EVALUATION OF YEARS 2000 THROUGH 2010 IRRIGATION WITH ALLUVIAL GROUND WATER

Prepared for: New Mexico Environment Department 1190 St. Francis Drive, N4050 Santa Fe, NM 87502

&

U. S. Nuclear Regulatory Commission

11545 Rockville Pike Two White Flint North Rockville, MD 20852

Prepared by: Homestake Mining Company of California P.O. Box 98 - San Mateo Road Grants, NM 87020

&

Hydro-Engineering, LLC

&

Environmental Restoration Group

&

RIMCON

January 2011

Homestake Mining Company of California

Alan D. Cox Project Manager – Grants

17 January 2011

Mr. Jerry Schoeppner Ground Water Quality Bureau New Mexico Environment Department P.O. Box 26110 Santa Fe, NM 87502

Re: Grants Reclamation Project – Cibola County, NM 2011 Request for Temporary Permission to Crop Irrigate

Dear Mr. Schoeppner:

Homestake Mining Company of California (HMCo) is requesting temporary permission to conduct crop irrigation during the 2011 field season as part of the ongoing ground water remediation / restoration activities at the Grants Reclamation Project. The attached copy of Homestake's 2010 Annual Irrigation Evaluation Report (paper copy and CD) for the Grants Reclamation Project presents information that is supportive of temporary irrigation activities. This document presents the water, soils and vegetation monitoring data that have been collected to date. Predictions of soil moisture movement from modeling and mixing calculations are used to estimate its effects on the ground water quality. These simulations indicate that no impact will occur from the 2011 temporary irrigation based upon the following operating parameters and timeframes:

1. The proposed temporary irrigation period is scheduled to start between April and July depending on crop demand for each of the following irrigation areas:

Section 34 Flood Section 28 Pivot Section 33 Pivot and Flood Notification to NMED will be given when each temporary period starts.

2. A combination of wells will be used to limit the concentration in the irrigation water. The average concentration levels in the irrigation water will not exceed the following limits (mg/l):

Selenium = 0.1, Uranium = 0.16, TDS = 2000 and Sulfate = 900.

3. We plan to apply the following amounts of water to each of the irrigation fields: Section 34 Flood - 2.4 feet Section 28 Pivot - 2.3 feet Section 33 Pivot - 0.4 feet Section 33 Flood - 2.4 feet

4. Ground-water samples will be collected quarterly from the following wells during the irrigation of each of these areas:

Section 34 - 555,556, 557, 844 and 845 Section 28 - 881, 882, 864, 886 and 893 Section 33 - 551, 553, 554, 647, 649, 650 and 658

As stated previously, the attached 2010 irrigation report supports the use of temporary irrigation which will assure progress in HMCo's ongoing groundwater remediation efforts. The report clearly shows that these activities will not affect the water quality in the alluvial aquifer.

Thank you for your time and attention on this matter. If you have any questions or require additional information, please contact me at the Grants office (505) 287-4456, ext. 25 or via cell phone at (505) 400-2794.

Sincerely,

HOMESTAKE MINING COMPANY OF CALIFORNIA Alan D. Cox

Enclosures (2)

Mr. R. Chase, Barrick - SLC, (cd only)Mr. B. Ferdinand, Barrick - SLC, (cd only)

Mr. G. Hoffman, Hydro-Engineering - Casper, (cd only) Mr. J. Buckley, NRC - Rockville (cd only)

Homestake Mining Company of California

Alan D. Cox Project Manager – Grants

17 January 2011

Mr. Jerry Schoeppner Ground Water Quality Bureau New Mexico Environment Department P.O. Box 26110 Santa Fe, NM 87502

Re: Grants Reclamation Project – Cibola County, NM 2011 Request for Temporary Permission to Crop Irrigate

Dear Mr. Schoeppner:

Homestake Mining Company of California (HMCo) is requesting temporary permission to conduct crop irrigation during the 2011 field season as part of the ongoing ground water remediation / restoration activities at the Grants Reclamation Project. The attached copy of Homestake's 2010 Annual Irrigation Evaluation Report (paper copy and CD) for the Grants Reclamation Project presents information that is supportive of temporary irrigation activities. This document presents the water, soils and vegetation monitoring data that have been collected to date. Predictions of soil moisture movement from modeling and mixing calculations are used to estimate its effects on the ground water quality. These simulations indicate that no impact will occur from the 2011 temporary irrigation based upon the following operating parameters and timeframes:

1. The proposed temporary irrigation period is scheduled to start between April and July depending on crop demand for each of the following irrigation areas:

Section 34 Flood Section 28 Pivot Section 33 Pivot and Flood Notification to NMED will be given when each temporary period starts.

2. A combination of wells will be used to limit the concentration in the irrigation water. The average concentration levels in the irrigation water will not exceed the following limits (mg/l):

Selenium = 0.1, Uranium = 0.16, TDS = 2000 and Sulfate = 900.

3. We plan to apply the following amounts of water to each of the irrigation fields: Section 34 Flood - 2.4 feet Section 28 Pivot - 2.3 feet Section 33 Pivot - 0.4 feet Section 33 Flood - 2.4 feet

4. Ground-water samples will be collected quarterly from the following wells during the irrigation of each of these areas:

Section 34 - 555,556, 557, 844 and 845 Section 28 - 881, 882, 864, 886 and 893 Section 33 - 551, 553, 554, 647, 649, 650 and 658

As stated previously, the attached 2010 irrigation report supports the use of temporary irrigation which will assure progress in HMCo's ongoing groundwater remediation efforts. The report clearly shows that these activities will not affect the water quality in the alluvial aquifer.

Thank you for your time and attention on this matter. If you have any questions or require additional information, please contact me at the Grants office (505) 287-4456, ext. 25 or via cell phone at (505) 400-2794.

Sincerely,

HOMESTAKE MINING COMPANY OF CALIFORNIA Alan D. Cox

Enclosures (2)

XC: Mr. R. Chase, Barrick - SLC, (cd only) Mr. B. Ferdinand, Barrick - SLC, (cd only)

> Mr. G. Hoffman, Hydro-Engineering - Casper, (cd only) Mr. J. Buckley, NRC - Rockville (cd only)

For:

Homestake Mining Company P. O. Box 98 Grants, New Mexico 87020

By:

Environmental Restoration Group, Inc., RIMCON and Hydro-Engineering, L.L.C. January 2011

Adam Arugello, E.I.T. Hydro-Engineering, L.L.C

George L. Hoffman, P.E. Hydrologist Hydro-Engineering, L.L.C

Wale a. Shay

Dale Shay, M.S. Soil Scientist RIMCON

Kenned R Baker

Kenneth R. Baker, Ph.D. Health Physicist Environmental Restoration Group, Inc.

		Page Number
Execut	ive Summary	ES-1
1.0	Turken Aussian	1 1
1.0	Introduction	
2.0	Irrigation Water Concentrations and Usage	
	2.1 Sections 33 and 34 Irrigation	
	2.2 Section 28 Irrigation	
	2.3 Irrigation Water Usagen	
3.0	Soil and Soil Moisture Concentrations	3_1
5.0	3.1 Subsurface Conditions	
	3.1.1 Section 34	
	3.1.2 Section 28	
	3.1.3 Section 33	
	5.1.5 Sociol 55	
	3.2 Background Soil Concentrations	3-2
	3.2.1 1998 Investigation	
	3.2.2 Background Determinations during Ongoing Investigation	
	3.2.3 Mean Background Soil Concentrations	
	3.3 Constituents in Treated Soil	3-16
	3.3.1 Sections 33 and 34 Flood Areas	
	3.3.2 Section 28 Center Pivot	
	3.3.3 Section 33 Center Pivot	
	3.3.4 Comparison of Applied and Measured Soil Concentrations	
	3.3.4.1 Uranium	
	3.3.4.2 Selenium	
	3.3.5 Summary of Soil Concentration Comparison	
	3.4 Observed Soil Moisture Concentrations	3-41
	3.4.1 Section 34	
	3.4.2 Section 28	
	3.4.3 Section 33	
	3.5 Predicted Soil Moisture Concentrations	
	3.5.1 Section 34	
	3.5.2 Section 28	
	3.5.3 Section 33	

TABLE OF CONTENTS

	3.6 Soil Health	3-67
	3.6.1 Irrigated Soil Physical Characteristics	3-67
	3.6.2 Soil Salt and Sodium Relationships with Irrigation Water Quality	
	3.6.3 Effects of Current Irrigation Practices on Soil Health.	
	3.6.4 Conclusions	
4.0	Ground-Water Quality	
	4.1 Section 34	
	4.1.1 Sulfate Concentrations	
	4.1.2 TDS Concentrations	
	4.1.3 Chloride Concentrations	
	4.1.4 Uranium Concentrations	
	4.1.5 Selenium Concentrations	
	4.1.6 Molybdenum Concentrations	
	4.1.7 Nitrate Concentrations	
	4.2 Section 28	4-3
	4.2.1 Sulfate Concentrations	4-5
	4.2.2 TDS Concentrations	4-5
	4.2.3 Chloride Concentrations	4-5
	4.2.4 Uranium Concentrations	4-5
	4.2.5 Selenium Concentrations	
	4.2.6 Molybdenum Concentrations	
	4.2.7 Nitrate Concentrations	
	4.3 Section 33	16
	4.3 Section 35 4.3.1 Sulfate Concentrations	
	4.3.1 Surface Concentrations	
	4.3.2 TDS Concentrations	
	4.3.4 Uranium Concentrations	
	4.3.4 Oranium Concentrations	
	4.3.6 Molybdenum Concentrations	
	4.3.7 Nitrate Concentrations	4-10
5.0	Predicted Ground-Water Concentrations	
	5.1 Section 34	
	5.2 Section 28	
	5.3 Section 33	5-3

6.0	Vegetation Concentrations and Constituent Uptakes.	
	6.1 Measured Vegetation Concentrations	
	6.1.1 Sections 33 and 34 Flood Areas	
	6.1.2 Section 28 Center Pivot	
	6.1.3 Section 33 Center Pivot	
	6.1.4 Background Concentrations in Hay and Special Study	
	6.1.5 Summary of Vegetation Concentrations	0-4
	6.2 Measured Uranium Uptake in Vegetation	6-4
	6.3 Hay and Pasture Production	
7.0	Radiation Dose to Public from Irrigation Activities	7-1
7.0	7.1 Radiation Dose from Eating Beef	
	7.1.1 Vegetation to Livestock Uptake	
	7.1.2 Beef to Human Uptake	
	7.1.3 Results	
	7.2 Radiation Dose to Hypothetical Resident Farmer Living on Irrigation Site	
	7.2.1 RESRAD Model	7-3
	7.2.2 Parameter Inputs	7-4
	7.2.3 Predicted Dose to Resident Farmer	7-5
	7.3 Exposure to Radon Releases to Current Residents Living Near Irrigation Sit	es.7-5
	7.4 Radiation Dose from Airborne Releases from Irrigation Areas Following the Cessation of Irrigation	
	Cessation of Impation	
	7.5 Summary	7-6
8.0	Conclusion	8-1
0.0	Conclusion	0-1
9.0	References	9-1
	Figures	
1-1.	Location of Present Injection and Collection Systems in the Irrigation Program	1-2
2-1.	1999 and 2000 Irrigation Areas with Irrigation Wells and Soil Sample Locations	2-7
2-2.	2001 Irrigation Areas with Irrigation Wells and Soil Sample Locations	2-8
2-3.	2002 Sections 33 and 34 Irrigation Areas with Irrigation Wells and Soil Sample Locations	2-9

Page Number

2-4.	2003 Sections 33 and 34 Irrigation Areas with Irrigation Wells and Soil Sample Locations	2-10
2-5.	2004 Sections 33 and 34 Irrigation Areas with Irrigation Wells and Soil Sample Locations	2-11
2-6.	2005 Sections 33 and 34 Irrigation Areas with Irrigation Wells and Soil Sample Locations	2-12
2-7.	2006 Sections 33 and 34 Irrigation Areas with Irrigation Wells and Soil Sample Locations	
2-8 .	2007 Section 33 and 34 Irrigation Areas with Irrigation Wells And Soil Sample Locations	2-14
2-9.	2008 Section 33 and 34 Irrigation Areas with Irrigation Wells And Soil Sample Locations	2-15
2-10.	2009 Section 33 and 34 Irrigation Areas with Irrigation Wells and Soil Sample Locations	2-16
2-11.	2010 Section 33 and 34 Irrigation Areas with Irrigation Wells and Soil Sample Locations	2-17
2-12.	2002 Section 28 Irrigation Area with Irrigation Wells and Soil Sample Locations	, 2-18
2-13.	2003 Section 28 Irrigation Area with Irrigation Wells and Soil Sample Locations	2-19
2-14.	2004 Section 28 Irrigation Area with Irrigation Wells and Soil Sample Locations	2-20
2-15.	2005 Section 28 Irrigation Area with Irrigation Wells and Soil Sample Locations	2-21
2-16.	2006 Section 28 Irrigation Area with Irrigation Wells and Soil Sample Locations	2-22
2-17.	2007 Section 28 Irrigation Area with Irrigation Wells and Soil Sample Locations	
2-18.	2008 Section 28 Irrigation Area with Irrigation Wells and Soil Sample Locations	
2-19.	2009 Section 28 Irrigation Area with Irrigation Wells and Soil Sample Locations	

2-20.	2010 Section 28 Irrigation Areas with Irrigation Wells and Soil Sample Locations
3-1.	Section 34 Depth to Top of Basalt, Location of Proposed Lysimeters, Additional Alluvial Monitoring Wells and Cross Section
3-2.	Section 34 Geologic Cross-Section 34C-34C'
3-3 .	Section 28 Depth to Top of Basalt, Location of Proposed Lysimeters, Additional Alluvial Monitoring Wells and Cross Section
3-4.	Section 28 Geologic Cross-Section 28B-28B'
3-5	Section 33 Depth to Top of Basalt, Location of Proposed Lysimeters, Additional Alluvial Monitoring Wells and Cross Section
3-6.	Section 33 Geologic Cross-Section 33A-33A'
3-7.	Location of Irrigation Areas with Soil Sample Locations from The 1998 Investigation
3-8.	Uranium Concentrations Versus Time for Sections 33 and 34 Flood Soil Samples 3-81
3-9 .	Uranium Concentrations in the Soils with Depth in Section 34 Irrigation Area3-82
3-10.	Selenium Concentrations Versus Time for Sections 33 and 34 Flood Soil Samples .3-83
3-11.	Selenium Concentrations in the Soils with Depth in Sections 34 Irrigation Area3-84
3-12.	Uranium Concentrations Versus Time for Section 28 Center Pivot Soil Samples3-85
3-13.	Uranium Concentrations in the Soils with Depth in Section 28 Irrigation Area3-86
3-14.	Selenium Concentrations Versus Time for Section 28 Center Pivot Soil Samples3-87
3-15.	Selenium Concentrations in the Soils with Depth in Sections 28 Irrigation Area3-88
3-16.	Uranium Concentrations Versus Time for Section 33 Center Pivot Soil Samples3-89
3-17.	Uranium Concentrations in the Soils with Depth in Section 33 Irrigation Area3-90
3-18.	Selenium Concentrations Versus Time for Section 33 Center Pivot Soil Samples3-91

Page Number

3-19.	Selenium Concentrations in the Soils with Depth in Sections 33 Irrigation Area3-92
3-20.	TDS, Sulfate and Chloride Concentrations from LY34-1
3-21.	Uranium, Selenium and Molybdenum Concentrations from LY34-1
3-22 .	TDS, Sulfate and Chloride Concentrations from LY34-2
3-23.	Uranium, Selenium and Molybdenum Concentrations from LY34-2
3-24.	TDS, Sulfate and Chloride Concentrations from LY34-3
3-25.	Uranium, Selenium and Molybdenum Concentrations from LY34-3
3-26.	TDS, Sulfate and Chloride Concentrations from LY34-4
3-27.	Uranium, Selenium and Molybdenum Concentrations from LY34-4
3-28.	TDS, Sulfate and Chloride Concentrations from LY28-1
3-29.	Uranium, Selenium and Molybdenum Concentrations from LY28-1
3-30.	TDS, Sulfate and Chloride Concentrations from LY28-2M
3-31.	Uranium, Selenium and Molybdenum Concentrations from LY28-2M3-104
3-32.	TDS, Sulfate and Chloride Concentrations from LY28-3
3-33.	Uranium, Selenium and Molybdenum Concentrations from LY28-3
3-34.	TDS, Sulfate and Chloride Concentrations from LY1
3-35.	Uranium, Selenium and Molybdenum Concentrations from LY1
3-36.	TDS, Sulfate and Chloride Concentrations from LY4
3-37.	Uranium, Selenium and Molybdenum Concentrations from LY4
3-38.	TDS, Sulfate and Chloride Concentrations from LY4MU
3-39.	Uranium, Selenium and Molybdenum Concentrations from LY4MU
3-40.	TDS, Sulfate and Chloride Concentrations from LY4ML

Page Number

3-41.	Uranium, Selenium and Molybdenum Concentrations from LY4ML
3-42.	Predicted and Observed Soil Solution TDS Concentration,(mg/l) for the Section 34 Flood Irrigation
3-43.	Predicted and Observed Soil Solution Sulfate Concentration,(mg/l) for the Section 34 Flood Irrigation
3-44.	Predicted and Observed Soil Solution Uranium Concentration,(mg/l) for the Section 34 Flood Irrigation
3-45.	Predicted and Observed Soil Solution Selenium Concentration,(mg/l) for the Section 34 Flood Irrigation
3-46.	Predicted and Observed Soil Solution TDS Concentration,(mg/l) for the Section 28 Center Pivot Irrigation
3-47.	Predicted and Observed Soil Solution Sulfate Concentration,(mg/l) for the Section 28 Center Pivot Irrigation
3-48.	Predicted and Observed Soil Solution Uranium Concentration, (mg/l) for the Section 28 Center Pivot Irrigation
3-49.	Predicted and Observed Soil Solution Selenium Concentration,(mg/l) for the Section 28 Center Pivot Irrigation
3-50.	Predicted and Observed Soil Solution TDS Concentration,(mg/l) for the Section 33 Center Pivot Irrigation Through 2012
3-51.	Predicted and Observed Soil Solution Sulfate Concentration,(mg/l) for the Section 33 Center Pivot Irrigation Through 2012
3-52.	Predicted and Observed Soil Solution Uranium Concentration, (mg/l) for the Section 33 Center Pivot Irrigation Through 2012
3-53.	Predicted and Observed Soil Solution Selenium Concentration,(mg/l) for the Section 33 Center Pivot Irrigation Through 2012
3-54.	Predicted and Observed Soil Solution TDS Concentration,(mg/l) for the Section 33 Center Pivot Irrigation Through 2009

Page Number

3-55.	Predicted and Observed Soil Solution Sulfate Concentration,(mg/l) for the Section 33 Center Pivot Irrigation Through 2009
3-56.	Predicted and Observed Soil Solution Uranium Concentration,(mg/l) for the Section 33 Center Pivot Irrigation Through 2009
3-57.	Predicted and Observed Soil Solution Selenium Concentration,(mg/l) for the Section 33 Center Pivot Irrigation Through 2009
4-1.	1999 and 2010 Sulfate Alluvial Concentrations in Section 34, mg/l4-11
4-2.	Sulfate Concentrations for Wells 555, 556, 557, 844, 845 and 846
4-3	1999 and 2010 TDS Alluvial Concentrations in Section 34, mg/l
4-4 .	TDS Concentrations for Wells 555, 556, 557, 844, 845 and 8464-14
4-5.	1999 and 2010 Chloride Alluvial Concentrations in Section 34, mg/l4-15
4-6 .	Chloride Concentrations for Wells 555, 556, 557, 844, 845 and 8464-16
4-7.	1999 and 2010 Uranium Alluvial Concentrations in Section 34, mg/l4-17
4-8 .	Uranium Concentrations for Wells 555, 556, 557, 844, 845 and 8464-18
4-9 .	1999 and 2010 Selenium Alluvial Concentrations in Section 34, mg/l4-19
4-10.	Selenium Concentrations for Wells 555, 556, 557, 844, 845 and 8464-20
4-11.	1999 and 2010 Molybdenum Alluvial Concentrations in Section 34, mg/l4-21
4-12.	Molybdenum Concentrations for Wells 555, 556, 557, 844, 845 and 8464-22
4-13.	1999 and 2010 Nitrate Alluvial Concentrations in Section 34, mg/l4-23
4-14.	Nitrate Concentrations for Wells 555, 556, 557, 844, 845 and 8464-24
4-15.	1999 and 2010 Sulfate Alluvial Concentrations in Section 28, mg/l4-25
4-16.	Sulfate Concentrations for Wells 654, 659, 881, 886, 888 and 890
4-17.	1999 and 2010 TDS Alluvial Concentrations in Section 28, mg/l

Page Number

4-18.	TDS Concentrations for Wells 654, 659, 881, 886, 888 and 8904-28
4-19.	1999 and 2010 Chloride Alluvial Concentrations in Section 28, mg/l
4-20.	Chloride Concentrations for Wells 654, 659, 881, 886, 888 and 8904-30
4-21.	1999 and 2010 Uranium Alluvial Concentrations in Section 28, mg/14-31
4-22.	Uranium Concentrations for Wells 654, 659, 881, 886, 888 and 8904-32
4-23.	1999 and 2010 Selenium Alluvial Concentrations in Section 28, mg/l4-33
4-24.	Selenium Concentrations for Wells 654, 659, 881, 886, 888 and 8904-34
4-25.	1999 and 2010 Molybdenum Alluvial Concentrations in Section 28, mg/14-35
4-26.	Molybdenum Concentrations for Wells 654, 659, 881, 886, 888 and 8904-36
4-27.	1999 and 2010 Nitrate Alluvial Concentrations in Section 28, mg/l4-37
4-28.	Nitrate Concentrations for Wells 654, 659, 881, 886, 888 and 8904-38
4-29.	1999 and 2010 Sulfate Alluvial Concentrations in Section 33, mg/l4-39
4-30.	Sulfate Concentrations for Wells 551, 553, 554, 647, 649, 650 and 6584-40
4-31.	1999 and 2010 TDS Alluvial Concentrations in Section 33, mg/l
4-32.	TDS Concentrations for Wells 551, 553, 554, 647, 649, 650 and 658
4-33.	1999 and 2010 Chloride Alluvial Concentrations in Section 33, mg/l
4-34.	Chloride Concentrations for Wells 551, 553, 554, 647, 649, 650 and 658
4-35.	1999 and 2010 Uranium Alluvial Concentrations in Section 33, mg/l4-45
4-36.	Uranium Concentrations for Wells 551, 553, 554, 647, 649, 650 and 6584-46
4-37.	1999 and 2010 Selenium Alluvial Concentrations in Section 33, mg/l
4-38.	Selenium Concentrations for Wells 551, 553, 554, 647, 649, 650 and 658
4-39.	1999 and 2010 Molybdenum Alluvial Concentrations in Section 33, mg/14-49
Grants Rec	amating Deniert

Page Number

`

Figures (continued)

4-40.	Molybdenum Concentrations for Wells 551, 553, 554, 647, 649, 650 and 6584-50
4-41.	1999 and 2010 Nitrate Alluvial Concentrations in Section 33, mg/l
4-42.	Nitrate Concentrations for Wells 551, 553, 554, 647, 649, 650 and 658

Tables

2-1.	2000 through 2010 Sections 33/34 Irrigation Supply Concentrations	2-2
2-2.	2002 through 2009 Section 28 Irrigation Supply Concentrations	2-6
3-1.	Pre-Operations and Background Soil Sample Results for Section 34	3-5
3-2.	Pre-Operations and Background Soil Sample Results for Section 28	
3-3.	Pre-Operations and Background Soil Sample Results for Section 33	
3-4.	Irrigation Soil Analyses, 2000 through 2010	
3-5.	Summary of Irrigation Soil Analyses, 2000 through 2009	
3-6	Treated, Background and Gain in Soil Concentrations	
3-7.	Uranium Applied in Irrigation Water	
3-8 .	Cumulative Buildup of Uranium in Soils	
3-9 .	Selenium Applied in Irrigation Water	
3-10.	Cumulative Buildup of Selenium in Soils	
3-11.	Irrigation Field Lysimeter Completion Information	
3-12.	Lithology of the Alluvium at the Lysimeters	
3-13.	Water Quality Analyses for the Lysimeter Ca Through Ion-Bal	
3-14.	Water Quality Analyses for the Lysimeter pH Through Th-230	3-54
4-1.	Existing and New Section 34 Well Data	4-1
4-2.	Section 28 Monitoring Well Data	4-5
4-3.	Existing and New Section 33 Monitoring Well Data	4-8
6-1.	Summary of Vegetation Analyses	6-3

.

Page Number

Tables (continued)

6-2.	Average Uranium Concentrations in Soil and Vegetation	6-5
6-3.	Transfer Coefficient from Soil to Vegetation (mg/kg-hay/mg/kg-soil)	6-5
6-4.	Homestake Irrigation Hay Production and Fertilization	6-7

Appendix

Appendix A	1999, 2000 and 2009 Soil Analyses	A-1
Appendix B	Soil Sodium Risk Assessment	B-1
Appendix C	LeachP Model Input and Results and Soil Moisture and Ground-Wate	er Mixing
	Calculation Sheets	C-1
Appendix D	Vegetation Analyses	D-1
Appendix E	Resident Farmer on Section 34 Irrigated Areas RESRAD Results	E-1

.

Executive Summary

This report characterizes changes in uranium and selenium concentrations in four hay fields supplied with irrigation water from ground water with elevated levels of uranium and selenium. From 2000 through 2010, 120 to 394 acres were irrigated with this water. Uranium and selenium concentrations have been measured in the applied irrigation water and affected soils each year and hay crop production since 2000.

The irrigation project is being conducted by Homestake Mining Company of California (HMC) as part of the Homestake Grants Reclamation Project. The project plan established an upper limit for the uranium concentration in irrigation water at the U.S. Nuclear Regulatory Commission effluent standard of 0.44 milligrams per liter (mg/l). Selenium was set at a site-specific State of New Mexico Water Quality Control Commission standard of 0.12 mg/l.

The fields subject to irrigation are located in Sections 28, 33, and 34 in Township 12 North, Range 10 West near Grants, New Mexico. Figure 1-1 shows the locations of the four irrigations fields. Fields in Sections 28 and 33 were irrigated using a center pivot irrigation system. The field in Section 34 and an additional portion of Section 33 was irrigated by flooding. The total amount of irrigation water applied to the fields from 2000 to 2010 was 9028 acre feet (ac-ft), ranging from 201 to 1058 ac-ft annually.

The background concentrations of uranium and selenium in the soil are averages of these constituents in samples collected prior to the irrigation program and outside of the irrigated area each year. The background concentrations are compared to the concentration in each 1-foot (ft) interval of the upper five feet of soil in treated areas and each two foot interval beyond five feet starting in 2009. The difference between the treated soil and background concentration is the amount of constituent added from the irrigation. The amount of a constituent in the soil is then compared to the total amount of the constituent added over the course of irrigation.

The mean background concentrations of uranium and selenium are similar in Sections 28 and 33 (center pivot areas). The concentrations in Section 34 are generally higher than in other fields, presumably because of their association with clay soils.

Mean background concentrations of uranium, in descending 1-ft layers (0-1 ft, 1-2 ft, 2-3 ft) are:

- Section 28: 0.60, 0.52, and 0.51 milligrams per kilogram (mg/kg), then 0.41 to 0.81 for footages to 17 feet.
- Section 33: 0.80, 0.69, and 0.73 mg/kg, then 0.55 to 0.90 down to 17 feet.
- Section 34: 2.00, 1.54, and 1.12 mg/kg, then 0.55 to 1.12 down to 13 feet.

The data collected in the 24 acre flood irrigated area of Section 33 are insufficient to show trends and are not presented further in this summary, although they are presented in the report. On a mass basis, the fraction of uranium that remains in the upper 17 foot interval is equal to or exceeds 100 percent of the mass applied to the irrigated fields. This analysis excludes the flood irrigated area of Section 33.

The percentage of selenium applied to the fields, excluding the Section 33 Flood area, that remains in the upper 17 feet of the soil is equal to or exceeds 67 percent of the mass applied.

Uranium concentration in the fields and retention in the soils is discussed in the following sections.

Uranium concentrations in the treated soils of Section 28 were essentially constant and similar to background concentrations from 2003 through 2005. The most recent (2010) concentrations exceeded mean background by factors of 2.28 (0-1 ft), 2.38 (1-2 ft), and 2.63 (2-3 ft). The Section 28 soil concentrations had been steady for the previous three years, but increased in 2009 and gradually decreased in 2010 without any irrigation. The measured concentrations indicate that all of the applied uranium is retained within the upper 17 feet of soil.

Uranium concentrations in the treated soils of Section 33 started to exceed background concentrations in 2003. The most recent (2010) concentrations exceeded the mean background by factors of 2.34 (0-1 ft), 3.22 (1-2 ft) and 2.67 (2-3 ft). Uranium has accumulated in the upper 7 feet of soil and the amount of gain in uranium soil concentrations in 2010 indicates that all applied uranium is retained within the upper 7 feet of soil.

Uranium is mainly accumulating in the upper four feet of the treated areas of Section 34 with generally less accumulation with each successive depth interval. A smaller degree of increase in uranium is observed through the four foot depth, and the data indicates that all of the applied uranium was retained in the upper four feet of soil. The 2010 results exceed background by factors of 3.44 (0-1 ft at 4.64 mg/kg), 1.84 (1-2 ft at 2.83 mg/kg), and 1.75 (2-3 ft at 1.96 mg/kg).

Less than one percent of the mass of uranium and selenium applied to the fields to date has been detected in samples of hay.

Based on measured concentrations, all of the uranium is being retained in the upper layers of the Section 34 flood irrigated soil while all of the uranium has been retained in the upper 17 and 7 feet of soil in the Section 28 and Section 33 center pivot irrigated areas respectively. Uranium from the irrigation has not been detected in the alluvial ground water in the irrigation areas. Modeling of uranium movement in the soil moisture predicts that it will never reach the ground water. In terms of risk to human health, uranium levels are currently acceptable. The dose to man by way of the ingestion of beef is negligible, as indicated by food web uptake calculations.

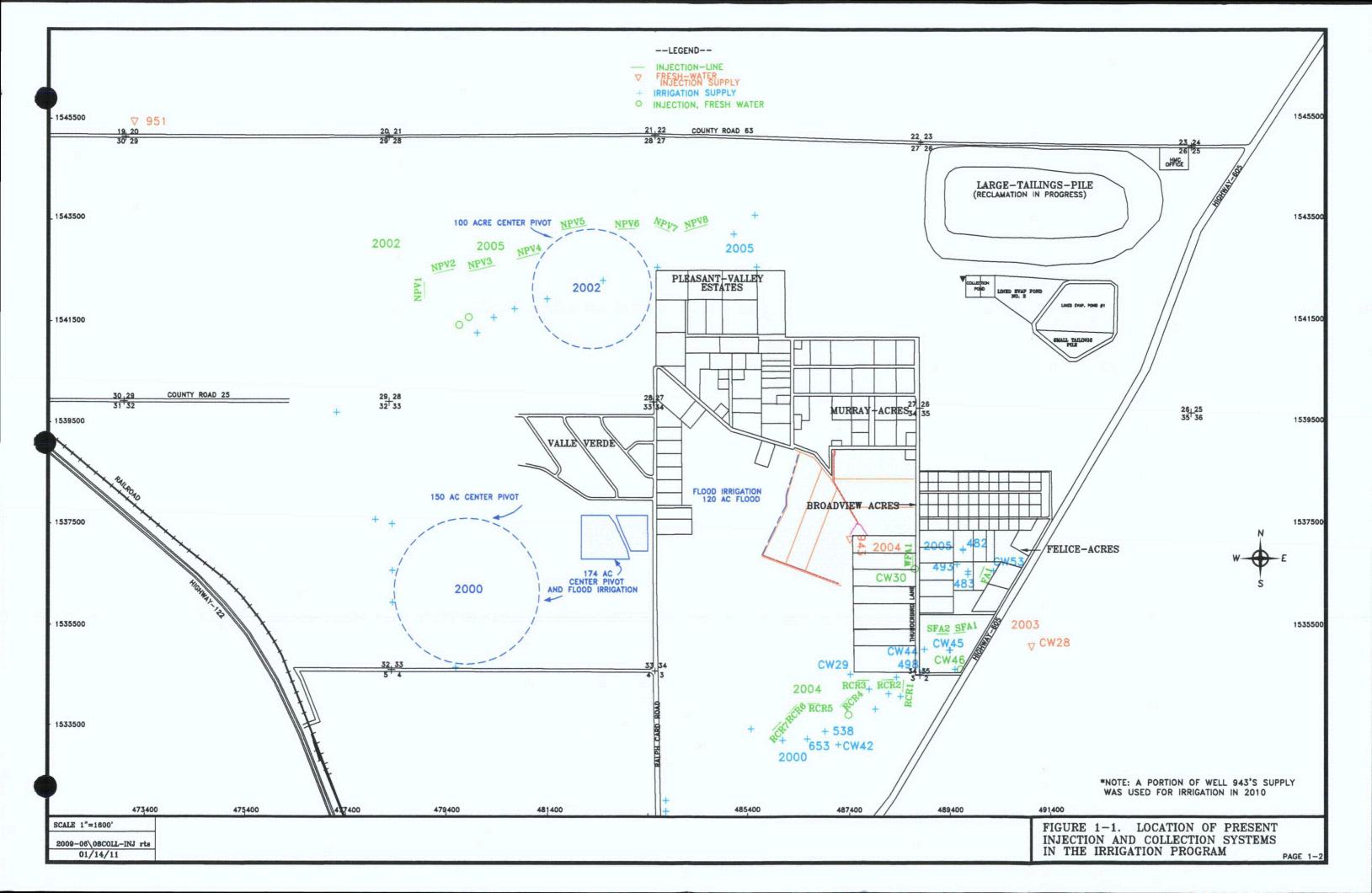
Potential radiation doses to the public were evaluated for:

- Residents eating beef that were fed hay grown on the irrigated areas.
- An assumed resident farmer, living on and farming the Section 34 irrigated area.
- Current residents living near the irrigated areas of Sections 28 and 33 during crop irrigation activities.

Each analysis shows that the radiological dose to existing or future occupants of the land on and near the irrigation areas is extremely small (less than one percent) compared to the average dose that the population receives from natural background and medical exposures.

Selenium uptakes in hay are below the recommended upper limit for animal feed. Selenium retention in soils had appeared to be independent of time and application, but the 2007 through 2010 data indicate retained percentages only slightly less than the corresponding uranium retention percentages. Selenium retention in the soil has been significant for the last four years when compared to chloride, which is a conservative constituent in terms of fate and transport,.

The monitoring of concentrations of uranium and selenium will continue as part of the ongoing irrigation program.


1.0 Introduction

This report characterizes changes in uranium and selenium concentrations in fields supplied with irrigation water from impacted ground-water sources near the Homestake Grants Reclamation Project. The irrigation project is being conducted by Homestake Mining Company of California (HMC).

Four fields have been irrigated with water containing elevated concentrations of uranium and selenium. Figure 1-1 shows the locations of the four irrigations fields and the locations of the associated fresh water injection used to aid ground-water restoration in the off-site areas. Ground water from wells adjacent to the Grants Reclamation Project was applied to fields situated in portions of Section 33 Pivot (150 acres) and Section 34 Flood (120 acres) during the 2000 through 2009 growing seasons and to a field in Section 28 (60 acres) during the 2002, 2003 and 2004 growing seasons. The field in Section 28 was expanded to 100 acres prior to the 2005 season and irrigated from 2005 to 2009. Only the Section 34 area was irrigated in 2010. Fields in Section 34 was irrigated by flooding. An additional 24 acres were flood irrigated in Section 33 in 2004, 2005, 2008 and 2009, but not in 2006 and 2007. All sections discussed in this report are located in Township 12 North, Range 10 West.

Uranium and selenium concentrations were measured in the applied irrigation water, affected soils (see Figure 1-1 for water application locations) and vegetation to determine constituent source terms and transfer to or accumulation in soils and vegetation. The measured results for the first growing season (2000) were compared to predictions made in 1999, which were based on published media transfer factors and other assumptions (ERG and HYDRO, 1999). The results from the first year of operation were reported previously (ERG and HYDRO, 2001). The report was updated for the 2001-2003 growing seasons in ERG and HYDRO, 2004 and updated again to include the 2004 through 2010 growing seasons (see ERG and HYDRO, 2005, 2006, 2007, 2008, 2009 and 2010).

The remainder of this report is organized as follows. Section 2 presents concentration data for several constituents in the irrigation water. Section 3 presents data on these same constituents in soil for background and irrigated areas, concentrations in the soil moisture, model prediction of the movement of the soil moisture and a discussion of soil health. Section 4 presents the ground-water quality for the alluvial aquifer in the area of the irrigation fields. Section 5 discusses the potential affects from the irrigation on the ground-water quality. Section 6 addresses the constituent uptake in the vegetation. In Section 7, quantities of uranium and selenium ingested by beef-cattle and the resulting radiation dose to humans consuming this beef are calculated. This section presents additional exposure potential from the irrigation program. The report ends with conclusions and references.

2.0 Irrigation Water Concentrations and Usage

The project plan (ERG and HYDRO, 1999) established an upper limit for the uranium concentration in irrigation water at the NRC effluent standard of 0.44 milligrams per liter (mg/l). The maximum allowable concentration of selenium in the irrigation supply was set at a State of New Mexico Water Quality Control Commission standard of 0.12 mg/l. With five exceptions, measured uranium and selenium concentrations have been below these limits since inception of the irrigation program through 2010. As identified, adjustments were made in the irrigation supply well configuration and production rates to insure that season averages met established limits. Yearly data and averages are discussed in the following sections.

2.1 Sections 33 and 34 Irrigation

A common pipe connecting 13 wells supplied the irrigation water for Sections 33 and 34 from 2000 through 2002(see Figures 2-1 through 2-3). Three wells were added and one well was dropped in 2003 (see Figure 2-4), while five wells were added in 2004 (see Figure 2-5). Four wells were added and three dropped in 2005 (see Figure 2-6). Eight additional wells added in 2006 bringing the total active wells to 29 (see Figure 2-7). Three additional wells were added in 2007 and the use of two previous supply wells was discontinued (see Figure 2-8). In 2008 and 2009 no wells were added and the pipeline supplied water to one of the three fields at a time (see Figures 2-9 and 2-10). In the 2004 and 2005 growing seasons, irrigation of the 24 flooded acress in Section 33 occurred only in conjunction with the irrigation of the Section 34 field and at a limited rate to maintain concentrations below the limits described in Section 2.0. The Section 33 Flood field was irrigated at higher rates and application depths in 2008 and 2009, with all of the water being supplied to this field during its irrigation. Figures 2-1 through 2-11 show the Section 34 area was irrigated in 2010 with Figure 2-11 showing which wells were used.

Water samples collected at the end of the pipeline at the flood outlet or center pivot are composite samples from the group of supply wells. Table 2-1 presents the concentrations of uranium, selenium, total dissolved solids (TDS), sulfate, molybdenum and chloride observed in the 2000-2010 irrigation water. Yearly averages are also presented in the table.

Average uranium and selenium concentrations were approximately 0.26 and 0.08 mg/l, respectively, over the first ten growing seasons. The May 14, 2003 and the May 7, 2008 results for uranium (0.03 and 0.05 mg/l) are not included in the uranium average, because they are one order of magnitude lower than all other observations. Thus, they are assumed to be laboratory artifacts. The average concentrations for the 2010 irrigation were 0.136 and 0.045 mg/l for uranium and selenium. Upper limits of 0.14 and 0.05 mg/l were given in the temporary permission from the NMED for uranium and selenium.

With one exception, the average concentrations of TDS and molybdenum were essentially constant from 2000 to 2009. With the exception of the June 2006 measurement, TDS concentrations have ranged from 1390 to 1660 mg/l. Molybdenum concentrations were less than

the 0.03 or 0.05 mg/l Method Detection Limits (MDLs), with the exception of four samples. Concentrations in these four samples (0.06, 0.05, 0.07 and 0.41 mg/l) exceeded MDLs. The result of 0.41 mg/l is one order of magnitude higher than all other molybdenum results and attributed to laboratory error. The sulfate concentrations ranged from 561 to 1020 mg/l. Chloride levels have been increasing slowly, and in 2009 were approximately 50 percent greater than initial measurements. Chloride concentrations have ranged from 94 to 247 mg/l in the ten years of monitoring. The major constituents averaged similar values in 2010 to those observed in 2009.

	Parameter (mg/l)						
Year	Date	Uranium	Selenium	TDS	Sulfate	Chloride	Molybdenum
	8/6/2000	0.26	0.12	1530	650	105	<0.03
	8/15/2000	0.26	0.12	1550	660	106	<0.03
2000	8/18/2000	0.28	0.12	1570	623	115	<0.03
	8/19/2000	0.27	0.12	1550	612	109	<0.03
	8/24/2000	0.27	0.11	1530	608	106	<0.03
	8/27/2000	0.26	0.11	1530	601	103	<0.03
	8/29/2000	0.3	0.11	1580	624	109	<0.03
	9/2/2000	0.28	0.11	1550	615	104	<0.03
•	Average	0.27	0.12	1549	624	107	<0.03
	4/20/2001	0.28	0.11	1620	693	120	<0.03
	4/27/2001	0,27	0.12	1590	688	120	<0.03
	5/6/2001	0.3	0.11	1630	597	108	0.06
	5/10/2001	0.25	0.09	1590	580	103	<0.03
	5/19/2001	0.28	0.1	1590	660	118	<0.03
	5/24/2001	0.24	0.11	1500	664	116	<0.03
	6/3/2001	0.27	0.1	1610	665	118	<0.03
2001	6/10/2001	0.27	0.1	1570	659	113	<0.03
2001	6/28/2001	0.27	0.11	1530	661	104	<0.03
	7/5/2001	0.22	0.1	1480	655	94	<0.03
	7/24/2001	0.21	0.09	1460	650	120	<0.03
	8/29/2001	0.28	0.1	1600	693	114	0.41
	9/1/2001	0.27	0.1	1610	573	128	<0.03
	9/1/2001	0.21	0.1	1570	561	121	<0.03
-	9/17/2001	0.29	0.13	1600	634	100	<0.03
	Average	0.26	0.1	1570	642	113	0.04
	4/15/2002	0.21	0.09	1510	708	125	<0.03
	4/16/2002	0.25	0.1	1580	704	129	<0.03
	5/8/2002	0.25	0.11	1600	678		
	5/8/2002	0.26	0.1	1580	737		
2002	5/14/2002	0.25	0.09	1560	741	120	<0.03
	7/3/2002	0.23	0.1	1560	694	135	0.05
	7/31/2002	0.23	0.1	1580	678	123	<0.05
-	10/2/2002	0.21	0.1	1570	703		
	Average	0.23	0.1	1564	705	126	<0.03
	5/14/2003	*0.03	0.05	1390	663	98.5	<0.03
2003	9/18/2003	0.22	0.08	1600	732		
	Average	0.22	0.08	1600	732		·

 Table 2-1. 2000 through 2010 Sections 33/34 Irrigation Supply Concentrations

Grants Reclamation Project Evaluation of Years 2000-2010 Irrigation with Alluvial Ground Water

	Parameter (mg/l)								
Year	Date	Uranium	Selenium	TDS	Sulfate	Chloride	Molybdenum		
	5/4/2004	0.28	0.11	1550	703	130	<0.03		
	5/27/2004	0.25	0.08	1570	690	130	<0.03		
2004	8/18/2004	0.27	0.08	1530	693				
	10/6/2004	0.23	0.08	1560	629	133	<0.03		
	Average	0.26	0.09	1553	679	131	<0.03		
	4/19/2005	0.25	0.06	1520	1020	247	<0.03		
	4/20/2005	0.25	0.06	1510	996	235	<0.03		
	5/25/2005	0.23	0.06	1580	603	131	<0.03		
	6/1/2005	0.24	0.06	1520	661	129	<0.03		
2005	8/8/2005	0.27	0.06	1500	621	<u> </u>			
• •	9/26/2005	0.3	0:07	1550	659	124	<0.03		
	10/11/2005	0.29	0.07	1580	612	125	<0.03		
	10/24/2005	0.35	0.08	<u>16</u> 10	683	144	<0.03		
	Average	0.27	0.06	1546	732	162	<0.03		
	4/10/2006	0.24	0.05	1520	654	134	<0.03		
	6/26/2006	0.37	0.1	2000	875	192	0.07		
2006	8/14/2006	0.27	0.07	1580	696				
	10/10/2006	0.29	0.07	1500	639	128	<0.03		
	Average	0.29	0.07	1650	716	151	0.04		
	4/12/2007	0.28	0.06	1630	668	136	<0.03		
	4/30/2007	0.27	0.06	1580	670	132	<0.03		
2007	6/4/2007	0.23	0.06	1540	654	125	<0.03		
2007	8/21/2007	0.3	0.05	1600	678				
	10/22/2007	0.31	0.06	1570	661	143	<0.03		
	Average	0.28	0.06	1584	666	134	<0.03		
	4/7/2008	*0.0521	0.073	1430	687	160	<0.03		
	4/21/2008	0.262	0.042	1560	728	99	<0.03		
2008	6/2/2008	0.254	0.048	1550	683	142	<0.03		
	9/24/2008	0.213	0.049	1660	710	148	<0.03		
	Average	0.24	0.05	1550	702	137	<0.03		
	5/6/2009	0.262	0.048	1560	669		<0.03		
	6/16/2009	0.213	0.047	1660	717	178	<0.03		
2009	7/24/2009	0.239	0.047	1700	694	146	<0.03		
	9/28/2009	0.232	0.059	1770	754	160	<0.03		
<u></u>	Average	0.24	0.05	1673	709	161	<0.03		
	8/30/2010	0.129	0.044	1610	716	158	<0.03		
	9/8/2010	0.129	0.045	1660	709	154	<0.03		
	9/15/2010	0.118	0.048	1700	731	162	<0.03		
	9/22/2010	0.119	0.044	1700	735	170	<0.03		
2010	10/1/2010	0.143	0.044	1750	756	174	<0.03		
	10/6/2010	0.159	0.048	1660	754	171	0.11		
	10/13/2010	0.156	0.044	1760	754	170	<0.03		
	10/27/2010	0.144	0.045	1760	751	173	<0.03		
	11/1/2010	0.128	0.045	1800	745	168	<0.03		
	Average	0.136	0.045	1711	739	167	<.03		

Table 2-1. 2000 through 2010 Sections 33/34 Irrigation Supply Concentrations (concluded)

.

2.2 Section 28 Irrigation

Section 28 was irrigated from 2002 through 2009. Figures 2-12 and 2-13 show the locations of the four wells installed to supply water to the center pivot system in the first two years. Figures 2-14, 2-15 and 2-16 show that well 886 was added in 2004 and wells M9, MO, MQ, MR, and MS were added in 2005 and 2006. Alluvial well M16 was added in 2007 and wells M9 and MQ were not used in 2007, 2008 and 2009 (see Figures 2-17, 2-18 and 2-19). Figure 2-20 shows the Section 28 irrigation area even though it was not irrigated in 2010. Table 2-2 presents TDS, sulfate, chloride, molybdenum, uranium, and selenium concentrations obtained in the Section 28 irrigation water. One sample of irrigation water was collected during the first two irrigation seasons. Four and eight samples were collected in 2004 and 2005, respectively. Five samples were collected in both 2006 and 2007 while three samples were collected in 2008 and four samples were collected in 2009. Chloride and molybdenum were omitted as analytes in 2002 and from one sample in 2004, 2006, 2007 and 2009.

The concentrations of TDS and sulfate were essentially constant from 2002 through 2009. The TDS concentration was 2,070 mg/l in 2002 and 2003 and averaged 2115, 2109, 1986, 2122, 1917 and 2030 mg/l in 2004, 2005, 2006, 2007, 2008 and 2009, respectively. The annual average sulfate concentrations ranged from 881 to 936 mg/l. The annual average concentrations of chloride and molybdenum ranged from 133 to 185 mg/l and less than 0.03 to 0.05 mg/l, respectively.

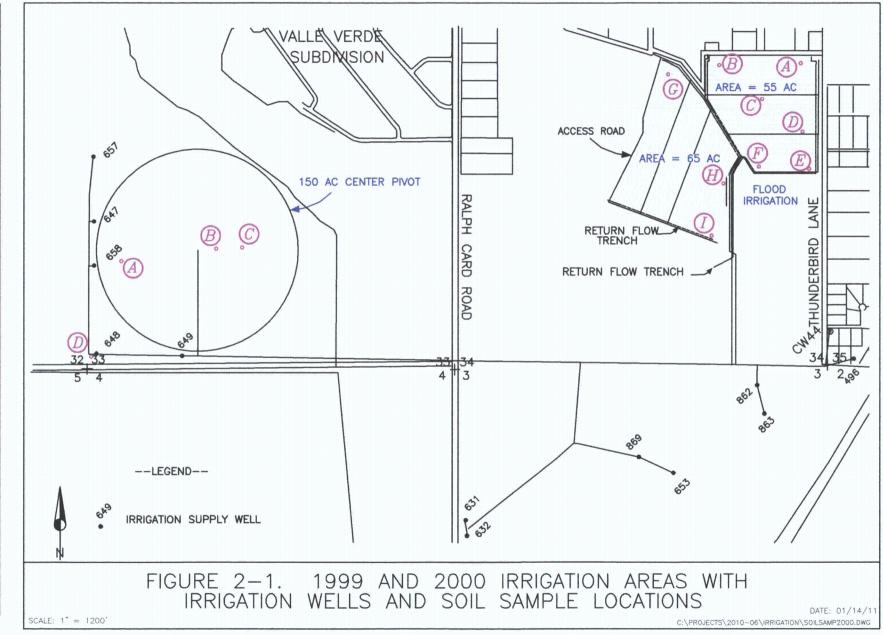
Uranium concentrations have increased gradually in Section 28 irrigation water: 0.23 mg/l in 2002, 0.24 mg/l in 2003, and 0.27 mg/l in 2004. Uranium concentrations stabilized from 2005 through 2008 at 0.35 to 0.36 mg/l. A small increase to 0.39 mg/l occurred in 2009.

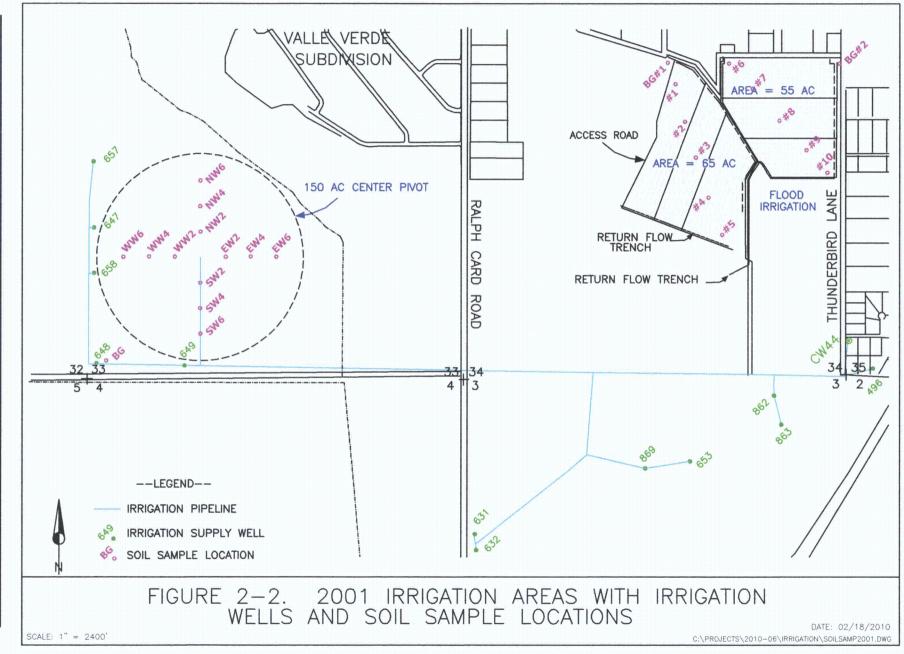
The eight-year (2002-2009) average uranium concentration of 0.32 mg/l is calculated as the average of the reported mean concentrations for the eight years, (0.23, 0.24, 0.27, 0.35, 0.35, 0.36, 0.36 and 0.39 mg/l).

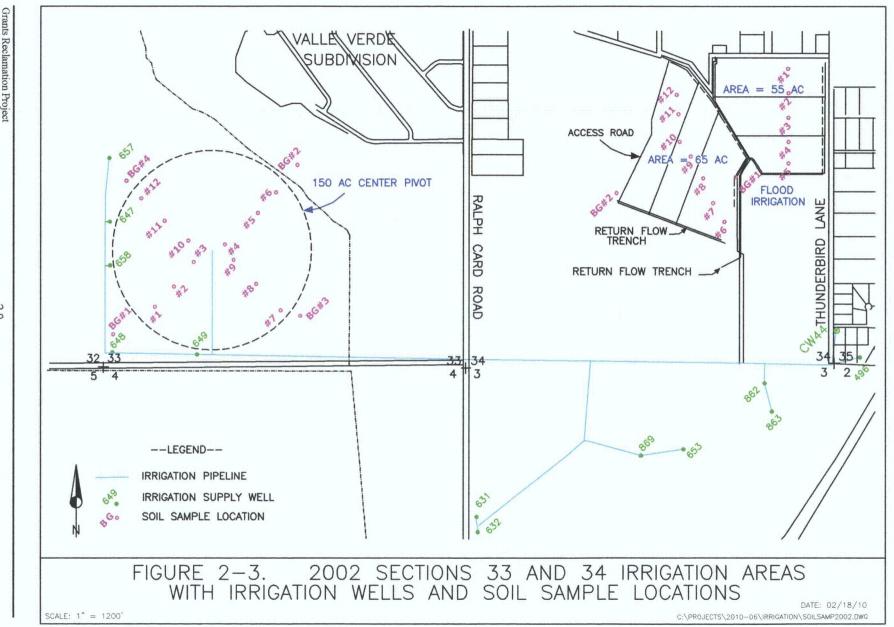
Selenium concentrations were 0.08 mg/l in 2002 and less than 0.005 mg/l in 2003. The latter result is questionable because the concentration in each of the four supply wells was measured at 0.04 or 0.05 mg/l and no other water was introduced to the supply line (see HMC's 2003 Annual Report for individual well results). The average 2004 through 2009 selenium concentrations were similar to the 2002 value. Thus, the seven-year average selenium concentration of 0.08 mg/l is calculated of the average of the mean concentration reported from 2002 through 2009.

