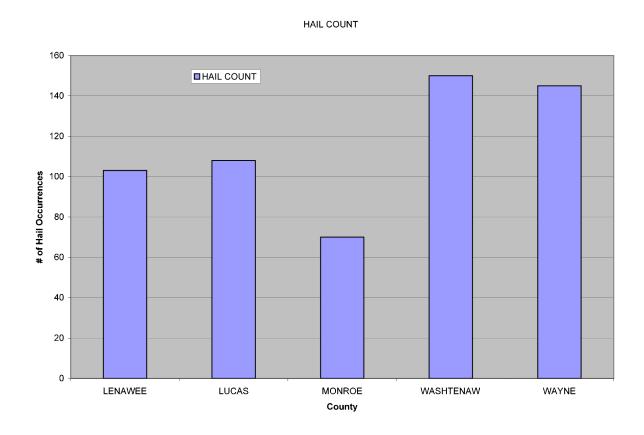


Figure 2.7-4 Detroit Metropolitan Airport Annual Precipitation Rose (2003-2007)

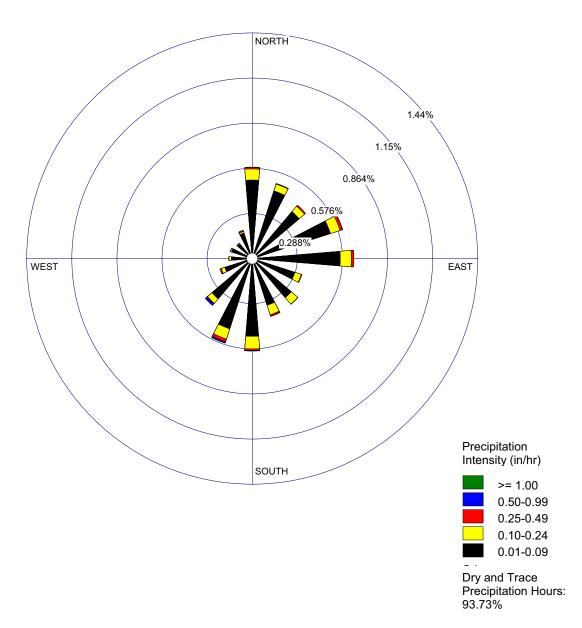


Figure 2.7-5 Detroit Metropolitan Airport January Precipitation Rose (2003-2007)

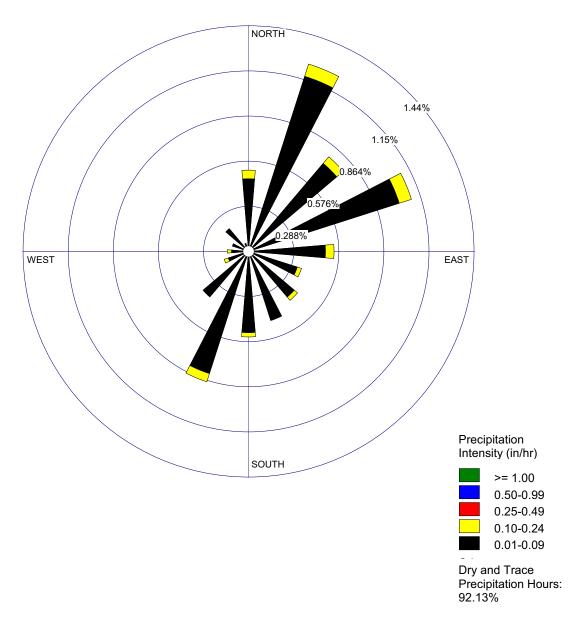


Figure 2.7-6 Detroit Metropolitan Airport February Precipitation Rose (2003-2007)

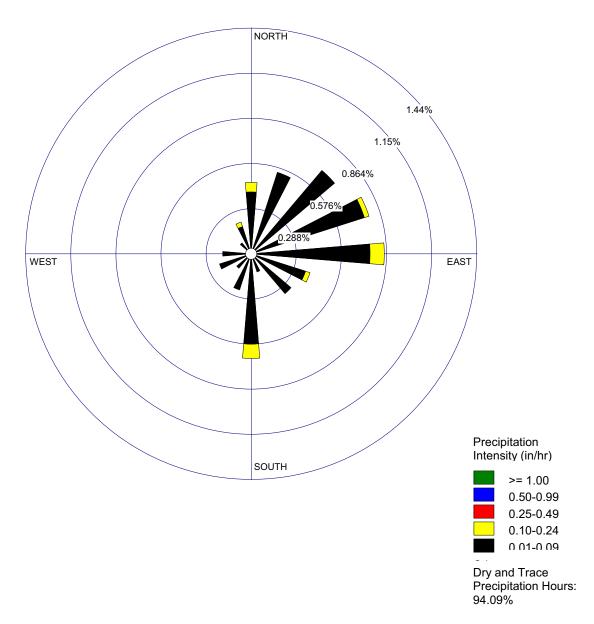


Figure 2.7-7 Detroit Metropolitan Airport March Precipitation Rose (2003-2007)

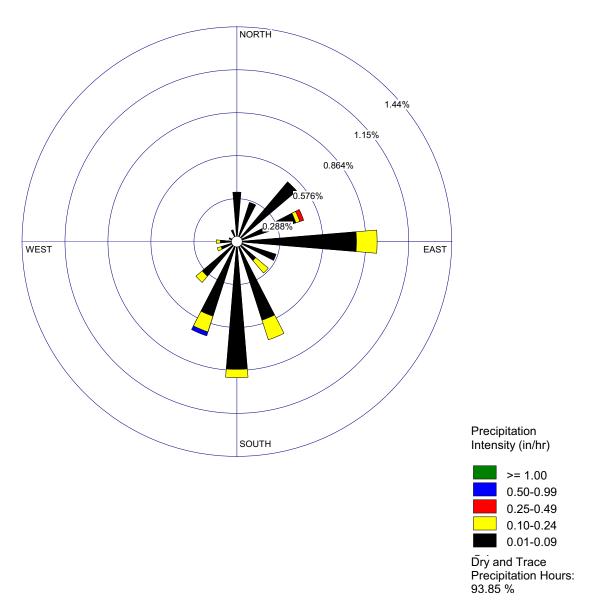


Figure 2.7-8 Detroit Metropolitan Airport April Precipitation Rose (2003-2007)

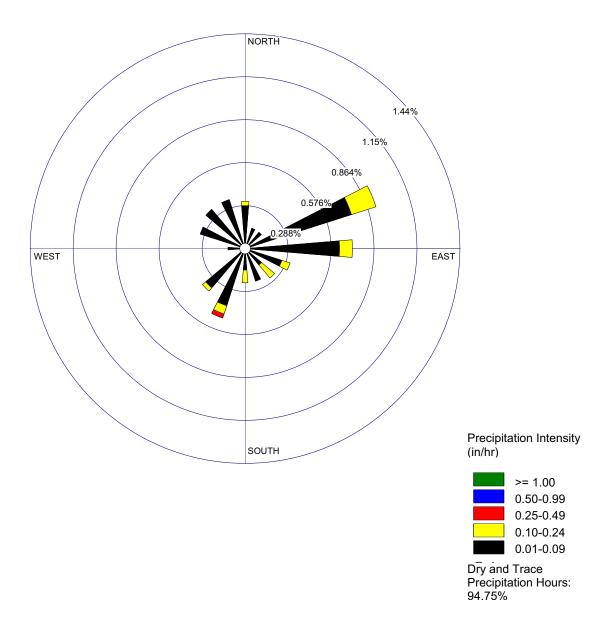


Figure 2.7-9 Detroit Metropolitan Airport May Precipitation Rose (2003-2007)

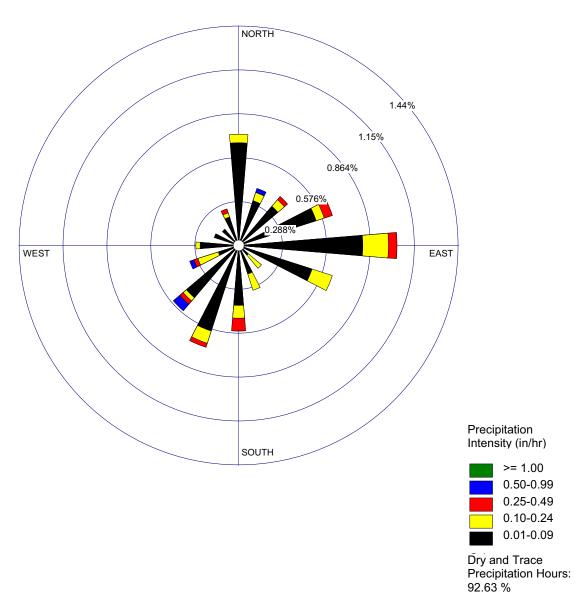


Figure 2.7-10 Detroit Metropolitan Airport June Precipitation Rose (2003-2007)

