Resolution to Public Comments for Interim Staff Guidance Document No. 23 (ISG-23), "Application of ASTM Standard Practice C1671-07 when performing technical reviews of spent fuel storage and transportation packaging licensing actions"

Issue	Comment #	Comment	NRC Resolution of Comment	Changes to ISG
1	Comment 1	Nuclear Energy Institute The ISG contains several clarifications and additional guidance that do not pertain to content, or applicants' use of the ASTM standard. These clarification and additional guidance should already be in the revision to NUREG-1536. Alternatively, the scope of the ISG could be broadened beyond applicability to just the ASTM standard in order to include these items. Specific examples are cited in the comments below.	Some of the comments from the Nuclear Energy Institute (NEI) were generic in nature and/or applied to areas involving the regulation of spent fuel not directly related to this standard. The Nuclear Regulatory Commission plans to review the requirements related to spent fuel storage and transportation as part of the response to SRM COMDEK 09-001. The industry and the public will be engaged in this activity which could lead to the incorporation of additional NEI comments.	No changes.
2	Comment 1 Line 31	Dr. Turner This "clarification" seems to be internally inconsistent by requiring that requalification should not be necessary if re-qualification has already been performed on the principle parameters. Perhaps the NRC means to exclude requalification tests of radiation	The staff's intent was to explain that some requalification tests (such as corrosion testing) do not need to be performed, provided that certain properties of the neutron absorber are not changed, e.g., alloy composition, open porosity, etc.	No changes.

		resistance, corrosion tests, and high	The staff does not see the need	
		temperature response, for example.	to make editorial changes for	
			clarity.	
3	Comment 2	Nuclear Energy Institute	The same materials which are	References to spent fuel storage
	Lines 35-38	It is not clear why an SFST ISG	used in dry cask storage are	in lines 35-38 will be removed
		would address long-term use of	also used in spent fuel pools.	from the ISG.
		neutron absorbers (e.g., a year or	The staff wanted to clarify that	
		more) in spent fuel pools. The	minor changes to the surface	Removed:
		standard is not intended for wet	finish of neutron absorber	This clarification <i>does not</i> extend
		storage.	materials which have a minimal	to long-term use (e.g., a year or
			affect on the performance of	more) of neutron absorbing
	Comment 1	NAC International	neutron absorbers in dry cask	materials in spent fuel pools,
	Lines 31,	Clarification regarding use of Section	storage may significantly affect	where minor contaminants
	35– 37	5.2.1.3 of ASTM C1671-07 This	the corrosion resistance of these	accrued during fabrication can
		clarification does not extend to long-	materials in spent fuel pools.	significantly influence the
		term use in spent fuel pools,	Therefore this ISG cannot be	corrosion behavior of such
		ASTM C1671 -07 is titled	used to fully describe the	materials.
		"Qualification and Acceptance of	qualification and testing of	
		Boron Based Metallic Neutron	neutron absorbers for spent fuel	
		Absorbers for Nuclear Criticality	storage. To reduce ambiguity,	
		Control for Dry Cask Storage	however, the references to	
		Systems and Transportation	spent fuel storage will be	
		Packaging". The standard is not	removed from the ISG.	
		applicable to in-pool neutron		
		absorbers – adding the clarification		
		to the ISG does not appear		
		appropriate because both the ISG		
		and the ASTM standard are not		
		applicable to pool storage.		
4	Comment 3	Nuclear Energy Institute	The staff agrees that the ISG	The staff will change lines 40-48
	Lines 40-48	A neutron absorber supplier change	needs to be clarified. A limited	to reflect the staff's response.
		may be simply the result of a	degree of requalification should	
		company sale to a new entity. This	be necessary if a new supplier	Removed:

	change may result in no change in the location, equipment, process, and personnel involved in the manufacture of the material. Similarly, a manufacturing facility may be relocated but continue applying identical processes, process control and equipment. There should not be an automatic assumption that anything beyond the control of key processes should be examined. The purpose of the key process specification is to outline the steps required to produce a consistent material compatible with that produced for the qualification program. Please clarify.	manufactures the neutron absorbing material. A limited requalification is unnecessary, if the same fabrication equipment and procedures are used.	The staff considers a review of key processes and process controls alone insufficient to ensure that qualified neutron absorbers produced by a new supplier will meet the same specifications as those produced by the previous supplier. Added: "Following a change of supplier (excluding the use of the same fabrication equipment and procedures), the supplier should do a review of key process and controls and perform qualification testing demonstrating that the neutron absorbing material has the specified mechanical properties, required density, limits on porosity, and (if applicable)
Comment 4 Lines 46	Nuclear Energy Institute If NRC staff considers the guidance "insufficient" it would be helpful if the staff provided guidance on what is considered sufficient with respect to this part of the ASTM standard.		the specified mechanical properties, required density, limits on porosity, and (if applicable) resistance to blistering."
Comment 2 Lines 40-48	<u>NAC International</u> Neutron absorber supplier change may be the result of a company sale to a new entity. This change may result in no change in the location, equipment, process, and personnel involved in the manufacture of the material. Similarly, a manufacturing facility may be relocated but continue		