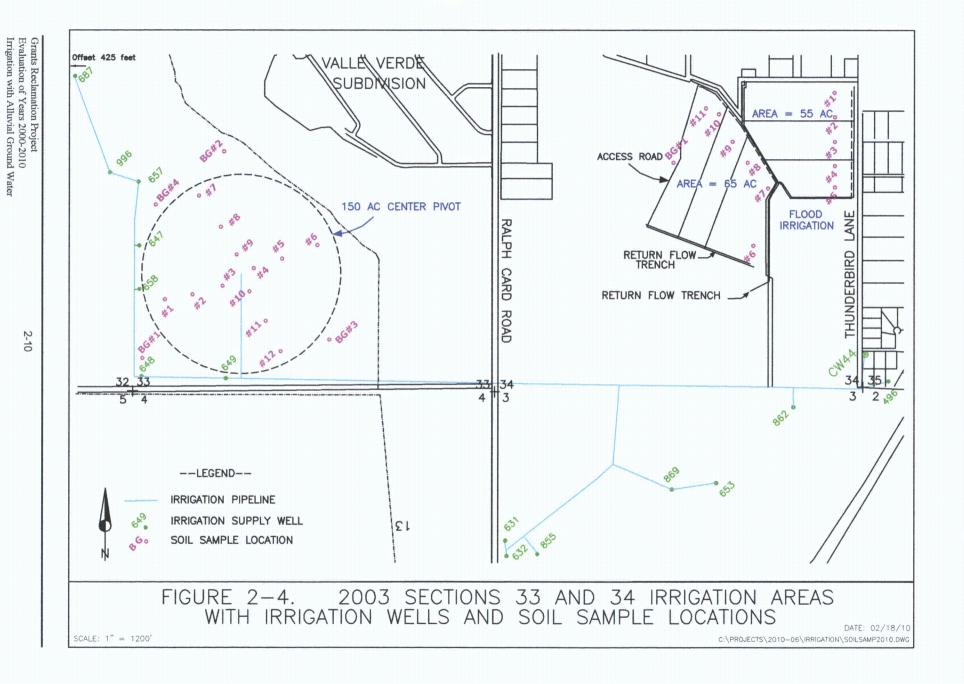
2.3 Irrigation Water Usage

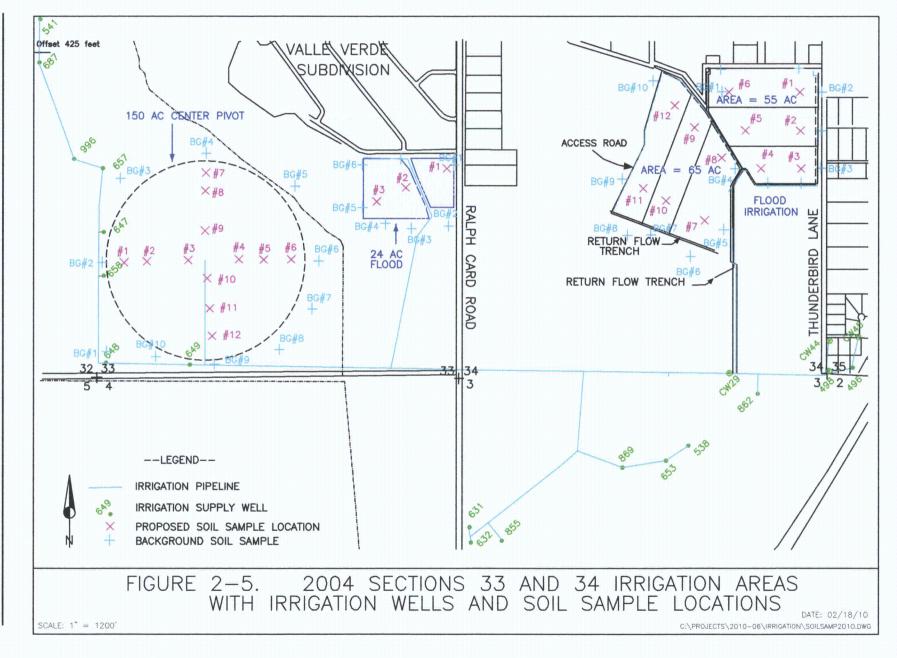
Water usage, which is tabulated below, has varied from 715 acre-feet (ac-ft) in 2000 applied to the 270 acres (Sections 33 and 34) to 1034 ac-ft in 2005 applied to the 394 acres (Sections 28, 33 and 34). Only 201 ac-ft of water was applied to the Section 34 area in 2010.

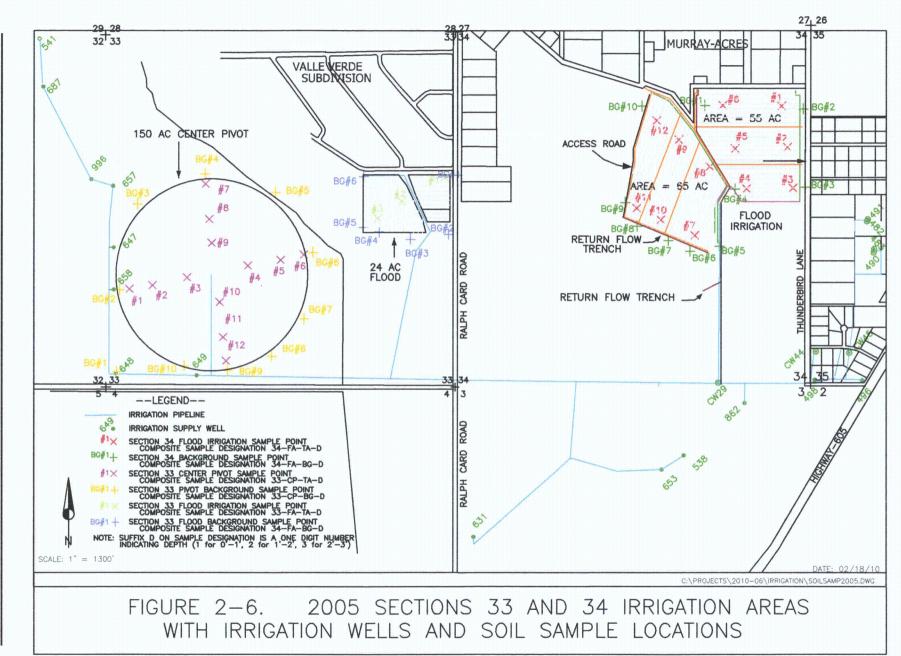

YEAR	WATER USAGE (AC-FT)	IRRIGATED AREA (AC)	AREA IRRIGATED
2000	715	270	Sections 33 and 34
2001	695	270	Sections 33 and 34
2002	995	330	Sections 28, 33 and 34
2003	949	330	Sections 28, 33 and 34
2004	1028	354	Sections 28, 33 and 34
2005	1034	394	Sections 28, 33 and 34
2006	837	370	Sections 28, 33 and 34
2007	789	370	Sections 28, 33 and 34
2008	1054	394	Sections 28, 33 and 34
2009	731	394	Sections 28, 33 and 34
2010	201	120	Section 34

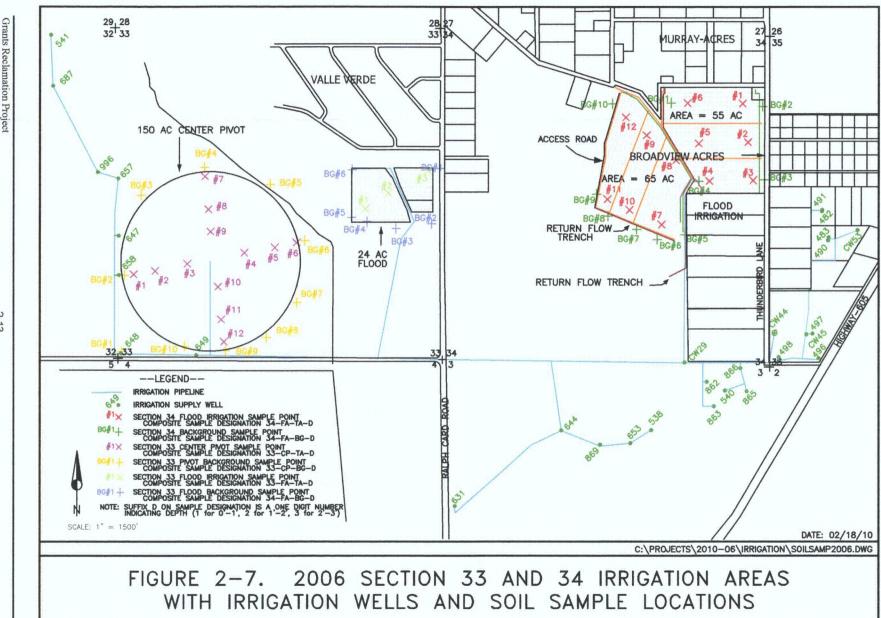


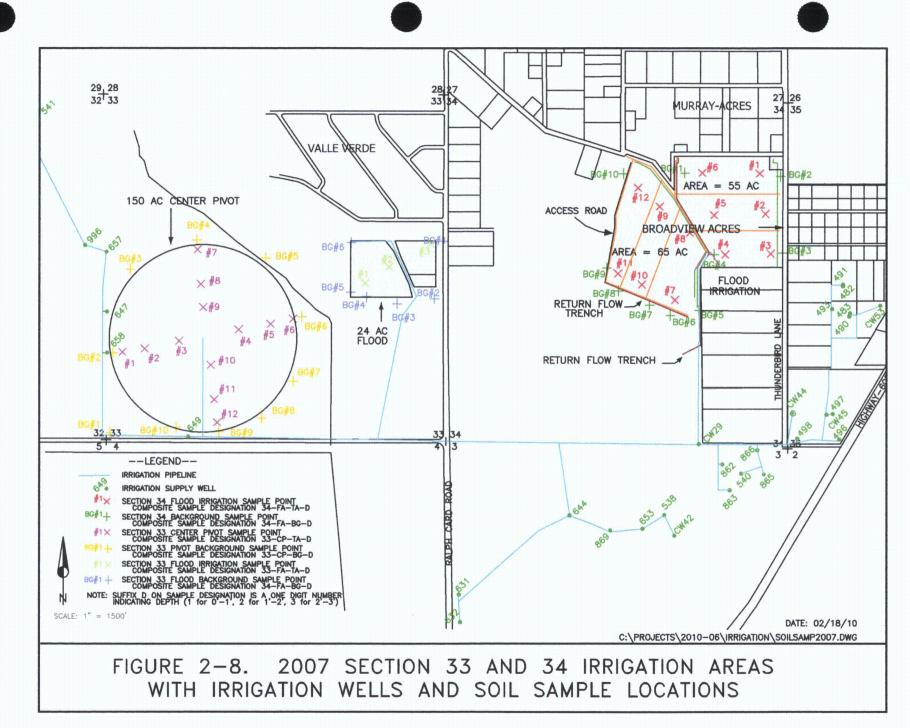

	<u>Parameter</u>						
	Sampling						
Year	Date	Uranium	Selenium	TDS	Sulfate	Chloride	Molybdenum
2002	10/2/2002	0.23	0.08	2070	<u> </u>		•===
2003	5/14/2003	0.24	<0.005	2070	936	184	<0.03
	5/4/2004	0.23	0.07	2120	933	190	<0.03
	5/27/2004	0.29	0.07	2110	950	170	<0.03
2004	8/18/2004	0.27	0.06	2140	956		
	10/6/2004	0.27	0.06	2090	838	194	<0.03
	Average	0.27	0.07	2115	919	185	<0.03
	4/12/2005	0.48	0.11	2220	955	176	0.09
	5/6/2005	0.51	0.12	2230	1010	192	0.11
	5/20/2005	0.33	0.08	2120	916	194	<0.03
	5/27/2005	0.26	0.06	2050	907	176	<0.03
2005	6/3/2005	0.33	0.08	2040	926	182	<0.03
	6/10/2005	0.33	0.07	2000	943	186	<0.03
	6/17/2005	0.31	0.08	2100	899	167	<0.03
	10/11/2005	0.28	0.06	2110	863	170	<0.03
	Average	0.35	0.08	2109	927	180	0.04
	3/1/2006	0.35	0.08	2230	926	197	0.04
	4/10/2006	0.35	0.09	2150	985	185	0.05
2006	6/26/2006	0.3	0.07	1550	645	158	<0.03
2000	8/14/2006	0.36	0.09	1980	928		
	10/2/2006	0.38	0.09	2020	925	161	0.07
• · • • • • • • • • • • • • • • • • • •	Average	0.35	0.08	1986	882	175	0.04
	4/1/2007	0.32	0.08	2130	904	173	<0.03
	4/30/2007	0.41	0.09	2240	980	164	0.04
2007	6/26/2007	0.32	0.08	2010	856	163	<0.03
2007	8/17/2007	0.38 -	0.08	2130	978		
	10/10/2007	0.39	0.09	2100	885	184	0.04
	Average	0.36	0.08	2122	921	171	0.04
2008	4/1/2008	0.465	0.083	2050	1020	90	0.05
	6/2/2008	0.285	0.059	1750	893	152	<0.03
2000	9/24/2008	0.318	0.056	1950	867	157	<0.03
	Average	0.36	0.07	1917	927	133	0.04
	4/20/2009	0.388	0.065	2035	913	171	0.05
	6/2/2009	0.308	0.064	1980	871	174	0.03
2009	7/24/2009	0.369	0.061	2020	852	·	
	9/28/2009	0.45	0.079	2080	940	177	0.07
	Average	0.39	0.07	2030	894	174	0.05

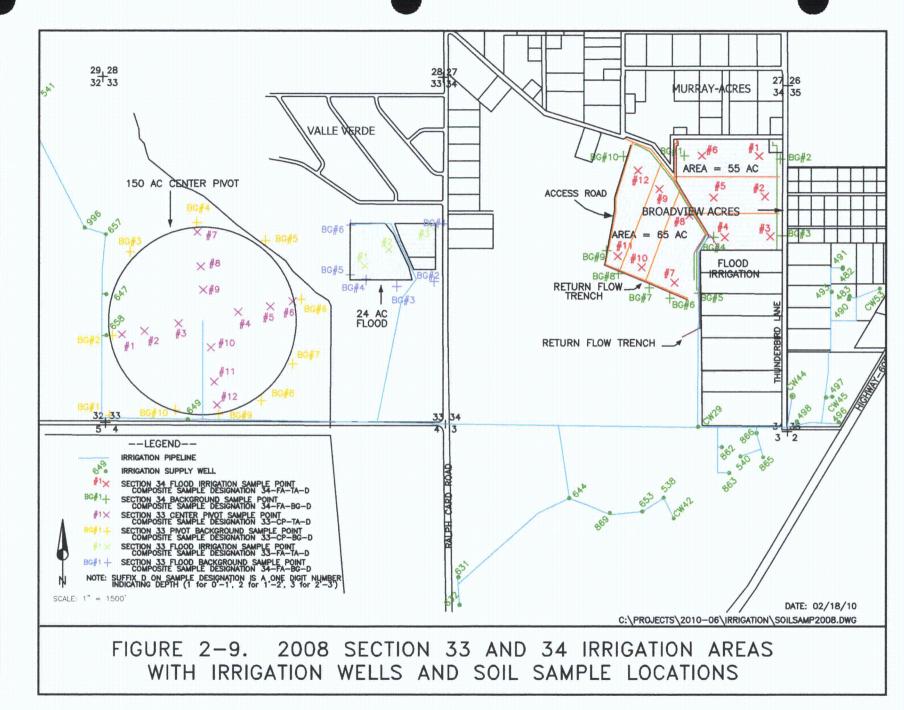

Table 2-2. 2002 through 2009 Section 28 Irrigation Supply Concentrations Parameter

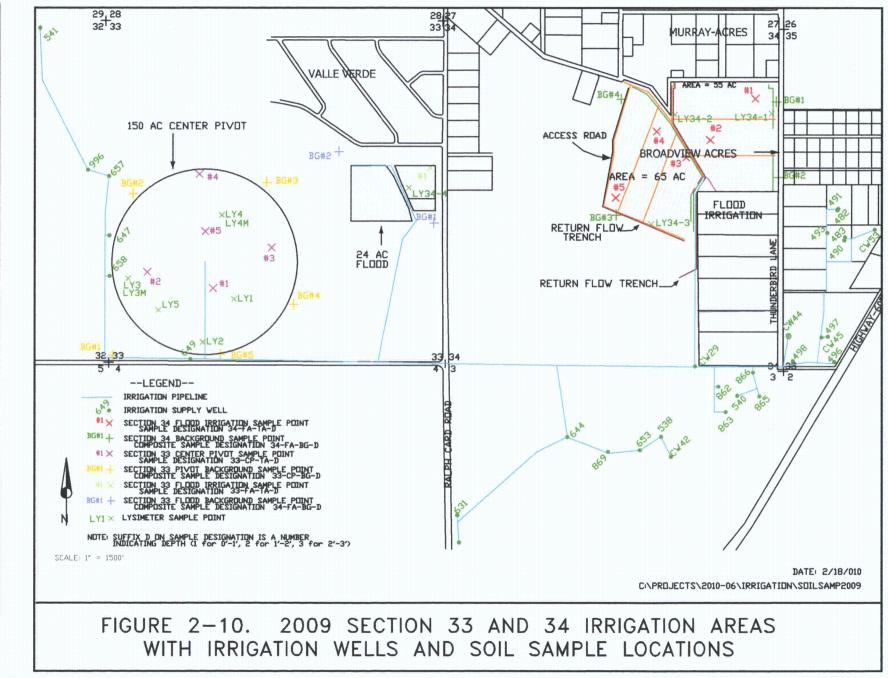

Г

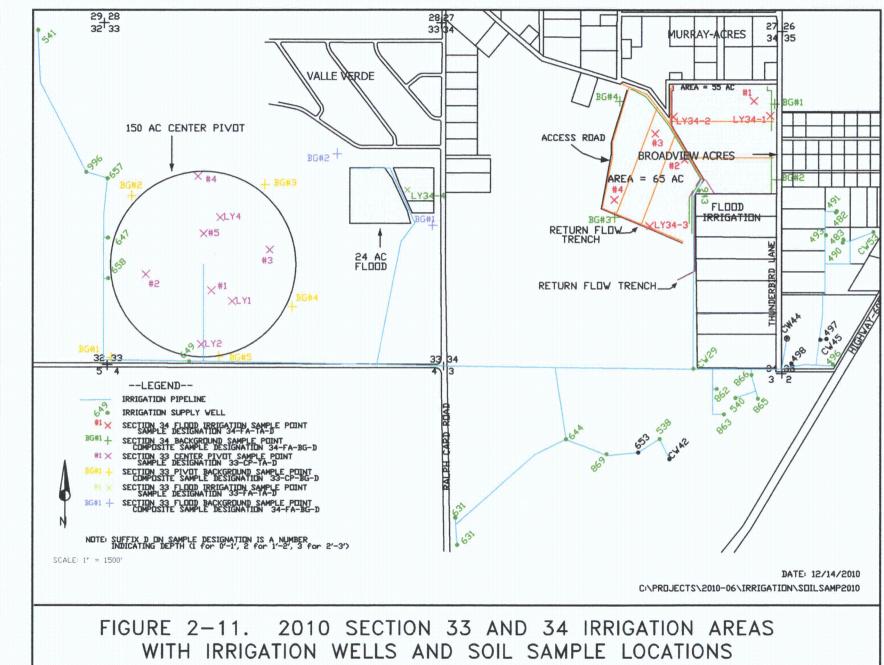


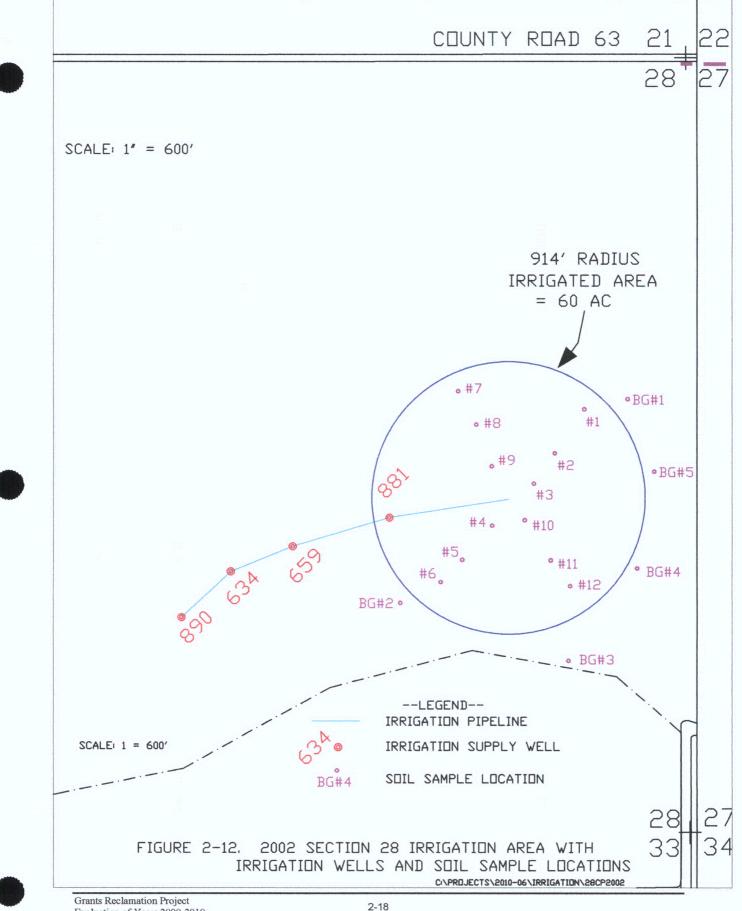


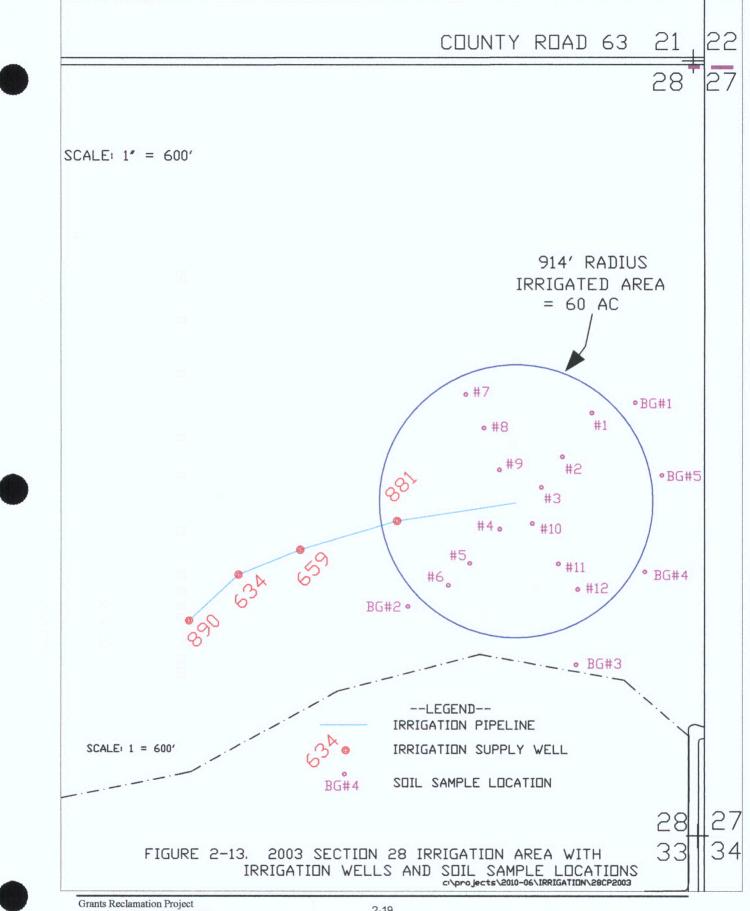


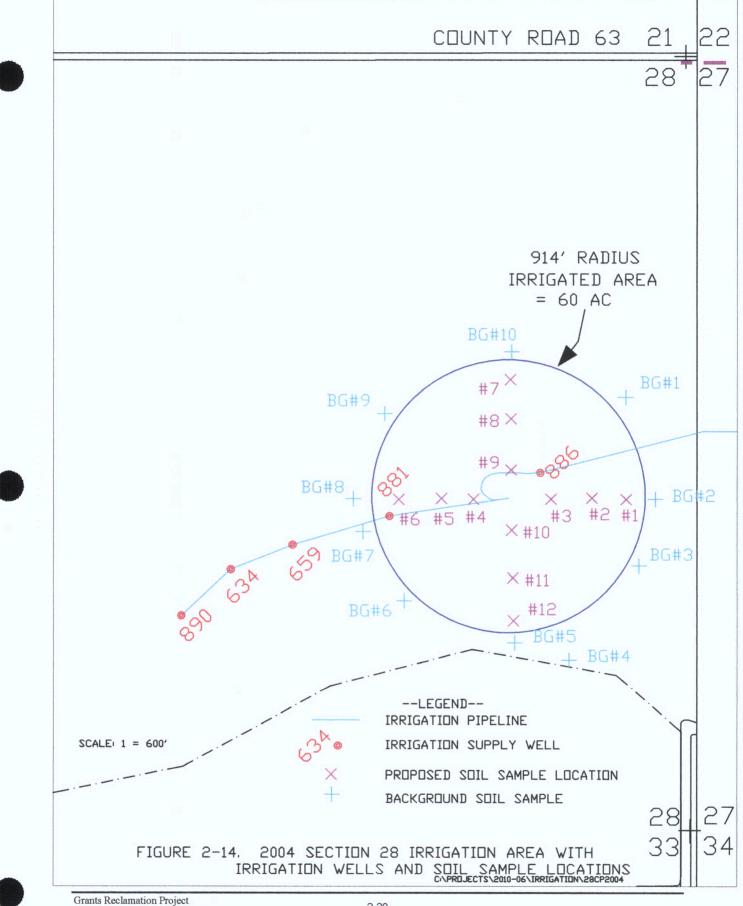


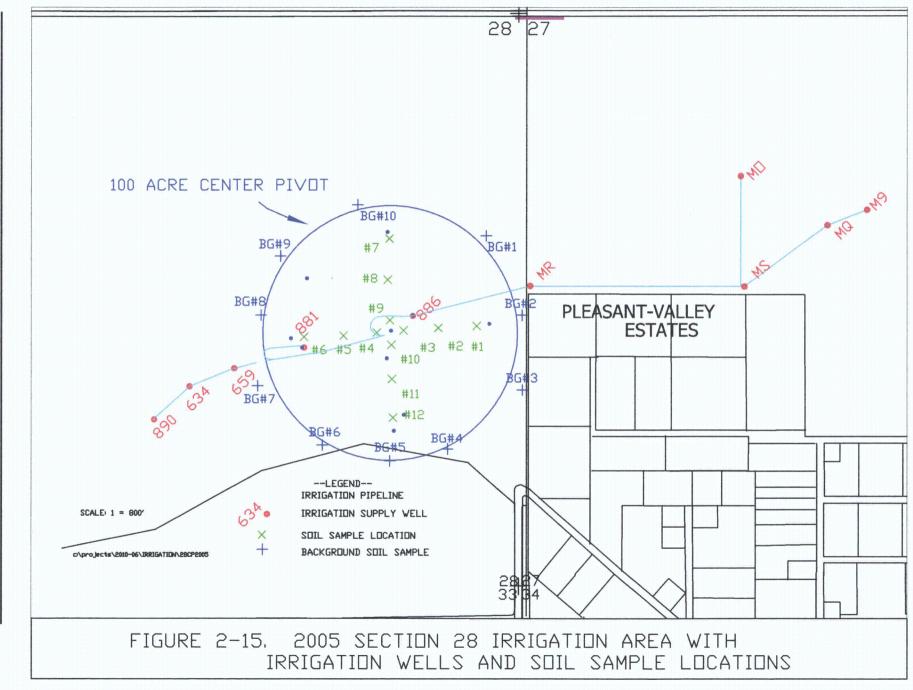


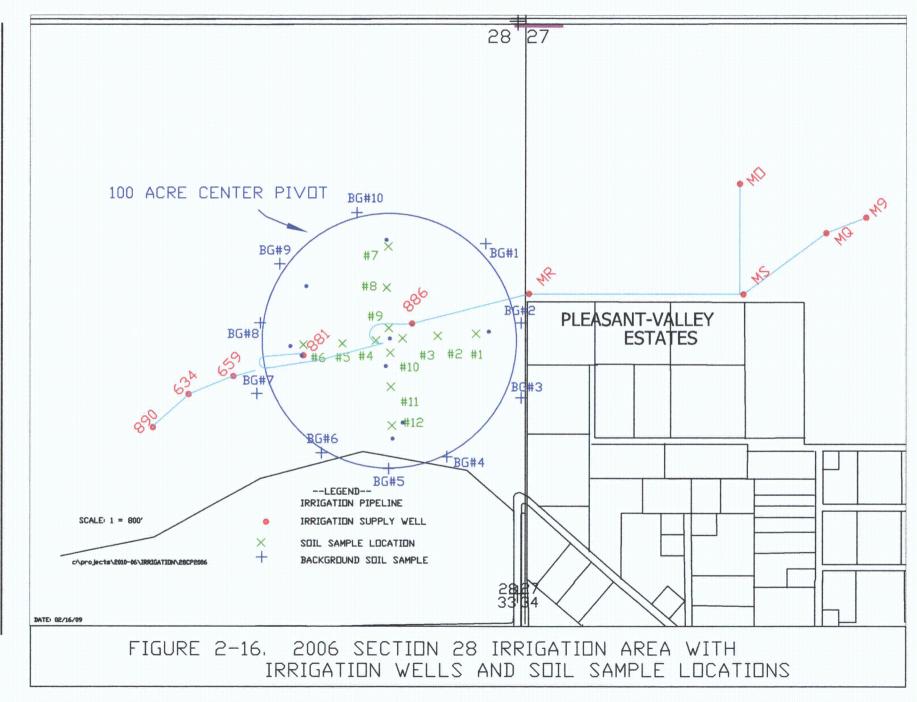


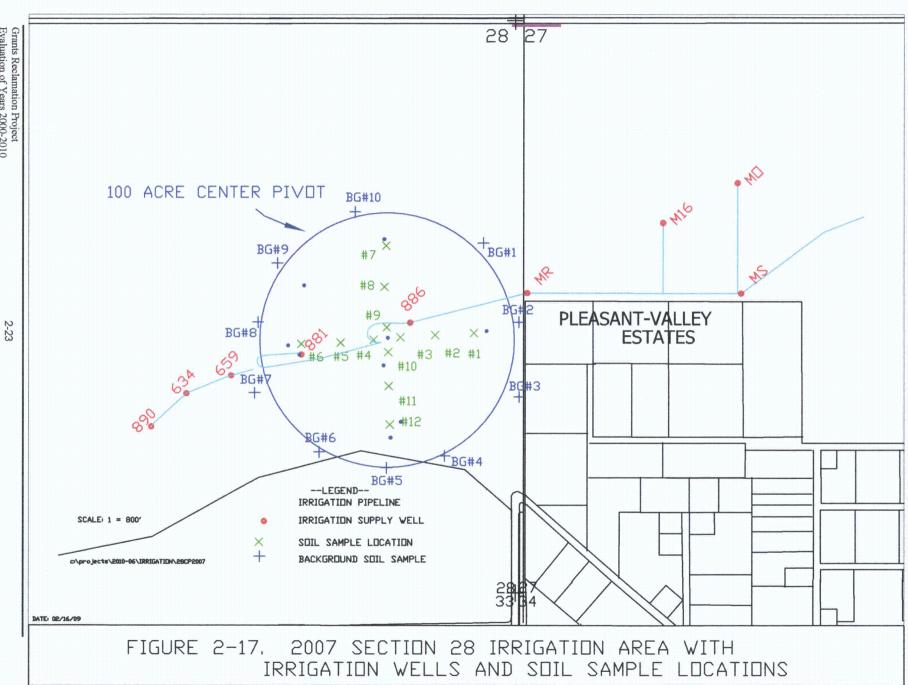


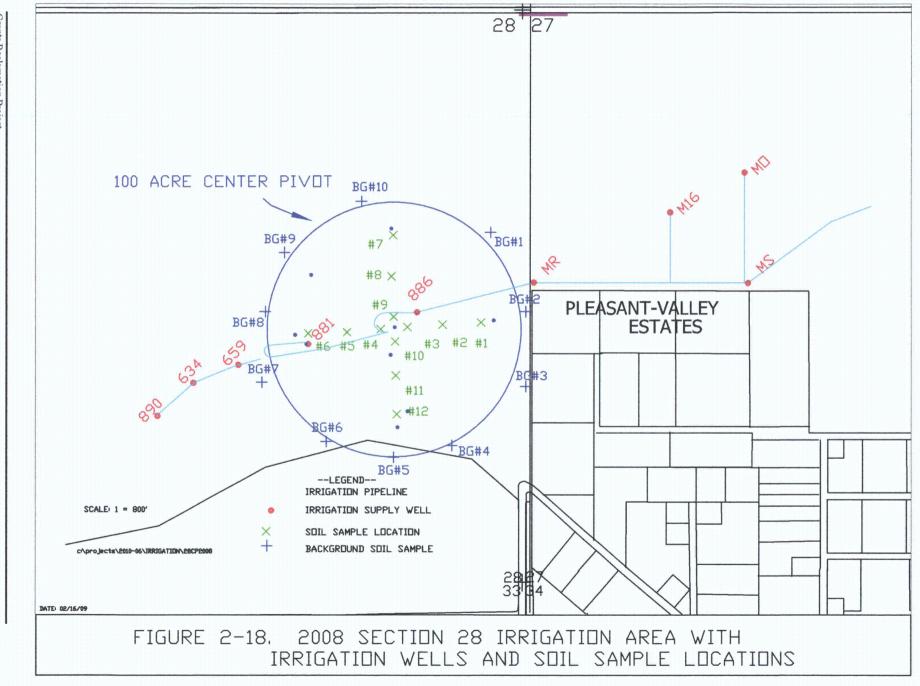




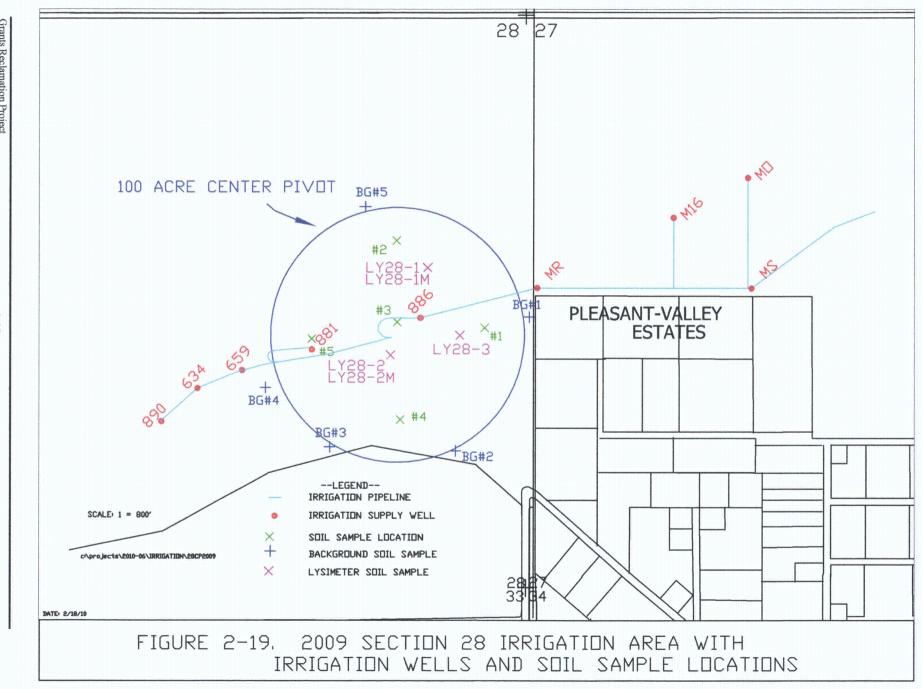

Evaluation of Years 2000-2010 Irrigation with Alluvial Ground Water

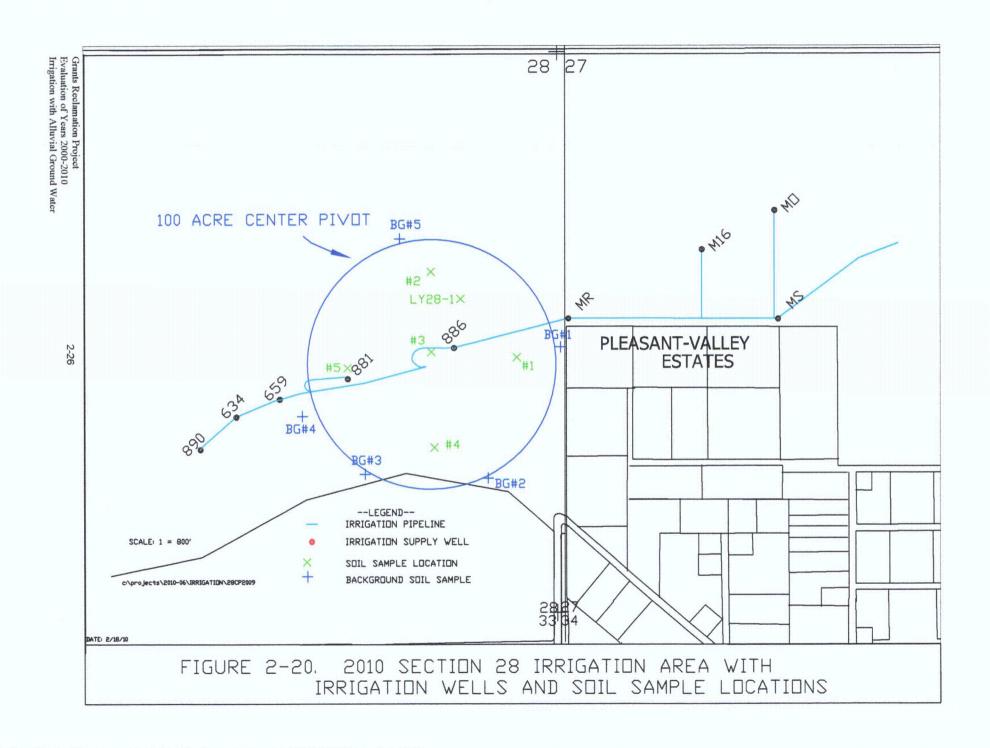



Evaluation of Years 2000-2010 Irrigation with Alluvial Ground Water



Evaluation of Years 2000-2010 Irrigation with Alluvial Ground Water





2-24

N

3.0 Soil and Soil Moisture Concentrations

Samples have been collected from irrigated and non-irrigated soils and analyzed for uranium, selenium, and chloride concentration to quantify the retention/adsorption of these constituents in the soil profile over time. The incremental quantity of uranium and selenium retained in soil was then used to calculate transfer coefficients from soil to hay. Chloride was tracked as a conservative constituent and used to verify observations of selenium retention in soil.

Investigators labeled the first samples collected from irrigated areas as pre-operations samples. Samples collected from adjacent, fallow areas were labeled as background samples. Areas slated for irrigation that were sampled prior to irrigation (pre-operations) were essentially background areas until they were irrigated with impacted ground water. Thus, to assist the reader, sampling areas are hereafter referred to as treated (irrigated areas) and untreated (non-irrigated areas) areas.

ACZ Laboratories, Inc. performed the analyses on the soil samples. When testing for chloride and sulfate, ACZ consistently returned qualifiers for those two constituents stating "analysis exceeded method hold time."

Soil moisture concentrations were initially measured in the irrigated fields in 2009. Lysimeters were installed in selected locations to collect the soil moisture water samples.

3.1

Subsurface Conditions

The subsurface conditions are defined in this section. The depth to the top of the basalt is presented in this section to show the thickness of alluvial material above the basalt. Cross-sections are used to illustrate the subsurface conditions down to the base of the alluvial aquifer.

3.1.1 Section 34

The Section 34 flood area is shown on the eastern portion of Figure 3-1. This 120 acre flood area is just south of Murray Acres and the basalt is not present under any of the Section 34 flood area. Figure 3-1 shows the location of a cross-section which runs from well CW-43 in the Section 33 Flood area through the southern portion of the Section 34 Flood area and into the western edge of Section 35. This cross-section shows the depth to the alluvial aquifer and the base of the alluvial aquifer (see Figure 3-2). On the western side of the cross-section shown in Figure 3-1, the basalt is present and the elevation of the base of the alluvium is higher than the surrounding water-level elevation in the alluvium. The cross-section shows the location of the west fault east of well CW37, and also shows that the Upper Chinle aquifer subcrops against the alluvial aquifer in the eastern edge of this cross-section.

3.1.2 Section 28

-Figure 3-3 shows the depth to basalt in the Section 28 Center Pivot area. The depth to basalt in this area generally increases from the southwest side of the center pivot where the depth to the top of the basalt is approximately 10 feet to greater than 20 feet on the northeast side of the center pivot. The cross-hatch pattern shows where the basalt does not exist in the alluvial material in the far southeast corner of Section 28. Figure 3-4 presents the cross-section from irrigation well 659 through well CW-32 (see Figure 3-3 for location of this cross-section). This cross-section shows that the basalt extends down below the alluvial water level in the majority of the Section 28 Center Pivot area. Three irrigation supply wells are shown on this alluvial cross-section. The cross-section also shows the completion of two lysimeters.

3.1.3 Section 33

The depth of the alluvial material to the top of the basalt is presented in Figure 3-5 for the Section 33 area. This figure shows that the depth of the basalt below the land surface varies from less than 5 feet in the southwestern portion of Section 33 Center Pivot to greater than 20 feet in the southeastern portion of the pivot. The limits of the basalt are shown in the area of the eastern portion of Section 33 where the basalt is absent. It is shown by a cross-hatch pattern. Figure 3-5 shows the location of a cross-section that goes from irrigation well 657 to San Andres well 907 in Section 4. Figure 3-6 shows the cross-section indicating thickness of the alluvial material above the basalt and the thickness of the basalt. The base of the alluvial material is also shown on this cross-section and the alluvial water-level elevation is also presented to show how much of the alluvial material is saturated. The cross-section also shows the alluvial wells with their completion interval and also the depth of installation of lysimeters along this cross-section. The lysimeters results are presented later in Section 3.4.

3.2 Background Soil Concentrations

Naturally-occurring uranium and selenium concentrations in untreated soils were determined in two studies. In 1998, HMC characterized uranium and selenium concentrations in soils, prior to selecting fields for the irrigation study. In 1999, HMC investigated chloride concentrations in Sections 33 and 34 prior to the start of irrigation. HMC has also collected and analyzed soil samples immediately prior to and during the irrigation program.

3.2.1 1998 Investigation

The first investigation (RIMCON and Hydro-Engineering, 1998) was completed prior to the selection of treatment areas. Surface and near-surface soil samples were collected inside and outside the fields slated for irrigation. The samples were analyzed for uranium and selenium concentrations and parameters to define soil types.

At the time of sampling, surface soils in Sections 28, 33, and 34 were placed in three general categories: loamy sand, sandy loam, and sandy clay loam, respectively. The percentage of clay in these soils appeared to increase from Section 28 to 33 to 34 (RIMCON and Hydro-Engineering, 1998).

The 1998 results are listed in Tables 3-1, 3-2 and 3-3 for Section 34, 28, and 33, respectively, along with recent "untreated area" background analyses. A "1998" in the comment column in the tables indicate the sample was taken during the 1998 background investigation. Figure 3-7 shows the location of the soil samples collected in Sections 33, 34, and Section 28. Seven soil samples collected from Section 33 were analyzed for uranium and selenium. The two eastern Section 33 soil results are included with the Section 34 results in Table 3-1 because the soil in eastern Section 33 is similar to the clay soils in Section 34. This figure also shows nine samples in Section 34 and one in the northern portion of Section 3 that are considered to be representative of the area for Section 34. Figure 3-7 also shows the location of seven samples in Section 28 and one along the western edge of Section 27 that were used to define the background concentrations in Section 28 in the 1998 investigation.

3.2.2 Background Determinations during Ongoing Investigation

Additional background samples were collected in treated (pre-operational) and untreated areas, starting in 1999. HMC continued to collect samples from the treated (post-treatment) and untreated areas in subsequent years.

The background soil samples were analyzed by ACZ Laboratories, Inc. Uranium concentrations were determined using U.S. Environmental Protection Agency (EPA) Method 6020 ICP-MS, with an MDL of 0.03 mg/kg for all samples collected in 2000, 2002, 2003 and 2004; 0.01 mg/kg in 2001; 0.06 mg/kg in 2005; and 0.05 mg/kg in 1999, 2006, 2007 and 2008.

Selenium concentrations in samples collected from 1999-2001 were determined using EPA Method 7742 Modified AA-Hydride, with an MDL of 0.1 mg/kg. The 2002 selenium analyses were determined using three methods. The samples were first analyzed using EPA Method 6020 ICP-MS, with an MDL of 0.8 mg/kg. The samples were then re-analyzed twice: first by way of EPA Method 7742 modified AA-Hydride, followed by EPA Method 6020 ICP-MS. The latter analysis was performed because selenium concentrations reported by way of EPA Method 7742 were below the relatively high MDL of 0.6 mg/kg. A lower MDL (0.05 mg/kg) was then obtained in subsequent years, using EPA Method 6020. The EPA M6020 ICP-MS method was used for 2003, 2004, 2005, 2006, 2007, 2008 and 2009. All selenium concentrations reported in 2002 were below the MDL of 0.60 mg/kg, limiting the usefulness of the data. The 2002 results were not considered in evaluating trends in selenium concentrations, because selenium concentrations prior to and after 2002 were lower than the lowest MDL observed in 2002 by a factor of two.

3.2.3 Mean Background Soil Concentrations

Mean background is defined as the average of the untreated, pre-irrigation-treated and background concentrations of constituents in all such samples collected to date (see Tables 3-1 through 3-3 for updated mean background values). This value is designated by section and layer(s) and is updated with new data as they are obtained. Thus, it changes annually. The importance in having this value defined in this manner is to supplement and improve the background data set. These mean background values are used to calculate uptake of a constituent in the treated areas. Figures 3-8, 3-12 and 3-16 show the data used to calculate the mean uranium background concentrations for Section 34, 28 and 33 respectively. Figures 3-10, 3-14 and 3-18 depict the mean background plots for selenium.

In Section 34, the 2010 mean background uranium concentrations were 2.00 (0-1 ft), 1.54 (1-2 ft), and 1.12 (2-3 ft) mg/kg. Table 3-1 presents the constituents in Section 34 background soils. The Section 34 soils generally show a decrease in mean uranium concentrations with increasing depth, but the difference between concentrations for each depth interval is greater in Section 34. A few results appeared to be outliers and were not used to calculate concentrations. Note that the six eastern samples from Section 33 are included in the Section 34 table because the soils from these two samples are primarily clays. The Sections 33 and 34 clay soils are combined in Table 3-1 to define the background concentrations for the two flood irrigated areas.

The background values for the deeper Section 34 soils from 3-4 to 11-13 feet varied from 0.55 to 1.12 mg/kg. This year is the second year to measure soil at depths greater than three feet since 1998 when select samples were taken from depths greater than three feet. The corresponding mean background concentrations for the upper three feet for selenium and chloride are 0.35, 0.29, and 0.26 mg/kg; and 70, 100, and 92 mg/kg, respectively. Table 3-1 lists uranium, selenium, and chloride concentrations in the 1998 and 1999 background samples and those collected near the Section 34 irrigation area from 2000 through 2010. This table is broken into eleven depth intervals: 0-1 through 15-17 ft. Results from a sample are listed in the depth interval if at least 6 inches (in) of the sample is from the interval.

In Section 28, the mean background uranium concentrations were 0.60 (0-1 ft), 0.52 (1-2 ft), and 0.51 (2-3 ft) mg/kg. Table 3-2 presents the results for Section 28.

Mean background uranium concentrations for the first three Section 33 intervals are 0.80 (0-1 ft), 0.69 (1-2 ft), and 0.73 mg/kg (2-3 ft).

The mean background concentrations of selenium are similar in Sections 28 and 33. Selenium concentrations in Section 34 are generally higher, presumably because of their association with clay soils.

Measurements for uranium, selenium, and chloride showed a high degree of variability between and within fields, with coefficients of variation (100 x standard deviation/mean) ranging between 0 and 89 percent.

