

We do the right thing.

Saltstone Disposal Facility Performance Assessment

NRC Request for Additional Information Discussion

January 27, 2011

Virginia G. Dickert

Manager, Closure & Waste Disposal Authority

Public Meeting

SRR-CWDA-2011-00008

SAVANNAH RIVER SITE = AIKEN, SC = WWW.SRS.GOV

Saltstone Disposal Facility

Acronym List

- ARP Actinide Removal Process (Salt treatment)
 - Ci Curie
- DDA Deliquification, Dissolution and Adjustment (Salt treatment)
- DOE-SR Department of Energy Savannah River Field Office
 - FTF F-Tank Farm
 - HTF H-Tank Farm
 - K_d Distribution Coefficient
 - LFRG Low-Level Waste Disposal Facility Federal Review Group
 - NDAA Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005
 - R&D Research and Development
 - SDF Saltstone Disposal Facility
 - SWPF Salt Waste Processing Facility (Salt treatment)
 - UDQ Unreviewed Disposal Question
 - WD Waste Determination associated with NDAA Section (§) 3116
 - Ra-226 Isotope of radium (half-life = 1,600 years; decay daughter of Th-230)
 - Tc-99 Isotope of technetium (half-life = 211,000 years; fission product)
 - Th-230 Isotope of thorium (half-life = 75,000 years; decay daughter of U-234)
 - U-234 Isotope of uranium (half-life = 245,000 years; naturally occurring)

Uranium Decay Series: U-234 \rightarrow Th-230 \rightarrow Ra-226

We do the right thing.

Performance Assessment

- Single performance assessment (PA) serves as backbone for demonstrating compliance with all performance objectives including DOE Orders, NDAA §3116 and State regulations
- PA = a key risk assessment tool used to inform closure and disposal decisions
 - Models fate and transport of materials over long periods of time to determine potential consequences
 - Utilizes informed assumptions
 - Provides most likely consequences of planned actions
- Provides best estimation of what the consequences will be, both chemical and radiological, over time
- Reflects uncertainty and identifies key parameters for which the model has the greatest sensitivity (importance)

DOE PA Development

All activities

NDAA §3116 Process

Types of Salt Waste Interactions

- Onsite Observations: NRC staff conducts observations of Salt Waste Disposal Activities at SRS
- Technical Reviews: NRC staff reviews technical reports and other documentation
- Each interaction typically involves:
 - Preparations
 - Conduct of Interaction
 - Follow-up Activities

R&D Overview

- DOE has prioritized activities to align with critical monitoring "factors" that NRC has delineated in their Technical Evaluation Report and Monitoring Plan
- R&D is specialized research and many activities are individually tailored to address specific issues
- R&D results are incorporated into the PA either directly (as the PA is developed) or through the Unreviewed Disposal Question (UDQ) Process

Integrating R&D and the PA

We do the right thing.

** Includes development of Annual PA Review and updates to PA/CA Maintenance Plan

R&D Resource Commitment

We do the right thing.

Fiscal Year

SAVANNAH RIVER SITE = AIKEN, SC = WWW.SRS.GOV 10

Applying R&D Research

Validating PA Parameters

We do the right thing.

12

SRS WD/PA Journey

- DOE, SCDHEC, EPA and NRC held numerous scoping meetings during the development of the 3116 process, FTF PA and the HTF PA to discuss inputs and approaches
 - Comments received from SCDHEC, EPA and the public as well as the NRC
- These inputs and approaches were applied, as appropriate, to the SDF PA
- DOE has posted meeting minutes at:

http://www.em.doe.gov/stakepages/wmdi_swd.aspx?PAGEID=WMDI

 NRC has posted meeting minutes on their ADAMS system including accession numbers: ML073331049, ML073331050, ML073331053, ML073331058, ML073331061, ML073331062, ML073331065, ML073331070, ML073331074, ML073331081, ML100970781

SRR Savannah River Remediation

SRS WD/PA Journey

SDF PA LFRG Review Team

- Joel Case, DOE-Idaho Site Office (Co-Lead)
 - M.S., Nuclear & Environmental Engineering, University of Florida
- Martin Letourneau, DOE-EM, EM-41 (Co-Lead)
 - M.P.P, Environmental & Natural Resource Public Policy, Harvard University
- Amanda Anderson, DOE-Health and Safety
 - M.S., Radiological Health Sciences, Colorado State University
- Robert Andrews, Jason Associates
 - Ph.D, Geology/Hydrogeology, University of Illinois at Urbana-Champaign
- Jhon Carilli, DOE-Nevada Site Office
 - B.A., Chemistry, University of Nevada
- Eric Pierce, Pacific Northwest National Laboratory
 - Interdisciplinary Ph.D in Environmental Science (Geology/Env. Eng.), Tulane

SDF PA LFRG Review Team

- Howard Pope, Project Enhancement Corporation
 - M.S., Environmental Management, University of South Carolina
- Linda Suttora, DOE-EM, EM-41
 - M.S., Biology, University of Michigan
- John Walton, University of Texas, El Paso
 - Ph.D, Chemical Engineering, University of Idaho
 - M.S., Environmental Engineering, University of Virginia
 - M.S., Chemical Engineering, University of Washington
- Marcus Wood, CH2MHill Plateau Remediation Company
 - Ph.D, Geology, Brown University
- Vefa Yucel, National Security Technologies, LLC
 - M.S., Civil Engineering, Iowa State University

Transport in the Environment

We do the right thing.