		applying identical processes, process control and equipment. There should not be an automatic assumption that anything beyond key processes control should be examined. The purpose of the key process specification is to outline the steps required to produce a consistent material compatible with that produced for the qualification program. The implication of the NRC's statement is that qualification testing may have to be redone if review of the key processes is deemed insufficient by NRC.		
5	Comment 5 Lines 58	Nuclear Energy Institute Specifying that the accelerated testing should be "longer" than the anticipated service life is vague and should be clarified.	The staff agrees that the clarification is ambiguous. Given the neutron flux of spent nuclear fuel $(10^7 - 10^8 \text{ n/cm.s})$ in the dry cask storage environment is not expected to affect aluminum / boron carbide composites for well beyond the licensing period for dry cask storage.	The staff will remove Lines 51-8 to reflect the staff's response. Removed: Section 5.2.5.1 of C1671-07 requires that the neutron absorber material be exposed to "service conditions or equivalent accelerated conditions" as part of the qualifying tests. The staff should ensure that the service life adequately represents the term of the license or Certificate of Compliance, e.g., 5 or 20 years, or longer if subsequent renewals will be requested. The staff is cautioned that the effects of accelerated testing may not exactly match the actual effects

				encountered under operating conditions over the entire service life. Hence, for accelerated tests, the computed test period should represent a period longer than the anticipated service life.
6	Comment 6 Lines 59-61	Nuclear Energy Institute Including the service life of the neutron absorbing materials in the CoC and/or Technical Specifications (TS) is not appropriate. Including this information in the SAR, subject to initial NRC review and approval and 72.48 review after that for future changes is sufficient.	Aluminum / boron carbide composites are not expected to be altered by the dry cask storage environment over time periods well beyond the licensing period for cask storage. Therefore the staff sees no need to include the service life of the neutron absorbers in the CoC and/or Technical Specifications.	The staff will remove lines 59-61 to reflect the staff's response. Removed: The staff should confirm that the service life for the neutron absorbing materials is specified in the Safety Analysis Report and Certificate of Compliance, or the Technical Specifications of the application.
7	Comment 7 Line 68	Nuclear Energy Institute Please confirm the statement that clad neutron absorbers with porosity between 1 and 3% have experienced blistering, or withdraw these numbers. EPRI report 1009696, Boral Behavior Under Simulated Cask Vacuum Drying found that Boral with porosity between 1-3% exhibited blisters. However, the porosity for these test coupons was determined by the difference in weight of the coupons before and after wetting, indication that this is interconnected (open) porosity at the edge of the sheets rather than total	The staff finds that the nature of the porosity discussed in the ISG should be clarified. Open pores, which permit water intrusion is of specific concern.	Line 68 will be clarified to specify 1 – 3% open porosity.

		porosity. NRC Generic Safety Issue 196 addressed Boral degradation and concluded that no new guidance or requirements for licensees were necessary. It is recommended that the ISG be modified to discuss Generic Safety Issue 196 and its resolution.		
8	Comment 8 Lines 70	Nuclear Energy Institute Please clarify how blistering can have an effect on retrievability. There are numerous casks already loaded and in-service with clad-type neutron absorbers (e.g., Boral).	Electric Power Research Institute Report TR1013721, "Handbook of Neutron Absorber Materials for Spent Fuel Transportation and Storage Applications," 2006, states: "Similarly, in-pool blistering of Boral has, to date, proved to be primarily an aesthetic effect; however, the potential effects on fuel assembly clearance and the reactivity state of region 1 racks have been noted. In addition, it has been noted that, in a few instances, <i>rack cell wall</i> <i>deformation has occurred</i> <i>making it difficult to remove</i> <i>fuel.</i> " <i>(emphasis added)</i> In a similar manner, the Staff finds that dimensional changes (blistering of Boral) could lead to problems with fuel retrievability from dry casks.	The references to blistering in lines 68-72 will remain in the ISG, but clarifying changes will be made to lines 68-72. Removed: and (during loading in the spent fuel pool) on the effective neutron multiplication factor, keff. Added: Unclad aluminum / boron carbide neutron absorbing materials with open porosities less than 0.5- volume percent may not be required to undergo simulated submersion and drying tests.