Table 3-1. Pre-Operations and Background Soil Sample Results for Section 34

	Τ	1		Natural	Uranium			
			[Selenium	Chloride	
Interval (ft)	Location ID	Area	Depth (in)	(pCi/g)	mg/kg	(mg/kg)	(mg/kg)	Comment
	S33-1	Untreated	0-6	0.96	1.42	0.13		1998
	S33-1	Untreated	6-24	1.23	1.82	0.19		1998
	S33-2	Untreated	0-6	1.12	1.65	0.18		1998
	S33-2	Untreated	6-24	1.02	1.51	0.19		1998
	S3-1	Untreated	0-14	0.70	1.03	0.11		1998
•	S34-1	Untreated	3-24	@5.85	@8.77	0.10		1998
	S34-3	Treated	4-26	1.03	1.52	0.11	·	1998
	S34-5	Untreated	3-40	0.84	1.24	0.14		1998
	S34-7	Untreated	3-28	0.78	1.15	0.06	·	1998
	S34-8	Untreated	2-30	1.26	1.86	0.31		1998
	S34-10	Untreated	3-28	1.01	1.49	0.13		1998
	S34-11	Untreated	3-15	1.36	2.01	0.03		*1998
-	S34-13	Untreated	4-18	@3.93	@5.81	0.11		1998
	S34-14	Treated	4-24	0.79	1.17	0.19		1998
	34A	Treated	0-6	1.84	2.72	0.40	36	1999
	34B	Treated	0-6	1.60	2.36	0.40	54	1999
	34C	Treated	0-6	1.18	1.75	0.30	79	1999
	34D	Treated	0-6	2.44	3.60	0.60	36	1999
	34E	Treated	0-6	1.56	2.31	0.40	25	1999
0-1	34F	Treated	0-6	2.05	3.03	0.80	68	1999
0-1	34G	Treated	0-6	1.25	1.85	0.30	13	1999
	34H	Treated	0-6	2.29	3.38	0.70	43	1999
	34I	Treated	0-6	0.67	0.99	0.10	42	1999
	BG-1-34	Untreated	0-12	1.67	2.47	0.30	100	2001
	BG-1-34	Untreated	0-12	0.30	0.45		. 7	#2002
	BG-1-34	Untreated	0-12	1.58	2.33	0.42	83	2003
	BG-1-34	Untreated	0-12	1.89	2.79	0.75	151	2004
	BG-1-34	Untreated	0-12	1.63	2.41	0.53	@400	2005
	BG-1-33F	Untreated	0-12	1.06	1.56	0.47	30	2004
		Untreated	0-12	0.76	1.12	0.25	76	2005
	BG-1-33F	Untreated	0-12	1.05	1.55	0.56	24	2006
	BG-1-34	Untreated	0-12	2.07	3.06	0.69	@253	2006
		Untreated	0-12	1.21	1.79	0.38	64	2007
	BG-1-34	Untreated	0-12	2.23	3.30	0.74	@267	2007
	BG-1-33F	Untreated	0-12	0.97	1.44	0.32	@220	2008
	BG-1-34	Untreated	0-12	1.71	2.52	0.57	@289	2008
		Untreated	0-12	0.83	1.22	0.23	50	2009
	BG-1-34	Untreated	0-12	2.27	3.35	0.59	135	2009
		Untreated	0-12	0.96	1.42	0.27	150	2010
	BF-1-34	Untreated	0-12	2.21	3.27	0.58	199	2010
-			Mean	1.35	2.00	0.35	69.76	
х. 1			SDV	0.55	0.81	0.22	51.23	
			CV	40.34	40.37	63.10	73	

Grants Reclamation Project Evaluation of Years 2000-2010 Irrigation with Alluvial Ground Water

	·····		<u>}</u>					
			4	Natural	Uranium		011 11	
T (1 (0)					-	Selenium	Chloride	
Interval (ft)	Location ID	Area	Depth (in)	(pCi/g)	mg/kg	(mg/kg)	(mg/kg)	Comment
	S33-1	Untreated	6-24	1.23	1.82	0.19		1998
	833-2	Untreated	6-24	1.02	1.51	0.19		1998
	S3-1	Untreated	14-38	0.71	1.05	0.09		1998
	S34-1	Untreated	3-24	@5.85	@8.77	0.10		1998
	S34-3	Treated	4-26	1.03	1.52	0.11		1998
	S34-5	Untreated	3-40	0.84	1.24	0.14		1998
	S34-7	Untreated	3-28	0.78	1.15	0.06		1998
	S34-8	Untreated	2-30	1.26	1.86	0.31		1998
	S34-10	Untreated	3-28	1.01	1.49	0.13		1998
	S34-11	Untreated	15-60	0.58	0.86	0.03		*1998
	S34-13	Untreated	4-18	@3.93	@5.81	0.11		1998
	S34-13	Untreated	18-30	0.68	1.00	0.14		1998
	S34-14	Treated	4-24	0.79	1.17	0.19		1998
	BG-2	Untreated	12-24	1.30	1.92	0.20	120	2001
1-2	BG-2	Untreated	12-24	0.36	0.53		4	#2002
1-2	BG-2	Untreated	12-24	0.99	1.46	0.35	131	2003
	BG-2-34	Untreated	12-24	1.38	2.04	0.68		2004
	BG-2-34	Untreated	12-24	1.65	2.44	0.69		2005
	BG-2-33F	Untreated	12-24	0.88	1.30	0.39	35	2004
	BG-2-33F	Untreated	12-24	0.62	0.92	0.20	103	2005
	BG-2-33F	Untreated	12-24	0.78	1.15	0.35	20	2006
	BG-2-34	Untreated	12-24	@2.66	@3.93	@0.87	@219	2006
i	BG-2-33F	Untreated	12-24	0.87	1.29	0.31	57	2007
	BG-2-34	Untreated	12-24	1.87	2.67	0.78	@271	2007
	BG-2-33F	Untreated	12-24	0.80	1.18	0.31	90	2008
	BG-2-34	Untreated	12-24	1.48	2.19	0.48	@257	2008
	BG-2-33F	Untreated	12-24	1.08	1.60	0.29	70	2009
	BG-2-34	Untreated	12-24	1.46	2.15	0.39	168	2009
	BG-2-33F	Untreated	12-24	0.99	1.46	0.27	120	2010
	BG2-34	Untreated	12-24	1.77	2.61	0.56	284	2010
			Mean	1.04	1.54	0.29	100.17	
			SDV	0.38	0.55	0.20	75.64	
			cv	35.99	35.57	69.20	76	
·····		······			·			

Table 3-1. Pre-Operations and Background Soil Sample Results for Section 34 (continued)

				Natural	Uranium			
						Selenium	Chloride	
Interval (ft)	Location ID	Area	Depth (in)	(pCi/g)	mg/kg	(mg/kg)	(mg/kg)	Comment
	S33-1	Untreated	24-48	1.32	1.95	0.23		1998
	S3-1	Untreated	14-38	0.71	1.05	0.09		1998
	S34-1	Untreated	24-36	0.43	0.64	0.13		1998
	S34-5	Untreated	3-40	0.84	1.24	0.14		1998
	S34-7	Untreated	28-40	0.43	0.64	0.41		1998
	S34-8	Untreated	30-60	0.69	1.02	0.34		1998
	S34-13	Untreated	18-30	0.68	1.00	0.14		1998
	S33-2	Untreated	24-48	0.40	0.59	0.09		1998
	S34-11	Untreated	15-60	0.58	0.86	0.03		*1998
1	S34-14	Treated	30-90	0.20	0.30	0.03		*1998
1	BG-3	Untreated	24-36	0.53	0.79	0.20	120	2001
	BG-3	Untreated	24-36	0.27	0.40		4	#2002
	BG-3	Untreated	24-36	1.12	1.66	0.36	141	2003
2-3	BG-3-34	Untreated	24-36	0.93	1.38	0.40	@169	2004
	BG-3-33F	Untreated	24-36	0.90	1.33	0.42	30	2004
	BG-3-34	Untreated	24-36	1.44	2.13	0.51	@354	2005
	BG-3-33F	Untreated	24-36	0.61	0.90	0.19	81	2005
	BG-3-33F	Untreated	24-36	0.71	1.05	0.34	14	2006
1	BG-3-34	Untreated	24-36	1.55	2.29	0.54	@259	2006
	BG-3-33F	Untreated	24-36	0.84	1.24	0.35	43	2007
	BG-3-34	Untreated	24-36	1.11	1.64	0.53	@246	2007
	BG-3-33F	Untreated	24-36	0.66	0.97	0.25	@170	2008
	BG -3 -34	Untreated	24-36	0.85	1.26	0.27	@210	2008
	BG-3-33F	Untreated	24-36	0.41	0.61	0.10	40	2009
	BG-3-34	Untreated	24-36	0.43	0.63	0.17	159	2009
	BG-3-33F	Untreated	24-36	0.58	0.86	0.17	110	2010
	BG-3-34	Untreated	24-36	1.14	1.69	0.42	265	2010
1			Mean	0.75	1.12	0.26	91.55	
			SDV	0.35	0.52	0.16	77.99	
			CV	46.26	46.20	58.99	85	

Table 3-1. Pre-Operations and Background Soil Sample Results for Section 34 (continued)

		T		Natural Uranium				
						Selenium	Chloride	
Interval (ft)	Location ID	Area	Depth (in)	(pCi/g)	mg/kg	(mg/kg)	(mg/kg)	Comment
	S34-11	Untreated	15-60	0.58	0.86	<0.05		1998
	S34-1	Untreated	36-60	0.39	0.58	0.068		1998
	S34-8	Untreated	30-60	0.69	1.02	0.34		1998
	S33-1	Untreated	24-48	1.32	1.95	0.23	***=	1998
	S33-8	Untreated	20-48	0.35	0.52	< 0.05		1998
	S33-9	Untreated	24-48	0.70	1.03	0.10		1998
	S33-10	Untreated	30-60	0.40	0.59	< 0.05		1998
3-4	S34-14	Treated	30-90	0.2	0.3	<0.05		1998
	S34-5	Untreated	40-53	0.3	0.44	0.08		1998
	S33-2	Untreated	24-48	0.40	0.59	0.09		1998
	S32-2	Treated	24-48	0.39	0.58	<0.05		1998
	BG-43-33F	Untreated	24-36	0.59	0.87	0.12	12	2009
	BG-4-34	Untreated	24-36	0.37	0.55	0.10	135	2009
	BG-4-33F	Untreated	36-48	0.64	0.94	0.16	40	2010
	BG-4-34	Untreated	36-48	0.38	0.56	0.17	105.00	2010
			Mean	0.51	0.76	0.15	73.00	
			SDV	0.27	0.40	0.08	56.8 0	
			CV	52.25	52.12	57.54	77.81	•

Grants Reclamation Project Evaluation of Years 2000-2010 Irrigation with Alluvial Ground Water

Table 3-1. Pre-Operations and Background Soil Sample Results for Section 34 (continued)

ſ	[1	1 1	Natural	Uranium	[[r
				1 (uturur		Selenium	Chloride	
Interval (ft)	Location ID	Area	Depth (in)	(pCi/g)	mg/kg	(mg/kg)	(mg/kg)	Comment
	S34-11	Untreated	15-60	0.58	0.86	<0.05		1998
	S34-1	Untreated	36-60	0.39	0.58	0.068		1998
	S34-8	Untreated	30-60	0.69	1.02	0.34		1998
	S33-10	Untreated	30-60	0.40	0.59	< 0.05		1998
	S34-3	Treated	50-90	0.2	0.3	< 0.05		1998
4-5	S34-14	Treated	30-90	0.2	0.3	< 0.05		1998
	834-5	Treated	40-53	0.76	1.12	0.07		1998
	BG-5-33F	Untreated	24-36	0.59	0.87	0.12	30	2009
	BG-5-34	Untreated	24-36	0.22	0.33	0.04	55	2009
	BG-5-33F	Untreated	48-60	0.39	0.58	< 0.05	30	2010
	BG-5-34	Untreated	48-60	0.35	0.58	0.11	156.00	2010
			Mean	0.43	0.64	0.12	67.75	
			SDV	0.20	0.29	0.12	60.00	
			CV	45.04	44.75	87.85	88.56	
	<u>.</u>		:	-12.04		01.05	00.70	
		1	T[Natural	Uranium			
_						Selenium	Chloride	
Interval (ft)	Location ID	Агеа	Depth (in)	(pCi/g)	mg/kg	(mg/kg)	(mg/kg)	Comment
	S34-5	Untreated	53-73	0.76	1.12	0.07		1998
	S34-11	Untreated	60-90	0.26	0.38	<0.05	·	1998
5-7	BG 5-7-33F	Untreated	60-72	0.28	0.42	0.05	60	2009
57	BG 5-7-34	Untreated	60-72	0.21	0.31	0.04	33	2009
	BG 5-7-33F	Untreated	60-72	0.35	0.52	<0.05	50	2010
ĺ	BG 5-7-34	Untreated	60-72	0.35	0.52	0.09	79.00	2010
			Mean	0.37	0.55	0.06	55.50	
			SDV	0.20	0.29	0.02	19.23	
.			CV	53.80	53.81	35.43	34.64	
	Г		· · · · · · · · · · · · · · · · · · ·					
				Natural	Uranium	a 1 ·	011 1	
-						Selenium	Chloride	~
Interval (ft)	Location ID	Area	Depth (in)	(pCi/g)	mg/kg	(mg/kg)	(mg/kg)	Comment
	S34-11	Untreated	60-90	0.26	0.38	< 0.05		1998
	BG 7-9-33F	Untreated	72-96	0.24	0.35	<0.05	70	2009
7-9	BG 7-9-34	Untreated	72-96	0.63	0.93	0.09	84	2009
	BG 7-9-33F	Untreated	72-96	0.22	0.33	<0.05	40	2010
1	BG 7-9-34	Untreated	72-96	0.55	0.81	0.12	51.00	2010
			Mean	0.38	0.56	0.11	61.25	
			SDV	0.19	0.29	0.02	19.59	
			CV	51.01	51.20	20.20	31.98	
		· · · · · · · · · · · · · · · · · · ·		NL-1 1	1	<u> </u>		
			-	Natural		Selenium	Chloride	
Intervol (A)	Logation ID	Area	Donth (in)	(nCi/a)	malta		1	Comment
Interval (ft)	Location ID	Area	Depth (in)	(pCi/g)	mg/kg	(mg/kg)	(mg/kg)	2009
	BG 9-11-33F	Untreated	96-120 06-120	0.30	0.44	0.07		2009
9_11 1	BG 9-11-34	Untreated	96-120 06-120	0.75	1.11	0.17	139	
	BG 9-11-33F	Untreated	96-120 96-120	0.18	0.27	< 0.05	40	2010
Ĺ	BG 9-11-34	Untreated	96-120	0.62	0.91	0.11	100	2010
			Mean	0.46	0.68	0.12	79.75	
	,		SDV	0.27	0.39	0.05	48.58	
			CV	57.59	57.59	43.14	60.92	

Table 3-1. Pre-Operations and Background Soil Sample Results for Section 34 (continued)

		ſ		Natural	Uranium			
						Selenium	Chloride	
Interval (ft)	Location ID	Area	Depth (in)	(pCi/g)	mg/kg	(mg/kg)	(mg/kg)	Comment
	BG 11-13-33F	Untreated	120-144	0.90	1.33	0.14	60	2009
11-13	BG 11-13-34	Untreated	120-144	0.85	1.26	1.31	150	2009
11-15	BG 11-13-33F	Untreated	120-144	0.44	0.65	0.07	<30	2010
	BG 11-13-34	Untreated	120-144	0.83	1.23	0.14	63	2010
			Mean	0.76	1.12	0.42	91.00	
			SDV	0.21	0.31	0.60	51.12	
			CV	28.14	28.14	143.99	56.17	
<u> </u>			<u> </u>	Natural	Uranium			
			1 1			Selenium	Chloride	
Interval (ft)	Location ID	Area	Depth (in)	(pCi/g)	mg/kg	(mg/kg)	(mg/kg)	Comment
13-15	BG 13-15-34	Untreated	144-168	0.65	0.96	0.53	57	2009
15-17	BG 15-17-34	Untreated	168-192	0.66	0.97	0.27	62	2009

@ = considered an outlier, did not use

* = 1998 Se Reported as less than LLD of 0.05 mg/kg, used 0.025

= 2002 Se MDL= 0.8 All data reported as < MDL, did not use

CV = coefficient of variation

 $SDV \approx$ standard deviation

	1	· · · · · · · · · · · · · · · · · · ·		Natural	Uranium	Selenium	Chloride	Comment
Interval (ft)	Location ID	Area	Depth (in)	(pCi/g)	mg/kg	mg/kg	(mg/kg)	
	S28-2	Untreated	0-40	@1.06	@1.57	0.14		1998
	S28-3	Untreated	4-22	0.23	0.34	0.18		1998
	S28-9	Treated	0-40	0.33	0.49	0.06		1998
	NE27-1	Untreated	0-6	0.34	0.50	0.03		*1998
	NE28-2	Untreated	0-6	0.24	0.35	0.03		*1998
	NE28-4	Untreated	0-8	0.13	0.19	0.16		1998
	NE28-5	Untreated	0-12	0.50	0.74	0.10		1998
	NE28-7	Untreated	0-8	0.51	0.75	0.12		1998
0-1	BG-1	Untreated	0-12	2.02	@2.99		14	#2002
	BG-1	Untreated	0-12	0.35	0.51	0.15	6	2003
	BG-1	Untreated	0-12	0.60	0.88	0.22	12	2004
	BG-1	Untreated	0-12	0.32	0.47	0.12	@283	2005
	BG-1	Untreated	0-12	0.42	0.62	0.10	19	2006
	BG-1	Untreated	0-12	0.53	0.78	0.23	32	2007
	BG-1	Untreated	0-12	0.40	0.59	0.15	@220	2008
	BG-1	Untreated	0-12	0.75	1.11	0.16	60	2009
	BG-1	Untreated	0-12	0.44	0.65	0.16	30	2010
		T TRANST	Mean	0.41	0.60	0.13	24.71	
			SDV	0.16	0.23	0.06	18.19	
			CV	38.87	38.90	45.51	74	
			·				~	
					Uranium	Selenium	Chloride	Comment
Interval (ft)	Location ID	Area	Depth (in)	(pCi/g)	mg/kg	mg/kg	(mg/kg)	1000
	S28-2	Untreated	0-40	@1.06	@1.57	0.14		1998
	S28-3	Untreated	4-22	0.23	0.34	0.18		1998
	S28-9	Treated	0-40	0.33	0.49	0.06		1998
	NE28-4	Untreated	8-28	0.23	0.34	0.03		*1998
	NE28-7	Untreated	8-24	0.23	0.34	0.05		1998
	BG-2	Untreated	12-24	@1.10	@1.62	0.10	13	#2002 2003
1-2	BG-2	Untreated	12-24	0.41 0.52	0.61	0.10 0.22	6 14	2003
	BG-2	Untreated	12-24		0.77	0.22	14	2004
	BG-2	Untreated	12-24	0.32	0.47		14	2003
	BG-2	Untreated	12-24	0.35	0.51	0.03	14 26	
	BG-2	Untreated	12-24	0.62	0.91	0.24		2007 2008
	BG-2	Untreated	12-24	0.31	0.46	0.15	@240	2008
	BG-2	Untreated	12-24	0.39	0.57	0.10	50 40	
	BG-2	Untreated	12-24	0.27	0.40	0.13	· · · · · · · · · · · · · · · · · · ·	2010
			Mean	0.35	0.52	0.11	23.29	
			SDV	0.12	0.18	0.07	16.21 70	
			CV	34.20	34.19	60.66	/U	

Table 3-2. Pre-Operations and Background Soil Sample Results for Section 28

					Uranium	Selenium	Chloride	Commen
Interval (ft)	Location ID	Area	Depth (in)	(pCi/g)	mg/kg	mg/kg	(mg/kg)	
	S28-2	Untreated	0-40	@1.06	@1.57	0.14		199
	S28-9	Treated	0-40	0.33	0.49	0.06		199
	NE27-1	Untreated	24-80	0.14	0.21	0.03		*199
	NE28-4	Untreated	28-84	0.22	0.32	0.03		*199
	NE28-5	Untreated	25-84	0.44	0.65	0.03		*199
	NE28-7	Untreated	24-48	0.14	0.21	0.03		*199
	BG-3	Untreated	24-36	@0.98	@1.45		13	#200
2-3	BG-3	Untreated	24-36	0.36	0.53	0.12	11	200
	BG-3	Untreated	24-36	0.55	0.81	0.19	10	200
	BG-3	Untreated	24-36	0.37	0.55	0.07	@290	200
	BG-3	Untreated	24-36	0.39	0.58	0.06	16	200
	BG-3	Untreated	24-36	0.54	0.80	0.25	30	200
	BG-3	Untreated	24-36	0.36	0.53	0.15	@270	200
	BG-3	Untreated	24-36	0.38	0.56	0.11	70	200
	BG-3	Untreated	24-36	0.30	0.45	0.13	60	201
	L		Mean	0.35	0.51	0.10	30.00	
•			SDV	0.13	0.19	0.07	24.99	
			CV	36.61	36.52	70.55	83	
· · · · · · · · · · · · · · · ·		······						
					Uranium	Selenium	Chloride	Commer
nterval (ft)	Location ID	Area	Depth (in)	(pCi/g)	mg/kg	mg/kg	(mg/kg)	
3-4	BG-4	Untreated	36-48	0.35	0.52	0.07	60	200
04	BG-4	Untreated	36-48	0.26	0.39	0.09	70	201
			Mean	0.31	0.46	0.08	.65.00	
			SDV	0.06	0.09	0.01	7.07	
			CV	20.20	20.20	17.68	11	
		<u></u>	- 1					
					Uranium	Selenium	Chloride	Commen
nterval (ft)	Location ID	Area	Depth (in)	(pCi/g)	mg/kg	mg/kg	(mg/kg)	
4-5	BG-5	Untreated	48-60	0.30	0.45	0.06	90	200
	BG-5	Untreated	48-60	0.24	0.36	0.07	80	201
			Mean	0.27	0.41	0.06	85.00	
			SDV	0.04	0.06	0.01	7.07	
			CV	15.71	15.71	12.06	8	
	<u> </u>		- <u></u>	NT +11	r t	0.1	Oblastite.	0
1 (0)				Natural		Selenium	Chloride	Commen
nterval (ft)	Location ID	Area	Depth (in)	(pCi/g)	mg/kg	mg/kg	(mg/kg)	200
5-7	BG-5-7	Untreated	60-72	0.42	0.62	0.08	100	200
	BG-5-7	Untreated	60-72	0.29	0.43	0.08	90	201
			Mean	0.36	0.53	0.08	95.00	
			SDV	0.09	0.13	0.00	7.07	
			CV	25.59	25.59	0.00	7	
	·						011 1	0
				Natural		Selenium	Chloride	Commen
nterval (ft)	Location ID	Area	Depth (in)	(pCi/g)	mg/kg	mg/kg	(mg/kg)	
7-9	BG-7-9 BG-7-9	Untreated Untreated	72-96 72-96	0.53 0.30	0.79 0.44	0.08 0.09	61 140	200 201

Table 3-2. Pre-Operations and Background Soil Sample Results for Section 28 (continued)

Grants Reclamation Project Evaluation of Years 2000-2010 Irrigation with Alluvial Ground Water Mean

SDV

 $\mathbf{C}\mathbf{V}$

0.42

0.17

40.24

0.09

0.01

8.32

0.62

0.25

40.24

100.50

55.86

56

Table 3-2. Pre-Operations and Background Soil Sample Results for Section 28 (continued)

				Natural	Uranium	Selenium	Chloride	Comment
Interval (ft)	Location ID	Area	Depth (in)	(pCi/g)	mg/kg	mg/kg	(mg/kg)	
9-11	BG-9-11	Untreated	96-120	0.35	0.52	0.09	60	2009
5-11	BG-9-11	Untreated	96-120	0.32	0.48	0.09	40	2010
			Mean	0.34	0.50	0.09	50.00	
			SDV	0.02	0.03	0.00	14.14	
	·····		CV	5.66	5.66	0.00	28	
· · · · · · · · · · · · · · · · · · ·							011 11	
•			1 1		Uranium	Selenium	Chloride	Comment
Interval (ft)	Location ID	Area	Depth (in)	(pCi/g)	mg/kg	mg/kg	(mg/kg)	
11-13	BG-11-13	Untreated	120-144	0.66	0.97	0.12	15	2009
11-13	BG-11-13	Untreated	120-144	0.44	0.65	0.12	30	2010
			Mean	0.55	0.81	0.12	22.50	
			SDV	0.15	0.23	0.00	10.61	
			CV	27.94	27.94	0.00	47	
			· · · · · · · · ·	Notural	Uranium	Selenium	Chloride	Comment
T (1 (0)						4 1		Comment
Interval (ft)	Location ID	Area	Depth (in)	(pCi/g)	mg/kg	mg/kg	(mg/kg)	
13-15	BG-13-15	Untreated	144-168	0.41	0.60	0.08	70	2009
	BG-13-15	Untreated	144-168	0.46	0.68	0.13	50	2010
			Mean	0.43	0.64	0.11	60.00	
			SDV	0.04	0.06	0.04	14.14	
			CV	8.84	8.84	33.67	24	
	,					0.1	Old state	~

				Natural Uranium		Selenium	Chloride	Comment
Interval (ft)	Location ID	Area	Depth (in)	(pCi/g)	mg/kg	mg/kg	(mg/kg)	
15-17	BG-15-17	Untreated	168-192	0.57	0.84	0.10	70	2009
13-17	BG-15-17	Untreated	168-192	0.37	0.54	0.09	40	2010
			Mean	0.47	0.69	0.10	55.00	
			SDV	0.14	0.21	0.01	21.21	
			CV	30.74	30.74	7.44	39	

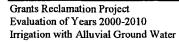
ł

@ = considered an outlier, did not use

* = 1998 Se Reported as less than LLD of 0.05 mg/kg, used 0.025

= 2002 Se MDL= 0.8 All data reported as < MDL, did not use

CV = coefficient of variation


SDV = standard deviation

Grants Reclamation Project Evaluation of Years 2000-2010 Irrigation with Alluvial Ground Water

			Depth	Natural I	Jranium	Selenium	Chloride	
Interval (ft)	Location ID	Area	(in)	(pCi/g)	mg/kg	mg/kg	(mg/kg)	Comment
	\$33-4	Treated	0-6	0.37	0.55	0.03		*199
	S33-4	Treated	6-48	0.36	0.53	0.03		*199
	\$33-7	Treated	0-24	0.30	0.44	0.03		*199
	S33-8	Treated	0-20	0.58	0.86	0.07		199
	S33-9	Untreated	0-24	0.56	0.83	0.15		199
	S33-10	Untreated	0-12	0.70	1.03	0.05		199
	33A	Treated	0-6	0.24	0.36	0.10	13	199
	33B	Treated	0-6	0.56	0.82	0.20	7.	199
	33C	Treated	0-6	0.44	0.65	0.05	35	**199
0-1	33D	Untreated	0-6	0.49	0.73	0.20	22	199
0-1	33D1	Untreated	0-6	0.77	1.14	0.20	18	200
	BG-1	Untreated	0-12	0.66	0.98	0.10	32	200
	BG-1	Untreated	0-12	0.58	0.85		2	È
	BG-1	Untreated	0-12	0.53	0.78	0.12	21	200
	BG-1	Untreated	0-12	0.60	0.88	0.27	28	200
	BG-1	Untreated	0-12	0.53	0.78	0.18	27	200
	BG-1	Untreated	0-12	0.60	0.88	0.18	18	200
	BG-1	Untreated	0-12	0.60	0.89	0.39	68	200
	BG-1	Untreated	0-12	0.49	0.72	0.21	@170	200
	BG-1	Untreated	0-12	0.69	1.02	0.19	33	200
	BG-1	Untreated	0-12	0.68	1.00	0.17	60	201
			Mean	0.54	0.80	0.15	27.43	
			SDV	0.14	0.20	0.09	18.27	
			CV	25.28	25.28	64.28	67	

Table 3-3. Pre-Operations and Background Soil Sample Results for Section 33

			Depth	Natural U	Jranium	Selenium	Chloride	
Interval (ft)	Location ID	Area	(in)	(pCi/g)	mg/kg	mg/kg	(mg/kg)	Comment
	S33-4	Treated	6-48	0.36	0.53	0.03		*1998
	S33-7	Treated	0-24	0.30	0.44	0.03		*1998
	S33-8	Treated	0-20	0.58	0.86	0.07		1998
	S33-9	Untreated	0-24	0.56	0.83	0.15		1998
	S33-10	Untreated	12-30	0.38	0.56	0.03		*1998
	BG-2	Untreated	12-24	0.51	0.76	0.20	29	2001
1.2	BG-2	Untreated	12-24	0.40	0.59		8	#2002
1-2	BG-2	Untreated	12-24	0.35	0.52	0.12	25	2003
	BG-2	Untreated	12-24	0.53	0.79	0.24	32	2004
	BG-2	Untreated	12-24	0.47	0.69	0.15	71	2005
	BG-2	Untreated	12-24	0.60	0.88	0.16	21	2006
	BG-2	Untreated	12-24	0.60	0.89	0.44	73	2007
	BG-2	Untreated	12-24	0.41	0.61	0.23	@160	2008
	BG-2	Untreated	12-24	0.49	0.73	0.15	25	2009
	BG-2	Untreated	12-24	0.50	0.74	0.14	80	2010
	-		Mean	0.47	0.69	0.15	40.44	
			SDV	0.10	0.14	0.11	26.62	
			CV	20.71	20.71	72.04	66	

١,

			Depth	Natural	Uranium	Selenium	Chloride	
Interval (ft)	Location ID	Area	(in)	(pCi/g)	mg/kg	mg/kg	(mg/kg)	Comment
	S33-4	Treated	6-48	0.36	0.53	0.03		*199
	S33-7	Treated	24-48	0.24	0.35	0.03		*199
	S33-8	Treated	20-48	0.35	0.52	0.03		*199
	S33-9	Untreated	24-48	0.70	1.03	0.10		199
	S33-10	Untreated	12-30	0.38	0.56	0.03		*199
	S33-10	Untreated	30-60	0.40	0.59	0.03		*199
	BG-3	Untreated	24-36	0.56	0.83	0.30	41	200
2-3	BG-3	Untreated	24-36	0.45	0.66		8	#200
	BG-3	Untreated	24-36	0.45	0.67	0.12	22	200
	BG-3	Untreated	24-36	0.55	0.81	0.26	31	200
	BG-3	Untreated	24-36	0.53	0.79	0.15	@222	200
	BG-3	Untreated	24-36	0.74	1.09	0.15	16	200
	BG-3	Untreated	24-36	0.58	0.86	0.27	. 63	200
	BG-3	Untreated	24-36	0.49	0.72	0.20	@180	200
	BG-3	Untreated	24-36	0.56	0.82	0.13	70	200
	BG-3	Untreated	24-36	0.58	0.86	0.19	40	201
			Mean	0.49	0.73	0.13	36.38	
			SDV	0.13	0.19	0.10	21.81	
				26.64	26.61	72.64	60	
		•	CV	20.04	20.01	12.01		
				20.04	20.01	72.01		
	1			Natural U		Selenium	Chloride	1
nterval (ft)	Location ID	Area	Depth (in)					Comment
nterval (ft)	Location ID S32-2	Area	Depth	Natural U	Jranium	Selenium	Chloride	
nterval (ft)		and the second sec	Depth (in)	Natural U (pCi/g)	Jranium mg/kg	Selenium mg/kg	Chloride (mg/kg)	*199
nterval (ft)	S32-2	Untreated	Depth (in) 24-48	Natural ((pCi/g) 0.26	Jranium mg/kg 0.39	Selenium mg/kg <0.05	Chloride (mg/kg)	*199 *199
<u>\</u>	S32-2 S33-2	Untreated Untreated	Depth (in) 24-48 24-48	Natural U (pCi/g) 0.26 0.27	Jranium mg/kg 0.39 0.4	Selenium mg/kg <0.05 0.09	Chloride (mg/kg)	*199 *199 *199
nterval (ft) 3-4	S32-2 S33-2 S33-4 S33-7	Untreated Untreated Treated	Depth (in) 24-48 24-48 6-48	Natural U (pCi/g) 0.26 0.27 0.36	Jranium mg/kg 0.39 0.4 0.53	Selenium mg/kg <0.05 0.09 0.03	Chloride (mg/kg)	*199 *199 *199 *199 *199
<u>\</u>	S32-2 S33-2 S33-4 S33-7 S33-8	Untreated Untreated Treated Treated Treated	Depth (in) 24-48 24-48 6-48 24-48	Natural U (pCi/g) 0.26 0.27 0.36 0.24	Jranium mg/kg 0.39 0.4 0.53 0.35	Selenium mg/kg <0.05 0.09 0.03 0.03	Chloride (mg/kg)	*199 *199 *199 *199 *199 *199
nterval (ft) 3-4	S32-2 S33-2 S33-4 S33-7	Untreated Untreated Treated Treated Treated Untreated	Depth (in) 24-48 24-48 6-48 24-48 24-48 20-48	Natural U (pCi/g) 0.26 0.27 0.36 0.24 0.35	Jranium mg/kg 0.39 0.4 0.53 0.35 0.35 0.52 1.03	Selenium mg/kg <0.05 0.09 0.03 0.03 0.03	Chloride (mg/kg)	*199 *199 *199 *199 *199 *199 199
<u>\</u>	S32-2 S33-2 S33-4 S33-7 S33-8 S33-9	Untreated Untreated Treated Treated Treated	Depth (in) 24-48 24-48 6-48 24-48 20-48 24-48	Natural U (pCi/g) 0.26 0.27 0.36 0.24 0.35 0.70	Jranium mg/kg 0.39 0.4 0.53 0.35 0.35 0.52	Selenium mg/kg <0.05 0.09 0.03 0.03 0.03 0.10	Chloride (mg/kg)	*199 *199 *199 *199 *199 *199 *199
<u>\</u>	S32-2 S33-2 S33-4 S33-7 S33-8 S33-9 S33-10 BG-4	Untreated Untreated Treated Treated Untreated Untreated Untreated Untreated	Depth (in) 24-48 24-48 24-48 24-48 20-48 24-48 30-60 36-48	Natural U (pCi/g) 0.26 0.27 0.36 0.24 0.35 0.70 0.40 0.68	Jranium mg/kg 0.39 0.4 0.53 0.35 0.52 1.03 0.59 1.01	Selenium mg/kg <0.05 0.09 0.03 0.03 0.03 0.10 0.03	Chloride (mg/kg) 	*199 *199 *199 *199 *199 199 *199 200
<u>\</u>	S32-2 S33-2 S33-4 S33-7 S33-8 S33-9 S33-10	Untreated Untreated Treated Treated Treated Untreated Untreated	Depth (in) 24-48 24-48 24-48 24-48 20-48 24-48 30-60 36-48 36-48	Natural U (pCi/g) 0.26 0.27 0.36 0.24 0.35 0.70 0.40 0.68 0.70	Jranium mg/kg 0.39 0.4 0.53 0.35 0.52 1.03 0.59	Selenium mg/kg <0.05 0.09 0.03 0.03 0.03 0.10 0.03 0.15	Chloride (mg/kg) 60	*199 *199 *199 *199 *199 199 *199 200
<u>\</u>	S32-2 S33-2 S33-4 S33-7 S33-8 S33-9 S33-10 BG-4	Untreated Untreated Treated Treated Untreated Untreated Untreated Untreated	Depth (in) 24-48 24-48 24-48 24-48 20-48 24-48 30-60 36-48 36-48 36-48 Mean	Natural U (pCi/g) 0.26 0.27 0.36 0.24 0.35 0.70 0.40 0.68 0.70 0.44	Jranium mg/kg 0.39 0.4 0.53 0.35 0.52 1.03 0.59 1.01 1.03 0.65	Selenium mg/kg <0.05 0.09 0.03 0.03 0.03 0.10 0.03 0.15 0.18 0.08	Chloride (mg/kg) 60 50 55.00	*199 *199 *199 *199 *199 199 *199 200
<u>\</u>	S32-2 S33-2 S33-4 S33-7 S33-8 S33-9 S33-10 BG-4	Untreated Untreated Treated Treated Untreated Untreated Untreated Untreated	Depth (in) 24-48 24-48 24-48 24-48 20-48 24-48 30-60 36-48 36-48	Natural U (pCi/g) 0.26 0.27 0.36 0.24 0.35 0.70 0.40 0.68 0.70	Jranium mg/kg 0.39 0.4 0.53 0.35 0.52 1.03 0.59 1.01 1.03	Selenium mg/kg <0.05 0.09 0.03 0.03 0.03 0.10 0.03 0.15 0.18	Chloride (mg/kg) 60 50	*199 *199 *199 *199 *199 199 *199 200
<u>\</u>	S32-2 S33-2 S33-4 S33-7 S33-8 S33-9 S33-10 BG-4	Untreated Untreated Treated Treated Untreated Untreated Untreated Untreated	Depth (in) 24-48 24-48 6-48 24-48 20-48 24-48 30-60 36-48 36-48 36-48 Mean SDV	Natural U (pCi/g) 0.26 0.27 0.36 0.24 0.35 0.70 0.40 0.68 0.70 0.44 0.20	Jranium mg/kg 0.39 0.4 0.53 0.35 0.52 1.03 0.59 1.01 1.03 0.65 0.29	Selenium mg/kg <0.05 0.09 0.03 0.03 0.03 0.10 0.03 0.15 0.18 0.08 0.06	Chloride (mg/kg) 60 50 55.00 7.07	*199 *199 *199 *199 *199 199 *199 200
<u>\</u>	S32-2 S33-2 S33-4 S33-7 S33-8 S33-9 S33-10 BG-4	Untreated Untreated Treated Treated Untreated Untreated Untreated Untreated	Depth (in) 24-48 24-48 6-48 24-48 20-48 24-48 30-60 36-48 36-48 36-48 Mean SDV	Natural U (pCi/g) 0.26 0.27 0.36 0.24 0.35 0.70 0.40 0.68 0.70 0.44 0.20	Jranium mg/kg 0.39 0.4 0.53 0.55 1.03 0.59 1.01 1.03 0.65 0.29 44.64	Selenium mg/kg <0.05 0.09 0.03 0.03 0.03 0.10 0.03 0.15 0.18 0.08 0.06	Chloride (mg/kg) 60 50 55.00 7.07	*199 *199 *199 *199 *199 199 *199 200
3-4	S32-2 S33-2 S33-4 S33-7 S33-8 S33-9 S33-10 BG-4	Untreated Untreated Treated Treated Untreated Untreated Untreated Untreated	Depth (in) 24-48 24-48 24-48 24-48 20-48 24-48 30-60 36-48 36-48 36-48 Mean SDV CV	Natural U (pCi/g) 0.26 0.27 0.36 0.24 0.35 0.70 0.40 0.68 0.70 0.44 0.20 44.64	Jranium mg/kg 0.39 0.4 0.53 0.55 1.03 0.59 1.01 1.03 0.65 0.29 44.64	Selenium mg/kg <0.05 0.09 0.03 0.03 0.03 0.10 0.03 0.15 0.18 0.08 0.06 80.80	Chloride (mg/kg)	*199 *199 *199 *199 *199 199 *199 200
3-4 nterval (ft)	S32-2 S33-2 S33-4 S33-7 S33-8 S33-9 S33-10 BG-4 BG-4	Untreated Untreated Treated Treated Untreated Untreated Untreated Untreated	Depth (in) 24-48 24-48 24-48 24-48 20-48 24-48 30-60 36-48 36-48 36-48 Mean SDV CV	Natural U (pCi/g) 0.26 0.27 0.36 0.24 0.35 0.70 0.40 0.68 0.70 0.44 0.20 44.64 Natural U	Jranium mg/kg 0.39 0.4 0.53 0.55 1.03 0.59 1.01 1.03 0.65 0.29 44.64	Selenium mg/kg <0.05 0.09 0.03 0.03 0.03 0.10 0.03 0.15 0.18 0.08 0.06 80.80	Chloride (mg/kg) 60 50 55.00 7.07 12.86 Chloride	*199 *199 *199 *199 *199 *199 200 201
3-4	S32-2 S33-2 S33-4 S33-7 S33-8 S33-9 S33-10 BG-4 BG-4 BG-4	Untreated Untreated Treated Treated Untreated Untreated Untreated Untreated	Depth (in) 24-48 24-48 24-48 24-48 20-48 24-48 30-60 36-48 36-48 36-48 Mean SDV CV	Natural U (pCi/g) 0.26 0.27 0.36 0.24 0.35 0.70 0.40 0.68 0.70 0.44 0.20 44.64 Natural U (pCi/g)	Jranium mg/kg 0.39 0.4 0.53 0.55 1.03 0.59 1.01 1.03 0.65 0.29 44.64	Selenium mg/kg <0.05 0.09 0.03 0.03 0.03 0.10 0.03 0.15 0.18 0.08 0.06 80.80 Selenium mg/kg	Chloride (mg/kg) 60 50 55.00 7.07 12.86 Chloride	*199 *199 *199 *199 *199 200 201 Comment *199
3-4 nterval (ft)	S32-2 S33-2 S33-4 S33-7 S33-8 S33-9 S33-10 BG-4 BG-4 BG-4 D S33-10 BG-5	Untreated Untreated Treated Treated Untreated Untreated Untreated Untreated Untreated Untreated Untreated	Depth (in) 24-48 24-48 6-48 24-48 20-48 24-48 30-60 36-48 36-48 36-48 Mean SDV CV CV	Natural U (pCi/g) 0.26 0.27 0.36 0.24 0.35 0.70 0.40 0.68 0.70 0.44 0.20 44.64 Natural U (pCi/g) 0.40	Jranium mg/kg 0.39 0.4 0.53 0.55 1.03 0.59 1.01 1.03 0.65 0.29 44.64 Jranium mg/kg 0.59	Selenium mg/kg <0.05 0.09 0.03 0.03 0.03 0.10 0.03 0.15 0.18 0.08 0.06 80.80 Selenium mg/kg 0.03	Chloride (mg/kg) 60 50 55.00 7.07 12.86 Chloride (mg/kg)	*199 *199 *199 *199 *199 200 201 Comment *199 200
3-4 nterval (ft)	S32-2 S33-2 S33-4 S33-7 S33-8 S33-9 S33-10 BG-4 BG-4 BG-4	Untreated Untreated Treated Treated Untreated Untreated Untreated Untreated Untreated Untreated	Depth (in) 24-48 24-48 24-48 24-48 20-48 24-48 30-60 36-48 36-48 36-48 36-48 Mean SDV CV Depth (in) 30-60 48-60 48-60	Natural U (pCi/g) 0.26 0.27 0.36 0.24 0.35 0.70 0.40 0.68 0.70 0.44 0.20 44.64 Natural U (pCi/g) 0.40 0.61	Jranium mg/kg 0.39 0.4 0.53 0.35 0.52 1.03 0.59 1.01 1.03 0.65 0.29 44.64 Jranium mg/kg 0.59 0.90	Selenium mg/kg <0.05 0.09 0.03 0.03 0.03 0.10 0.03 0.15 0.18 0.08 0.06 80.80 Selenium mg/kg 0.03 0.12	Chloride (mg/kg) 60 50 55.00 7.07 12.86 Chloride (mg/kg) 60	*199 *199 *199 *199 *199 *199 200 201 Comment *199 200
3-4 nterval (ft)	S32-2 S33-2 S33-4 S33-7 S33-8 S33-9 S33-10 BG-4 BG-4 BG-4 D S33-10 BG-5	Untreated Untreated Treated Treated Untreated Untreated Untreated Untreated Untreated Untreated Untreated	Depth (in) 24-48 24-48 6-48 24-48 20-48 24-48 30-60 36-48 36-48 36-48 Mean SDV CV CV Depth (in) 30-60 48-60	Natural U (pCi/g) 0.26 0.27 0.36 0.24 0.35 0.70 0.40 0.68 0.70 0.44 0.20 44.64 Natural U (pCi/g) 0.40 0.61 0.64	Jranium mg/kg 0.39 0.4 0.53 0.35 0.52 1.03 0.59 1.01 1.03 0.65 0.29 44.64 Jranium mg/kg 0.59 0.90 0.94	Selenium mg/kg <0.05 0.09 0.03 0.03 0.03 0.10 0.03 0.15 0.18 0.08 0.06 80.80 Selenium mg/kg 0.03 0.12 0.17	Chloride (mg/kg) 60 50 55.00 7.07 12.86 Chloride (mg/kg) 60 60	*199 *199 *199 *199 *199 *199 200 201

Table 3-3. Pre-Operations and Background Soil Sample Results for Section 33 (continued)

		Depth	Natural	Uranium	Selenium	Chloride	
Location ID	Area	(in)	(pCi/g)	mg/kg	mg/kg	(mg/kg)	Commen
BG-5-7	Untreated	60-72	0.35	0.52	0.08	70	200
BG-5-7	Untreated	60-72	0.46	0.68	0.11	50	201
		Mean	0.41	0.60	0.10	60.00	
		SDV	0.08	0.11	0.02	14.14	
		CV	18.86	18.86	22.33	23.57	
		Depth	Natural	Uranium	Selenium	Chloride	
Location ID	Area	(in)		1	mg/kg	(mg/kg)	Commen
BG-7-9	Untreated	72-96	0.54	0.80	0.09	30	200
BG-7-9	Untreated	72-96	0.67	0.99	0.14	40	201
					······································	35.00	
		Depth	Natural	Iranium	Selenium	Chloride	
Location ID	Area	-					Commen
Booution ib	1100		(P016)			(Common
BG-9-11	Untreated	120	0.49	0.72	0.05	32	200
		96-					
BG-9-11	Untreated	120	0.67	0.99	0.11	<30	201
		Mean	0.58	0.86	0.08	31.00	
		SDV	0.58 0.13	0.19	0.08 0.04	1.41	
······		SDV	0.13 22.33	0.19 22.33	0.04 53.03	1.41 4.56	
		SDV CV Depth	0.13 22.33 Natural	0.19 22.33 Jranium	0.04 53.03 Selenium	1.41	
Location ID	Area	SDV CV Depth (in)	0.13 22.33	0.19 22.33	0.04 53.03	1.41 4.56	Commen
		SDV CV Depth (in) 120-	0.13 22.33 Natural (pCi/g)	0.19 22.33 Jranium mg/kg	0.04 53.03 Selenium mg/kg	1.41 4.56 Chloride (mg/kg)	L
Location ID BG-11-13	Area Untreated	SDV CV Depth (in) 120- 144	0.13 22.33 Natural	0.19 22.33 Jranium	0.04 53.03 Selenium	1.41 4.56 Chloride	L
BG-11-13	Untreated	SDV CV Depth (in) 120- 144 120-	0.13 22.33 Natural (pCi/g) 0.51	0.19 22.33 Jranium mg/kg 0.76	0.04 53.03 Selenium mg/kg <0.05	1.41 4.56 Chloride (mg/kg) 40	200
		SDV CV Depth (in) 120- 144 120- 144	0.13 22.33 Natural (pCi/g) 0.51 0.38	0.19 22.33 Jranium mg/kg 0.76 0.56	0.04 53.03 Selenium mg/kg <0.05 0.06	1.41 4.56 Chloride (mg/kg) 40 <30	2009
BG-11-13	Untreated	SDV CV Depth (in) 120- 144 120- 144 Mean	0.13 22.33 Natural ((pCi/g) 0.51 0.38 0.45	0.19 22.33 Jranium mg/kg 0.76 0.56 0.66	0.04 53.03 Selenium mg/kg <0.05 0.06 0.05	1.41 4.56 Chloride (mg/kg) 40 <30 35.00	2009
BG-11-13	Untreated	SDV CV Depth (in) 120- 144 120- 144 Mean SDV	0.13 22.33 Natural ((pCi/g) 0.51 0.38 0.45 0.10	0.19 22.33 Jranium mg/kg 0.76 0.56 0.66 0.14	0.04 53.03 Selenium mg/kg <0.05 0.06 0.05 0.01	1.41 4.56 Chloride (mg/kg) 40 <30 35.00 7.07	2009
BG-11-13	Untreated	SDV CV Depth (in) 120- 144 120- 144 Mean	0.13 22.33 Natural ((pCi/g) 0.51 0.38 0.45	0.19 22.33 Jranium mg/kg 0.76 0.56 0.66	0.04 53.03 Selenium mg/kg <0.05 0.06 0.05	1.41 4.56 Chloride (mg/kg) 40 <30 35.00	2009
BG-11-13	Untreated	SDV CV Depth (in) 120- 144 120- 144 Mean SDV CV	0.13 22.33 Natural (pCi/g) 0.51 0.38 0.45 0.10 21.43	0.19 22.33 Jranium mg/kg 0.76 0.56 0.66 0.14 21.43	0.04 53.03 Selenium mg/kg <0.05 0.06 0.05 0.01 14.14	1.41 4.56 Chloride (mg/kg) 40 <30 35.00 7.07 20.20	2009
BG-11-13 BG-11-13	Untreated Untreated	SDV CV Depth (in) 120- 144 120- 144 Mean SDV CV	0.13 22.33 Natural 1 (pCi/g) 0.51 0.38 0.45 0.10 21.43 Natural 1	0.19 22.33 Jranium mg/kg 0.76 0.56 0.66 0.14 21.43 Jranium	0.04 53.03 Selenium mg/kg <0.05 0.06 0.05 0.01 14.14 Selenium	1.41 4.56 Chloride (mg/kg) 40 <30 35.00 7.07 20.20 Chloride	2009
BG-11-13	Untreated	SDV CV Depth (in) 120- 144 120- 144 Mean SDV CV CV	0.13 22.33 Natural (pCi/g) 0.51 0.38 0.45 0.10 21.43	0.19 22.33 Jranium mg/kg 0.76 0.56 0.66 0.14 21.43	0.04 53.03 Selenium mg/kg <0.05 0.06 0.05 0.01 14.14	1.41 4.56 Chloride (mg/kg) 40 <30 35.00 7.07 20.20	2009
BG-11-13 BG-11-13 Location ID	Untreated Untreated	SDV CV Depth (in) 120- 144 120- 144 Mean SDV CV CV Depth (in) 144-	0.13 22.33 Natural 1 (pCi/g) 0.51 0.38 0.45 0.10 21.43 Natural 1 (pCi/g)	0.19 22.33 Jranium mg/kg 0.76 0.56 0.66 0.14 21.43 Jranium mg/kg	0.04 53.03 Selenium mg/kg <0.05 0.06 0.05 0.01 14.14 Selenium mg/kg	1.41 4.56 Chloride (mg/kg) 40 <30 35.00 7.07 20.20 Chloride (mg/kg)	2009 2010 Commen
BG-11-13 BG-11-13	Untreated Untreated	SDV CV Depth (in) 120- 144 120- 144 Mean SDV CV CV Depth (in) 144- 168	0.13 22.33 Natural 1 (pCi/g) 0.51 0.38 0.45 0.10 21.43 Natural 1	0.19 22.33 Jranium mg/kg 0.76 0.56 0.66 0.14 21.43 Jranium	0.04 53.03 Selenium mg/kg <0.05 0.06 0.05 0.01 14.14 Selenium	1.41 4.56 Chloride (mg/kg) 40 <30 35.00 7.07 20.20 Chloride	2009 2010 Commen
BG-11-13 BG-11-13 Location ID BG-13-15	Untreated Untreated Area Untreated	SDV CV Depth (in) 120- 144 120- 144 Mean SDV CV CV Depth (in) 144- 168 144-	0.13 22.33 Natural 1 (pCi/g) 0.51 0.38 0.45 0.10 21.43 Natural 1 (pCi/g) 0.46	0.19 22.33 Jranium mg/kg 0.76 0.56 0.66 0.14 21.43 Jranium mg/kg 0.68	0.04 53.03 Selenium mg/kg <0.05 0.06 0.05 0.01 14.14 Selenium mg/kg 0.10	1.41 4.56 Chloride (mg/kg) 40 <30 35.00 7.07 20.20 Chloride (mg/kg) 70	2009 2010 Commen 2009
BG-11-13 BG-11-13 Location ID	Untreated Untreated	SDV CV Depth (in) 120- 144 120- 144 Mean SDV CV CV Depth (in) 144- 168 144- 168	0.13 22.33 Natural 1 (pCi/g) 0.51 0.38 0.45 0.10 21.43 Natural 1 (pCi/g) 0.46 0.28	0.19 22.33 Jranium mg/kg 0.76 0.56 0.66 0.14 21.43 Jranium mg/kg 0.68 0.42	0.04 53.03 Selenium mg/kg <0.05 0.06 0.05 0.01 14.14 Selenium mg/kg 0.10 0.06	1.41 4.56 Chloride (mg/kg) 40 <30 35.00 7.07 20.20 Chloride (mg/kg) 70 <30	2009 2010 Comment 2009
BG-11-13 BG-11-13 Location ID BG-13-15	Untreated Untreated Area Untreated	SDV CV Depth (in) 120- 144 120- 144 Mean SDV CV CV Depth (in) 144- 168 144-	0.13 22.33 Natural 1 (pCi/g) 0.51 0.38 0.45 0.10 21.43 Natural 1 (pCi/g) 0.46	0.19 22.33 Jranium mg/kg 0.76 0.56 0.66 0.14 21.43 Jranium mg/kg 0.68	0.04 53.03 Selenium mg/kg <0.05 0.06 0.05 0.01 14.14 Selenium mg/kg 0.10	1.41 4.56 Chloride (mg/kg) 40 <30 35.00 7.07 20.20 Chloride (mg/kg) 70	Comment 2009 2010 2010 Comment 2009 2010
	BG-5-7 BG-5-7 Location ID BG-7-9 BG-7-9 BG-7-9 BG-7-9	BG-5-7UntreatedBG-5-7UntreatedLocation IDAreaBG-7-9UntreatedBG-7-9UntreatedBG-7-9UntreatedBG-7-9Untreated	Location IDArea(in)BG-5-7Untreated60-72BG-5-7Untreated60-72BG-5-7Untreated60-72Mean SDV CVSDV CVLocation IDArea(in)BG-7-9Untreated72-96BG-7-9Untreated72-96BG-7-9Untreated72-96BG-7-9Untreated72-96BG-7-9Untreated120BG-9-11Untreated120	Location ID Area (in) (pCi/g) BG-5-7 Untreated 60-72 0.35 BG-5-7 Untreated 60-72 0.46 BG-5-7 Untreated 60-72 0.46 Mean 0.41 SDV 0.08 CV 18.86 CV 18.86 Location ID Area Depth Natural Location ID Area 72-96 0.54 BG-7-9 Untreated 72-96 0.67 BG-7-9 Untreated 72-96 0.67 Mean 0.61 SDV 0.09 CV 15.01 SDV 0.99 CV 15.01 96- 96- BG-9-11 Untreated 120 0.49 96- BG-9-11 0.67 96-	Location ID Area (in) (pCi/g) mg/kg BG-5-7 Untreated 60-72 0.35 0.52 BG-5-7 Untreated 60-72 0.46 0.68 BG-5-7 Untreated 60-72 0.46 0.68 Mean 0.41 0.60 SDV 0.08 0.11 CV 18.86 18.86 18.86 BG-7-9 Untreated 72-96 0.54 0.80 BG-7-9 Untreated 72-96 0.67 0.99 BG-7-9 Untreated 72-96 0.67 0.99 SDV 0.09 0.13 CV 15.01 15.01 Location ID Area (in) (pCi/g) mg/kg BG-7-9 Untreated 72-96 0.67 0.99 Mean 0.61 0.90 SDV 0.09 0.13 CV 15.01 15.01 15.01 15.01 BG-9-11 Untreated 120 0.49	Location ID Area (in) (pCi/g) mg/kg mg/kg BG-5-7 Untreated 60-72 0.35 0.52 0.08 BG-5-7 Untreated 60-72 0.46 0.68 0.11 Mean 0.41 0.60 0.10 SDV 0.08 0.11 0.02 CV 18.86 18.86 22.33 0.22 0.35 0.52 0.09 Location ID Area Depth Natural Uranium Selenium Location ID Area (in) (pCi/g) mg/kg mg/kg BG-7-9 Untreated 72-96 0.54 0.80 0.09 BG-7-9 Untreated 72-96 0.67 0.99 0.14 Mean 0.61 0.90 0.12 SDV 0.09 0.12 SDV 0.09 0.13 0.04 CV 15.01 15.01 30.74 Location ID Area (in) (pCi/g) mg/kg mg/kg	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table 3-3. Pre-Operations and Background Soil Sample Results for Section 33 (continued)

			Depth	Natural Uranium		Selenium	Chloride	
Interval (ft)	Location ID	Area	(in)	(pCi/g)	mg/kg	mg/kg	(mg/kg)	Comment
15-17	BG-15-17	Untreated	168- 192 168-	0.67	0.99	0.14	70	2009
	BG-15-17	Untreated	192	0.30	0.45	0.09	<30	2010
			Mean	0.49	0.72	0.12	50.00	
			SDV	0.26	0.38	0.04	28.28	
			CV	53.03	53.03	30.74	56.57	

 Table 3-3. Pre-Operations and Background Soil Sample Results for Section 33 (continued)

@ = considered an outlier, did not use

* = 1998 Se Reported as less than LLD of 0.05 mg/kg, used

0.025

** = 1999 Se MDL= 0.1 Reported as less than MDL, used 0.05 mg/kg

= 2002 Se MDL= 0.8 All data reported as < MDL, did not use

CV = coefficient of variation

SDV = standard deviation

3.3 Constituents in Treated Soil

Uranium, selenium, molybdenum, calcium, magnesium, sodium, chloride, and sulfate levels were measured in soil samples from Sections 33 and 34 in 1999 (prior to irrigation) and after each of the 2000 through 2010 irrigation seasons. The pH, conductivity and sodium absorption ratio (SAR) were also measured or calculated for the samples.