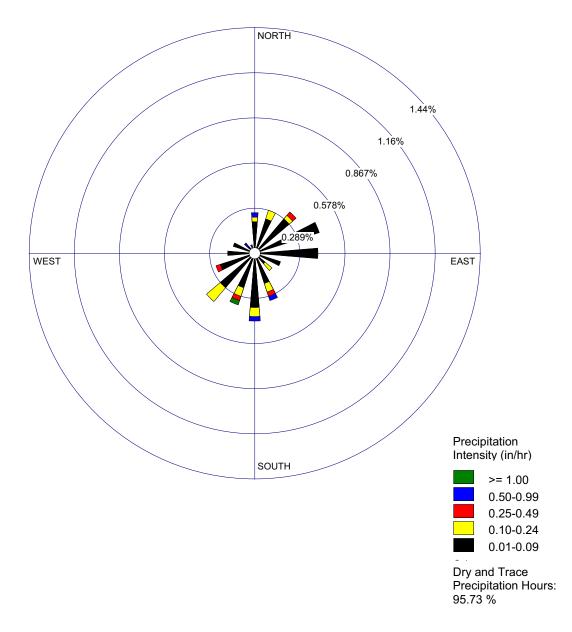


Figure 2.7-11 Detroit Metropolitan Airport July Precipitation Rose (2003-2007)

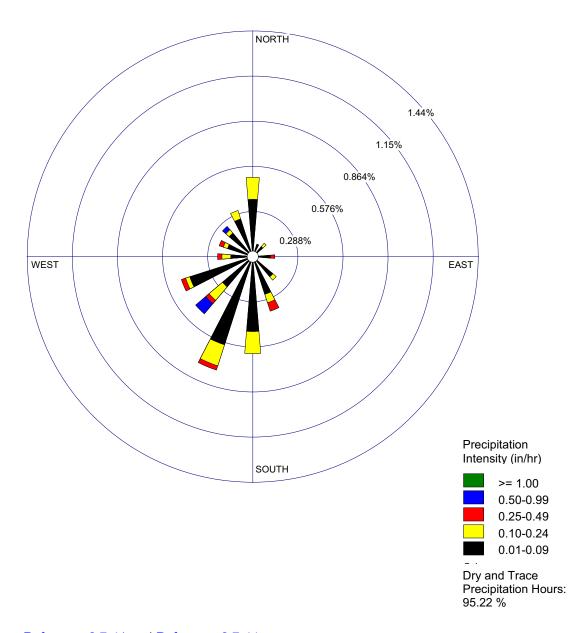


Figure 2.7-12 Detroit Metropolitan Airport August Precipitation Rose (2003-2007)

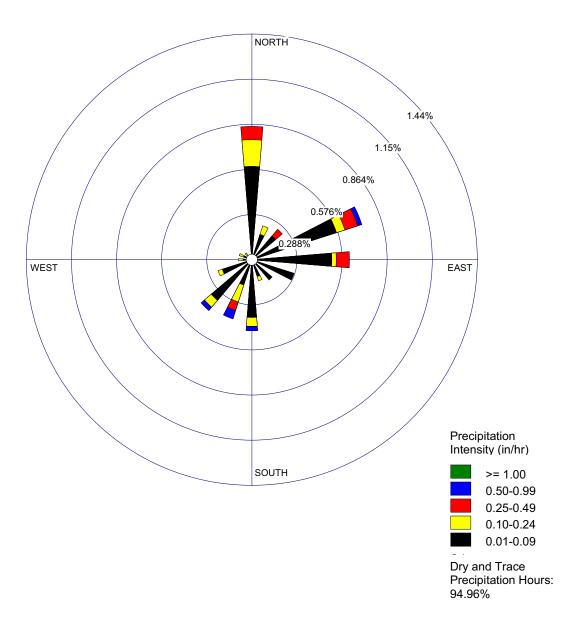


Figure 2.7-13 Detroit Metropolitan Airport September Precipitation Rose (2003-2007)

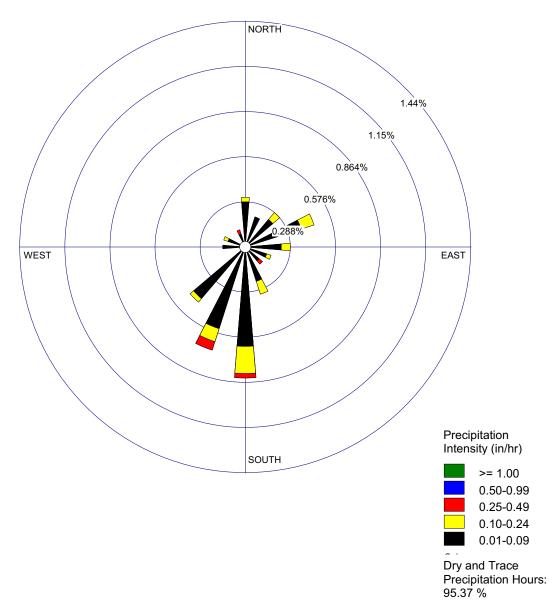


Figure 2.7-14 Detroit Metropolitan Airport October Precipitation Rose (2003-2007)

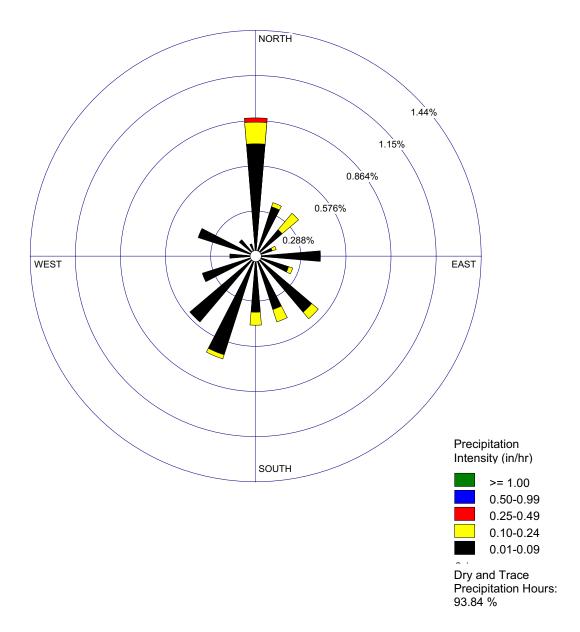


Figure 2.7-15 Detroit Metropolitan Airport November Precipitation Rose (2003-2007)

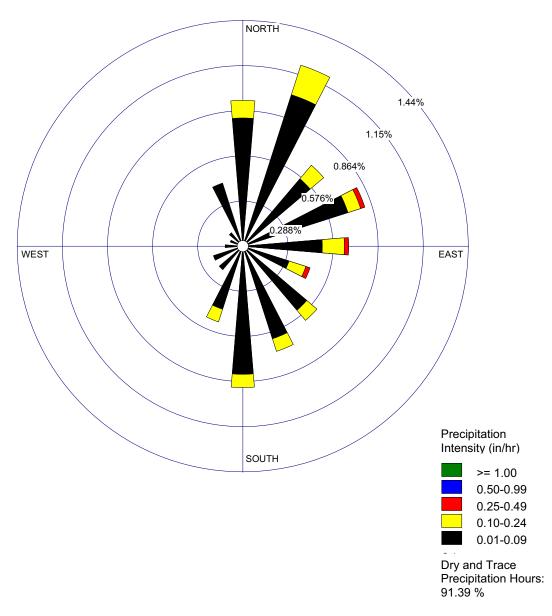


Figure 2.7-16 Detroit Metropolitan Airport December Precipitation Rose (2003-2007)