9	Comment 9	Nuclear Energy Institute	Applicants should provide	After Line 78, examples of
	Lines 74	The ultimate demonstration of Boron-	specific criteria in the	previously approved acceptance
		10 presence and uniformity per	qualification and acceptance	criteria will be added.
		specification is acceptance testing	programs indicating the	
		with the associated statistical	percentage of neutron poison	Added:
		treatment. The qualification testing	plates which are tested, or the	In the past the staff has
		merely demonstrates that there will	minimum number of samples	accepted:
		be sufficient uniformity (or enough	taken per surface area of poison	
		excess Boron-10) to minimize the	plate material.	1) (For a neutron absorbing
		risk of failing acceptance testing. For		material with a significant
		acceptance testing, the certificate	Examples of acceptance testing	qualification program and non-
		holder must develop an adequate	criteria that the staff has	statistically derived minimum
		sampling rate, and must sample	accepted will be listed in the	guaranteed properties), wet
		production at this rate in either a	ISG.	chemistry analysis of mixed
		systematic or probabilistic fashion.		powder batches followed by
		Removing coupons "contiguous to		additional neutron attenuation
		each plate" is irrelevant because		testing of a minimum of 10% of
		plate sizes can vary significantly from		the neutron poison plates.
		one basket design to another, thus		
		resulting in large variation in the		2) Sampling plans where at least
		sampling rate per unit surface area.		one neutron transmission
				measurement is taken for 2000
				square inches of neutron poison
				plate material in each lot.
				3) A sampling plan which
				requires: that each of the first 50
				sheets of neutron absorber
				material from a lot, or a coupon
				taken there from, be tested (by
				neutron attenuation). Thereafter,
				coupons shall be taken from 10
				randomly selected sheets from
				each set of 50 sheets. This 1 in 5

				sampling plan shall continue until there is a change in lot or batch of constituent materials of the sheet (i.e., boron carbide powder or aluminum powder) or a process change. A measured value less than the required minimum areal density of boron-10 during the reduced inspection is defined as nonconforming, along with other contiguous sheets, and mandates a return to 100% inspection for the next 50 sheets.
10	Comment 10 Lines 80-90	Nuclear Energy Institute The amount of "credit" taken for boron-10 in the application is not addressed in the ASTM standard. Thus, this clarification is not germane to the purpose of the ISG and should be deleted. This topic appears to be adequately addressed in the recent proposed revision to NUREG-1536.	The staff finds that "Clarification regarding use of Section 5.2.6.2 and 5.3.4.1 of ASTM C1671-07 " would be more accurately described as "Additional guidance regarding use of Section 5.2.6.2 and 5.3.4.1 of ASTM C1671-07". Overall, the staff disagrees with the comment. Discussion of credit given for the boron-10 content in the neutron absorber material should be incorporated into the ISG, as it is directly influenced by the methods (e.g., neutron attenuation and wet chemical testing) used to determine the boron-10 content of the materials during acceptance testing.	The staff will only make editorial changes to lines 80-104. Additional information will be added after line 105. Added: Applicants should be encouraged to provide statistically significant data showing the correspondence between neutron attenuation testing and wet chemistry data and the precision of both methods. Such data may permit the partial substitution of neutron attenuation measurements with chemical methods for materials receiving 90% credit.