Changes in soil chemistry between pre-irrigation samples and those collected after the first irrigation season in 2000 are described in ERG and HYDRO, 2001, 2004, 2005, 2006, 2007, 2008, 2009, 2010 and in this report.

Figures 2-1 through 2-11 show the sampling locations in Sections 33 and 34 for 2000 through 2010. Figures 2-12 through 2-20 present the soil sampling locations in Section 28 for 2002 through 2010. Figures 3-8 through 3-13 present uranium and selenium soil concentrations for each of the irrigation areas.

Composite samples were prepared from locations indicated within each irrigation area and associated background locations. In 2000, the suffixes -1, -2, or -3 on sample labels indicate samples collected from 0-6 (-1), 6-18 (-2), or 18-36 in (-3) depth intervals. The ranges of sampling depths were changed in 2001, to better assess the impacts of irrigation. In 2001 to 2010, suffixes -1, -2, and -3 indicate composites from 0-1 ft, 1-2 ft and 2-3 ft, respectively. Comparisons between data acquired in 2000 and data from subsequent years must be qualified by the change in sampling depths.

An example of compositing conducted in 2001 at Section 33 is as follows: the grab samples collected from 0-1 ft at soil sample locations EW2, EW4, EW6, WW2, WW4, WW6, NW2, NW4, NW6, SW2, SW4 and SW6 (see Figure 2-2 for sample locations) were composited into one sample labeled P-1. Grab samples from 1-2 ft at these locations were composited into one sample labeled P-2.

Table 3-4 presents the results for composite samples collected at each of the areas in 2000 through 2010. Appendix A gives the 1999, 2000 and 2009 individual sample results that were used to calculate the 2000 average values presented in Table 3-4. Individual sample analyses were measured in the treated area in 2009 to make use of the lysimeter soil results. No samples were collected from Section 28 in 2001, and irrigation in this area began in 2002. Composite samples collected at treated areas are labeled P (Section 33), F (Section 34) or N (Section 28). They are further subdivided by P-, F-, or N-1 (0-1 ft), P-, F-, or N-2, (1-2 ft) and P-, F-, or N-3 (2-3 ft). Thus, constituents in the composite samples represent an average condition in layers across the center pivot area, at 0-1 ft, 1-2 ft and 2-3 ft depth intervals.

Sample Site	Date	U (mg/kg)	Se (mg/kg)	Mo (mg/kg)	pH (units)	Cond. (mmhos/cm)	Ca (meq/l)	Mg (meq/l)	Na (meg/l)	SAR (ratio)	Cl (mg/kg)	SO4 (mg/kg)
						<u>, , , , , , , , , , , , , , , , , , , </u>		<u> </u>			(
					SE	CTION 34 FLO						
F-1	12/7/2000	3.35	0.68	<1	7.7	2.594	11.95	4.66	14.58	5.03	56	767
	8/8/2001	2.72	0.50	2	7.8	5.090	10.90	3.17	13.50	5.09	182	900
	11/22/2002	0.69	<0.6	<1	7.9	1.050	4.73	1.47	5.26	2.99	18	800
	11/26/2003	3.72	0.82	1	7.8	4.570	22.50	9.62	31.60	7,89	284	2620
	11/4/2004	4.43	1.15	2	7.7	5.220	20.50	8.98	40.40	10.52	398	680
	11/19/2005	3.94	1.10	2	8.0	5.420	20.80	8.64	37.60	9.80	416	5190
	10/28/2006	4.88	0.95	<1	7.9	3.500	12.20	5.72	22.90	7.65	445	5210
	11/10/2007	5.02	1.32	2	7.8	4.910	17.50	8.05	35.00	9.79	429	4400
	12/3/2008	4.38	1.14	1	7.7	4.430	19.40	9.10	33.40	8.85	392	7700
	10/8/2009	4.06	0.97	4	7.8	4.64	19.34	8.50	30.29	8.03	279	4002
	11/5/2010	4.64	1.05	5	7.8	4.11	18.90	8.52	24.30	6.56	219	7000
F-2	12/7/2000	2.22	0.37	<1	7.6	3.237	14.42	6.01	18.58	5.85	78	1497
	8/8/2001	1.88	0.40	2	7.6	4.970	8.20	2.25	8.57	3.75	139	1400
	11/22/2002	0.46	<0.6	<]	8.0	1.030	3.85	1.12	6.06	3.84	10	200
	11/26/2003	1.90	0.40	<1	7.8	5.020	25.20	8.01	33.60	8.25	396	2480
	11/4/2004	2.27	0.63	<1	7.6	5.370	23.80	7.90	40.50	10.17	390	370
	11/19/2005	1.41	0.38	1	7.9	4.890	20.50	5.55	32.60	9.03	352	3980
	10/28/2006	2.25	0.45	<1	7.6	3.610	12.90	4.34	23.30	7.94	478	4230
	11/10/2007	3.05	0.94	<1	7.7	5.770	21.20	8.24	40.60	10.60	560	4000
	12/3/2008	2.70	0.68	1	7.8	4.240	21.60	8.16	30.00	7.78	406	4900
	10/8/2009	2.59	0.63	3	7.8	4.62	20.06	7.64	29.49	7.85	388	4082
F-3	11/5/2010 12/7/2000	2.83	0.57	3	7.7	4.56	22.10	6.32	26.60	7.06	<u>236</u> 56	3600 980
г-3	8/8/2001		0.03 0.30		7.6	3.397	13.63	5.02	22.21		170	
	11/22/2002	1.15 0.42	<0.50 <0.6	<]	7.6 8.0	5.960 0.930	10.10 3.63	3.25 1.53	9.83 4.90	3.80 3.05	3	1800 <100
	11/26/2002	1.08	<0.8 0.19	<1	٥.0 7.8	4.420	3.63 23.90		4.90 25.80		302	1550
	11/20/2003	1.08	0.19	<1 <1	7.8 7.6	4.420	25.30	6.53 7.39	25.80 34.90	6.61 8.63	302 166	210
•	11/19/2004	2.62	0.57	2	7.6 8.0	4.800	23.30 17.40	5.78	34.90	0.03 9.66	560	5840
	10/28/2006	1.21	0.08	2 <1	7.5	3.860	18.50	5.18	23.20	5.00 6.74	302	2340
	11/10/2007	1.75	0.64	<1	7.6	5.280	24.20	6.25	32.70	8.38	337	1700
	12/3/2008	1.71	0.37	<1	7.8	4.410	23.00	8,99	32.50	8.13	227	1810
	10/8/2009	1.82	0.46	3	7.7	4.66	23.09	7.41	26.51	6.83	430	3362
	11/5/2010	1.96	0.39	2	7.7	4.09	24.40	5.54	20.10	5.19	256	1500
F-4	10/8/2009	0.95	0.21	3	7.7	3.49	19.12	5.37	17.90	5.32	258	2151
	11/5/2010	0.87	0.13	2	7.6	3.33	20.00	6.07	15.50	4.29	125	780
F-5	10/8/2009	0.56	0.08	2	7.8	3.11	15.88	4.81	15.79	4.91	138	861
	11/5/2010	0.59	0.09	2	7.6	3.66	26.00	7.46	15.80	3.86	67	1800
F-5-7	10/8/2009	0.35	0.05	1	8.1	1.92	9.71	3.13	9.09	3.90	70	459
	11/5/2010	0.44	0.09	1	7.8	1.83	8.66	3.48	9.02	3.66	33	184
F-7-9	10/8/2009	0.36	0.05	2	8.1	1.27	4.42	1.77	6.69	4.06	76	568
-	11/5/2010	0.47	0.07	2	7.8	1.46	6.01	2.40	7.70	3.75	50	260
F-9-11	10/8/2009	0.52	0.10	2	7,9	1.70	7.56	3.13	8.10	3.78	61	540
	11/5/2010	1.12	0.22	2	7.6	2.84	16.40	9.50	11.10	3.08	69	400
F-11-13	10/8/2009	1.06	0.11	2	7.9	2.32	12.66	7.85	8.29	2.85	76	1506
	11/5/2010	0.72	0.13	2	7.7	1.93	8.38	5.34	8.31	3.17	47	260
F-13-15	10/8/2009	0.61	0.10	2	7.9	1.51	8.60	2.41	5.93	2.53	50	490

Table 3-4. Irrigation Soil Analyses, 2000-2010

Sample Site	Date	U (mg/kg)	Se (mg/kg)	Mo (mg/kg)	pH (units)	Cond. (mmhos/cm)	Ca (meq/l)	Mg (meq/l)	Na (meq/l)	SAR (ratio)	Cl (mg/kg)	SO4 (mg/kg)
		· · · · · · · · · · · · · · · · · · ·										~
	- /- /					CTION 34 FLO					100	
BG-1	8/8/2001	2.47	0.30	2	7.6	4.160	5.86	1.75	2.87	1.47	100	800
]	11/22/2002	0.45	<0.6	<1	7.8	0.460	3.52	0.79	0.37	0.25	7	<100
]	11/26/2003	2.33	0.42	<1	7.8	1.680	5.70	2.22	9.60	4.82	83	850
	11/3/2004	2.79	0.75	<1	7.8	2.320	8.67	2.05	13.30	5.74	151	490
	11/19/2005	2.41	0.53	2	7.7	3.230	12.80	3.50	15.40	5.39	400	1360
	10/28/2006	3.06	0.69	<1	7.8	2.200	9.53	2.22	10.60	4.37	253	810
}	11/10/2007	3.30	0.74	2	7.7	3.650	19.10	4.81	19.60	5.67	267	800
	12/3/2008	2.52	0.57	1	7.8	2.740	13.70	3.37	15.00	5.13	289	810
	10/30/2009	3.35	0.59	<1	7.8	1.77	7.75	1.77	8.97	4.11	135	570
L	11/4/2010	3.27	0.58	3	7.5	2.48	14.00	3.57	9.68	3.27	199	680
BG-2	8/8/2001	1.92	0.20	2	7.5	4.730	7.94	2.60	4.53	1.97	120	300
	12/4/2002	0.53	<0.6	<1	7.8	0.410	3.03	1.06	0.32	0.22	4	<100
	11/26/2003	1.46	0.35	1	7.8	3.290	18.70	8.07	16.90	4.62	131	670
•	11/3/2004	2.04	0.68	<1	7.7	4.040	19.70	4.51	26.10	7.50	220	280
1	11/19/2005	2.44	0.39	2	7.9	4.460	20.80	4.99	23.90	6.66	349	1040
	10/28/2006	3.93	0.87	<1	7.7	2.400	12.30	2.59	10.90	3.99	219	810
	11/10/2007	2.67	0.78	2	7.7	4.280	21.00	5.02	25.80	7.15	271	1240
1	12/3/2008	2.19	0.48	2	7.8	3.260	17.90	4.59	18,50	5.52	257	1040
	10/30/2009	2.15	0.39	1	7.7	2.98	18.50	3.41	14.00	4.23	168	830
	11/4/2010	2.61	0.56	4	7.6	2.34	12.20	2.37	10.60	3.93	284	800
BG-3	8/8/2001	0.79	0.20	<]	7.6	8.200	6.35	2.12	2.77	1.35	120	100
ł	11/22/2002	0.40	<0.6	<1	7.9	0.360	2.51	1.14	0.35	0.25	4	<100
	11/26/2003	1.66	0.36	<1	7.7	2.460	12.80	5.95	10.70	3.49	141	370
	11/3/2004	2.04	0.40	<1	7.5	4.200	25.90	5.95	24.50	6.14	169	230
	11/19/2005	2.13	0.51	2	7.9	4.160	20.50	5.74	19.00	5.25	354	1280
1	10/28/2006	2.29	0.54	<1	7.8	3.000	15.00	3.17	15.40	5.11	259	1040
ļ	11/10/2007	1.64	0.53	<1	7.6	4.420	19.80	5.26	27.60	7.80	246	950
	12/3/2008	1.26	0.27	<1	7.7	3.990	22.30	6.24	24.60	6.51	210	1480
}	10/30/2009	0.63	0.17	1	7.3	3.33	20.90	4.32	13.40	3.77	159	410
	11/4/2010	1.69	0.42	3	7.5	2.28	11.60	2.66	9.78	3.66	265	560
BG-4	10/30/2009	0.55	0.10	<1	7.4	3.73	27.50	5.50	12.90	3.18	135	1720
	11/4/2010	0.56	0.17	1	7.5	2.06	8.65	2.55	10.10	4.27	105	200
BG-5	10/30/2009	0.33	0.04	<1	7.8	1.65	9.96	2.54	5.51	2.20	55	189
	11/4/2010	0.52	0.11	1	7.5	4.12	30.00	9.14	14.10	3.19	156	810
BG-5-7	10/30/2009	0.31	0.04	<1	7.9	1.04	4.76	1.53	4.18	2.36	33	190
	11/4/2010	0.52	0.09	2	7.6	3.04	16.80	9.48	11.00	3.03	79	330
BG-7-9	10/30/2009	0.93	0.09	<1	7.8	2	7.60	5.49	8.97	3.51	84	360
	11/4/2010	0.81	0.12	1	7.7	1.83	7.24	5.11	7.77	3.13	51	230
BG-9-11	10/30/2009	1.11	0.17	<1	7.7	3.95	18.90	12.40	17.60	4.45	139	520
	11/4/2010	0.91	0.11	2	7.8	2.48	7.39	4.99	14.00	5.63	100	360
BG-11-13	10/30/2009	1.26	1.31	<1	7.8	5.2	22.10	15.90	28.90	6.63	150	1610
·	11/4/2010	1.23	0.14	3	7.7	4.12	19.70	10.60	23.40	6.01	63	790
BG-13-15	10/30/2009	0.96	0.53	<1	7.8	3.33	12.60	9.96	18.80	5.60	57	400
BG-15-17	10/30/2009	0.97	0.27	<]	7.9	4.38	21.30	14.70	23.70	5.59	62	950

Table 3-4. Irrigation Soil Analyses, 2000-2010 (continued)

/

•

Sample Site	Date	U (mg/kg)	Se (mg/kg)	Mo (mg/kg)	pH (units)	Cond. (mmhos/cm)	Ca (meq/l)	Mg (meq/l)	Na (meq/l)	SAR (ratio)	Ci (mg/kg)	SO4 (mg/kg)
F-1	11/5/2004	1.78	0.56	<1	7.6	2.810	19.10	7.21	11.30	3.11	114	190
	11/8/2005	1.35	0.31	1	7.8	2.690	16.80	6.23	10.20	3.01	66	1210
	10/28/2006	1.76	0.41	<1	7.8	1.480	8.25	2.91	4.79	2.03	72	1070
	11/10/2007	1.69	0.45	<]	7.8	2.000	9.35	3.60	8.85	3.48	98	450
[12/3/2008	1.70	0.43	2	8.0	1.780	7.42	2.68	11.20	4.98	89	910
	10/5/2009	1.17	0.10	_ <1	8.1	0.493	1.37 6.69	0.48	3.03 7.75	3.15	120 150	<50 840
F-2	11/30/2010 11/5/2004	1.84	0.36	1	8.0	1.61 2.360	13.70	2.73	10.40	<u>3.57</u> 3.39	115	150
1-2	11/8/2005	1.14	0.24	<1	7.8	2.260	13.30	4.68	9.22	3.08	57	620
	10/28/2006	1.24	0.26	<1	7.7	2.320	16.00	5.15	8.33	2.56	46	970
	11/10/2007	1.55	0.40	<1	7.8	3.070	16.90	6.58	13.00	3.79	63	390
1	12/3/2008	1.53	0.39	<1	7.7	2.650	21.70	7.48	13.70	3.59	46	1670
	10/5/2009	1.17	0.09	<1	8.1	0.727	1.98	0.85	4.15	3.49	80	<50
F-3	11/30/2010	1.96	0.41	<1	<u>7.9</u> 7.7	<u>1.17</u> 2.400	4.63	<u>1.76</u> 6.52	<u>5.61</u> 11.60	3.14	150 115	<u> </u>
r-5	11/8/2004	1.00	0.49	<1	7.8	2.400	17.80	5.91	10.70	3.11	41	350
	10/28/2006	1.62	0.21	<1	7.7	1.840	10.90	3.38	5.93	2.22	52	970
	11/10/2007	1.51	0.40	<1	7.7	2.010	11.50	4.06	7.97	2.86	52	470
	12/3/2008	0.96	0.23	<1	7.7	2.890	19.90	6.91	12.00	3.28	50	860
1	10/5/2009	0.67	0.08	3	8.2	0.705	2.13	0.98	4.10	3.29	80	500
F-4	11/30/2010	1.76	0.41	3	7.6	2.53 0.528	15.10 1.23	5.18 0.86	<u>9.79</u> 2.87	3.07	<u>184</u> 70	<u>1070</u> 680
F-4	10/5/2009 11/30/2010	0.38 0.32	<0.05 <0.05	1	8.5 7.5	2.28	1.23	3.81	7.78	2.50	40	430
F-5	10/5/2009	0.33	<0.05	<1	8.4	0.538	1.22	1.02	2.81	2.66	50	500
	11/30/2010	0.40	<0.05	<1	7.5	· 2.65	20.40	4.68	8.77	2.48	21	750
F-5-7	10/5/2009	0.35	<0.05	<1	8.4	0.71	1.57	1.57	3.65	2.91	60	500
	11/30/2010	0.20	<0.05	<1	7.7	1.91	13.20	3.07	7.10	2.49	21	350
F-7-9	10/5/2009	0.27	<0.05	<1	8.6	0.44	1.01	0.86	2.19	2.26 3.21	20 30	170 220
F-9-11	11/30/2010 10/5/2009	0.19	<0.05 0.06	<1	<u>7.9</u> 8.5	0.837	3.22	0.78	4.54	2.69	40	220
1-9-11	11/30/2010	0.32	<0.05	<1	8.0	0.733	3.02	0.80	3.71	2.68	38	240
F-11-13	11/30/2010	0.27	< 0.05	<1	8.1	0.569	2.35	0.65	2.79	2.28	40	250
BG-1	11/5/2004	1.56	0.47	1	7.8	0.770	3.49	1.40	2.51	1.60	30	110
	11/8/2005	1.12	0.25	<1	7.8	0.962	5.16	1.84	2.29	1.22	76	2720
	10/28/2006	1.55	0.56	<]	7.9 7.8	0.702	2.93 4.30	1.04	1.98 1.96	1.41 1.15	24 64	100 140
	11/10/2007 12/3/2008	1.79 1.44	0.38 0.32	<1 <1	7.8 7.9	0.800 1.150	4.30 6.04	1.55 2.29	4.20	2.06	220	1200
	10/27/2009	1.22	0.23	<1	8.0	0.464	2.66	0.96	0.97	0.72	50	250
	11/30/2010	1.42	0.27	<1	7.7	0.728	3.25	1.18	3.17	2.13	150	730
BG-2	11/5/2004	1.30	0.39	<1	7.8	0.820	4.42	1.70	2.28	1.30	35	120
	11/8/2005	0.92	0.20	<1	7.8	0.829	4.13	1.52	2.41	1.43	103	1960
	10/28/2006 11/10/2007	1.15 1.29	0.35 0.31	<1 <1	7.8 7.8	0.470 0.810	1.94 4.24	0.71 1.65	1.37 1.79	1.19 1.04	20 57	210 160
1	12/3/2008	1.29	0.31	<1	7.8 7.8	0.840	4.24	1.00	2.58	1.40	90	660
	10/27/2009	1.60	0.29	<1	8.0	0.651	2.53	1.06	2.86	2.13	70	390
	11/30/2010	1.46	0.27	1	7.7	0.755	3.17	1.19	3.54	2.40	120	780
BG-3	11/5/2004	1.33	0.42	<1	7.8	0.940	5.13	2.06	2.79	1.47	30	160
	11/8/2005	0.90	0.19	<1	7.8	1.110	5.74	2.20	3.55	1.78	81	3200
	10/28/2006	1.05	0.34	<1	7.9	0.677	2.88	1.05	1.84	1.31 1.21	14 43	190 260
	11/10/2007 12/3/2008	1.24 0.97	0.35 0.25	<1 <1	7.8 7.8	0.710 0.840	3.80 4.66	1.41 1.85	1.96 3.09	1.21	43	280 900
	10/27/2009	0.97	0.25	1	7.8 7.9	0.93	3.66	1.85	3.68	2.20	40	400
[11/30/2010	0.86	0.17	1	7.8	0.987	3.29	1.43	5.31	3.46	110	680
BG-4	10/27/2009	0.87	0.12	<1	8.0	1.11	4.99	2.62	3.65	1.87	12	240
	11/30/2010	0.94	0.16	2	7.7	0.635	2.98	1.28	2.57		40	210
BG-5	10/27/2009 11/30/2010	0.46	0.06 <0.05	<1 1	7.9 7.8	0.739 0.702	3.15 2.66	1.65 0.99	2.25 3.65	1.45 2.70	30 30	320 160
BG-5-7	10/27/2009	0.58	0.05	<1	 8.1	0.603	2.66	1.13	1.81	1.36	60	470
	11/30/2010	0.42	<0.05	<1	7.9	0.471	1.75	0.60	2.48	2.29	50	340
BG-7-9	10/27/2009	0.35	<0.05	<1	8.1	0.667	2.89	1.24	2.00	1.39	70	480
	11/30/2010	0.33	< 0.05	<1	8.1	0.453	1.43	0.56	2.59	2.60	40	230
BG-9-11	10/27/2009	0.44	0.07	<1	8.2	0.617	2.85	1.24	1.68	1.17	40	280
DG 11 16	11/30/2010	0.27	<0.05	<1	8.2	0.435	1.28	0.51	2.63	2.78	40	230
BG-11-13	10/27/2009 11/30/2010	1.33	0.14 0.07	2 1	8.1 8.0	0.623 0.475	2.68 1.82	1.54 0.79	1.50 2.15	1.03 1.88	60 <30	450 140
L	11/30/2010	0.65	0.07	1	0.V	0.475	1.02	0.15	6.13	1.00		140

Table 3-4. Irrigation Soil Analyses, 2000-2010 (continued)

–

Table 3-4. Irrigation Soil Analyses, 2000-2010 (continued)

Sample Site	Date	U (mg/kg)	Se (mg/kg)	Mo (mg/kg)	pH (units)	Cond. (mmhos/cm)	Ca (meq/l)	Mg (meq/l)	Na (meq/l)	SAR (ratio)	Cł (mg/kg)	SO4 (mg/kg)
	Date	(ing/kg)	(ing/kg)	(mg/kg)	(units)	(ininios cin)	(meq/l)	(med/l)	(meq/i)	(lauo)	(nig/kg)	(ing/kg
					SECTIC	N 28 CENTER	PIVOT	·····				
N-1	11/19/2002	2.99	<0.6	2	7.7	4.27	20.80	9.40	26.90	6.92	48	3700
	11/24/2003	0.81	0.18	<1	7.8	1.95	8.47	3.94	10.00	4.01	24	400
	11/11/2004	0.89	0.37	<1	7.6	2.67	14.60	6.38	14.00	4.32	28	70
	11/15/2005	0.68	0.17	<1	7.9	2.65	13.90	6.55	11.40	3.57	42	430
	10/21/2006	1.11	0.16	2	7.6	2.37	12.70	6.20	9.35	3.04	57	280
	11/10/2007	1.14	0.47	<]	7.7	2.50	14.00	6.18	10.90	3.43	34	490
	11/22/2008	1.17	0.39	1	7.9	2.90	16.90	8.44	13.40	3.73	48	760
	10/9/2009	1.62	0.41	2	7.8	3.69	18.18	8.96	18.14	4.87	117	895
	11/3/2010	1.37	0.27	2	7.8	4.29	23.00	11.50	24.00	5.78	24	230
N-2	11/19/2002	1.47	<0.6	<1	7.7	4.51	20.60	7.60	29.00	7.72	68	3400
	11/24/2003	0.70	0.16	<1	7.9	2.42	9.47	3.73	15.70	6.11	49	450
	11/11/2004	0.80	0.23	<1	7.7	2.63	11.50	4.60	16.20	5.71	61	70
	11/15/2005	0.74	0.15	<1	7.9	4.09	15.70	7.75	26.60	7.77	87	. 330
	10/21/2006	1.14	0.09	2	7.7	2.56	12.50	6.43	12.90	4.16	18	610
	11/10/2007	1.01	0.34	<1	7.6	3.11	17.60	8.91	15.00	4.12	37	500
	11/22/2008	1.01	0.24	1	7.8	3.27	18.40	9.17	16.40	4.42	35	870
	10/9/2009	1.12	0.19	1	7.8	3.57	20.66	10.80	15.65	3.97	65	1011
N-3	11/3/2010	1.24	0.20	2	7.5	4.13	22.00	11.00	20.60	5.07	121	890
IN-3	11/19/2002	0:74	<0.6	<]	7.6	4.51	22.90	7.57	26.40	6.76	39	1300
	11/24/2003	0.57	0.13	<1	7.8	2.55	13.20	5.28	13.40	4.41	74	380
	11/11/2004	0.70	0.23	<1	7.6	3.30	17.00	7.29	17.40	4.99	134	70
	11/15/2005	0.58	0.12	<1	7.9	4.29	14.90	7.44	6.00	1.80	118	420
	10/21/2006	1.06	0.08	2	7.8	3.58	15.20	8.21	26.00	7.60	37	670
	11/10/2007	0.92	0.25	<]	7.8	3.46	16.30	8.70	20.60	5.83	37	540
	11/22/2008 10/9/2009	1.01 1.24	0.25 0.20	1	8.0	3.11	15.20	8.55	17.50	5.08	60	910
	11/3/2010	1.24	0.20	1	8.0	4.13	18.94	12.63	23.56	5.72	65	1054
N-4	10/9/2009	0.78	0.10	1	<u>7.7</u> 8.1	4.16	18.90	<u>13.80</u> 9.14	23.60	<u>5.84</u> 6.39	<u>60</u> 50	<u>720</u> 683
14-4	11/3/2010	1.03	0.15	1	8.1 7.9	3.47 2.98	12.67	9.14 6.84	22.18 17.50	5.75	·44	560
N-5	10/10/2009	0.83	0.13	3	8.2	3.77	11.46	8.43	27.17	9.22	100	783
11.5	11/3/2010	0.84	0.12	1	8.2 7.9	3.26	10.10	5.11	22.80	9.22 8.27	60	710
N-5-7	10/11/2009	0.71	0.08	2	8.2	3.41	9.95	6.13	22.80	9.69	159	604
1, 5 ,	11/3/2010	0.71	0.13	1	8.2 7.9	3.27	10.30	5.73	21.00	9.09 7.42	139	750
N-7-9	10/12/2009	0.76	0.10	2	8.0	3.90	14.73	10.58	23.32	6.54	140	871
	11/3/2010	0.61	0.10	2	7.9	2.52	6.57	4.19	16.90	7.29	130	1000
N-9-11	10/13/2009	0.47	0.08	2	8.0	3.46	14.26	7.59	18.29	6.13	166	602
• •	11/3/2010	0.67	0.16	1	7.8	3.26	14.20	9.27	17.00	4.93	69	520
N-11-13	10/14/2009	0.53	0.10	i	7.9	2.68	10.01	4.34	15.14	5.88	145	747
10	11/3/2010	0.64	0.12	2	7.7	3.35	16.60	7.81	15.00	4.29	145	370
N-13-15	10/15/2009	1.02	0.28	2	7.8	3.40	14.01	6.45	19.97	6.17	136	948
	11/3/2010	0.80	0.24	2	7.7	2.74	13.20	4.90	13.60	4.52	90	440
N-15-17	10/16/2009	0.41	0.20	2	7.8	3.04	14.16	6.43	16.08	4.75	92	620
	11/3/2010	0.53	0.12	ĩ	7.8	2.08	9.00	3.35	4.51	4.51	70	500

.

Sample Site	Date	U (mg/kg)	Se (mg/kg)	Mo (mg/kg)	pH (units)	Cond. (mmhos/cm)	Ca (meq/l)	Mg (meq/l)	Na (meq/l)	SAR (ratio)	Cl (mg/kg)	SO4 (mg/kg)
	<u> </u>					ON 28 CENTER						
BG-1	11/19/2002	2.99	<0.6	2	8.0	0.82	3.33	0.91	4.20	2.88	14	700
	11/24/2003	0.51	0.15	<1	7.9	0.33	1.94	0.61	0.30	0.26	6	60
	11/11/2004	0.88	0.22	<1	7.4	1.16	6.93	1.99	3.91	1.85	12	20
	11/15/2005	0.47	0.12	<1	7.8	1.01	6.37	2.00	2.32	1.13	283	4380
	10/21/2006	0.62	0.10	2	7.7	0.46	2.41	0.71	0.57	0.45	19	80
	11/10/2007	0.78	0.23	<1	7.7	0.71	4.19	1.35	0.95	0.57	32	118
	11/22/2008	0.59	0.15	1	7.8	0.44	2.56	0.77	0.88	0.68	220	1390
	10/15/2009	1.11	0:16	2	7.9	0.507	2.83	0.96	1.10	0.79	60	320
	11/2/2010	0.65	0.16	<1	7.6	1.1	6.39	2.17	2.68	1.30	30	90
BG-2	11/19/2002	1.62	<0.6	<1	7.7	2.00	14.90	3.27	6.88	2.28	13	500
	11/24/2003	0.61	0.10	<1	8.0	0.35	1.69	0.81	0.60	0.53	6	120
	11/11/2004	0.77	0.22	· <1	7.4	0.66	4.22	1.42	1.01	0.60	14	<10
	11/15/2005	0.47	0.07	<1	8.0	0.73	3.71	1.58	1.50	0.92	405	5350
	10/21/2006	0.51	<.05	1	7.8	0.53	2.22	0.95	0.89	0.70	14	<50
	11/10/2007	0.91	0.24	<1	7.6	0.95	5.95	2.18	1.45	0.71	26	99
	11/22/2008	0.46	0.15	1	8.0	0.40	2.11	0.89	0.88	0.71	240	1300
	10/15/2009	0.57	0.10	<1	8.0	0.658	3.20	1.31	1.82	1.21	50	300
	11/2/2010	0.40	0.13	<1	7.8	0.53	3.41	1.41	0.71	0.45	40	110
BG-3	11/19/2002	1.45	<0.6	<1	7.8	1.51	9.24	1.95	6.29	2.66	13	500
	11/24/2003	0.53	0.12	<1	8.0	0.53	2.10	1.26	1.80	1.39	11	120
	11/11/2004	0.81	0.19	<]	7.5	0.80	4.74	2.03	1.60	0.86	10	10
	11/15/2005	0.55	0.07	<1	7.9	1.05	5.09	2.43	3.03	1.56	290	4340
	10/21/2006	0.58	0.06	1	7.9	0.44	1.33	0.68	1.25	1.25	16	70
	11/10/2007	0.80	0.25	<]	7.7	0.88	4.99	1.84	1.76	1.95	30	120
	11/22/2008	0.53	0.15	<1	8.1	0.493	1.96	0.95	1.95	1.62	270	1500
	10/15/2009	0.56	0.11	1	8.1	0.708	2.71	1.50	2.33	1.61	70	370
	11/2/2010	0.45	0.13	<1	7.9	0.509	2.72	1.45	0.99	0.68	60	340
BG-4	10/15/2009	0.52	0.07	<1	8.3	0.603	2.22	1.55	1.56	1.14	60	360
	11/2/2010	0.39	0.09	<1	8.0	0.53	2.28	1.44	1.72	1.26	70	440
BG-5	10/15/2009	0.45	0.06	<1	8.4	0.563	1.67	1.27	2.28	1.88	90	620
	11/2/2010	0.36	0.07	<1	8.1	0.34	1.43	0.92	1.09	1.01	80	520
BG-5-7	10/15/2009	0.62	0.08	1	8.3	0.867	2.25	1.74	4.22	2.99	100	600
	11/2/2010	0.43	0.08	<1	8.1	0.542	1.95	1.34	2.19	1.71	90	700
BG-7-9	10/15/2009	0.79	0.08	<1	8.1	1.51	3.73	3.01	7.83	4.27	61	370
	11/2/2010	0.44	0.09	<1	8.1	0.953	2.39	1.72	5.53	3.86	140	1180
BG-9-11	10/15/2009	0.52	0.09	<1	7.9	3.02	12.90	8.38	14.80	4.54	60	420
	11/2/2010	0.48	0.09	<1	7.9	1.51	5.89	3.71	7.19	3.28	40	400
BG-11-13	10/15/2009	0.97	0.12	1	7.8	2.82	19.70	10.40	6.74	1.74	15	540
	11/2/2010	0.65	0.12	<1	8.0	0.827	2.84	1.62	4.06	2.72	30	230
BG-13-15	10/15/2009	0.60	0.08	<1	7.9	0.636	2.77	1.15	1.93	1.38	70	480
	11/2/2010	0.68	0.13	<1	8.0	0.578	2.17	1.10	2.57	2.01	50	320
BG-15-17	10/15/2009	0.84	0.10	<1	7.9	1.27	4.48	1.79	6.25	3.53	70	560
	11/2/2010	0.54	0.09	<1	7.9	0.793	2.63	1.18	4.01	2.91	40	400

 Table 3-4. Irrigation Soil Analyses, 2000-2010 (continued)

3-22

. .

							1.					
Sample		U	Se	Мо	pH	Cond.	Ca	Mg	Na	SAR	Cl	SO4
Site	Date	(mg/kg)	(mg/kg)	(mg/kg)	(units)	(mmhos/cm)	(meq/l)	(meq/l)	(meq/l)	(ratio)	(mg/kg)	(mg/kg)
					SECTIC	N 33 CENTER	PIVOT					
P-1	12/7/2000	0.93	0.37	<1	7.9	0.987	4.00	1.27	5.67	3.40	26	98
	6/15/2001	0.94	0.30	<1	8.0	1.230	3.77	1.48	7.48	4.84	123	500
	11/20/2002	0.98	<0.6	<1	7.8	1.610	7.71	2.80	8.10	3.53	13	300
	11/18/2003	1.36	0.28	<1	7.8	2.200	7.99	3.25	13.50	5.69	55	590
	11/9/2004	1.78	0.45	<1	7.6	3.780	19.70	8.73	21.40	5.67	101	190
	11/5/2005	1.45	0.31	<1	8.1	2.060	9.35	4.02	11.20	4.33	51	460
	10/21/2006	1.87	0.36	<1	7.8	3.560	15.80	6.36	20.40	6.13	109	1020
	11/10/2007	1.67	0.44	<1	7.7	3.280	12.40	5.91	19.10	6.31	85	600
	11/22/2008	1.41	0.41	1	8.0	2.630	10.70	5.07	17.10	6.09	80	500
	10/6/2009	2.03	0.41	2	7.8	3.472	14.63	6.95	22.75	6.71	147	1059
	12/2/2010	1.87	0.35	<1	8.0	3.900	18.00	7.96	23.70	6.58	101	910
P-2	12/7/2000	0.81	0.45	<1	7.8	1.480	6.30	1.88	7.77	3.84	46	290
	6/15/2001	0.60	0.30	<1	7.9	1.120	4.32	1.45	6.11	3.60	109	500
	11/20/2002	0.89	<0.6	<1	7.8	2.190	10.10	3.78	13.10	4.97	14	600
	11/18/2003	1.14	0.19	<1	7.9	2.690	10.30	3.86	16.10	6.05	82	710
	11/9/2004	1.52	0.39	<1	7.6	4.300	19.40	10.80	27.50	7.07	155	200
	11/5/2005	1.15	0.21	2	8.1	3.940	15.10	7.68	27.30	8.09	94	420
	10/21/2006	1.62	0.15	<1	7.7	3.320	14.20	5.93	17.90	5.64	142	900
	11/10/2007	1.34	0.30	<1	7.7	5.300	19.60	11.00	37.00	9.46	187	900
	11/22/2008	1.37	0.35	1	8.0	3.600	13.40	6.30	25.80	8.22	114	1130
	10/6/2009	1.84	0.29	2	7.9	3.906	14.45	7.40	30.01	8.53	243	1405
	12/2/2010	2.16	0.25	<1	8.0	4,000	17.40	7.66	25,60	7.23	102	850
P-3	12/7/2000	1.03	0.25	<1	7.6	1.720	8.35	2.29	8.33	3.71	36	210
	6/15/2001	0.54	0.10	<1	7.8	1.020	4.74	2.18	4.27	2.30	67	400
	11/20/2002	0.68	<0.6	<1	7.7	2.400	11.70	5.34	11.60	3.97	34	1000
	11/18/2003	1.00	0.18	<1	7.8	2.970	15.50	5.67	17.30	5.32	106	570
	11/9/2004	1.15	0.38	<1	7.6	3.440	15.90	9.31	19.30	5.43	137	220
	11/5/2005	1.00	0.30	1	8.0	4.500	18.70	10.50	147.00	38.50	197	580
	10/21/2006	1.05	0.14	<1	7.8	· 3.500	13.90	6.17	19.70	6.22	126	780
	11/10/2007	1.30	0.39	<1	7.6	4.670	20.30	10.60	26.40	6.72	174	670
	11/22/2008	1.27	0.33	3	7.9	3.600	14.80	7.10	23.10	6.98	184	1220
	10/6/2009	1.52	0.28	2	7.8	4.271	16.22	7.79	28.20	7.85	279	972
	12/2/2010	1.95	0.24	<1	8.0	3.910	17.00	8.06	24.40	6.89	154	1360
P-4	10/6/2009	1.32	0.27	2	7.8	4.113	17.19	7.87	24.92	7.17	258	911
	12/2/2010	1.52	0.26	<1	8.0	3.750	18.90	7.76	20.80	5.70	170	870
P-5	10/6/2009	1.20	0.27	2	7.9	3.426	14.81	7.20	19.76	6.10	163	884
	12/2/2010	1.79	0.33	<1	8.0	3.720	17.10	7.85	21.00	5.95	167	1640
P-5-7	10/6/2009	0.95	0.20	2	7.9	2.799	11.03	5.33	17.07	5.78	145	696
	12/2/2010	0.89	0.16	<1	8.0	2.640	12.50	5.72	13.00	4.31	91	670
P-7-9	10/6/2009	0.85	0.22	2	7.8	2.198	11.01	5.23	10.78	3.71	85	. 557
	12/2/2010	0.67	0.10	<1	8.1	1.850	8.26	3.23	8.05	3.36	72	400
P-9-11	10/6/2009	0.93	0.19	2	7.9	2.086	13.89	6.24	6.12	1.97	86	619
	12/2/2010	0.67	0.10	1	7.9	2.680	13.10	4.05	4.63	1.58	59	370
P-11-13	10/6/2009	0.96	0.12	1	8.0	1.449	9.25	4.13	2.86	1.20	83	393
	12/2/2010	0.56	0.10	<1	8.0	1.140	6.69	1.86	2.70	1.31	51	270
P-13-15	10/6/2009	0.80	0.14	1	8.0	1,435	9.42	4.24	2.72	1.11	90	329
	12/2/2010	0.61	0.10	<1	8.0	1.440	9.12	2.58	3.47	1.43	36	180
P-15-17	10/6/2009	0.83	0.19	1	8.0	1.847	14.18	5.62	3.13	1.01	70	345
	12/2/2010	0.84	0.12	<1	8.0	1.380	9.83	2.73	3.17	1.26	30	160

Table 3-4. Irrigation Soil Analyses, 2000-2010 (continued)

Sample Site	Date	U (mg/kg)	Se (mg/kg)	Mo (mg/kg)	pH (units)	Cond. (mmhos/cm)	Ca (meq/l)	Mg (meq/l)	Na (meq/l)	SAR (ratio)	Cl (mg/kg)	SO4 (mg/kg)
JIC	Date	(116/116)	(IIIg/Kg)	(IIIE/KE)	(uuus)	(IIIIIII03/CIII)	(ineq/i)	(meq/i)	(meg/l)	(ratio)	(IIIg/Kg/	(IIIB/KB)
					SECTIC	N 33 CENTER	PIVOT				·	
BG-1	12/7/2000	1.14	0.20	<1	7.6	1.240	9.07	2.64	0.64	0.26	18	<50
	6/20/2001	0.98	0.10	1	7.9	0.231	1.51	0.48	0.43	0.43	32	<300
	11/20/2002	0.85	<0.6	<1	7.8	0.450	3.51	0.98	0.69	0.46	<4	<100
	11/18/2003	0.78	0.12	<1	7.8	0.700	4.13	1.15	0.60	0.36	21	160
	11/8/2004	0.88	0.27	<1	7.7	0.980	6.22	1.94	1.83	0.91	28	60
	11/5/2005	0.78	0.18	<1	8.1	0.835	5.20	1.54	1.60	0.87	27	570
	10/21/2006	0.88	0.18	<1	7.9	1.060	6.04	1.69	1.87	0.95	18	160
	11/10/2007	0.89	0.39	<1	7.7	1.510	7.57	2.80	2.03	0.89	68	280
	11/22/2008	0.72	0.21	1	8.0	0.883	6.13	2.12	1.81	0.89	170	820
	10/22/2009	1.02	0.19	<1	7.5	1.08	7.32	2.21	1.78	0.81	33	230
	12/1/2010	1.00	0.17	2	7.8	0.98	6.35	2.22	2.25	1.09	60	440
BG-2	6/20/2001	0.76	0.20	<1	7.9	0.321	1.83	0.92	0.57	0.48	29	<300
	11/20/2002	0.59	<0.6	<1	7.7	1.250	7.58	3.04	3.56	1.54	8	<100
	11/18/2003	0.52	0.12	<1	7.7	0.670	4.27	1.28	0.70	0.42	25	90
	11/8/2004	0.79	0.24	<1	7.8	0.690	4.05	1.45	1.22	0.74	32	70
	11/5/2005	0.69	0.15	<1	8.1	0.745	4.24	1.45	1.41	0.83	• 71	2140
	10/21/2006	0.88	0.16	<1	8.0	0.757	3.63	1.60	1.47	0.90	21	120
	11/10/2007	0.89	0.44	<1	7.7	1.550	9.46	3.44	2.42	0.95	73	350
	11/22/2008	0.61	0.23	2	8.0	0.809	5.05	2.21	1.73	0.90	160	680
	10/22/2009	0.73	0.15	<1	7.6	1.07	7.78	2.81	1.01	0.43	25	220
DC 1	12/1/2010	0.74	0.14	<l <1</l 	7.9	0.63	3.62	1.65	0.87	0.53	80	320
BG-3	6/20/2001	0.83				0.385	2.41	1.12	0.48		41	300
	11/20/2002 11/18/2003	0.66 0.67	<0.6 0.12	<1 <1	7.9	0.580 0.620	3.39	1.32 1.39	1.79	1.17	8	300
	11/8/2003	0.87	0.12	<1	7,7 7.8	0.820	3.77 4.13	1.59	0.70 1.50	0.43	22 31	70 80
	11/8/2004	0.81	0.25	2	8.3	0.720	4.13 3.39	1.54	1.30	0.89	222	6770
	10/21/2005	1.09	0.15	2 <1	8.0	1.080	5.54	2.55	2.20	1.09	16	200
	10/21/2000	0.86	0.13	<1	7.7	1.740	5.54 10.60	3.73	2.20	1.09	63	300
	11/22/2008	0.30	0.20	3	8.0	0.877	5.06	2.27	2.37	1.05	180	870
	10/22/2009	0.82	0.13	1	7.7	0.600	3.48	1.36	0.87	0.55	70	370
	12/1/2010	0.86	0.19	1	8.0	0.529	2.55	1.36	1.14	0.81	40	200
BG-4	10/22/2009	1.01	0.15	<1	7.7	0.578	3.33	1.40	0.95	0.61	60	370
00-4	12/1/2010	1.01	0.15	2	8.0	0.656	3.32	1.59	1.58	1.01	50	340
BG-5	10/22/2009	0.90	0.12	<1	7.7	0.692	4.09	1.66	1.15	0.67	60	390
203	12/1/2010	0.94	0.17	2	8.0	0.920	4,71	2.31	2.47	1.32	60	330
BG-5-7	10/22/2009	0.52	0.08	<1	7.9	0,508	2.86	1.09	0.80	0.56	70	350
2007	12/1/2010	0,68	0.11.	<1	7.9	0.635	3.53	1.48	1.34	0.84	50	360
BG-7-9	10/22/2009	0.80	0.09	<1	7.6	0.442	2.57	0.87	0.65	0.49	30	240
	12/1/2010	0.99	0.14	i	8.0	0.730	3.96	1.56	2.02	1.22	40	320
BG-9-11	10/22/2009	0.76	0.05	<1	7.6	0.426	2.47	0.81	0.63	0.49	32	230
	12/1/2010	0.99	0.11	2	7.7	1.260	8.78	3.15	2.91	1.19	<30	380
BG-11-13	10/22/2009	0.56	<0.05	<1	7.7	0.335	1.96	0.59	0.55	0.48	40	300
	12/1/2010	0.56	0.06	1	7.7	0.953	5.48	2.08	3.09	1.59	<30	380
BG-13-15	10/22/2009	0.68	0.10	<1	7.6	0.318	1.69	0.50	0.57	0.54	70	540
	12/1/2010	0.42	0.06	1	7.9	0.593	3.13	1.24	1.89	1.28	<30	290
BG-15-17	10/22/2009	0.99	0.14	1	7.7	0.387	2.06	0.68	0.87	0.74	70	530
	12/1/2010	0.45	0.09	1	7.9	0.501	2.74	1.00	1.48	1.08	<30	290

Table 3-4. Irrigation Soil Analyses, 2000-2010 (continued)

NOTE: 2000 Sample: 1 = 0 - 6 inches, 2 = 6 - 18 inches and 3 = 18 - 36 inches 2001 through 2008 Sample: 1 = 0 - 1 ft, 2 = 1 - 2 ft and 3 = 2 - 3 ft; BG samples are background.

Grants Reclamation Project Evaluation of Years 2000-2010 Irrigation with Alluvial Ground Water

Composite samples collected from untreated (background) areas are labeled BG-1, BG-2, or BG-3, representing the same three layers.

Table 3-5 lists concentrations of uranium and selenium in 1999 (background surface samples only), 2000 at 0-6, 6-18, and 18-36 in; and 2001 to 2010 at 0-1, 1-2 and 2-3 ft. Depths greater than three feet were first sampled in 2009.

3.3.1 Sections 33 and 34 Flood Areas

Composite soil samples were collected from three soil layers in the Section 34 flood irrigation area after the 2000 (15 samples from 3 depths at up to 9 locations), 2001 (30 samples from 3 depths at 10 locations), 2002 (36 samples from 3 depths at 12 locations), 2003 (33 samples from 3 depths at 11 locations); 2004, 2005, 2006, 2007 and 2008 (each with 36 samples from 3 depths at 12 locations) irrigation seasons. Samples were collected from three lysimeter locations and an additional five soil locations in 2009. Two background samples were combined for each of the 2001 and 2002 background soil analyses for Section 34, one background sample was collected in 2003 and ten background samples were combined in 2004, 2005, 2006, 2007 and 2008 (see Figures 2-1 through 2-9 for sample locations). Figure 2-10 and 2-11 show the four background soil sampling locations for 2009 and 2010. Uranium and selenium concentrations observed in the Sections 33 and 34 flood irrigation areas are presented in Figures 3-8 and 3-10, respectively. A comparison with background was not made for Section 33 Flood, because there is insufficient data to analyze.

Figure 3-8 presents a plot of the background and treated uranium concentrations with time for the Section 33 and 34 flood areas. The mean background concentrations were presented in Section 3.2. Uranium concentrations have been fairly steady in the upper level for the last seven years and fairly steady levels in the second foot interval for the last four years. This indicates that no additional increases in these two layers are likely in the future. From 2001 to 2010, uranium concentrations in Section 34 Flood increased in the 0-1 ft layer from 2.72 to 4.64 mg/kg. The average uranium concentration in the first 3 feet of soil increased from 1.91 to 3.14 mg/kg, or by a factor of 1.64. Average uranium concentrations in deeper layers of treated soils were generally lower than those in the surface samples. Figure 3-9 shows that the uranium is accumulating in the treated areas of Section 34 primarily in the three upper feet with only a small amount in the three to four foot interval. The gain in the 9 to 11 foot interval is questionable because the 2009 data did not show any migration to this depth in Section 34. The black pattern shows the gain in the 2009 treated values above the 2010 mean background.

The 2010 selenium levels increased in the upper interval while concentration in the next two foot intervals exhibited a small decrease (See Figures 3-10 and 3-11). Overall the selenium has been fairly steady in the upper interval for the last seven years.

A comparison of the results obtained from 2001through 2010 indicates that selenium has accumulated in the treated areas of Section 34. Figure 3-11 shows that the selenium

accumulation has mainly been in the upper three feet with two of the six deeper values less than background values. Little significance should be given the two small gain values unless they are supported by future results.

Table 3-6 presents the treated area uranium and selenium concentrations for each year along with the mean background concentration, which was determined from all background data through that year. Table 3-6 presents the gain (difference between treated area and mean background) for 2010. The cumulative gain for 2010 is given and used in the cumulative buildup tables in the next subsection.

Figure 3-9 presents the uranium concentrations with depth for the treated and mean background concentrations. The distance between these two lines is the gain in uranium concentration. The blue shaded area shows where uranium has been added in the Section 34 soils to a depth of 4 feet with only one gain below this depth. The gain between 9 and 11 feet did not exist in this area in 2009 and should not be given any significance unless it is supported by future values.

3.3.2 Section 28 Center Pivot

Twelve locations were sampled in the treated area of Section 28 in 2002, 2003, 2004, 2005, 2006, 2007 and 2008 at the three, 1-ft depth intervals described above. Eight (3 lysimeter locations plus 5 general sample locations) and five locations were sampled in 2009 and 2010 to the depth of the top of the basalt. Corresponding depths were sampled at each of the background locations in untreated areas of Section 28 (See Figure 2-12 for the five background locations that were composited for the three depths for 2002 and Figures 2-13 through 2-20 for the 2003 through 2010 locations). Graphical presentations of uranium and selenium concentrations are included in Figures 3-12 through 3-15 for the Section 28 area.

Uranium concentrations in composite samples collected from the treated and background areas in 2002 were, with one exception, at levels significantly above pre-operational and 2003 through 2010 treated levels. The 2002 data are likely elevated because of laboratory error and do not represent uranium concentrations in Section 28 soils. These data are not considered further.

Uranium concentrations in the treated area slightly exceed those in the background area in 2010 and overall are still gradually increasing in the upper three feet (see Figure 3-12). The most recent (2010) concentrations of uranium observed in the treated area were 1.37 (0-1 ft), 1.24 (1-2 ft) and 1.34 (2-3 ft); and 0.60 (0-1 ft), 0.52 (1-2 ft) and 0.51 mg/kg (2-3 ft) for the mean background. The treated intervals exceed the mean background by factors of 2.28 (0-1 ft), 2.38 (1-2 ft) and 2.63 (2-3 ft). All three interval concentrations of uranium in the treated area currently exceed background by an average factor of 2.43. Thus, uranium concentrations are more than twice that of background and had appeared to have reached a steady state until the observed 2009 and 2010 increases.

In 2010, selenium concentrations observed in the treated area were 0.27 (0-1 ft), 0.20 (1-2 ft) and 0.23 mg/kg (2-3 ft). Corresponding mean background concentrations were 0.13 (0-1 ft),

0.11 (1-2 ft), and 0.10 mg/kg (2-3 ft). When comparing the intervals, the three treated intervals exceeded mean background by factors of 2.10 (0-1 ft), 1.80 (1-2 ft) and 2.30 (2-3 ft). The decline in selenium concentrations in the lower two intervals is thought to be caused by a larger quantity of water moving beyond the 3 foot soil interval. Figure 3-15 presents the selenium profile for the Section 28 area showing some gain in selenium concentration over the entire measured intervals. Figure 3-15 presents a plot for the selenium soil concentration gains versus depth for both 2009 and 2010 relative to the 2010 mean background. The green shaded area shows the 2010 gain in selenium concentration in the Section 34 soils while the 2009 gain is shown with the black pattern.

3.3.3 Section 33 Center Pivot

Twelve locations were sampled in the treated area of Section 33 in each of the eight latter years (2001 to 2008) and at the three depths described above. Samples were collected to the top of the basalt in 2009 and 2010. Samples were collected from the five lysimeter locations and were combined with five additional soil sample locations to develop the composite value for each depth interval in 2009. Appendix A presents the separate soil analysis. Corresponding depth intervals were sampled at each of four background locations for the three analyzed depths (BG-1, BG-2, and BG-3) in untreated areas of Section 33 for the 2002 and 2003 samples. Ten background samples were composited together for the Section 33 soils in 2004 to 2008. Five background samples were composited together for the Section 33 soils in 2009 and 2010 (see Figures 2-10 and 2-11)

As stated in Section 3.1.3, the term "mean background" is defined as the average of all of the untreated, composite concentrations of a constituent determined from initial testing results to the most current. As defined, the mean background uranium concentration for Section 33 for the upper layer is 0.80 mg/kg.

Uranium concentrations in the treated area started to exceed those in background samples in 2002. The most recent (2010) concentrations observed in the treated area were 1.87 (0-1 ft), 2.16 (1-2 ft) and 1.95 (2-3 ft). This compares to the corresponding mean background values of 0.80 (0-1 ft), 0.69 (1-2 ft) and 0.73 mg/kg (2-3 ft). Uranium accumulated in the upper two feet of soil at a relatively constant rate until 2004, when concentrations reached a fairly steady state until an increase in 2009 and 2010(see Figure 3-16). Figure 3-17 shows the 2009 and 2010 gain in uranium in Section 33 with essentially all of the gain from the surface to the 5 to 7 foot interval except fro a small gain in the 13 to 17 foot depths. The very small gain at the greater depths in 2010 questions the larger gains measured in 2009 at the greater depths. The 2010 data indicates that uranium has not migrated past seven feet in Section 33.

