

NRC Public Meeting

Peach Bottom

Proposed Actions to Address Containment Accident Pressure (CAP) Credit

02/22/11

Introductions

- Meeting Purpose
- **ECCS** Pump NPSH:
 - Current Licensed CAP Credit
 - Preliminary Results / Impacts / Margins

Proposed Modifications to Address CAPNext Steps

- Familiarize Staff with Proposed Approach for Addressing Containment Accident Pressure Credit in Support of EPU
 - Proposed Modifications that would eliminate the need to request additional CAP credit
 - Proposed Modifications' impact on existing CAP Credit
 - Preliminary results, expected outcomes, and plant and operational impacts
- Discuss Next Steps

ECCS Pump NPSH

DBA-LOCA

CLTP with CAP				
ECCS Pump	Maximum SP Temperature (°F)	Minimum Containment Pressure Available, MCPA (psig)	Containment Overpressure Required, COPR (psig)	NPSH Margin = MCPA - COPR (feet)
CS – ST	149	7.0	0.0	16.2
RHR - ST	149	7.0	0.6	14.8
CS - LT	206	7.0	4.8	5.4
RHR - LT	206	7.0	6.1	2.1

No CAP with modifications (preliminary data - analyzed at 120% OLTP)				
ECCS Pump	Maximum SP Temperature (°F)	NPSHA @ Max. SP Temp. (feet)	NPSHR 3% (feet)	NPSH Margin = NPSHA – NPSHR3% (feet)
CS - ST	155	34.0	28.0	6.0
RHR - ST	155	32.1	26.8	5.3
CS - LT	185.3	26.0	21.3	4.7
RHR - LT	185.3	23.8	16.0	7.8

Exel^{to}n.

Special Events (Non-Design-Basis)

CLTP with CAP				
Event - Pump	Maximum SP Temperature NPSH Basis (°F)	Containment Pressure, CP (psig)	COPR (psig)	NPSH Margin = CP - COPR (feet)
SBO - RHR	190	4.6	2.1	6.0
ATWS - RHR	190	4.6	2.1	6.0
App. R - RHR	206	6.9	5.8	2.6

No CAP with modifications (preliminary data - analyzed at 120% OLTP)				
Event - Pump	Maximum SP Temperature (°F)	NPSHA @ Maximum SP Temperature (feet)	NPSHR 3% (feet)	NPSH Margin = NPSHA – NPSHR3% (feet)
SBO - RHR	196.0	19.5	16.0	3.5
ATWS - RHR	168.3	30.8	16.0	14.8
App. R - CS	196.4	21.9	21.3	0.6
App. R - RHR	204.3	16.5	16.0	0.5

Exel^on.

Proposed Changes to Address CAP

ECCS Pump NPSH - Events	Proposed Changes
DBA-LOCA Short-Term (first 10 minutes)	Reduce RHR runout flow rate by adding hydraulic resistance
DBA-LOCA Long-Term (beyond 10 minutes)	 > RHR HX cross-tie modification > Increase RHR HX performance (reduce fouling) > Decrease RHR flow rate > NPSHR 3% curves
Station Blackout (SBO)	 Increase RHR HX performance (reduce fouling) Decrease RHR flow rate NPSHR 3% curves Credit CST as suction source for RCIC pump
ATWS (Peak Pool Temperature)	 Increase SBLC Boron Enrichment Increase RHR HX performance (reduce fouling) Decrease RHR flow rate NPSHR 3% curves
Appendix R	 Increase RHR HX performance (reduce fouling) Decrease RHR flow rate NPSHR 3% curves Increase/Supplement CST Inventory

DBA-LOCA Short-Term (1st 10 minutes)

Core Spray – no modifications

- RHR Pump (LPCI) Runout Flow Rate: Current analysis requires CAP (from 7.5 to 10 minutes)
 - Current: 12,000 gpm
 - Post Mod: 10,600 gpm (adjust limit stops to increase HX

inlet MOV hydraulic resistance)

- Margins at 10 minutes (maximum pool temperature = 155°F):
 - RHR (LPCI) pumps at 10,600 gpm (runout): 5.3 feet (18.6°F)
 - Core Spray pumps at 4,030 gpm (runout): 6.0 feet (20.5°F)

ECCS Pump NPSH

DBA-LOCA Long-Term (beyond 10 minutes)

Core Spray - no modifications, no new operator actions

- RHR Pump (LPCI) Core and Containment Cooling Analysis Flow Rate:
 - Current: 10,000 gpm
 - Post Mod: 8,600 gpm (analysis value operators maintain flow within 8,600 - 10,600 gpm range in accordance with EOP NPSH curves)
- Margins at peak pool temperature, 185.3°F:
 - RHR (LPCI) pumps at 8,600 gpm (throttled): 7.8 feet (15.6°F)
 - Core Spray pumps at 3,125 gpm (throttled): 4.7 feet (9.9°F)

Peak Suppression Pool Temperatures	Current	Post Mod (@120% OLTP)
DBA-LOCA		(0120/00211)
Short-term	150°F	155°F
Long-term	206°F	185°F
PCT (2200°F limit)		
Small-break	1865°F	1904°F*
Large-break	1653°F	<1700°F*

* PBAPS remains small-break LOCA limited. Large break PCT is affected by LPCI flow rate reduction, but small-break LOCA remains limiting.