4.4	Commont 2	Dr. Ctaplay Turpar	The nercenters credit siven to	The staff will only make aditarial
11	Comment 2	Dr. Stanley Turner	The percentage credit given to	
	Line 86	Relating to 75% or 10% credit for	neutron absorbing materials is	changes to lines 80-104.
		Boron-10 in the neutron absorber is	determined principally by the	
		not supported by any credible	robustness of a materials'	
		evidence. The limits are erroneously	qualification and/or acceptance	
		derived from the following reference:	program, which should include	
		Allen H. Wells et al "Criticality Effect	neutron attenuation	
		of Neutron Streaming between	measurements. Materials with	
		Boron Carbide Granules in Boral for	large particle sizes of absorber	
		Shipping Cask", Transactions of the	may receive 90% credit for	
		American Nuclear Society, Vol. 54,	boron-10 content if the	
		Page 205-206,1987	gualification and/or acceptance	
		.	programs demonstrate statistical	
		The error arose from ignoring the	significance (typically the	
		natural properties of neutron	"95/95" criteria described in the	
		scattering in the water moderator in	ASTM standard), and make	
		spent fuel storage cells. In	sufficient use of neutron	
		discussion with Allen he	attenuation in the qualification	
		acknowledged that at the time of his	and acceptance testing A 10%	
		paper he did not have the computer	deduction is taken from the	
		canability to validate his basic	measured areal density of	
		assumption that neutron behavior	horon-10 because benchmarks	
		was the same in neutron attenuation	used in the criticality analysis	
		as in criticality calculations. This	typically are not closely	
		limitation in computer canability po	representative of configurations	
		langer eviete and with improved	in a apont fuel apok. The 75%	
			in a spent luer cask. The 75%	
		computers, it is easy to show that	credit is given to materials which	
		there is a great difference between	use principally wet chemical	
		neutron attenuation and criticality	testing for acceptance testing.	
		calculations. Because of isotropic		
		scattering in criticality calculations	The staff agrees that neutrons	
		that does not exist in neutron	trom tissile materials in casks	
		attenuation measurements, Allen's	will not exclusively be directed	
		basic assumption has been found to	perpendicular to the faces of	

	be in error. In criticality calculations,	neutron absorbing materials.	
	somewhat less than 40% than the	most conservative approach for	
	corresponding path length in neutron	determining the areal density of	
	attenuation. Neutron attenuation	a material is from attenuation	
	tests use lengthy collimation tubes to	experiments where the beam is	
	generate a mono-directional beam of	directed perpendicular to plates	
	neutrons. In criticality calculations	of neutron absorbing material.	
	there is no collimation tube and the	Hence, no credit will be given to	
	neutrons are scattered isotropic ally	the additional thickness of	
	by the water moderator.	material that neutrons may see	
		in actual service.	
	Neutron streaming effects are		
	and in the attached decument		
	(Section 5.0) and analytical data is		
	presented to show that neutron		
	streaming has a virtually negligible		
	effect in criticality analysis. Also		
	presented in section 5 is a qualitative		
	discussion of the different path		
	lengths for neutron attenuation and		
	for criticality analyses. In neutron		
	attenuation the neutron beam is		
	collimated but collimation does not		
	exist in criticality analyses. This is		
	the principal evidence for the		
	in criticality calculations. Modern		
	computers are readily able to		
	calculate the k-effective in criticality		
	calculations with specific definition of		
	particle sizes.		

r				
12	Comment 11	Nuclear Energy Institute	See response to Comment 1.	The staff will only make editorial
	Lines 84	If the boron-10 credit discussion		changes to lines 80-104.
		remains in this ISG, including the		-
		amount of boron-10 credit used in		
		the criticality analysis in the TS is not		
		appropriate. Including this		
		information in the SAR is sufficient.		
13	Comment 12	Nuclear Energy Institute	The actual performance of a	The staff will only make editorial
	Lines 95-96	The statement that alternate means	neutron absorbing material is	changes to lines 80-104.
		of Boron-10 areal density inspection	dependent on the quantity of the	-
		must be calibrated against neutron	actual neutron absorber (e.g.,	
		attenuation requires a technical	boron-10) in the material and	
		basis. There is a practical limitation,	the distribution and particle size	
		because there are few neutron	of that neutron absorber in the	
		attenuation facilities available to	material. The influences (or	
		perform this work, and if they were to	biases) caused by distribution	
		become unavailable, production of	and particle size cannot be	
		neutron absorbers would come to a	determined by wet-chemistry	
		stop unless there was an alternative	testing, but can be observed	
		available. The purpose of	through neutron attenuation	
		benchmarking as conceived by the	measurements.	
		ASTM working group was not to		
		"calibrate" the alternate method, but	For neutron absorbing materials	
		to see if there was a bias that needs	which receive 90-percent credit,	
		to be factored in when using the	more extensive testing such as	
		alternate method. It is interesting to	neutron attenuation needs to be	
		note that one regulatory authority	part of the acceptance program.	
		(BAM) uses chemical and		
		spectrometric analysis to verify the		
		neutron attenuation results.		
14	Comment 13	Nuclear Energy Institute	Depending on the qualification	The staff will only make editorial
	Lines 93-99	No guidance is provided as to the	and acceptance testing plans,	changes to lines 80-104.
		application of the terms "partial	the staff may accept as few as	