Selenium concentrations in 2010 for the top three feet of treated soil exceeded the mean background by factors of 2.33 (0-1 ft), 1.67 (1-2 ft) and 1.85 (2-3 ft). The 2010 selenium data from the treated area were similar to the higher treated values measured in the past while the untreated measurements were similar to the mean background values (see Figure 3-18). The

Section 33 selenium gain profile is presented in Figure 3-19 showing the 2009 and 2010 gain in soil concentrations. The red pattern shows that the majority of the 2010 gain is above seven feet while some gain was observed in three of the five lower intervals. Some selenium has likely migrated through the upper seventeen feet of soil.

Grants Reclamation Project Evaluation of Years 2000-2010 Irrigation with Alluvial Ground Water

		Uranium	Selenium	(mg/kg)	
Section	Yearly Data	Treated Area	Background	Treated Area	Background
	1999 AVG:		2.44		0.44
	2000-1 AVG:	3.35		0.68	
	2000-2 AVG:	2.22		0.37	
	2000-3 AVG	1.62		0.30	
	2001-1	2.72	2.47	0.50	0.30
	2001-2	1.88	1.92	0.40	0.20
	2001-3	1.15	0.79	0.30	0.20
	2002-1	0.69	0.45	<0.60	<0.60
	2002-2	0.46	0.53	<0.60	<0.60
	2002-3	0.42	0.40	<0.60	<0.60
	2003-1	3.72	2.33	0.82	0.42
	2003-2	1.90	1.46	0.40	0.35
	2003-3	1.08	1.66	0.19	0.36
	2004-1	4.43	2.79	1.15	0.75
	2004-2	2.27	2.04	0.63	0.68
	2004-3	1.40	1.38	0.37	0.40
	2005-1	3.94	2.41	1.10	0.53
	2005-2	1.41	2.44	0.38	0.69
	2005-3	2.62	2.13	0.68	0.51
	2006-1	4.88	3.06	0.95	0.69
	2006-2	2.25	3.93	0.45	0.87
	2006-3	1.21	2.29	0.28	0.54
	2007-1	5.02	3.30	1.32	0.74
34 Flood	2007-2	3.05	2.67	0.44	0.78
	2007-3	1.75	1.64	0.64	0.53
	2008-1	4.38	2.52	1.14	0.57
	2008-2	2.70	2.19	0.68	0.48
	2008-3	1.71	1.26	0.37	0.27
	2009-1	4.06	3.35	0.97	0.59
	2009-2	2.59	2.15	0.63	0.39
	2009-3	1.82	0.63	0.46	0.17
	2009-4	0.95	0.55	0.21	0.1
	2009-5	0.56	0.33	0.08	0.04
	2009-5-7	0.35	0.31	0.05	0.04
	2009-7-9	0.36	0.93	0.05	0.09
	2009-9-11	0.52	1.11	0.10	0.17
	2009-11-13	1.06	1.26	0.11	1.31
	2009-13-15	0.61	0.96	0.10	0.53
	2010-1	4.64	3.27	1.05	0.58
	2010-2	2.83	2.61	0.57	0.56
	2010-3	1.96	1.69	0.39	0.42
	2010-4	0.87	0.56	0.13	0.17
	2010-5	0.59	0.52	0.09	0.11
	2010-5-7	0.44	0.52	0.09	0.09
	2010-3-7	0.47	0.81	0.03	0.12
	2010-9-11	. 1.12	0.91	0.22	0.12
	2010-9-11	0.72	1.23	0.13	0.14

 Table 3-5. Summary of Irrigation Soil Analyses, 2000-2010

	1	Uranium	(mg/kg)	Selenium	(mg/kg)
Section	Yearly Data	Treated Area	Background	Treated Area	Background
	2004-1	1.78	1.56	0.56	0.47
	2004-2	1.67	1.30	0.47	0.39
	2004-3	1.68	1.33	0.49	0.42
	2005-1	1.35	1.12	0.31	0.25
	2005-2	1.14	0.92	0.24	0.20
	2005-3	1.00	0.90	0.20	0.19
	2006-1	1.76	1.62	0.41	0.21
	2006-2	1.24	1.55	0.26	0.56
	2006-3	1.62	1.05	0.21	0.35
	2007-1	1.69	1.79	0.45	0.38
	2007-2	1.55	1.29	0.40	0.31
	2007-3	1.51	1.24	0.40	0.35
	2008-1	1.70	1.44	0.43	0.32
	2008-2	1.53	1.18	0.39	0.32
	2008-3	0.96	0.97	0.23	0.25
33 Flood	2009-1	1.17	1.22	0.1	0.23
5511664	2009-2	1.17	1.6	0.09	0.29
	2009-3	0.67	0.61	0.08	0.1
	2009-4	0.38	0.87	<0.05	0.12
	2009-5	0.33	0.46	<0.05	0.06
	2009-5-7	0.35	0.42	<0.05	0.05
	2009-7-9	0.27	0.35	<0.05	<0.05
	2009-9-11	0.52	0.44	0.06	0.07
	2010-1	1.84 ⁾	1.42	0.36	0.27
	2010-2	1.96	1.46	0.41	0.27 ·
	2010-3	1.76	0.86	0.41	0.17
	2010-4	0.32	0.94	<0.05	0.16
	2010-5	0.40	0.58	<0.05	<0.05
	2010-5-7	0.20	0.52	<0.05	<0.05
	2010-7-9	0.19	0.33	<0.05	<0.05
	2010-9-11	0.23	0.27	<0.05	<0.05
· · · · · · · · · · · · · · · · · · ·	2010-11-13	0.27	0.65	<0.05	0.07

Table 3-5. Summary of Irrigation Soil Analyses, 2000-2010 (continued)

Section	Yearly Data 2002-1 2002-2 2002-3 2003-1	Treated Area 2.99 1.47	Background 2.99	Treated Area <0.60	Background
	2002-2 2002-3 2003-1	1.47	2.99	<0.60	
	2002-3 2003-1			~0.00	<0.60
	2003-1		1.62	<0.60	<0.60
		0.74	1.45	<0.60	<0.60
		0.81	0.51	0.18	0.15
	2003-2	0.70	0.61	0.16	0.10
1	2003-3	0.57	0.53	0.13	0.15
	2004-1	0.89	0.88	0.37	0.22
	2004-2	0.80	0.77	0.23	0.22
	2004-3	0.70	0.81	0.23	0.19
	2005-1	0.68	0.47	0.17	0.12
	2005-2	0.74	0.47	0.15	0.07
	2005-3	0.58	0.55	0.12	0.07
	2006-1	1.11	0.62	0.16	0.10
	2006-2	1.14	0.51	0.09	<0.05
	2006-3	1.06	0.58	0.08	0.06
	2007-1	1.14	0.78	0.47	0.23
	2007-2	1.01	0.91	- 0.34	0.24
	2007-3	. 0.92	0.80	0.25	0.25
	2008-1	1.17	0.59	0.39	0.15
	2008-2	1.01	0.46	0.24	0.15
	2008-3	1.01	0.52	0.25	0.15
28 Center Pivot	2009-1	1.62	1.11	0.41	0.16
	2009-2	1.12	0.57	0.19	0.1
	2009-3	1.24	0.56	0.20	0.11
	2009-4	0.78	0.52	0.10	0.07
	2009-5	0.83	0.45	0.12	0.06
	2009-5-7	0.71	0.62	0.08	0.08
	2009-7-9	0.76	0.79	0.10	0.08
	2009-9-11	0.47	0.52	0.08	0.09
	2009-11-13	0.53	0.97	0.12	0.12
	2009-13-15	1.02	0.6	0.28	0.08
	2009-15-17	0.41	0.84	0.20	0.1
	2010-1	1.37	0.65	0.27	0.16
	2010-2	1.24	0.40	0.2	0.13
	2010-2	1.34	0.45	0.23	0.13
	2010-3	1.03	0.39	0.15	0.09
	2010-5	0.84	0.36	0.14	0.07
	2010-5-7	0.71	0.43	0.13	0.08
	2010-3-7	0.61	0.43	0.09	0.08
	2010-7-9	0.67	0.44	0.16	0.09
	2010-9-11 2010-11-13	0.64	0.65	0.15	0.09
		0.80	0.68	0.15	0.12
	2010-13-15 2010-15-17	0.80	0.68	0.24	0.13

Table 3-5. Summary of Irrigation Soil Analyses, 2000-2010 (continued)

	T	Uranium	(ma/ka)	Selenium	
Section	Yearly Data	Treated Area	Background	Treated Area	Background
	1999 AVG:		0.61	Treated Area	0.12
	2000-1 AVG:	0.93	1.14	0.37	0.20
	2000-1 AVG: 2000-2 AVG:	0.81	1.14	0.45	0.20
		•		0.45	
	2000-3 AVG	1.03	0.08		
	2001-1	0.94	0.98	0.30	0.10
	2001-2	0.60	0.76	0.30	0.20
4	2001-3	0.54	0.83	0.10	0.30
	2002-1	0.98	0.85	<0.60	<0.60
	2002-2	0.89	0.59	<0.60	<0.60
	2002-3	0.68	0.66	<0.60	<0.60
	2003-1	1.36	0.78	0.28	0.12
	2003-2	1.14	0.52	0.19	0.12
	2003-3	1.00 (0.67	0.18	0.12
	2004-1	1.78	0.88	0.45	0.27
	2004-2	1.52	0.79	0.39	0.24
	2004-3	1.15	0.81	0.38	0.26
	2005-1	1.45	0.78	0.31	0.18
	2005-2	1.15	0.69	0.21	0.15
	2005-3	1.00	0.79	0.30	0.15
	2006-1	1.87	. 0.88	0.36	0.18
	2006-2	1.62	0.88	0.15	0.16
•	2006-3	1.05	1.09	0.14	0.15
	2007-1	1.67	0.89	0.44	0.39
	2007-2	1.34	0.89	0.30	0.44
	2007-3	1.30	0.86	0.39	0.27
33 Center Pivot	2008-1	1.41	0.72	0.41	0.21
	2008-2	1.37	0.61	0.35	0.23
	2008-2	1.37	0.72	0.33	0.20
	2008-3	2.03	1.02	0.41	0.19
1	2009-2	1.84	0.73	0.29	0.15
	2009-2	1.52	0.82	0.28	0.13
	2009-3	1.32	1.01	0.27	0.15
	2009-4 2009-5		0.9	0.27	0.12
	2009-5	0.95	0.52	0.20	0.08
			0.52	0.20	0.09
	2009-7-9	0.85	0.8	0.22	0.05
	2009-9-11	0.93			
	2009-11-13	0.96	0.56	0.12	< 0.05
	2009-13-15	0.80	0.68	0.14	0.10
	2009-15-17	0.83	0.99	0.19	0.14
	2010-1	1.87	1	• 0.35	0.17
	2010-2	2.16	0.74	0.25	0.14
	2010-3	1.95	0.86	0.24	0.19
	2010-4	1.52	1.03	0.26	0.18
	2010-5	1.79	0.94	0.33	0.17
	2010-5-7	0.89	0.68	0.16	0.11
	2010-7-9	0.67	0.99	0.10	0.14
	2010-9-11	0.67	0.99	0.10	0.11
	2010-11-13	0.56	0.56	0.10	0.06
	2010-13-15	0.61	0.42	0.10	0.06
	2010-15-17	0.84	0.45	0.12	0.09

Table 3-5. Summary of Irrigation Soil Analyses, 2000-2010 (continued)

Notes: 2000 Sample: 1 = 0 - 6 inches, 2 = 6 - 18 inches and 3 = 18 - 36 inches 2001 through 2008 Sample: 1 = 0 - 1 ft, 2 = 1 - 2 ft and 3 = 2 - 3 ft

Grants Reclamation Project Evaluation of Years 2000-2010 Irrigation with Alluvial Ground Water

		Ura	anium (mg/kg)	>,	Sel	Selenium (mg/kg)				
Section	Yearly Data	Treated Area	Background	Gain	Treated Area	Background	Gain			
	1999 AVG:		2.44			0.44				
	2000-1 AVG:	3.35			0.68					
	2000-2 AVG:	2.22			0.37					
	2000-3 AVG	1.62			0.30					
	2001-1	2.72	2.47		0.50	0.30				
	2001-2	1.88	1.92		0.40	0.20				
	2001-3	1.15	0.79		0.30	0.20				
	2002-1	0.69	0.45		<0.60	<0.60				
	2002-2	0.46	0.53		<0.60	<0.60				
	2002-3	0.42	0.40		<0.60	<0.60				
	2003-1	3.72	2.33		0.82	0.42				
	2003-2	1.90	1.46		0.40	0.35				
	2003-3	1.08	1.66		0.19	0.36				
	2003-3	4.43	2.79		1.15	0.75				
	2004-1	2.27	2.04		0.63	0.68				
	2004-2	1.40	1.38		0.37	0.40				
	2004-3	3.94	2.41		1.10	0.40				
1	2005-2	3.94 1.41	2.41		0.38	0.69				
					1					
	2005-3	2.62	2.13		0.68	0.51				
	2006-1	4.88	3.06		0.95	0.69				
	2006-2	2.25	3.93		0.45	0.87				
	2006-3	1.21	2.29		0.28	0.54				
	2007-1	5.02	3.30		1.32	0.74				
34 Flood	2007-2	3.05	2.67		0.44	0.78				
	2007-3	1.75	1.64		0.64	0.53				
	2008-1	4.38	2.52		1.14	0.57				
	2008-2	2.70	2.19		0.68	0.48				
	2008-3	1.71	1.26		0.37	0.27				
	2009-1	4.06	1.98		0.97	0.35				
	2009-2	2.59	1.5		0.63	0.28				
	2009-3	1.82	1.16		0.46	0.28				
	2009-4	0.95	0.55		0.21	0.1				
	2009-5	0.56	0.33		0.08	<0.05				
	2009-5-7	0.35	0.31		0.05	<0.05				
	2009-7-9	0.36	0.93		0.05	0.09				
	2009-9-11	0.52	1.11		0.10	0.17				
	2009-11-13	1.06	1.26		0.11	1.31				
	2009-13-15	0.61	0.96		0.10	0.53				
	2010-1	4.64	1.35	3.29	1.05	0.35	0.70			
	2010-2	2.83	1.54	1.29	0.57	0.29	0.28			
	2010-3	1.96	1.12	0.84	0.39	0.26	*-0.03			
	2010-3	0.87	0.76	0.11	0.13	0.15	*-0.04			
	2010-4	0.59	0.64	*-0.05	0.09	0.12	*-0.02			
		0.39		*-0.03 *-0.08	0.09	0.12	0.02			
	2010-5-7		0.55				*-0.05			
	2010-7-9	0.47	0.56	*-0.34	0.07	0.11				
	2010-9-11	1.12	0.68	*0.44	0.22	0.12	*0.1			
	2010-11-13	0.72	1.12	*-0.51	0.13	0.42	*-0.01			

Table 3-6. Treated, Background and Gain in Soil Concentrations

NOTE: *ONLY POSITIVE GAINS IN UPPER 7 FEET WERE USED

		Ur	anium (mg/kg)		Sel	enium (mg/kg)	
Section	Yearly Data	Treated Area	Background	Gain	Treated Area	Background	Gain
	2004-1	1.78	1.56		0.56	0.47	
	2004-2	1.67	1.30		0.47	0.39	
	2004-3	1.68	1.33		0.49	0.42	
	2005-1	1.35	1.12		0.31	0.25	
	2005-2	1.14	0.92		0.24	0.20	
	2005-3	1.00	0.90		0.20	0.19	1
	2006-1	1.76	1.62		0.41	0.21	
	2006-2	1.24	1.55		0.26	0.56	
	2006-3	1.62	1.05		0.21	0.35	
	2007-1	1.69	1.79		0.45	0.38	
	2007-2	1.55	1.29		0.40	0.31	
	2007-3	1.51	1.24		0.40	0.35	
	2008-1	1.70	1.44		0.43	0.32	
	2008-2	1.53	1.18		0.39	0.32	
	2008-3	0.96	0.97		0.23	0.25	
	2009-1	1.17	1.22		0.10	0.23	
33 Flood	2009-2	1.17	1.60		0.09	0.29	
	2009-3	0.67	0.61		0.08	0.10	
	2009-4	0.38	0.87		<0.05	0.12	
	2009-5	0.33	0.46		<0.05	0.06	
	2009-5-7	0.35	0.42		<0.05	0.05	
	2009-7-9	0.27	0.35		<0.05	< 0.05	
	2009-9-11	0.52	0.44		0.06	0.07	
	2010-1	1.84	1.35	0.49	0.36	0.35	0.01
	2010-2	1.96	1.54	0.42	0.41	0.29	0.12
	2010-3	1.76	1.12	0.64	0.41	0.26	0.15
	2010-4	0.32	0.76	*-0.62	<0.05	0.15	*-0.14
	2010-5	0.40	0.64	*-0.18	<0.05	0.12	0
	2010-5-7	0.20	0.55	*-0.32	<0.05	0.06	0
	2010-7-9	0.19	0.56	*-0.14	< 0.05	0.11	0.00
	2010-9-11	0.23	0.68	*-0.04	<0.05	0.12	0.00
	2010-11-13	0.27	1.12	*-0.38	<0.05	0.42	*-0.05
		· · · · ·	SUM	1.55		SUM	0.28

Table 3-6. Treated, Background and Gain in Soil Concentrations (continued)

٩

NOTE: * DID NOT USE IN SUM

Grants Reclamation Project Evaluation of Years 2000-2010 Irrigation with Alluvial Ground Water

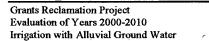

		Ura	anium (mg/kg)	•	Sel	enium (mg/kg)	
Section	Yearly Data	Treated Area	Background	Gain	Treated Area	Background	Gain
	2002-1	2.99	2.99		< 0.60	<0.60	
	2002-2	1.47	1.62		<0.60	<0.60	
	2002-3	0.74	1.45		<0.60	<0.60	
	2003-1	0.81	0.51		0.18	0.15	
	2003-2	0,70	0.61		0.16	0.10	
	2003-3	0.57	0.53		0.13	0.15	
	2004-1	0.89	0.88		0.37	0.22	
	2004-2	0.80	0.77		0.23	0.22	
	2004-3	0.70	0.81		0.23	0.19	
	2005-1	0.68	0.47		0.17	0.12	
	2005-2	0.74	0.47		0.15	0.07	
	2005-3	0.58	0.55		0.12	0.07	
	2006-1	1.11	0.62		0.16	0.10	
	2006-2	1.14	0.51		0.09	< 0.05	
	2006-3	1.06	0.58		0.08	0.06	
	2007-1	1.14	0.78		0.47	0.23	
	2007-2	1.01	0.91		0.34	0.24	
	2007-3	0.92	0.80		0.25	0.25	
	2008-1	1.17	0.59		0.39	0.15	
	2008-2	1.01	0.46		0.24	0.15	
	2008-3	1.01	0.52		0.25	0.15	
28 Center Pivot	2009-1	1.62	0.59		0.41	0.13	
	2009-2	1.12	0.53		0.19	0.11	
	2009-3	1.24	0.52		0.20	0.1	
	2009-4	0.78	0.81		0.10	0.1	
	2009-5	0.83	0.85		0.12	0.09	
	2009-5-7	0.71	0.58		0.08	0.07	
	2009-7-9	0.76	0.66		0.10	0.1	
	2009-9-11	0.47	0.41		0.08	0.07	
	2009-11-13	0.53	0.39		0.12	0.1	
	2009-13-15	1.02	0.12		0.28	0.57	
	2009-15-17	0.41	0.22		0.20	0.06	
	2010-1	1.37	0.60	0.77	0.27	0.13	0.14
	2010-1	1.24	0.52	0.72	0.2	0.11	0.09
	2010-2	1.34	0.51	0.83	0.23	0:10	0.13
	2010-4	1.03	0.46	0.57	0.15	0.08	0.07
·	2010-5	0.84	0.41	0.43	0.14	0.06	0.08
	2010-5-7	0.71	0.53	0.18	0.14	0.08	0.05
ļ	2010-7-9	0.61	0.62	-0.01	0.09	0.09	0.00
	2010-9-11	0.67	0.50	0.17	0.16	0.09	0.07
r.	2010-11-13	0.64	0.81	-0.17	0.15	0.12	0.03
	2010-11-13	0.80	0.64	0.16	0.24	0.11	0.03
ł	2010-15-17	0.53	0.69	-0.16	0.12	0.10	0.02
l	2010-13-17	0.55	SUM	3.49	0.14	SUM	0.81

Table 3-6. Treated, Background and Gain in Soil Concentrations (continued)

• *

NOTE: * DID NOT USE IN SUM

· •

		Ur	anium (mg/kg)		Sel	enium (mg/kg)	
Section	Yearly Data	Treated Area	Background	Gain	Treated Area	Background	Gain
	1999 AVG:		0.68			0.09	
	2000-1 AVG:	0.93	0.72		0.37	0.10	
	2000-2 AVG:	0.81	0.64		0.45	0.06	
	2000-3 AVG	1.03	0.60		0.25	0.04	
	2001-1	0.94	0.74		0.30	0.10	
	2001-2	0.60	0.66		0.30	0.08	
	2001-3	0.54	0.63		0.10	0.08	
	2002-1	0.98	0.75		<0.60	0.10	
	2002-2	0.89	0.65		<0.60	0.08	
	2002-3	0.68	0.63		<0.60	0.08	
)	2003-1	1.36	0.75		0.28	0.10	
	2003-2	1.14	0.64		0.19	0.09	
	2003-3	1.00	0.64		0.18	0.08	
	2004-1	1.78	0.76		0.45	0.11	
	2004-2	1.52	0.65		0.39	0.11	
	2004-3	1.15	0.66		0.38	0.10	
	2005-1	1.45	0.76		0.31	0.12	
	2005-2	1.15	0.66		0.21	0.11	
	2005-3	1.00	0.67		0.30	0.11	
	2006-1	1.87	0.77		0.36	0.12	
	2006-2	1.62	0.68		0.15	0.12	
	2006-3	1.05	0.70		0.14	0.11	
	2007-1	1.67	0.78		0.44	0.14	
	2007-2	1.34	0.69		0.30	0.15	
	2007-3	1.30	0.71		0.39	0.12	
3 Center Pivot	2008-1	1.41	0.77		0.41	0.14	
	2008-2	1.37	0.69		0.35	0.15	
	2008-3	1.27	0.72		0.33	0.13	
	2009-1	2.03	0.79		0.41	0.14	
	2009-2	1.84	0.69		0.29	0.15	
	2009-3	1.52	0.72		0.28	0.13	
	2009-4	1.32	0.60		0.27	0.06	
	2009-5	1.20	0.75		0.27	0.07	
	2009-5-7	0.95	0.52		0.20	0.08	
	2009-7-9	0.85	0.80		0.22	0.09	
	2009-9-11	0.93	0.72		0.19	0.05	
	2009-11-13	0.96	0.76		0.12	<0.05	
	2009-13-15	0.80	0.68		0.14	0.10	
	2009-15-17	0.83	0.99		0.19	0.14	
	2010-1	1.87	0.8	1.07	0.35	0.15	0.20
	2010-2	2.16	0.69	1.47	0.25	0.15	0.10
	2010-3	1.95	0.73	1.22	0.24	0.13	0.11
	2010-4	1.52	0.65	0.87	0.26	0.08	0.18
	2010-5	1.79	0.81	0.98	0.33	0.11	0.22
	2010-5-7	0.89	0.60	0.29	0.16	0.10	0.06
	2010-7-9	0.67	0.90	*-0.23	0.10	0.12	*-0.02
	2010-7-9	0.67	0.86	*-0.19	0.10	0.08	0.02
[2010-11-13	0.56	0.66	*-0.1	0.10	0.06	0.02
	2010-13-15	0.61	0.55	0.06	0.10	0.08	0.02
	2010-13-13	0.84	0.72	0.00	0.10	0.12	0.02
	2010-13-17	0.04	SUM	6.08		SUM	0.95

Table 3-6. Treated, Background and Gain in Soil Concentrations (continued)

NOTE: * DID NOT USE IN SUM

į

Grants Reclamation Project Evaluation of Years 2000-2010 Irrigation with Alluvial Ground Water

3.3.4 Comparison of Applied and Measured Soil Concentrations

3.3.4.1 Uranium

It was assumed when planning the irrigation program that all the uranium would be deposited in the upper 1-ft of soil (ERG and HYDRO, 1999). It was estimated that water containing 0.44 mg/l of uranium applied at 3 ac-ft/year would conservatively increase the concentration of uranium in the upper 1-ft of soil by 0.92 mg/kg per year. The actual average uranium concentrations in the applied water have always been lower than 0.44 mg/l. Actual irrigation application rates have range from significantly below to slightly above 3 ac-ft/yr.

The predictions of uranium accumulation in the soil have been superseded by actual measurements of uranium concentration in the irrigated areas. The measurements indicate that the applied uranium occurs beyond the upper three feet of the soil profile.

It is reasonable to adopt a cumulative mass balance approach to track the fate of the applied uranium since the beginning of the irrigation program for each area. Actual applied uranium concentrations, application rates of irrigation water, and calculated increases in soil are presented in Tables 3-7 and 3-8. The sums of measured concentrations minus background concentrations (gain) are from Table 3-6. Only the upper 7 feet was summed for the Section 34 clay soils to obtain the gain while the entire 17 feet of the Section 28 and 33 center pivot soils were used.

The calculated data in Tables 3-7 and 3-8 are determined as follows:

a = cumulative masses of uranium applied per irrigation area, $mg = \sum_{2000-2010} [(average concentration in water, mg/l) (volume of water in ac-ft) (28.3 l/ft³) (43,560 ft²/ac)]$

b = mass of soil per irrigation area, kg = (footage of soil used)(no. of acres)(90 lbs/ft³) (454 g/lb)(43,560 ft²/ac)(10⁻³kg/g)

c = gain in uranium concentration, mg/kg = (sum of measured concentrations of uranium minus mean background concentrations)

d = measured mass of uranium, mg = (b)(c)/footage of soil used

e = ratio of measured to applied masses of uranium, unitless = d/a

The assumptions are consistent with those reported previously (ERG and HYDRO, 1999). For example, typical soil density is assumed to be 90 pounds per cubic foot (lb/ft^3).

The above-background concentrations (gain) of uranium in each section, in mg/kg are tabulated in Table 3-6 and are: Section 33 Center Pivot (6.08); Section 33 Flood (1.55); Section 34 (5.53); and Section 28 (3.83). Based on this series of calculations, the ratios of measured to applied masses of uranium in the total footage of soil are: Sections 33 Pivot (1.44), 33 Flood (0.76), 34 (1.14), and 28 (1.02).

In Section 33 Pivot and Section 28, 144 and 102 percent of the applied uranium is accounted for, respectively, indicating that all of the applied uranium is likely still in the soil profile. Gains in the upper 17 feet of soil were used in calculating these percentages. The presence of more applied uranium deeper in the soil profile in these fields may be due to the sandy loam soils, which have less adsorptive capacity than clay soils. On the other hand, most of the uranium applied to Section 34 has been retained in the upper seven feet and this is attributed to the presence of clay soils. Only the results in the upper seven feet are thought to indicate some gain in the treated soil in Section 34. The measured concentrations in Section 33 Flood are thought to not produce a reliable retention value.

Accumulating uranium concentrations for each of the upper three layers in each irrigation area are shown in Figures 3-8 (Sections 33 and 34 Flood), 3-12 (Section 28 Center Pivot) and 3-16 (Section 33 Center Pivot). Each figure is subdivided into upper, middle, and lower intervals. The horizontal line on each figure represents the mean background concentration.

	Uranium Concentration (mg/i)a		Acreages				Volume of Irrigation Water Applied (ft)				
Year	Section 28	Sections 33/34	Section 28	Section 33 Flood	Section 33 Pivot	Section 34	Section 28 Pivot	Section 33 Flood	Section 33 Pivot	Section 34 Flood	
2000	NA	0.27	NA .	NA	150	120	NA	NA	2.29	3.1	
2001	NA	0.26	NA	NA	150	120	NA	NA	2.11	2.85	
2002	0.23	0.23	60	NA	150	120	2.2	NA	2.36	3.3	
2003	0.24	0.22	60	NA	150	120	2.57	NA .	2.62	3.34	
2004	0.27	0.26	60	24	150	120	3.04	1.26	2.85	3.23	
2005	0.35	0.27	100	24	150	120	2.38	0.84	2.67	3,13	
2006	0.35	0.29	100	NA	150	120	2.33	NA	1.94	2.61	
2007	0.36	0.28	100	NA	150	120	2.42	NA	2.86	0.98	
2008	0.36	0.24	100	24	150	120	2.76	1.93	2.75	2.69	
2009	0.39	0.24	100	24	150	120	1.85	6.13	1.43	1.53	
2010	NA	0.136	NA	NA	NA	120	NA	NA	NA	1.67	

Table 3-7. Uranium Applied in Irrigation Water

Notes:

NA = not irrigated

Table 3-8. Cumulative Buildup of Uranium in Soils

	Section							
2010	28 Pivot	33 Flood	33 Pivot	34 Flood				
Applied Mass of Uranium (mg), a	665,802,264	73,633,517	1,130,664,138	1,039,638,519				
Sum of Measured Concentrations Minus Background (mg/kg), c	3.83	1.55	6.08	5.53				
Mass of Soil (kg), b	3,025,764,720	469,883,462	4,538,647,080	1,495,083,744				
Measured Mass of Uranium (mg), d	681,686,993	56,024,567	1,623,233,779	1,181,116,158				
Ratio of Measured to Applied Masses, e	1.02	0.76	1.44	1.14				

Grants Reclamation Project Evaluation of Years 2000-2010 Irrigation with Alluvial Ground Water

3.3.4.2 Selenium

The applied and measured selenium concentrations in the soil were calculated in a manner similar to that for uranium, and are presented in Tables 3-9 and 3-10.

The above-background concentrations of selenium in each section for the soil layers, in mg/kg, are: Section 33 Center Pivot (0.95); Section 33 Flood 0.28); Section 34 (1.01); and Section 28 (0.81). Based on the same series of calculations shown above in Section 3.3.4.1, the ratios of measured to applied masses of selenium in the soil are: Sections 33 Pivot (0.74), 33 Flood (0.71), 34 (0.67), and 28 (0.94).

In the Section 28 Pivot nearly all the applied selenium is accounted for. The 2010 selenium results indicate that some of the applied selenium may have moved beyond the 17 foot interval of soil.

Actual selenium measurements are also shown in Figures 3-10 (Sections 33 and 34 Flood), 3-14 (Section 28 Center Pivot) and 3-18 (Section 33 Center Pivot). Each figure is subdivided into upper, middle, and lower intervals. The horizontal lines on each figure represent the mean background concentration of each layer.

There are indications that selenium, when retained, may partly be in a dissolved phase, rather than being completely absorbed in soils. A review of Figures 3-11 through 3-13 indicates that some retention of selenium appears to be occurring. Only 32, 52 and 48 percent of the chloride concentration applied was measured in the soil in 2009 for Sections 28, 33 and 34, respectively. These percentages are much less than those observed for selenium, showing that a very large percentage of the chloride added to the Section 28, 33 and 34 irrigation areas was not retained in the soil interval. The higher percentage for selenium indicates some retention of this constituent in the soil profile.

	Selenium Concentration (mg/l)a		Acreages				Volume of Irrigation Water Applied (ft)				
Year	Section 28	Sections 33/34	Section 28	Section 33 Flood	Section 33 Pivot	Section 34	Section 28 Pivot	Section 33 Flood	Section 33 Pivot	Section 34 Flood	
2000	NA	0.12	NA	NA	150	120	NA	NA	2.29	3.1	
2001	NA	0.1	NA	NA	150	120	NA	NA	2.11	2.85	
2002	0.08	0.1	60	NA	150	120	2.2	NA	2.36	3.3	
2003	0.08	0.08	60	NA	150	120	2.57	NA	2.62	3.34	
2004	0.07	0.09	60	24	150	120	3.04	1.26	2.85	3.23	
2005	0.08	0.06	100	24	150	120	2.38	0.84	2.67	3.13	
2006	0.08	0.07	100	NA	150	120	2.33	NA	1.94	2.61	
2007	0.08	0.06	100	NA	150	120	2.42	NA	2.86	0.98	
2008	0.07	0.05	100	24	150	120	2.76	1.93	2.75	2.69	
2009	0.07	0.05	100	24	150	120	1.85	6.13	1.43	1.53	
2010	NA	0.045	NA	NA	NA	120	NA	NA	NA	1.67	

Table 3-9. Selenium Applied in Irrigation Water

Notes: a. 2003 concentration of selenium is assumed. The value was reported as <0.005 mg/l, which is assumed to be a laboratory artifact.

NA = not irrigated

Grants Reclamation Project Evaluation of Years 2000-2010 Irrigation with Alluvial Ground Water

		Section						
2010	28 Pivot	33 Flood	33 Pivot	34 Flood				
Applied Mass of Selenium (mg), a	154,061,449	16,769,318	344,768,797	323,256,112				
Sum of Measured Concentrations Minus Background (mg/kg), c	0.81	0.28	0.95	1.01				
Mass of Soil (kg), b	3,025,764,720	555,316,819	4,538,647,080	1,495,083,744				
Measured Mass of Selenium (mg), d	144,168,790	11,960,670	253,630,278	215,719,226				
Ratio of Measured to Applied Masses, e	0.94	0.71	0.74	0.67				

Table 3-10. Cumulative Buildup of Selenium in Soils

3.3.5 Summary of Soil Concentration Comparison

The data collected to date indicate that soil attenuation of uranium is of the same order of magnitude as that predicted by the pre-operational model.

The soil properties and method of irrigation differed for the Section 33 and 28 sites and the Section 33 flood and Section 34 flood areas. The irrigation water for the Section 33 and 28 sites was applied using center pivot systems while Section 34 was flood irrigated. An additional 24 acres of flood irrigation area was added in eastern Section 33 at the beginning of the 2004 season. The small incremental changes in concentrations in uranium and selenium along with the natural variability in both the center pivot and flood irrigation areas make it difficult to accurately determine the amount of increase in concentrations in the soil from year to year. The 2001 and 2002 data indicate that the soil concentrations were not continuing to increase with time for either type of irrigation among the three irrigation sites. The 2003 and 2004 data show some increase in Sections 33 and 34 while concentrations slightly increased in 2004 in Section 28. A slight decrease was observed at all three sites in 2005. In 2006, an increase was observed in all sites except Section 28 and 33, where selenium decreased slightly in the two lower intervals. Concentrations generally increased or were fairly steady in 2007, followed by a general decrease in 2008. Uranium concentrations in 2009 increased in the Section 33 and 28 soils. The upper foot uranium concentration in the two center pivot soils decreased in 2010, possibly due to the lack of irrigation in 2010. Future sampling may further diminish the effects of analytical and natural variability and more clearly reveal trends in the accumulation of uranium and selenium.

The 2010 results indicate that uranium is being retained in upper seven feet with a small amount of retention in some intervals down to the top of the basalt in Sections 28 and 33, whereas uranium is only being retained in the upper four feet interval in the Section 34 flood area. The 2010 results also indicate selenium is being retained to similar depths but these results need to be confirmed with future measurements.

In 2010, the measured uranium soil concentrations in the irrigated areas ranged from 0.19 to 4.64 mg/kg. The laboratory reported uranium MDL and PQL in 2003 and 2004 were 0.03 and 0.1

mg/kg, respectively and 0.05 and 0.3 mg/kg in 2005 to 2009. The selenium concentrations in the irrigated areas for 2009 ranged from less than 0.05 to 0.97 mg/kg. The laboratory reported selenium MDL and PQL for the soil analysis was 0.05 and 0.3 mg/kg.

The mass balance approach to tracking uranium and selenium in soil indicates that irrigation can continue without concern for excessive accumulation of these constituents.

3.4 Observed Soil Moisture Concentrations

Lysimeters have been installed in the irrigation field areas to collect soil moisture samples and enable the measurement of the soil moisture constituent concentrations. The lysimeters were installed in augured holes at the desired depths. The porous cups were sand packed with a very fine flour sand to enhance their ability to pull moisture into the cup. A vacuum is placed on the lysimeter, which causes the soil moisture water to enter the cup. The soil moisture samples are then collected by purging the lysimeter cup. Lysimeters have been placed in each of the irrigation areas. Table 3-11 presents the completion information for the eight lysimeters in Section 33. Table 3-12 presents the lithology of the alluvium at each lysimeter. The sand pack interval is given in the fourth column of Table 3-11 while the depth to the top of the basalt is noted in the third column. A bentonite seal was placed above the sand pack that exists around the lysimeter to prevent soil moisture from readily moving down the annulus. Tables 3-13 and 3-14 present the soil moisture concentration data collected from the lysimeters.

3.4.1 Section 34

Four lysimeters have been placed in the clay soils in Section 34 and 33 flood areas. Lysimeters LY34-1, LY34-2 and LY34-3 are in the Section 34 flood while LY34-4 is in the Section 33 flood area. Figure 3-1 shows the location of these lysimeters. Three lysimeters were installed in the Section 34 area and were completed at intervals 8-10 feet below the land surface. The completion interval for the 34-4 lysimeter was 10-11 feet (see Table 3-11 for completion details). The Section 34 lysimeters were installed in October 2009. LY-34-1 produced a sample in October and December of 2009 and then continual from February of 2010. Lysimeters LY34-2 and LY34-3 have produced samples for each month. LY34-4 produced a sample for each month until February of 2010 and then again in August and September of 2010.

The soil moisture concentration time plot for lysimeter LY34-1 is presented in Figures 3-20 and 3-21. These plots show that the TDS, sulfate, uranium and selenium have been typically 3500, 1500, 0.33 and 0.06 mg/l respectively in 2010. The higher values in October and November of 2010 need additional samples before they are given much significant. Figure 3-22 presents TDS, sulfate and chloride concentrations for lysimeter LY34-2. These concentrations generally show an increasing trend with time and a TDS and a sulfate of 4400 and 1900 mg/l are thought to best represent the 2010 values. The uranium, selenium and molybdenum concentrations for lysimeter LY34-2 are presented in Figure 3-23 which shows and increasing trend for uranium and selenium but a decreasing trend for molybdenum. This data indicates that a uranium and selenium of 0.22 and 0.06 are representative of the 2010 values for LY34-2. The results from lysimeters LY34-3 are fairly similar (see Figures 3-24 and 3-25). The TDS, sulfate, chloride, uranium and selenium concentrations of 2800, 1200, 0.3 and 0.08 mg/l are representative of the

2010 values for LY34-3. Figures 3-25 and 3-26 present the concentration plots for lysimeter LY34-4 which is located in the Section 33 Flood Area. This data shows increasing trends for TDS, sulfate, chloride and selenium concentrations and relatively steady concentrations for uranium and molybdenum except for a higher molybdenum in September of 2010.

	LYSIMETER	DEPTH TO TOP OF	INTERVAL OF	INTERVAL OF
LYSIMETER	INTERVAL	BASALT	SAND PACK	BENTONITE SEAI
NUMBER	(FT-LSD)	(FT-LSD)	(FT-LSD)	(FT-LSD)
		SECTION 33		
LYI	16-17	17	15-17	0-15
LY2	15-16	16	14-16	0-14
LY3	6-7	7	5-7	0-5
LY3M	30-31	7	29-31	0-29
LY4	14-15	15	13-15	0-13
LY4MU	24-25	14	24-25	0-24
LY4ML	44-45	14	44-45	25-44
LY5	3-4	4	3-4	0-3
		SECTION 28		
LY28-1	15-16	16	14-16	0-14
LY28-1M	20-21	16	19-21	0-19
LY28-2	6-7	7	5-7	0-5
LY28-2M	20-21	14	19-21	0-19
LY28-3	9-10	10	8-10	0-8
<u></u>	SE	CTION 34 AND 33 FLOO)D	
LY34-1	8-9	DNE	7-9	0-7
LY34-2	10-11	DNE	9-11	0-9
LY34-3	10-11	DNE	9-11	0-9
LY34-4	10-11	26	8-10	0-8

NOTE: DNE= DOES NOT EXIST AT THIS LOCATION

SECTION 33 SOUTH PIVOT							
LY33-1							
SAMPLE DEPTH	SOIL TYPE	MOISTURE CONT.	COLOR				
0-1	SAND/SILT/CLAY	WET	BROWN				
1-2.5	SAND/SILT	WET	BROWN				
2.5-4	SAND/CLAY	VERY MOIST	RED				
4-5	SAND/CLAY	VERY MOIST	RED				
5-7	SAND/CLAY	VERY MOIST	RED				
7-9	SAND/CLAY	VERY MOIST	RED				
9-11	SAND/CLAY	VERY MOIST	RED				
11-12	SAND/CLAY	VERY MOIST	RED				
12-12.8	SAND/CLAY	VERY MOIST	RED				
12.8-13.8	CLAY	VERY MOIST	BROWN				
13.8	BASALT						

SECTION 33 SOUTH PIVOT

LY33-2			
SAMPLE DEPTH	SOIL TYPE	MOISTURE CONT.	COLOR
0-2	VERY FINE SAND/SILT/CLAY	MOIST	RED
2-4	VERY FINE SAND/SILT/CLAY	MOIST	RED
4-5.5	VERY FINE SAND	MOIST	RED
5.5-6	VERY FINE SAND	MOIST	RED
6-8	VERY FINE SAND	MOIST	RED
8.10	VERY FINE SAND	MOIST	RED
10-12	VERY FINE SAND	MOIST	RED
12-14	CLAY	MOIST	RED
14-16	CLAY	MOIST	RED
16-16.5	CLAY	MOIST	RED
16.5	BASALT		

SECTION 33 SOUTH PIVOT

LY33-3/M SAMPLE DEPTH MOISTURE CONT. COLOR SOIL TYPE RED SAND/SILT DRY 0-1 RED 1-1.5 V.F. SAND MOIST RED 1.5-2 V.F. SAND MOIST RED 2-4 V.F. SAND MOIST V.F. SAND MOIST RED 4-6 6-6.6 V.F. SAND MOIST RED 6.6-35 BASALT

SECTION 33 SOUTH PIVOT							
LY33-4/M							
SAMPLE DEPTH	SOIL TYPE	MOISTURE CONT.	COLOR				
0-2	V.F. SAND	DRY	RED				
2-4	V.F. SAND	DRY	RED				
4-6	V.F. SAND	DRY	RED				
6-8	V.F. SAND	DRY	RED				
8-10	V.F. SAND	DRY	RED				
10-12	V.F. SAND	DRY	RED				
12-14	V.F. SAND	DRY	RED				
14-25	BASALT	MOIST					
25-50	BASALT						

SECTION 33 SOUTH PIVOT

LY33-5			
SAMPLE DEPTH	SOIL TYPE	MOISTURE CONT.	COLOR
0-1	CLAY	DRY	RED
1-2	CLAY	DAMP	RED
2-3	CLAY	DAMP	RED
3-3.5	CLAY	DAMP	RED
3.5	BASALT		

Grants Reclamation Project Evaluation of Years 2000-2010 Irrigation with Alluvial Ground Water

SECTION 33/34 FLOOD								
LY34-1								
SAMPLE DEPTH	SOIL TYPE	MOISTURE CONT.	COLOR					
0-1	CLAY/SAND	DAMP	BROWN					
1-2	CLAY	DAMP	BROWN					
2-3	CLAY/SAND	DAMP	BROWN					
3-4	SAND	DAMP	BLACK					
4-5	SAND/LITTLE CLAY	MOIST	GREY					
5-6	SAND	MOIST	GREY					
6-7	SAND/GRAVEL	MOIST	GREY					
7-8	CLAY/SAND	MOIST	TAN/GREY					
8-9	CLAY/SAND	MOIST	TAN/ORANGE					
9-10	SAND	MOIST	TAN/ORANGE					

SECTION 33/34 FLOOD

LY34-2			
SAMPLE DEPTH	SOIL TYPE	MOISTURE CONT.	COLOR
0-1	CLAY	MOIST	BROWN
1-2	CLAY	MOIST	BROWN
2-3	CLAY/LITTLE SAND	SOME MOISTURE	BROWN
3-4	CLAY/SAND	DRY	LIGHT BROWN
4-5	SAND	DRY	GREY/TAN
5-6	SAND	DRY	GREY
6-7	F. SAND/LITTLE CLAY	SOME MOISTURE	GREY/ORANGE
7-8	F. SAND/LITTLE CLAY	SOME MOISTURE	GREY/ORANGE
8-9	F. SAND/LITTLE CLAY	MOIST	BROWN/ORANGE
9-10	CLAY/FINE SAND	MOIST	BROWN/ORANGE
10-11	CLAY/FINE SAND	MOIST	BROWN
11-12	SAND/LITTLE CLAY	MOIST	BROWN/TAN

SECTION 33/34 FLOOD

LY34-3

SAMPLE DEPTH	SOIL TYPE	MOISTURE CONT.	COLOR
0-1	CLAY	DAMP	BROWN
1-2	CLAY	DAMP	BROWN
2-3	CLAY/SAND	DAMP	DARK BROWN
3-4	FINE SAND	MOIST	BROWN/BLACK
4-5	SAND	DAMP	BROWN/TAN
5-6	SAND	DAMP	TAN
6-7	SAND/CLAY	MOIST	TAN/ORANGE
7-8	CLAY/SAND	MOIST	GREY/ORANGE
8-9	CLAY/SAND	MOIST	BROWN/ORANGE
9-10	CLAY/SAND	MOIST	BROWN/RED
10-11	SAND/GRAVEL	MOIST	TAN/ORANGE

· ·

SECTION 33/34 FLOOD							
LY34-4							
SAMPLE DEPTH	SOIL TYPE	MOISTURE CONT.	COLOR				
0-1	CLAY	DRY	BROWN				
1-2	CLAY	DRY	BROWN				
2-3	CLAY	DRY	BROWN				
3-4	CLAY/SAND	DRY	BROWN/GREY				
4-5	SAND/CLAY	DRY	LIGHT GREY				
5-6	SAND/CLAY	DRY	LIGHT GREY				
6-7	SAND	DRY	LIGHT GREY				
7-8	SAND	DRY	LIGHT GREY				
8-9	CLAY/SAND	SOME MOISTURE	BROWN/LIGHT GREY				
9-10	CLAY/SAND	MOIST	BROWN/LIGHT GREY				
10-11	CLAY/SAND	MOIST	BROWN/LIGHT GREY				
11-12	SAND/CLAY/COARSE	SOME MOISTURE	BROWN/LIGHT GREY				
12-13	SAND/CLAY/COARSE	SOME MOISTURE	BROWN				

Ì.