 EDG electrical loading Remains within 2000 hour rating EDG E2 0-10 minute loading - restored to within 2000 hour rating

RHR HX Cross-tie Modification Concept

U2-DIV I

Exelon.

- Cross-tie RHR pump discharge lines in the same division:
 - 1 normally closed cross-tie MOV controlled from control room
 - 2 normally open manual isolation valves in cross-tie piping
 - 1 Throttling valve (MOV controlled from control room) in RHR supply line to each HX
 - Approx. 25 30 ft. pipe for cross-tie line
 - Flow elements with instruments indicate RHR flow in control room (RG 1.97)
- Containment cooling capability increased approximately 164% of existing capability

- Impact to Operators New Operator Actions
 - Start 1 additional HPSW pump within 1 hour
 - Open MOV to establish HPSW flow through 2nd HX
 - Open new cross-tie MOV within 1 hour
 - Split RHR flow equally to 2 HXs within 1 hour

RHR HX Cross-tie - Tech Spec and Bases

- Spec 3.6.2.3 RHR Suppression Pool Cooling (Two Loops)
 - LCO requires 2 Operable subsystems. Each subsystem consisting of 1 RHR pump and associated HX
 - Currently 4 subsystems available to meet LCO
 - With modification, an Operable subsystem will require 1 RHR pump, the cross-tie, and both HXs
 - Post modification, 2 subsystems will be available meeting the LCO requirement. Bases definition of subsystem Operability will be modified to reflect new configuration
- Spec 3.7.1 High Pressure Service Water (Two Loops)
 - LCO requires 2 Operable subsystems. Each subsystem consisting of 1 HPSW pump and associated HX
 - Currently 4 subsystems available to meet LCO
 - With modification, an Operable subsystem will require 2 HPSW pumps and 2 HXs
 - Post modification, 2 subsystems will be available meeting the LCO requirement. Bases definition of subsystem Operability will be modified to reflect new configuration
- Spec 3.5.1 ECCS Surveillance
 - Cross-tie Hx MOVs increase hydraulic resistance and limit runout flow
 - SR to demonstrate adequate LPCI flow will be changed to reflect new analytical assumptions

- Proposed Changes
 - Increase RHR HX performance (reduce fouling)
 - Decrease RHR pump flow rate (consistent with LOCA)
 - NPSHR 3% curves
 - Eliminates Operator Action of Swapping Suction Source to Pool
 - modifications ensure CST remains available as RCIC suction source

Results:

- Maximum suppression pool temperature: 196°F
- RHR pump NPSH margin at maximum suppression pool temperature: 3.5 feet (6.2°F)

- Proposed Changes
 - Increase SBLC Boron Enrichment
 - Achieves shutdown sooner thereby lowering pool temperature
 - Increase RHR HX performance (reduce fouling)
 - Decrease RHR pump flow rate (consistent with LOCA)
 - NPSHR 3% curves

Results:

- Maximum suppression pool temperature: 168.3°F
- RHR pump NPSH margin at maximum suppression pool temperature: 14.8 feet (33.9°F)

Appendix R – 4 Fire Safe Shutdown (FSSD) Methods

All FSSD Methods end with RHR aligned in Alternate Shutdown Cooling (ASDC)

- RHR aligned to RPV through LPCI injection valve or CS aligned to RPV through CS injection valve
- RPV water level above main steam lines
- ADS SRV open to provide flow path back to suppression pool
- <u>Method</u> <u>Mitigating System(s)</u> A RCIC
 - B HPCI
 - C Low Pressure ECCS
 - Core Spray Available (CS (RPV inventory) and RHR in torus cooling)
 - Core Spray Not Available (only RHR credited)
 - D Shutdown from Outside the Control Room HPCI

Proposed Changes

- Increase RHR HX performance (reduce fouling)
- Decrease RHR pump flow rate (consistent with LOCA)
- NPSHR 3% curves
- Changed operator response time
- Supplement CST inventory
 - Credit Refueling Water Tank volume
- Modifications to ensure suction source (CST) remains available
- Raise Torus high-level suction swap-over setpoint

Results:

- Maximum suppression pool temperature: 204.3°F
- RHR pump NPSH margin at maximum suppression pool temperature: 0.5 feet (0.7°F)
- Appendix R PCT remains below 1500°F limit

- CAP Credit for DBA-LOCA and Special Events Can be Eliminated Through:
 - Modifications to
 - Increase RHR HX capacity
 - Reduce RHR flow rate
 - Increase SBLC enrichment
 - Credit additional CST inventory
 - Improved RHR Hx performance
 - Use of NPSHR 3% curves

Next Steps

- Conduct Follow-up Meeting
 - Further discussion and feedback regarding proposed solutions to CAP credit
 - Discuss need to address CAP solutions as part of EPU application

Supplementary Information

ECCS Pump NPSH

- CS NPSH Ratio Based on NPSH3R% ----- RHR NPSH Ratio Based on NPSHR3%