Comment 14 Lines 94	substitution," "periodic sampling," and "proper sample size." This may be interpreted in varying degrees by individual reviewers/applicants and result in individual negotiations with NRC from application to application. Please clarify or refer to an acceptable standard for these terms. <u>Nuclear Energy Institute</u> The text discusses partial substitution for attenuation testing with other methods, presumably wet chemistry testing. Does this mean that a CoC holder can use wet chemistry testing as the primary acceptance test and neutron attenuation testing as a verification test with a smaller sample size? An example of a partial substitution for attenuation tests should be provided for clarity.	10% of the coupons to undergo neutron attenuation for acceptance testing. Examples of acceptance testing plans that the staff has found acceptable in the past will be stated in the ISG. Continued testing at some level needs to assure consistency in the fabrication process.	
Comment 3 Lines 93-99	NAC International No guidance is provided as to the application of the terms "partial substitution," "periodic sampling," and "proper sample size." This may be interpreted differently by individual reviewers/applicants and result in negotiations with the NRC on different packaging applications. For a qualified material and an alternate test process that has been		

		benchmarked to neutron attenuation, what is the basis for requiring re- testing? As the material has been qualified and produced under a QA program requiring key process controls and material input constraints, is there an NRC expectation of significant variation in product?		
15	Comment 15 Lines 99-100	Nuclear Energy Institute Editorial: Insert a blank line between these two lines.	The staff agrees with the comment.	A blank line will be inserted between lines 89 and 100.
16	Comment 16 Lines 100- 104	Nuclear Energy Institute A requirement for neutron attenuation testing on 75%-credit Boron-10 material represents a double penalty on the material. In the case of Boral, the reduced (75% credit) historically has been traced to streaming within the neutron absorber core material due to a larger particulate boron carbide (compared to metal matrix composites with a finer particulate of boron carbide). Neutron attenuation testing with a collimated thermal neutron beam (standard test procedure for neutron attenuation testing) directly measures the streaming phenomena, resulting in lower measured Boron-10 content than an equivalent homogenous absorber (e.g. ZrB ₂). Applying the	The staff understands the concern regarding a double penalty, but wet-chemistry measurements should be benchmarked against a direct measurement of the performance of the neutron absorbing material during qualification testing.	The staff will only make editorial changes to lines 80-104.

	75% credit on top of this reduces the	
	credited absorber content a second	
	time, therefore accounting for	
	neutron streaming twice.	
Comment 4		
Lines 100-	NAC International	
104	A requirement for neutron	
	attenuation testing on 75%-credited	
	material represents a double penalty	
	on the material. In the case of	
	BORAL the reduced (75% credit)	
	historically has been traced to	
	streaming within the neutron	
	absorber core material due to a	
	larger particulate B ₄ C (compared to	
	MMC with a finer particulate B₄C	
	content). Neutron attenuation testing	
	with a collimated thermal neutron	
	beam (standard test procedure for	
	neutron attenuation testing) will	
	directly measure the streaming	
	phenomena resulting in lower	
	measured B-10 content than an	
	equivalent homogenous absorber	
	(e.g. ZrB_2). Then applying the 75%	
	credit reduces the credited absorber	
	content a second time, resulting in	
	accounting for neutron streaming	
	twice. Therefore, material tested	
	using a collimated neutron beam	
	should permit 90% credit as	
	applicable to other materials qualified	
	and accepted using neutron	
	attenuation testing.	