	0 20 20 11		
	SECTION	28 NORTH PIVOT	х.
LY28-1 SAMPLE DEPTH			
	SOIL TYPE	MOISTURE CONT.	COLOR
0-1	SAND	MOIST	
2-3	SAND	MOIST	LIGHT BROWN
	SAND	MOIST	LIGHT BROWN
<u>3-4</u> 4-5	SAND	DAMP	LIGHT BROWN
	SAND	DAMP	LIGHT BROWN
5-6 6-7	SAND/LITTLE CLAY SAND/LITTLE CLAY	DAMP	LIGHT BROWN /ORANGE
7-8	······································	MOIST	BROWN
8-9	SAND/LITTLE CLAY	MOIST	BROWN
	SAND/CLAY	MOIST	BROWN
9-10	SAND/CLAY	MOIST	TAN
10-11		MOIST	
11-12	CLAY/LITTLE SAND	DAMP	BROWN/ORANGE
12-13	CLAY/LITTLE SAND	DAMP	BROWN/RED
13-14	CLAY/LITTLE SAND	DAMP	BROWN/TAN
14-15	CLAY	DAMP	TAN
15-15.6		DAMP	TAN
15.6	BASALT	l	
SAMPLE DEPTH	SOIL TYPE	MOISTURE CONT.	COLOR
0-1			
	SAND	MOIST	BROWN
1-2	SAND/CLAY	MOIST MOIST	BROWN BROWN
1-2 2-3	SAND/CLAY SAND/CLAY	MOIST MOIST DAMP	BROWN BROWN LIGHT BROWN
1-2 2-3 3-4	SAND/CLAY SAND/CLAY SAND/CLAY	MOIST MOIST DAMP DAMP	BROWN BROWN LIGHT BROWN BROWN /ORANGE
1-2 2-3 3-4 4-5	SAND/CLAY SAND/CLAY SAND/CLAY SAND	MOIST MOIST DAMP DAMP DAMP	BROWN BROWN LIGHT BROWN BROWN /ORANGE BROWN/RED
1-2 2-3 3-4 4-5 5-6	SAND/CLAY SAND/CLAY SAND/CLAY SAND SAND/CLAY	MOIST MOIST DAMP DAMP DAMP DAMP	BROWN BROWN LIGHT BROWN BROWN /ORANGE BROWN/RED BROWN/GREY
1-2 2-3 3-4 4-5 5-6 6-7	SAND/CLAY SAND/CLAY SAND/CLAY SAND SAND/CLAY CLAY	MOIST MOIST DAMP DAMP DAMP DAMP DAMP	BROWN BROWN LIGHT BROWN BROWN /ORANGE BROWN/RED BROWN/GREY BROWN /ORANGE
1-2 2-3 3-4 4-5 5-6 6-7 7-7.3	SAND/CLAY SAND/CLAY SAND/CLAY SAND SAND/CLAY CLAY CLAY	MOIST MOIST DAMP DAMP DAMP DAMP	BROWN BROWN LIGHT BROWN BROWN /ORANGE BROWN/RED BROWN/GREY
1-2 2-3 3-4 4-5 5-6 6-7	SAND/CLAY SAND/CLAY SAND/CLAY SAND SAND/CLAY CLAY	MOIST MOIST DAMP DAMP DAMP DAMP DAMP	BROWN BROWN LIGHT BROWN BROWN /ORANGE BROWN/RED BROWN/GREY BROWN /ORANGE
1-2 2-3 3-4 4-5 5-6 6-7 7-7.3	SAND/CLAY SAND/CLAY SAND/CLAY SAND SAND/CLAY CLAY CLAY	MOIST MOIST DAMP DAMP DAMP DAMP DAMP	BROWN BROWN LIGHT BROWN BROWN /ORANGE BROWN/RED BROWN/GREY BROWN /ORANGE
1-2 2-3 3-4 4-5 5-6 6-7 7-7.3	SAND/CLAY SAND/CLAY SAND/CLAY SAND SAND/CLAY CLAY CLAY BASALT	MOIST MOIST DAMP DAMP DAMP DAMP DAMP	BROWN BROWN LIGHT BROWN BROWN /ORANGE BROWN/RED BROWN/GREY BROWN /ORANGE
1-2 2-3 3-4 4-5 5-6 6-7 7-7.3 7.3	SAND/CLAY SAND/CLAY SAND/CLAY SAND SAND/CLAY CLAY CLAY BASALT	MOIST MOIST DAMP DAMP DAMP DAMP DAMP	BROWN BROWN LIGHT BROWN BROWN /ORANGE BROWN/RED BROWN/GREY BROWN /ORANGE
1-2 2-3 3-4 4-5 5-6 6-7 7-7.3 7.3	SAND/CLAY SAND/CLAY SAND/CLAY SAND SAND/CLAY CLAY CLAY BASALT SECTION 2	MOIST MOIST DAMP DAMP DAMP DAMP DAMP DAMP	BROWN BROWN LIGHT BROWN BROWN /ORANGE BROWN/GREY BROWN /ORANGE BROWN /ORANGE
1-2 2-3 3-4 4-5 5-6 6-7 7-7.3 7.3 LY28-3 SAMPLE DEPTH	SAND/CLAY SAND/CLAY SAND/CLAY SAND SAND/CLAY CLAY CLAY BASALT SECTION 2 SOIL TYPE	MOIST MOIST DAMP DAMP DAMP DAMP DAMP 28 NORTH PIVOT MOISTURE CONT.	BROWN BROWN LIGHT BROWN BROWN /ORANGE BROWN /ORANGE BROWN /ORANGE BROWN /ORANGE
1-2 2-3 3-4 4-5 5-6 6-7 7-7.3 7.3 LY28-3 SAMPLE DEPTH 0-1	SAND/CLAY SAND/CLAY SAND/CLAY SAND SAND/CLAY CLAY CLAY BASALT SECTION 2 SOIL TYPE F. SAND	MOIST MOIST DAMP DAMP DAMP DAMP DAMP 28 NORTH PIVOT MOISTURE CONT. MOIST	BROWN BROWN LIGHT BROWN BROWN /ORANGE BROWN/GREY BROWN /ORANGE BROWN /ORANGE COLOR LIGHT BROWN
1-2 2-3 3-4 4-5 5-6 6-7 7-7.3 7.3 LY28-3 SAMPLE DEPTH 0-1 1-2	SAND/CLAY SAND/CLAY SAND/CLAY SAND SAND/CLAY CLAY CLAY BASALT SECTION 2 SOIL TYPE F. SAND SAND	MOIST MOIST DAMP DAMP DAMP DAMP DAMP 28 NORTH PIVOT MOISTURE CONT. MOIST	BROWN BROWN LIGHT BROWN BROWN /ORANGE BROWN/GREY BROWN /ORANGE BROWN /ORANGE COLOR LIGHT BROWN BROWN
1-2 2-3 3-4 4-5 5-6 6-7 7-7.3 7.3 LY28-3 SAMPLE DEPTH 0-1 1-2 2-3	SAND/CLAY SAND/CLAY SAND/CLAY SAND SAND/CLAY CLAY CLAY BASALT SECTION 2 SOIL TYPE F. SAND SAND SAND/CLAY	MOIST MOIST DAMP DAMP DAMP DAMP DAMP 28 NORTH PIVOT MOISTURE CONT. MOIST MOIST MOIST	BROWN BROWN LIGHT BROWN BROWN /ORANGE BROWN /ORANGE BROWN /ORANGE BROWN /ORANGE LIGHT BROWN BROWN BROWN
1-2 2-3 3-4 4-5 5-6 6-7 7-7.3 7.3 LY28-3 SAMPLE DEPTH 0-1 1-2 2-3 3-4	SAND/CLAY SAND/CLAY SAND/CLAY SAND SAND/CLAY CLAY CLAY BASALT SECTION 2 SOIL TYPE F. SAND SAND/CLAY SAND/CLAY	MOIST MOIST DAMP DAMP DAMP DAMP DAMP DAMP 328 NORTH PIVOT MOISTURE CONT. MOIST MOIST MOIST DAMP	BROWN BROWN LIGHT BROWN BROWN /ORANGE BROWN/GREY BROWN /ORANGE BROWN /ORANGE COLOR LIGHT BROWN BROWN BROWN BROWN
1-2 2-3 3-4 4-5 5-6 6-7 7-7.3 7.3 LY28-3 SAMPLE DEPTH 0-1 1-2 2-3 3-4 4-5	SAND/CLAY SAND/CLAY SAND/CLAY SAND SAND/CLAY CLAY CLAY BASALT SECTION 2 SOIL TYPE F. SAND SAND/CLAY SAND/CLAY SAND/CLAY	MOIST MOIST DAMP DAMP DAMP DAMP DAMP DAMP 28 NORTH PIVOT MOISTURE CONT. MOIST MOIST MOIST DAMP DAMP	BROWN BROWN LIGHT BROWN BROWN /ORANGE BROWN/GREY BROWN /ORANGE BROWN /ORANGE COLOR LIGHT BROWN BROWN BROWN BROWN LIGHT BROWN
1-2 2-3 3-4 4-5 5-6 6-7 7-7.3 7.3 LY28-3 SAMPLE DEPTH 0-1 1-2 2-3 3-4 4-5 5-6	SAND/CLAY SAND/CLAY SAND/CLAY SAND SAND/CLAY CLAY CLAY BASALT SECTION 2 SOIL TYPE F. SAND SAND/CLAY SAND/CLAY SAND/CLAY SAND/CLAY	MOIST MOIST DAMP DAMP DAMP DAMP DAMP DAMP 28 NORTH PIVOT MOISTURE CONT. MOIST MOIST MOIST DAMP DAMP DAMP	BROWN BROWN LIGHT BROWN BROWN /ORANGE BROWN/GREY BROWN /ORANGE BROWN /ORANGE BROWN /ORANGE LIGHT BROWN BROWN BROWN BROWN LIGHT BROWN BROWN/RED
1-2 2-3 3-4 4-5 5-6 6-7 7-7.3 7.3 7.3 LY28-3 SAMPLE DEPTH 0-1 1-2 2-3 3-4 4-5 5-6 6-7	SAND/CLAY SAND/CLAY SAND/CLAY SAND SAND/CLAY CLAY CLAY BASALT SECTION 2 SOIL TYPE F. SAND SAND/CLAY SAND/CLAY SAND/CLAY SAND/CLAY CLAY/SAND	MOIST MOIST DAMP DAMP DAMP DAMP DAMP DAMP 28 NORTH PIVOT MOISTURE CONT. MOIST MOIST MOIST DAMP DAMP DAMP DAMP	BROWN BROWN LIGHT BROWN BROWN /ORANGE BROWN/GREY BROWN /ORANGE BROWN /ORANGE BROWN /ORANGE LIGHT BROWN BROWN BROWN BROWN LIGHT BROWN BROWN/RED BROWN/TAN
1-2 2-3 3-4 4-5 5-6 6-7 7-7.3 7.3 LY28-3 SAMPLE DEPTH 0-1 1-2 2-3 3-4 4-5 5-6	SAND/CLAY SAND/CLAY SAND/CLAY SAND SAND/CLAY CLAY CLAY BASALT SECTION 2 SOIL TYPE F. SAND SAND/CLAY SAND/CLAY SAND/CLAY SAND/CLAY	MOIST MOIST DAMP DAMP DAMP DAMP DAMP DAMP 28 NORTH PIVOT MOISTURE CONT. MOIST MOIST MOIST DAMP DAMP DAMP	BROWN BROWN LIGHT BROWN BROWN /ORANGE BROWN/GREY BROWN /ORANGE BROWN /ORANGE BROWN /ORANGE LIGHT BROWN BROWN BROWN BROWN BROWN BROWN BROWN

Grants Reclamation Project Evaluation of Years 2000-2010 Irrigation with Alluvial Ground Water

TABLE 3-13. WATER QUALITY ANALYSIS FOR LYSIMETER (cont.) Ca THROUGH ION_BAL

Sample Point Name	Date	Lab _	Ca (mg/l)	Mg (mg/l)	K (mg/l)	Na (mg/l)	HCO3 (mg/l)	CO3 (mg/l)	Ci (mg/i)	SO4 (mg/l)	TDS (mg/l)	Cond(calc.) (µmhos/cm)	ion_B (ratio)
LY1	7/22/2009	ENER			-	~-			121	337	1240		
	8/13/2009	ENER			_		-		152	543	1530		
	9/23/2009	ENER	201	118	2.90	61,3	529	< 1.000	168	489	1500	* 2010	0.951
	10/16/2009						_		179	508	1550	* 2082	
	11/13/2009	ENER	189	154	2.80	61.5	488	< 5.00	218	590	1560	* 2270	0.934
	12/18/2009	ENER	230	141	2.60	60.1	467	< 5.00	235	647	1640	* 2338	0.922
	12/30/2009	ENER	286	127	2.40	61.2	430	< 5.00	248	719	1770	* 2075	0.940
	1/31/2010	ENER	—						266	770	1940	* 2490	
	2/22/2010	ENER							275	814	1850	* 2560	
	3/25/2010	ENER							289	840	2100	* 2650	
	4/29/2010	ENER		· ·			· *** •••	·	- 313	927	2160	* 2750	
	5/31/2010	ENER	<u></u>						321	1020	2360	* 2870	
	6/30/2010	ENER							350	1200	2670	* 3136	
	7/27/2010	ENER	_						372	1370	2870	* 3310	
LY2	6/24/2009	ENER	-						225	654	1720	* 2308	
LY4	1/7/2009	ENER	_			·			330	1870	4120		
	2/18/2009	ENER	702	138	5.20	412	783	< 1.000	353	2050	4150		0.984
	3/20/2009	ENER		-					326	1940	4220		
	4/18/2009	ENER			 -				336	1990	3970	* 4522	
	5/15/2009	ENER							328	1950	3990		
	6/10/2009	ENER					-		336	1880	3870	* 4370	
	6/24/2009	ENER		-					324	1920	4180	* 4503	
	7/22/2009	ENER			_				315	1990	4220		
	8/13/2009	ENER			-				354	2170	4380		
	9/23/2009	ENER	728	142	3.50	392	842	< 1.000	339	2250	4530	* 4870	0.928
	10/16/2009	ENER					***		340	2270	4240	* 5040	
	11/ 13/2009	ENER	652	147	3.80	430	634	< 5.00	338	2220	4170	* 5100	0.957
	12/18/2009		757	149	4.00	425	712	< 5.00	343	2260	4170	* 5096	1.00
	12/30/2009	ENER	699	153	4.00	468	837	< 5.00	342	2260	4250	* 3091	0.962

* Signifies Specific Conductivity from HMC

3-48

z

3-49

TABLE 3-13. WATER QUALITY ANALYSIS FOR LYSIMETER (cont.)

Ca THROUGH ION_BAL

Sample Point Name	Date	Lab	Ca (mg/l)	Mg (mg/l)	K (mg/l)	Na (mg/l)	HCO3 (mg/l)	CO3 (mg/l)	Cl (mg/l)	\$04 (mg/l)	TDS (mg/l)	Cond(calc.) (µmhos/cm)	lon_B (ratio)
LY4	1/31/2010	ENER							343	2210	4470	* 5030	
	2/22/2010	ENER							331	2160	4140	* 5020	
	3/25/2010	ENER							339	2170	4520	* 5020	
	4/29/2010	ENER	-						357	2280	4400	* 5040	
	5/31/2010	ENER		مت ا		••••			349	2300	4410	* 5100	
	6/30/2010	ENER	-						357	2320	4570	* 5100	
	7/27/2010	ENER							357	2270	4500	* 4900	
	8/31/2010	ENER	-						363	2190	4160	* 4900	
	9/30/2010	ENER							366	2170	3970	* 4850	
	10/31/2010	ENER	-		·				381	2180	4110	* 4670	
	11/30/2010	ENER							383	2100	4150	* 4660	
LY4-ML	4/18/2009	ENER							142	409		_	
	6/24/2009	ENER				•			684	5510	12000		
	7/22/2009	ENER		, -	_				650	5460	11600		
	8/13/2009	ENER					i		663	5050	10400		
	9/23/2009	ENER	180	29.6	6.00	2180	1140	< 1.000	629	3460	7340	* 9310	0.981
	10/16/2009	ENER							568	2570	5840	* 7904	
	11/13/2009	ENER	166	98.2	11.0	2820	1570	72.0	591	3930	7830	* 7250	1.10
	12/18/2009	ENER	113	25.5	5.00	1520	1190	< 5.00	562	1760	4520	* 6490	1.03
	4/29/2010	ENER	-	-				<u></u>	571	1070	3700	* 5330	
	5/31/2010	ENER	-		_				567	917	3080		
	6/30/2010	ENER		-	<u> </u>				581	907	3130		
	7/27/2010	ENER							574	866	3190	* 4860	
	8/31/2010	ENER							588	851	3080	* 4820	
	9/30/2010	ENER							580	805	2980	* 4760	
	10/31/2010	ENER							575	777	2970	* 4660	
	11/30/2010	ENER		-					566	751	3180	* 4670	
LY4-MU	7/22/2009	ENER	-i	-			-		660	3240	8210		·
	8/13/2009	ENER			-		-		903	6990	13900		•

* Signifies Specific Conductivity from HMC

.

.... 3-50

Sample Point Name	Date	Lab	Ca (mg/l)	Mg (mg/l)	K (mg/l)	Na (mg/l)	HCO3 (mg/l)	CO3 (mg/l)	Cl (mg/l)	SO4 (mg/l)	TDS (mg/l)	Cond(calc.) (µmhos/cm)	lon_B (ratio)
LY4-MU	9/23/2009	ENER	263	90.0	14.0	3510	1580	< 1.000	712	6130	11700	* 13860	1.000
	10/16/2009					•			592	4850	9780	* 12060	
	11/13/2009	ENER	100.0	31.7	5.00	1790	1030	< 5.00	584	2210	5160	10600	1.08
	1/31/2010	ENER	_						600	2010	5730	* 7950	
	2/22/2010	ENER							631	1260	4630	* 6740	نعت
	3/25/2010	ENER	_				·		634	920	4500	* 6390	
	4/29/2010	ENER							674	742	4210	* 6200	
	5/31/2010	ENER							697	694	4090	*6160	
	6/30/2010	ENER							711	675	4220	* 6150	
	7/27/2010	ENER			<u></u>				717	657	4190	* 6050	
		ENER				- ,		·. •••	722	662	4140		
	9/30/2010	ENER							717	679	4210	* 6190	
	10/31/2010	ENER							724	718	4080	* 6170	
	11/30/2010	ENER							724	760	4350	* 6280	
LY28-1	10/16/2009	ENER		_					101	358	852	* 1286	
	11/13/2009		187	74.2	3.80	331	232	< 5.00	174	1040	1850	* 2650	0.980
	12/18/2009	ENER	308	61,7	3,40	345	399	< 5.00	184	1240	2320	* 3130	0.942
	12/30/2009	ENER	298	61,4	3.20	354	378	< 5.00	180	1220	2460	* 3163	0.961
	1/31/2010	ENER							187	1350	2550	* 3250	
	2/22/2010	ENER							186	1350	2450	* 3250	·
	3/25/2010	ENER							163	1300	2660	* 3240	
	4/29/2010	ENER							190	1340	2580	* 3250	
	5/31/2010	ENER							191	1350	2550	* 3270	
	6/30/2010	ENER							197	1380	2650	* 3280	
	7/27/2010	ENER		'	- <u></u> -				201	1410	2670	* 3250	
	8/31/2010	ENER							200	1360	2610	* 3270	
	9/30/2010	ENER					-		192	1350	2700	* 3310	
	10/31/2010	ENER	-		<u> </u>				190	1330	2600	* 3290	
	11/30/2010	ENER	-	_					191	1310	2660	* 3300	

TABLE 3-13. WATER QUALITY ANALYSIS FOR LYSIMETER (cont.)

Ca THROUGH ION_BAL

* Signifies Specific Conductivity from HMC

TABLE 3-13. WATER QUALITY ANALYSIS FOR LYSIMETER (cont.)

Ca THROUGH ION_BAL

Sample Point Name	Date	Lab -	Ca (mg/l)	Mg (mg/l)	K (mg/l)	Na (mg/l)	HCO3 (mg/l)	CO3 (mg/l)	Cl (mg/l)	SO4 (mg/l)	TDS (mg/l)	Cond(calc.) (µmhos/cm)	ion_B (ratio)
LY28-1M	10/16/2009	ENER	-					-	114	84.0	440	* 698	
LY28-2	10/16/2009	ENER							335	218	954	* 1580	
LY28-2M	10/16/2009	ENER							158	255	773	* 1176	
	11/13/2009	ENER	147	60.5	7.80	106	414	6.00	128	304	937	* 1560	1.01
	12/18/2009	ENER	150	54.5	6.90	83.6	447	< 5.00	123	247	980	*1482	0.980
	12/30/2009	ENER	143	51.5	7.30	80.2	438	< 5.00	120	202	939	* 1544	1.01
	1/31/2010	ENER							115	156	901	* 1320	
	2/22/2010	ENER							113	132	756	* 1280	
	3/25/2010	ENER					, 		107	111	858	* 1260	
	4/29/2010	ENER				+		مثبه	120	106	778	* 1250	
	5/31/2010	ENER		_					110	95.0	787	*1300	
	6/30/2010	ENER	-						112	93.0	847	* 1290	
	7/27/2010	ENER					ine-n		109	89.0	842	* 1230	
	8/31/2010	ENER							. 112	88.0	841	* 1260	
	9/30/2010	ENER	·	·					108	83.0	896	* 1230	
	10/31/2010	ENER		_		- 	<u>منہ</u>	<u></u>	110	84:0	891	* 1200	
	11/30/2010	ENER							108	83.0	956	* 1220	·
LY28-3	10/16/2009	ENER							190	781	1710	* 2476	
	11/13/2009	ENER	306	96.9	10.00	983	421	< 5.00	290	2300	4110	* 5560	1.05
	12/18/2009	ENER	392	126	11.0	1200	399	< 5.00	318	3030	5220	* 6638	1.05
	12/30/2009	ENER	426	126	11.0	1260	394	< 5.00	339	3260	5720	* 696 1	1.03
	1/31/2010	ENER		****					339	3380	5770	* 7250	تبنية
	2/22/2010	ENER							344	3520	5880	* 7360	
	3/25/2010	ENER							347	3360	6360	* 7320	
	4/29/2010	ENER							350	3590	6340	* 7470	
	5/31/2010	ENER							410	3730	6600	* 7920	
	6/30/2010	ENER	<u>نبن</u>						471	3850	7210	* 8340	
	7/27/2010	ENER			-		 .		597	3690	7160	* 8200	

* Signifies Specific Conductivity from HMC

TABLE 3-13. WATER QUALITY ANALYSIS FOR LYSIMETER (cont.)

Ca THROUGH ION_BAL

Sample Point Name	Date	Lab -	Ca (mg/l)	Mg (mg/l)	K (mg/l)	Na (mg/l)	HCO3 (mg/l)	CO3 (mg/l)	Ci (mg/i)	SO4 (mg/l)	TDS (mg/i)	Cond(calc.) (umhos/cm)	lon_B (ratio)
LY28-3	8/31/2010	НМС							786	3420	6660	~~	
LY34-1	10/16/2009	ENER	~						124	239	1060	* 1620	
	12/30/2009	ENER	292	77.1	2:50	543	667	< 5.00	310	1160	2630	* 3763	1.01
	2/22/2010	ENER	~	_					321	1230	2760	* 3940	بندن
	3/25/2010	ENER	~	_	·				326	1240	3120	* 4030	
	4/29/2010	ENER	~	_					359	1350	3130	* 4090	
	5/31/2010	ENER	~						353	1340	3050	* 4140	
	6/30/2010	ENER			***				362	1370	3250	* 4190	
	7/27/2010	ENER							362	1380	3220	* 3920	
	8/31/2010	ENER							362	1410	3490	* 4190	
the second second	9/30/2010	'ENER		· · · · ·				8	375	1450	3530	* 4490	
	10/31/2010	ENER							514	1910	5220	* 5390	
	11/ 30/2 010	ENER	~						501	1890	4230	* 5360	
LY34-2	10/16/2009	ENER			<u></u> .				96.0	214	590	* 1000	
	11/13/2009	ENER	175	69, 4	12.3	354	457	< 5.00	315	676	1850	* 2950	0.985
	12/18/2009	ENÉR	231	84.8	10.8	387	372	< 5:00	397	868	1220	* 3413	1.00
	12/30/2009	ENER	192	85.6	11.8	436	567	< 5.00	377	799	2250	* 3339	0.977
	1/31/2010	ENER							467	1020	2500	* 3920	
	2/22/2010	ENER			·				514	1190	2960	÷4160	
	3/25/2010	ENER							515	1250	3460	* 4710	
	4/29/2010	ENER			_				653	1600	3720		***
	5/31/2010	ENER			-		-	<u>مند</u>	659	1710	3660		
	6/30/2010	ENER							723	1950	4180		
	7/27/2010	ENER						<u> </u>	710	1910	4450	* 5660	
	8/31/2010	ENER	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	·	· ·	· · ·		686	1550	3470	· /	
	9/30/2010	ENER		-					651	1350	3640	* 4680	
	10/31/2010	ENER							689	1880	3090	* 5650	
	11/30/2010) ENER		-			يغيب		632	2220	4930	* 6060	

* Signifies Specific Conductivity from HMC

3-52

.

1.

TABLE 3-13. WATER QUALITY ANALYSIS FOR LYSIMETER (cont.)

Ca THROUGH ION_BAL

Sample Point Name	Date	Lab -	Ca (mg/l)	Mg (mg/l)	K (mg/l)	Na (mg/l)	НСО3 (mg/l)	CO3 (mg/l)	Cl (mg/l)	SO4 (mg/l)	TDS (mg/i)	Cond(calc.) (umhos/cm)	lon_8 (ratio)
LY34-3	10/16/2009	ENER							96.0	102	637	* 920	
2.000	11/13/2009		90.9	44.0	4.30	229	488	6.00	128	277	956	* 1660	1.04
	12/18/2009		178	78.0	3.90	338	648	< 5.00	184	766	1900	* 2760	0.943
	12/30/2009		234	105	4.70	456	680	< 5.00	211	904	2170	* 3030	1.12
	1/31/2010								231	983	2410	* 3246	
	2/22/2010		_						244	1030	2370	* 3350	
	3/25/2010			_				****	250	1020	2630	* 3460	
	4/29/2010		_						279	1100	2580	* 3520	
	5/31/2010	ENER							287	1120	2580	* 3610	
	6/30/2010		_		<u> </u>				293	1120	2790	* 3680	
	7/27/2010	ENER	-						321	1220	2780	* 3700	
	8/31/2010	ENER							302	1130	2780	* 3780	
	9/30/2010	ENER	_						322	1210	2990	* 3850	
	10/31/2010	ENER	-	_					315	1150	2330	* 3850	
	11/30/2010	ENER	-						323	1160	3030	* 3920	
LY34-4	10/16/2009	ENER							74.0	322	854	* 1245	
	11/13/2009		58.4	18.3	4.20	289	335	6.00	106	384	977	* 1660	1.03
	12/18/2009	ENER	80.3	20.7	3.70	347	329	13.0	130	501	1260	* 1996	1.05
	12/30/2009	ENER	110	22.6	3.40	331	295	8.00	146	608	1470	* 2038	0.998
	1/31/2010	ENER	-			·			163	763	1630	* 2540	
	7/27/2010	НМС										4850	
	8/31/2010			<u></u>					259	1350	2960	* 3930	
	9/30/2010	ENER							269	1480	3450	-	

* Signifies Specific Conductivity from HMC

3-54

TABLE 3-14. WATER QUALITY ANALYSIS FOR LYSIMETER (cont.) pH THROUGH Th-230

Sample Point Name	Date	Lab -	pH (std. units)	Unat (mg/l)	Mo (mg/l)	Se (mg/l)	NO3 (mg/l)	Ra226 (pCl/l)	Ra228 (pCl/l)	V (mg/l)	Th230 (pCi/l)
LY1	7/22/2009	ENER		0.0420	0.0400	0.0300	1.14				
	8/13/2009	ENER		0.0878	< 0.0300	0.0500	1.10				
	9/23/2009	ENER	7.77	0.0519	0.0300	0.0350	1.90	مند			
	10/16/2009	ENER		0.0540	< 0.0300	0.0400	1.70				
	11/13/2009	ENER	8.17	0.0487	< 0.0300	0.0390	2.80				
	12/18/2009	ENER	7.81	0.0656	< 0.0300	0.0470	2.20				
	12/30/2009	ENER	7.80	0.0585	< 0.0300	0.0790	1.80				
	1/31/2010	ENER		0.0506	< 0.0300	0.0720	1.60				
	2/22/2010	ENER		0.0506	< 0.0300	0.0820	1.50				
	3/25/2010	ENER		0.0471	< 0.0300	0.105	1.40				
	4/29/2010	ENER		0.0471	< 0.0300	0.0860	1.30	سند		<u></u>	
	5/31/2010			0.0527	0.0300	0.116	1.20				
	6/30/2010	ENER		0.0574	< 0.0300	0.115	1.30				
	7/27/2010	ENER	-	0.0532	< 0.0300	0.127	1.30				
LY2	6/24/2009	ENER		0.0406	0.0400	0.0140	3.31				
LY4	1/7/2009	ENER		0.0813	< 0.0300	0.0410	0.870				
	2/18/2009	ENER	7.44	0.0655	< 0.0300	0.0410	1.40				
	3/20/2009	ENER		0.0732	< 0.0300	0.0430	1.72				
	4/18/2009	ENER		0.0589	< 0.0300	0.0350	0.800				
	5/15/2009	ENER		0.0611	< 0.0300	0.0380	1.46				
	6/10/2009	ENER		0.0630	< 0.0300	0.0550	0.800				
	6/24/2009	ENER		0.0621	< 0.0300	0.0500	0.560				***
	7/22/2009	ENER		0.0636	< 0.0300	0.0430	0.460				
	8/13/2009	ENER		0.0718	< 0.0300	0.0400	0.600				
	9/23/2009	ENER	7.29	0.0664	< 0.0300	0.0340	0.500				
	10/16/2009	ENER		0.0701	< 0.0300	0.0310	0.500				
	11/13/2009	ENER	7.84	0.0652	< 0.0300	0.0330	0.600				
	12/18/2009	ENER	7.58	0.0651	< 0.0300	0.0310	0.500				
	12/30/2009	ENER	7.60	0.0643	< 0.0300	0.0340	0.600				

. **'**†

3-55

TABLE 3-14. WATER QUALITY ANALYSIS FOR LYSIMETER (cont.)

pH THROUGH Th-230

Sample Point Name	Date	Lab	pH (std. units)	Unat (mg/l)	Mo (mg/l)	Se (mg/l)	NO3 (mg/l)	Ra226 (pCl/l)	Ra228 (pCl/l)	V (mg/l)	Th230 (pCl/l)
LY4	1/31/2010	ENER		0.0702	< 0.0300	0:0380	0.500				
	2/22/2010	ENER		0.0732	< 0.0300	0.0350	0.500				
	3/25/2010	ENER		0.0720	< 0.0300	0.0360	0.500				
	4/29/2010	ENER		0.0699	< 0.0300	0.0380	0.600				
	5/31/2010	ENER	-i-	0.0833	< 0.0300	0.0540	0.600			• • • • •	
	6/30/2010	ENER		0.0766	< 0.0300	0.0420	0.800			•	
	7/27/2010	ENER		0.0707	< 0.0300	0.0420	0.700				
	8/31/2010	ENER		0.0708	< 0.0300	0.0420	0.800				
	9/30/2010	ENER		0.0682	< 0.0300	0.0450	1.10				
	10/31/2010	ENER		0.0672	< 0.0300	0.0440					
	11/30/2010	ENER		0.0610	< 0.0300	0.0520		<u></u>		•	
LY4-ML	4/18/2009	ENER		0.0188	0.120	0.0050	0.200				
	6/24/2009	ENER		0.358	0.110	<. 0.0050	10.00				
	7/22/2009	ENER	-	0.552	0.0900	0.0100	0.0200				
	8/13/2009	ENER		0.421	0.0600	< 0.0050	< 0.100				
	9/23/2009	ENER	7.76	0.268	0.0400	0.0100	< 0.100				
	10/16/2009	ENER		0.244	0.0400	0.0060	< 0.100				
	11/13/2009	ENER	8.35	0.508	0.0900	0.0110	< 0.100				
	12/18/2009	ENER	7.55	0.214	< 0.0300	0.0050	< 0.100				
	4/29/2010	ENER		0.292	0.0500	0.0110	< 0.100				
	5/31/2010	ENER		0.463	0.0900	0.0150	< 0.100	ستون ا			
	6/30/2010	ENER		0.482	0.110	0.0120	< 0.100				
	7/27/2010	ENER		0.375	0.0900	0.0170	< 0.100			-10.0	
	8/31/2010	ENER		0.366	0.0900	0.0150	< 0.100				
	9/30/2010	ENER		0.394	0.100	0.0130	< 0.100				
	10/31/2010	ENER		0.394	0.100	0.0140		-			
	11/30/2010	ENER		0.453	0.140	0.0180		-			
LY4-MU	7/22/2009	ENER		0.261	0.140	0.0100	0.0200	·			
	8/13/2009	ENER	-	0.596	0.160	0.0060	< 0.100	-			

.

3-56

TABLE 3-14. WATER QUALITY ANALYSIS FOR LYSIMETER (cont.) pH THROUGH Th-230

Sample Point Name	Date	Lab	pH (std. units)	Unat (mg/l)	Mo (mġ/l)	Se (mg/l)	NO3 (mg/l)	Ra226 (pCl/l)	Ra228 (pCl/l)	V (mg/l)	Th 230 (pC1/1)
LY4-MU	9/23/2009	ENED	7.68	0.563	0.120	0.0090	< 0.100				
L 1 4-100	10/16/2009			0.563	0.120	0.0090	< 0.100				
	11/13/2009		8.04	0.212	0.0300	0.0090	< 0.100				
	1/31/2010		0.04	0.504	0.0500	0.0100	< 0.100				
	2/22/2010			0.516	0.0500	0.0100	0.800				
	3/25/2010			0.574	0.0500	0.0100	1.80				
	4/29/2010		_	0.546	0.0400	0.0120	2.30				
	5/31/2010			0.626	0.0400	0.0130	3.20				
	6/30/2010			0.617	0.0400	0.0090	3.50				
	7/27/2010			0.600	0.0400	0.0110	3,50				
	-8/31/2010	ENER		0.0395	0.350	0.0460	4.10				
	9/30/2010	ENER		0.691	0.0500	0.0060	3.80				
	10/31/2010	ENER	-	0.633	0.0400	0.0060			·		
	11/30/2010	ENER	_	0.828	0.0400	0.0100					
LY28-1	10/16/2009	ENER		0.0224	0.0500	0.0100	2.60				
	11/13/2009		8.19	0.0489	< 0.0300	0.0250	4.40				
	12/18/2009		7,77	0.131	< 0.0300	0.0310	0.900				
	12/30/2009		7,83	0.161	< 0.0300	0.0420	6,60				
	1/31/2010			0.149	< 0.0300	0.0370	6.70				
	2/22/2010			0.161	< 0.0300	0.0380	6.10				
	3/25/2010			0.161	< 0.0300	0.0400	7,90				
	4/29/2010	ENER		0.150	< 0.0300	0.0390	7.50				
	5/31/2010	ENER		0,194	0.0300	0.0490	7.60				
	6/30/2010	ENER		0.183	< 0.0300	0.0410	7.20				
	7/27/2010	ENER		0.171	< 0.0300	0.0440	8.00				
	8/31/2010	ENER		0.187	< 0.0300	0.0470	7.50				
	9/30/2010	ENER	-	0.194	< 0.0300	0.0450	7.30				
	10/31/2010	ENER	-	0,191	0.0800	0.0610	-				
	11/30/2010	ENER		0.168	< 0.0300	0.0470					

1

,

TABLE 3-14. WATER QUALITY ANALYSIS FOR LYSIMETER (cont.)

pH THROUGH Th-230

Sample Point Name	Date	Lab	pH (std. units)	Unat (mg/l)	Mo (mg/l)	Se (mg/l)	NO3 (mg/l)	Ra226 (pCI/l)	Ra228 (pCI/I)	V (mg/l)	Th230 (pCl/l)
LY28-1M	10/16/2009	ENER		0.0009	0.160	0.0070	1.40				
LY28-2	10/16/2009	ENER		0.0031	0.0500	0.0140	1.10				
LY28-2M	10/16/2009	ENER		0.0044	0.160	0.0110	1.80				
	11/13/2009	ENER	8.15	0.0327	0.120	< 0.0050	2.30				
	12/18/2009	ENER	7.73	0.0567	0.100	< 0.0050	5.90				
	12/30/2009	ENER	7.87	0.0641	0.0900	< 0.0050	6.30				′
	1/31/2010	ENER		0.0489	0.0900	< 0.0050	6.40				
	2/22/2010	ENER		0.0558	0.0900	0.0060	7.10				
	3/25/2010	ENER		0.0581	0.100	0.0070	7.40				
	4/29/2010	ENER		0.0552	0.0800	0.0060	7.60				
	5/31/2010	ENER		0.0619	0.110	0.0090	8.70				
	6/30/2010	ENER		0.0117	< 0.0300	< 0.0050	9.00				
	7/27/2010	ENER		0.0502	0.0900	0.0080	10.00				
	8/31/2010	ENER		0.0504	0.0800	0.0080	9.70				
	9/30/2010	ENER		0.0534	0.100	0.0060	9 .70				
	10/31/2010	ENER		0.0475	0.140	0.0090					
	11/30/2010	ENER	-	0.0396	0.100	0.0090		_			
LY28-3	10/16/2009	ENER		0.0875	0.100	0.0230	21.0				
	11/13/2009	ENER	8.11	0.487	0.100	0.0500	43.5				
	12/18/2009	ENER	7.87	0.553	< 0.0300	0.0420	53.7				
	12/30/2009	ENER	7.90	0.628	< 0.0300	0.0480	55.3				
	1/31/2010	ENER		0.894	< 0.0300	0.0490	60.0				
	2/22/2010	ENER		0.758	< 0.0300	0.0520	63.7				
	3/25/2010	ENER		0.707	< 0.0300	0.0450	58.9				
	4/29/2010	ENER		0.710	0.0500	0.0580	- 52.0				
	5/31/2010	ENER	-	0.971	0.110	0.0940	54.0				
	6/30/2010	ENER		0.973	0.0400	0.0910	62.0				
	7/27/2010	ENER		0.781	< 0.0300	0.105	72.0				

.

3-58

Sample Point Name	Date	Lab	pH (std. units)	Unat (mg/l)	Mo (mg/l)	Se (mg/l)	NO3 (mg/l)	Ra226 (pCl/l)	Ra228 (pCl/l)	V (mg/l)	Th230 (pCl/l)
		_									
LY28-3	8/31/2010	НМС		0,809	< 0.0300	0.167	74.0				
LY34-1	10/16/2009	ENER		0.0837	0.0800	0.0090	2.80				
	12/30/2009	ENER	7.80	0.375	< 0.0300	0.0540	10.1				
	2/22/2010	ENER		0,368	0.0400	0.0470	11.7				
	3/25/2010	ENER		0.312	< 0.0300	0.0450	13.7				
	4/29/2010	ENER		0.279	< 0.0300	0.0460	14.5				
	5/31/2010	ENER		0.324	0.0500	0.0610	15.2				
	6/30/2010	ENER	·	0.332	0.0400	0.0470	14.8				
	7/27/2010	ENER	-	0.272	0.0400	0.0450	15.0				
	8/31/2010	ENER		0.231	< 0.0300	0.0490	15.9				
	9/30/2010	ENER		0.317	< 0.0300	0.0610	30.0			 .	····~
	10/31/2010	ENER		0.310	< 0.0300	0.0680		_			
	11/30/2010	ENER		0.339	< 0.0300	0.310				•	
LY34-2	10/16/2009	ENER		0.0067	0.140	0.0060	< 0.100				
	11/13/2009	ENER	8.34	0.0695	0.110	0.0150	2.40				
	12/18/2009	ENER	7.94	0.0871	0.0800	0.0190	7.50				
	12/30/2009	ENER	7.98	0.0876	0.100	0.0210	8.30				
	1/31/2010	ENER		0.0962	0.0800	0.0300	12.5				
	2/22/2010	ENER		0.118	0.0900	0.0330	4.40				
	3/25/2010	ENER	-	0.126	0.0800	0.0350	14.0				***
	4/29/2010	ENER		0,142	0.0800	0.0440	12.0				
	5/31/2010	ENER		0.192	0.110	0.0550	11.4				
	6/30/2010	ENER		0.222	0.120	0.0600	12.8				
	7 <i>/</i> 27/2010	ENER		0.202	0.100	0.0590	12.1				
	8/31/2010	ENER		0.104	0.0500	0.0430	8.00				
	9/30/2010	ENER	-	0.0932	0.0400	0.0370	6.20				
	10/31/2010	ENER		0.195	0.0600	0.0600					
	11/30/2010	ENER		0.402	0.0700	0.279					

TABLE 3-14. WATER QUALITY ANALYSIS FOR LYSIMETER (cont.)

pH THROUGH Th-230

Sample Point Unat NO3 Ra226 Ra228 ۷ Th230 pН Mo Se (mg/l) (mg/l) Name Date Lab (std. units) (mg/l) (mġ/l) (mg/l) (pCi/l) (pCl/l) (pCI/I) LY34-3 10/16/2009 ENER 0.0051 0.130 0.0070 1.50 -----------------8.24 11/13/2009 ENER 0.0749 0.210 0.0250 3.60 -----------12/18/2009 ENER 7.91 0.239 0.0800 0.0420 7.10 -----------12/30/2009 ENER 7,92 0.349 0.0600 0.0740 7.60 --------------1/31/2010 ENER -----0.269 0.0700 0.0600 9.20 -----------2/22/2010 ENER 0.292 0.0700 0.0630 0.500 ----------------3/25/2010 ENER ----0.282 0.0700 0.0640 10.5 -----------0.0600 0.0620 4/29/2010 ENER 0.243 9.60 ----------------5/31/2010 ENER 0.291 0.0900 0.0880 9.60 ----------------6/30/2010 ENER 0.266 0.0600 0.0700 8.80 --------...... 7/27/2010 ENER ----0.254 0.0600 0.0710 8.20 --------.... 0.250 0.0500 0.0800 8/31/2010 ENER 6.70 -----------.... 9/30/2010 ENER ----0.287 0.0800 0.0730 5.00 -----------10/31/2010 ENER 0.275 0.120 0.103 --------____ -------11/30/2010 ENER ----0.279 0.0500 0.0720 --------------LY34-4 0.0261 0.280 0.0050 10/16/2009 ENER ----1.40 ----___ ----11/13/2009 ENER 8.38 0.0613 0.310 0.0110 4.20 -----------0.0714 0.280 0.0130 12/18/2009 ENER 8.34 12.4 ----------12/30/2009 ENER 8.36 0.0671 0.230 0.0180 15.8 -----------1/31/2010 ENER 0.0574 0.270 0.0220 22.9 ---------------8/31/2010 ENER ----0.0397 0.320 0.0480 49.0 -----------

0.460

0.0749

9/30/2010 ENER

0.0510

53.0

TABLE 3-14. WATER QUALITY ANALYSIS FOR LYSIMETER (cont.) DH THROUGH Th-230

.....

__--

__

_--

_--

حنسد

3.4.2 Section 28

Lysimeters were installed at three locations in the Section 28 Center Pivot area. Table 3-11 shows that five lysimeters were installed at these three locations. In addition to the alluvial lysimeters at the LY28-1 and LY28-2 locations, there is also a basalt lysimeter. The completion details of these lysimeters are presented in Table 3-11.

Tables 3-13 and 3-14 presents the water quality results obtained from the LY28 series of lysimeters. Only one sample was obtained from the basalt lysimeter LY28-1M. Monthly samples have been obtained from lysimeter LY28-1. Only an initial sample was collected from LY28-2 which indicates that there in not adequate soil moisture at this location to consistently produce a sample. Monthly samples have been obtained from lysimeter LY28-3 through August of 2010 prior to it becoming non-functional.

The time concentration plots for lysimeter LY28-1 are presented in Figure 3-28 and 3-29. The TDS, sulfate and chloride concentrations each are gradually increasing with time and values of 2700, 1300 and 120 mg/l are typical of 2010 values for this lysimeter. The uranium and selenium concentrations show a similar pattern with an small increase in concentration with time with typical 2010 values of 0.2 and 0.05 mg/l. The molybdenum concentrations have been low in lysimeter LY28-1. The monitoring data for lysimeter LY28-2M is presented in Figures 3-30 and 3-31. Chloride and sulfate concentrations in this lysimeter are decreasing with time while the TDS concentration has shown a gradual increase in concentration in the last half of 2010 while the selenium concentrations have stayed very small. An overall steady molybdenum concentration has been observed in this basalt lysimeter location if the first two values are not used. The low major constituent concentrations indicate that all of the concentrations occurring in LY28-2M may be natural.

The soil moisture sample concentrations for lysimeter LY28-3 show an increasing trend for the major constituents of TDS, sulfate and chloride (see Figure 3-32). An increasing trend is also observed for uranium in this soil moisture (see Figure 3-33). This data indicates that less soil moisture has moved past this lysimeter in 2010 than previously.

3.4.3 Section 33

A total of eight lysimeters have been installed in Section 33 Center Pivot irrigation area. These lysimeters have been installed at five different locations. Figure 3-5 shows the five lysimeter locations. Lysimeters were placed in the alluvial material above the basalt except at the locations LY-3 and LY-4. A hole was drilled to a depth of 31 feet at LY-3M and the lysimeter placed in the bottom of this hole with the top of the lysimeter being located 23 feet below the top of the basalt. Two lysimeters were installed in a drill hole at the LY-4M site. These lysimeters were installed ten and thirty feet below the top of the basalt at this location.

Vacuum was applied to each of the lysimeters during each sampling event. Some of the lysimeters have not produced soil moisture samples while some have produced a sample each

time a vacuum has been applied. Tables 3-13 and 3-14 present the water quality analysis of the soil moisture for the lysimeters. Lysimeter LY-1 was installed in July, 2009 and monthly samples have been obtained for this lysimeter each time the vacuum has been applied through July 2010. LY-2 was installed in June of 2009 and only a sample shortly after installation was obtained from this lysimeter. This inability to extract a sample with this lysimeter likely indicates adequate soil moisture is not available at this location. Lysimeters LY-3 and LY-3M were installed in June 2009 and neither of these lysimeters have ever produced a soil moisture sample. LY-4 was installed in December of 2008 and samples from this lysimeter have been obtained each time the vacuum was applied to the lysimeter. Lysimeter LY-4ML was installed in June of 2009 and monthly samples were collected from this lysimeter through December 2009. LY-4ML did not produce a sample in January, February and March of 2010. Lysimeter LY-4MU was installed in July of 2009 and samples from this lysimeter have been collected each month except December 2009.

Lysimeter LY-1, which is installed 16 feet below the land surface, has been monitored monthly and has consistently produced a sample. Figure 3-34 shows the TDS, sulfate and chloride concentrations for samples from LY-1. These concentrations have generally been gradually increasing during the last half of 2009 and 2010, possibly arising from a decrease in the rate of flow. Figure 3-35 presents the uranium, selenium and molybdenum concentrations for LY-1, which shows an overall low concentrations in each of these constituents with an increase in selenium concentrations in 2010.

Figure 3-36 presents the TDS, sulfate, chloride concentrations for lysimeter LY-4. The TDS and sulfate scales are shown on the left of the graph and the chloride scale is presented on the right. The chloride concentrations are presented with the green triangles. The first 2 to 3 samples from this lysimeter likely show some effect from the water that was used to install the fine flour sand pack around this lysimeter. Subsequent sample results indicate a very gradual increasing trend in concentrations. Figure 3-37 presents the uranium, selenium and molybdenum concentrations for LY-4 lysimeter. These three constituents show in general a fairly steady concentration with time. A typical uranium concentration of 0.08 is significantly less than the concentration of 0.24 mg/l that was present in irrigation water applied in 2009. The representative selenium concentration of the irrigation water. No measurable molybdenum concentrations above the detection limit of 0.03 mg/l is indicated at this lysimeter. This data indicates that a similar amount of soil moisture has been moving past this lysimeter in the two years.

The TDS, sulfate and chloride concentrations for the lysimeter that was placed ten feet below the top of the basalt (LY-4MU) is presented in Figure 3-38. The constituent concentrations in the soil moisture gradually declined to early 2010, when the TDS and sulfate concentrations became fairly steady and the chloride concentrations gradually increased. The first sample from this lysimeter may have been biased by water used in installation, and results should not be given any significance. This data shows a much higher TDS, sulfate and chloride concentrations existing in the soil moisture until the last part of 2009. The concentrations then declined to levels that are fairly similar to the levels in lysimeter LY-4 which is located at a shallower depth at the base of the alluvial material above the basalt. Figure 3-39 presents the uranium concentrations for LY-4MU. This data shows that a gradual increasing trend in uranium concentrations was observed in the soil moisture samples from LY-4MU during 2010. The November 2009 value from LY-

4MU and LY-4ML should not be given much significance because it appears that these two samples may have been switched in November 2009. This plot indicates that the uranium concentrations are not decreasing at the same rate as the major constituents and its concentrations indicate that the soil moisture passing LY-4MU is getting some uranium that previously migrated to this interval of the basalt. The selenium concentration in Figure 3-39 have been steady while the molybdenum concentration decreased to a low value in late 2009.

Figure 3-40 and 3-41 present the concentration plots for the lower lysimeter LY-4ML. These plots show that in general the concentrations are decreasing with time. Again, the November 2009 value should be viewed with skepticism because the samples from LY-4ML and LY-4MU are thought to have been switch based on the concentration results. The TDS, sulfate and chloride concentrations are each generally declining with time. This indicates that the rate of soil moisture water entering this area is increasing. The load (concentrations times flow rate) of major constituents is expected to be fairly constant through the soil profile. The concentrations in the soil moisture would be expected to increase when the rate of water passing through an interval decreases as a result of the crop using more water. The alfalfa that existed in this field prior to 2008 likely used more water than the present vegetation that consists primarily of grass, and therefore, the concentrations are probably declining due to a larger rate of water moving in the soil profile.

3.5 Predicted Soil Moisture Concentrations

The 2000-2015 irrigation monitoring report also presents information that indicates ground-water uranium concentrations are not increasing in the irrigation areas. The partially saturated numerical model LEACHP model was used to predict the movement of constituents in soil moisture below the irrigation areas with time. This section presents the predicted soil moisture concentrations for each of the irrigated areas.

Homestake proposes to reduce the irrigation water quality limits with time as the alternate treatment processes are employed to reduce the concentrations. Table 3-15 below shows the proposed schedule to reduce the maximum concentrations for uranium, selenium, TDS and sulfate in irrigation water applied to these fields. Uranium concentrations in the irrigation water are proposed to be decreased from 0.16 mg/L in 2011 to 0.03 in 2015. The selenium concentrations are proposed to be reduced from 0.1 to 0.05 by 2014. A maximum TDS and sulfate concentration of 2000 and 900 mg/l is proposed for the irrigation water.

 Table 3-15. Proposed Irrigation Supply Upper Limits for Uranium, Selenium, TDS and

 Sulfate and Anticipated Irrigation Amount

-	Maximum Concentration Applied, mg/l				Anticipated Irrigation (Ft of Water)		
Year	U	Se	TDS	SO4	Sec 33 and 34 Flood	Sec 28 Pivot	Sec 33 Pivot
2011	0.16	0.1	2000	900	2.4	2.3	0.4
2012	0.16	0.1	2000	900	2.4	2.3	0.4
2013	0.12	0.08	2000	900	1.04	0.5	0
2014	0.05	0.05	2000	900	1.04	0.5	0
2015	0.03	0.05	2000	900	1.04	0.5	0
2016	0.03	0.05	2000	900	1.04	0.5	0
2017	0.03	0.05	2000	900	1.04	0.5	0

Some San Andres water will have to be used in early years until the alternate restoration reduces alluvial water constituent concentrations to a level which meets the irrigation concentration limits. The *insitu* restoration concentrations will be reduced in the western portion of the plume initially, and therefore this area of the restoration area will initially supply more water to the irrigation supply program.

Table 3-15 also presents the anticipated feet of irrigation water applied each year. Irrigation rates of 2.4 feet/year and 2.3 feet/year are planned to be applied to the Section 34 and Section 28 irrigation areas, respectively in 2011 and 2012. A limited amount of irrigation is proposed to be applied to the Section 33 center pivot to establish permanent grass. The amount of irrigation will decrease significantly after the full implementation of the alternative restoration program. These irrigation rates may vary due to the combination of restoration programs actually used. The continuing use of the irrigation program after the alternative restoration program is implemented will aid in controlling the restoration zone on its downgradient side.

3.5.1 Section 34

Figure 3-42 presents the predicted soil solution TDS concentrations for the flood irrigation for 2010. The observed lysimeter soil moisture TDS concentrations are also shown on this figure for lysimeters LY34-1, LY34-2 and LY34-3 for 2010. This shows that model prediction of concentrations for 2010 (blue line) are higher than those observed in the lysimeter. The predictions show that the soil solution concentrations have not increased below 25 feet in the soil profile. This figure also presents the predicted soil moisture concentrations for TDS for the flood area for 2030, 2050 and 2100 after operation of the irrigation program through 2017. This figure shows that the maximum concentration in the upper soil profile will increase but very little change in the soil profile is projected for depths greater than 20 feet. The very small change in the soil moisture concentration between 2030, 2050 and 2100 are due to the very limited driving force without irrigation. This prediction shows that the TDS concentrations from the flood irrigation essentially should never reach the water table. The long-term drainage of soil moisture from the bottom of the soil profile into the ground water is predicted to be roughly 3 mm/year or 0.73 gpm for the 120 acre flood area. Table C-1 in Appendix C presents the inputs and results from the LEACHP soil moisture model for the flood irrigation. The column labeled interval rain in Table C-1 includes both rainfall and irrigations depths.

The predicted soil solution sulfate concentrations for the flood irrigation for 2010 are presented in Figure 3-43. The observed lysimeter soil moisture sulfate concentrations are also shown on this figure for lysimeters LY34-1, LY34-2 and LY34-3 for 2010. This shows that model predictions (blue line) are greater than those observed in the lysimeter. The predictions show that the soil solution concentrations have not increased below 25 feet in the soil profile. This figure also presents the predicted soil moisture concentrations for sulfate for the flood area for 2030, 2050 and 2100 after operation of the irrigation program through 2017. This figure shows that the maximum concentration in the upper soil profile will increase but very little change in the soil profile is projected for depths greater than 20 feet. The very small change in constituent concentrations in soil moisture concentration shows that the sulfate concentrations from the flood irrigation essentially should never reach the water table. The long term drainage

of soil moisture from the bottom of the soil profile into the ground water is predicted to be roughly 3 mm/year or 0.73 gpm for the 120 acre flood area.

The predictions for the soil solution uranium concentrations in the flood area are presented in Figure 3-44. Model predictions of the uranium concentration in soil moisture for years 2010, 2030, 2050 and 2100 are presented on Figure 3-44. The blue line shows the predicted uranium concentrations after the 2010 irrigation season in the soil moisture and also shows the uranium concentrations in the three lysimeters in the flood area. The prediction is slightly higher than the observed concentrations in the three lysimeters. The figure also shows the predicted concentrations for years 2030, 2050 and 2100, which indicate essentially no increase in uranium concentrations below a depth of 15 feet. Uranium concentrations in the soil moisture should not reach the water table in the flood area in the foreseeable future.

Selenium transport in the soil was also modeled for the flood irrigation area and the results are presented in Figure 3-45. This figure also shows the 2010 observed selenium concentrations in the 3 lysimeters in the flood area. The prediction for 2010 is slightly greater than the observed selenium concentrations and indicates that no change in the soil moisture concentrations have occurred below 15 feet. The 2030, 2050 and 2100 soil moisture movements show only a very small change in the selenium concentrations in the future and that the downward movement rate of this soil moisture is very slow. This predicts that selenium from the irrigation will not reach the water table in the foreseeable future.

3.5.2 Section 28

The Section 28 soil moisture and constituent migration was simulated, but this simulation is also considered representative of the Section 33 profile except that the depth to water is greater in Section 33. The center pivot areas, which contain sandy soils and a large thickness of basalt below the soils, have soil moisture movement rates much greater than those of the clay soils in the flood area. Figure 3-46 presents the predicted and observed soil solution TDS concentrations for the Section 28 center pivot irrigation. The soil solution concentration data for the Section 28 lysimeters are presented on this figure. This data shows that, in general, the TDS soil moisture concentration for 2010 is slightly greater than the observed TDS concentrations from the lysimeters, except for lysimeter LY28-3. The simulation indicates that significant TDS concentrations should exist in the soil moisture concentrations for years 2030, 2050 and 2100 with irrigation discontinued after the 2017 season. This data shows that the soil moisture concentration of TDS for the lower soil profile should essentially be equal for each of these four simulations.

Figure 3-47 presents the predicted and observed soil solution sulfate concentrations for the Section 28 center pivot irrigation. The lysimeter data for the Section 28 lysimeters are presented on this figure. This data shows that in general, the sulfate soil moisture concentration for 2010 is slightly greater than the observed sulfate concentrations from the lysimeters, except for lysimeter LY28-3. Simulation indicates that significant sulfate concentrations should exist in the soil moisture that is reaching the water table in 2010. Figure 3-47 also presents the predicted soil moisture concentrations for years 2030, 2050 and 2100 after irrigation is discontinued in 2017.

This data shows that the soil moisture concentration of sulfate near the water table should essentially be equal for each of these four simulations.

The predicted uranium concentrations in the Section 28 center pivot irrigation areas are presented in Figure 3-48. This figure also shows the uranium soil moisture concentrations for the Section 28 lysimeters. This shows that two of the observed soil moisture concentrations are significantly less than the predicted concentration. The observed concentration for lysimeter LY28-3 is slightly greater than the 2010 prediction. The 2030, 2050 and 2100 predictions of soil solution uranium concentration are very similar and indicate essentially no change in the uranium concentration below 50 feet. Movement of the uranium soil moisture concentrations will essentially stop without continued irrigation due to the lack of driving moisture. Therefore, uranium concentrations are not expected to reach the water table in the Section 28 center pivot areas in the foreseeable future.

Figure 3-49 presents the predicted and observed soil solution selenium concentrations for the Section 28 center pivot irrigation area. The observed soil moisture concentrations in these lysimeters are all less than 2010 predictions. The observed concentration in Section 28 lysimeter LY28-3 is closest to the predicted 2010 soil moisture selenium concentration. This figure also presents the predicted 2030, 2050 and 2100 soil moisture concentrations after irrigation through 2017. This shows that very little change in the selenium concentration occurs below 45 feet between 2030, 2050 and 2100.

3.5.3 Section 33

Limited irrigation in Section 33 in 2011 and 2012 is proposed to establish a permanent grass on this area. A simulation of the soil moisture migration for Section 33 was made with the much smaller planned irrigation (see Table 3-15) in 2011 and 2012 and with the actual irrigation applications from 2000 through 2009. The same soil profile was used for the Section 33 and Section 28 simulations with the recognition that thickness of alluvial material above the alluvial water table in Section 33 is thirty feet greater than that in Section 28. This additional thirty feet would not measurably change the model predictions for the upper 65 feet. The much smaller irrigation amount for 2011 and 2012 for the Section 33 area results in a smaller flux rate through the soil profile. The soil moisture predictions for Section 33 are presented in Figures 3-50 through 3-53. A flux rate during irrigation of 40 mm is representative of the Section 33 area. Figure 3-50 presents the predicted and observed soil solution TDS concentrations for the Section 33 center pivot irrigation. The lysimeter data for the Section 33 lysimeters are presented on this figure. This plot shows that the predicted soil moisture TDS concentration for 2010 fit the observed TDS concentrations from the Section 33 lysimeters. Simulation indicates that a TDS of 3,400 mg/l should exist in the soil moisture that is reaching the water table in 2010. Figure 3-50 also presents the predicted soil moisture concentrations for 2030, 2050 and 2100 with discontinuation of irrigation after the 2012 season. This data shows that the soil moisture TDS concentration should essentially be equal below a depth of 25 feet for each of these four simulations.