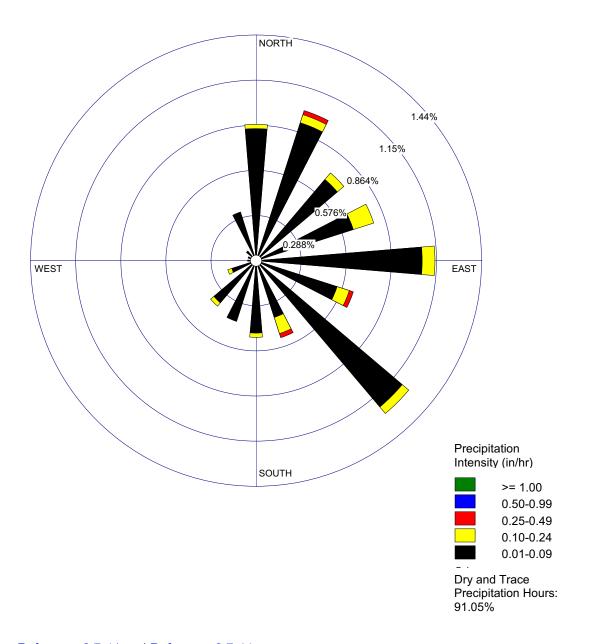


Figure 2.7-17 Detroit Metropolitan Airport Annual Wind Rose (2003-2007)

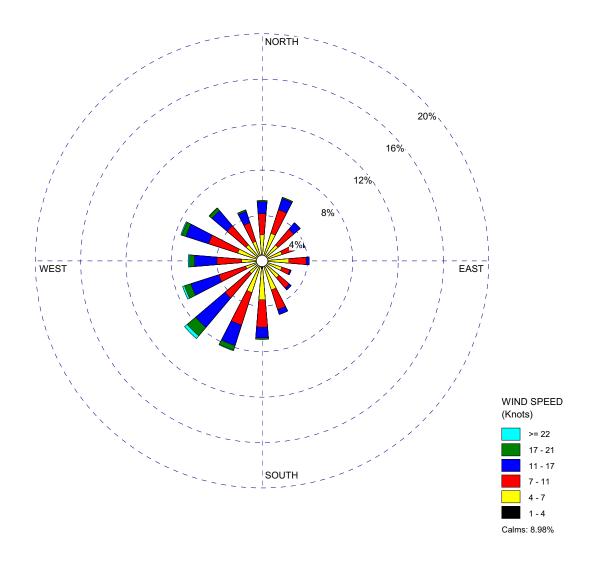


Figure 2.7-18 Detroit Metropolitan Airport January Wind Rose (2003-2007)

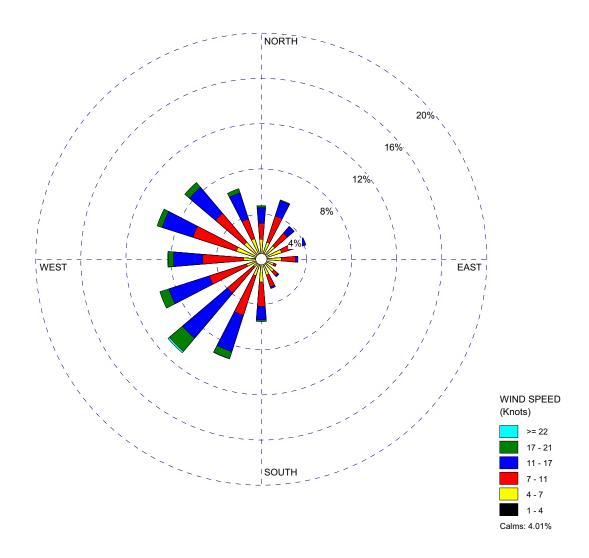


Figure 2.7-19 Detroit Metropolitan Airport February Wind Rose (2003-2007)

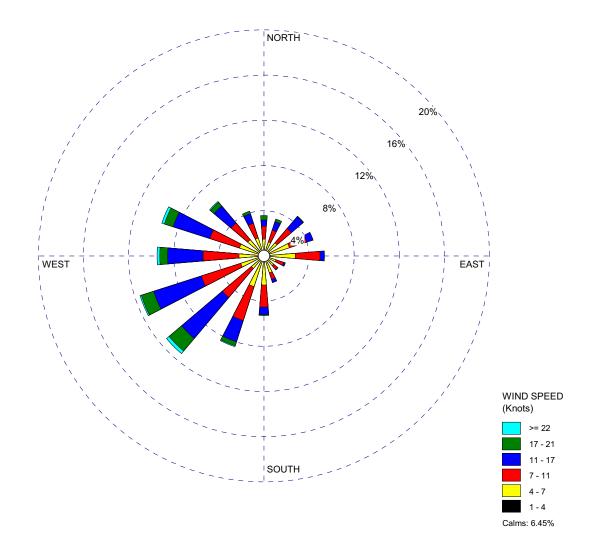


Figure 2.7-20 Detroit Metropolitan Airport March Wind Rose (2003-2007)

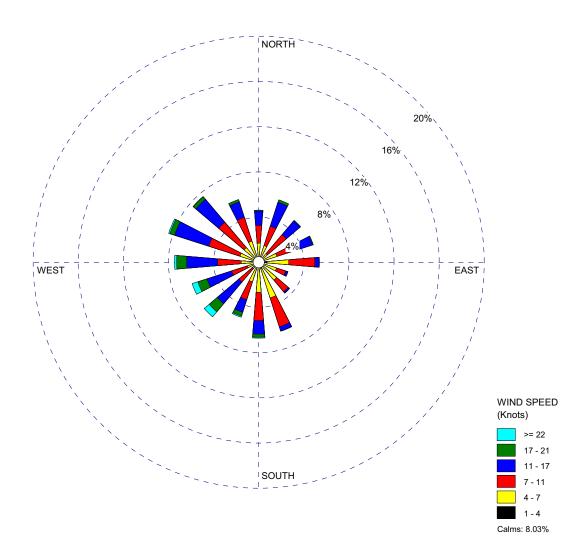


Figure 2.7-21 Detroit Metropolitan Airport April Wind Rose (2003-2007)

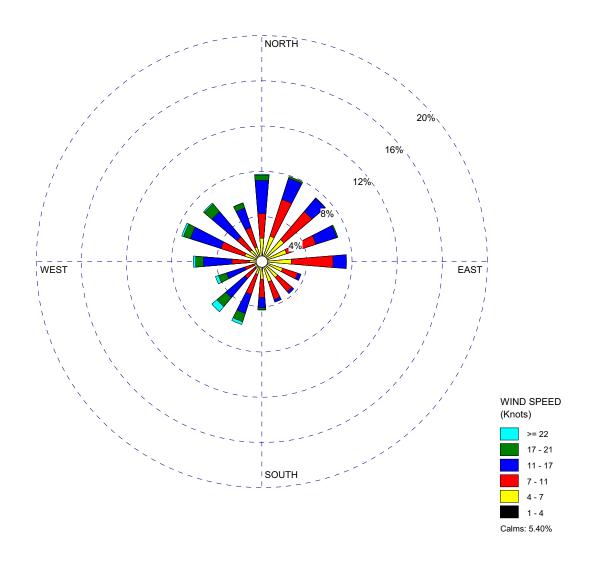


Figure 2.7-22 Detroit Metropolitan Airport May Wind Rose (2003-2007)

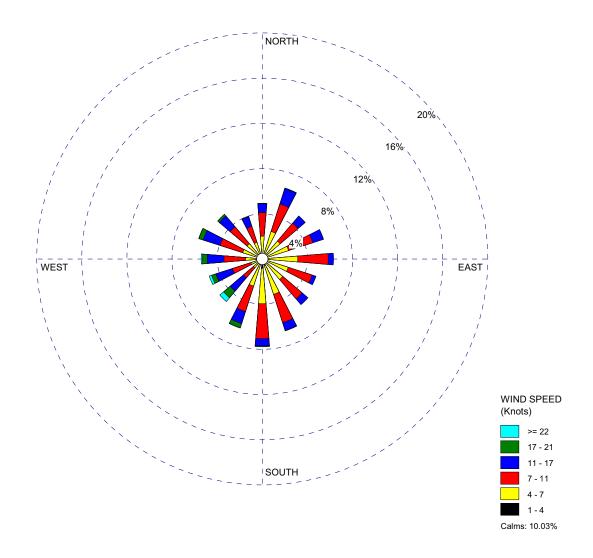


Figure 2.7-23 Detroit Metropolitan Airport June Wind Rose (2003-2007)