17	Comment 3	Dr. Turner	The staff understands the	The staff will revise the ISG to
	Line 106	The NRC statements raise more	difference between physical	permit heterogeneous calibration
		questions than are resolved. First,	density (porosity) and the	standards.
		There is no supporting evidence that	density or boron-10 in a	
		zirconium diboride is homogeneous	material. The staff always	Removed:
		or a suitable standard for neutron	assumed that the chemical	The staff does not accept the
		attenuation measurements. Unless	homogenous standards	following language in Section
		the ZrB_2 is present at near 100%	referenced by the applicants	5.2.6.2(1): "If materials with
		theoretical density, it would exist in	were near full density, prepared	discrete absorber particles or
		particles subject to neutron	by hot-pressing.	phases are used for calibration
		streaming. Uniformity in ¹⁰ B		standards, then the size of the
		distribution is not an adequate	The staff finds that	particles containing the neutron
		measure of density. Furthermore,	heterogeneous calibration	absorber should be small enough
		there is a concern whether the	standards may be used, given	so that neutron streaming and
		zirconium adequately represents the	certain qualifying factors. These	self-shielding is insignificant."
		scattering equivalent of the carbon	factors will prohibit the use of	Only homogenous neutron
		when B ₄ C is used (Scattering in the	non-pedigreed calibration	absorbing materials such as
		matrix material is generally not very	standards or materials which are	zirconium diboride (ZrB2) with
		important.) Secondly, B ₄ C standards	not homogenous, e.g., silicon	uniform absorption properties
		are manufactured with very finely	rubber embedded with large	should be considered for neutron
		divided B ₄ C particles pressed and	boron carbide particles.	attenuation testing standards, as
		sintered to nearly full density (99.5 ±		homogenous materials preclude,
		0.5 %TD) leaving no room for		or at least minimize, any neutron
		neutron streaming and are effectively		streaming effects which may
		homogeneous. Furthermore, the		occur in heterogeneous materials.
		carbon provides a more reasonable		This exception to ASTM C1671-
		representation of the B₄C scattering.		07 precludes the use of materials
				such as boron carbide reinforced
		Nuclear Energy Institute		aluminum matrix composites as
	Comment 17	The statement regarding neutron		calibration standards for neutron
	Lines 112-	absorber standards requires a		absorption.
	117	technical basis. Whether		
		homogeneous absorbers or		Added:
		heterogeneous absorbers are used,		Homogenous neutron absorbing

Comment 18	there is always an approximation of the condition that is modeled in the criticality calculations. If a chemically homogenous sheet of ZrB_2 , TiB_2 , B_4C , etc., is used, the standard is generally paired with a sheet of aluminum to account for the scattering effect of the matrix alloy. But this separation of the absorber and the scatterer into two separate sheets is artificial. Heterogeneous absorbers do not represent the homogenous mixture in a computer model for criticality analysis, but they better represent the overall material distribution, and with a sufficiently fine dispersion of the boron- containing particles, the behavior with respect to a neutron beam is indistinguishable from a homogeneous material. This is precisely what the ASTM standard requires. Calibration traceable to a national standard or to a physical constant (e.g., a monoenergetic neutron cross section) would in any event be required by any certificate holder's QA program. <u>Nuclear Energy Institute</u> The text precludes the use of "boron	materials with uniform absorption properties such as zirconium diboride (ZrB ₂) or hot-pressed boron carbide (B ₄ C), (typically paired with aluminum shims) or heterogeneous alumimum / B ₄ C calibration standards with pedigrees traceable to widely recognized institutions (e.g., national laboratories) are acceptable as neutron attenuation calibration standards.
Comment 18	The text precludes the use of "boron	
LINES 112-	carbide reinforced aluminum matrix	
117	composites as the calibration	
	standard for neutron absorption. It is	

18	Comment 19 Lines 119- 125	suggested that the ISG recommend that if heterogeneous neutron absorbing particles are used, then the applicant should justify the necessary controls (e.g., particle sizes, and calibration controls are in place to effectively eliminate the possibility of self-shielding and neutron streaming.) These controls should be defined in the Safety Analysis Report, but not part of the technical specifications. Additionally, the staff's independent and extremely conservative criticality study shows "no significant difference in keff" with exaggerated heterogeneities properties for the neutron absorbing material of a transport cask. Thus, the staff's own study supports that boron carbide is acceptable for use in neutron attenuation standards. <u>Nuclear Energy Institute</u> This additional guidance is unnecessary for clarifying the use of	The staff agrees with the comment, there is no need to specifically mention a regulatory	Lines 124 – 125 will be deleted. Removed:
		an ASTM standard by a CoC holder and should be deleted or clarified. The NRC's input on, and acceptance of the use of alternative testing methods occurs either via the review of license applications or by inspection.	agency in the ASTM standard.	The applicant should confirm that use of a uniformity testing method other than neutron attenuation is acceptable to the NRC, not just the designer.
19	Comment 1	Holtec	The staff recognizes the	Editorial changes will be made to