Figure 3-51 presents the predicted and observed soil solution sulfate concentrations for the Section 33 center pivot irrigation. The lysimeter data for the Section 33 lysimeters are presented

on this figure. Data shows that in general, the predicted sulfate soil moisture concentrations for 2010 are slightly greater than or equal to the observed sulfate concentrations from the lysimeters, except for lysimeter LY4. These simulations indicate that a sulfate concentration of 1,500 mg/l should exist in the soil moisture that is reaching the water table in 2010. Figure 3-51 also presents the predicted soil moisture concentrations for 2030, 2050 and 2100 after discontinuation of irrigation in 2012. This data shows that the soil moisture concentration of sulfate near the water table should essentially be equal for each of these four simulations.

The predicted uranium concentrations in the Section 33 center pivot irrigation areas are presented in Figure 3-52. This figure also shows the soil moisture uranium concentrations for the Section 33 lysimeters. This shows that the observed soil moisture concentrations are similar to the predicted concentrations. The observed concentrations for lysimeters LY4MU and LY4ML are slightly greater than the 2010 prediction. The 2030, 2050 and 2100 prediction of uranium concentration are very similar and indicate essentially no change in the uranium concentrations so feet. The movement of the uranium soil moisture concentrations will essentially cease without continued irrigation due to the lack of driving moisture. Therefore, uranium concentrations are not expected to reach the water table in the Section 33 center pivot areas in the foreseeable future.

Figure 3-53 presents the predicted and observed soil solution selenium concentrations for the Section 33 center pivot simulations. The observed soil moisture concentrations in these lysimeters are all less than 2010 predictions except for a very good fit of the sample result from lysimeter LY4ML. This figure also presents the predicted 2030, 2050 and 2100 soil moisture concentrations after irrigation through 2012. This shows that very little change in the selenium concentration occurs below 50 feet between 2030, 2050 and 2100.

Additional LEACHP model runs were made for the Section 33 area without any additional irrigation beyond 2009. These results are useful to see the difference in the model predictions with and without the limited 2011 and 2012 irrigation. Figures 3-54 through 3-57 present the predictions for the Section 33 soil moisture without any additional irrigation. Figure 3-54 shows that there is a small difference between the results without any additional irrigation and the results with the two years of additional irrigation in the upper 25 feet of the soil profile (see Figure 4-23). No difference in the soil moisture TDS concentrations is expected below 25 feet in the future with and without the two years of limited irrigation. The difference for sulfate soil moisture concentrations between no additional irrigation in Section 33 (see Figure 3-55) and two years of additional irrigation (see Figure 3-51) is very similar to the TDS concentration difference.

Figure 3-56 presents the uranium predictions for the soil moisture for Section 33 without any additional irrigation. When compared to Figure 3-52, which portrays limited irrigation through 2012, Figure 3-56 shows that a small uranium concentration difference exists in the upper 10 feet of the soil profile but no difference should exist below 10 feet in the future. A comparison of Figures 3-57 and 3-53 also shows that the predicted selenium concentrations without and with the limited two years of irrigations are the same below a depth of 10 feet.

The limited irrigation in Section 33 in 2011 and 2012 to establish grass will not increase the TDS and sulfate concentrations in the soil moisture below 25 feet in the future. Also the uranium and

selenium concentrations in the soil moisture will not increase below a depth of 10 feet. The small increase in soil moisture concentrations in the upper portion of the soil profile will not affect the future use of this land.

3.6 Soil Health

Soil health as related to irrigated crop production is generally monitored as a function of the salt loading of the soils and potential adverse affects on soils due to excessive sodium in the irrigation water and in the soils. In order to understand the possible effects of these parameters on the irrigated soils, it is desirable to know other characteristics of the soil including soil particle size and texture, natural salt and sodium levels, bulk density, clay mineralogy, infiltration rates, hydraulic conductivity, and depth to bedrock. The following sections describe the soil conditions at the Grants irrigation sites and the affects of many years of irrigation on the soil health.

3.6.1 Irrigated Soil Physical Characteristics

Prior to establishment of the irrigated areas, a detailed assessment of the potential soils to be irrigated was conducted in 1998. Originally, SCS (now NRCS) soil mapping was used to establish baseline conditions at the site and then backhoe trenching was utilized to refine the characteristics of the irrigation areas. Following is a general description of those soils prior to irrigation.

For the Section 33 Center Pivot area, the majority of the area is comprised of the Mespun sandy loam to sandy soil series with minor acreages of Sparank sandy clay loam to clay loam and the Aparejo silty clay loam series. Following the backhoe examination, it was determined that the soils located under the pivot were comprised largely of the Mespun series and another sandy series referred to as the Glenberg, or Glenberg- variant soil series. Both soils have sandy loam to loam surface textures. The Mespun soil developed in wind blown sands and the surface sandy loam layer is shallow, generally 10 inches or less. Below 10 inches are high permeability stratified fine to medium sands. The Glenberg soils developed in fluvial deposits and the sandy loam to loam surface layer is up to 24 inches thick. Below 24 inches are highly permeable stratified fine to medium sands. The Glenberg soils generally have slopes of 1% or less and the Mespun soil slopes range from 1% to 6%.

Irrigation suitability of these soils was based on NRCS suitability ratings, field investigations including backhoe trench analyses and laboratory analyses, and double ring infiltrometer tests. These soils are generally unsuitable for flood irrigation due to their sandy nature, rolling topography, and extremely rapid infiltration rates. While these soils were considered by NRCS to be marginal for sprinkler irrigation due to their droughty nature and rapid infiltration rate, with proper irrigation application rates and pivot cycles, these soils were determined to be acceptable for the establishment of a center pivot irrigation system.

The Section 28 Center Pivot was initially established as a 60 acre system and later expanded to cover 100 acres. The NRCS mapped this area as the Glenberg soil series with San Mateo soils occurring in swale areas. The backhoe examination confirmed the NRCS mapping and the majority of the area under the Section 28 center pivot is comprised of Glenberg sandy loam soils. This soil generally has sandy loam surface and subsurface soils ranging up to 24 inches in depth.

Below 24 inches are stratified medium and fine sands. Swales are dominated by the San Mateo sandy clay loam soils consisting of loam to sandy clay loam surface and subsurface textures up to 28 inches deep. Below 28 inches are fins to medium stratified sands.

The NRCS rated the sprinkler irrigation suitability of the Glenberg soil as somewhat limited due to droughty condition and relatively low water holding capacities. However, these soils were determined to be adequate to support sprinkler irrigation as long as proper irrigation application rates and cycles were maintained.

The Section 34 flood irrigated soils were mapped by the NRCS with the majority of these soils described as the Sparank clay loam soils. These soils are characterized as having clay loam surface horizons with clay loam to clay subsurface horizons ranging up to 24 to 36 inches deep. Generally, stratified clay loam, sandy clay loam, and silty clay loam soils are found below these depths. Field examinations, including backhoe trenches, indicate that the northern one third of these soils in the flood irrigation area are the San Mateo soils with sandy clay loam to clay loam surface textures and clay loam sub-surface textures to 24 inch depths. Below 24 inches in these soils are stratified fine and medium sands. The remaining soils were determined to be the Sparank series as described by the NRCS. However, these soils were found to have stratified fine and medium sands located at depths of about 36 inches.

The NRCS rated these soils as somewhat limited for flood irrigation due to very slow percolation or infiltration rates. However, these soils had been flood irrigated historically since the 1950's. The biggest factor in flood irrigation of these soils was excessive cracking if they were allowed to dry. Extensive laser leveling was conducted on the site prior to irrigation in 2000 and the site was seeded to alfalfa forage production. Irrigation was accomplished through gated irrigation piping.

The Section 33 flood irrigated soils were mapped by the NRCS as the Sparank soils. These soils are characterized as having clay loam surface horizons and clay loam to clay subsurface horizons to depths of 72 inches. Field investigations for these soils showed that the southwest portion of the Section 33 flood irrigated soils were comprised of the Aparejo clay loam soil series, sandy substratum phase. The remainder of the soil was the Sparank clay loam soils as mapped by NRCS. Like some of the Section 34 flood irrigated soils, these soils had fine to medium sands at depths of 24 to 36 inches. As with the Section 34 flood irrigated area, these soils were historically flood irrigated in the 1950's and 1960's. These soils were seeded to grasses and irrigated in 2004, 2005 and 2008.

3.6.2 Soil Salt and Sodium Relationships with Irrigation Water Quality

Measurement of soil chemistry, particularly sodium levels and salt (Electrical Conductivity - EC) levels provides an understanding of the amount of soil constituents that remain in the soil after an irrigation season. In the case of soil salinity, it is desirable to leach salts through the root zone to prevent crop toxicity from occurring. The concentration of sodium and salt in the site irrigation water has been examined to assess their affect on the irrigated soils.

Sodium affects soil physical properties by causing soil clays to expand and disperse. The expansion of clay results in a significant decrease in soil permeability making it difficult to push irrigation water through the soil profile. Because potential adverse affects of sodium on soils are related to the amount of exchangeable sodium that can adsorb on the soil cation exchange complex, measurement of the exchangeable sodium and cation exchange capacity provides a valuable tool for predicting and monitoring potential adverse affects on soil health due to sodium in the irrigation water.

Since soil clays are directly affected by sodium, it stands to reason that sandy center pivot soils are not generally affected by the presence of high sodium levels. Conversely, heavy clay irrigated soils have a higher risk for being adversely affected by higher sodium levels. In addition, the salinity concentrations in the soil and irrigation water will alter how significant the affect of sodium is on the soil clays. Salts tend to flocculate clays, reducing the amount of expansion. When salts are significant, soil permeability may not be affected by higher concentrations of the sodium.

Historically, since ESP and CEC are more difficult and expensive to analyze, scientist developed an empirical relationship comparing soluble sodium to exchangeable sodium (U.S.D.A. Handbook 60) and assumes the soils are in chemical equilibrium. The sodium adsorption ratio (SAR) compares soluble sodium concentrations to the concentration of soluble calcium and magnesium in the soil. In soils that were in chemical equilibrium, a SAR of 12 was comparable to an ESP of 15. For irrigated soils like those at the Grants irrigation sites, the soil may not be in chemical equilibrium and the historical comparison of SAR to ESP may not be as accurate. However, SAR is still a useful parameter to examine for potential sodium risks to soil health.

Irrigation wells have been analyzed for sodium and salinity concentrations. This data is useful in assessing the current and potential adverse risk to the soil associated with the irrigation water. The mean SAR of these wells was 5.2 and the SAR range was 4.2 to 6.1. The mean electrical conductivity (EC) of these wells was 2690 umhos and the range was 2205 to 3440 umhos.

As described previously, the concentration of salts in irrigation water can be useful to counteract the possible adverse effects of sodium on expanding soil clays. Table B-1 in Appendix B shows the level of exchangeable sodium, at varying clay contents, which would cause a 25% reduction in soil hydraulic conductivity at three concentrations of salt in the irrigation water. Without considering all other factors that ameliorate the effects of sodium on soils, an ESP of 15% (SAR 12) was historically considered risky for successful irrigation of all soils.

For the Section 33 and 28 center pivot soils, the average clay content would be approximately 15%. Referring to Table B-1, the estimated critical ESP of these soils would be 25%, 30%, and 40% for irrigation water with salt concentrations of 1000 umhos/cm, 2000 umhos/cm, and 4000 umhos/cm, respectively. Essentially, this data confirms that because of low clay content, little risk exists for irrigation of these soils in relation to adverse affects due to sodium.

For the Section 33 and 34 flood irrigated areas, the average clay content will be 35 to 40%. Referring to Table B-1, the critical ESP for these soils would be 15%, 21%, and 28% for the 1000 umhos/cm, 2000 umhos/cm, and 4000 umhos/cm salt levels, respectively. In relation to the average site irrigation water electrical conductivity of 2690 umhos/cm, adverse soil problems

associated with sodium would not likely occur as long as the ESP of the soils stayed below about 25% (SAR < 20).

Table B-2 in Appendix B shows the soil health risk when the sodium level (SAR) of the irrigation water is included with the salinity concentrations effects. The table summarizes the associated risk for all soil textural families ranging from sandy (center pivot irrigation) soils to fine loamy to fine clay (flood irrigation) soils. The average SAR of the irrigation water is 5.2 and, when coupled with the 2690 umhos/cm salinity levels, the resulting irrigation water quality class is a C4S1. For the sandy center pivot irrigated soils, the soil health risk associated with irrigation of the C4S1 water will be very low to low in relation to possible reductions in permeability and hydraulic conductivity. For the fine loamy to clayey flood irrigated soils, the soil health risk is low.

While sodium effects are primarily a physical problem in soils, high salinity levels could cause problems related to crop toxicity to salts. Without specific crop knowledge, a soil salinity level in excess of 2200 umhos/cm may be considered toxic to plants. However, individual crops respond differently to salinity levels. The primary crops grown at the site are alfalfa and grass. Both of these crops are adapted to the growing conditions for the Grants area and are moderately to strongly salt tolerant. Soil salt levels around 4500 umhos/cm may prevent some germination of these crops. However, once geminated they are strongly salt tolerant and can withstand salt concentrations in excess of 4500 umhos/cm. Regardless of the individual crop salt tolerance, it is important for all crops to overall soil health to leach a portion of the salts below the root zone to prevent the buildup of salts over time.

3.6.3 Effects of Current Irrigation Practices on Soil Health

ESP is not generally available in the HMC irrigated soil data base, therefore, any discussions in this report on possible sodium soil changes will focus on the use of SAR. Table 3-4 provides a summary of the soluble sodium, calcium, magnesium, SAR, and EC annual monitoring data for both background and irrigated soils for the life of the irrigation project. Note that the Section 33 and 28 center pivot soils did not receive irrigation water in the 2010 irrigation season.

For the Section 33 center pivot area, the SAR for background soil samples before irrigation was approximately 1.0. After the 2009 irrigation season, the reported SAR under the center pivot for the 1 foot, 2 foot, and 3 foot sampling depths was 6.71, 8.53, and 7.856, respectively. While these values appear to have increased significantly over the past ten years, these SAR values more appropriately reflect the migration of the soluble constituents in the irrigation water. And, as stated before, sodium at these levels will have limited adverse affects on the sandy center pivot soils.

The background electrical conductivity levels for this site ranged from 200 to 1740 umhos/cm. After the 2009 season, the average EC for the three sampling depths for all years was 3472, 3906, and 4271 umhos/cm. Keep in mind that the EC of the irrigation water can range up to 3400 umhos/cm and while the EC has increased over time, the salinity levels are reflective of the migration of the irrigation water constituents and are lower than levels that will create concern over potential toxicity for the crops that have been grown.

For Section 28, the average background SAR in the soil for all depths is 1.21. After the 2010 irrigation season, the average SAR in the 3 foot sampling depth was 5.56 and the SAR for the 1 foot depth, 2 foot depth, and 3 foot depth was 5.78, 5.07, and 5.84, respectively. Again, the presence of an apparent increase in SAR is indicative of the movement of the irrigation water through the soil profile. Evidence of this process is that the SAR increased immediately after the first irrigation season. Again, the sodium has little effect on the permeability of sandy soils. The average EC of the 3 foot soil profile for Section 28 is 773 umhos/cm and the individual 1 foot depth, 2 foot depth, and 3 foot depth averages for all years was 704, 802, and 814 umhos/cm, respectively. In 2010 the average EC was 4193 umhos/cm and the 1 foot, 2 foot, and 3 foot depths were 4290, 4130, and 4160 umhos/cm, respectively. Again, these increases occurred immediately after the first irrigation and are reflective of the irrigation water quality and mass water balance. All EC levels are lower than levels expected to cause salt toxicity problems in the site crops.

For the Section 34 flood area the average background SAR for the 3 foot root zone is 4.43 and the average for all years of the individual 1 foot, 2 foot, and 3 foot sampling depths was 4.10, 4.70, and 4.48, respectively. Following the 2010 irrigation season, the average SAR level for all depths was 6.27 and the 1 foot, 2 foot, and 3 foot depths were 6.56, 7.06, and 5.19, respectively. Review of the yearly data shows that the SAR, reflective of the soluble sodium, is variable from year to year. That is, depending on the amount of leaching through the soil profile, the SAR goes up or down on a yearly basis. Based on SAR numbers and irrigation infiltration observations, these soils are not showing any significant reduction in soil permeability or hydraulic conductivity. These findings are consistent with the predictions described in Section 6.2 for the C4S1 water quality class.

The average background EC of the 3 foot sampling depth is 3265 umhos/cm and for the 1 foot, 2 foot, and 3 foot depths the EC was 2555, 3358, and 3873 umhos/cm, respectively. After the 2010 irrigation season, the average EC for the 3 foot sampling depth was 4165 umhos/cm and for the 1 foot, 2 foot, and 3 foot depths, the EC were 4110, 4560, and 4090 umhos/cm, respectively. Keep in mind that this area was irrigated previously and the background salt levels are indicative of that previous irrigation. However, review of the yearly EC data as shown in Table 7 shows that the salts concentrations can vary up or down on a yearly basis and are directly related to the amount of yearly leaching of the salts through the root zone. While these EC levels may be marginal for some crops, particularly some row crops, they are suitable for the hay and grass crops grown on the site.

For the Section 33 flood irrigated soils, the average background SAR was 1.43 and the average for all years of the individual 1 foot, 2 foot, and 3 foot sampling depths was 1.49, 1.27, and 1.52, respectively. At the end of the 2010 irrigation season, the average SAR for all depths was 3.26 and the 1 foot, 2 foot, and 3 foot SAR values were 3.57, 3.14, and 3.07, respectively. As with the other irrigated areas, the increase in SAR was immediately reflected in the first year and the values move up or down annual depending in leaching. The SAR value after five years of irrigation is still well below levels of concern for reducing hydraulic conductivities and permeability.

The average background EC for the 3 foot sample depth is 828 umhos/cm and the background EC for the 1 foot, 2 foot, and 3 foot individual sample depths is 876, 754, and 855 umhos/cm,

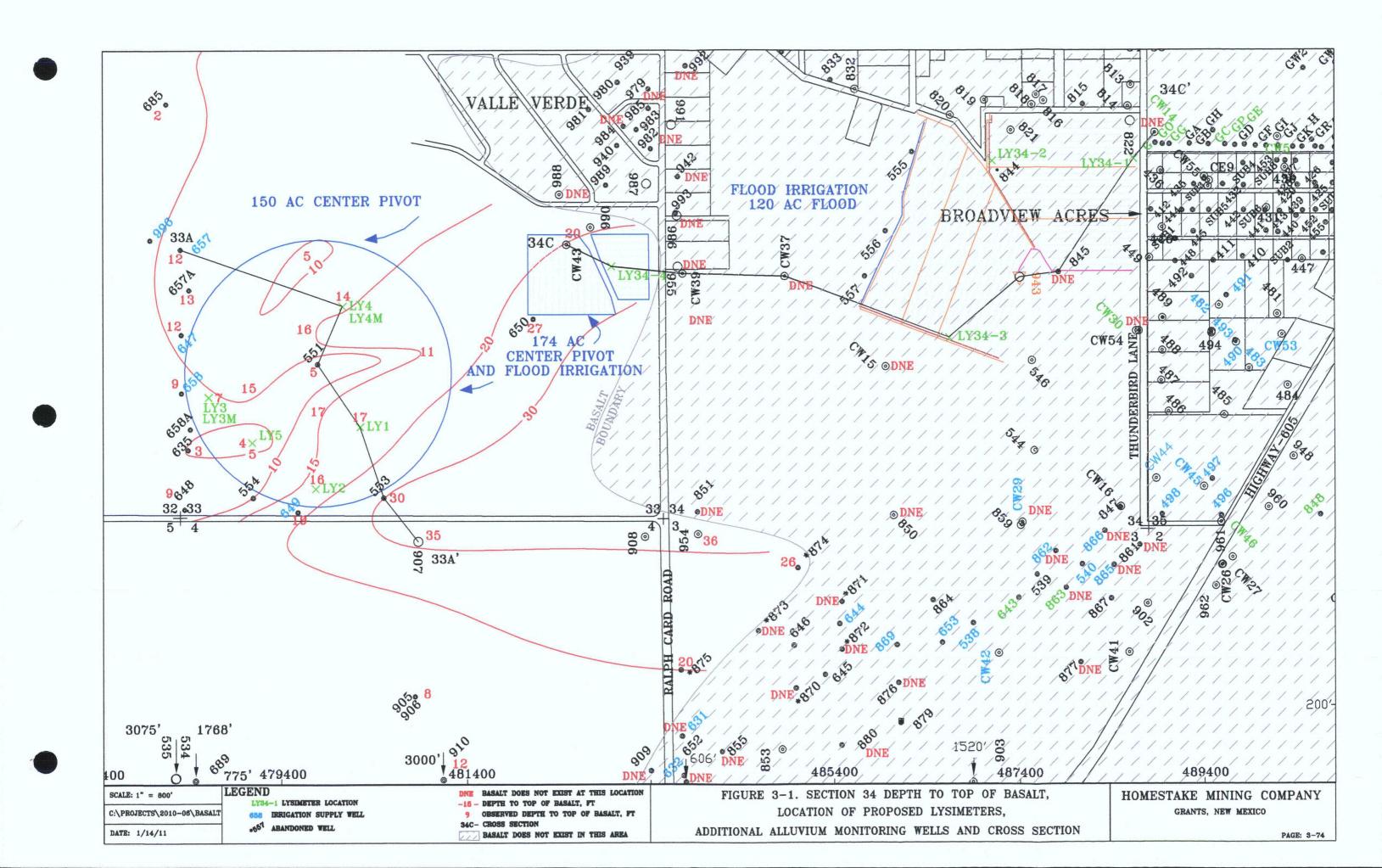
respectively. At the end of the 2010 irrigation season, the average 3 foot EC was 2348 umhos and the individual 1 foot, 2 foot, and 3 foot depth EC was 1610, 1170, and 2530 umhos/cm, respectively. Again, as with all sites, the increases were evident immediately after the first irrigation season and are reflective of the overall water balance and the quality of the irrigation water. These EC levels are well within the desired toxicity range for the crops grown at the site. As noted earlier, it is important to leach salts from the root zone to prevent buildup of salts to the level that they affect crop production. The combined irrigation well water is routinely analyzed for chloride, a major component of soil salts. By measuring the applied irrigation water chloride and comparing that data to the mass soil chloride concentrations, the net chloride passing through the root zone over time can be determined on a mass balance basis. This measurement is directly related to salt concentrations and allows for a direct assessment of the yearly and cumulative leaching of salts through the root zone.

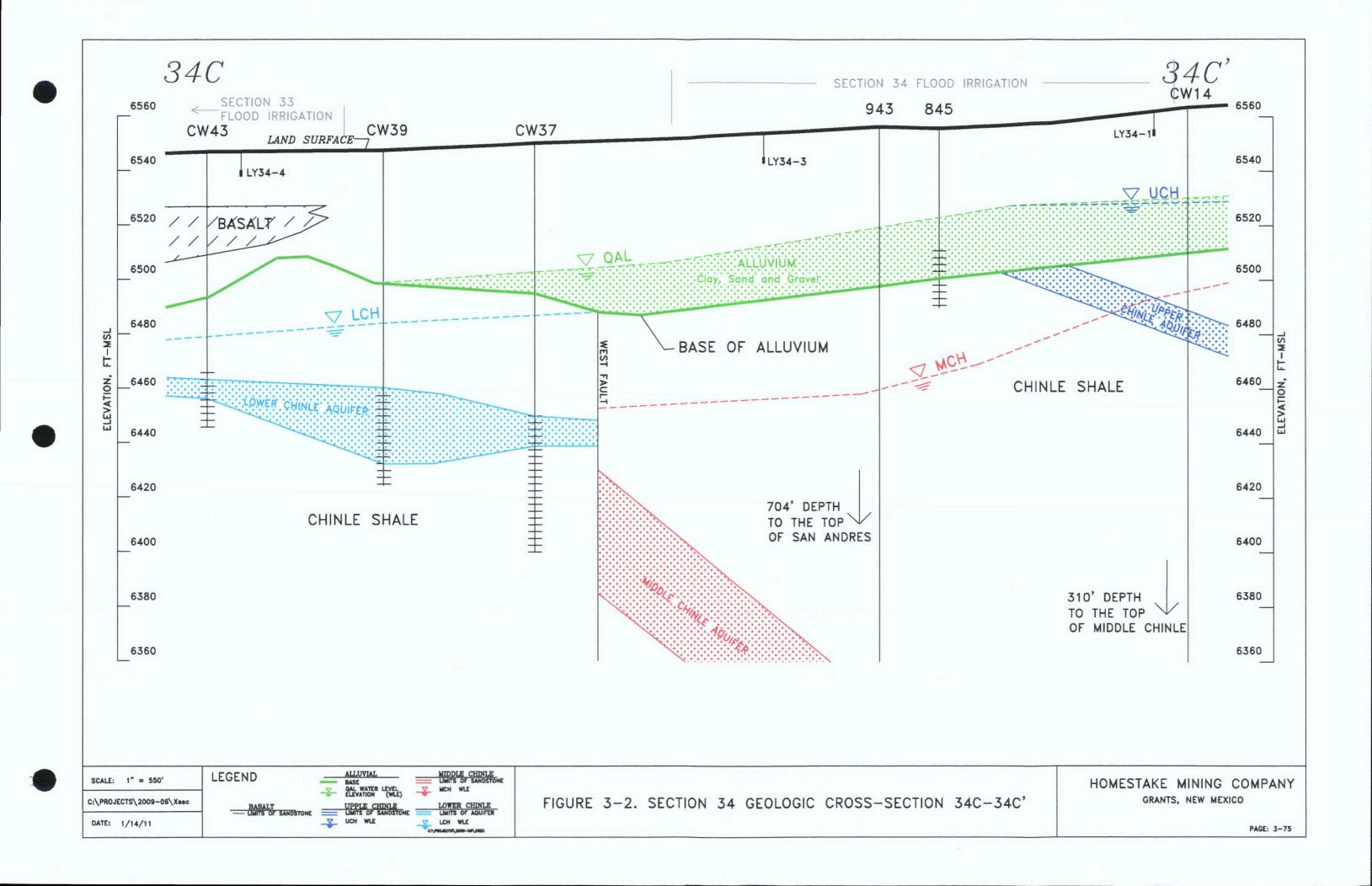
Detailed tabular data on chloride leaching for all sites is provided in Table 7. For Section 33 center pivot soils, a net 82percent of all applied chloride for all the years of irrigation has been leached through the soils. Evaluation of the data shows that the leaching may be variable and in one year, no leaching occurred although the net leaching is significant over time. Routine irrigation practices are sufficient to allow for leaching of salts from the sandy soils.

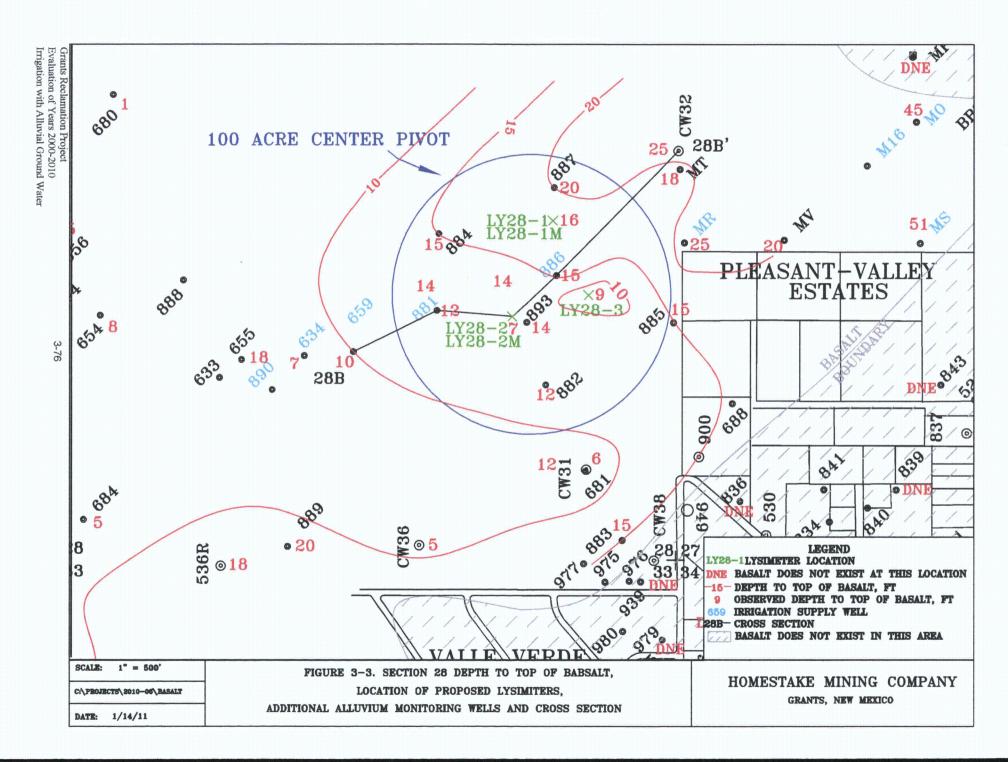
For the Section 28 center pivot site, 86 percent of the applied chloride has passed through the root zone for all of the years of irrigation. As with the Section 33 irrigation, salts are easily leached below the root zone.

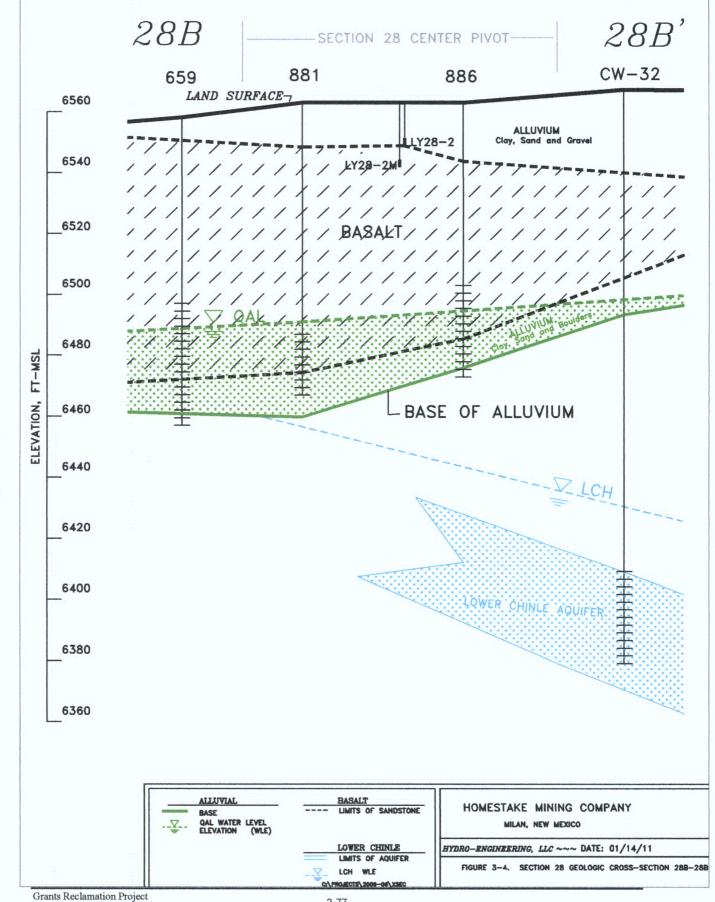
For the Section 34 flood irrigated soils, the mass balance of applied chloride versus stored soil chloride indicates that 68 percent of the chloride has been leached through the root zone or did not enter the soil. Since this is a mass balance calculation using total applied chloride, the percent leaching is likely distorted because the calculation has not been corrected for chloride not entering the soil profile due to tail water losses. If one assumes that tail water accounts for 25 percent of the applied water only 51 percent of the chloride was leached. This data is reflected in the annual residual concentration of salts (EC) in the Section 34 flood irrigated soils. The very heavy clay soils make it more difficult to maintain salt leaching and prevent salt toxicities over time. However, review of the soil EC data on a yearly basis shows that sufficient salts are leached over time to prevent the concern to soil health for salt toxicity.

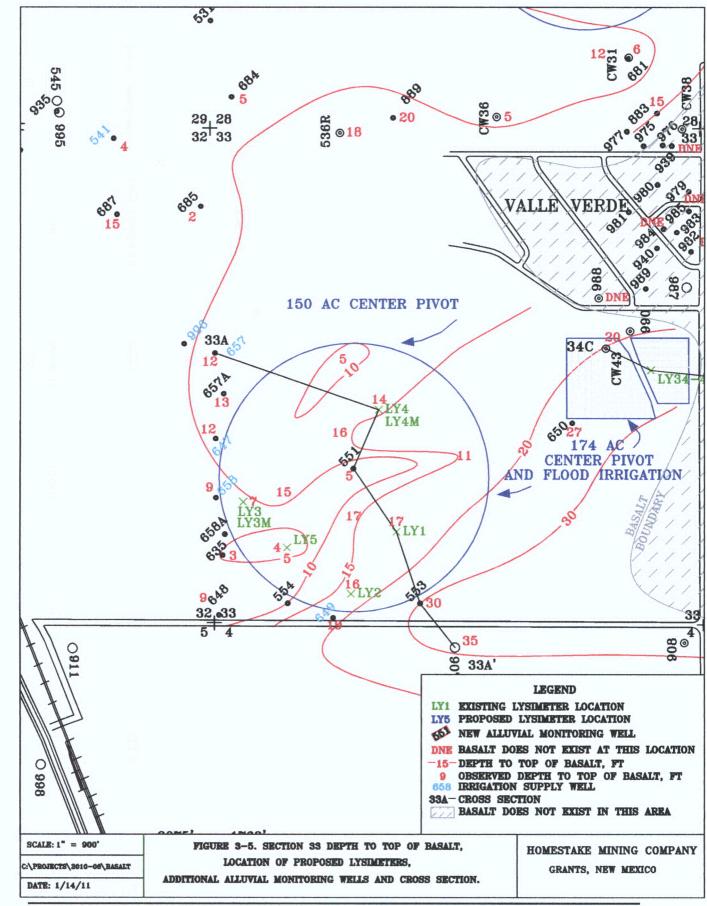
While EC levels are lower in the Section 33 flood irrigation area than in the Section 34 area, the relationship is very similar. Note that the differences are related primarily to the lower background EC levels at the start of irrigation. When accounting for chloride lost due to tail water, the net leaching level of the chloride in Section 33 flooded soils is 46%. As in Section 34, the leaching has been sufficient so far to prevent concern for salt toxicity to occur.

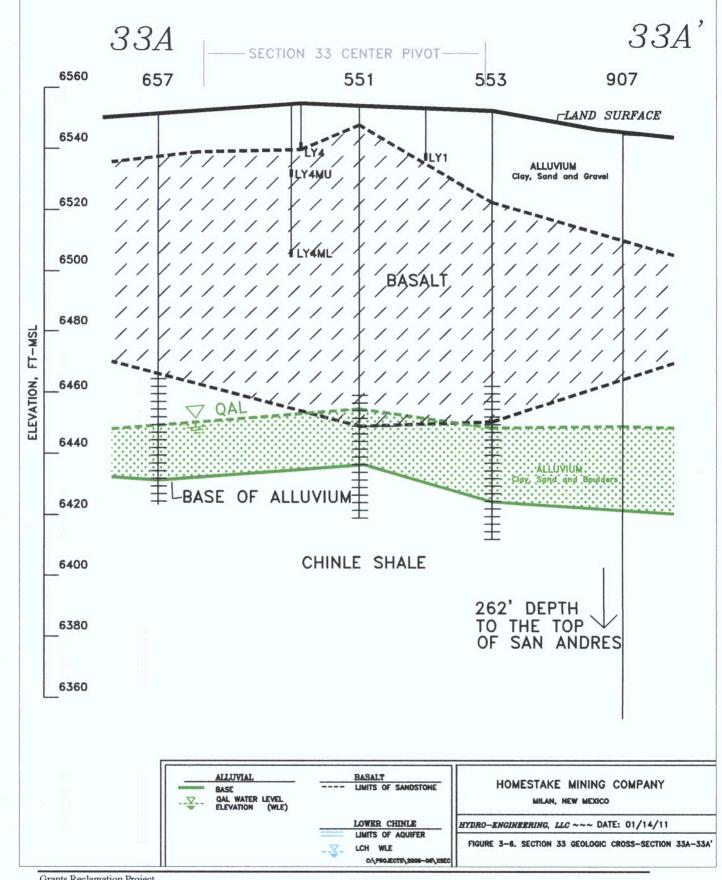

3.6.4 Conclusions

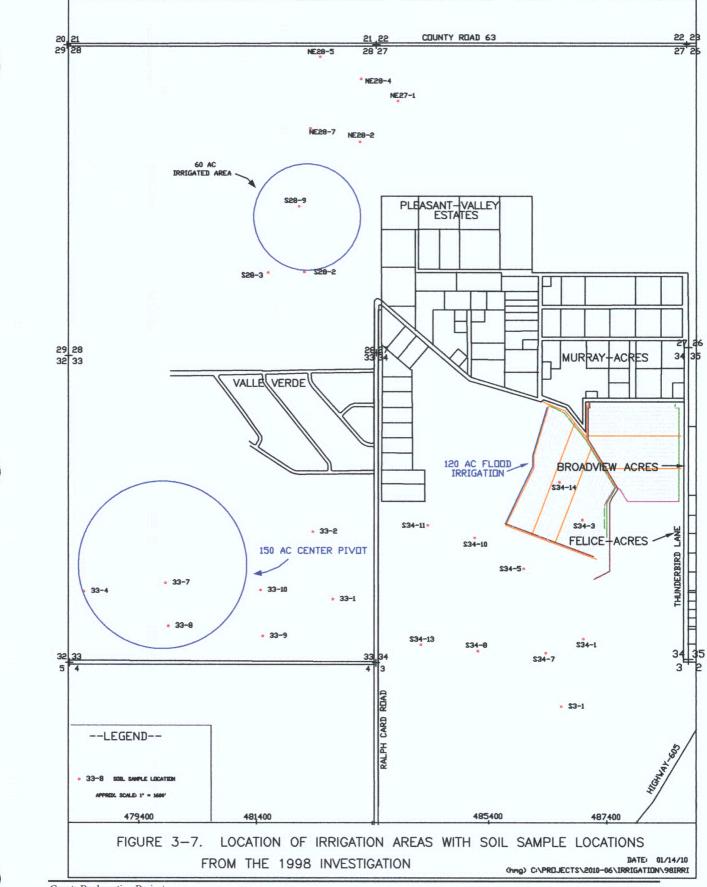

Soil Health associated with irrigation programs is generally centered around the affects of excess sodium on soil physical properties and on salt buildup to potentially toxic levels for vegetation or crops. The potential risk that these elements pose is much different for sandy soils than for heavier clay or clay loam soils. The low clay content of sandy soils allows for much higher sodium concentrations because sodium has no adverse affect on sand particles. The irrigation water quality for the site wells can be classified as C4S1 water with SAR levels less than 10 and

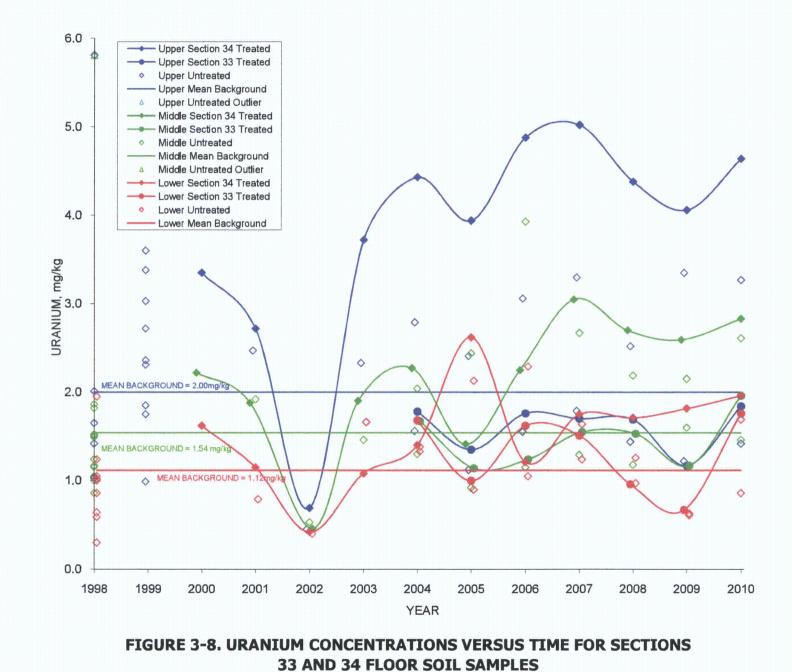

EC levels greater than 2250 umhos/cm. The average SAR for the site water is 5.2 and the average EC is 2690 umhos/cm. This water quality is rated as very low to low sodium risk on sandy soils and low sodium risk on fine loamy soils, due to the flocculation effects that salts have on soil clays.

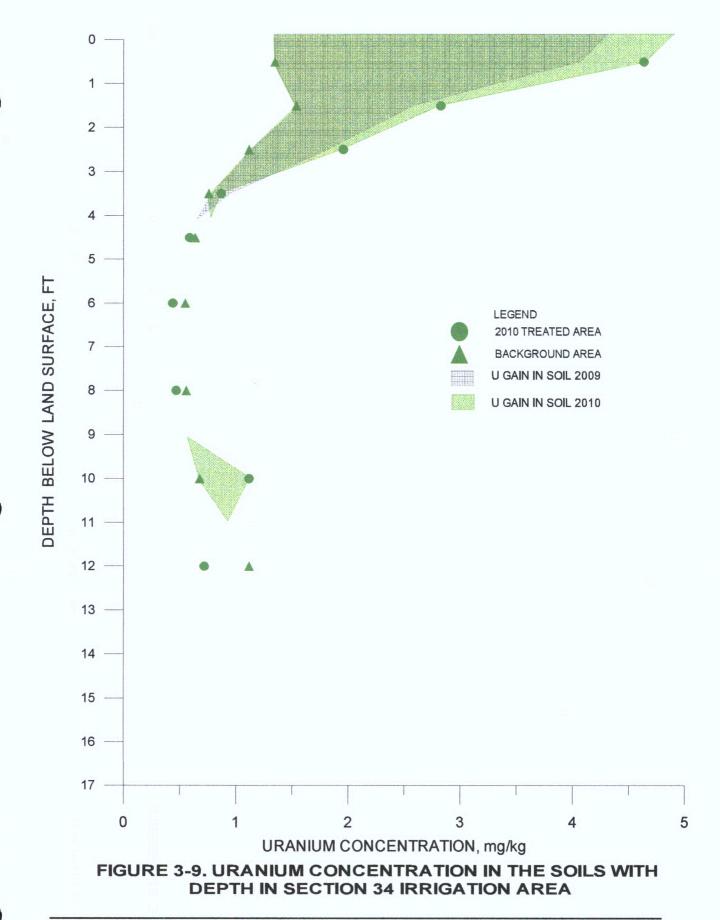

While salt concentrations are important to counteract the affect of higher sodium levels on soil clays, the salts may have a toxic affect on vegetation. For the alfalfa and grasses grown at the site, the soil salt toxicity level of concern is in excess of 4500 umhos/cm. Leaching of salts at all sprinkler and flood irrigated sites has prevented the buildup of salts to toxic levels. Review of the annual data indicates that the soil health, as related to salts and sodium, has not been adversely affected over the years.