Savannah River Remediation

[NOT TO SCALE]

SRR Savannah River Remediation

Conservative Future Scenarios

We do the right thing.

SCENARIO WITH WELL WATER AS PRIMARY WATER SOURCE

- 1. Direct ingestion of well water
- 2. Ingestion of milk and meat from livestock (e.g., dairy and beef cattle) that drink well water
- 3. Ingestion of vegetables grown in garden soil irrigated with well water
- 4. Ingestion of milk and meat from livestock (e.g., dairy and beef cattle) that eat fodder from a pasture irrigated with well water
- 5. Ingestion and inhalation of well water while showing
- 6. Direct irradiation during recreational activities (e.g., swimming, fishing, boating) from stream water
- 7. Dermal contact with stream water during recreational activities (e.g., swimming, fishing)

- 8. Incidental ingestion and inhalation of stream water during recreational activities
- 9. Ingestion of fish from the stream water
- 10. Direct plume shine
- 11. Inhalation
- 12. Inhalation of well water used for irrigation
- 13. Inhalation of dust from the soil that was irrigated with well water
- 14. Ingestion of or dermal contact with soil that was irrigated with well water
- 15. Direct radiation exposure from radionuclides deposited on the soil that was irrigated with well water

Complex Model Development

- SRS benefits greatly by the presence of a national laboratory at the site
- 50+ years of support for waste storage, treatment and disposal
- Nationally recognized experts in the fields of cementitious materials, geochemistry, hydrogeology, and modeling of environmental transport
- Support of extensive subsurface characterization of the General Separations Area

We do the right thing.

Improvements in the 2009 PA

- Saltstone Hydraulic Properties
 - Testing has been performed (and continues) to understand sitespecific conditions and reduce uncertainties
 - 2009 PA values are two orders of magnitude more pessimistic than 2005 evaluations
- Disposal Cell Concrete Properties
 - Testing has been performed to understand site-specific conditions
- Other Saltstone Properties
 - Testing to understand formula-specific characteristics related to individual elemental transport
- Fracturing of Vault Walls
 - Modeled Vault 1 and Vault 4 as significantly fractured (i.e., not a barrier to flow) and assumed an initial inventory already in walls at closure

22

Starting Assumptions for Vault 4

We do the right thing.

- Base case reflects known conditions of weeping Vault 1 and 4 walls
- Concrete vault walls modeled as having severely degraded initial hydraulic conductivity (i.e., orders of magnitude worse than undisturbed soil)
- Concrete walls modeled as containing significant inventory at time of closure

Wall initial hydraulic conductivity **1.7E-1** cm/sec

(Soil hydraulic conductivity 6.2E-5 cm/sec)

Assumed initial inventory in walls reflecting salt solution filling all available pore spaces

Saltstone Vault Wall

Floor initial hydraulic conductivity 3.1E-10 cm/sec

DOE Base Case Initial Conditions at T = 0 years

Savannah River

- Development of PA recognized critical nature of the saltstone properties in minimizing releases of Tc-99
- Conducted saltstone formula-specific reduction capacity testing
- Also, conducted saltstone distribution coefficient (K_d) testing
 - Initial testing had flaws that were clearly acknowledged in technical reports and shared with stakeholders as presented in NRC monitoring reports
 - New test methodologies were designed and testing conducted to address the previous issues
 - Preliminary discussions with the researchers indicate that the results will be supportive of the 2009 PA modeling
- Results of the K_d testing as well as other saltstone properties are expected to be shared with NRC and the public in April

- Improved waste characterization is reflected in the 2009 PA inventory assumptions
- Inventory values still represent very pessimistic assumptions for radionuclides of concern
 - Use of minimum decontamination factors for salt treatment processes
 - Used bounding ratios to develop assumed initial inventories of U-234/Th-230 (source of Ra-226)
- Inventory disposed to date plus projections at time of closure validate the assumptions for radionuclides of concern

Risk Perspective

- Actual disposal of Tc-99 to date in Vault 4 is only at ~3% of the Class A Concentration Limit (the lowest radioactivity level 10 CFR 61 classification)
- With over 70% of Vault 4 filled, Th-230 inventory is only 0.028 Ci versus an assumed inventory of 7.5 Ci at time of closure
- Inventories for Saltstone Disposal Facility are updated quarterly and posted at: http://sro.srs.gov/saltstone.htm

Disposal actions to date have been conservative relative to the analysis performed for the 2009 SDF PA

Radiation Dose Perspective