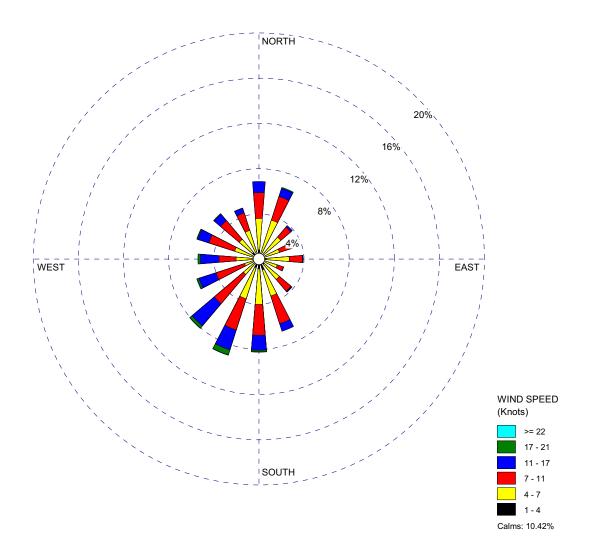


Figure 2.7-24 Detroit Metropolitan Airport July Wind Rose (2003-2007)

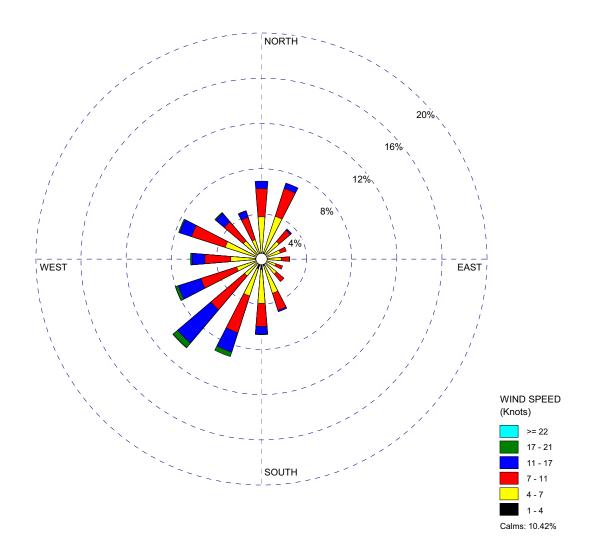


Figure 2.7-25 Detroit Metropolitan Airport August Wind Rose (2003-2007)

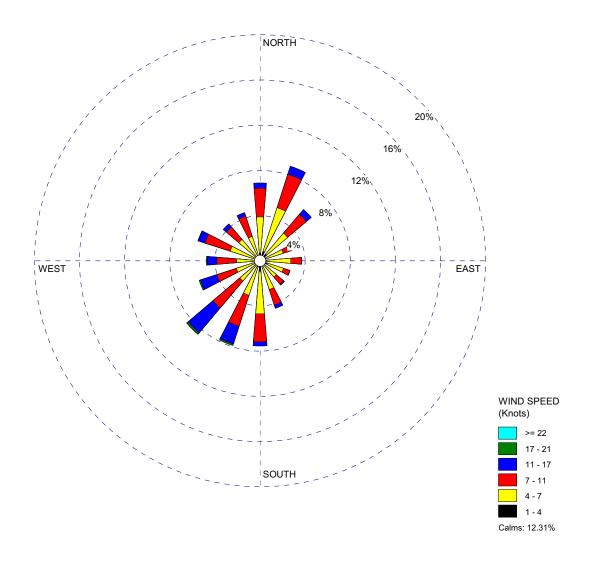


Figure 2.7-26 Detroit Metropolitan Airport September Wind Rose (2003-2007)

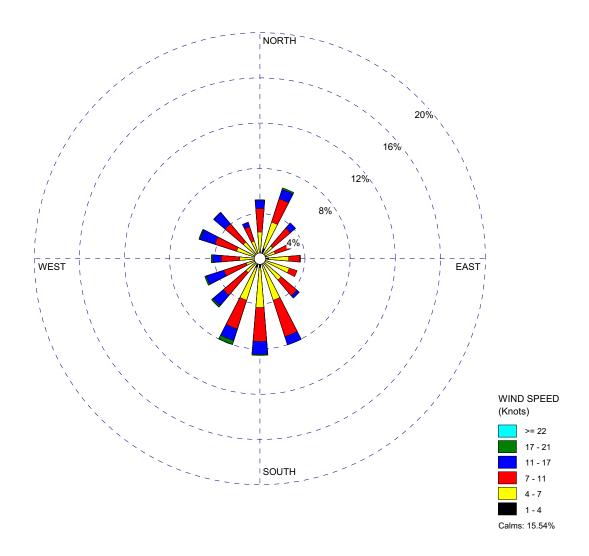


Figure 2.7-27 Detroit Metropolitan Airport October Wind Rose (2003-2007)

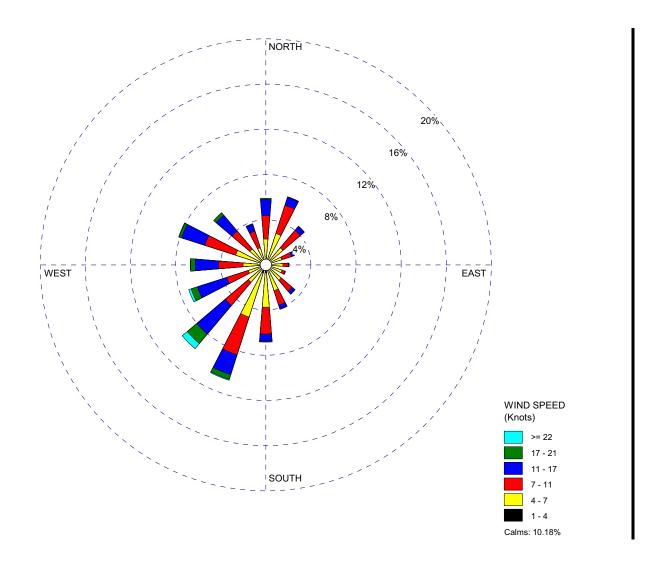


Figure 2.7-28 Detroit Metropolitan Airport November Wind Rose (2003-2007)

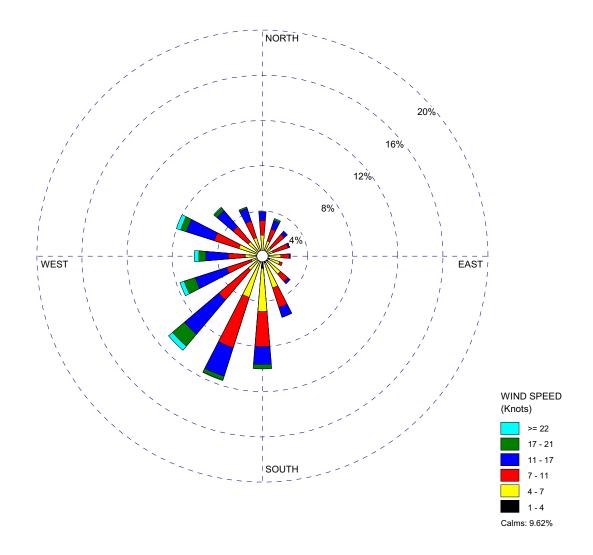
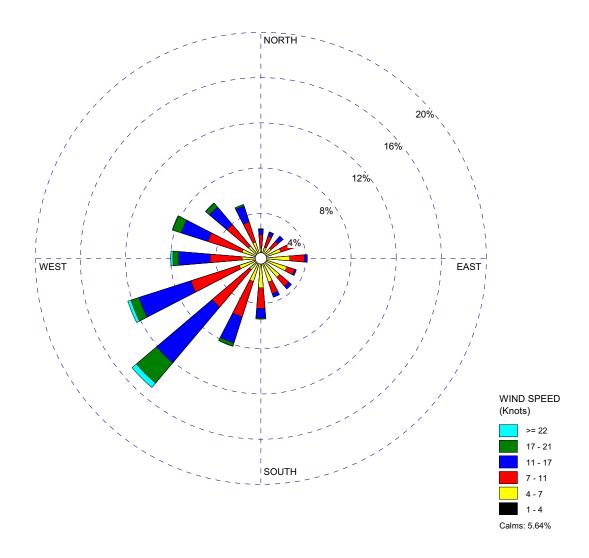