Lines 127- 162, specifically the Figure 1 (lines 148 to 151)	 We welcome the discussion, and the conclusion that neutron beams between 1 and 2.54 cm are acceptable for testing. However, there are concerns about the information presented in the Figure: The data in the figure shows a very large variation in the results, with the smallest value about 0.9105 (at 0.25 cm) up to 0.9180 (at 2 cm), i.e., a maximum difference of about 0.0075 delta-k. Even in the range of the heterogeneity between 1 and 2.5 cm, the maximum difference is about 0.0050 delta-k. The differences appear random, and not the result of any clear trend. Cases with constant and nonconstant density show no clear correlation, i.e. in some cases they result in almost identical values, while in other they are significantly different (more than 2 or 4 standard deviations, depending on whether the error bars indicate 1 or 2 standard deviations). There are no 	limitations of its own analysis, but the objective was to create an extreme (bounding) case to demonstrate that beam sizes 1- inch in diameter were acceptable for neutron attenuation measurements. The staff is encouraged by the results of the criticality analysis presented by the commentor, and hopes that the conservatisms the applicants have demonstrated in their own analysis increase public confidence in the safety of spent fuel storage and transportation.	the introduction to the second paragraph of Section 5.2.6.2(2) for clarity.
	deviations, depending on whether the error bars indicate 1 or 2 standard deviations). There are no apparent trends between the two curves.		
	The concern is that an uninformed reader could come to the erroneous		

conclusion that minor variations in	
the neutron absorber could lead to	
guite substantial changes in	
reactivity and could question the	
conclusion of "no significant	
differences" as stated in the text	
However, a closer look at the	
observations listed above indicates	
insufficient convergence of the	
calculations, rather than problematic	
behavior of the neutron absorber as	
the reason for the differences	
the reason for the uncrenees.	
In other words, the plot may	
notentially only show statistical	
noise, rather than the behavior of the	
absorber papels: and that the effect	
of changes in the absorber panels, or	
in the hear size is far less. This is	
supported by similar calculations	
performed by Holtec a few years	
ago. The difference between our	
ago. The difference between our	
the ISC is that they were performed	
at 80/120% boron loading /ISC	
50/150% and that a strine pattern	
along the panel length was used	
(ISC: checkerboard)	
The results are shown in the figure at	
the end of this discussion. The main	
observation is that the maximum	
difference is only about 0.0015 delta	

	k, which is much less than that shown in the ISG figure. The standard deviation of the calculations is about 0.0007 deltak, so even those differences could conceivable be purely statistical in nature. However, since they are much smaller, they would not raise any concerns regarding the absorber panels.	
	We recommend that the calculations for the ISG be re-performed with parameters that reduce those statistical effects as far as practical.	
Comment 4 Line 127	Dr. Stanley Turner This section is very confusing and seems to place emphasis backwards. Line 132 states that "A neutron beam 1-cm diameter is often used". So also a 1" (2.54 cm) beam diameter is often and has been used for more than 25 years on many projects.	
	Section 3 of the attached document presents a detailed evaluation, analytically and experimentally of the effect of beam size on attenuation measurements and sensitivity to defects. These tests support a conclusion that there is no difference	

	a 3/8 inch (0.95 cm) and a 1" (2.54 cm) beam sizes.		
	The NRC document seems to emphasize an upper limit of 2.54 cm when, in fact, the lower limit is the more important limit. The smaller beam size has much greater probability of missing a defect than the larger 2.54 cm beam diameter. The 1-inch beam size does not represent an upper limit and larger beam sizes could be readily qualified if necessary. A beam diameter if 1- inch (2.54 cm) has been confirmed as acceptable from a practical standpoint and has been in use longer than the 3/8-inch (0.95 cm) beam size which has also.		
Comment 5 Line 133	<u>Dr. Stanley Turner</u> Line 133 and subsequent report of criticality analyses yielded the expected results since it is the average ¹⁰ B content over a large area that defines the k-effective. Sections 3.2, 3.3, and 4.0 in the attached document presents criticality evaluations of very conservative postulated defects in the absorber panels of a representative storage cell. For example, postulated holes (zero ¹⁰ B)		
	Comment 5 Line 133	beam sizes could be readily qualified if necessary. A beam diameter if 1- inch (2.54 cm) has been confirmed as acceptable from a practical standpoint and has been in use longer than the 3/8-inch (0.95 cm) beam size which has also. Comment 5 Line 133 Dr. Stanley Turner Line 133 and subsequent report of criticality analyses yielded the expected results since it is the average ¹⁰ B content over a large area that defines the k-effective. Sections 3.2, 3.3, and 4.0 in the attached document presents criticality evaluations of very conservative postulated defects in the absorber panels of a representative storage cell. For example, postulated holes (zero ¹⁰ B) showed that 0.5-inch diameter every	beam sizes could be readily qualified if necessary. A beam diameter if 1- inch (2.54 cm) has been confirmed as acceptable from a practical standpoint and has been in use longer than the 3/8-inch (0.95 cm) beam size which has also.Comment 5 Line 133Dr. Stanley Turner Line 133 and subsequent report of criticality analyses yielded the expected results since it is the average ¹⁰ B content over a large area that defines the k-effective. Sections 3.2, 3.3, and 4.0 in the attached document presents criticality evaluations of very conservative postulated defects in the absorber panels of a representative storage cell. For example, postulated holes (zero ¹⁰ B) showed that 0.5-inch diameter every