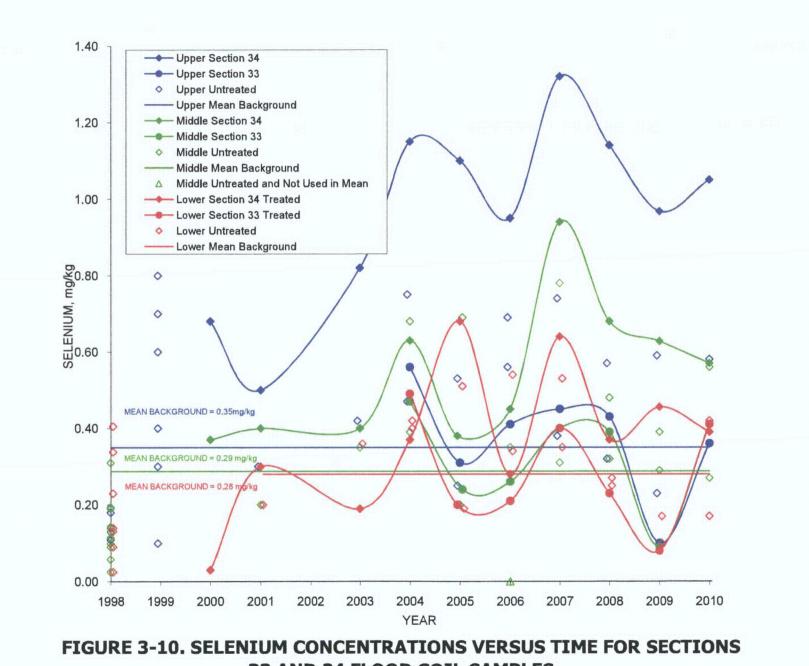


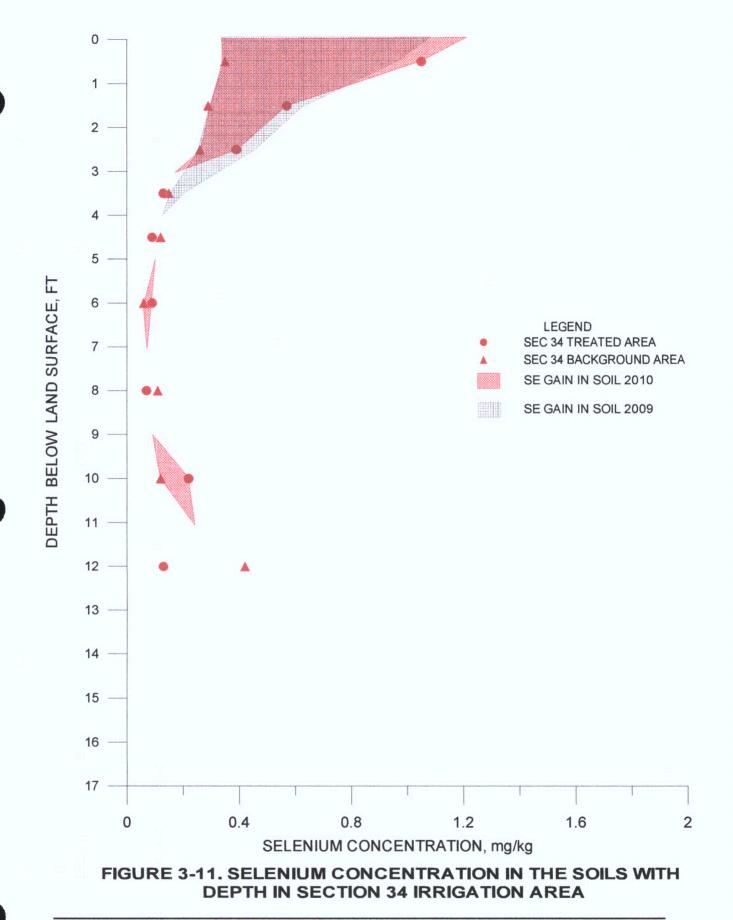


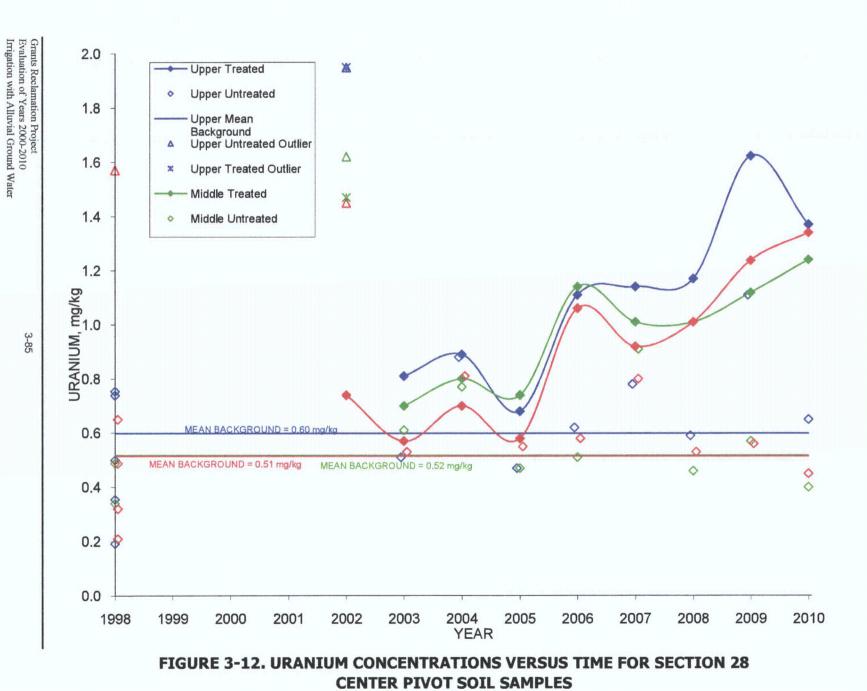


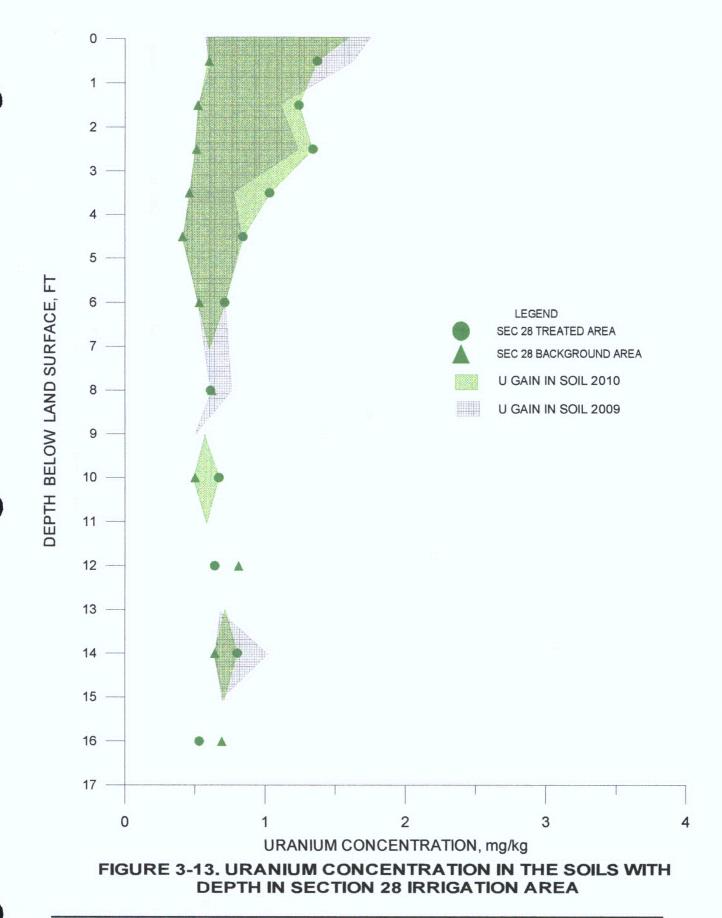


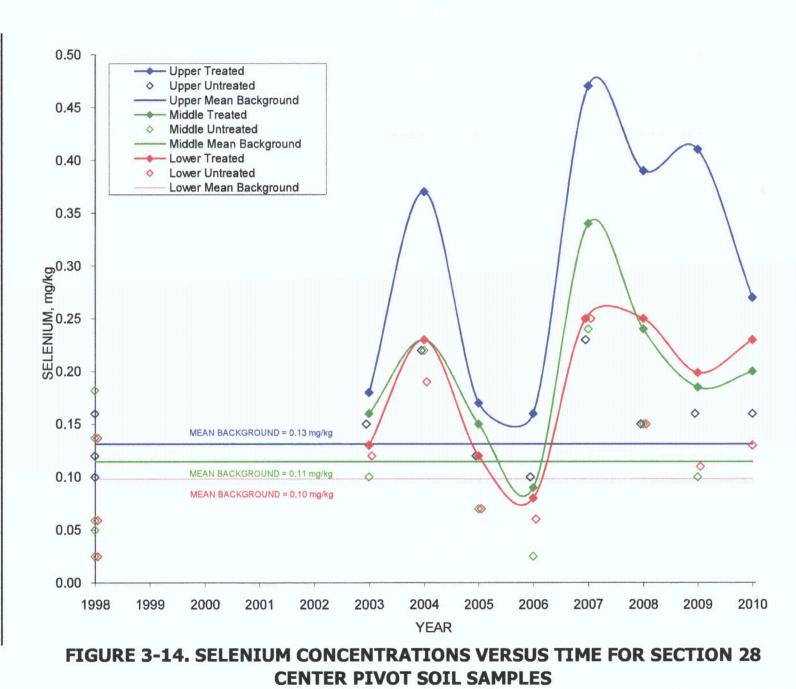

Evaluation of Years 2000-2010 Irrigation with Alluvial Ground Water

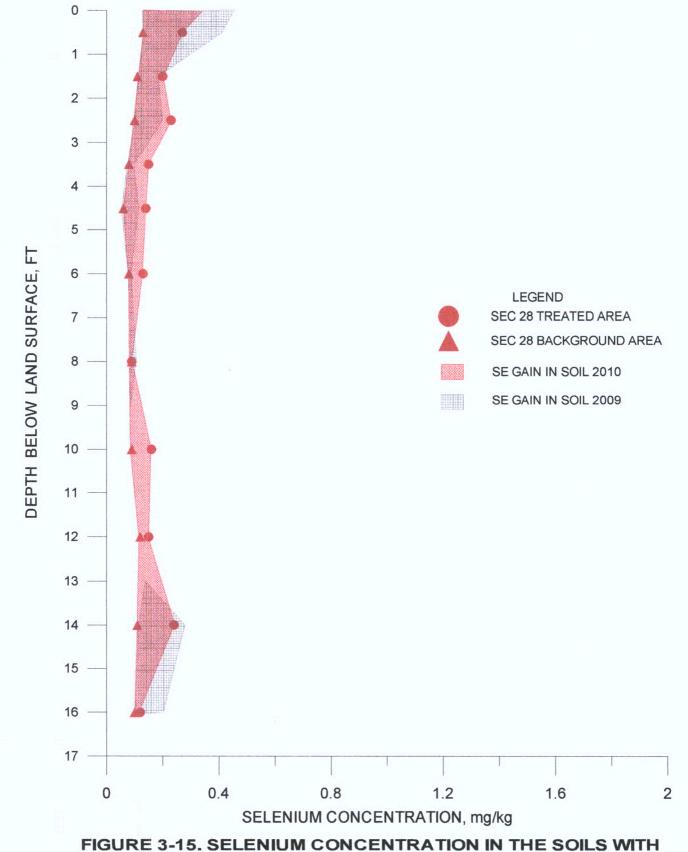


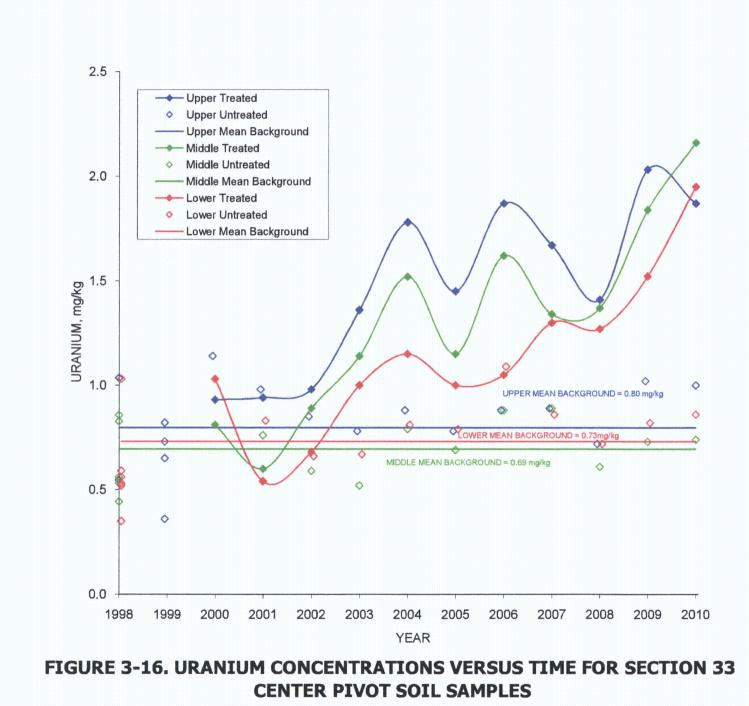


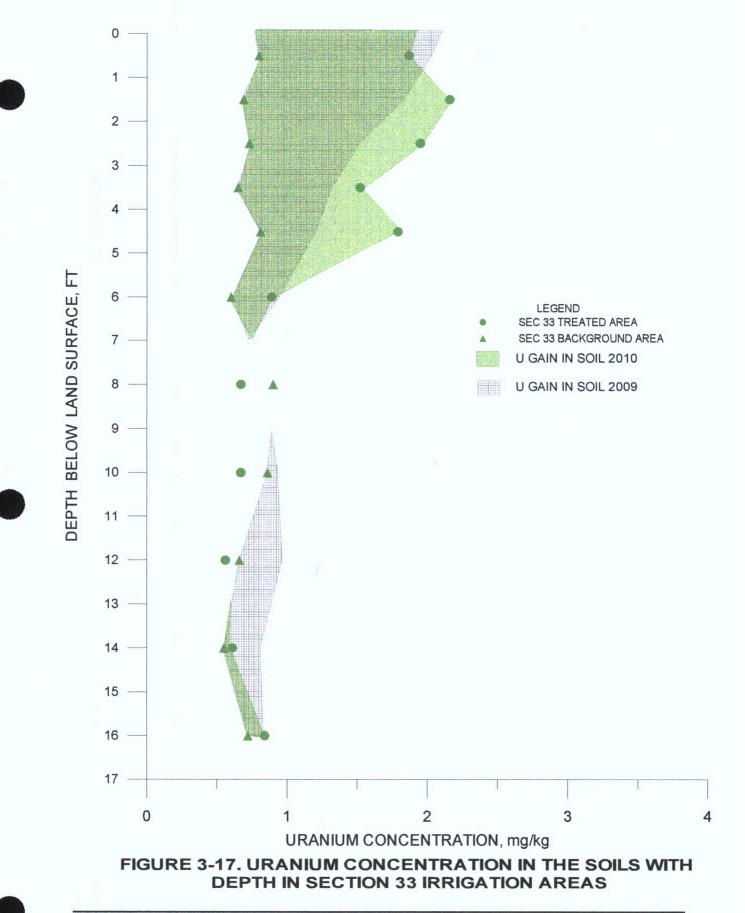


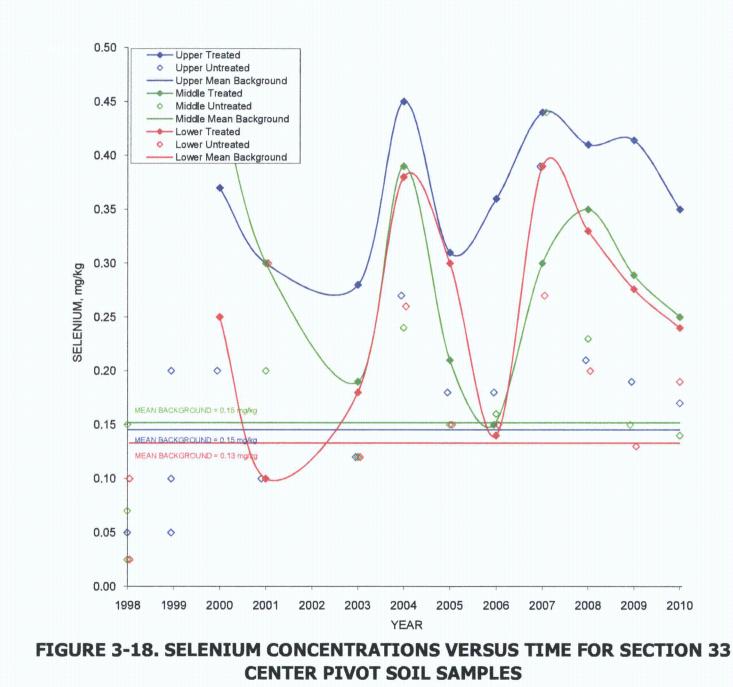



33 AND 34 FLOOD SOIL SAMPLES

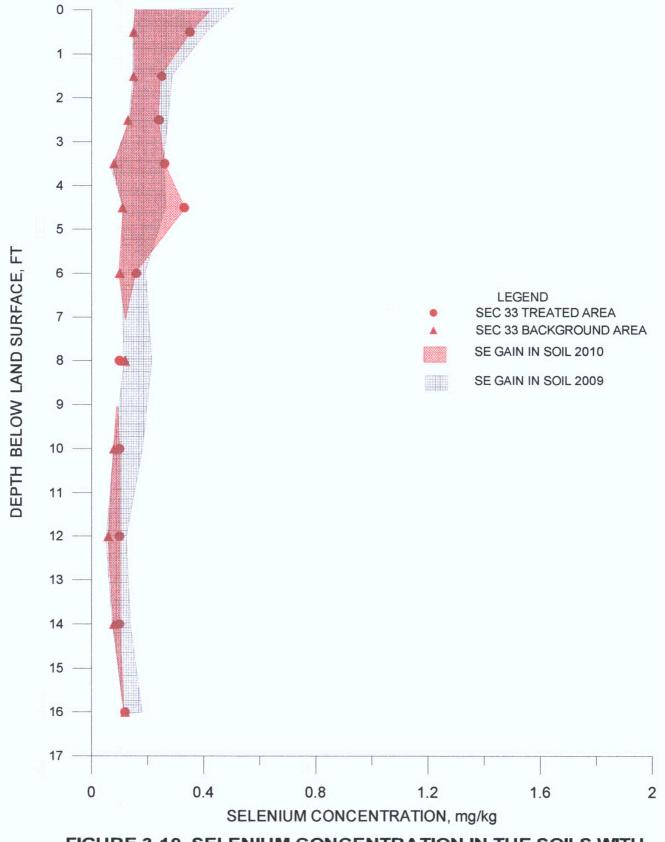
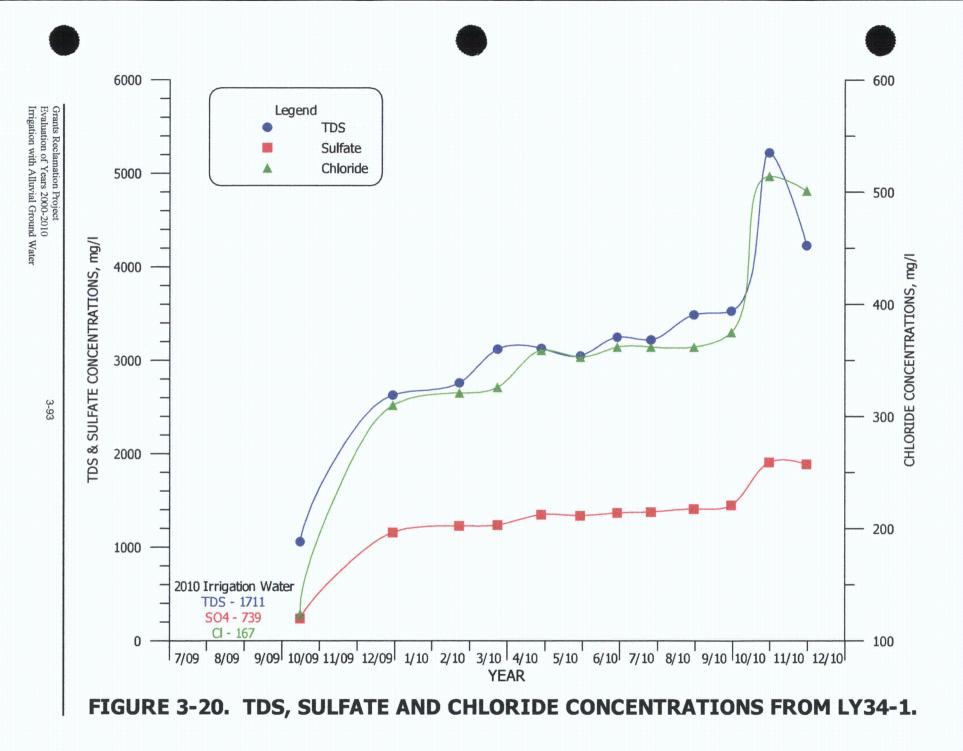
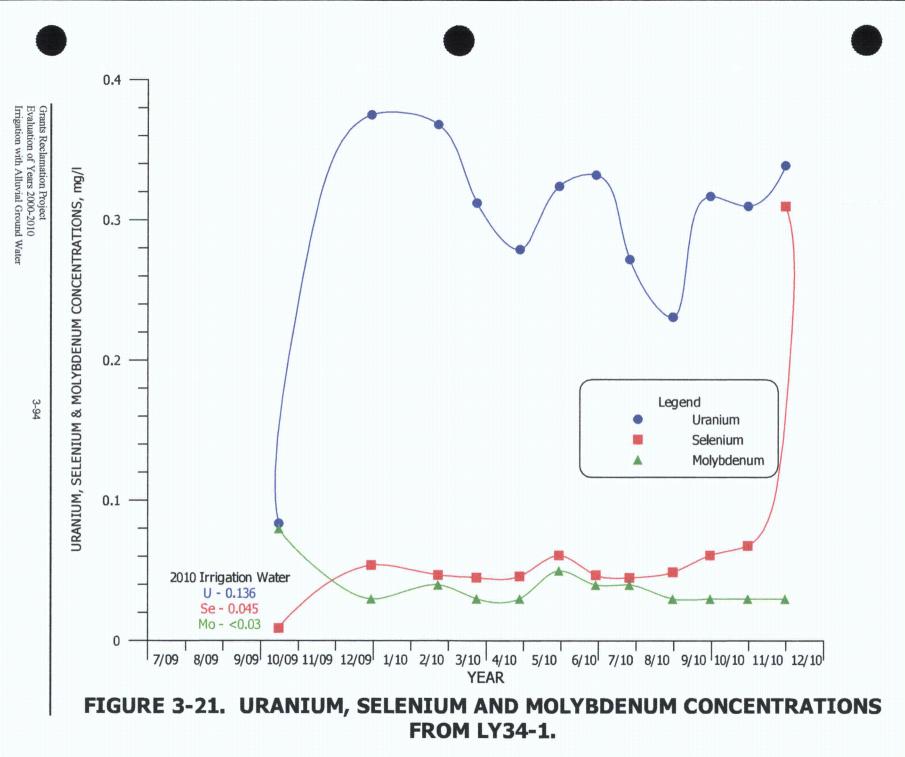
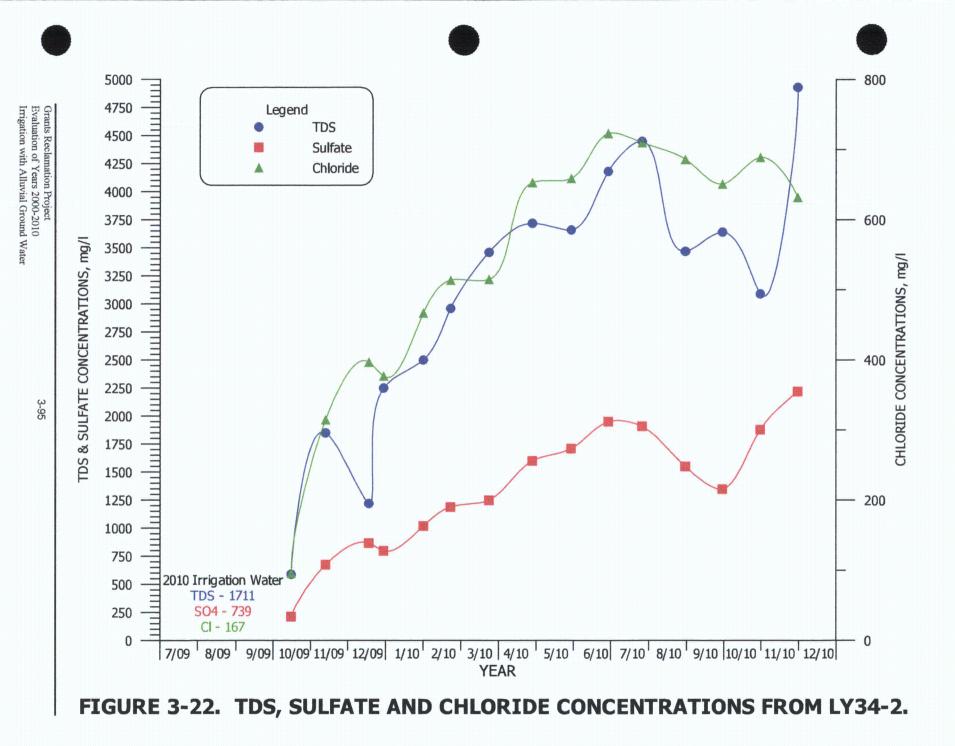
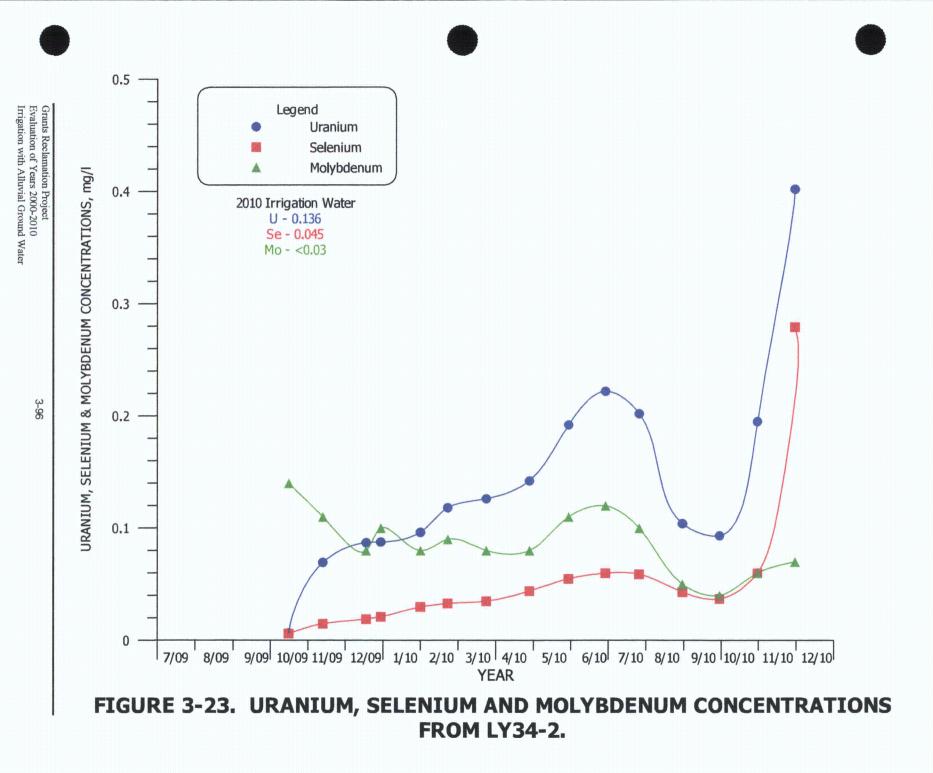

Grants Reclamation Project Evaluation of Years 2000-2010 Irrigation with Alluvial Ground Water

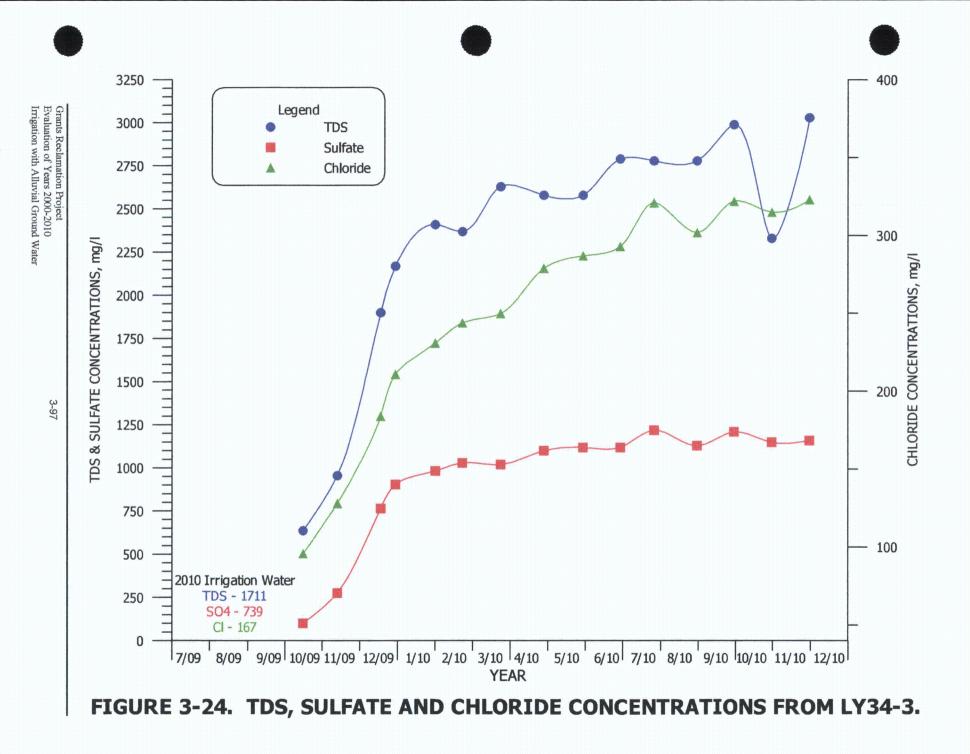


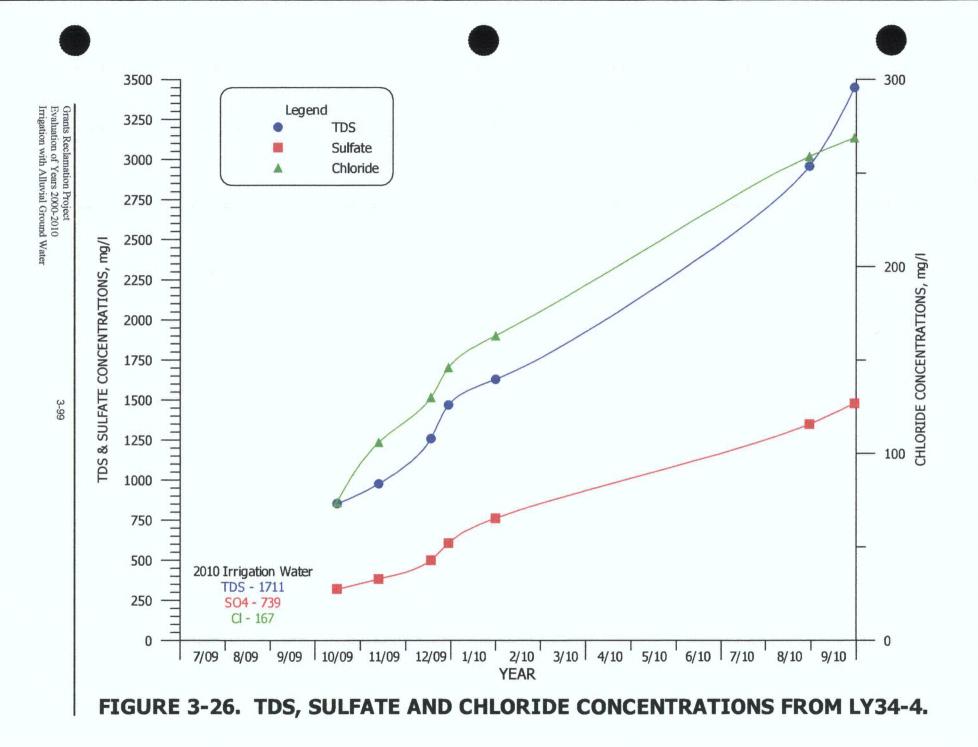


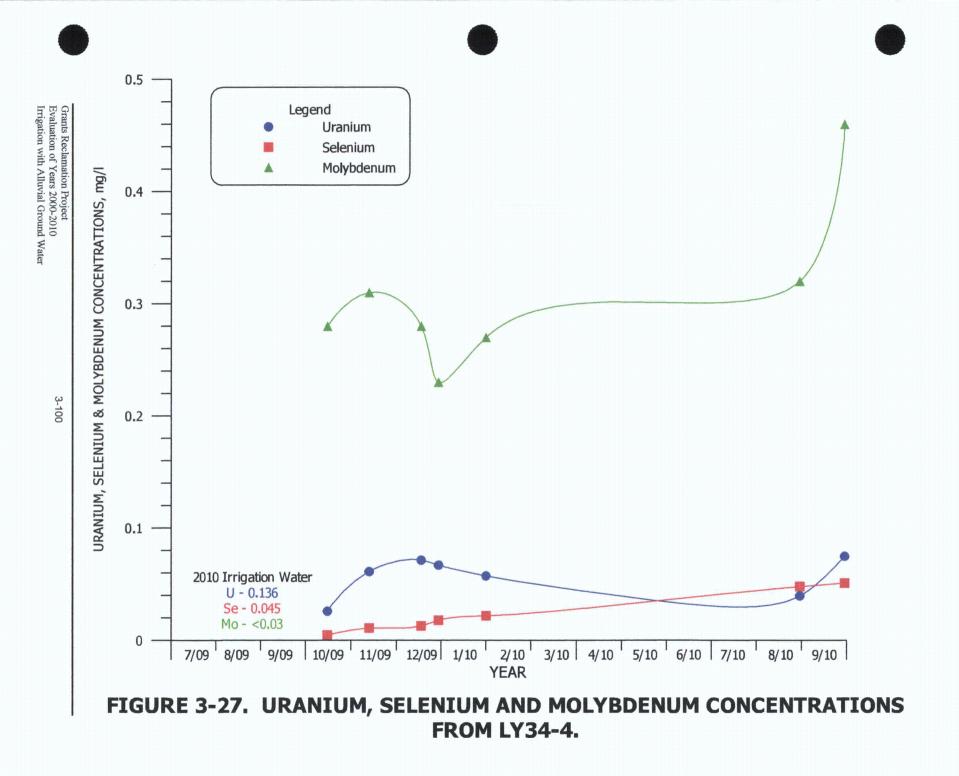


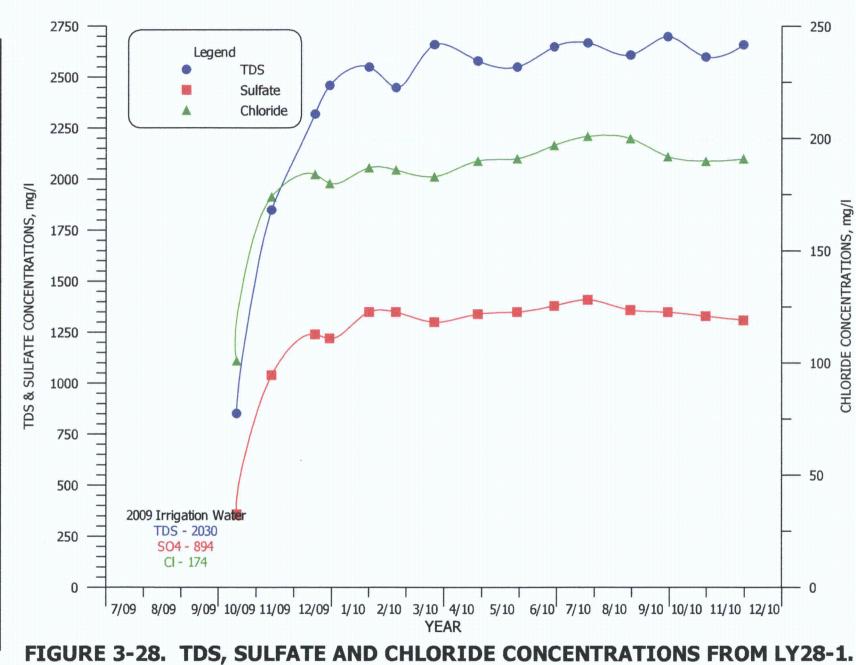
DEPTH IN SECTION 28 IRRIGATION AREA

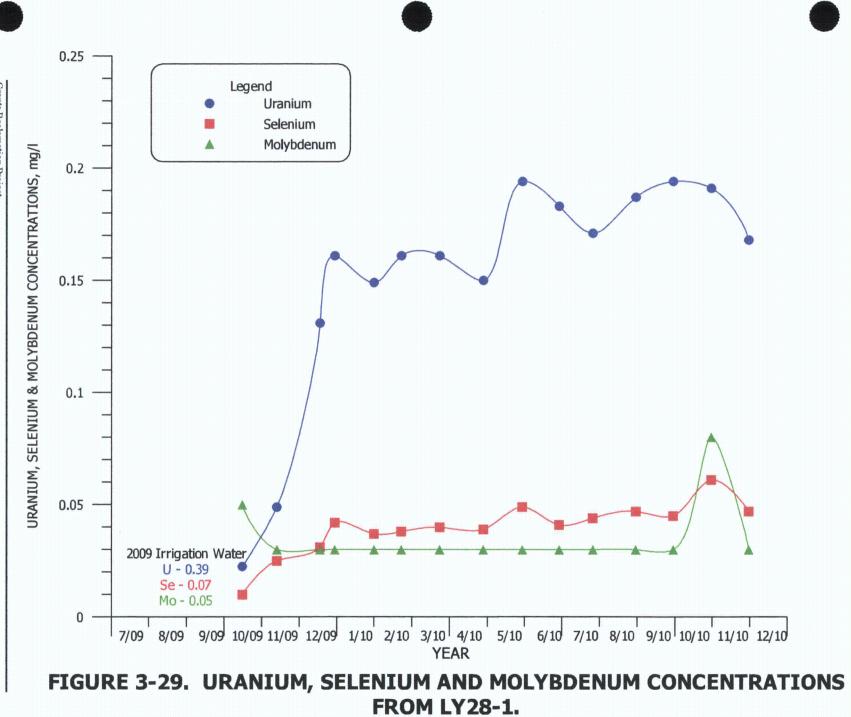






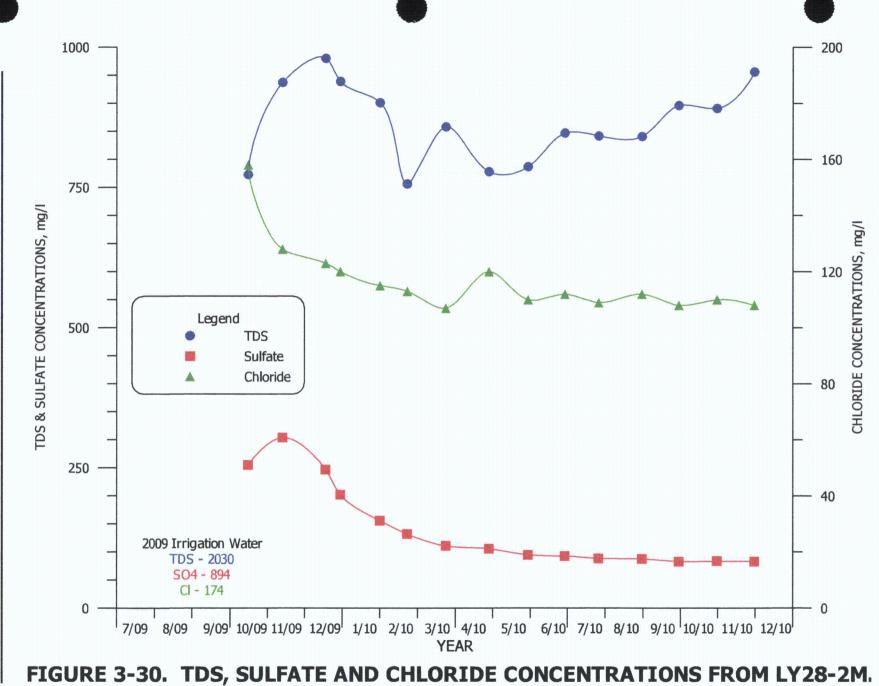

FIGURE 3-19. SELENIUM CONCENTRATION IN THE SOILS WITH DEPTH IN SECTIONS 33 IRRIGATION AREA

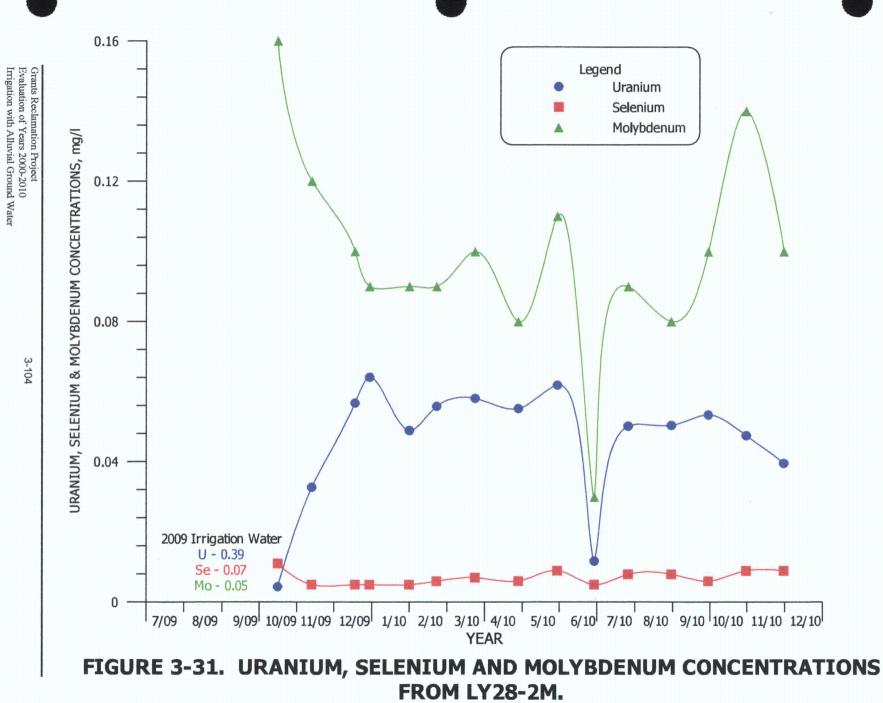


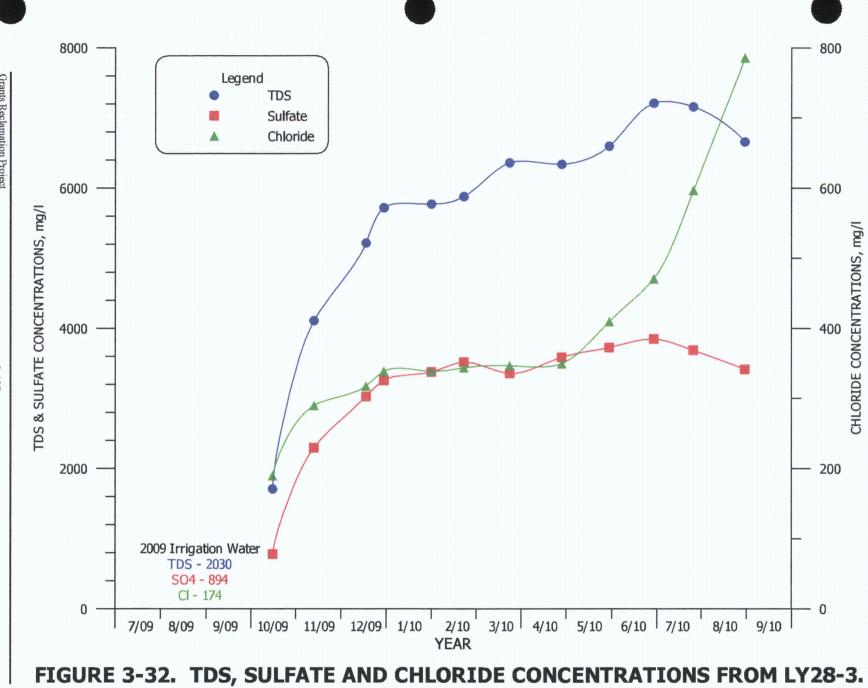


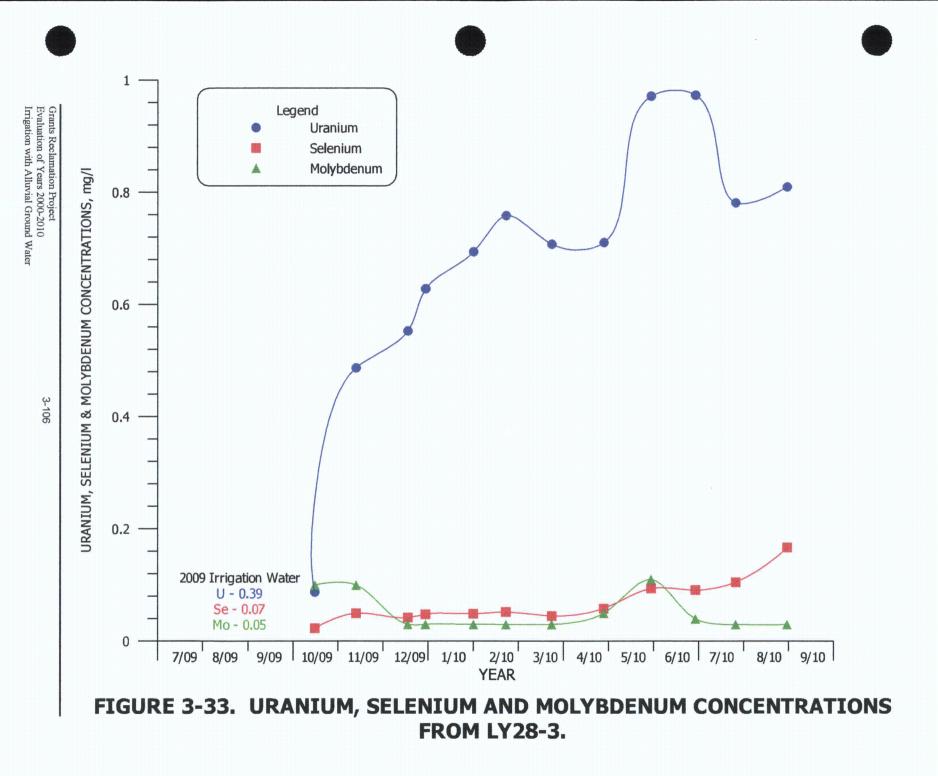


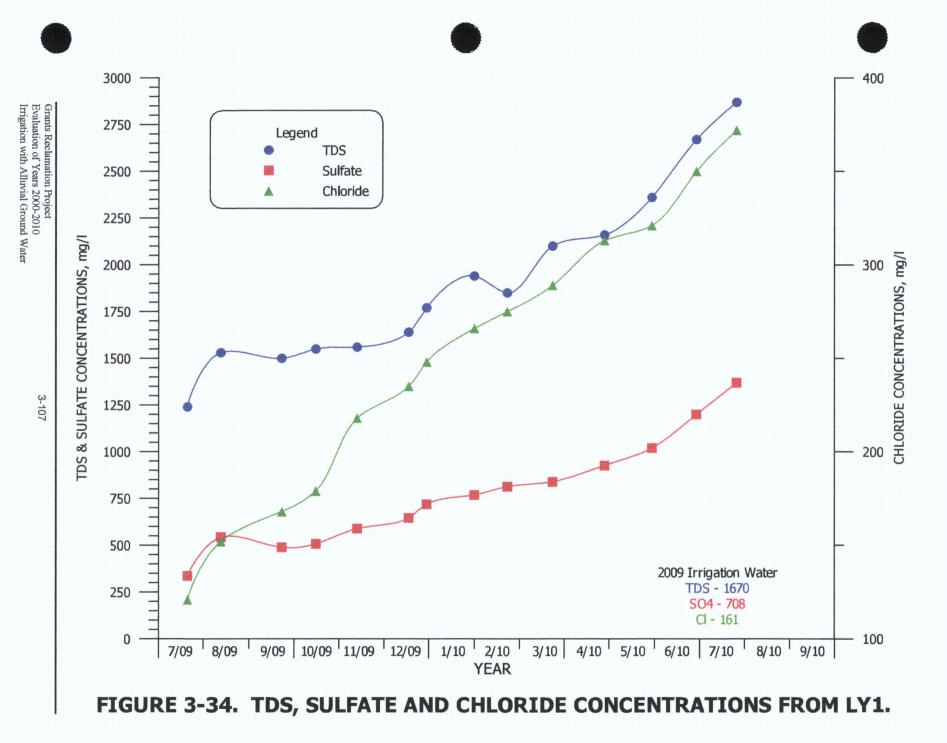


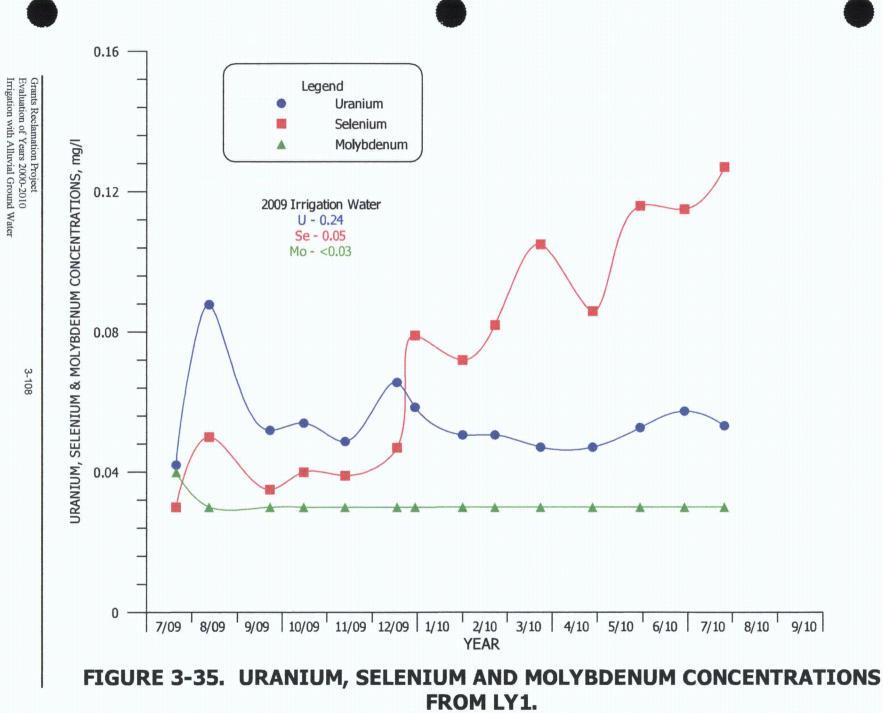


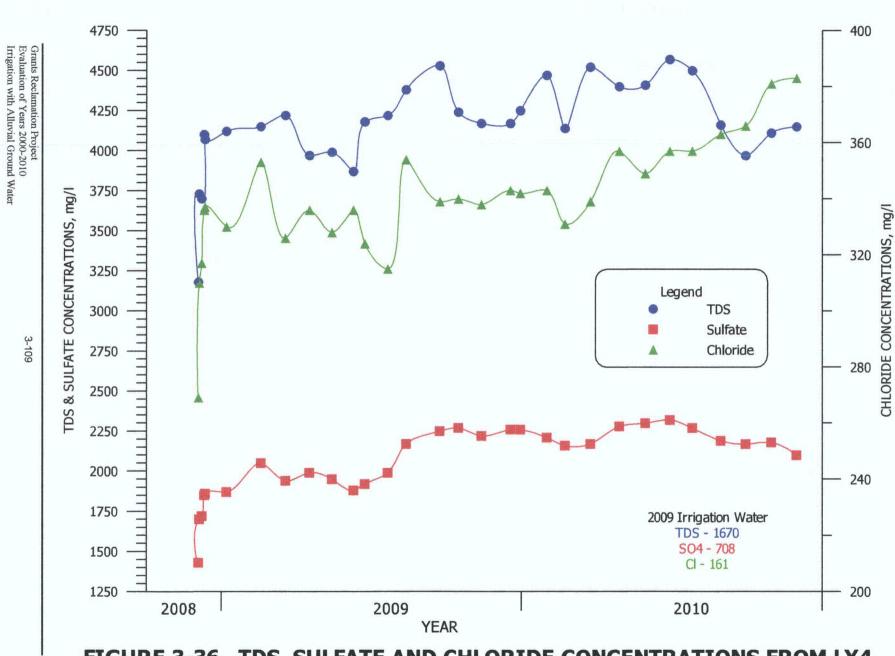
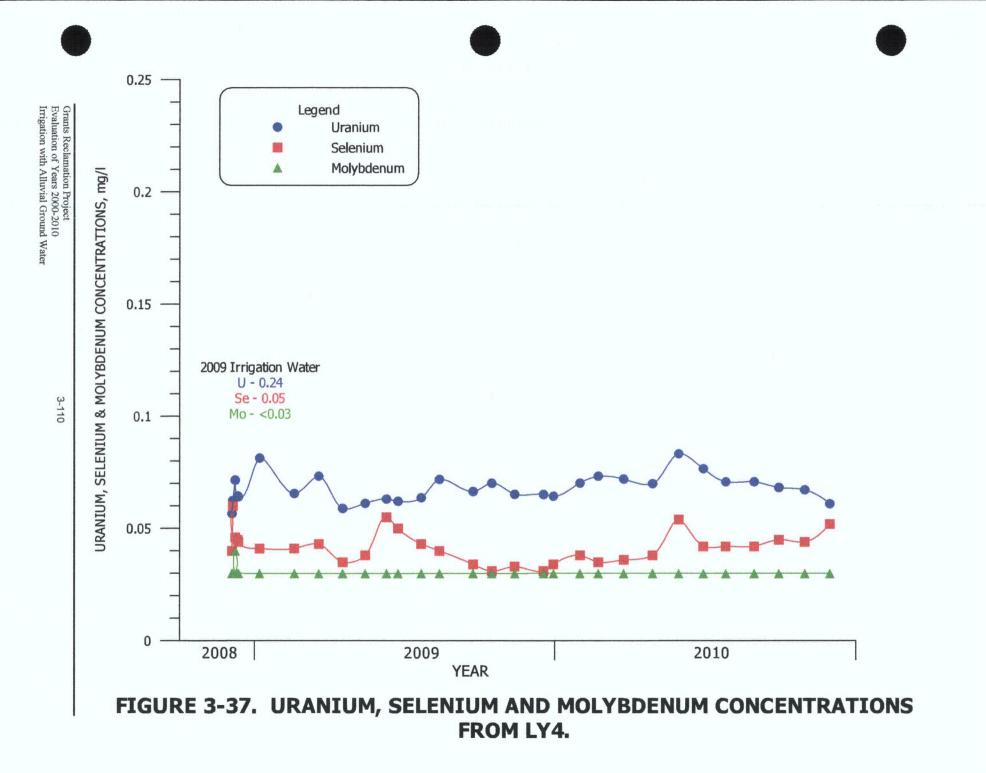
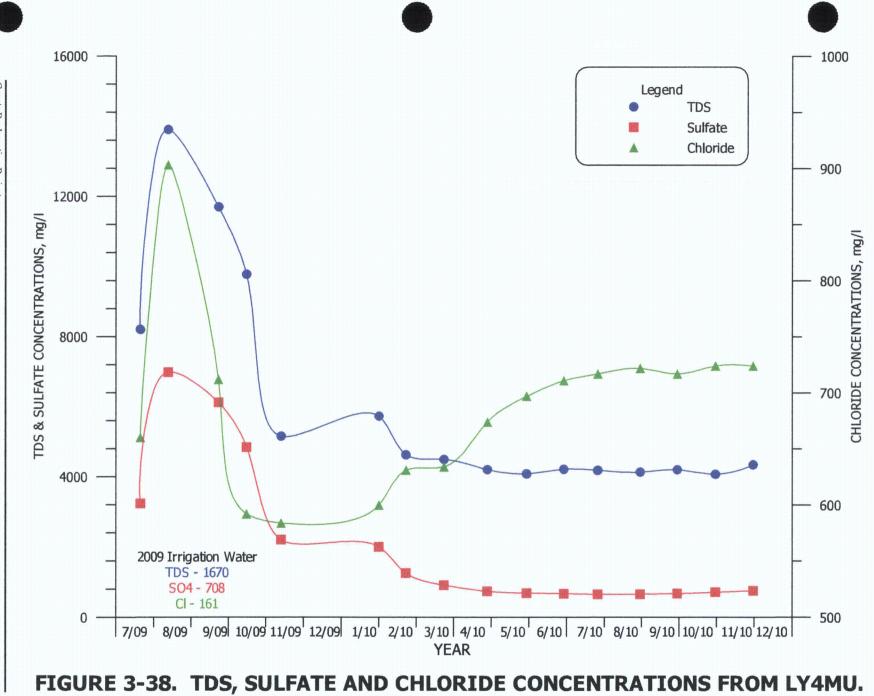
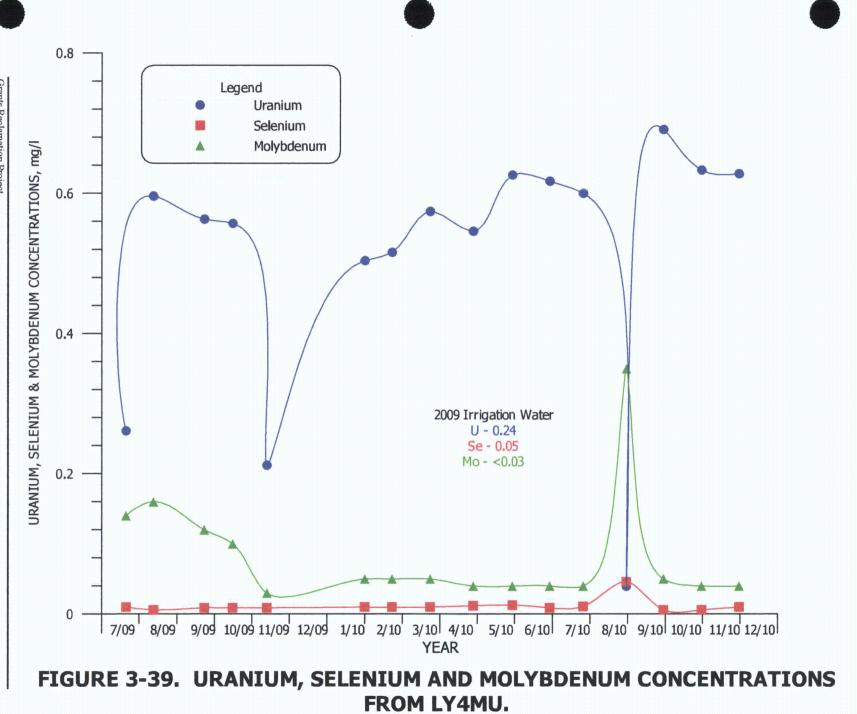
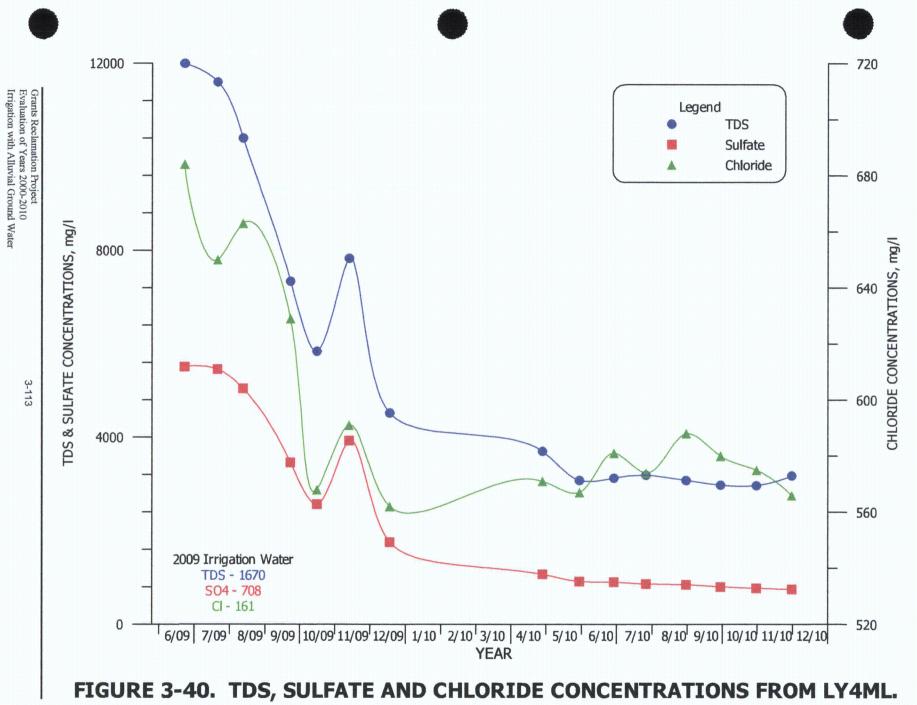


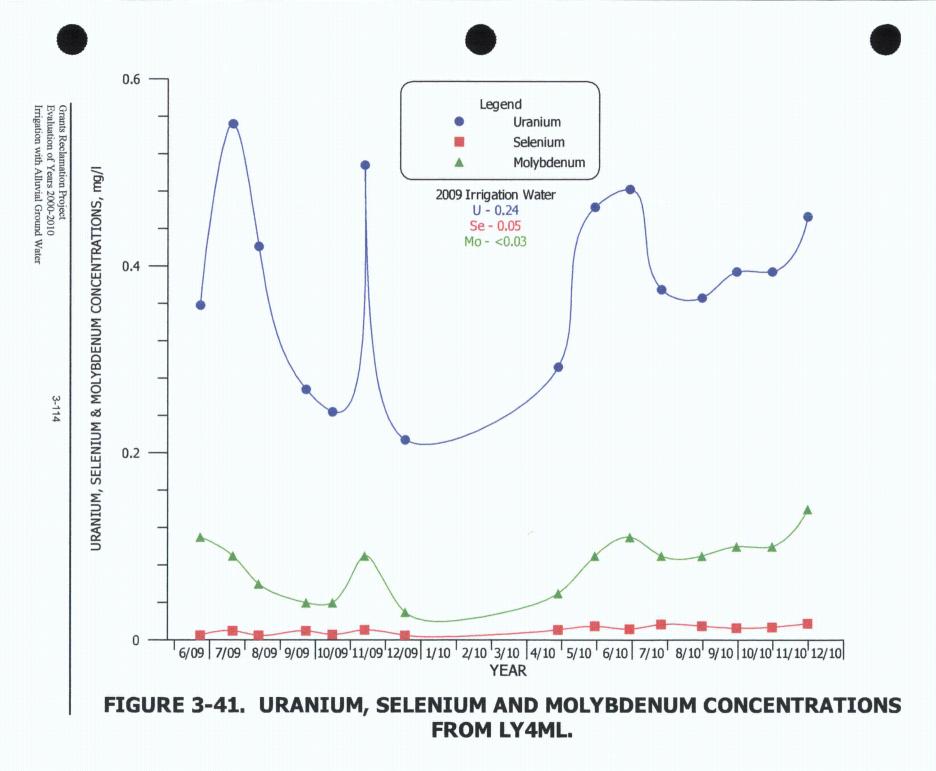









FIGURE 3-36. TDS, SULFATE AND CHLORIDE CONCENTRATIONS FROM LY4.