Figure 2.7-29 Detroit Metropolitan Airport December Wind Rose (2003-2007)

NORTH

NO

Figure 2.7-30 Fermi Site 10-Meter Annual Wind Rose (2003-2007)

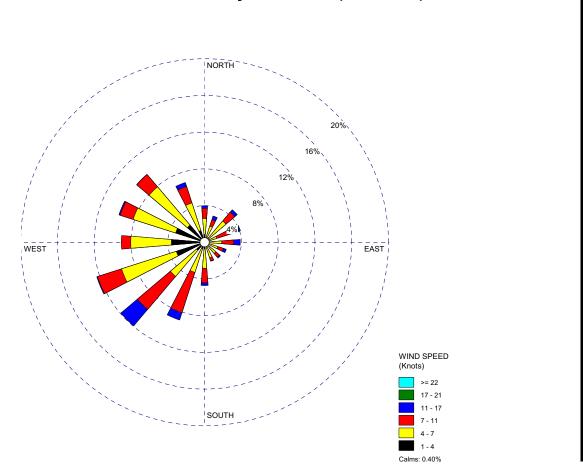
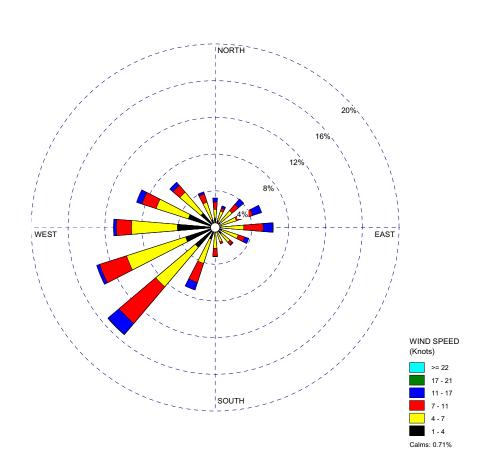
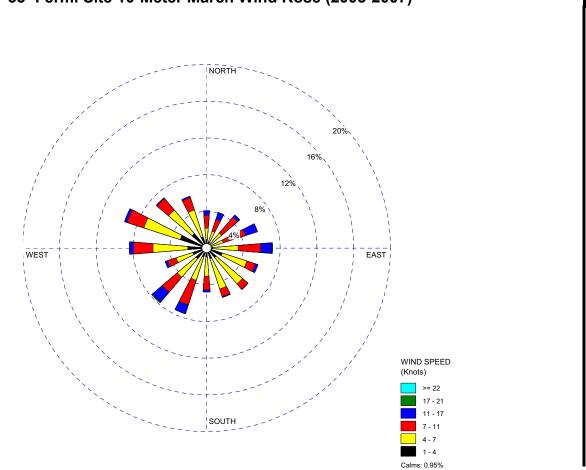




Figure 2.7-31 Fermi Site 10-Meter January Wind Rose (2003-2007)

Figure 2.7-32 Fermi Site 10-Meter February Wind Rose (2003-2007)

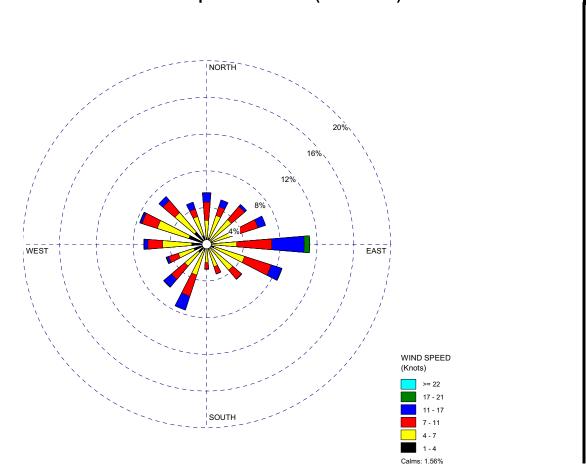
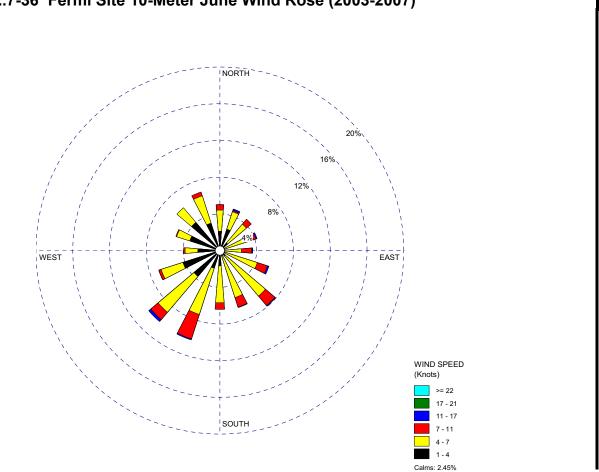
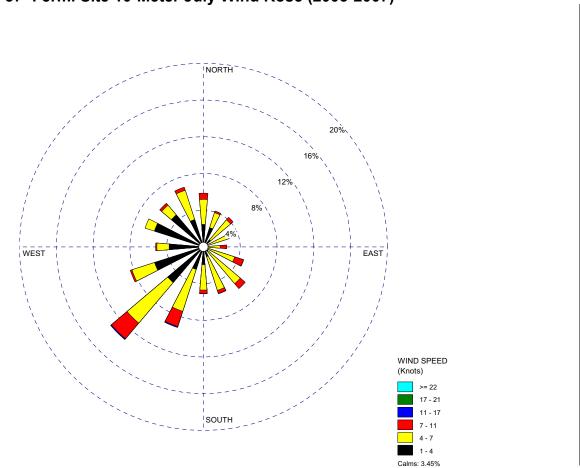




Figure 2.7-34 Fermi Site 10-Meter April Wind Rose (2003-2007)

| NORTH | Site 10-Meter May Will Rose (2003-2007) | NORTH | NO

Figure 2.7-35 Fermi Site 10-Meter May Wind Rose (2003-2007)

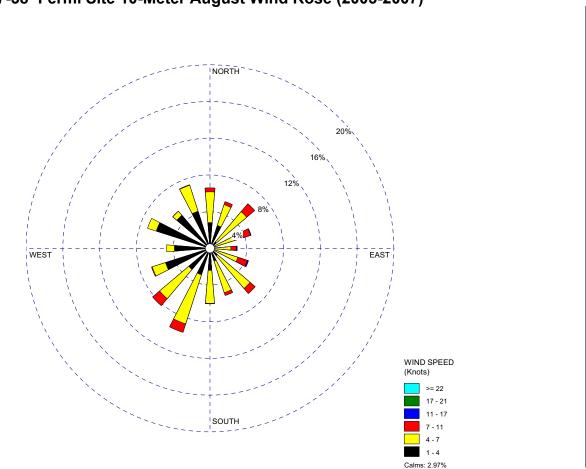


Figure 2.7-38 Fermi Site 10-Meter August Wind Rose (2003-2007)

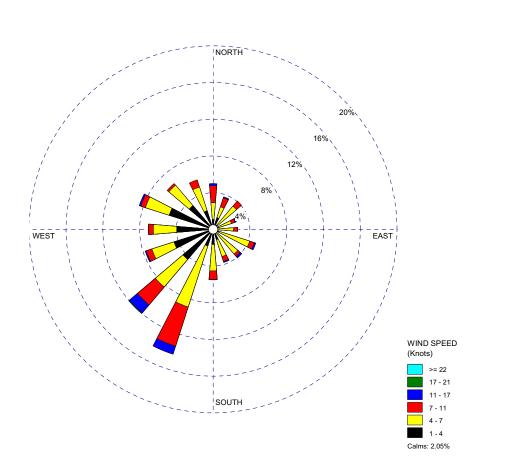
Calms: 2.22%

WEST

NORTH

20%

12%


WEST

WIND SPEED (Knots)

>> 22

Figure 2.7-39 Fermi Site 10-Meter September Wind Rose (2003-2007)

Figure 2.7-40 Fermi Site 10-Meter October Wind Rose (2003-2007)