		6-inches in all panels yielded only a 0.0005 increase in k-effective. This extremely conservative example illustrates that significant defects can be safely accommodated for spent fuel in storage or transport.		
20	Comment 20 Lines 164- 182	Nuclear Energy Institute Industry agrees that visual inspections are generally required, that they will generally look for more than just surface finish as cited in the ASTM standard, and that the visual inspections must be suitable for the specific materials and application. However, industry disagrees with the significance that the review guidance is placing on edge cracking. The ISG clarification fails to explain the consequences of cracks based on their magnitude. A small tight crack would not have sufficient surface area to affect criticality safety and if the absorber is used without structural credit; the notch effect is unimportant.	The staff agrees in-part with the comment, and will remove the overemphasis on cracking. Edge and surface cracking, however, will remain as examples of defects to be addressed in the application. The applicant should establish definitive limits on permissible physical defects on the neutron poison plates.	Lines 170-174 will be deleted. Removed: Special consideration should be given to visual inspection of plate materials containing more than 30 volume percent boron carbide. Plate materials with high loadings of boron carbide (> 30 volume percent) are subject to edge cracking during rolling operations, and the procedures used for inspection of these edge effects need to be closely reviewed to determine the adequacy of the specified procedures.
21	Comment 21 164-182	<u>Nuclear Energy Institute</u> The cited section of the ASTM standard refers to "properties" to be verified, not the techniques to be used to perform the verifications, which is the subject of the clarification. The suggested additional guidance does not pertain	The staff disagrees with the comment; the ASTM standard directly mentions surface finish. Visual inspection is the only practical method for determining surface finish. This ISG is being used to supply additional guidance to the reviewer.	No changes.

		to the information in this section of the standard and should be deleted.		
22	Comment 22 Lines 184- 187	Nuclear Energy Institute "Actions to be taken if thickness is outside the permissible limits" is beyond the scope of the ASTM standard. These actions are handled case-specifically in the applicant's corrective action program. This additional guidance should be deleted.	The staff disagrees with this comment. Applications should include an unambiguous statement that significant dimensional defects in the neutron absorbing materials will be taken into consideration by the manufacturer and what the results of such defects will be in regards to their acceptance (reject, rework, etc.). This guidance is included for use by the reviewer.	No changes.
23	Comment 23 Lines 191- 192	<u>Nuclear Energy Institute</u> Including "discussion" of deviations in the physical dimensions of the neutron absorber in the CoC or TS is not appropriate. Including this information on the drawings is sufficient without incorporating the drawings by reference into the CoC or TS.	See Comment 1.	No changes.
24	Comment 24 Lines 200- 209	Nuclear Energy Institute Industry does not agree that Part 72 Technical Specifications are an appropriate place for the acceptance testing and key process control details. At the most, only the neutron absorber characteristic essential to criticality safety, i.e., the minimum 10B areal density, and major	See Comment 1.	No changes.

		material characteristics such as limits of composition should be included in the TS. That is, the TS should state what must be achieved, not how to achieve it.		
25	Comment 25 Lines 215- 218	Nuclear Energy Institute This additional guidance is beyond the scope of the ASTM standard and should be deleted. Safety classification of components such as neutron absorbing materials is governed by the applicant's QA program.	See Comment 1.	No changes.
26	Comment 6 No Line	Dr. Stanley Turner Additional comment (not directly related to ISG-23): Sometimes the Areal Densities are used in parametric studies. This is NOT valid because areal density is a derived value. To be correct, the analyses must be based upon the measured parameter, namely the observed neutron counting rates that are the basis for deriving values of areal density. Furthermore, areal density values vary inversely with transmitted neutron counting rates.	See Comment 1.	No changes.