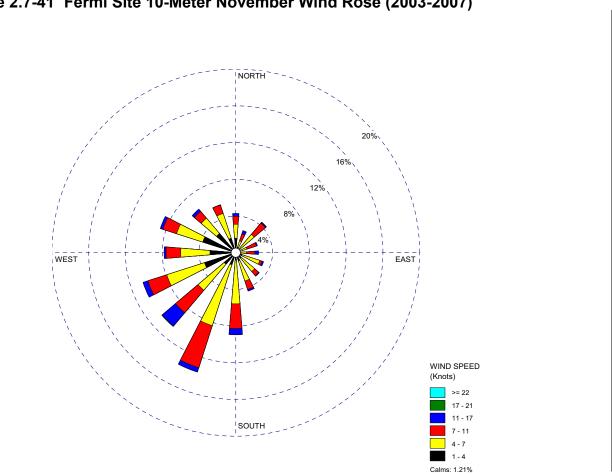


Figure 2.7-41 Fermi Site 10-Meter November Wind Rose (2003-2007)

Figure 2.7-42 Fermi Site 10-Meter December Wind Rose (2003-2007)

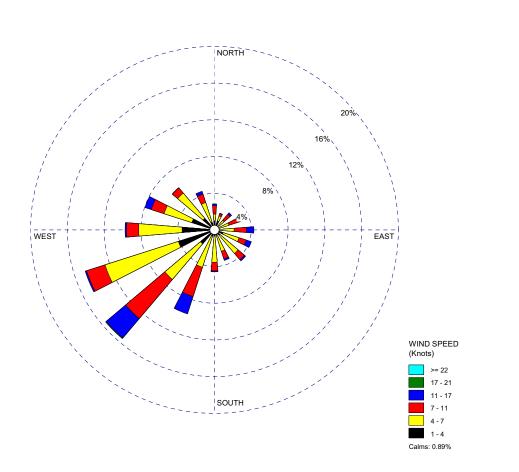
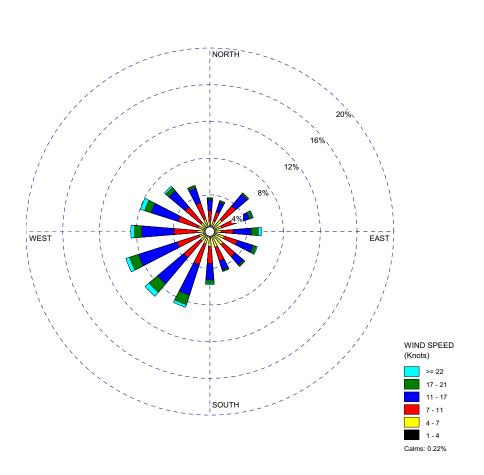



Figure 2.7-43 Fermi Site 60-Meter Annual Wind Rose (2003-2007)

EAST WEST WIND SPEED (Knots) >= 22 Calms: 0.00%

Figure 2.7-44 Fermi Site 60-Meter January Wind Rose (2003-2007)

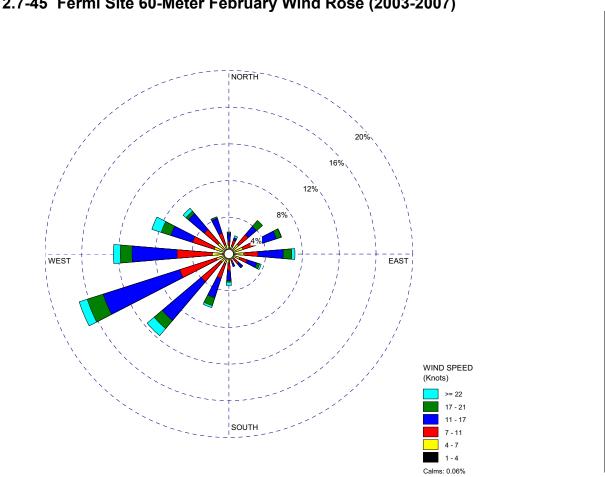


Figure 2.7-45 Fermi Site 60-Meter February Wind Rose (2003-2007)

NORTH

20%

16%

12%

8%

12%

SOUTH

EAST

WIND SPEED (Knots)

17 - 21

11 - 17

7 - 11

4 - 7

1 - 4

Caims 0.00%

Figure 2.7-46 Fermi Site 60-Meter March Wind Rose (2003-2007)

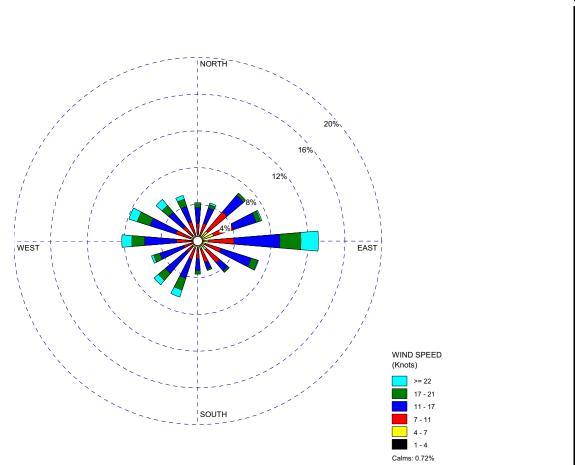
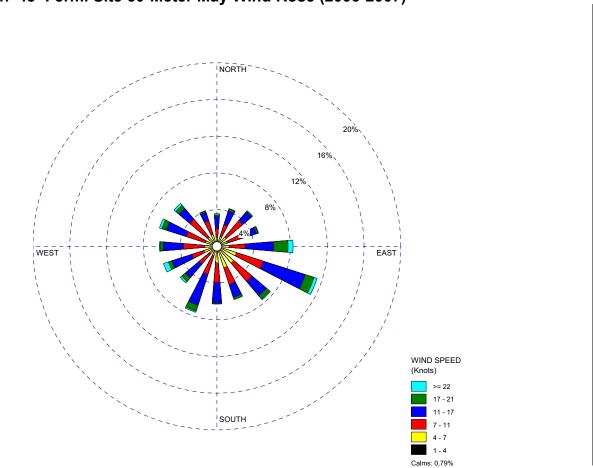



Figure 2.7-47 Fermi Site 60-Meter April Wind Rose (2003-2007)

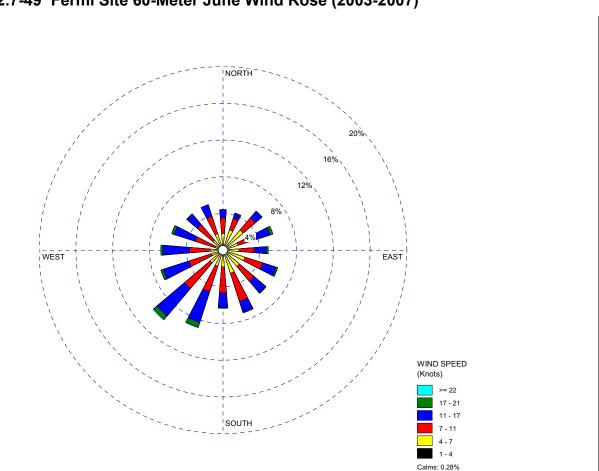
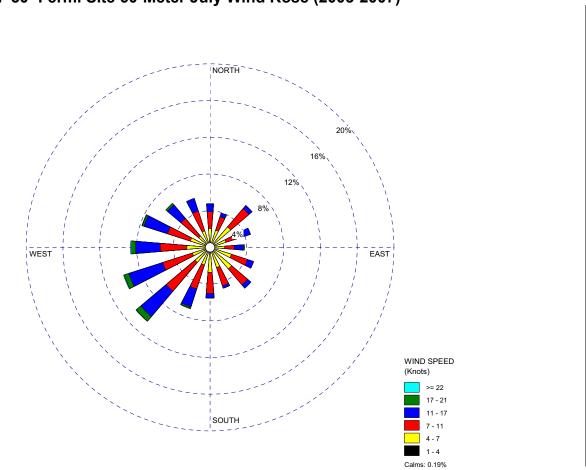



Figure 2.7-49 Fermi Site 60-Meter June Wind Rose (2003-2007)

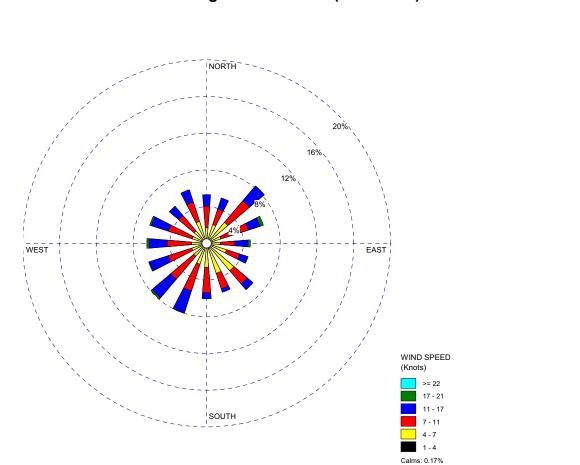


Figure 2.7-51 Fermi Site 60-Meter August Wind Rose (2003-2007)

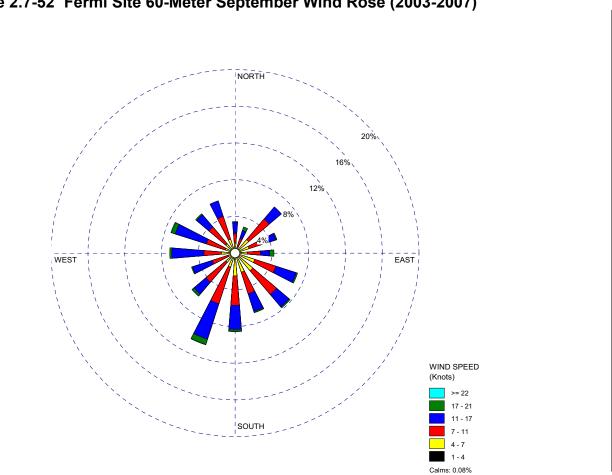


Figure 2.7-52 Fermi Site 60-Meter September Wind Rose (2003-2007)

Calms: 0.03%

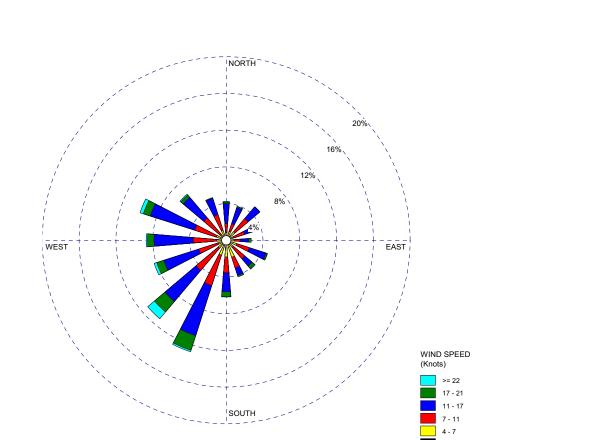


Figure 2.7-53 Fermi Site 60-Meter October Wind Rose (2003-2007)

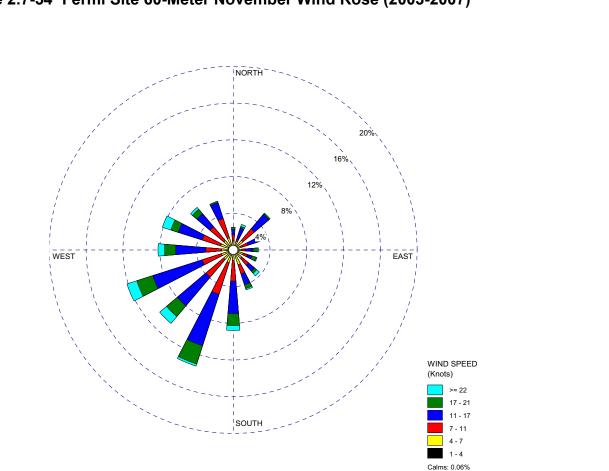


Figure 2.7-54 Fermi Site 60-Meter November Wind Rose (2003-2007)

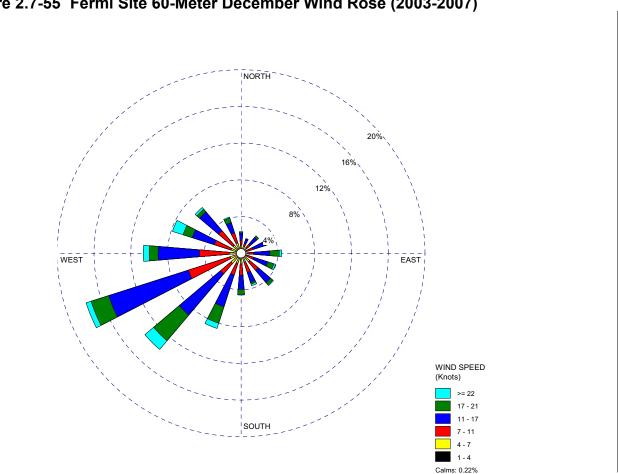


Figure 2.7-55 Fermi Site 60-Meter December Wind Rose (2003-2007)

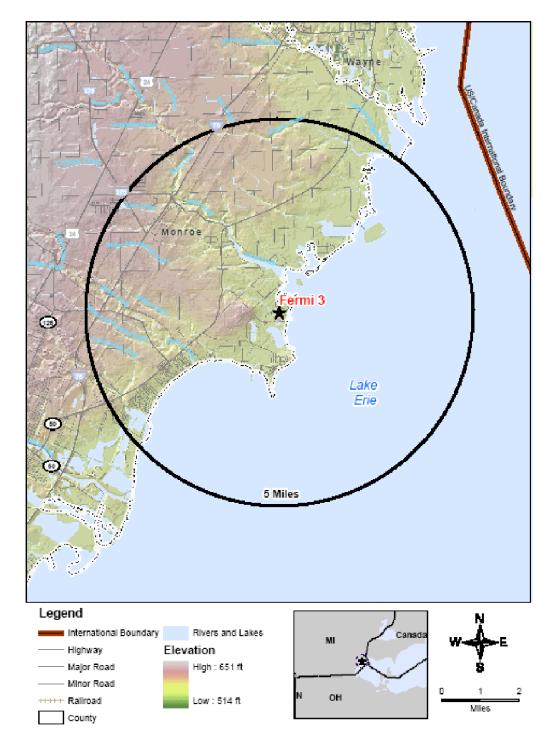


Figure 2.7-56 Topographic Features Within 5 Miles of the Fermi Site

Oakland Macomb 40 Livingston Washtenaw 100 Ontario 3 Monroe Lake Erie Fulton Wood Sandusky 50 Miles Huron Seneca Legend International Boundary County Canada MI State Boundary High: 1146 ft Highway Major Roads ОН Low: 570 ft Miles

Figure 2.7-57 Topographic Features Within 50 Miles of the Fermi Site

Figure 2.7-58 Terrain Elevation Profiles Within 5 Miles of the Fermi Site (Sheet 1 of 2)

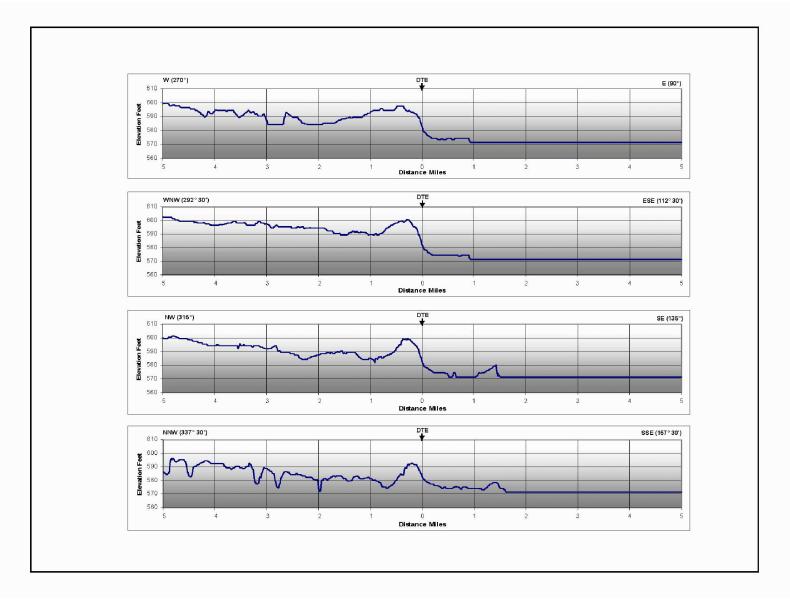


Figure 2.7-58 Terrain Elevation Profiles Within 5 Miles of the Fermi Site (Sheet 2 of 2)

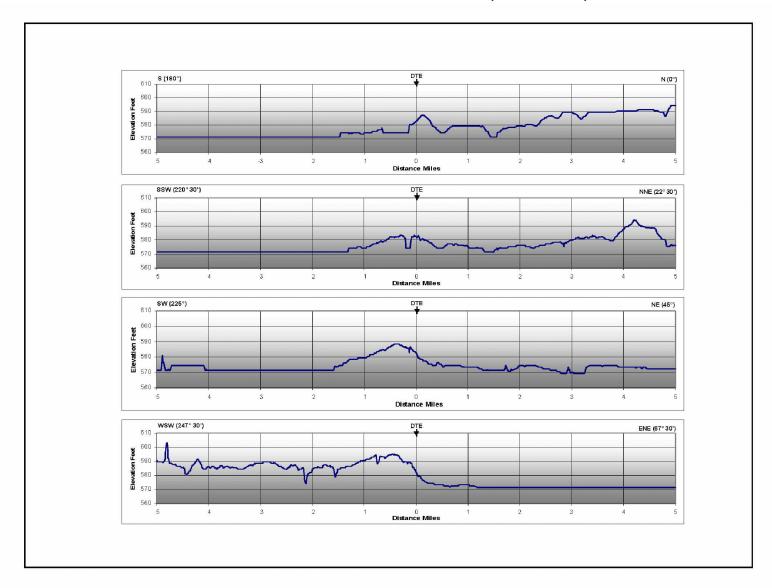


Figure 2.7-59 Terrain Elevation Profiles Within 50 Miles of the Fermi Site (Sheet 1 of 2)

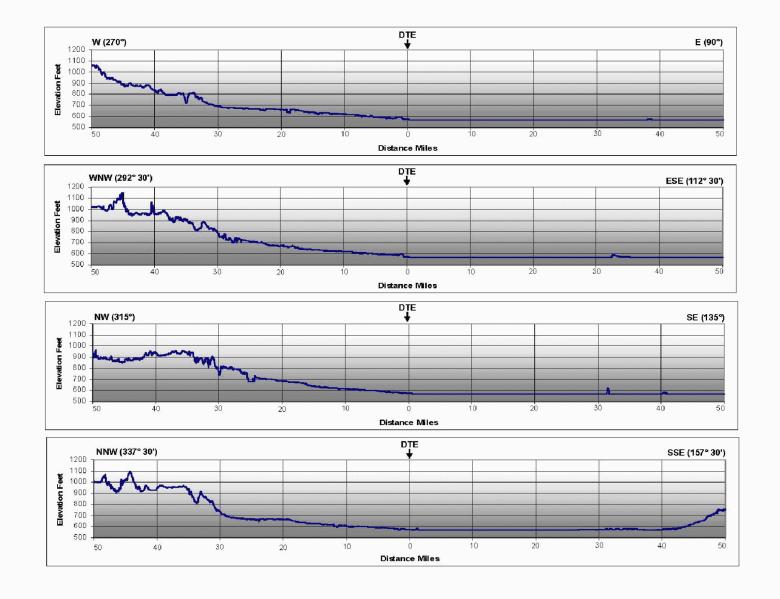
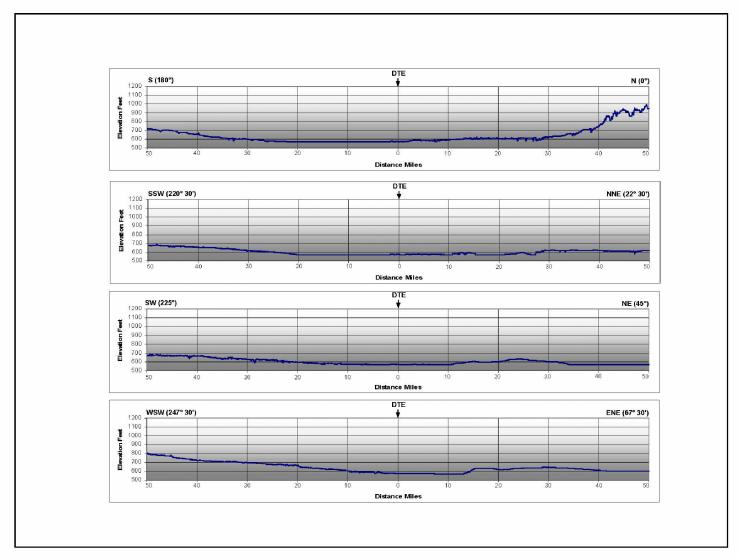



Figure 2.7-59 Terrain Elevation Profiles Within 50 Miles of the Fermi Site (Sheet 2 of 2)

2.8 Related Federal Project Activities

The purpose of this section is to identify Federal activities directly related to the proposed project in order to: (1) determine the need for other Federal agencies (i.e., cooperating agencies) to participate in the preparation of the environmental impact statement; and (2) assess the interrelationship and cumulative environmental impacts of the proposed project and related federal activities.

The scope of this review is limited to directly-related Federal project activities that affect land acquisitions or use, transmission line routing, plant siting and water supply, construction or operation of Fermi 3, or the need for power. Actions related to the granting of licenses, permits, or approvals by other Federal agencies are not discussed in this section.

2.8.1 Federal Actions Related to Land Acquisitions or Use Affecting Fermi 3 Project

No Federal actions associated with the acquisition and/or use of the proposed site and transmission corridors or any other offsite property needed for the proposed project were identified. Fermi 3 is sited on the existing Enrico Fermi (Fermi) site that is owned by the Applicant. While no Federal actions are associated with the acquisition or use of the land for the construction or operation of Fermi 3, Detroit Edison and the USFWS entered a Cooperative Agreement (Agreement) September 25, 2003 concerning portions of the Fermi site. Under the Agreement, Detroit Edison authorized the USFWS to include certain lands and waters on the Fermi site within the DRIWR. The Agreement allows either party to end the agreement either in whole or in part through mutual agreement, or at the option of either party, upon 90 days written notice to the other. Therefore, lands currently operated as part of the DRIWR, subject to the National Wildlife Refuge System rules, will be removed from the Agreement. However, the Applicant intends to return all available wetlands, that can be returned, to the DRIWR following construction.

The offsite 345 kV transmission system and associated corridors are exclusively owned and operated by ITC *Transmission*. The Applicant has no control over the construction or operation of the offsite transmission system. ITC *Transmission* has identified the need for additional transmission lines and an undeveloped corridor to accommodate Fermi 3. New transmission lines associated with Fermi 3 will largely be placed within existing transmission corridors, and existing infrastructure within the corridors will be used. Activities associated with the transmission system may require the acquisition of new right-of-ways, and will involve the construction of new transmission towers. However, it is not expected that these activities will require any Federal action.

2.8.2 Plant Siting and Cooling Water Source and Supply

No directly related Federal activities or relevant cooperating agencies that affect plant siting or water supply were identified. Fermi 3 utilizes a closed-cycle hyperbolic natural draft cooling tower for the Normal Power Heat Sink (NPHS), and mechanical draft cooling towers for the Alternative Heat Sink. Makeup cooling water for the cooling towers is drawn through an intake bay formed by two rock groins extending into Lake Erie.

2.8.3 Other Federal Actions Affecting Construction or Operation

A review of Federal agency public records was conducted to identify other planned Federal projects or activities that must be completed as a condition of plant construction or operation. No other Federal activities were identified that would affect the construction or operation of Fermi 3.

2.8.4 Federal Agency Plans Influencing Need for Power Justification

A review of the need for power analysis was conducted to identify Federal agency plans or commitments resulting in significant new power purchases within the Applicant's service area that were used to justify a need for power. No Federal projects or activities were identified as generating significant new power purchases within the Applicant's service area, nor have Federal projects or activities been used to justify a need for power.

2.8.5 Planned Federal Projects Contingent on Plant Construction or Operation

Based on review of Federal agency public records there are no planned Federal projects or activities that are contingent on plant construction and operation. There are currently no special relationships between the Applicant and Federal agencies dependent upon construction of Fermi 3.

2.8.6 References

None.